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I	
  

Abstract 

Early cancer detection drastically improves the chances of cure and therefore methods 

are required, which allow early detection and screening in a fast, reliable and 

inexpensive manner. A prospective method, featuring all these characteristics, is 

vibrational spectroscopy. In order to take the next step towards the development of 

this technology into a clinical diagnostic tool, classification and imaging methods for 

an automated diagnosis based on spectral data are required.  
 

For this study, Raman spectra, derived from axillary lymph node tissue from breast 

cancer patients, were used to develop a diagnostic model. For this purpose different 

classification methods were investigated. A support vector machine (SVM) proved to 

be the best choice of classification method since it classified 100% of the unseen test 

set correctly. The resulting diagnostic models were thoroughly tested for their 

robustness to the spectral corruptions that would be expected to occur during routine 

clinical analysis. It showed that sufficient robustness is provided for a future 

diagnostic routine application.  
 

SVMs demonstrated to be a powerful classifier for Raman data and due to that they 

were also investigated for infrared spectroscopic data. Since it was found that a single 

SVM was not capable of reliably predicting breast cancer pathology based on tissue 

calcifications measured by infrared micro-spectroscopy a SVM ensemble system was 

implemented. The resulting multi-class SVM ensemble predicted the pathology of the 

unseen test set with an accuracy of 88.9%, in comparison a single SVM assessed with 

the same unseen test set achieved 66.7% accuracy. In addition, the ensemble system 

was extended for analysing complete infrared maps obtained from breast tissue 

specimens. The resulting imaging method successfully detected and staged 

calcification in infrared maps. Furthermore, this imaging approach revealed new 

insights into the calcification process in malignant development, which was not 

previously well understood.  
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1 Introduction  
1.1 Background 
Cancer is one of the leading causes of death in western countries and incidences 

increase constantly all over the world. For example, in the UK around 298,000 people 

are newly diagnosed with cancer every year. In 2008 alone, over 156,000 deaths were 

caused due to the course of the disease (Cancer Research UK, 2010a). 

 

The survival rate is strongly influenced by stage of the malignancy at the point of 

detection. Thus an early detection permits an earlier intervention of therapeutic 

treatment and helps to reduce the mortality and morbidity rate. In that manner, 

methods that allow early diagnosis or even population screenings are desirable. An 

example for such a test is mammography. This method allows detecting calcifications 

in breast tissue, which are often indicators for a malignant lesion. When a 

calcification is detected, biopsy is required for distinction between malignant or 

benign (Stone et al., 2007).  

 

Typically, biopsied tissue is examined by applying histological (tissue based) and 

cytological (cell based) techniques. These techniques show several limitations. For 

instance they are subjective because the diagnosis depends on the opinion of a 

pathologist. Thus, the result can vary when the same sample is examined at different 

times by the same pathologist or among different pathologists. A further disadvantage 

is that biopsy is an invasive procedure, which brings risk and discomfort for patients. 

Finally, the total examination procedure is time consuming (Crow et al., 2003). 
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Due to the disadvantages of recent diagnostic and screening methods other options 

should be considered. The requirement for such methods would be that they are non-

invasive, fast, objective, low in costs, high-throughput and only need a minimal 

amount of training. Spectroscopic approaches could meet these demands, such as, for 

example vibrational spectroscopy, including techniques like Raman and infrared 

spectroscopy, demonstrated to be very promising techniques for the purpose of 

disease diagnosis and further medical application (Ellis et al., 2006).  

 

As recently reviewed by Kendall, Isabelle et al. (2009), vibrational spectroscopy is 

capable of diagnosing different diseases in various types of human tissues. Visual 

inspection of resulting vibrational spectra normally does not allow a distinctive 

differentiation between healthy and diseased tissue. Thus, accurate computational 

pattern classification strategies are required to permit future diagnostic applications.   

	
  

	
  

1.2 Biology 
Cancer is a potentially lethal disease in humans and because of its raising appearance 

a growing problem in today’s society. Cancer is caused when cell division gets out of 

control and leads to unregulated growth. A schematic loss of normal growth control is 

illustrated in Figure 1.1. Consequently, the growth of tumour cells leads to the 

formation of a tissue lump. The emerging tumour can become malignant by spreading 

over to other tissues and organs. There are two possibilities of spreading either by 

invading nearby tissues and organs or by formation of metastases. Generally, 

metastases are secondary tumours which are formed by tumour cells, which were 

previously transported over blood and lymph vessels to other parts of the body 

(Isabelle et al., 2008). The growth of the tumour and additional spread in other organs 
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can result in organ failure, obstruction of the gastrointestinal tract, ducts and hollow 

organs and finally death (Prierce et al., 2006).  

 

 

Figure 1.1 Cancer development: Typically, in the case that an error occurs during the normal 
cycle of cell division this damage is repaired.  If this is not possible apoptosis is initiated, 
which is equivalent to a cell suicide in order to protect the whole organism. Under the 
circumstances that this protection mechanism fails uncontrolled cell growth is caused. 
Usually several mutations take place before uncontrolled cell growth begins. Adapted from: 
http:// www.cancer.gov/cancertopics/ understandingcancer/cancer/Slide4 
 
On the molecular level cancer development changes the cell content. Thus, the nucleic 

acid, protein, lipid and carbohydrate content of cancerous cells differ from normal 

cells. This includes an increased chromatin to cytoplasm ratio, disordered chromatin 

and also changed levels of proteins and lipids (Mahadevan-Jansen et al., 1996). Due 

to the fact that many of the biological molecules are vibrationally active they can be 

studied by Raman as well as by infrared spectroscopy. It has been shown already that 

slight changes in the molecular content of cells are reflected in the appearance of 

vibrational spectra. For this reason vibrational spectroscopic methods are capable of 

detecting already minor changes in tissue, which makes them an ideal tool for cancer 

detection as well as cancer grading (Mahadevan-Jansen et al., 1997).   
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1.3 Incidence and mortality 
Currently cancer can be considered as epidemic since the number of incidences is 

growing rapidly. In 2002 about 10.9 million new cases were diagnosed and 6.7 

million deaths were counted worldwide (Ferlay J et al., 2004). Thus, in Europe over 

3.1 million new cases occurred in the year 2006. In the same year 1.7 million deaths 

caused by cancer were counted in this region (Ferlay et al., 2007). Related to the UK 

about 298,000 new cancer cases were counted in the year 2008. According to that, 

one in three persons is likely to develop cancer during their life time (Cancer 

Research UK, 2010a).  

 

The predominant type of cancer in females is breast cancer with over 45,000 new 

incidences in the year 2007. Due to that, breast cancer is responsible for almost one 

third of all diagnosed cancer incidences in females. In the UK breast cancer incidence 

increased over 50% within the last 25 years. (Cancer Research UK, 2010b). By now 

about one in ten women is likely to develop breast cancer in western countries 

(Stratton et al., 2008). An overview of all counted cancer incidences in females and 

males in the year 2007 is illustrated in Figure 1.2. 
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Figure 1.2 Cancer incidences in the UK in 2007: In these graphs the 10 most common cancers in 
females as well as in males are illustrated.  The most common types of cancer are breast, prostate 
colorectal and lung cancer. These types of cancer were responsible for more than half of all cancer 
incidences in the UK in the year 2007. Adapted from: Cancer Research UK (2010a) 
 

In 2008 cancer was responsible for 27% of all deaths in the UK and thus one in four deaths 

was caused by cancer. The majority of deaths is caused by lung cancer, colorectal cancer, 

breast cancer and prostate cancer (Cancer Research UK, 2010c). An overview of the 

mortality rates for the most common types of cancer in the UK is provided in Figure 1.3. 
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Figure 1.3 Cancer mortality in the UK in 2008: The cancer with the highest mortality rate is lung 
cancer. Although breast cancer has the highest incidence rate in females and prostate cancer has the 
highest incidence rate in males, lung cancer shows the highest mortality rate. Adapted from: (Cancer 
Research UK (2010c) 
	
  

	
  

1.4 Thesis objectives 
The aim of this project was to develop and optimise new data analysis strategies for 

vibrational spectroscopy data and images. For this reason this work was carried out in 

cooperation with the Biophotonics group at Gloucester Royal Hospital, which has generated 
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and analysed several high quality data sets derived from different types of cancerous and 

noncancerous tissue.  

 

First of all, data analysis techniques, which have been applied by the Biophotonics group 

were evaluated and optimised. In progression of this work, further machine learning methods 

were investigated for their capability of discriminating between malignant and begin tissue 

samples based on Raman and infrared spectra. These techniques should be able to take into 

account the variability between patients and demonstrate robustness towards system-to-

system variations. Thus, varying classification techniques, such as Linear Discriminant 

Analysis (LDA), Partial Least Square Discriminant Analysis (PLS-DA) and support vector 

machines (SVMs) were explored for their capability to classify tissue according to cancer 

state. 

 

In order to work towards a fully automated classification of vibrational spectroscopic data, 

strategies for image analysis were developed. These techniques were able to detect features of 

interest and predict the pathology of tissue samples. 
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2 Cancer diagnostics 
2.1 Current techniques 
Currently there is no single test for accurately diagnosing and staging cancer. Typically, 

patients who are suspected of developing malignant disease are examined using different 

imaging techniques, which include X-ray imaging, magnetic resonance imaging (MRI) and 

computer tomography (CT) (Weissleder et al., 2008). For instance a frequently applied breast 

cancer screening tool is mammography, which belongs to the group of X-ray imaging 

techniques (Blamey et al., 2000). Another possibility of detecting malignant development is 

the application of measurement of specific components in body fluids. An example for such a 

test is the estimation of prostate-specific antigen (PSA) levels in blood serum, which can 

indicate the presence of prostate cancer growth (Oesterling, 1991).  

 

Under the circumstances that suspicious lesions, as for instance in a mammogram, or the 

presence of biomarkers, such as increased levels of PSA in blood, are detected tissue samples 

are removed from the concerned area. Obtained biopsy samples are analysed by pathologists 

applying different tissue fixation, sectioning and staining techniques (Kendall et al., 2009). 

Accordingly, histopathology is the gold standard to finally confirm the presence or absence of 

cancer and furthermore to stage the present cancer. Examples for H&E (haematoxylin and 

eosin) stainings of a breast tissue sample are illustrated in Figure 2.1.  
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Figure 2.1 H&E stained sections of breast tissue. 1) Shows ductal carcinoma in situ (A: normal acini, 
S: stroma, T:tumour cells). 2) This staining shows invasive breast cancer (S: stroma, T: tumour) 
(Burkitt et al., 1993).  
 

Histopathology features several disadvantages, which includes that it results in a delayed 

diagnostic result and it also relies upon a subjective method, which can result in inter-

observer disagreement (Kendall et al., 2003, Montgomery et al., 2001).  Furthermore, 

excisional biopsy of vulnerable organs, including the central nervous system and vascular 

system, can be of increased hazard (Kendall et al., 2009). In light of these limitations, an 

ideal diagnostic test would be rapid, non-invasive, high-throughput and would not require any 

tissue processing before analysis. Methods, including vibrational spectroscopic methods, such 

as Raman and infrared spectroscopy, have shown to be promising techniques for aiding 

histopathologists in the procedure of cancer detection and staging. These methods are 

discussed in detail below. 
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2.2 Emerging techniques 

2.2.1 Biomedical photonics 

Photonics deals with electromagnetic radiation, which can be defined as energy propagation 

by waves that feature electric properties as well as magnetic properties. The electromagnetic 

spectrum is generated by the extent of the energy, which in turn is proportional to the 

wavelength. The shorter the wavelength, the higher is the energy of an electromagnetic wave. 

An overview of the electromagnetic radiation is illustrated in Figure 2.2. 

 

 

Figure 2.2 Electromagnetic spectrum.  
(Adapted from: http://fig.cox.miami.edu/~cmallery/150/phts/spectra.htm) 
  

The field of photonics can be split into optical and non-optical technologies. Whereas optical 

methods work with the visible light and non-optical methods use the much broader field of 

non-visible electromagnetic radiation. In that sense, biomedical photonics can be summarised 

as the research area and technology that uses the whole range of electromagnetic radiation for 

medical applications. For this reason electromagnetic radiation is applied in different ways, 

for instance absorption, emission, transmission, scattering, amplification and detection. 
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Photonic methods and technologies for medical application are lasers and other light sources, 

electro-optical instrumentation, fibre optics, microelectromechanical systems and also 

nanosystems. In general, photonic devices are applied for medical diagnostics, therapy and as 

well for the prevention of diseases (Vo-Dinh, 2003).    

 

The application of spectroscopic techniques usually generates a large amount of data. Due to 

the size and complexity of spectral data obtained from tissue studies, computational methods 

are required for further downstream analysis. Therefore, the application of multivariate data 

analysis strategies is essential.  Especially classification methods are of high interest, when 

applying spectroscopic techniques for the purpose of medical diagnoses. In order to make 

biophotonic methods applicable in clinical routine analysis, classifiers are needed, which can 

reliably differentiate cancerous from noncancerous tissue (Ellis et al., 2006).  

	
  

	
  

2.2.2 Vibrational spectroscopy 

Atoms in a molecule are hold together by electron bonds. The relative positions of electrons 

and atom nuclei can change within the bonding orbitals. Commonly such a changed position 

is called vibrational mode and can only take arrangements as described by the quantum 

mechanic laws. A simplified illustration of vibrational modes for triatomic molecules, 

including symmetrical stretch, asymmetric stretch and bending deformation are shown in 

Figure 2.3. Molecules consisting of more than three atoms may have multiple complex 

vibrational modes (Hollas, 2002).  
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Figure 2.3 Vibrational modes of water and carbon dioxide: This spring and ball model illustrates the 
three possible vibrations of triatomic molecules. [Adapted from: Smith and Dent (2005) ] 

 

Vibration causes the nucleus to alter its relative position to the electronic cloud and 

consequently may result in a change of the dipole moment. Depending if a vibrational mode 

induces such a change of the dipole moment it can be differed between Raman-active and IR-

active vibrational mode. Thus, Raman-scattering activity can be observed when the 

vibrational deformation does not result in a dipole alteration. On the other hand, a vibration 

that induces a dipole change is infrared absorption active (Pistorius, 1995). The difference 

between Raman active vibrations and IR-active vibrations is illustrated in Figure 2.4. 

 

 

Figure 2.4 Stretching vibrations of CO2: An anti-symmetric stretching leads to a change of the dipole 
moment which in turn results in an IR-active vibration. A symmetric stretching does not interfere with 
the dipole moment of the molecule and thus it causes a Raman-active vibration. [Adapted from: 
Pistorius (1995)] 
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Since both techniques, Raman scattering as well as and IR spectroscopy, show high potential 

for future diagnostic application they are described in more detail in the following.  

	
  

	
  

2.2.3 Raman spectroscopy 

2.2.3.1 History of Raman spectroscopy 
The beginning of Raman spectroscopy can be dated back to the first quarter of the 20th 

century. Smekal, an Austrian quantum physicist, was the first to predict the inelastic 

scattering of monochromatic light in 1923 (Smekal, 1923). However, five years later Raman 

and his co-worker Krishnan were the first to actually observe this phenomenon (Raman et al., 

1928). Almost at the same time Landsberg and Mandelstam made the same observation 

independently in Moscow. In 1930 Raman received the Nobel Prize in Physics for the 

discovery of the scattering of monochromatic radiation. Since then this effect bears his name 

(Laserna, 2001).   

 

After discovery further developments evolved slowly, this was influenced by several reasons. 

One of them was that the early experimental work was limited by the radiation source. 

Raman and Krishnan used filtered sunlight for their experiments and later mercury lamps 

became the standard radiation source. The invention of the laser in 1960 brought a significant 

upturn in the development of Raman spectroscopy.  Another limitation in the early days was 

the absence of suitable electronic measuring devices. Once they were available many aspects, 

such as detection, data analysis and instrument miniaturisation, were improved (Laserna, 

2001).  

 

Nevertheless, for a long time IR spectroscopy was much more popular than Raman 

spectroscopy. The main reason therefore was that IR instruments have been commercially 
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available since the mid-1950s. A significant change occurred within the 1990s when Raman 

systems became simpler and smaller in size (Adar et al., 2003). Since then Raman technology 

has been applied increasingly in many different areas, for instance for studies of polymers, 

inorganics and minerals as well as for biological, pharmaceutical and forensic applications 

(Smith et al., 2005).  

 

 

2.2.3.2 Raman theory 
Several different interactions between light and matter, such as tissue, are possible and 

include absorption, transmission and scattering. The Raman effect is a light scattering 

phenomenon, which is a result of the change of the vibrational state of  a scattering molecule 

of (Mahadevan-Jansen, 2003). Not every type of vibrational mode is Raman active as it has 

been described in more detail in section 2.2.2. 

 

When light is scattered by a molecule each scattered photon predominantly possesses the 

same wavelength as the incident photon. This phenomenon is called elastic or Rayleigh 

scattering. The second mode is inelastic or Raman scattering. Under these circumstances the 

incident and the scattered photon features a different wavelength than the incident photon. 

However, only a very small number of photons, approximately 1 in 100 million photons, are 

inelasticly scattered (Zeng et al., 2004). Such an inelasticly scattered photon can either gain 

or lose in wavelength. Accordingly, it is called Stokes-Raman scattering, when the 

wavelength of the scattered light is shorter and therefore the energy is higher than the 

incident photon. The opposite phenomenon is called anti-Stoke-Raman scattering (Petry et 

al., 2003). The different scattering modes are illustrated in Figure 2.5. 
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Figure 2.5 Illustration of the different scattering modes. S0(0) and S0(1)  represent two vibrational states 
(S0(1) is higher in energy than S0(0)) and ν the frequency of the incident photon. Thus, Elastic 
Scattering occures when the molecule returns to the same vibrational mode (S0(0)) and the frequency 
of the incident photon does not shift. In comparison Raman Stokes Scattering occurs when the 
molecule returns to a higher vibrational state (S0(1)) and the energy of the incident photon increases 
(2ν). Raman Anti Stokes Scattering occurs when the molecule returns to a vibrational lower state 
(S0(0)) and the incident photon looses energy (4ν)[Adapted from: Mahadevan-Jansen (2003)]. 
	
  

As mentioned earlier, spontaneous Raman scattering is a very weak effect since only a very 

low number of photons are converted into Raman photons, since the efficiency is 

proportional to the fourth power of the frequency of the incident photon. A higher-frequency 

excitation source increases the number of scattered photons and therefore enhances the 

Raman scattering. Many organic substances and biological systems are fluorescent. Thus, a 

higher frequency also might stimulate molecules to fluoresce, which can mask the weak 

Raman scattering (Wartewig et al., 2005). For tissue studies a high-frequency might not be 

favourable and due to the fact that higher-energetic photons may damage the sample through 

burning (Smith et al., 2005).  
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2.2.3.3 Raman instrumentation 
The basic Raman instrumentation does not differ drastically from any other spectroscopic 

system. The basic setup of Raman instrumentation can be dived into four main building 

blocks: 

• A light source for excitation (traditionally a laser) 

• A light delivery and collection system 

• A wavelength selector (monochromator) 

• A detection and processing unit (Ferraro et al., 2003).  

According to these building units the basic setup is illustrated in Figure 2.6. 

 

 

Figure 2.6 Basic Raman Instrumentation. [Adapted from: Popp and Kiefer (2003)] 

 

 

The two most frequently applied Raman systems in biospectroscopy are Fourier transform 

(FT) Raman spectrometers (Hirschfeld et al., 1986) and charge-coupled device (CCD)-based 

dispersive Raman spectrometers (Wang et al., 1989). The main differences between these 

two systems are the applied laser and the methods by which the Raman scattering is detected 

and analysed (McCreery, 2000). Dispersive Raman spectrometers apply lasers that operate in 
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the ultraviolet, visible or near infrared region (Wartewig et al., 2005). The most commonly 

applied detection system for dispersive Raman spectrometers is a charge coupled device. This 

multichannel device allows the simultaneous detection of a large spectral range (Popp et al., 

2003). On the other hand, FT-Raman spectrometers apply only near-infrared lasers, typically 

a neodymium:yttrium aluminium garnet (Nd:YAG) laser radiation at 1064 nm. These systems 

apply interferometric optics that also allows multiplex signal detection. A fast Fourier 

transform algorithm converts the resulting interferogram into a power density spectrum 

(Petry et al., 2003).  

   

Another well established technique is Raman microspectroscopy, which combines the 

properties of a Raman spectroscope with a microscope. Thus, a laser beam is focused by a 

microscope objective and allows pinpoint analysis as well as the generation of images. In a 

resulting image one point typically represents one Raman spectrum. A definite advantage of 

this method is that all kinds of objects can be analysed since it is possible to put almost any 

type of object under a microscope (Dhamelincourt, 2002). 

 

 

2.2.4 Infrared spectroscopy 

2.2.4.1 Theory of infrared spectroscopy 
Infrared spectroscopy is a powerful method, which allows the qualitative and quantitative 

detection of many different types of materials and is applicable for solids and liquids as well 

as for gases (McKevly, 2000). Currently, infrared spectroscopy is one of the most important 

analytical methods (Günzler et al., 2002). Accordingly, IR spectroscopy is applied in many 

areas, for example in polymer science, analysis of inorganic materials such as zeolites and 

metal oxides and analysis of semi-conductor structures. Furthermore, IR spectroscopy has 



18	
  

been highly investigated for life science research, such as pharmaceuticals (quality control 

and product monitoring), studies of blood and tissue, studies of the biological cell and cancer 

research (Meier, 2005).  

	
  

IR spectroscopy belongs to the group of vibrational spectroscopic techniques. The energy of 

the IR incident radiation must correlate with the vibrational frequencies of the functional 

groups within the sample. If this pre-condition is met the molecular vibrations are stimulated. 

In addition, the molecular vibration must cause a change in the dipole moment in order to 

enable IR absorption. The different vibrational modes were outlined in more detail in section 

2.2.2. The vibrational modes and the resulting IR absorption are very specific for a molecule 

and can be directly related to a (bio) chemical species. Thus, an infrared spectrometer allows 

the generation of a molecular fingerprint (Ellis et al., 2006). Beside the facility of sample 

characterisation quantification is possible. This is possible due to the fact that the absorption 

is directly related to the concentration of a molecule within a sample (Jackson et al., 2000). 

 

The infrared spectral region is located between the visible light and the microwave. In 

addition, the infrared region can be divided into the near-infrared (NIR), mid-infrared (MIR) 

and far-infrared (FIR). The mid-infrared region ranges from 400-4000cm-1. This region is of 

great importance for biomedical studies since the majority of molecules feature characteristic 

vibrations within this area. As a matter of fact this area is frequently referred to as the 

“fingerprint region”. The near infrared region ranges from 4000-14,000cm-1 and typically 

leads to a broad and overlapping absorption. Due to that, previously only little attention was 

paid to this spectral region. However, the technology matured and this technique gained in 

importance in many research areas, including clinical and diagnostic analysis (Shaw et al., 

2000).  
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2.2.4.2 Infrared instrumentation 
In general, the basic instrumental setup for infrared absorption spectroscopy is similar to 

other spectroscopic techniques. Accordingly a typical instrument setup, consisting of a light 

source providing the incident light, a spectral apparatus for spectral splitting, a detector and a 

computer measure the electromagnetic radiation transmittance of a sample of interest 

(Günzler et al., 2002). A schematic design of an IR spectrometer is provided in Figure 2.7. 

 

 

Figure 2.7 Schematic design of an IR spectrometer. [Adapted from: Günzler and Gremlich (2002)] 

 

Infrared detectors are not capable of simultaneous differentiation between various 

wavelengths of light. Thus, a spectral apparatus is required for the separation of light into 

individual wavelengths. Depending on the spectroscopic apparatus, two main types of 

infrared spectrometers can be differed, dispersive instruments and FT instruments. Dispersive 

instruments use monochromators, for instance gratings or optical filters in order to select the 

wavelength which should reach the detector (Tomellini et al., 2000). In contrast a FT 

spectrometer uses an interferometer for the splitting of the light. Commonly a Michelson two-

beam interferometer is applied, which consists of two mirrors – one fixed and one moveable, 

and a beam splitter. The two split beams are reflected by the mirrors and recombined again, 

causing them to interfere (Günzler et al., 2002). In that manner the detector detects an 



20	
  

interferogram, which is then mathematically transformed into a spectrum by applying the 

Fourier transformation algorithm (Wartewig et al., 2005).  

 

By now nearly all modern infrared spectrometers are Fourier transformation instruments 

since they show many advantages over dispersive instruments. FT instruments feature a 

higher robustness and are easier to handle. An FT infrared spectrometer can be combined 

with an microscope, which allows to generate infrared images of a sample with an spatial 

resolution in the range of ~10 µm (Meier, 2005). An FTIR microscope is illustrated in Figure 

2.8. 

 

 

Figure 2.8 Schematic illustration of an FTIR micro spectroscope. [Adopted from: Bhargava and 
Levin (2003)] 
 

 

 



21	
  

2.2.5 Fluorescence spectroscopy  

Fluorescence belongs to the field of luminescence spectroscopy. Generally, luminescence is 

caused when an electron goes from an electronic excited state into an electronic lower state 

(Skoog et al., 1998). In order to elevate an electron into an excited state a molecule or an 

atom absorbs energy which is provided by photons at specific wavelength. For this purpose, 

near-ultraviolet or visible light is commonly used. Not every molecule that relaxes back to 

the ground state transmits fluorescence, instead they generate thermal energy. This 

phenomenon is called nonradiative transition. In comparison, molecules which are capable of 

radiative transition are called fluorophores (Norgaard et al., 2007). Typically, the emitted 

fluorescence is longer in wavelength due to the fact that small amount of the energy is 

transformed into thermal energy. The emitted light is detected and undergoes further analysis 

(Ramanujam, 2000). The principles of fluorescence spectroscopy are illustrated in Figure 2.9. 

 

Figure 2.9 The principle of fluorescence spectroscopy: Light illuminates the molecule (1) and as a 
result the electron is elevated into an exited state (2). When the electron returns back to the original 
state (3) fluorescence is emitted (4). [Adopted from: Crow, Stone et al. (2003)] 
 



22	
  

Fluorescence techniques can use the features of endogenous fluorophores or exogenous 

fluorophores. The first category uses the ability of autofluorescence, which can be observed 

in many organic molecules. Components that are not autofluorescent can be aggregated with 

an exogenous fluorophore in order to become fluorescent and detectable (Bigio et al., 1997).   

 

Biological tissue contains several autofluorescent components, for instance amino acids, 

structural proteins, enzymes and co-enzymes, vitamins lipids and porphyrins (Ramanujam, 

2000). The biochemical composition of a cell varies during the different states of disease and 

as a result the concentration of fluorophores can change. This can be explained by the fact 

that the disease development interferes with the cellular metabolism, which can even prevent 

production of the individual fluorescent components. In other cases the distribution of 

fluorophores may vary between diseased and normal tissue (Vo-Dinh et al., 2003). Due to 

that fluorescence spectroscopy is highly capable of malignancy detection and was 

investigated for the common types of cancer, among them are cervical cancer (Mahadevan et 

al., 1993), head and neck cancer (Schantz et al., 1998), colorectal cancer (Mayinger et al., 

2003) and oral cancer (De Veld et al., 2005).  

 

 

2.2.6 Elastic scattering spectroscopy 

As outlined earlier there are different ways in which a photon can interact with a molecule 

and thus another possible type of interaction between an incident photon and a molecule is 

elastic scattering. In this light interaction the incident photon is reflected by a molecule and 

does not experience any change of energy. Accordingly, elastic scattering spectroscopy 

(EES) detects photons that were scattered by the sample molecules. The elastic scattering 

capability of a sample increases with its refractive index or its density (Crow et al., 2003). 
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In biological samples, such as tissue, the nucleus contributes strongly to cellular light 

scattering features. Carcinogenesis is accompanied with the change of the nucleus, which 

includes an increased nucleus and a change in the structure of the nucleus. Thus, EES may be 

used to detect and diagnosed cancer and was explored for this purpose by several groups 

(Mourant et al., 2003). Lovat, Johnson et al. (2006) showed that the EES is capable of 

detecting high grade dysplasia and cancer within Barrett’s oesophagus in vivo.  EES was also 

successfully investigated for the detection of skin cancer by differing between primary 

melanomas and benign nevi in vivo (Marchesini et al., 1992), detection of cervical cancer in 

vivo (Mourant et al., 2007), for the assessment of bony resection margins in oral cancer 

(Jerjes et al., 2005)  and the detection of bladder cancer in vivo (Mourant et al., 1995). 
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3 Machine learning in vibrational spectroscopy 
3.1 Classification theory 
Machine learning derives from the idea of learning by experience. Thus, an algorithm is 

trained to distinguish groups of a predefined data set where the class of each sample is 

known. This data set is commonly called the training set. This data set is used to establish a 

mathematical model, which in turn should be capable of predicting the class membership of 

unseen samples (Izenman, 2008). In order to assess the predictive power of the resulting 

model it has to be tested, ideally with unseen data. A common approach is to split the 

available data into training and testing sets before building the model. Thus, a part of the data 

is kept untouched during the procedure of the model optimisation (Mosteller et al., 1977). 

 

For the model optimisation ( also termed training), two methods are frequently applied, cross-

validation (Stone, 1974) and the bootstrap (Efron, 1979). For K-fold cross-validation the 

training set is randomly separated into K groups. It is important that these groups do not 

overlap. The sub-training set is formed by K-1 groups and the left out group is used for 

validation. This procedure can be repeated K times and the average of the prediction error can 

then be used to assess the resulting model (Izenman, 2008). In contrast, the bootstrap 

randomly selects samples from the parental data set in order to generate a validation set. This 

procedure is repeated several times, for example 200 times, and each time the prediction error 

is calculated. The average of the resulting prediction error values is used to assess the model 

quality (Brereton, 2007). Typically, cross-validation and bootstrapping are used for model 

optimisation but under the circumstances that the available data set is too small to be split 

into train and test set these methods can also be used for performance testing.  
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Once the model is optimised it can be assessed with the left out testing data and a confusion 

matrix is established as shown in table 3.1.  

 

Table 3.1 Confusion matrix scheme [Adopted from: Fielding (2007)]   

 

 

According to the confusion matrix the correct classification rate is calculated as follows 

(Fielding, 2007): 

 

Correct  classification  rate  =  (True  positive  +  True  negative)/Number  of  samples  =  (a+d)/N  

 

For diagnostic approaches it is also common to express sensitivity and specificity. In a binary 

classification, such as benign and malignant, two types of errors can be found, false positive 

and false negative. Sensitivity is a measurement for the true positive cases and the specificity 

is a measurement for the true negative cases (Altman et al., 1994). These two values are 

calculated as follows (Fielding, 2007): 

 

Sensitivity  =  True  positive/(True  positive  +False  negative)  =  a/(a+c)  

Specificity    =  True  negative/(True  negative  +  False  positive)  =  d  /(d+b)  
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3.2 Pattern recognition methods 
One of the main interests of data analysis for medical applications is to identify patterns or 

groupings within a data set. Pattern recognition methods can be divided into different groups, 

the major ones are exploratory data analysis (EDA), unsupervised pattern recognition and 

supervised pattern recognition (Brereton, 2007).  

 

 

3.2.1 Exploratory data analysis 

Principal component analysis (PCA) is probably the best known exploratory data analysis 

technique. This method reduces the dimension of a given data set and creates new variables, 

called principal components. In many cases only two or three principal components are 

sufficient for capturing the major variance within data. Plotting of the principal components 

reveals similarities and differences within the data (Lavine, 2000). For this reason, PCA can 

be used to examine if Raman or infrared spectra, derived from tissue samples, can be grouped 

into cancerous and non-cancerous states as illustrated in Figure 3.1. Further information on 

PCA and how principal components are calculated can be found in Brereton (2007). 

 

 

Figure 3.1. Scatter plot of the first and the second PC of Raman spectra. The circles represent normal 
gastric tissue and the triangles dysplastic gastric tissue. The grouping of the two classes is highlighted 
by the line separating them. Adapted from: Teh, Zheng et al. (2008b)   
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3.2.2 Unsupervised methods 

Unsupervised pattern recognition is frequently referred to as cluster analysis. In general, 

cluster analysis aims to discover groupings within a data set by drawing a picture in order to 

uncover similarities (Brereton, 2007). Cluster analysis methods can be divided into 

hierarchical and non-hierarchical (Izenman, 2008). Out of the available methods hierarchical 

clustering tends to be the most commonly applied. The first step in hierarchical clustering is 

to establish a similarity matrix by calculating the distance between the samples (Lavine, 

2000). Different algorithms are available for calculating the distance, for instance Euclidian, 

Manhatten and Minkowski. After generating the similarity matrix the samples need to be 

joined together into clusters. For this purpose different linkage methods are available, for 

example single-linkage, complete linkage or average-linkage (Izenman, 2008). The resulting 

clusters are then illustrated as a dendrogram, but also phylograms or cladograms can be 

generated (Brereton, 2007). A dendrogram hierarchal cluster of infrared spectra is shown in 

Figure 3.2. More details on the different clustering methods can be found in Izenman (2008).  

 

 

Figure 3.2 Hierarchical dendrogram cluster of infrared spectra: This dendrogram shows the grouping 
of IR spectra obtained from skin tissue samples. The first cluster contains all the benign nevus 
samples where cluster 2 and 3 group all the malignant samples. [Adapted from Tfayli, Piot et 
al.(2005)] 
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3.2.3 Supervised classification methods 

3.2.3.1 Linear discriminant analysis 
Linear discriminant analysis (LDA) is a frequently applied classification method due to its 

simplicity. This classifier produces a linear boundary between classes. For the calculation of 

the LDA distance to each class, Mahalanobis distance is commonly applied, which defines 

the distance of an sample x to class A, where SA is the variance covariance matrix of all 

training samples belonging to class A: 

€ 

dA
2 = (x − xA )SA

−1(x − xA )'  (3.1) 

Frequently, principal component analysis (PCA) is executed prior to building a LDA model. 

The resulting principal component (PC) scores are then used to generate the LDA model. 

Using PCs allows simplification of the data by maintaining the overall information content 

despite using fewer variables. Using a reduced data set is of special importance if the 

observed data has a higher number of variables than the number of samples due to the fact 

that Mahalanobis distance fails under these circumstances (Brereton, 2009). In this manner, 

the optimisation of the LDA model includes the estimation of the ideal number of PCs fed 

into the LDA. This is commonly done by leave one sample out cross validation (LOOCV), 

where one sample is left out and the remaining data is used to build a model, which is then 

used to predict the class membership of the left out sample.  

	
  

	
  

3.2.3.2 Partial least square discriminant analysis 
Partial least squares (PLS) has a long tradition in chemometrics. Similar to PCA, PLS is a 

data reduction method. The main difference between these two methods is that PLS tries to 

relate the two types of variables, in this case the spectral data and the pathology class. Thus, 

PLS attempts to maximise the covariance between these two building blocks. Typically, PLS 

is presented as follows: 
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€ 

X =T. P +E (3.2) 

€ 

c =T. q+ f  (3.3) 

X represents the measurements (spectra) and c the classes. The score matrix T models the 

measurements as well as the classes c and is common in both equations. The PLS loadings 

are represented by P in Equation 3.2 and q in Equation 3.3. Finally, E is an error matrix and f 

and error vector respectively. Commonly a PLS-DA model is optimised by estimating the 

number of PLS components (latent variables), which can be done for instance by cross-

validation or bootstrapping (Brereton, 2007). 

	
  

	
  

3.2.3.3 Support vector machines 
Support vector machines (SVMs), which were first introduced by Vapnik (1995), are a 

relatively new member in the community of machine learning methods. SVM theory can be 

traced back to structural risk minimisation (SRM), which aims to estimate a classification 

decision function by minimising the empirical risk R. For a two class problem data X = 

{x1,…xi} and yi ∈{1,-1} this can be expressed as: 

! 

R =
1
L

f (x i ) " yi
i=1

L

#  
(3.4) 

Where L represents the number of the samples and f the decision function. In the simplest 

case, a linear separable problem, a linear decision function can be determined to separate the 

two classes: 

! 

f (x) = sign(w" x + b)  (3.5) 

The weight w and the bias b must be determined from the training set.  

SVMs not only aim to separate data by a hyperplane that gives a low generalisation error, 

they also aim to maximise the margin between the different classes. In order to achieve this, a 

separation hyperplane must be optimised by satisfying the following conditions: 
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€ 

min 1
2
w 2  (3.6) 

subject to 

€ 

yi(w⋅ xi + b) ≥1 

Since not all classification problems are linearly separable, the minimisation problem needs 

to be modified. This extension introduces a soft margin that allows data points to be 

misclassified, but penalises resulting errors. This is achieved by a penalty parameter C, which 

is the trade-off between error ξ and the margin. Thus the modified minimisation problem can 

now be generalised as:  

! 

min 1
2
w 2

+C "i
i=1

L

#  
(3.7) 

subject to 

! 

" i> 0, yi(w# x i + b) $1% "i  

A further extension for non-linear separable problems is the application of kernel functions. 

A kernel function is a non-linear function that maps all data points into a higher dimensional 

feature space. This allows us to overcome the restriction that data points might not be 

separable in the original input space. The most frequently applied kernel function is the radial 

basis function: 

€ 

K(xi,x j) = exp
− x i − x j

2

2σ2
 

(3.8) 

Originally, SVMs were designed as binary classification method, however in order to extend 

them to multiclass problems several methods are applied. Nonetheless, the most popular 

methods are the ‘one-against-all’ (OAA) and the ‘one-against-one’ (OAO) approach. Both 

methods split the multiclass problem into a series of binary problems. Therefore, the OAA 

method generates for a N class problem, N binary classifiers, one for each class. Every single 

SVM is then trained to separate samples of one class from the remaining samples. The finally 

assigned class corresponds to the SVM with the highest decision value (Vapnik, 1998). In 
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comparison, the OAO method generates N(N-1)/2 SVMs, which is equivalent to one SVM for 

each pair of classes. In order to get the final prediction from all the individual classifiers a 

voting strategy, commonly maximum voting, where each SVM votes for one class, is applied 

(Milgram et al., 2006). Multiclass SVMs are therefore a particular implementation of an 

ensemble SVM system in which a multiclass problem is split into several binary problems.  

	
  

	
  

3.2.3.4 Artificial neural networks 
Artificial neural networks (ANNs) are an attempt to simulate biological neural networks. 

Real neural networks are composed by high number of neurons, which are connected with 

each other but independent. Thus an ANN consists of several simple processing elements 

termed nodes or neurons. The function of each node is to convert the input values to a 

bounded output value. The function a node uses for this is called a transfer function, which 

can be for instance a sigmoid function. Several types of ANN architectures are available, 

where an ordinary feed forward network is made up of three layers as shown in Figure 3.3 

(Fielding, 2007). ANNs are considered a good technique when the underlying structure of the 

input data is not well known (Hand et al., 1997). On the other hand ANNs lack transparency 

since they do not allow insight in how classification results are generated and due to that they 

are often considered to be ‘black box’ classifiers, though information about the most 

significant input variables can be determined using clamping (Green et al., 2009).  
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Figure 3.3 General illustration of a three layer neural network [Adapted from Fielding (2007)]. 
	
  

	
  

3.2.3.5 Ensemble methods 
A frequently encountered problem in machine learning is that classifiers that achieve a good 

training performance frequently exhibit a low generalisation performance on unseen data. 

Indeed, classifiers achieving similar training performance can result in varying prediction of 

unseen data. A possibility to overcome these limitations is to create an ensemble consisting of 

several classifiers and average the output of all independent classifiers (Polikar, 2006). An 

ensemble can be built for any kind of classifier, including LDA, PLS-DA, SVM and ANN. 

 

 

3.2.3.6 Random forest 
Random forest, which was first proposed by Breimann (2001), belongs to the group of 

ensemble classifiers in which the output of several classification trees is combined. In random 

forests different classification trees are grown without pruning. In order to grow different 

trees the several train subsets a generated via bootstrapping. Consequently, each bootstrap set 

is used to grow a tree by randomly selecting a predefined subset of variables at each node. 

The output of all individual classification trees is typically combined by a majority vote 

(Breiman, 2001). 
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3.3 Classification approaches for cancer diagnostics 
Malignant development can occur in various cell types of the human body and accord to the 

cellular origin cancers are separated into groups. Carcinomas, representing the most common 

type of cancer, start developing in epithelial cells, which build covers and cavities, including 

glands throughout the human body. Cancer can also develop in the connective tissue and 

bones, blood, lymph and nervous system. In this section machine learning approaches for 

cancer diagnostics using vibrational spectroscopy are presented for the most common types 

of cancer. 

 

 

3.3.1 Epithelial cancers  

3.3.1.1 Lung cancer 
Lung cancer is one of the most common types of cancer and causes the highest number of 

deaths among all cancer types (Cancer Research UK, 2010c). Near infrared Raman 

spectroscopy was investigated by Huang, McWilliams et al. (2003) for lung cancer 

diagnostics. They analysed a total of 28 bronchial tissue specimens (12 normal, ten squamous 

cell carcinoma and six adenocarcinoma) derived from ten patients. They report a diagnostic 

sensitivity of 96% and a specificity of 92% estimated by comparing by comparing the ratio of 

two specific spectral features (1445:1655 cm-1). In a similar manner FTIR microspectroscopy 

was applied for lung cancer diagnostics based on peak comparison (Yano et al., 2000).  

 

In more recent work Raman microspectroscopy has investigated for the diagnosis and 

prognosis prediction of nonsmall cell lung cancer. A total of 62 lung tissue samples (28 

normal, 34 cancerous) derived from 43 patients were analysed. A random forest classification 

model was developed and assessed with an independent test set. This model yielded a 
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diagnostic sensitivity of 90% and a specificity of 75%. For predict postoperative cancer 

recurrence PCA was investigated, which achieved sensitivity of 73% and a specificity of 74% 

respectively (Magee et al., 2010). PCA was also applied for ex vivo diagnosis of lung cancer 

by using a Raman miniprobe, which is suitable for possible future in vivo application. In this 

study lung tissue specimens derived from seven patients were investigated (Magee et al., 

2009). 

 

Raman images have been explored for the characterisation of normal bronchial tissue section 

in order to gain further understanding of biochemical changes accompanying cancer 

development. For this imaging study 12 Raman maps were analysed by K-mean clustering. 

Spectra featuring similar characteristics where grouped into clusters and the generated maps 

were compared with histopathology sections (Koljenovic et al., 2004).  

	
  

	
  

3.3.1.2 Gastrointestinal cancer 
Vibrational spectroscopy has been increasingly investigated for epithelial cancers of the 

gastrointestinal (GI) tract, including oesophageal, stomach and colon cancer. The great 

attention for these types of disease can be explained by the fact that the GI tract is easily 

accessible for future in vivo applications.  

 

Oesophageal cancer: 

In several works the capability of Raman spectroscopy as a prospective tool for cancer 

diagnostics was demonstrated. In the majority of works LDA was used for building 

diagnostic classification models. For example, Kendall, Stone et al. (2003) built a PC-fed 

LDA model for the prediction of oesophageal pathology based on spectra obtained from 87 

histopathologically homogeneous samples (44 patients). The eight-class LDA model 
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achieved sensitivities of 73-100% and specificities of 90–100% when tested with leave one 

out cross-validation (LOOCV). In a similar approach LDA achieved sensitivities of 84–97% 

and specificities of 93–99% in a three-group classification approach when assessed by 

LOOCV (Stone et al., 2002). In a more recent approach a novel Raman probe design has 

been investigated for the potential of in vivo diagnosis.  For this work 114 oesophageal 

biopsy samples were collected from 45 patients and measured using varying acquisition times 

(2 and 10 seconds). The gathered spectra were used to develop a PC-fed LDA model, which 

predicted the state of samples from an independent test set with a sensitivity of 66–84% and 

specificity of 81–96% (Kendall et al., 2010). 

 

FTIR spectroscopy in attenuated total reflectance has been investigated for premalignant 

mucosa. An LDA model achieved a sensitivity of 92% and a specificity of 80% when tested 

by LOOCV (Wang et al., 2007a). Quaroni and Casson (2009) generated infrared maps from 

different oesophageal pathology types and consequently applied hierarchical clustering (HC) 

for studying different areas in biopsy samples.  

 

Stomach cancer 

For the implementation of classification models for stomach cancer prediction various types 

of classifiers have been investigated. Thus, for instance a PC-fed LDA model built for 

classifying dysplasia from normal gastric tissue based on Raman spectra gather (44 patients, 

76 specimens) achieved a sensitivity of 95.2% and a specificity of 90.9% when assessed by 

LOOCV (Teh et al., 2008b). Similar, Kawabata, Mizuno et al. (2008) applied a PCA based 

discriminant analysis for differentiation between cancerous and non cancerous Raman 

spectra. In this work only the measured intensity of the Raman shift at 1644 cm−1 was 

considered, which achieved a sensitivity and specificity of 70%.  A different classification 
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approach was taken by Teh, Zheng et al. (2008a), who investigated classification and 

regression trees (CART) for differentiating between normal and cancerous gastric tissue 

specimens. For the model development the gathered Raman data, 73 tissue samples from 53 

patients, were split into a train and a validation set. A sensitivity of 88.9% and a specificity of 

92.9% have been estimated when tested with the independent validation set. A three-class 

model for diagnosing and typing ardenocarcinoma in the stomach was built by multinomial 

logistic regression (MNLR). This model predicted the pathology of 125 tissue specimens (72 

patients) with sensitivities between 75-91% and specificities between 80-96% when assessed 

by LOOCV (Teh et al., 2010). 

 

Soft independent modelling of class analogies (SIMCA) was employed for prediction of three 

different stomach pathologies (normal, adenoma and cancer) based on IR spectroscopic 

measurements. Although the data set was small, consisting of only 11 patient samples, an 

independent test set was used to evaluate the classification model. The SIMCA model 

achieved predictive accuracies of 77% for normal samples, 30% for adenoma samples  and 

87% for cancer samples (Park et al., 2007). An LDA model was developed by Li, Sun et al. 

(2005) for predicting four different stomach tissue pathologies (healthy, superficial gastritis, 

atrophic gastritis, and gastric cancer). The developed model achieved accuracies of 90% for 

healthy samples, 90% for superficial gastritis samples, 66% for atrophic gastritis samples and 

74% for cancerous samples when assessed by LOOCV.  

 

Colorectal cancer 

The application of vibrational spectroscopy has been increasingly investigated for colorectal 

cancer, due to the fact that colorectal cancer is one of the most common types of cancer. 

Although, many Raman studies were dedicated to this type of cancer only a small number of 
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classification were reported. For instance Widjaja, Zheng et al. (2008) developed multi-class 

SVM models for predicting colon pathology (normal, hyperplastic polyps and 

ardenocarcinoma). In this study 105 tissue specimens from 59 patients were analysed by 

Raman spectroscopy and the gathered spectra were consequently used to establish an SVM 

model. A RBF SVM model achieved an overall accuracy of 99.3% (normal), 99.4% 

(hyperplastic polyps) and 99.9% (ardenocarcinoma) when tested by LOOCV.  K-mean 

clustering has been investigated for image analysis of Raman microspectroscopic maps 

obtained from normal colonic tissue. In this study characteristics and variances between 

different tissue sections were investigated and the findings compared with maps obtained by 

coherent anti-Stokes Raman scattering (CARS) microspectroscopy (Krafft et al., 2009). 

 

Currently, the application of classification methods for studying FTIR maps obtained from 

colonic tissue focused on image analysis. Cluster Analysis (CA), PCA and artificial neural 

networks (ANNs) have been investigated for differentiation of types of tissue structure 

(Lasch et al., 1998). In a more recent approach agglomerative hierarchical (AH) clustering 

(Ward’s technique), fuzzy C-means (FCM) clustering, and k-means (KM) clustering have 

been applied to analyse infrared maps of ardenocarcinoma tissue sections. The correlation of 

infrared maps processed by hierarchical clustering and histopathology was demonstrated 

(Lasch et al., 2004). 

 

Krafft, Codrich et al. (2008) measured colon tissue sections with Raman as well as FTIR 

spectroscopy. Maps obtained from both techniques were subjected to KM cluster analysis. 

This study demonstrated that maps from both techniques coincided remarkably well. 
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3.3.1.3 Urological cancer 
Prostate	
  cancer	
  

In the UK prostate cancer is the most commonly diagnosed cancer in men (Cancer Research 

UK, 2010a). In order to develop new diagnostic approaches several groups have investigated 

vibrational spectroscopy for this purpose. For instance Stone, Kendall et al. (2004) 

investigated Raman spectroscopy for differing between benign and neoplastic tissue samples. 

The developed LDA model achieved a sensitivity of 96% and a specificity of 91% when test 

by LOOCV. Similarly, LDA was applied to distinguish benign from malignant prostate 

sample (37 patient samples) measured with a fiberoptic probe, as suitable for laparoscopic 

and endoscopic use. A sensitivity of 87% and a specificity of 84% were achieved when the 

model was assessed by LOOCV (Crow et al., 2005).  

 

Infrared spectroscopy was also applied for grading of prostate cancer tissue specimens. In a 

study of 39 patients, classification models using a principal component discriminant function 

analysis achieved an overall sensitivity of 92.3% and a specificity of 99.4% when assessed 

with an independent test set (Baker et al., 2008). Furthermore, Gazi, Baker et al. (2006) 

investigated infrared spectroscopy and LDA modelling for grading of prostate cancer. The 

resulting classifier was tested with an independent test set and achieved sensitivities between 

70-78% and specificities between 81-89%. In comparison, both grading approaches yielded a 

lower specificity than sensitivity.  Infrared spectroscopic images and genetics-based machine 

learning was studied for computer aided histopathology of prostate tissue. The developed 

algorithm was able to classify pixels, which represent different tissue areas with an accuracy 

up to 90% when assessed by a 10-fold cross-validation based on 20 patient samples (Llora et 

al., 2009).   
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Bladder	
  cancer	
  

Several studies have taken the approach of applying of Raman spectroscopy for bladder 

cancer diagnostics. The predominantly applied classification algorithm was LDA, which was 

for instance used to develop a diagnostic model to discriminate between nontumour and 

tumour bladder tissue by de Jong, Schut et al. (2006). The resulting model, which was build 

of Raman data obtained from 15 patient samples, yielded a sensitivity of 94% and a 

specificity of 92% when tested by LOOCV. In a similar approach 24 patient samples, 

representing normal urothelium, cystitis and transitional cell carcinoma tissue samples were 

used to develop a diagnostic LDA model. This classifier achieved a sensitivity of 89% and a 

specificity of 79% when tested by LOOCV (Crow et al., 2005). In more recent work the 

combined application of fluorescence with Raman spectroscopy was investigated for 

diagnostic prediction of bladder biopsies. The employed LDA model, build on data derived 

from 38 patient samples, achieved a sensitivity of 42.6 % and a specificity of 71.1% when 

assessed by LOOCV (Grimbergen et al., 2009).  

 

In a small study bladder samples obtained from three patients were investigated for the 

differentiation between normal and cancerous tissue based on phosphate bands (Romano et 

al., 1995). Beside this, till present no further classification approaches based on infrared 

spectroscopic data and images have been reported.  

 

 

3.3.1.4 Breast cancer 
Raman spectroscopy has been investigated for breast cancer tissue analysis for almost 20 

years (Alfano et al., 1991). In a Raman study investigating ex vivo samples from breast tissue 

(normal, fibrocystic change, fibradenoma and invasive cancer) a logistic regression was 
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employed to differ between malignant and benign spectra. The model yielded a sensitivity of 

94% and a specificity of 96% when tested by LOOCV (Haka et al., 2005). The same 

algorithm was further investigated for the capability of classifying fresh resected tissue 

samples mimicking and in vivo application.  Thus, 129 tissue sites from 21 patients were 

measured and their pathology predicted by the logistic regression mode.  A sensitivity of 83% 

and a specificity of 93% were reported (Haka et al., 2009). A different classification 

approach was taken by Moreno, Raniero et al. (2010), who employed quadratic discriminant 

analysis (QDA) for distinguishing invasive ductal carcinoma (22 patients), fibrocystic breast 

conditions (six patients) and normal breast tissues (six patients). The QDA model separated 

normal from altered tissue with an accuracy of 98.5%. 

 

In an early FTIR approach Dukor, Liebman et al. (1998) investigated a LDA model for 

discrimination between benign, hyperplasia and malignant breast tissue specimens derived 

from one patient. Multiple two-class models were generated (benign vs. malignant, malignant 

vs. hyperplasia and hyperplasia vs. benign) and tested by LOOCV. The classifiers achieved 

accuracies of 90-100%. In a more recent approach ANNs were used to distinguish between 

infrared spectra representing four different breast tissue types, fibroadenoma, ductal 

carcinoma in situ, connective and adipose tissue. The ANN was tested with an independent 

test set, consisting of seven patient samples, and achieved accuracies between 85-100% 

(Fabian et al., 2006). In an infrared micro-spectroscopic imaging study cluster analysis was 

used to examine benign breast tumor tissue specimens. The maps, generated by the cluster 

analysis, were compared with the corresponding histopathology staining slides and it showed 

that this methodology allows differentiation between benign and malignant tumors types 

(Fabian et al., 2003).  
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Micro-calcifications are commonly found in breast tissue and often and indicator for 

malignant disease development. In an effort to exploit this, Haka, Shafer-Peltier et al. (2002) 

investigated Raman spectroscopy and logistic regression for predicting malignancies in breast 

tissue based on micro-calcifications. Spectra, derived from 11 patient samples, were 

classified with a sensitivity of 88% and specificity of 93%. Infrared spectroscopy was also 

investigated for the potential to diagnose breast pathology based on micro-calcifications. 

Pathology specific patterns (carbonate content and protein matrix: mineral ratios) were used 

to generate a two-matrix linear discriminant model for differentiating between benign, ductal 

carcinoma in situ and invasive malignancies. In this study sensitivities of 79-90% and 

specificities of 82-98% were reported (Baker et al., 2010b).  

	
  

	
  

3.3.1.5 Cervical cancer 
NIR Raman spectroscopy in combination with LDA modelling has been investigated for in 

vivo diagnostics of cervical cancer. The classifier built by using spectra derived from 46 

patients yielded a diagnostic sensitivity of 93.5% and specificity of 97.8% when tested by 

LOOCV (Mo et al., 2009). In a different approach Raman spectroscopy was applied for 

measuring normal, cervical intraepithelial neoplasia and invasive carcinoma tissue samples 

from 40 patients. A LOOCV achieved sensitivities ranging from 98.5 to 99.5% and 

specificities from 99.0 to 100% (Krishnaa et al., 2006). 

 

FTIR spectroscopy and SVM classification were investigated for the differentiation between 

normal and dysplasia of cervix biopsies and furthermore for grading of dysplasia samples. An 

overall accuracy of 72% was reported (Njoroge et al., 2006). Infrared spectroscopy has also 

been applied for image analysis of cervix tissue samples. Steller, Einenkel et al. (2006) used 

fuzzy C-mean clustering and hierarchical cluster analysis for identifying morphological 
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characteristics in infrared maps. The resulting maps were compared to the correlating H&E 

slides and this showed that a differentiation between basal layer, dysplastic lesions and 

squamous cell carcinoma was possible. Furthermore, hierarchical cluster analysis was applied 

for distinguishing between normal and diseased tissue based on infrared maps. It showed that 

the generated cluster maps correlated to the H&E stainings (Wood et al., 2004). 

	
  

	
  

3.3.1.6 Skin tumours 
Skin is easily accessible and for this reason most suitable for in vivo diagnostics using 

vibrational spectroscopy.  Raman spectroscopy and sparse multinomial logistic regression 

were used to distinguish between normal, basal cell carcinoma, squamous cell carcinoma and 

melanoma. In this study, based on 39 patients, an overall sensitivity and specificity of 100% 

was reported (Lieber et al., 2008a). Based on the previous study, a Raman handheld probe 

was developed and used to measure skin samples in 19 patients in vivo. Sparse multinomial 

logistic regression was employed to differ between normal and abnormal (basal cell 

carcinoma, squamous cell carcinoma and inflamed scar tissues) spectra. The assessment by 

cross-validation achieved a sensitivity of 100% and a specificity of 91% (Lieber et al., 

2008b).  Artificial neural networks were applied for diagnostic prediction of five different 

skin lesion types, including normal skin, pigmented nevi, seborrhoeic keratosis, basal cell 

carcinoma and malignant melanoma. In this study a total of 222 tissue samples were 

measured by Raman spectroscopy. The resulting spectra were used to build and test an ANN 

by LOOCV, which achieved accuracies for the varying pathology groups of 80.5-99.1% 

(Sigurdsson et al., 2004). For a Raman imaging approach 15 basal cell carcinoma were 

measured. The resulting Raman maps were subjected to K-mean clustering and the generated 

maps compared with the correlating histopathology slides. It showed that differentiation 

between normal and abnormal tissue is feasible (Nijssen et al., 2002).  
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In a small study consisting of six patient samples, FTIR microspectroscopy was investigated 

for its potential for differing between nevi from melanoma. It was shown that hierarchical 

clustering could successfully separate between the two groups (Tfayli et al., 2005).  FTIR- 

microspectroscopy and cluster analysis was also investigated for image analysis. Thus, 

infrared maps obtained from ten patient samples were subjected to K-mean clustering and 

hierarchical clustering in order to generate colour-coded images. The results demonstrated 

that the generated images could reproduce tissue histology (Ly et al., 2010). In an earlier 

work the same group showed that infrared mapping in combination with K-mean clustering is 

capable of highlighting histological structures in skin tissue as well as colon samples (Ly et 

al., 2008). 

	
  

	
  

3.3.1.7 Lymph node metastases 
Lymph node assessment is an important step in staging cancers especially since it is known 

that the presence of metastasis carries a worse prognosis for the patient. In order to allow a 

better assessment of the lymph node status in breast cancer patients Raman spectroscopy has 

been investigated for a potential inter-operative application. In this approach 38 lymph nodes 

have been measured with a Raman hand-held probe. The achieved spectra were used to 

develop a PC-fed LDA model, which achieved a sensitivity of 92% and a specificity of 100% 

when tested by LOOCV (Horsnell et al., 2010). In a different study 103 lymph nodes, 

representing different pathologies including primary lymph nodes from Hodgkin’s and non-

Hodgkin’s lymphomas as well as lymph nodes containing metastases from squamous cell 

carcinomas and adenocarcinomas. A developed LDA model, built for differing between these 

four groups achieved sensitivity of 75-100% and specificities of 86-99% when tested by 

LOOCV (Orr et al., 2010). 
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Infrared spectroscopy has been specifically investigated for image analysis with the aim to 

visualise the presence of metastases in lymph nodes. Thus, 30 lymph node samples obtained 

from breast cancer patients were used to develop an imaging method combining hierarchical 

clustering and artificial neural networks. HCA was used to group spectra together into 

replicate the morphological structure of lymph nodes. The grouped spectra were further 

processed by the established ANN with the aim to detect metastasis within the image. It 

showed that this approach could accurately reproduce tissue pathology and highlight 

metastases (Bird et al., 2008). HCA clustering was also applied for visualisation of 

micrometastases in infrared maps derived from lymph node samples. Based on ten patient 

samples it was shown that the visualisation of micrometastases is feasible (Bird et al., 2009). 

In order to estimate the most suitable number of clusters for distinguishing different tissue 

types found in lymph node samples Wang, Garibaldi et al. (2007b) developed a method based 

on a fuzzy c-means clustering.   

 

In a study comparing Raman and infrared spectroscopy for the assessment of lymph nodes of 

oesophageal cancer patients it was demonstrated that data derived from both methods is 

capable of predicting pathology status. For each spectroscopic method a PC-fed LDA model 

was developed and consequently for both models a training performance greater than 94% 

was estimated (Isabelle et al., 2008).   
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3.3.2 Brain tumours  

Excisional biopsy can be a potential hazard for vulnerable organs such as the brain. Taking 

this into account vibratonal spectroscopy would be an ideal tool for future in vivo application 

in brain tumour diagnostics. In addition, inter-surgery application for estimation of tumour 

during resection would be highly desirable since a too excessive resection might result in 

brain damage. Conversely an incomplete resection can cause the reoccurrence of the tumour. 

 

Biopsies from three normal adrenal glands, 16 neuroblastomas, five ganglioneuromas, six 

nerve sheath tumours, and one pheochromocytoma were collected for a Raman study. 

Principal component analysis and discriminant function analysis were used to build a 

classification model, which separated the different pathologies with sensitivities of 95%-

100% and specificities of 92.3-100% (Rabah et al., 2007). The same group investigated in a 

similar manner if principal component analysis and a discriminant model built of Raman 

spectra obtained from frozen samples is capable of predicting the pathology of fresh samples. 

This classification approach yielded sensitivities of 80.8%-100% and specificities of 64.3%-

100% (Wills et al., 2009). In a small study of 20 patients a LDA model was applied to 

discriminate between meningioma from normal dural. The resulting LDA model achieved an 

overall accuracy of 100% when assessed by LOOCV (Koljenovic et al., 2005). 

 

Infrared spectroscopy has been extensively investigated for diagnosis of brain tumours.  For 

instance Steiner, Shaw et al. (2003) applied a classifier system, consisting of a genetic 

algorithm for feature selection and a LDA model for discriminating cancerous brain tissue 

(astrocytoma, glioblastoma) from normal brain tissue (25 patients). The developed classifier 

separated the infrared spectra into four distinctive groups with accuracies of 83-96%. The 

same classification system was applied for a larger data set consisting of infrared data 

obtained from 59 tissue specimens representing four pathologies. The resulting model 
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achieved accuracies of 17-95% for the different pathology groups respectively, when tested 

by a four-fold cross-validation (Beleites et al., 2005). In further work it was demonstrated 

how the performance of this classification approach can be enhance by integrating several 

independent LDA models into an ensemble. It was reported that the overall performance 

increased from 67% to 82% due to the ensemble approach (Beleites et al., 2008). In a study 

regarding the application of IR spectroscopy as an as an intra-operative tool in cerebral 

glioma surgery 54 tissue samples from six patients were used. An LDA model was employed 

to generate colour-coded maps representing six different pathology groups. The comparison 

of the results with histopathology slide showed that in 98% of all cases the correct decision, 

whether continuing with surgical tumour resection or not, could have been made based on the 

LDA colour maps (Sobottka et al., 2009). 

 

 

3.3.3 Leukaemia  

Leukaemia is a cancer originating in blood cells and bone marrow. Currently, routine 

diagnostics includes the presentation of the clinical manifestation and morphology, which are 

commonly applied in combination with molecular methods, cytogenic studies and flow 

cytometric immunopheonotyping (Kendall et al., 2009).  

 

Although Raman spectroscopy has been widely investigated for epithelial cancer diagnostics 

only a small number of studies were dedicated to Leukaemia diagnostics. It was reported that 

Raman micro-sperctroscopy was investigated for discriminating between normal and 

transformed lymphocytes. Based on a principal component clusters a sensitivity of 98.3% and 

a specificity of 97.2% was estimated (Chan et al., 2006).  
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Infrared spectroscopy has also been broadly investigated for leukaemia research. However, 

classification methods for diagnostic approaches were only reported in a small number of 

studies. For instance, Babrah, McCarthy et al. (2009) applied FTIR spectroscopy and LDA 

for discriminating between T-cell lymphoma, B-cell lymphoid and myeloid leukaemia cells. 

The generated model yielded sensitivities of 79.9-100% and specificities of 93.8-100% when 

tested by LOOCV. In a different approach, infrared spectra obtained from plasma sample 

representing healthy patients and patients suffering from chronic lymphocytic leukaemia 

were investigated by HCA.  It showed that cluster analysis can be used to distinctively differ 

between healthy and leukaemic samples (Erahimovitch et al., 2006). 

 

 

3.3.4 Summary 

As the literature review showed the most commonly employed method for developing 

diagnostic models is LDA. More complex classifiers such as ANN and SVMs are less 

frequently applied. It was observed that the model testing is most frequently done by 

LOOCV, although it is known that assessment with an unseen data set is more accurate. The 

predominant application of LOOCV might be explained by the fact that data sample 

availability is restricted. However, in many cases a model achieving a good LOOCV 

performance yields a significantly lower result when tested with an independent test set. 

Therefore, in order to make this classifiers applicable as routine diagnostic tools much more 

thorough assessment of models is needed. Furthermore if diagnostic models are applied in 

routine clinical analysis they might be confronted with imperfect data, which can be caused 

by system to system variation, working condition and by the operator. So far no approach has 

been taken to investigate the robustness of these classification model towards the mentioned 

error sources.  
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For the image analysis the most frequently applied data analysis technique was found to be 

cluster analysis. Although, clustering methods of images demonstrated to be useful for 

highlighting tissue features in images they do not allow an automated diagnosis based on 

images. Thus, more sophisticated methods such as ANN or SVM must be investigated for 

their capability for automated image analysis and diagnosis.  

 

This work aimed to address the earlier mentioned limitations in order to advance the 

development of classification models for future diagnostic applications of vibrational 

spectroscopy. The approaches taken for achieving this are presented in the following 

chapters.    
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4 Machine learning and Raman spectroscopy for lymph node diagnostics 
4.1 Introduction 
Breast cancer is the most common cancer in women worldwide and, due to the increasing 

number of newly diagnosed cases, is a growing healthcare problem (Cancer Research UK, 

2010b).  

 

Most frequently breast cancer originates in the glandular elements of the breast, the lobules 

and the ducts. Malignant transformation includes such changes as nuclear enlargement, 

changes in the number of chromosomes and variations in shape and size (Kumar et al., 2005). 

These changes affect the chemical composition but do not cause a large-scale production of 

new chemicals. One of the most significant changes in malignant disease development is the 

change of the nuclear-to-cytoplasm ratio. This causes malignant tissue to differ from benign 

tissue in terms of the concentration of the main building blocks, nucleic acid, proteins, lipids 

and carbohydrates (Shafer-Peltier et al., 2002).  

 

Progressing breast carcinoma metastasizes to the regional lymph nodes over the efferent 

lymphatic vessels and enters the subcapsular sinus. For this reason early lymph node 

involvement is often found in the subcapsular sinus. An invaded lymph node may respond by 

displaying secondary follicles with reactive germinal centres, sinus histiocytosis and 

granulation.  A further very specific change is desmoplasia, the change in the formation of 

collagenous fibrous stroma around the metastatic cells. With growing involvement genuine 

lymph node architecture gets increasingly replaced by metastases, in the majority of cases 

reflecting the features of the primary tumour (Ioachim et al., 2009).    
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Lymph node involvement is an important prognostic factor for breast cancer patients. Thus, 

breast cancer staging includes the assessment of the lymph nodes in the ipsilateral axilla. For 

this reason lymph node biopsy is carried out in order to determine the presence of metastasis 

(Arnaud et al., 2004). A frequently applied method is sentinel lymph node biopsy, where the 

first node or nodes with direct lymphatic drainage from the tumour are identified. These 

lymph nodes are considered to be the first ones to be involved when a tumour metastasizes 

(Morton et al., 1992). Lymph node involvement has a major impact on further treatment of 

the patient, including extensive dissection of axillary lymph nodes, chemotherapy and 

occasionally radiotherapy. 

 

Current routine histopathology methods for lymph node assessment encounter several 

limitations. Traditional histological staining techniques are subjective, resulting in missed 

lesions and significant disagreement of inter- and intra observers (Cserni et al., 2005). 

Frequently histopathology laboratories do not have the human resources to analyse every 

section of removed lymph nodes and due to that micrometastases might be missed. It was 

shown that an extended histological assessment of lymph nodes reduces the number of false 

negative samples. Accordingly, 7% to 30% of negative nodes were reclassified as positive 

nodes as a result of an more exhaustive assessment (Chatterjee et al., 2002). 

 

Ideally, lymph nodes are assessed intra-operatively, which facilitates a lymph node clearance 

within the same surgery as the tumour resection. Thus, patients undergo only one surgical 

procedure and benefit from reduced stress levels and no delay in adjuvant treatment. 

Alternatively, methods have been developed to allow faster intra-operative assessment of 

lymph nodes. These methods, including touch imprint cytology (Salem et al., 2003, Salem et 

al., 2006) and frozen section analysis (Grabau et al., 2005). Touch imprint cytology includes 
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bisecting of lymph nodes and pressing the surfaces onto a slide, which are typically reviewed 

by a histopathologist. A meta-analysis, reviewing 31 studies, reported an average sensitivity 

of 63% and an average specificity of 99% for imprint cytology (Tew et al., 2005). In 

comparison, sensitivities of 57-87% and specificities greater than 99% were reported for 

frozen section analysis (Creager et al., 2002). Nonetheless, frozen section analysis features a 

high processing time and also needs the immediate assessment by an experienced 

histopathologist.   

 

According to the previously presented facts, new methods are needed which allow a more 

sensitive and objective lymph nodes assessment. Furthermore, theses methods should be 

applicable during surgery. These requirements can be met by spectroscopic methods such as 

Raman spectroscopy. For instance Smith (2005) developed a PC-fed LDA model for lymph 

node classification based on Raman spectroscopic data. This model achieved a sensitivity of 

88% and a specificity of 80% when tested by LOOCV. In more recent work, a PC-fed LDA 

model was employed for intra-operative lymph node diagnostics, which achieved a sensitivity 

of 92% and a specificity of 100% when tested by LOOCV (Horsnell et al., 2010). Beside 

these studies, no further evidence of the application of Raman spectroscopy for lymph node 

assessments in breast cancer patients was found. Both works report high sensitivities and 

specificities, nonetheless they were only tested by LOOCV, which is not considered to be a 

very thorough assessment method and subsequently such models are likely to fail when tested 

with unseen data. Thus, diagnostic models are required that result in even greater accuracies 

as the reported ones as well as supersede the accuracies of other diagnostic techniques such 

as imprint cytology or frozen section analysis. Furthermore, the accuracy of these diagnostic 

models must be maintained throughout rigid testing procedures in order to demonstrate 

reliability for future diagnostic applications.   
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Concluding, a further step towards the clinical application of Raman spectroscopy in lymph 

node assessment of breast cancer patients requires the development of diagnostic models, 

which allow reliable classification of tissue samples, without the need for human 

interpretation. The development and assessment of such classification methods is reported in 

this chapter. 

	
  

	
  

4.2 Materials and Methods 

4.2.1 Samples 

A total of 43 axillary lymph nodes were collected after surgical resection of breast cancer 

patients. All samples were obtained with the full consent of patients and approved by the 

Gloucestershire Research Ethics Committee. Each lymph node was cut into halves. One half 

was placed onto acetate paper and snap frozen in liquid nitrogen in order to maintain the 

freshness of the tissue. From the frozen sample a 7µm section was cut and placed on a 

calcium fluoride slide and stored in a -80°C freezer for Raman spectroscopy. The other half 

of the node was sent for the routine histopathology, which found that out of the 43 samples 

13 were positive and 30 were negative for metastases.   

	
  

	
  

4.2.2 Raman microspectroscopy 

A Renishaw System 1000® Raman microspectometer coupled to a diode laser, a Leica® 

microscope, a Prior® electronic stage, a video viewer and a desktop computer with 

customized Grams® software was used for all measurements. The diode laser had an output 

of 350 mW and was set to a wavelength of 830 nm with the aim to reduce autofluorescence 

from tissue. Raman mapping was executed in steps of 100 µm in x and y directions across the 
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sample surface. At each point the spectra were integrated for a total of 30 seconds. More 

details on sample preparation and the carried out Raman mapping can be found in Smith 

(2005). 

	
  

	
  

4.2.3 Data analysis workflow 

The first step was image processing and thus all generated Raman maps were loaded into 

Matlab (Mathworks, USA) and converted into 3D hyperspectral matrices. For each individual 

map principal component analysis (PCA) was executed. The resulting first three principal 

components were used to transform the Raman map into a composite image. According to the 

composite images heterogeneous regions were selected manually by avoiding obvious fat or 

areas likely to be contaminated with blood. Thus, spectra were collected which represent 

homogenous regions of positive or negative nodal parenchyma. An example of this process is 

demonstrated in Figure 4.1. 

 

 

Figure 4.1 A. White light image of a lymph node effaced with metastatic tumour. B. The H&E 
staining shows pale stained areas, which are a result of the marked desmoplastic reaction to the 
metastatic tumour. C. Composite image of the lymph node sample. Each pixel represents one 
spectrum. Thus, the grid units represent spectra for both axes (81 spectra in x direction and 56 in y 
direction). Areas boxed in blue represent the selected spectra, which were then used for further 
investigations. 

 

Saturated spectra were removed from the extracted data and spectra containing evidence of 

cosmic rays were corrected. The resulting data set consisted of 10,477 spectra, where 3,385 
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were from positive samples and 7,092 were from negative samples. The number of spectra 

available for each sample varied from four to 1,014 spectra per sample. The high variation of 

available spectra for each sample was caused by the fact that some nodes contained a large 

amount of fat, resulting in an increased number of saturated spectra, which had to be removed 

before further analysis. The data at this stage was the starting point for the model 

development.  

 

As described in section 3.1, for classification model development it is good practice to 

separate all samples into two data sets before the model development. The larger data set 

forms the training set and the smaller one the test set. How to split the data depends on the 

amount of available samples for each pathology class. For this approach the data set was split 

randomly into test set and training set, at which the test set represents approximately a quarter 

of each pathology group. Accordingly the test set was independent and contained 12 samples, 

eight negative and four positive, while the training set contained 31 samples, nine positive 

and 22 negative. A summary of the generated training and test set is shown in Table 4.1. 

 

Table 4.1 Summary of the obtained training and test set, which were used for the diagnostic model 
development. 

Data set Total number of samples Positive samples Negative samples 

Training set 31 9 22 

Test set 12 4 8 

 

The resulting training set was used to optimise the parameters of each classification model. 

The resulting parameters were then used to build the final model. In order to estimate the 

predictive power each model was tested with an independent test set. An overview of the 

described workflow is illustrated in Figure 4.2.  
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Figure 4.2 Classification workflow for Raman lymph node maps. 
 
 

4.2.4 Data subsets 

The number of spectra consisting for each sample varied between four and 1014. Due to the 

fact that some samples are overrepresented where others are underrepresented. This can 

reflect on the classification result, for example by over fitting a classifier to overrepresented 

samples. Further, a smaller data set reduces the computing time of the training procedure. For 

the described reason balanced data sets were generated.  
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For the first approach, the data set was balanced by maintaining 70 spectra for each sample. It 

was decided to select 70 spectra for each sample since it was found that this is the highest 

number of spectra the majority of all samples had in common. For this purpose spectra were 

selected systematically in order to represent the whole sample. This was executed by dividing 

the number of spectra by 70. The result was rounded down to the next integer x. Estimated x 

was then used to extract every xth spectra. Consequently the training set consisted of 2520 

spectra and the test set of 374 spectra. 

  

In a different approach the original data set was reduced by a specifically developed spectra 

selection method, which aims to decrease the variance within a sample. For each sample 50 

spectra, which was identified as the highest number of spectra the majority of all samples had 

in common, were selected randomly from the pre-processed data set. In this manner the 

resulting training set consisted of 1550 spectra and the testing set of 355 spectra.  

 

 

4.2.5 Targeted spectra selection 

4.2.5.1 Spectra variance 
The number of available spectra for each sample varied from four to 1014 spectra per sample. 

This was caused by the fact that some samples contained more fat than others, which caused 

an increased number of saturated spectra and consequently these spectra had to be removed 

during the data cleaning step. The investigation of the remaining spectra showed that there 

was a high variance within each individual sample. The observed variance is illustrated in 

Figure 4.3. 
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Figure 4.3 Spectra variation for four different lymph node samples. As these graphs show the spectra 
within one sample can very significantly and even contain spectra not representing biological features 
as shown in the graph in the top left corner.  

 

It was assumed that a reduction of variance within a sample, as well as the removal of spectra 

not representing biological signals leads to an increased classification performance. For this 

purpose, a method was developed that allows targeted spectra selection for each sample. The 

developed method is presented in the following section in greater detail. 

 

 

4.2.5.2 Method  
First of all the mean of intensity per arbitrary units was calculated for every individual 

spectrum. According to the obtained mean values a histogram was generated separately for 

each lymph node sample. The highest bar, representing the most common number of mean 

value of spectra (median), was estimated. The mean value represented by this bar was 
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determined and used to build the lower cut off limit. Spectra under this value were neglected 

because they are assumed to be low signal spectra. Additionally, the standard deviation of the 

mean values was calculated. The lower cut off limit plus the standard deviation were used to 

establish the upper cut off limit. Spectra above this limit, which are considered to be of higher 

intensity than the average of the residual spectra, were rejected. Finally, spectra falling 

between these two limits were extracted.  In the histograms representation, as illustrated in 

Figure 4.4, selected spectra are illustrated in red whereas rejected spectra are illustrated in 

blue.  

 

 

Figure 4.4 Histogram illustrating the mean intensity values of spectra for individual nodes. Spectra 
with a mean intensity value between the cut off limits are shown in red where the excluded spectra are 
shown in blue.  
	
  

For all lymph node samples spectra were extracted according to this method a result the 

variance within each sample was reduced. In addition to that spectra suspected not to 
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represent significant biological signals, for example inside ducts, were removed. The 

normalising effect of this method is illustrated in Figure 4.5. 

	
  

 

Figure 4.5 Illustration of the selected spectra as suggested by the selection method: the selected 
spectra are shown in red where the discarded spectra are shown in blue. 
	
  

	
  

4.2.6 Classification methods 

4.2.6.1 Linear discriminant analysis 
Linear discriminant analysis (LDA) has been investigated for classification of the Raman 

lymph node data set by Smith (2005). Data pre-processing included mean centring and 

normalisation. After this step principal component analysis (PCA) was executed and from the 

resulting first 25 principal components (PCs) only the most significant PC scores were 

retained. The significance testing for this step was carried out by ANOVA. The remaining 
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scores were used to build the LDA model, which was finally validated by leave one out 

cross-validation (LOOCV).  

 

In previous work, as described earlier, no approach was taken for optimising the number of 

PCs. Therefore, the first aim was to examine if the number of components can be optimised 

and consequently leads to an improved classification result. This was done by leave one out 

cross-validation with constantly increasing number of PCs, starting from one up to 25 PCs. 

The number of components was determined by the overall prediction accuracy resulting from 

the LOOCV. The final model was build with the optimum number of PCs and finally tested 

with the independent test set. This procedure was done for both data subsets (data set A and 

data set B). 

 

 

4.2.6.2 Partial least square discriminant analysis 
Matlab and the PLS Toolbox (Eigenvector Research Inc.) were used for developing partial 

least squares discriminant analysis (PLS-DA) models.  

 

For this approach, the data were normalised and different scaling methods were investigated, 

including mean centring and auto scaling. This allowed the assessment of the influence of 

different scaling methods on the PLS-DA model performance. For the optimisation of the 

number of latent variables (LVs) LOOCV was executed, starting with one LV up to 25. 

According to the prediction result of the LOOCV the optimum number of LVs was estimated 

and used to build the final model. The resulting model was then assessed with the 

independent test data.  

 



61	
  

4.2.6.3 Support vector machines 
All SVM models were built by using the toolbox libsvm developed by Chang and Lin (2001). 

This freely available toolbox allows SVM classification and can be used in different 

environments including Matlab, R, Perl and Python.  

 

For this study three different types of SVM kernels were investigated: linear, polynomial and 

radial basis function (RBF) kernel. It is required to optimise kernel specific parameters  for 

each SVM, which is of significant importance since the kernel parameters strongly influence 

the classification performance. For this purpose, a loose parameter optimisation was 

executed, which was done by cross validating a subset of the training data. Using only a 

subset of the training data helped reduce the computing time. A loose search resulted in a 

temporary approximation of the kernel parameters. These parameters were fine tuned by a 

second more rigid parameter optimisation. This time the whole training set was used. For this 

final optimisation step, the range of the kernel parameters was set close around the previously 

approximated parameters and cross-validation was executed (Hsu et al., 2008). It is assumed 

that the best parameters resulted in the best cross-validation result. The estimated kernel 

parameters were then used for creating the final model. In order to evaluate the predictive 

power of the built model it was tested with the independent test set. The described SVM 

classification workflow is illustrated in Figure 4.6. 
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Figure 4.6 SVM classification workflow 
 
 

4.2.7 Assessment of model significance 

Monte Carlo methods were employed for the empirical assessment of the model significance. 

All samples of the training set, which was used to build the original model, were assigned 
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randomly with a class membership, either positive or negative. These samples were then used 

to build a model using the same parameters as the originally estimated ones. The newly 

generated model was then tested with the test set, which also has been randomly assigned 

with sample classes. For both data sets the relative number of positive and negative samples 

was maintained. This procedure was executed multiple times, where every time the class 

membership of the data was randomly permuted. The achieved testing accuracies were then 

used to create a null distribution. The comparison of the null distribution with the observed 

testing performance allows an empirical assessment of the model significance. This approach 

is inspired by similar work in which Wongravee et al. (2009) utilised Monte Carlo methods 

for estimating the significance of variables. 

 

 

4.2.8 Investigation of key features 

For the model development the spectral region from 350-1850 cm-1 was used. In order to 

investigate spectral features that have the greatest impact on the model performance 

alternating intervals of 100 wavenumbers were eliminated from the data set systematically. 

The remaining data set, containing a total of 1401 wavenumbers, was used to build and test 

an optimised classifier. In this manner, for a spectral range starting at 350 to 1850 cm-1, 15 

models were built and tested. A decrease in testing performance is assumed to be caused by 

the fact that the left out spectral features have a high impact on the model performance 

 

 

4.3 Results and Discussion 
As described in section 4.2.4 two different data sets were created. In the following, to the 

classification approach using balanced data set consisting of 70 spectra per lymph node it is 
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referred to as data set A. Hence, data set B refers to the classification approach accomplished 

for the data set, which was generated by applying the targeted spectra selection method.  

 

 

4.3.1 Data set A 

4.3.1.1 Linear discriminant analysis 
First of all the number of PCs was optimised, which was found to be 18. The training 

achieved an overall accuracy of 93.1%, a sensitivity of 100% and a specificity of 91.1%. This 

good result could not be achieved when testing the model with the independent data set. 

Although the testing set could be classified with sensitivity of 100%, only a specificity of 

68.6% was obtained. The results of this LDA approach are summarised in Table 4.2. 

	
  

Table 4.2 LDA results for data set A 

Training Testing 

Sens. / % Spec. / % Acc. / % Sens. / % Spec. / % Acc. / % 

100 91.1 93.1 100 68.6 80.2 

	
  

	
  

This model managed to classify all positive samples correctly but it misclassified a high 

number of negative spectra as positive. Assuming that this model would be used for deciding 

if lymph node dissection is required or not several patients would undergo unnecessary 

surgery. However, all cancerous samples would be identified correctly. 

 

These data were used in previous work to develop a LDA model, which was only tested by 

LOOCV. This model was built by using the 25 PCs without prior optimisation of this 

number. The generated model yielded a sensitivity of 80% and a specificity of 88% 
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respectively. In contrast, the new model development included the optimisation of the 

number of PCs fed into the LDA model. The optimisation procedure resulted in an increased 

cross-validation sensitivity of 84.9% and specificity of 88.9%. Interestingly, the required 

number of PCs is still very high, especially since 99.8% of variance are captured by the first 

three PCs. For this reason it must be assumed that subtle spectral differences are of high 

importance for the LDA model in order to allow a good separation between the classes. 

 

Finally, this approach demonstrates that a model performing well when assessed by cross-

validation does not perform equally when tested with an independent test set. Therefore, rigid 

test methods, such as the use of an independent test set, are needed in order to allow a more 

reliable assessment of the predictive performance. 

 

 

4.3.1.2 Partial least squares discriminant analysis 
Data set A was normalised and scaled using alternated different scaling methods, including 

mean-centering and auto-scaling. The differentially pre-processed data sets were then used to 

generate partial least squares discriminant analysis (PLS-DA) models. 

 

The optimum number of latent variables (LVs) was estimated by LOOCV of the training set. 

For the approach without applying any scaling method, it was found that ten LVs are the 

optimum number of components to build the final model. For the two approaches applying 

scaling methods the optimised number of LVs was nine. Figure 4.7 illustrates the model 

optimisation and the determination of the optimum number of PLS components.   
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Figure 4.7 Optimisation of PLS-DA models for data set A. The green graph shows the average 
training performance and the red graph the average testing performance obtained by cross-validation.  
 

The estimated numbers of LVs were used to build the final models. All three models were 

then tested with the independent test set. The respective classification accuracy, sensitivity 

and specificity for the models built on data set two are summarised in Table 4.3.  

 

Table 4.3 PLS-DA results for data set A. 

 Training Test 

Scaling Sens. % Spec. % Acc.  % Sens. % Spec. % Acc. % 

No scaling 92.4 94.8 94.2 87.8 71.9 78.9 

Mean-centred 92.0 95.3 94.5 86.6 74.8 80.0 

Auto-scaled 92.4 95.0 94.4 85.4 74.3 79.1 
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It showed that the training results of all three models are almost similar since they do not vary 

more than 0.3%. A similar result was obtained for the testing result, where the difference 

between the highest and the lowest classification result was not more than 1.1%. This 

difference is considered to be an improvement brought by the scaling method. Although, the 

scaling brought a slight improvement it cannot be considered as significant.  

 

Overall the PLS-DA model did not perform better than the LDA model since both diagnostic 

models yielded test accuracies around 80%. Nonetheless, the PLS-DA model achieved a 

significant higher specificity. Thus, it must be assumed that the PLS-DA model separates 

more evenly, whereas the LDA model separates in favour of positive samples, which explains 

the 100% sensitivity in comparison to the low specificity of 68.6%. 

 

 

4.3.1.3 Support vector machines 
Linear kernel  

Similar to the other model developments data set A was normalised and mean-centred. For a 

linear kernel SVM it is required to optimise parameter C (error cost) (Phan et al., 2005) and 

due to that the first step was to approximate parameter C in a loose search where only a 

subset (five positive and five negative samples) of the training data was used. Using only a 

data subset helped to reduce computing time and was found to be a sufficient approximation. 

For this search the range of parameter C = [2-5, 2-3,…, 213]. The approximated parameter C 

was finally optimised by a second more thorough search. The fine-tuned parameter C was 

found to be 29, as shown in Figure 4.8. This Figure also illustrates that a too high value of C 

results in over fitting, which can be seen by the fact that C values higher than 29 still result in 

an improvement of the training performance where on the other hand the testing performance 
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starts to decrease. The reason for this is that the higher C the more thorough the decision 

boundary of the support vector is drawn, which consequently results in over-fitting.  

	
  

	
  

Figure 4.8 Loose parameter estimation for linear SVM (data set A). 
	
  

A second optimisation step was used to fine tune the previously estimated parameter C. For 

this purpose, another search was implemented using a range of C = [28, 28.25,…,210]. The 

calculated cross-validation results of the fine-tuning step did not vary as significantly as in 

the loose parameter estimation. The difference between the highest and the lowest result did 

not exceed 0.4%. In this manner it was found that the optimum parameter C for creating a 

linear SVM model is 210. This parameter was used to build the model and test it with the 

independent data set, which resulted, as summarised in Table 4.3, in a testing accuracy of 

80.0%, a sensitivity of 78.7% and a specificity of 81.0% respectively. 
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Table	
  4.4	
  Linear	
  SVM	
  results	
  for	
  data	
  set	
  A. 

Param. Training Test 

log2(C) Sens. % Spec. % Acc. % Sens. % Spec. % Acc. % 

10 89.4 98.83 96.5 78.7 81.0 80.0 

	
  

Comparing the over all performance of this model with the LDA and the PLS-DA model it 

shows that the overall performance is similar. However, they differ significantly in sensitivity 

and specificity and thus the linear SVM yielded the highest specificities among these 

approaches.  

	
  

Polynomial kernel  

The application of a polynomial kernel requires the estimation of the optimum number of 

polynomial degrees and the optimisation of the error cost (C). An increase of C reduces the 

misclassification of the data points in the training set (Vapnik, 1995). As already shown in 

the previous section a too high value of C can result in over-fitting. Similar as for the linear 

SVM models, as previously all data were normalised and mean-centred before carrying out a 

loose parameter optimisation was. For this approximation the range for the polynomial 

degrees was set as d = [2,…,8] and for C = [2-5, 2-3,…, 215]. For the loose parameter 

estimation only a subset of the training data was used, which consisted of five positive and 

five negative nodes. The results for the loose parameter search are shown in the Figure 4.9. 

 



70	
  

	
  

Figure 4.9 Result for loose parameter search for polynomial kernel (data set A). 
 

According to Figure 4.9 the cross-validation testing results do not differ significantly between 

the different settings. For this reason it must be assumed that a polynomial kernel can not 

sufficiently model this data set. However, the selected parameters and the related 

classification results are summarised in the Table 4.5. 

 

Table 4.5 Estimated parameters and grid search result for data set A. 

Polynomial degree log2(C) Accuracy % 

2 5 78.6 

7 -1 78.6 

8 -1 78.6 

 

In the following the estimated parameters were fine-tuned and for this reason, the range of 

parameter C was extended around the values identified in the previous step. In contrast this 

time the whole training set was used for the LOOCV. The best three cross-validation results 



71	
  

and the related parameters are illustrated in Table 4.6. The classification accuracy is identical 

for all three approaches. 

 

Table 4.6 Fine-tuned parameters for polynomial SVM (data set A). 

Polynomial degree log2(C) Accuracy % 

2 4 75.0 

7 -1.75 75.0 

8 -1.75 75.0 

 

The settings as illustrated in Table 4.6 were used to build the final models, which were 

assessed with an independent test set. The obtained results are summarised in the Table 4.7. 

As the results show all model fails to classify positive spectra in the training and 

consequently in the testing. This can be seen in the fact that the sensitivity is 0% for all three 

models and the specificity is 100%. Therefore, a polynomial kernel is unsuitable for 

projecting this data into the higher dimensional feature space due to the fact that it does not 

result in an improved separability. 

 
Table 4.7 Polynomial SVM results for data set A. 

Parameters Training Test 

Degree log2(C) Sens. % Spec. % Acc. % Sens. % Spec. % Acc. % 

2 4.00 0 100 75 0 100 56.2 

7 -1.75 0 100 75 0 100 56.2 

8 -1.75 0 100 75 0 100 56.2 
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Radial basis function kernel 

The application of a Gaussian radial bias function (RBF) kernel requires the optimisation of 

parameters C and γ. Parameter C regulates the error cost and γ controls the weight of the 

Gaussian kernel (Vapnik, 1995).  First of all, data set A was normalised and mean-centred 

and subsequently a loose grid search using only a subset of the training data was carried out. 

This subset consisted of five positive and five negative samples. For the loose parameter 

search parameter C was set C = [2-5, 2-3,…, 215] and γ  = [2-15, 2-13,…, 23] (Hsu et al., 2008). 

In order to estimate the optimum parameters a colour map was generated as in Figure 4.10. 

The colour map shows that the cross-validation performance improves with increasing values 

of C and γ. According to the cross-validation results, shown in Figure 4.10, the best three 

parameter combinations were extracted and used for a further more precise search. These 

parameters and the respective cross-validation results are summarised in Table 4.8. 

 

 

Figure 4.10 Loose grid search for RBF SVM (data set A). 
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Table	
  4.8	
  Estimated	
  parameters	
  for	
  RBF	
  SVM	
  (data	
  set	
  A).	
  

log2(C) log2( γ ) Accuracy % 

11 -3 78.6 

15 -7 78.4 

13 -5 78.4 

 

The previously estimated parameters were fine tuned by a second grid search around their 

values. In contrast, for this optimisation step the complete training set was used. The range 

for each parameter values and the best classification accuracy are shown in Table 4.9. 

  

Table 4.9 Fine-tuned parameters for RBF SVM (data set A). 

Range log2(C) Range log2(γ) Best log2(C) Best log2(γ) Acc. % 

[10, 10.25, …, 12] [-4, -3.75, …, -2] 12 -2.75 70.5 

[14, 14.25, …, 16] [-8, -7.75, …, -6] 15.5 -6.25 72.5 

[12, 12.25, …, 14] [-6, 5.75, …, -4] 14 -4.75 72.5 

 

The fine tuned parameters were then used to build the final model. All three settings 

performed almost identically in the training. Thus, all RBF SVM models obtained a training 

performance of over 95.0%. A similarly high result could not be obtained when testing the 

models. In this manner, the best overall classification accuracy was 74.1%. The final result 

was strongly affected by the lack in sensitivity, which was only 65.2%, where in comparison 

a specificity of 81.0% was achieved. All results are summarised in Table 4.10.  
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Table	
  4.10	
  RBF	
  SVM	
  results	
  for	
  data	
  set	
  A.	
  

Parameters Training Test 

log2(C) log2(γ) Sens. % Spec. % Acc. % Sens. % Spec. % Acc. % 

12 -2.75 90.3 98.8 96.7 62.8 80.5 72.7 

15.5 -6.25 90.2 98.9 96.7 65.2 81.0 74.1 

14 -4.75 90.2 98.8 96.6 63.4 80.5 73.0 

 

Although the RBF SVM achieved the highest training accuracy among all generated models 

it did not yield the highest test accuracy. For this reason it must be concluded that this model 

is over-fitted.   

 

	
  

4.3.1.4 Summary  
The result summary for classification models built for data set A in Table 4.11 shows that the 

highest testing accuracy, which is 80.2%, was obtained by the LDA model. The PLS-DA 

model and a linear SVM achieved a testing accuracy of 80.0%. Although, all three linear 

classifiers achieved a similar testing accuracy, they vary in sensitivity and specificity. Among 

all models the LDA model achieved the highest sensitivity of 100%, hence it also achieved 

the lowest specificity. Interpreting this result in a diagnostic way all positive samples would 

be identified. However, about 30% negative samples were misleadingly classified as positive, 

which would result in an unnecessary cancer treatment for a patient. For the sentinel lymph 

node data set used here, this would mean the patient undergoes unneeded full axillary lymph 

node dissection. Under this circumstance, a reduced specificity might be acceptable for 

achieving an optimum of sensitivity due to the fact that not identifying metastasis is more life 

threatening for a patient than unnecessary surgery. However, the classification performance is 
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still suboptimal for a future clinical application due to the lack of specificity. In comparison, 

the LDA, PLS-DA and linear SVM model achieved an equal or greater sensitivities as 

reported for touch imprint cytology and frozen section analysis. Nonetheless, these methods 

demonstrate specificities above 99%. Since high specificity is of great interest in order to 

avoid unnecessary lymph node clearance in breast cancer patients diagnostic models are 

needed that allow a specificity higher or at least equal than the diagnostic techniques 

mentioned earlier in order to apply Raman spectroscopy as a clinical routine tool.  

 

Table 4.11 Summary of results for data set A. 

 Training Testing 

Method Sens. % Spec. % Acc. % Sens. % Spec. % Acc. % 

LDA 100 91.1 93.1 100 68.6 80.2 

PLS-DA 92.0 95.3 94.5 86.6 74.8 80.0 

SVM:       

- linear 89.4 98.83 96.5 78.7 81.0 80.0 

- polynomial 0 100 75 0 100 56.2 

- RBF 90.2 98.9 96.7 65.2 81.0 74.1 

	
  

For this data set linear methods, LDA, PLS-DA and the linear kernel SVM, performed better 

than non-linear methods. The polynomial SVM lacks completely in sensitivity and due to that 

it is unable to predict the class-membership of the independent test set. The RBF SVM 

resulted in a good training performance, however this performance could not be maintained 

when tested with the independent test set. For this reason it must be assumed that the RBF 

SVM is over-fitted. It is surprising that RBF SVM, which are usually a strong classification 

technique, were outperformed by LDA. In order to see if the performance of classifiers, 

especially SVMs can be improved by introducing a new data normalisation technique a 
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targeted spectra selection method was developed. The impact of this method on the 

performance of the different classification methods is outlined in the following section.  

	
  

	
  

4.3.2 Data set B 

4.3.2.1 Linear discriminant analysis 
The LDA model was built by using spectra, which were selected according to the method 

described in 4.2.5. The training set was used to identify the optimum number of PCs by 

LOOCV. The results suggested that retaining 13 PCs leads to the best possible model. In 

comparison to the LDA model developed for data set A, which used a number of 18 PCs, the 

optimum number of PCs is lower. This can be explained by the impact of the spectra 

selection method, which reduced the variance within individual samples.  

 

The optimised number of PCs was used to build the final model, which achieved a training 

accuracy of 89.5%. Training and testing results are presented in greater detail in Table 4.12. 

The testing result is notably higher than the training result and therefore it shows that this 

model is a good fit. The comparison of this result with the LDA results of data set A shows 

an increase of approximately 20%. In this manner, the spectra selection method increased the 

classification accuracy by increasing the specificity. 

	
  

Table 4.12 LDA results for data set B. 

Training Testing 

Sens. % Spec. % Acc. % Sens. % Spec. % Acc. % 

90.2 89.3 90.3 100 91.9 93.8 
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4.3.2.2 Partial least square discriminant analysis 
As a result the optimisation procedure suggested that eight LVs should be used to build a 

PLS-DA model. The resulting PLS-DA model achieved a training accuracy of 94.5% and 

testing accuracy of 95.2%. All results of this diagnostic model are summarised in Table 4.13. 

The testing performance of this model is similar to the training performance and thus, this 

model is considered to be a good fit since no over-fitting took place. Notably, the testing 

result is increased by almost 15% in comparison to the PLS-DA model for data set A. Hence 

the application of the spectra selection method also improved the testing result of the PLS-

DA model. 

 

Table 4.13 PLS-DA results for data set B. 

Training Testing 

Sens. % Spec. % Acc. % Sens. % Spec. % Acc. % 

89.1 90.0 94.5 100 93.7 95.2 

	
  

	
  

4.3.2.3 Support vector machines 
Linear kernel  

First of all a loose parameter search was executed in order to optimise the error cost C. For 

this purpose, the range of C was set as C = [2-5, 2-3,…, 213]. As for the previous linear SVM 

for the temporary parameter estimation only a subset of the training data was used. According 

to the graph in Figure 4.11 a parameter C of the value 27 was identified as the most suitable 

one. This C value led to a cross-validation testing result of 75.4% and a cross-validation 

training performance of 99.8%.  
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Figure 4.11 Loose parameter estimation for linear SVM (data set B). 
 

A second parameter search was carried out in order to fine tune parameter C.  For this search 

the range of C was set as C = [28, 28.25,…,210]. For the fine-tuning procedure of C the whole 

training set was used and the results showed that a parameter C of 26.75 is the most suitable 

setting for the final model. The resulting model correctly classified 97.4% of the training set 

and 92.4% of the independent test set. When comparing this result with the linear SVM 

model for data set A it becomes obvious that the spectra selection improves the classification 

performance in all means.  

 

Table 4.14 Linear SVM results for data set B. 

 Training Test 

log2(C) Sens. % Spec. % Acc. % Sens. % Spec. % Acc. % 

6.75 94.4 98.6 97.4 100 90.1 92.4 
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Polynomial kernel  

For this kernel type the process of model optimisations included searching for the best 

number of polynomial degrees d and the parameter C. First of all, a loose parameter 

estimation was carried out and thus the range of polynomial degrees was set as d = [2,…,8] 

and the range of parameter C was set as C = [2-5, 2-3,…, 215]. For the loose grid search only a 

subset of the training data, consisting of five positive nodes and five negative nodes, was 

used. Out of the result a colour map was generated as illustrated in Figure 4.12. 

	
  

Figure 4.12 Result for loose parameter search for polynomial kernel (data set B). 
 

The colour map in Figure 4.12 shows that a higher C as well as a lower polynomial degrees 

result in an improved training performance. Thus, less complex models, using a lower 

polynomial degree seem to be more appropriate for modelling these data. It was found that a 

polynomial kernel with a degree of three obtained the best classification result in the loose 

parameter search. The best three classification results and their related kernel parameters are 

summarised in the Table 4.14. 
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Table 4.15 Estimated parameters and grid search result for data set B. 

Polynomial degree log2(C) Accuracy % 

3 13 93.8 

4 13 93.0 

2 9 93.0 

 

After identifying good parameter settings a final optimisation was carried out. For this 

purpose, the range of parameter C was extended around the values identified in the pervious 

step. In contrast, for this procedure the whole training set was used. The best three cross-

validation results and the related parameters are summarised in Table 4.16.  

 

Table 4.16 Fine-tuned parameters for polynomial SVM (data set B). 

Polynomial degree log2(C) Accuracy % 

3 14 87.2 

4 14 85.6 

2 10 86.7 

 

The settings as shown in Table 4.16 were used to build the final model, which was then 

evaluated by classifying the independent test set. All three models correctly classified a 

minimum of 98.6% of the test set. A polynomial SVM of degree 3 even classified 99.2% of 

the test set correctly, which is equivalent to three misclassified spectra out of 355. All results 

are presented in more detail in Table 4.17. It again becomes obvious that the spectral 

selection method improved drastically the performance of the employed classifier, which is in 

this case a polynomial SVM. Although the polynomial SVM failed to classify the data of data 

set A it correctly classified almost 100% of the testing set in this approach. This can be 

explained by the normalising effect of the spectra selection method.  
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Table 4.17 Polynomial SVM results for data set B. 

Parameters Training Test 

Degree log2(C) Sens. % Spec. % Acc. % Sens. % Spec. % Acc. % 

3 14 89.8 98.3 95.8 100 98.9 99.2 

4 14 85.3 98.6 94.8 98.8 98.9 98.9 

2 10 86.2 97.9 94.5 100 98.2 98.6 

	
  

	
  

Radial basis function kernel  

SVM using a RBF SVM requires the optimisation of parameters C and γ. Similar as for the 

other SVM approaches, for the loose grid search only a subset of the training data was used. 

For this search the range of parameter C was set from C = [2-5, 2-3,…, 215] and γ  = [2-15, 2-

13,…, 23]. The obtained cross-validation results were used to generate a heatmap as illustrated 

in Figure 4.13. Regions coloured in dark red stand for the highest obtained classification 

rates, which are equivalent to correct classification rates above 90%. The parameters of the 

top three results were estimated and used for the second optimisation run. The top three 

classification rates and their related parameters are summarised in Table 4.18.  
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Figure 4.13 Loose grid search for RBF SVM (data set B). 
 

Table 4.18 Estimated parameters for RBF SVM (data set B). 

log2(C) log2(γ) Accuracy % 

9 -13 95.6 

7 -3 95.0 

3 -3 94.8 

 

The approximated parameters were used for a second and final optimisation step. For this 

purpose, the grid search was extended closely around the approximated parameters. 

Furthermore, the complete training set was used. The results for the finer grid search and the 

related parameters are summarised in Table 4.19. 
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Table	
  4.19	
  Fine-­‐tuned	
  parameters	
  for	
  polynomial	
  SVM	
  (data	
  set	
  B). 

Range log2(C) Range log2(γ) Best log2(C) Best log2(γ) Acc. % 

[8, 8.25, …, 10] [-14, -13.75, …, -12] 10 -13.25 89.4 

[2, 2.25, …, 4] [-2, -1.75, …, -4] 3 -4 91.5 

[6, 6.25, …, 8] [-6, -5.75, …, - 4] 8 -5 91.3 

 

The fine tuned parameters as shown in Table 4.19 were then used to build the final model, 

which was tested with the independent test set. The results for all three models are 

summarised in Table 4.19. All RBF SVM models achieved a testing result close to 100%, and 

one of the classifiers even 100%. Unexpectedly, the model with the lowest training 

performance resulted in the highest test performance. Although, this model shows the best 

testing performance but in comparison a relatively low training sensitivity.  

 

Table 4.20 Polynomial SVM results for data set B. 

Parameters Training Test 

log2(C) log2(γ) Sens. % Spec. % Acc. % Sens. % Spec. % Acc. % 

10 -13.25 82.2 98.4 93.7 100.0 100 100 

3 -4 95.1 99.2 98.0 98.8 98.9 98.9 

8 -5 98.4 99.5 99.2 100 98.5 98.9 

 

 

4.3.2.4 Summary  
The spectra selection method drastically improved the performance of all applied 

classification techniques. Thus, all applied classification methods yielded a test result over 
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90%. With exception of the linear SVM all approaches showed a higher testing accuracy than 

training accuracy.  

 

In this approach the non-linear SVM classified either 100% or almost 100% of the 

independent test data. This is a drastic improvement in comparison to the models developed 

for data set A where the RBF and the polynomial SVM did not perform as well. Thus 

reducing the variance within the spectra of a sample boosts these classifiers. For this reason it 

must be assumed that a good standard of pre-processing is needed in order to get a good 

performing non-linear SVM classifier. Accordingly, appropriate pre-processing enables that 

the data are separable in the higher dimensional feature space, as generated by non-linear 

kernels. Since this preliminary is ensured, SVMs demonstrated their known potential of 

separating data, which might not separable in the input space, and consequently performed 

better than the other applied methods.  The best results of all three methods are summarised 

in Table 4.21. 

 
Table 4.21 Summary of results for data set B. 

 Training Testing 

Method Sens. % Spec. % Acc. % Sens. % Spec. % Acc. % 

LDA 90.2 89.3 90.3 100 91.9 93.8 

PLS-DA 89.1 90.0 94.5 100 93.7 95.2 

SVM:       

- linear 94.4 98.6 97.4 100 90.1 92.4 

- polynomial 89.8 98.3 95.8 100 98.9 99.2 

- RBF 82.2 98.4 93.7 100.0 100 100 
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In previous work the same data set was used to generate a PC-fed LDA model, which 

achieved a sensitivity of 88% and a specificity of 80% when tested by LOOCV (Smith, 

2005). In comparison all classification models developed in this approach exceeded these 

results. Furthermore, the results obtained in this work were gathered by testing with an 

independent test set, which further highlights the excellent performance of these diagnostic 

models. 

 

In addition, the application of SVM and Raman spectroscopy also performed better than other 

diagnostic techniques, including imprint cytology, for which an average sensitivity of 63% 

and an average specificity of 99% was reported (Tew et al., 2005), as well as frozen section 

analysis, for which sensitivities of 57-87% and specificities greater than 99% were reported 

(Creager et al., 2002). Thus, the outstanding strength of the combination of SVMs and 

Raman spectroscopy is the excellent sensitivity in comparison to the other diagnostic 

methods. 

 

 

4.3.3 Assessment of model significance  

The RBF SVM model built for data set B, as well as the polynomial SVM model, was used to 

investigate the model fit based on Monte Carlo methods due to the fact that they achieved the 

highest testing performance. For each of the SVM models, 150 random models were 

generated and the results used to establish a null distributions as shown in Figure 4.14. The 

empirical significance was estimated for each of the models at two different levels, 95% and 

99%. An observed test accuracy above the estimated significance level of 95% is considered 

as highly significant and above a significance level of 99% as extremely significant. In order 

to calculate the empirical significance level of 95%, the null model result was estimated 
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which 95% of all models do not exceed. For the RBF SVM model this level was found to be 

76.9% accuracy and for the polynomial model 78.9% accuracy. Since the observed testing 

result of both models, 100% for the RBF SVM model and 99.2% for the polynomial SVM 

model, is significantly above the 95% limit both models are considered as highly significant. 

Nonetheless, the calculated 95% level for the RBF SVM model is smaller then the 95% level 

for the polynomial SVM and therefore the RBF SVM is considered to be more significant 

than the polynomial SVM model.  Equally, the 99% level was calculated for both SVM 

models, which was found to be 79.4% accuracy for the RBF SVM model and 82.5% accuracy 

for the polynomial SVM model. Both models demonstrate to be extremely significant, 

whereas the RBF SVM is the most significant between both models. 

 

 

Figure 4.14 Null distributions for RBF and polynomial SVM. The empirical significance level of 
95% was estimated to be 76.9% accuracy for the RBF SVM and 78.9% accuracy for the polynomial 
SVM. The calculated significance level of 99% was 79.4% for the RBF SVM and 82.5% for the 
polynomial SVM model. 

 

In addition it was investigated if the better performing models in the null distribution have 

similarity to the class assignment in the original data. This was realised by generating a 

colour map representing the randomly assigned classes for each null model, sorted according 

to an increased null model accuracy. As Figure 4.15 shows no trends could be observed. 
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Therefore it must be assumed that null models achieving a high accuracy, do not have a 

greater amount of samples randomly assigned to the original sample class.  

	
  

Figure 4.15 Colour map illustrating the random class assignment sorted according to increased null 
model accuracy. The comparison with the original sample class shows that there are no visible trends.   
	
  

	
  

4.3.4 Investigation of key features 

For the best performing model (RBF SVM) built for data set B model the wavenumbers that 

have the highest impact on the model performance were investigated. For this purpose 100 

wavenumbers were eliminated from the data systematically. It showed that out of 15 

generated models only two showed a decrease in testing performance. These regions were 

identified as 451-550cm-1 (decreased testing accuracy: 99.2%) and 1151-1250cm-1 (decreased 

testing accuracy: 98.9%). The peaks identified in these regions are related to disulfide bonds 

(540 cm-1) and cytosine, guanine and adenine (all 1184 cm-1). Nevertheless, the loss in 

performance is not significant and thus the impact of these spectral features cannot be 

considered as major. This becomes even more obvious by the fact that when these two 

regions were eliminated from the data set the generated model still achieved a testing 

performance of 98.9%. Thus, the remaining spectral features are still sufficient for enabling a 

distinct differentiation between cancerous and non-cancerous spectra. On the other hand, 
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creating a model by only using these two regions resulted in a relatively low testing 

performance of 76.9%. For this reason an assessment of whether the model performance 

could be improved by adding a third spectral region was performed.  The two previously 

identified spectral regions (450-549cm-1 and 1150-1249 cm-1) were combined with one of the 

remaining ones. Thus, a total of 13 models were generated. It showed that an extract of 300 

wavenumbers is sufficient to achieve a 100% testing result and a training result of 90.3%, 

which is close to the 93.7% testing result of the model built on the whole spectral range. This 

training and testing result was achieved by the combination of the spectral intervals starting 

from 450-550cm-1 and 1150-1350cm-1. Peaks identified in these regions are 540cm-1 

(disulfide bonds), 1184cm-1 (cytosine, adenine and guanine), 1264cm-1(amide III mode of α-

helix and =C-H plane bending in lipids), 1304 cm-1 (CH2 deformation in lipids, adenine and 

cytosine). Mean spectra for negative and positive lymph nodes are shown in Figure 4.16. 

Peak assignments for mean spectra and the performance of all individual models are 

summarised in Table 4.22.  

 

	
  

Figure 4.16 The graph illustrates the mean Raman spectra for cancerous and non-cancerous samples. 
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Table	
  4.22	
  Peak	
  assignments	
  for	
  mean	
  Raman	
  spectra	
  for	
  cancerous	
  and	
  non-­‐cancerous	
  samples.	
  
The	
  combination	
  of	
  the	
  three	
  intervals	
  highlighted	
  in	
  gray	
  resulted	
  in	
  a	
  100%	
  testing	
  performance	
  of	
  
the	
  RBF	
  SVM	
  model	
  built	
  for	
  data	
  set	
  B. 

Interval/cm-1 Peak position/cm-1 Major Assignments 

350-450 429 Calcium hydroxyapatite 

450-550 540 Disulfide bonds 

550-650   

650-750 665 Thiamine 

726 C-S(protein), CH2 rocking, adenine 

750-850 755 Symmetric breathing of tryptophan 

786 DNA: O-P-O, cytosine, uracil, thymine 

850-950 859 Tyrosin, collagen 

932 Skeletal C-C: α-helix 

950-1050 1006 Phenylalanine, carotenoids 

1050-1150 1086 Skeletal C-C stretch 

1150-1250 1184 Cytosine, guanine, adenine 

1250-1350 1264 Amide III (α-helix), =C-H in plane bending 

(lipid) 

1304 CH2 deformation (lipid), adenine, cytosine 

1350-1450 1446 CH2 bending modes of proteins 

1450-1550 1520 -C=C-carotenoid 

1550-1650 1616 C=C stretching mode of tyrosine and 

tryptophan 

1650-1750 1660 Amide I (protein) 

1746 C=O stretch (lipid) 

1750-1850 1782 Unknown assignment 

	
  

	
  

4.4 Conclusion 
This work demonstrated that SVM coupled with Raman spectroscopy is a superior approach 

over traditional methods for the classification of Raman spectral data derived from tissue. 

Especially, the RBF SVM shows high diagnostic potential for future application due to the 
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fact that this achieved 100% classification accuracy on previously unseen data. This approach 

also exceeded other techniques such as touch imprint cytology and frozen section analysis. 

Thus the high potential of SVM and Raman spectroscopy for diagnostic application in lymph 

node assessments of breast cancer patients was demonstrated. 

 

As reported the spectra selection and therefore removing potentially corrupting artefacts 

significantly improved the performance of the employed classifiers. However, in real clinical 

applications further data variations and corrupting artefacts might occur and for this reason it 

is important that employed models are robust enough to reliably classify data, which might 

contain imperfections. In the next chapter the robustness of the developed models for future 

clinical application is addressed.   
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5 Robustness assessment of classification models built for Raman 
spectroscopy 

5.1 Introduction 
The future application of Raman spectroscopy as a routine technique for cancer diagnosis 

strongly depends on chemometric pattern recognition techniques. If pattern recognition based 

on Raman spectroscopy is to be translated from the research laboratory to the clinic, its real 

world performance and limitations need to be fully understood. This necessitates rigorous 

model testing, which goes further than testing a classification model with an unseen testing 

set. In order to fully assess the performance of a diagnostic model it is important to take 

account of the fact that acquired data might be subject to error from a range of sources such 

as by system to system variation, working condition and by the operator.  

 

In this chapter a series of methods to simulate the effect of error sources on the data set is 

presented. This includes various impacts, such as linear spectral shifts - which either shift the 

whole spectra by a wavenumber at a time or modify the intensity of each spectral point 

linearly, non-linear spectral shifts - either resulting in a stretching or a bending of a spectrum, 

and random noise, which decreases the signal to noise ratio. These are all potential errors 

which are suspected to occur by differing amounts when moving between instruments, 

modifying the design and changing working conditions or sampling methodologies. In order 

to assess the robustness of classification models for such errors the classifiers were used to 

predict the class membership of the corrupted data. For this approach the classification 

models described in section 4.3.2 were investigated.  
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5.2 Methods 

5.2.1 Simulation of spectral artefacts 

In order to assess the model robustness different types of perturbations were simulated on all 

spectra of the testing set. The training set was left unmodified – this reflects the possible 

deployment of a method trained in a control laboratory setting into a clinical setting where 

sources of error are harder to control. The original models were then used to predict the class 

membership of the corrupted testing set. For this approach three general types of perturbation 

were investigated: linear shifts, non-linear shifts and random noise. A list of the applied 

spectral artefacts and their causes is shown in Table 5.1. For each approach the perturbation 

level was increased systematically. It is expected that increased corruption levels result in a 

loss of predictive power, allowing the assessment of robustness as a function of spectral 

quality. This allows the comparison of the different types of classifiers and due to that which 

type of classifier is more sensitive to a specific spectral artefact for this particular spectral 

data.  
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Table	
  5.1	
  Summary	
  of	
  all	
  simulated	
  spectral	
  artefacts	
  and	
  potential	
  experimental	
  sources. 

Spectral artefact Possible sources 

X-shift - Ambient temperature change 

- Calibration error 

Constant y-shift - Laser intensity variation 

Gradient y-shift - Stray off axis light entering the system 

- Ambient light 

- New signals from specimens (fluorescence) 

Sine perturbation - Collected light not fully focussed onto CCD detector 

Cosine perturbation - Optical artefacts caused by vignetting in the spectrometer 

Random Noise - Reduced exposure time 

- Low laser power 

	
  

  

5.2.2 Linear shifts  

For the investigation of the linear shift three independent simulations were executed: a 

constant x-shift, a constant y-shift and a gradient y-shift. 

 

X-shift 

Raman shifts can be a result of changes in ambient temperature and poor calibration 

procedures.  In order to evaluate the impact of a varying x-shift on the model performance the 

first and the last 15 wavenumbers of the training data set were eliminated. The removal of 

these wavenumbers was necessary in order to gain room for shifting the data set. Thus, the 

original spectral range of the training set was reduced from 350-1850cm-1 to 365-1835cm-1. 

The reduced data set was finally used to generate the different types of classification models. 



94	
  

The x-shift was simulated on the testing data by extracting an alternating spectral range of the 

data. For instance, an x-shift of -15cm-1 was introduced by extracting the spectral range from 

350-1820cm-1. The resulting testing set was then classified by the model. In Figure 5.1 the 

simulation of a x-shift of 15 wavenumbers is shown. 

 

 

Figure 5.1 Illustration of a plus and a minus x-shift of 15 wavenumbers / cm-1. 
 

Constant y-shift 

A constant y-shift was introduced by adding 0.01 arbitrary intensity units at a time to the 

original measured intensity of all testing spectra. Thus, for each wavenumber the intensity 

was consequently increased by 0.01 arbitrary units. This was executed 50 times up to an 

intensity increase of all spectra to a maximum of 0.5 arbitrary units. A spectrum corrupted by 

a y-shift of 0.15 arbitrary units is illustrated in Figure 5.2.  
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Figure 5.2 Illustration of a y-shift of 0.15 arbitrary units. 

 

Gradient y-shift 

In order to simulate a linear gradient a linear function was added to all spectra of the testing 

data. The gradient of this function was consequently increased by 0.0001 ranging from 

negative to positive gradients of 0.0013. The impact of a gradient of 0.0001 on a sample 

spectrum is illustrated in Figure 5.3. 

 

 

Figure 5.3 Illustration of a positive and negative gradient y-shift of 0.0001. 

 



96	
  

5.2.3 Non-linear shift 

Non linear shifts were simulated in two ways. The first was sine based and the second cosine 

based. Accordingly, the two following functions were used to manipulate all spectra of the 

testing set: 

Function 1: 

€ 

f (x) = a∗0.5(1+ cos x)  (5.1) 

Function 2: 

€ 

f (x) = a∗0.5(1+ sin(x −π /2)) (5.2) 

The impact of the perturbation function is regulated by the amplitude a and due to that for 

both functions the amplitude was increased in steps of 0.1 starting from 0.1 up to 30. In order 

to corrupt the data set the resulting base function was interpolated on the testing data. As 

Figure 5.4 illustrates a cosine perturbation has a strong impact on the peripheral zones of the 

spectra. In comparison, a sine perturbation, also shown in Figure 5.4, has a higher impact on 

the centre of a spectrum. However, for Raman measurements a spectral stretching, as 

simulated by cosine perturbation, is more likely to occur than a bending, which is simulated 

by a sine perturbation. 

 

 

Figure 5.4 Illustration of the impact of a cosine and a sine perturbation using an amplitude of 30. The 
cosine perturbation results in a stretching of the sample spectra and the sine perturbation of a bending 
of the sample spectra.  
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5.2.4 Random noise 

Random noise n was computed independently for every individual spectral point s(i,j) in the 

testing set x(i,j). The noise n can take any value between minus one and one. In order to 

introduce a gradient only a percentage p of the generated noise n was added to the original 

measured intensity:  

€ 

x(i, j ) = s( i, j ) + s(i, j ) ∗n ∗ p  (5.3) 

In Figure 5.5 the impact of the addition of 10% noise on the Raman spectrum is illustrated. 

For each percentage level 100 models were generated where every time a new noise 

simulation was made for the testing set. The repetitions were executed due to the fact that a 

single repetition would not be representative because of the random nature of the 

perturbation. 

 

 

Figure 5.5 Illustration of a sample spectra after adding 10% noise. 
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5.2.5 Robustness score 

In order to provide a summary of the overall robustness of each classification model, a score 

was calculated. For this purpose, each corruption approach was assigned with a total of 100 

points. In the case that there was a two-way perturbation, for example the x-shift can be either 

positive or negative, each way was independently assigned 50 points. Consequently, a total of 

600 points is theoretically achievable. In addition, an assessment level was set on which the 

robustness should be tested. For this approach, first of all it was set to be the maintenance of 

90% accuracy. In this manner, it can be investigated how much the data can be corrupted by 

maintaining a minimum of 90% performance. For instance, in the case of an x-shift this is the 

maximum shift in n wavenumbers, which allows a classification performance of 90%. In 

order to calculate the score the proportion of the estimated perturbation limit to the applied 

maximum perturbation is estimated. This procedure is executed for every single corruption 

approach and all individual scores were summed. The higher the estimated score the higher is 

the robustness of a model. Thus, the score facilitates a numerical comparison of the overall 

robustness of classification models at a predefined performance level.  

 

	
  

5.3 Results and Discussion 

5.3.1 Linear shift 

X-shift 

As illustrated in Figure 5.6 a negative spectral wavenumber shift has a significantly higher 

impact on the classification performance than a shift in positive direction. Among all 

classification models the PLS-DA model was most badly affected. A shift of 15 

wavenumbers in the negative direction resulted in a reduction to around 45% of prediction 

accuracy. In comparison, the SVM and the LDA model did not lose more than 20% in 
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prediction accuracy at the maximum negative x-shift. Although all models declined in overall 

accuracy, the sensitivity, as illustrated in Figure 5.6, was not impacted by a negative x-shift.  

 

An x-shift in the positive direction had a strong impact on the diagnostic sensitivity of the 

PLS-DA and SVM model. A shift of 12 wavenumbers resulted in a complete loss of 

sensitivity for the PLS-DA model and a shift of 15 wavenumbers resulted in a diagnostic 

sensitivity as low as 1.2% for the SVM model. Overall, the LDA model demonstrated to be 

the most robust model in the presence of an x-shift. Further investigations showed that this is 

due to the fact that only a minimum number of PCs were fed into the LDA. Increasing the 

number of PCs resulted in a total loss of sensitivity and thus a similar performance loss as for 

the other classification models.  Thus, the previous application of PCA for data reduction and 

the optimisation of the number of PCs fed into the LDA has a beneficial effect on this model 

and its robustness. The PLS-DA model faced the highest performance loss caused by an x-

shift and due to that must be considered to be the least robust model for this type of 

perturbation. 
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Figure 5.6 Robustness testing results for x-shift perturbation. 

 

 

Constant y-shift 

A constant y-shift had a severe impact on the model performance, shown in Figure 5.7, which 

mainly resulted in a loss of specificity. This source of perturbation did not impact the 

sensitivity of any of these models and due to that all performance loss is caused by a reduced 

specificity. The PLS-DA model achieved a classification accuracy of 39.7%, which is 

equivalent to a specificity of 21.6%, after increasing the intensity of all test spectra by 0.5 

arbitrary units. The SVM model performed similarly by achieving a specificity of 22.7% and 

classifying 40.6% of the testing set correctly. The decline in specificity is illustrated in Figure 

5.7. The major difference in the robustness of these models is that the SVM model loses 

performance abruptly, whereas the PLS-DA model loses performance more gradually. In 
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comparison the LDA model only achieved an accuracy of 23.4% and a total loss of 

specificity. For this reason it must be considered that the LDA model is most affected by the 

effect of a constant y-shift.  

 

 

Figure 5.7 Robustness testing results for constant y-shift perturbation. 

 

 

 

Gradient y-shift 

A positive gradient drastically impacts the performance of all models as illustrated in Figure 

5.8. The major reason for the performance decrease is the loss in diagnostic specificity. Thus, 

all normal lymph nodes were predicted as cancerous lymph nodes. For all models, as shown 

in Figure 5.8, a sensitivity of 100% can be maintained up to a y-gradient of 0.0013.  The most 
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disturbed models were the LDA and the PLS-DA model, which both only classified 23.1% of 

all testing spectra correctly with an applied gradient of 0.0013. The relatively low accuracy in 

comparison to 100% sensitivity can be explained by the fact that there are more negative than 

positive samples in the testing set. Nevertheless, the SVM model achieved a classification 

accuracy of 30.7% at the same gradient level.  

 

In comparison, a negative gradient results in a total loss of sensitivity for the LDA and the 

SVM model. The PLS-DA model is not impacted at all and thus maintains the original model 

performance up to the maximum gradient of -0.0013. For this reason it is assumed that for the 

PLS-DA model lower wavenumbers, which are mainly impacted by this perturbation, are of 

less significance than for the remaining classification models. Therefore, PLS-DA can be 

considered to be the most stable classification model for this type of perturbation.  

 



103	
  

 

Figure 5.8 Robustness testing results for gradient y-shift perturbation. 
 

 

 

5.3.2 Non linear shift 

A cosine perturbation, which has a corrupting effect on the peripheral regions of a spectrum, 

has a major impact on the model performance as illustrated in Figure 5.9. For this 

perturbation source it was observed that the sensitivity of the LDA and SVM model was 

affected severely. This source of perturbation can be compensated for, up to a specific level, 

by each of the classifiers and then drops suddenly from a sensitivity of 100% to lower than 

40%. The PLS-DA model is the first to lose sensitivity at a cosine amplitude of 16.8. The 

SVM model is capable of maintaining sensitivity up to an amplitude of 20.7. The LDA 
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classifier proved to be the most robust model by maintaining the sensitivity up to a cosine 

amplitude of 30.  

 

In comparison, the sine perturbation, which impacts the centre of a spectrum, proved to have 

a minor impact on the performance of all classifiers. It showed that an applied sine amplitude 

of 30 does not result in a loss of sensitivity and in conclusion a sensitivity of 100% is 

maintained, as shown in Figure 5.9. The loss of specificity, also illustrated in Figure 5.9, is 

marginal for all classification models. The SVM model is the least impacted model for the 

reason that it maintains a specificity of 90.6%, which is equivalent to an accuracy of 92.7%, 

at the maximum level of sine perturbation. The LDA and the PLS-DA model perform equally 

and thus both achieve 85.1% accuracy and 80.6% specificity at the maximum sine disruption 

level. Based on these results the SVM model can be considered as the most robust one for 

sine perturbation. 
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Figure 5.9 Robustness testing results for cosine and sine perturbation. 
 

 

5.3.3 Random noise 

For each percentage level noise was randomly added individually to every spectrum of the 

testing set. This procedure was repeated 100 times and the class membership was then 

predicted by the classifier. The average result was calculated for each noise level. The 
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addition of random noise proved to have only a minor impact on the performance of all 

classification models, as illustrated in Figure 5.10.  

 

Although the impact of the noise on to the spectra is high no major loss in classification 

performance could be observed. For all models the sensitivity was not affected at all and thus 

only a loss of specificity was observed. It is assumed that noise did not severely corrupt the 

overall spectral patterns, which are crucial for the decision making of the classifiers, and 

consequently a high accuracy could be maintained.  

 

 

Figure 5.10 Robustness testing results for random noise perturbation. 
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5.3.4 Overall Robustness 

In order to assess the overall robustness for each classification model a score was calculated, 

representing how much perturbation each model can compensate until the predictive accuracy 

drops under 90%. In Table 5.2 all scores for each individual perturbation source are 

summarised.  The SVM model achieved the highest total score of all models. Nevertheless it 

did not demonstrate the highest robustness for each individual perturbation source. The LDA 

model showed to be more robust towards a positive x-shift and cosine perturbation than the 

other classifiers. The PLS-DA demonstrated superiority in tolerating an increasing negative 

y-gradient. All three models showed almost no tolerance for a positive y-gradient. 

Summarising, the SVM model can be considered as the most robust model since it can cope 

with a high level of perturbation before dropping under 90% predictive accuracy.  

	
  

Table 5.2 Robustness scores for all classification models. Each single score was calculated based on 
the fact which maximum perturbation can be tolerated by maintaining 90% of predictive accuracy. 

  LDA PLS-DA SVM 

 Max Tolerance Score Tolerance Score Tolerance Score 

Pos. X-shift 15 15 50 6 20 8 27 

Neg. X-shift -15 -1 3 -2 7 -6 20 

Const. Y-shift 0.5 0.05 10 0.11 22 0.14 28 

Pos. Y-gradient 0.0013 1.2*10-5 0 3.8*10-5 2 3.5*10-5 1 

Neg.  Y-gradient -0.0013 -2.34*10-4 9 -0.0013 50 2.09*10-4 8 

Cosine perturbation 30 23.3 78 10.7 36 14.1 47 

Sine perturbation 30 7.0 23 4.7 16 30.0 100 

Noise 25 25 100 25 100 25 100 

Total Score   273  253  331 
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5.4 Conclusion 
In this work it was shown the extent to which various perturbations to Raman spectra would 

compromise diagnostic systems built around multivariate classification models. Linear 

perturbations were found to be the most disruptive. Among this group it was found that a 

positive linear y-gradient had the strongest impact on the model performance. It was observed 

that even an extremely low positive linear gradient results in a drastic performance loss. 

Therefore, unexpected spectral features, such as stray light, fluorescence signals in new 

samples and ambient light signals might have the highest impact on the performance of 

classification models and in conclusion must be considered to be the most disrupting error 

source when applying Raman spectroscopy for routine diagnostics. Conversely, non linear 

perturbations were found to have negligible impact on the performance of the models. The 

same was observed for random noise. Since the major cause of random noise is reduced 

exposure times, these results demonstrate that a reduced exposure time would not impact on 

the model performance when constructed with high quality data. This demonstrates that faster 

spectral measurements are feasible, which is of specific importance for in vivo measurements 

where the minimisation of acquisition times is desirable.  

 

The overall robustness does not vary drastically between the different types of classification 

methods. Nevertheless, it was shown that each classification method had specific strengths. 

In relation to the other methods, LDA is less impacted by a positive x-shift or cosine 

perturbation. In comparison, PLS-DA copes better with a linear negative y-gradient and SVM 

with a sine perturbation and random noise. In real clinical use the most likely differences 

between newly collected data and data used for training models would be small linear x-shifts 

and cosine shifts. The intensity related changes can be corrected for using normalisation 

methods and/or baseline subtraction. With this in mind, the most robust method would be 

LDA. However, since these corruptions are expected to be small in real applications the most 
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suitable classification method is SVM. This is due to the fact that it not only achieved the best 

classification performance on the original data set it is also not impacted by small x-shifts and 

cosine perturbation. SVM loses predictive power only at very high x-shifts and under 

substantial cosine perturbation. In order to further increase the robustness of the SVM model 

it would be required to incorporate imperfect spectra (ideally from different instruments) into 

the training data, such that the expected variance is captured in the model. Finally, it would 

be advisable to apply noise reduction methods that, for example, remove fluorescence 

background, prior to attempting to classify spectra. 
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6 Breast cancer diagnostics using ensemble support vector machines 
and infrared spectroscopy 

6.1 Introduction 
In the previous chapters support vector machines demonstrated great potential for 

employment as diagnostic models for Raman spectroscopic data. Thus, this chapter 

presents the investigation SVMs of for breast disease diagnostics using mid-FTIR micro-

spectroscopy. The aim was to develop a classification model, which is capable to predict 

different breast pathologies reliably, including benign breast disease, ductal carcinoma in 

situ (DCIS) and invasive breast cancer. In this approach the diagnosis and staging of breast 

cancer is focused on micro-calcifications, which are commonly found in breast tissue and 

related to malignant development.  

 

Mammography is the most important tool in breast cancer screening, as it enables 

detection of small masses, ill-defined densities, areas of distortion and microcalcifications. 

In a significant number of cancer cases microcalcification are the only indicator for the 

presence of malignant development (Morgan et al., 2005). Due to the fact that 

microcalcifications are very important features in order to predict abnormalities in breast 

tissue. Currently, morphological features such as size, shape, clustering and branching are 

the only parameters to correlate microcalcifications with malignancy (Tse et al., 2008). 

Nonetheless, this does not allow a distinctive differentiation between malignant and benign 

lesions. Under the circumstances that suspicious calcifications are found in mammograms 

typically biopsies are taken from the area concerned. Further details on the link of micro-

calcifications and breast disease are provided in chapter 7. 
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A known problem in machine learning is that classifiers that achieve a good training 

performance frequently exhibit a low generalisation performance on unseen data. Exactly 

this circumstance was encountered when employing a traditional single SVM for the 

infrared data set. A possibility to overcome these limitations is to create an ensemble 

consisting of several classifiers and combine the output of all independent classifiers 

(Polikar, 2006). This procedure can be compared with the process of consulting several 

experts for their opinion before making a final decision. For a medical problem this would 

mean seeking the opinion of several doctors. However, it must be taken into account that 

an ensemble of classifiers might not beat the performance of the best classifier within the 

ensemble. Nonetheless, it certainly reduces the risk of making a poor predictive decision 

based on a single unfortunately selected classifier.  

 

Another major advantage of ensemble classifiers is that they are able to successfully 

address the problem of data sets consisting of only a small number of samples. This is a 

common case in diagnostic approaches using vibrational spectroscopy, where tissue 

samples are obtained by invasive biopsy. Frequently, acquired data sets consist of less than 

100 samples. From a typical tissue sample a modern spectrometer easily acquires hundreds 

of data points per spectrum. Thus, there are always more data points in a spectrum than 

samples measured. Data sets exhibiting these features are likely to result in unstable 

classifiers with low predictive power. Classification ensembles can address model 

instability, which results in an increased predictive power (Beleites et al., 2008). 

  

Since a traditional single SVM was not able to reliably predict an independent testing set 

different types of ensemble SVMs were implemented in order to overcome the poor 

performance. The same training data, as used to develop a single classifier were used to 
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implement SVM ensembles, permitting direct comparison of the two approaches. Finally, 

both systems were assessed with the same independent test samples.  

	
  

	
  

6.2 Materials and Methods  

6.2.1 FT-IR data 

A total of 71 breast tissue samples were collected under ethical approval of Glouestershire 

LREC. The tissue samples represented three different pathology types, benign, ductal in-

situ carcinoma (DCIS) and invasive cancer, as confirmed by histopathology. DCIS is a 

non-invasive form of breast cancer. In all specimens micro-calcifications were present, 

which can be used to stage breast cancer as demonstrated in previous work (Baker et al., 

2010a).  

 

All samples were measured in paraffinsed condition using a Perkin Elmer Spotlight 300 

FT-IR system in transmission mode over the spectral range 720 to 4000 cm-1. Each image 

was generated using a pixel size of 6.25 µm and a 2 cm-1 spectral resolution, with 64 scans 

per pixel. Spectra representing tissue calcifications, which contain a distinctive phosphate 

peak at 1026 cm-1 were extracted from the generated 99 maps. The resulting data set 

consisted of 1628 spectra, which were all baseline corrected, smoothed (by a Savitzky-

Golay filter) and normalised. For the development of classification models only the 

fingerprint region, ranging from 800 to 2000 cm-1, was used. Mean spectra of all pathology 

groups are shown in Figure 6.1. 
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Figure 6.1 Mean spectra of the three breast disease pathologies. For the benign mean spectrum 11 
samples (227 spectra) were averaged, for the DCIS mean spectrum 17 samples (332 spectra) and 
for the invasive mean spectrum 25 samples (567 spectra). 
 

	
  

6.2.2 Ensemble-based systems 

For building an ensemble-based system various classifiers are generated and trained 

independently. The resulting models are then combined in some way in order to predict the 

class-membership of an unseen test set (Dietterich, 2000). The general architecture of a 

classification ensemble is illustrated in Figure 6.2.  
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Figure 6.2 Support vector machine ensemble architecture. The train set is used to generate K 
smaller data subsets, for instance by bootstrapping. All subsets K are used to generate an 
independent SVM. Thus K SVMs are built, which are all used to predict the sample class 
membership of the independent test set. Consequently this results in K individual predictions for 
the test set, which are combined by an aggregation strategy (e.g. majority voting), in order to 
obtain the final prediction result. 

 

 

In the past ensembles were shown to perform better than single classifiers. Hansen et. al. 

(1990) demonstrated why an ensemble of  L classifiers {f1,f2,…,fl} is capable of achieving a 

higher prediction accuracy of the test data x than a single classifier. This can be explained 

by the fact that the individual classifiers are different and their errors are uncorrelated. 

Thus, when the prediction of fl(x) is wrong the prediction of the majority of the remaining 

classifiers may be correct and subsequently the majority voting is correct. Additionally, 

providing the error of each independent classifier is p < ½ then the probability that the 

majority vote is incorrect decreases with the number of classifiers.  

 

Several methods for generating ensemble-based classifiers have been developed. All of 

them have one general aim in common: all single classifiers should differ from each other 

as much as possible. In order to achieve this requirement, the different classifiers are built 
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by using varying training sets. For the generation of different training sets various methods 

are available, including bagging (Breiman, 1996), boosting (Schapire, 1990), stacked 

generalisation (Wolpert, 1992) and mixture–of-experts (Jacobs et al., 1991). This work 

focused on the most popular ones – bagging and boosting – and in addition a tree-based 

system (Schwenker, 2000).  

 

Once all independent classifiers are built their outputs must be combined. This can be done 

in various ways, for example majority vote, weighted majority vote, naïve Bayes 

combination or combining continuous outputs. In this work we focused on majority vote, 

weighted vote and naïve Bayes combination were investigated. 

	
  

	
  

6.2.2.1 Bagging 
Boostrap aggregating or, for short, bagging, was one of the first successfully applied 

ensemble-based techniques (Breiman, 1996). In a bagging approach bootstrapping is used 

to generate multiple data sub-sets N by randomly re-sampling from a learning set Z = 

{(xi,yi)| i = 1,2,3,...,N)}. Each data sub-set n (consisting of train subset n and test subset n) 

is used to train a SVM independently. The resulting K SVMs are then combined using an 

appropriate aggregation method.  

 

Usually, bagging performs better than a single classifier under the circumstances that the 

single predictor is unstable. This is caused by the fact that bootstrapping assures that the 

sub-sets differ as much as possible and thus results in a greater improvement of the 

classification result. In the case that a single predictor is stable, bagging will not result in a 

performance improvement.  
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6.2.2.2 Boosting 
The underlying aim of boosting is to enhance the performance from a weak classifier to a 

strong classifier. This idea was derived from the ‘probably approximately correct’ (PAC) 

framework (Valiant, 1984). In general, boosting is based on building a classifier ensemble 

through an iterative reweighting procedure. Sequentially higher weights are set on to 

training samples which showed to be hard to classify. Thus, a weak learning algorithm, 

which only might perform slightly better than random guessing can be transformed into a 

strong learning algorithm (Cao et al., 2010).   

 

Among all boosting algorithms, AdaBoost (Freund et al., 1997) is probably the best known 

as well as the most successful approach. AdaBoost appears in many variations, however 

the most frequently used are AdaBoost.M1, capable of solving multiclass problems, and 

AdaBoost.R, for regression problems (Polikar, 2006).  

 

The practical implementation of AdaBoost.M1 for a multiclass problem can be described 

in the following steps: 

 

1. Input 

A sequence of M training samples Z = [(xj,yj)], i=1,…,M] with labels yj ∈ Ω, 

Ω={ω1,…,ωC} 

Select learning algorithm  

Pick L, the number of interactions and thus the numbers of classifiers to train 

Initialise the weights for the training set: 

! 

wi
1 =1/M ,  i =1,…M 
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2. Training 

For iterations k = 1,…,K 

Select a training subset Sk from Z using distribution wk 

Train classifier Dk with Sk 

Calculate the weighted prediction error at iteration k: 

! 

Dk : ek = wi
k

i:Dk (x i )"y i

#  (6.1) 

if εk = 0 or εk > 0.5, abort 

Set: βk= εk/(1-εk)      

Update and normalise weights: 

! 

wi
k+1 =

wi
k

w i
k

i
"

#
bk if Dk(xi) = yi

1 otherwise

$ 

% 
& 

' & 
 

(6.2) 

 

3. Test  

Set of unseen example x 

Calculate the support for each class ωi: 

! 

µ j = log
1
"kk:Dk (x )=wj

#
 

 j =1,…,C (6.3) 

Select class that achieved highest vote 

	
  

	
  

6.2.2.3 Tree-based ensemble  
This approach aggregates several SVMs into a tree-like structure similar to a classification 

tree, where each node represents an independent binary SVM (Schwenker, 2000). Each 

SVM can either be trained for separating one single class from the remaining classes as 

well as for separating groups of classes. By doing so the multi-class problem is split into a 
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series of binary problems, which are organised in a hierarchical structure. For a three-class 

problem there are three distinct trees possible as illustrated in Figure 6.3.  

 

 

Figure 6.3 Architecture of the tree-structured ensembles for a three-class problem. These tree-
structured ensembles are designed for predicting the pathologies of three different types of breast 
disease: benign, ductal carcinoma in situ (DCIS) and invasive cancer. 

 

In order to find the optimum tree structure for a given training data, all possible trees are 

grown and all the integrated SVMs optimised. The most suitable tree structure can then be 

identified based on the training performance. 

	
  

	
  

6.2.3 Aggregation methods 

6.2.3.1 Majority vote 
Majority voting is considered to be the simplest way of combining the predicted class 

labels of multiple SVMs. This system, which is also called plurality voting, selects the 

class which achieved the highest number of votes. Let the output of the SVM Di be defined 

as di,j ∈ {0,1}, i = 1,…,L and j = 1,…,C, where L is the number of SVMs and C the 

number of class labels. Thus, the output of Di is given as a C-dimensional binary vector 
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[di,1,…,di,C]T. Under the circumstances that the Di selects class ωj dt,j = 1, otherwise dt,j =0 

(Kuncheva, 2004). Accordingly the majority system will select class ωk if: 

! 

dt, j =
t=1

T

"
j=1

C

max dt, j
t=1

T

"  
(6.4) 

 

	
  

6.2.3.2 Weighted majority vote 
In an ensemble classifiers might have different accuracies and therefore some perform 

better than others. This evidence can be used to give a higher power to classifiers, which 

demonstrated to be more competent. Practically, this can be implemented by rewarding 

more accurate classifiers with a higher weight. The weight wi for classifier Di can be 

calculated by using the predictive error of the training performance or instead, as in this 

work, the predictive error of the bootstrap test set. The bootstrap test set is an internal test 

set and is fully independent from the final unseen test set. The weights are introduced in a 

similar way to the boosting procedure and thus the training error εi  is used to calculate the 

normalised error βi: 

€ 

βi = ε i /(1−ε i)  (6.5) 

The reciprocal of βi is then used as the weight. However, since the training error is 

frequently close to zero and therefore 1/βi can be very large, which can be a potential 

source of instability, it is advisable to use the logarithm of 1/βi (Polikar, 2006). 

! 

w i = log
1
"i

 
(6.6) 
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6.2.3.3 Naïve Bayes combination 
This approach is called naïve Bayes combination because it is assumed that all classifiers 

used to derive a prediction are mutually independent (conditional independence) 

(Domingos et al., 1997). Taking into account that the conditional independence is valid, 

the probability that classifier Di labels x in class sj ∈ Ω, where Ω is the set of class labels 

{ωk,…, ωc}, can be defined by: 

! 

P s |wk( ) = P(s1,s2,...,sL |" k ) = P(si |" k )
i=1

L

#  
(6.7) 

Then the posterior probability required to label x can be described according to Bayes’ 

theorem, where k = 1,…, C represents the classes: 

! 

P wk | s( ) =
P " k( )P s |" k( )

P s( )
=

P " k( ) P(si |" k )
i=1

L

#
P s( )

 

(6.8) 

 

P(s) can be ignored for the reason that it is the same for each class and therefore does not 

have an effect on their relative probabilities. The support for each class is estimated as 

! 

µk (x)" P(# k ) P(si |# k )
i=1

L

$  
(6.9) 

In order to implement the naïve Bayes combination built for a data set Z with N samples, 

for each SVM Di in the ensemble, a C×C confusion matrix CMi
 is calculated based on the 

achieved training result. The entry 

! 

cmk,s
i  represents the number of samples that have been 

correctly classified in the course of the training procedure. Therefore, these samples were 

assigned with the true class ωk to class ωs by the classifier Di. The probability P(si|ωk) is 

given by 

€ 

cmk,s
i /Nk  and the prior probability for class for class ωk  by Nk/N and thus 

Equation. 6.9 can be written as: 
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! 

µk (x)"
1
Nk

L#1 cmk,si
i

i=1

L

$  
(6.10) 

As a matter of fact the estimation of P(s|ωk) can be zero, which automatically nullifies 

µk(x) without taking the remaining estimates into account. Titterington et al. (Titterington 

et al., 1981), suggested modifications in order to address the problem of a zero estimates. 

For the naïve Bayes combination this can be applied as (Kuncheva, 2004): 

! 

µk (x)"
Nk

Nk
L#1

cmk,si
i +1/c
Nk +1i=1

L

$  
(6.11) 

	
  

 

6.2.4 Support vector machine implementation 

The FTIR data set was randomly split into a training and a test set, within the constraint 

that the test set contained one third of each pathology group and the remaining samples 

were integrated into the training set. Thus the test set contained four benign samples, six 

DCIS samples and eight invasive samples. Consequently the training set contained spectra 

from 11 benign samples, 17 DCIS samples and 25 invasive samples.  

 

The resulting training set was used to generate 200 subsets by bootstrapping. Those nine 

samples of each pathology group were randomly selected for the train subset and two 

samples of each pathology group for the test subset. In addition to that the spectra were 

balanced for each sample by randomly choosing ten spectra respectively. Thus, each 

sample is represented by varying spectra throughout the bootstrap sets. This allows 

capturing a greater variance of samples and balancing the data throughout at the same 

time. The resulting 200 bootstrap sets were used for the development of ensemble 

classifiers. For the optimisation of the RBF SVM parameters a grid search was applied by 



122	
  

setting the parameter ranges for γ = [2-19, 2-17, 2-15, 2-13, 2-11, 2-9, 2-7, 2-5, 2-3, 2-1, 2, 23] and 

for C = [2-5, 2-3, 2-1, 2, 23, 25, 27, 29, 211, 213]. All data analysis was performed using 

Matlab 2008a (Mathworks Inc., Natick, MA) and LIBSVM toolbox (Chang et al., 2001). 

 

 

6.2.4.1 Single SVM classifier 
Two different RBF SVMs were implemented, one was optimised by leave one-sample-out 

cross-validation (LOOCV), the other was optimised by bootstrapping. For the first single 

RBF SVM the complete training set, as described in the previous section, was cross-

validated by leaving one patient sample out. This LOOCV procedure was executed in a 

grid search and according to the mean LOOCV result the best parameters were estimated 

(C = 213, γ= 2-7). The optimised parameters were then used to build the final SVM. 

 

In a second approach a single SVM was optimised by bootstrapping. For this purpose the 

200 bootstrap datasets, as described in earlier, were individually optimised in a grid search. 

For each parameter combination in the grid search the bootstrap train set was used to build 

a RBF SVM, which was then tested with the bootstrap test set. According to the mean test 

results of all 200 bootstrap sets the optimum parameters were estimated (C = 23, γ= 2-1). 

The resulting parameters and the complete training set were then used to build the final 

RBF SVM. 

	
  

	
  

6.2.4.2 Ensemble classifier 
For the bagging approach each of the 200 bootstrap sets was individually optimised in a 

grid search. The optimum parameters were estimated according to the highest test 

performance and used to build the final model. All optimised models were then integrated 
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into the ensemble. For the combination of the predictions derived from the various 

ensemble members, three different methods were implemented: majority vote, weighted 

majority and naïve Bayes. The performance of the resulting ensemble was evaluated with 

the independent test set. 

 

For the boosting ensemble all individual SVMs were built according to the SVM 

parameters as previously optimised in the bagging approach. Each of these models was 

individually subjected to the AdaBoosting procedure by executing a total of 25 boosting 

iterations. Since 25 iterations is a generalised setting, this number was optimised 

afterwards for each SVM separately. This was achieved by stopping the boosting at the 

iteration where the maximum predictive accuracy for the bootstrap test set was achieved. It 

showed that AdaBoosting could improve the predictive accuracy of only 50 out of 200 

models. For the remaining 150 models the boosting procedure resulted in an overfitting 

and consequently decreased the predictive accuracy of the bootstrap test set. For this 

reason it must be assumed that most of the SVM models were already strong classifiers, 

which explains why the performance could not be improved any further. The 50 boosted 

models were finally integrated in the ensemble. The other 150 models were integrated in 

their original, not boosted, form. For the aggregation of the outputs of the 200 individual 

SVMs different aggregation methods, including majority vote, weighted majority vote and 

naïve Bayes, were implemented.  

 

Since the investigated data set consisted of three classes, three different types of tree-

structured systems were implemented as shown in Figure 6.3. Each of the SVM bootstrap 

data sets was used to generate a tree-structured SVM approach. For this purpose each node 

in the tree, consisting of an RBF SVM, was optimised in a grid search. In this manner, for 
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each of the three tree-structured ensembles 400 binary SVMs were optimised. In order to 

combine the multiple prediction outputs of the tree-structured ensemble different 

aggregation methods were implemented, including majority vote, weighted majority vote 

and naïve Bayes. 

	
  

	
  

6.3 Results and Discussion 

6.3.1 Single classifiers 

The RBF SVM model, optimised by LOOCV was assessed with the independent test set 

and correctly classified 66.9% of all test spectra and 66.7% of all patient samples. 

  

The other single RBF SVM model, which was optimised by bootstrapping, correctly 

predicted the class membership of 74.3% of all spectra, which is equivalent to 77.8% 

patient samples. A patient sample was assigned to be correctly classified when the 

majority of spectra are assigned with the correct class membership. The testing accuracies 

for all individual classes are summarised in Table 6.1. 

 

Table 6.1 Prediction accuracies for individual classes achieved by a single SVM, optimised by 
leave one patient sample out cross-validation or bootstrapping. 

 Benign DCIS Invasive 

  Spectra Patients Spectra Patients Spectra Patients 

Cross-validation 53.0% 50.0% 61.3% 66.7% 83.2% 75.0% 

Bootstrapping 62.9% 75.0% 69.6% 66.7% 87.7% 87.5% 

 

In comparison to the SVM optimised by cross-validation, the SVM model optimised by 

bootstrapping predicted 11.1% more samples correctly. An increase in performance was 
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observed for benign and invasive samples. No improvement could be seen for DCIS 

samples. This result demonstrates that bootstrapping results in more accurate classifiers 

than optimisation by cross-validation.  

 

In previous work calcification spectra derived from all three pathology groups were used 

to develop a PC-fed LDA model, which was tested by LOOCV. It was reported that the 

developed model correctly classified 71.3% of the benign spectra, 56.6% of DCIS spectra 

and 81.1% correctly (Baker, 2009). The comparison of these results with the ones yielded 

by the single SVM shows that the application of SVMs improved the predictive 

performance. The LDA model only classified 56.6% of the DCIS samples correctly 

whereas the SVM model predicted the class-membership of 69.6% of DCIS spectra 

correctly. Since the SVM model was tested by an independent, which is a more rigid 

assessment than LOOCV, this further demonstrates the superiority of the SVM model over 

the LDA model.  

 

Although, the single RBF SVM model performed better than the LDA model it did not 

achieve an as good predictive accuracy as the RBF SVM model developed for the Raman 

data set. The most likely reason for this is that the Raman SVM model only separated 

between two classes, cancerous and non-cancerous. The development of a multiclass 

model is much more difficult due to the fact that the progression from one disease state 

into another one might not always be homogenous. This implies that for instance a DCIS 

sample might be already progressing into the next higher stage, which is invasive cancer. 

Thus, a classifier trained on a data set, which contains misleadingly assigned samples 

results in a decreased performance. In a similar way samples might be differentially staged 

by different histopathologist (intra-observer disagreement), which also negatively impacts 
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the model development. Summarising, uncertainty in the class-membership assignment 

can negatively impact the classification performance. In contrast this circumstance were 

not present during the development of the classification model built for lymph node 

diagnostics based on Raman spectroscopy. 

 

 

6.3.2 Ensemble classifiers 

The performance of the generated bagging ensemble was evaluated with the independent 

test set. Among the different aggregation methods, the majority vote proved to be the best 

choice by classifying 80.1% of all spectra correctly. Furthermore, this bagging approach 

predicted the pathology of 88.9% of all patient samples correctly. In comparison, the 

weighted vote aggregation also classified 88.9% of the patient samples (78.9% of spectra) 

correctly and the naïve Bayes combination predicted 88.9% of the patient samples (79.9% 

spectra) correctly. These two combination methods resulted in a higher misclassification 

rate of invasive cancer and DCIS samples than the majority vote combination. Contrary to 

expectations, the majority vote did not improve the classification result. More details on 

prediction accuracies for all aggregation methods are provided in Table 6.2.  
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Table 6.2 Prediction accuracies for bagging and boosting SVM ensemble. 

 Benign DCIS Invasive 

 Spectra  Patients Spectra  Patients Spectra  Patients 

BAGGING:       

Majority Vote 70.5% 75.0% 81.7% 100% 85.5% 87.5% 

Weighted Vote 68.9% 75.0% 80.1% 100% 84.9% 87.5% 

Naïve Bayes 72.0% 75.0% 80.6% 100% 84.9% 87.5% 

BOOSTING:       

Majority Vote 69.7% 75.0% 81.2% 100% 86.0% 87.5% 

Weighted Vote 70.5% 75.0% 82.2% 100% 86.0% 87.5% 

Naïve Bayes 70.5% 75.0% 82.2% 100% 83.8% 87.5% 

 

The boosted ensemble was finally tested with the independent test set. As the results in 

Table 6.2 show, the boosting slightly improves the performance of the ensemble. Since 

only a small improvement was observed, it is likely to be caused by the fact that merely a 

quarter of the models could be boosted. Therefore it must be assumed that the boosted 

models did not have a significant impact on the final decision making. 

 

Among the tree-based classifiers ensemble, type B using a naïve Bayes combination 

performed the best by classifying 81.5% of all spectra. The increased performance in 

comparison to the other tree ensembles can be explained due to a higher accuracy for 

DCIS spectra. This ensemble also classified 88.9% of all patient samples correctly. 

However, all the other ensembles, with the exception of tree-structured ensemble C, also 

achieved this accuracy for patient samples. Tree ensemble C achieved a significantly lower 

accuracy by classifying 77.8% of all patient samples correctly. Therefore, the application 

of this ensemble type performed equally like a single SVM optimised by bootstrapping. 

The decreased performance might be explained by the fact that separating the DCIS 
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samples first, as executed by tree model C, from the remaining classes is more difficult. 

This might be caused by the fact that DCIS represents the pathology state between benign 

and invasive cancer. The transformation from one pathology state into another occurs 

smoothly and thus there are no sharply defined borders between one and the next higher or 

lower pathology group. In this manner splitting of the most distinct class first, in this 

approach either the benign or the invasive samples, reflects positively on the classification 

performance of a tree-ensemble classifier. Detailed results of all tree-based ensembles are 

illustrated in Table 6.3. 

 

Table 6.3 Prediction accuracies for tree-based SVM ensemble. 

 Benign DCIS Invasive 

TREE A: Spectra  Patients Spectra  Patients Spectra  Patients 

Majority Vote 72.0% 75.0% 79.6% 100% 86.6% 87.5% 

Weighted Vote 72.0% 75.0% 80.6% 100% 86.0% 87.5% 

Naïve Bayes 70.5% 75.0% 80.1% 100% 86.0% 87.5% 

TREE B:       

Majority Vote 72.0% 75.0% 80.6% 100% 88.8% 87.5% 

Weighted Vote 72.0% 75.0% 80.6% 100% 87.7% 87.5% 

Naïve Bayes 71.2% 75.0% 82.7% 100% 87.7% 87.5% 

TREE C:       

Majority Vote 70.5% 75.0% 61.8% 66.7% 77.7% 87.5% 

Weighted Vote 70.5% 75.0% 61.3% 83.3% 77.6% 87.5% 

Naïve Bayes 71.2% 75.0% 61.8% 83.3% 78.8% 87.5% 

 

Comparing the performance of the ensemble SVM with the results of the single SVM 

demonstrates the superiority of this approach. The better performance can be explained by 

the fact that the generation of an ensemble allows us to capture more sample variance, 
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which is of specific importance for small data sets or sets where different classes are 

represented by varying sample numbers. The classification results of the ensemble SVMs 

show that neither the building method nor the combination method generally have a 

significant impact on the ensemble SVM performance. The only observed exception was 

tree-structured ensemble C. 

 

Since tree model B using a naïve Bayes combination achieved the highest correct accuracy 

for spectra, it is considered to be the most appropriate classifier for this data set. Table 6.4 

illustrates a detailed breakdown of the exact prediction for each individual sample in the 

independent test set. 
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Table	
  6.4	
  Breakdown	
  of	
  results	
  for	
  tree	
  model	
  B	
  using	
  weighted	
  majority	
  vote. 

  Pathology predicted per patient sample % 

Pathology Sample ID Benign DCIS Invasive 

Benign: 37 77 23 0 

 

47 0 100 0 

72 100 0 0 

76 82 18 0 

DCIS: 40 30 70 0 

 

52 30 70 0 

60 22 72 6 

71 0 100 0 

84 0 92 8 

91 0 83 17 

Invasive: 55 0 0 100 

 

68 0 83 17 

69 0 8 92 

85 0 0 100 

93 0 20 80 

95 0 17 83 

99 0 0 100 

105 0 25 75 

 

It shows that the majority of all samples were correctly classified with a minimum of a 

two-thirds majority. Only one benign sample was classified as DCIS and one invasive 

sample classified as DCIS. Of all benign samples no spectrum was predicted to be 

invasive. Incorrectly classified spectra were predicted to be DCIS. This suggests that in 

some of the benign samples development into a higher pathology grade may be present.  

Similarly, for the invasive samples no spectrum was classified as benign and misclassified 
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spectra were predicted to be spectra representing DCIS. According to these wrongly 

classified samples were assigned either to the next higher or the next lower pathology 

group, which possibly indicates a trend in disease development for each sample. 

	
  

	
  

6.3.3 Number of classifiers 

Each ensemble consisted of 200 classifiers, which was found to be a sufficient number in 

order to stabilise an ensemble. For assessing the impact of the number of models, 200 

ensembles were built. The first ensemble consisted of only one SVM and successively one 

more SVM was added at a time. Each of the 200 ensembles was used to predict the 

independent test set. Figure 6.4 illustrates how the prediction error of the bagging 

ensemble decreases with an increased number of models. It further shows that the 

predictive error of the majority vote combination decreases quicker than the other 

combination methods. Figure 6.4 also illustrates the stabilisation of the predictive error for 

tree-structured ensemble B. In comparison to the bagging ensemble the error stabilises 

slower for this ensemble system. Interestingly these results suggest that the best predictive 

performance could be achieved by an ensemble consisting of only 11 SVMs. Nonetheless, 

a higher number of SVMs stabilises the predictive error and thus it is more likely that 

further unseen data is predicted with higher accuracy.  
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Figure 6.4 Impact of the number of SVMs on the predictive error of ensemble systems. 
	
  

	
  

6.4 Conclusion 
The application of SVM ensembles brings a drastic improvement for classification 

approaches for data that previously seemed to be difficult to classify. Thus, a diagnostic 

model was developed, which reliably predicts the different stages of breast disease. In 

addition, ensembles allow building stable classifiers for unbalanced data or data sets 

consisting only of a small number of samples. This brings great benefits for applications 

where data availability is restricted, such as biomedical research. In particular, the results 

of this work demonstrate the high potential of FTIR spectroscopy for diagnosing and 

staging breast cancer based on micro-calcification found in breast tissue. 
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7 Analysis of breast tissue calcifications in infrared image  

7.1.1 Introduction 

Naturally, calcifications are present in many different biological tissues, for instance in teeth 

and bones. Conversely the occurrence of calcification in soft tissue can be often a result of 

disease and therefore is associated with several medical conditions including crystal-

associated osteoarthritis, diabetes and breast cancer (Sun et al., 2003).  

 

In general, microcalcification found in breast tissue can be divided into type I, consisting of 

calcium oxalate dihydrate (COS), and type II, consisting of calcium hydroxyapetite (CHAP) 

(Matousek et al., 2007). The presence of type I calcification is related to benign lesions, in 

contrast type II calcifications occur in benign as well as in malignant breast lesions (Morgan 

et al., 2005).  

 

Although it is known that calcifications are of great diagnostic importance, the mechanism of 

calcification formation of breast tissue is not clear.  However, it is assumed that there exist 

two general types of calcification mechanisms in the breast, a secretory type and a necrotic 

type. In the first type calcifications are built by secretion accumulation (Tse et al., 2008). In 

this process of mineralisation carbonated hydroxiapatite crystals are decomposed in an 

extracellular matrix, which consists of type I collagen and other non-collagenous proteins 

(Morgan et al., 2001).  Beside this it was found that three bone matrix proteins are 

increasingly expressed in breast cancer, osteonectin, ostepontin and bone sialoprotein. These 

proteins might possibly create appropriate environment for initiating hydroxyapatite 

formation (Bellahcene et al., 1994). The second calcification mechanism, necrotic 

calcification as found in comedo necrosis, is a result of rapidly proliferating tumour cells 
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cutting off the vascular supply, which consequently leads to tumour cell death. This type of 

calcification is particularly found in high grade DCIS (Tse et al., 2008).  

 

Since the calcification process in breast tissue is poorly understood it is of significant interest 

to gain a deeper understanding of the relation between calcification and breast disease 

progression. For this purpose an image analysis algorithm was developed, which builds up on 

the developed SVM ensemble presented in chapter 6. The aim of this method is to facilitate 

monitoring of the chemical transformation of calcifications during the progression of 

malignancy development in breast tissue. The developed and findings of an imaging method 

for analysis of calcifications in infrared images is presented in this chapter.  

 

 

7.1.2 Materials and Methods 

7.1.2.1 FT-IR data 
For this approach the same data set a presented in section 6.2.1 was used. This data set 

consisted of 99 infrared maps obtained from 71 patient samples representing benign, DCIS 

and invasive breast cancer and different grades respectively. A summary of the data set 

including the different grades is provided in Table 7.1.  

 

Table 7.1 FT-IR data set representing the number of available samples for each grade. There is no 
actual grading system for benign breast disease.  

Pathology Total of samples Grade 1 Grade 2 Grade 3 Grade unknown 

Benign 15 - - - - 

DCIS 23 2 8 10 3 

Invasive Cancer 33 3 14 9 7 
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In order to allow an independent assessment of each single patient sample a total of four train 

and four test sets was generated randomly. It was ensured that each patient sample was only 

once represented in either one of the four independent test sets.  

 

 

7.1.2.2 Algorithm development 
A two-step imaging algorithm was developed that allows identifying calcification in infrared 

maps taken from breast tissue samples. In the first step calcification spectra are identified and 

separated from tissue spectra. Following this procedure the pathology of the identified 

calcifications is predicted, which can be either benign, ductal carcinoma in situ (DCIS) or 

invasive. Based on the classification result an image is generated, which presents 

calcifications in colour and remaining tissue in greyscale. As a colour-coding for the 

calcifications traffic light colours were chosen. Thus green representing benign calcifications, 

yellow DCIS and red for invasive calcifications. A general layout of the classifier system is 

shown in Figure 7.1.  

 

 

Figure 7.1 Image analysing workflow: First of all the classifier identifies potential calcifications in 
the image. In a second step the calcification are assigned with a pathology. 
 

For the implementation of this system a single RBF SVM was trained to differ between 

calcification spectra and all other remaining spectra as commonly found in infrared maps 
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taken from breast tissue samples. In order to enable a faster image analysis only the spectral 

range from 800 to 1200cm-1, representing phosphate bands, was used.  As shown in figure 7.2 

this allows a distinct differentiation between calcification spectra and other spectra present in 

infrared maps.  

 

 

Figure 7.2 Tissue and calcification mean spectra. Calcification spectra can be distinctly differed from 
tissue spectra based on the phosphate peak between 1026cm-1.  

 

For the prediction of the pathology of calcifications the RBF SVM ensemble developed in the 

previous chapter was used. The implemented ensemble uses a tree-structured system and 

combined the output by a weighted vote. This classifier was selected to due the fact that it 

achieved the highest accuracy in predicting the independent test set in the classification 

approach presented in the previous chapter.  

 

In order to analyse all individual patient samples, four different image analysis approaches 

were executed. For each approach the data were split into train and test set. It was ensured 

that each patient sample was presented once in the independent test set, which facilitated 

gathering colour-coded maps for each patient sample as an independent prediction. 

Consequently the train data was used to build the classification system, which was then used 

to generate colour-coded images.  
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7.1.3 Results and Discussion 

7.1.3.1 Visualisation of calcifications 
The developed imaging method was used to analyse each of the 99 infrared maps 

individually. As shown in Figure 7.3 this image analysis approach successfully identified 

micro-calcification in tissue samples. Further investigation of the calcification spectra, which 

were identified in the Raman maps, showed that they coincide with the spectral features as 

observed in calcification representing the chemical composition of different pathologies. A 

comprehensive summary of all generated maps is provided in Appendix A. 

 

 

Figure 7.3 Three examples of image analysis results. The first row illustrates false colour images 
generated by using the first three PCs. Different colour represent different areas based on predominant 
spectral features, nonetheless there is no colour coding for representing different areas. The second 
row represents the images generated by the classifier. Coloured areas indicate calcifications, where 
green predicts benign, yellow DCIS and red invasive calcifications.  The third row shows the mean 
spectra representing the identified calcification areas. 
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7.1.3.2 Average composition of breast calcifications 
For assessing the average composition of calcifications within samples, all calcification 

spectra classified by the algorithm were extracted for each individual infrared map. As 

illustrated in Figure 7.4 it showed that calcifications found in benign breast tissue consist of 

an average of 62.5% benign calcification spectra, 27.2% DCIS spectra and 10.3% invasive 

spectra. Calcifications found in tissue samples diagnosed by histopathology as DCIS were 

found to be composite in the average of 31.0% benign spectra, 39.8% DCIS spectra and 

29.2% invasive spectra. For invasive tissue samples the average calcification composition 

was found to be 9.4% benign spectra, 15.1% DCIS spectra and 75.5% invasive spectra. This 

result clearly indicates a trend in which the amount of invasive spectra increases with 

progression of malignancy. On the other hand the amount of benign spectra decreases with 

the progression of malignancy. This further demonstrates that DCIS is the state between 

pathologies since 31.0% of calcification spectra were identified to be benign and almost the 

same amount, 29.2%, to be invasive. In this manner the transformation from benign to 

malignant could be observed based on the content of spectra.  
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Figure 7.4 Histogram illustrating the mean composition of calcifications of the three different breast 
pathologies 

 

In a similar manner it was investigated if a trend can be observed in the different disease 

grades. As the results in Figure 7.5 show, the amount of benign spectra continuously declines 

with disease progression. Vice versa the amount of invasive spectra increases with higher 

gradings. It showed that DCIS grade 2 samples contained almost the sample amount of 

benign, DCIS and invasive samples. This suggests that DCIS grade 2 represents a turning 

point in disease development. Summarising, the grading of disease development can be 

followed based on the composition of calcification found in tissue samples.    
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Figure 7.5 Histogram illustrating the mean composition of calcifications sorted according to 
pathology (B = benign, D = DCIS, I = invasive) and grade (1,2,3). This clearly indicates that the 
amount of invasive spectra increases with higher grade pathologies. On the other hand the average 
amount of benign spectra decreases with increasing pathology grade.  
 

 

7.1.3.3 Transformation in calcification composition during disease progression 
A highly interesting finding was that the imaging method allows observing the progression of 

calcifications from one pathology grade into the next higher one. It was found in 73% percent 

of images (72 infrared maps), that this transformation starts at the peripheral areas of 

calcifications. Example images are illustrated in figure 7.6, a comprehensive summary of all 

images sorted according to pathology grade is provided in Appendix A.  
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Figure 7.6 Sample illustration of transformation of calcifications during disease progression.  This 
also shows that the transformation from one pathology grade into the next higher one starts at the 
peripheral areas of calcifications.  
 

Invasive spectra show significantly higher absorption bands at wavenumbers 1549 and 

1658cm-1, representing amide II and amide I, than DCIS and benign spectra. This suggests 

the presence of a greater amount of proteins in the as red labeled invasive calcification areas. 

A possible explanation for this might be the presence of bone matrix proteins. Evidence of 

over expressed bone matrix proteins, including osteonectin (OSN), osteopontin (OPN) and 

bone sialoprotein (BSP), in human breast has been demonstrated in the past (Bellahcene et 

al., 1995, Bellahcene et al., 1994). Especially the three mentioned proteins have been 

extensively studied and it showed that they are involved in the onset of bone matrix (Young 

et al., 1993). OSN features the ability to bind to calcium, hydroxyapetite and collagen I and is 



142	
  

typically localised in mineralised tissue, such as bone and dentine (Termine et al., 1981a, 

Termine et al., 1981b). The significantly increased amide content in invasive spectra as well 

as a notably higher collagen content (band 1286 cm-1) in combination with the fact that type 

II calcifications consist of hydroxyapatite might indicate the presence of OSN and other bone 

matrix proteins. Regarding this, calcification areas shown as red (invasive) could be further 

interpreted as areas of actively ongoing mineralisation process due to an increased protein 

activity. For this reason image areas illustrated as red might not only indicate the presence of 

invasive cancer, they also might imply an active ongoing calcification process.  

 

 

7.1.3.4 Diagnostic prediction 
The resulting maps were further used for a diagnostic approach based on the identified 

calcifications in infrared maps. For each individual map the number of calcification spectra 

was estimated and subdivided into pathology groups. The final diagnostic prediction was 

estimated based on the most frequently observed pathology group. It was found that 70.1% of 

all benign maps, 44.2% of all DCIS maps and 84.1% of all invasive maps were correctly 

classified. As the confusion matrix presented in Table 7.2 shows 15 benign maps, 15 DCIS 

maps and 37 infrared maps were correctly predicted. 

 

Table 7.2 Confusion matrix for classification results based on infrared maps 

 Benign DCIS Invasive 

Benign 15 6 0 

DCIS 8 15 11 

Invasive 6 1 37 
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Hence, for several patient samples multiple maps were measured. For this reason the 

predictive result for each individual patient samples was estimated. Under the circumstances 

that for one patient sample multiple maps were available the number of identified 

calcification spectra within all maps were summed. Based on the total amount of calcification 

spectra the final prediction was taken using a majority vote. It showed that 80.0% benign 

samples, 43.4% DCIS samples and 87.9% invasive samples were correctly classified. Overall 

the predictive accuracy for invasive samples and benign samples is very good. Nonetheless, 

the DCIS predictive rate is disappointing. Table 7.3 illustrates the confusion matrix 

established for the achieved results. 

 

Table 7.3 Confusion matrix for classification results based on patient samples 

 Benign DCIS Invasive 

Benign 12 3 0 

DCIS 5 10 8 

Invasive 2 2 29 

 

	
  

7.1.4 Conclusion 

In this chapter the successful development of an imaging algorithm for visualisation of type II 

calcifications in breast tissue was presented.  This method, utilising the ensemble SVM 

approach developed in the previous chapter, allows the generation of colour-coded images 

representing different breast disease pathologies. Furthermore, the resulting images revealed 

a deeper insight in the dynamics of breast calcification development. Thus, for the first time 

the visualisation of breast calcifications including the transformation of calcifications with 

increasing pathology grade has been reported.   
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8 Final remarks 
8.1 General conclusion 
The major objective of this work was to investigate new methods and algorithms for 

classification of vibrational spectroscopic data, including Raman and infrared data, derived 

from human tissue samples. The target was to achieve better performance than the LDA 

models which were so far commonly applied by the Biophotonics group at Gloucester. For 

this reason PLS-DA and SVMs have been investigated for their diagnostic potential to predict 

metastases in lymph nodes based on Raman spectroscopy and it was shown that SVMs are 

very strong classifiers yielding an unbeatable result of 100% correct prediction of an unseen 

data set and thus SVMs performed clearly better than LDA. Hence, the aim to develop 

classification models employing various machine learning methods in order to improve the 

predictive accuracy was achieved.  

 

Employing a single SVM was not sufficient for the more complex multi-class infrared data 

set. A sophisticated ensemble SVM approach was taken, which successfully addressed this 

problem and resulted in significantly improved classification performance. Thus, for this data 

set is was possible to produce a classification model whose performance exceeded LDA 

models developed in pervious work. The resulting SVM ensemble was further extended for 

analysing infrared images. This novel approach revealed new insight into calcification and 

consequently is of great importance for gaining better understanding of breast cancer 

progression. 

 

In summary, the objectives of this study on the optimisation of machine learning methods for 

cancer diagnostics using vibrational spectroscopy have been met. However, further work is 

required in order to make the combination of machine learning and vibrational spectroscopy 
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applicable as a routine clinical tool. Required future work towards clinical application is 

addressed in the next section.  

	
  

	
  

8.2 Recommendations for future work 

8.2.1 Diagnostic models for Raman spectroscopy 

Extensive Raman mapping was carried out for generating the data used for the development 

of lymph node diagnostics. This type of measurement is too time consuming for an intra-

operative application since it can take between four to 12 hours depending on the sample size. 

A possibility to overcome this is to execute point measurement over the sample surface. 

Thus, for instance gathering five to ten spectra evenly distributed over the sample surface can 

reduce the measurement time to nine to 18 minutes respectively. A full assessment of point 

measurements in combination with the developed models is required to see if lymph node 

pathology can still be predicted reliably.  

 

An intra-operative assessment through point measurements is less time consuming but also 

can bear the risk of missing micrometastases. Consequently, a more extensive mapping in 

greater detail could be applied after intra-operative assessment for samples identified as 

negative. This would ensure that no micrometastases are present in the lymph node. For this 

purpose the SVM model developed in this work can be applied. However, some 

modifications are required for clinical routine application. First of all a visualisation of the 

results of the analysis of the whole map instead of extracted areas is required. The findings 

should then be presented in an image highlighting identified micrometastasis. This can be 

realised in a similar manner as the imaging approach employed for the IR breast cancer data.  
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In order to make this approach better applicable for future diagnostics it would be necessary 

to keep the overall analysis as simple as possible. Thus, once the actual Raman measurement 

is completed the data analysis should be executed automatically and provide a final output to 

the user. This output ideally contains an image highlighting metastasis, if present, as well a 

diagnostic result stating if a lymph node is cancerous or not. Finally, this result should be 

assigned with a confidence reflecting the possible inter-observer disagreement of 

histopathologists.  

 

8.2.2 Diagnostic models for infrared spectroscopy 

The ensemble classification model developed on manually selected calcifications performed 

exceptionally well, yet when applied for diagnosis of whole infrared maps this performance 

could not be maintained. One reason for this might be that assigned class is based on the 

findings of a single histopathologist. Thus, there is the chance that the staging is not 

consistent throughout the data set since it is known that the opinions of histopathologist on 

the different grades might vary (inter-observer disagreement). Consequently, a developed 

classification model can only be accurate if the classes are correctly assigned. In order to 

allow the development of an improved model it is suggested to get the opinions of several 

histopathologists, which would take the inter-observer disagreement into account. For 

instance the different opinions could then be integrated by setting a confidence on the output 

of the model.  

 

A further possibility to improve the performance of the diagnostic model would be to use a 

regression approach instead of an absolute classification result. This would not only allow 

addressing the inter-observer disagreement it also enables more continuous staging and 

diagnostic result. So far the model only predicted diseases stages, benign, ductul carcinoma in 
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situ or invasive cancer. Applying a regression model would further allow diagnosis of 

different grades within the stages, especially since this work showed that there is a gradual 

change in chemical composition of calcifications correlated with disease progression. 

  

The developed imaging algorithm enabled the visualisation of microcalcifications in infrared 

maps. Further improvement would include presenting the tissue sections, excluding the 

calcified areas, in a standardised colouring. Ideally this colour coding would be adapted to 

represent the different morphological features, such as ducts or epithelial cells. Additionally a 

final diagnostic result based on a regression model and including a confidence interval would 

be a step further towards the automated application of IR-spectroscopy for breast cancer 

diagnostics.  
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