291 research outputs found

    Automated segmentation of tissue images for computerized IHC analysis

    Get PDF
    This paper presents two automated methods for the segmentation ofimmunohistochemical tissue images that overcome the limitations of themanual approach aswell as of the existing computerized techniques. The first independent method, based on unsupervised color clustering, recognizes automatically the target cancerous areas in the specimen and disregards the stroma; the second method, based on colors separation and morphological processing, exploits automated segmentation of the nuclear membranes of the cancerous cells. Extensive experimental results on real tissue images demonstrate the accuracy of our techniques compared to manual segmentations; additional experiments show that our techniques are more effective in immunohistochemical images than popular approaches based on supervised learning or active contours. The proposed procedure can be exploited for any applications that require tissues and cells exploration and to perform reliable and standardized measures of the activity of specific proteins involved in multi-factorial genetic pathologie

    Combining machine learning and deep learning approaches to detect cervical cancer in cytology images

    Get PDF
    This dissertation is centred around the implementation and optimization of a hybrid pipeline for the identification and stratification of abnormal cell regions in cytology images, combining state of the art deep learning (DL) approaches and conventional machine learning (ML) models.Cervical cancer is the fourth most common cancer in women. When diagnosed early on, it is one of the most successfully treatable types of cancer. As such, screening tests are very effective as a prevention measure. These tests involve the analysis of microscopic fields of cytology samples which, when performed manually, is a very demanding task, requiring highly specialized laboratory technologists (cytotechs). Due to this, there has been a great interest in automating the overall screening process. Most of these computer-aided diagnosis systems subject the images from each sample to a set of steps, more notably focus and adequacy assessment, region of interest identification and respective classification. This work is focused on the last two stages, more specifically, the detection of abnormal regions and the classification of their abnormality level. The main approaches can be divided into two types: deep learning architectures and conventional machine learning models, both presenting their own set of advantages and disadvantages. This work explores the combination of both of these approaches in hybrid pipelines to minimize the problems of each one whilst taking advantage of the best they have to offer, ultimately contributing to a decision support system for cervical cancer diagnosis. More specifically, it is proposed a deep-learning approach for the detection of the regions of interest and respective bounding-box generation, followed by a simpler machine-learning model for their classification. Furthermore, a comparative analysis of different hybrid pipelines and algorithms will also be performed, aiming to support future research of similar solutions

    Predicting the risk of cancer in adults using supervised machine learning: a scoping review

    Get PDF
    OBJECTIVES: The purpose of this scoping review is to: (1) identify existing supervised machine learning (ML) approaches on the prediction of cancer in asymptomatic adults; (2) to compare the performance of ML models with each other and (3) to identify potential gaps in research. DESIGN: Scoping review using the population, concept and context approach. SEARCH STRATEGY: PubMed search engine was used from inception to 10 November 2020 to identify literature meeting following inclusion criteria: (1) a general adult (≥18 years) population, either sex, asymptomatic (population); (2) any study using ML techniques to derive predictive models for future cancer risk using clinical and/or demographic and/or basic laboratory data (concept) and (3) original research articles conducted in all settings in any region of the world (context). RESULTS: The search returned 627 unique articles, of which 580 articles were excluded because they did not meet the inclusion criteria, were duplicates or were related to benign neoplasm. Full-text reviews were conducted for 47 articles and a final set of 10 articles were included in this scoping review. These 10 very heterogeneous studies used ML to predict future cancer risk in asymptomatic individuals. All studies reported area under the receiver operating characteristics curve (AUC) values as metrics of model performance, but no study reported measures of model calibration. CONCLUSIONS: Research gaps that must be addressed in order to deliver validated ML-based models to assist clinical decision-making include: (1) establishing model generalisability through validation in independent cohorts, including those from low-income and middle-income countries; (2) establishing models for all cancer types; (3) thorough comparisons of ML models with best available clinical tools to ensure transparency of their potential clinical utility; (4) reporting of model calibration performance and (5) comparisons of different methods on the same cohort to reveal important information about model generalisability and performance

    Computer-aided diagnosis of low grade endometrial stromal sarcoma (LGESS)

    Get PDF
    Low grade endometrial stromal sarcoma (LGESS) accounts for about 0.2% of all uterine cancer cases. Approximately 75% of LGESS patients are initially misdiagnosed with leiomyoma, which is a type of benign tumor, also known as fibroids. In this research, uterine tissue biopsy images of potential LGESS patients are preprocessed using segmentation and stain normalization algorithms. We then apply a variety of classic machine learning and advanced deep learning models to classify tissue images as either benign or cancerous. For the classic techniques considered, the highest classification accuracy we attain is about 0.85, while our best deep learning model achieves an accuracy of approximately 0.87. These results clearly indicate that properly trained learning algorithms can aid in the diagnosis of LGESS

    Treatment Outcome Prediction in Locally Advanced Cervical Cancer: A Machine Learning Approach using Feature Selection on Multi-Source Data

    Get PDF
    Cancer is a significant global health issue, and cervical cancer, one of the most common types among women, has far-reaching impacts worldwide. Researchers are studying cervical cancer from various perspectives, conducting thorough investigations, and utilizing novel technologies to gain a deeper understanding of the disease and its risk factors. Machine learning has increasingly found applications in cancer research due to its ability to analyze complex data relationships, recognize patterns, adapt to new information, and integrate with other technologies. By harnessing predictive machine learning models to anticipate treatment outcomes before commencing any therapies, healthcare providers might be able to make more informed decisions, allocate resources effectively, and provide personalized care. Despite significant efforts in the scientific community, the development of accurate machine learning models for cervical cancer treatment outcome prediction faces several open challenges and unresolved questions. A major challenge in developing accurate prediction models is the limited availability and quality of data. The quantity and quality of data differ across various datasets, which can significantly affect the performance and applicability of machine learning models. Additionally, it is crucial to identify the most informative and relevant features from diverse data sources, including clinical, imaging, and molecular data, to ensure accurate outcome prediction. Moreover, cancer datasets often suffer from class imbalance. Addressing this issue is another essential step to prevent biased predictions and enhance the overall performance of the models. This study aims to improve the prediction of treatment outcomes in patients with locally advanced cervical cancer by utilizing a multi-source dataset and developing different machine-learning models. The dataset includes various data sources, such as medical images, gene scores, and clinical data. A preprocessing pipeline is developed to optimize the data for training machine-learning models. The Repeated Elastic Net Technique (RENT) is also employed as a feature selection method to reduce dataset dimensionality, improve model training time, and identify the most influential features for classifying patients' treatment results. Furthermore, the Synthetic Minority Oversampling Technique (SMOTE) is used to address data imbalance in the dataset, and its impact on model performance is assessed. The study's findings indicate that the available data exhibit promising capabilities in early predicting patients' treatment outcomes, suggesting that the developed models have the potential to serve as valuable auxiliary tools for medical professionals. Although the performance of the models remained relatively unchanged after implementing the RENT method, the models' average training time was reduced by over 8-fold in the worst case. Moreover, when imposing stricter feature selection criteria, clinical features were shown to have a more prominent role in predicting treatment results than other data sources. Ultimately, the study revealed that by balancing the dataset using the SMOTE technique, the average performance of specific models could be enhanced by up to 44 times

    CANCER DETECTION FOR LOW GRADE SQUAMOUS ENTRAEPITHELIAL LESION

    Get PDF
    The National Cancer Institute estimates in 2012, about 577,190 Americans are expected to die of cancer, more than 1,500 people a day. Cancer is the second most common cause of death in the US, accounting for nearly 1 of every 4 deaths. Cancer diagnosis has a very important role in the early detection and treatment of cancer. Automating the cancer diagnosis process can play a very significant role in reducing the number of falsely identified or unidentified cases. The aim of this thesis is to demonstrate different machine learning approaches for cancer detection. Dr. Tawfik, pathologist from University of Kansas medical Center (KUMC) is an inventor of a novel pathology tissue slicer. The data used in this study comes from this slicer, which successfully allows semi-automated cancer diagnosis and it has the potential to improve patient care. In this study the slides are processed and visual features are computed and the dataset is made from scratch. After features extraction, different machine learning approaches are applied on the dataset which has shown its capability of extracting high-level representations from high-dimensional data. Support Vector Machine and Deep Belief Networks (DBN) are the concentration in this study. In the first section, Support vector machine is applied on the dataset. Next Deep Belief Network which is capable of extracting features in an unsupervised manner is implemented and with back-propagation the network is fine tuned. The results show that DBN can be effective when applied to cytological cancer diagnosis by increasing the accuracy in cancer detection. In the last section a subset of DBN features are selected and then appended with raw features and Support Vector Machine is trained and tested with that. It shows improvement over the first section results. In the end the study infers that Deep Belief Network can be successfully used over other leading classification methods for cancer detection

    Optimisation of machine learning methods for cancer detection using vibrational spectroscopy

    Get PDF
    Early cancer detection drastically improves the chances of cure and therefore methods are required, which allow early detection and screening in a fast, reliable and inexpensive manner. A prospective method, featuring all these characteristics, is vibrational spectroscopy. In order to take the next step towards the development of this technology into a clinical diagnostic tool, classification and imaging methods for an automated diagnosis based on spectral data are required. For this study, Raman spectra, derived from axillary lymph node tissue from breast cancer patients, were used to develop a diagnostic model. For this purpose different classification methods were investigated. A support vector machine (SVM) proved to be the best choice of classification method since it classified 100% of the unseen test set correctly. The resulting diagnostic models were thoroughly tested for their robustness to the spectral corruptions that would be expected to occur during routine clinical analysis. It showed that sufficient robustness is provided for a future diagnostic routine application. SVMs demonstrated to be a powerful classifier for Raman data and due to that they were also investigated for infrared spectroscopic data. Since it was found that a single SVM was not capable of reliably predicting breast cancer pathology based on tissue calcifications measured by infrared micro-spectroscopy a SVM ensemble system was implemented. The resulting multi-class SVM ensemble predicted the pathology of the unseen test set with an accuracy of 88.9%, in comparison a single SVM assessed with the same unseen test set achieved 66.7% accuracy. In addition, the ensemble system was extended for analysing complete infrared maps obtained from breast tissue specimens. The resulting imaging method successfully detected and staged calcification in infrared maps. Furthermore, this imaging approach revealed new insights into the calcification process in malignant development, which was not previously well understood.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Improving Hierarchical Decision Approach for Single Image Classification of Pap Smear

    Get PDF
    The single image classification of Pap smears is an important part of the early detection of cervical cancer through Pap smear tests. Unfortunately, most classification processes still require accuracy enhancement, especially to complete the classification in seven classes and to get a qualified classification process. In addition, attempts to improve the single image classification of Pap smears were performed to be able to distinguish normal and abnormal cells. This study proposes a better approach by providing different handling of the initial data preparation process in the form of the distribution for training data and testing data so that it resulted in a new model of Hierarchial Decision Approach (HDA) which has the higher learning rate and momentum values in the proposed new model. This study evaluated 20 different features in hierarchical decision approach model based on Neural Network (NN) and genetic algorithm method for single image classification of Pap smear which resulted in classification experiment using value learning rate of 0.3 and momentum of 0.2 and value of learning rate of 0.5 and momentum of 0.5 by generating classification of 7 classes (Normal Intermediate, Normal Colummar, Mild (Light) Dyplasia, Moderate Dyplasia, Servere Dyplasia and Carcinoma In Situ) better. The accuracy value enhancemenet were also influenced by the application of Genetic Algorithm to feature selection. Thus, from the results of model testing, it can be concluded that the Hierarchical Decision Approach (HDA) method for Pap Smear image classification can be used as a reference for initial screening process to analyze Pap Smear image classification
    corecore