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Abstract

Cancer is a significant global health issue, and cervical cancer, one of the most common types
among women, has far-reaching impacts worldwide. Researchers are studying cervical cancer
from various perspectives, conducting thorough investigations, and utilizing novel technolo-
gies to gain a deeper understanding of the disease and its risk factors. Machine learning has
increasingly found applications in cancer research due to its ability to analyze complex data
relationships, recognize patterns, adapt to new information, and integrate with other tech-
nologies. By harnessing predictive machine learning models to anticipate treatment outcomes
before commencing any therapies, healthcare providers might be able to make more informed
decisions, allocate resources effectively, and provide personalized care.

Despite significant efforts in the scientific community, the development of accurate machine
learning models for cervical cancer treatment outcome prediction faces several open challenges
and unresolved questions. A major challenge in developing accurate prediction models is the
limited availability and quality of data. The quantity and quality of data differ across various
datasets, which can significantly affect the performance and applicability of machine learning
models. Additionally, it is crucial to identify the most informative and relevant features from
diverse data sources, including clinical, imaging, and molecular data, to ensure accurate out-
come prediction. Moreover, cancer datasets often suffer from class imbalance. Addressing this
issue is another essential step to prevent biased predictions and enhance the overall performance
of the models.

This study aims to improve the prediction of treatment outcomes in patients with locally
advanced cervical cancer by utilizing a multi-source dataset and developing different machine-
learning models. The dataset includes various data sources, such as medical images, gene
scores, and clinical data. A preprocessing pipeline is developed to optimize the data for training
machine-learning models. The Repeated Elastic Net Technique (RENT) is also employed as a
feature selection method to reduce dataset dimensionality, improve model training time, and
identify the most influential features for classifying patients’ treatment results. Furthermore,
the Synthetic Minority Oversampling Technique (SMOTE) is used to address data imbalance
in the dataset, and its impact on model performance is assessed.

The study’s findings indicate that the available data exhibit promising capabilities in early
predicting patients’ treatment outcomes, suggesting that the developed models have the poten-
tial to serve as valuable auxiliary tools for medical professionals. Although the performance of
the models remained relatively unchanged after implementing the RENT method, the models’
average training time was reduced by over 8-fold in the worst case. Moreover, when imposing
stricter feature selection criteria, clinical features were shown to have a more prominent role in
predicting treatment results than other data sources. Ultimately, the study revealed that by
balancing the dataset using the SMOTE technique, the average performance of specific models
could be enhanced by up to 44 times.
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Chapter 1

Introduction

Cancer is a complex and devastating disease that affects millions of people worldwide. It is
an umbrella term referring to any disease where abnormal cells proliferate without limitation,
exceeding normal limits and infiltrating nearby areas or disseminating to distant organs. This
process plays a pivotal role in cancer-related deaths. Each type of cancer possesses unique
features, and any tissue in the body can contribute to cancer development [5]. The scientific
community focuses heavily on cancer research for several reasons, including [6]:

• Impact: Cancer is a leading cause of death globally and significantly impacts individuals,
families, and societies.

• Complexity: Although the fundamental processes contributing to cancer development
are similar, the specific regulations that govern it vary depending on the cancer type.
Over the years, significant strides have been made in identifying the molecular struc-
tures responsible for triggering cancer development. However, understanding the distinct
characteristics of each type of cancer requires in-depth research.

• Diagnostic and medicine advancements: Improved diagnostic tools and techniques enable
early cancer detection and the development of better therapies and medicine that are
more targeted, effective, and have fewer side effects. The developments in this regard are
expected to enhance the quality of life for those affected by the disease.

1.1 Motivation and Background

Among women, cervical cancer is the fourth most common type of cancer and the fourth
leading cause of cancer-related deaths, with approximately 604,000 fresh cases and 342,000
deaths documented globally in 2020. Cervical cancer is diagnosed more often than any other
type in 23 countries (Figure 1.1.A) and is responsible for the majority of cancer fatalities in
36 countries (Figure 1.1.B), mainly located in sub-Saharan Africa, Melanesia, South America,
and Southeastern Asia [1].

Various risk factors, such as tobacco use, alcohol consumption, an unhealthy diet, physical
inactivity, and air pollution, can influence any form of cancer. In 2018, approximately 13% of
cancer cases worldwide were linked to infections that could potentially cause cancer, including
Helicobacter pylori, human papillomavirus (HPV), hepatitis B virus, hepatitis C virus, and
Epstein-Barr virus. While specific types of HPV heighten the chances of developing cervical
cancer, infection with HIV raises the risk of this cancer by six times. [7].
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CHAPTER 1. INTRODUCTION

Figure 1.1: Most Common Type of (A) Cancer Incidence and (B) Cancer Mortality in 2020 in
Each Country Among Women. The numbers of countries represented in each ranking group
are included in the legend [1].

The considerable impact of cervical cancer on the economy and well-being emphasizes the
necessity for interventions that can prevent and treat this condition. According to research
conducted on cervical cancer patients in the United States from 2006 to 2015, these patients’
average yearly medical expenses were significantly greater compared to healthy people, with
cervical cancer patients spending an average of $10,031 per year while healthy individuals only
spent $4,913. Cervical cancer patients experienced a substantial decline in their quality of
life compared to those without cancer. Those affected by cervical cancer were more prone
to experiencing limitations in various areas, including physical activities, social interactions,
mental well-being, and overall health. Nearly all measures of quality of life demonstrated a
greater level of impairment among cervical cancer patients compared to healthy individuals [8].

In a report titled ”Roadmap to accelerate the elimination of cervical cancer as a public health
problem in the WHO European Region 2022–2030,” the World Health Organization (WHO)
suggests that nations can expedite the process of eradicating cervical cancer as a public health
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concern by embracing fundamental principles, adopting innovative methods, and allocating
resources to crucial shifts [9]. Besides taking preventive steps like HPV vaccination or screening
and treating pre-cancerous lesions, other key priorities include:

• Ensuring clear information is given to patients about their condition and possible treat-
ment side-effects and involving them in decision-making, which may include discussions
on preserving fertility and reproductive health.

• Providing equal access to top-notch diagnostic services and high-quality, appropriate
treatments (such as surgery, chemotherapy, and radiotherapy – both external beam and
brachytherapy) for all stages of the disease. [9].

The successful treatment of locally advanced cervical cancer often necessitates a combination of
external beam radiotherapy, brachytherapy, and cisplatin-based chemotherapy [10]. Identifying
patients at high risk of treatment failure is crucial for customizing treatment to match each
individual’s risk profile. Researchers are actively working on several fronts to achieve this goal,
encompassing:

• Biomarkers and Precision Medicine: Biomarkers are quantifiable biological markers that
aid in diagnosing cancer, forecasting treatment response, and tracking disease advance-
ment. Researchers are actively identifying and creating novel biomarkers to improve the
early detection and diagnosis of cancer while also guiding personalized treatment ap-
proaches. Precision medicine seeks to customize therapies according to an individual’s
distinctive genetic profile, tumor attributes, and other relevant factors [11].

• Imaging Technologies: Advancements in imaging technologies are crucial in cancer di-
agnosis, staging, and treatment monitoring. Researchers are improving existing imaging
techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and
positron emission tomography (PET), as well as developing novel imaging modalities like
molecular imaging for more accurate and detailed cancer imaging [12].

• Artificial Intelligence (AI): AI and machine learning (ML) algorithms are being employed
to analyze vast amounts of data, including genomic profiles, medical imaging, and patient
records. This assists in improving cancer diagnosis, predicting treatment response, and
identifying patterns that aid in developing personalized treatment strategies [13].

1.2 Objective

The primary question this research aims to answer is how accurately the overall treatment
outcome of patients with locally advanced cervical cancer can be predicted using a multi-source
dataset and machine-learning classification models. To address this question, the following steps
will be taken:

A) A data preprocessing pipeline will be created to optimize the dataset for training the
machine learning models.
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B) Three machine-learning classification models will be developed to identify the optimal
hyperparameters and obtain the models’ scores.

C) The results will be visualized and analyzed using an appropriate evaluation metric.

This research also includes two secondary objectives:

1. Employing the RENT feature selection technique with the aim of a) reducing the dataset
dimensions and assessing its impact on model performance and training time, and b) iden-
tifying the most influential features in the dataset to obtain the best models’ performance
in predicting patients’ treatment outcomes.

2. Balancing the sample distribution in the dataset using the SMOTE class balancing
method and assessing its impact on the models’ performance.

1.3 Structure of the Thesis

The thesis introduction provides an overview of the subject being studied, including its back-
ground, the motivation for conducting the research, and the overarching goals of the study. The
theory section delves into the concepts related to various data sources (including medical im-
ages, clinical examinations, and gene expressions), machine learning, classification models, and
appropriate evaluation methods. The third chapter discusses the data sources utilized in this
research, data preparation for machine learning models, and the methodologies employed for
conducting the experiments and analyzing the outcomes. In chapter four, the study findings are
revealed and thoroughly examined. The discussion chapter delves deeper into the problem and
explores potential avenues for further research. Finally, the sixth chapter draws a conclusion
from the study.
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Chapter 2

Theory

2.1 Medical Imaging

Today, various imaging techniques, such as magnetic resonance imaging (MRI), computed to-
mography (CT), or positron emission tomography (PET), are employed globally in evaluating
cervical cancer. CT is commonly used for evaluating and staging cervical cancer due to its
widespread availability, but it has limitations in accurately detecting the spread of cancer
within the cervix. Recent studies using advanced CT techniques have shown slightly improved
results. However, the use of CT for staging is currently restricted to patients with advanced
disease or those who cannot undergo MRI. Hybrid imaging methods like PET-CT or PET-MRI
are more effective than traditional approaches in identifying metastatic lymph nodes, offering
high diagnostic accuracy. However, their role in the initial evaluation of cervical cancer is still
uncertain. PET-CT demonstrates moderate accuracy in local staging, while PET-MRI shows
promise in evaluating primary tumors but requires further investigation with larger patient
populations [14].

Nowadays, MRI is the preferred imaging technique for assessing the extent of cervical cancer
due to its superior ability to differentiate between cancerous and normal tissues, thanks to its
high contrast resolution [14]. Traditional contrast-enhanced MRI provides a single image of
tumor enhancement following contrast injection, offering valuable anatomical data but lacking
functional information. Dynamic contrast-enhanced MRI (DCE-MRI) involves rapid MRI se-
quences captured before, during, and after the swift intravenous injection of a gadolinium-based
contrast agent, creating a movie-like data structure. DCE-MRI allows for the visualization of
both physiological and morphological changes. In DCE-MRI, tumors typically exhibit swift,
intense enhancement and a relatively quick washout compared to healthy tissues [15]. Figure
2.1 displays instances of cross-sectional time series of the heart, kidney, and prostate utilizing
DCE-MRI.

The effectiveness of DCE-MRI in forecasting tumor responses has been extensively studied.
Tumors exhibiting low perfusion traits are linked to tumor hypoxia, an unfavorable prognostic
indicator in cervical cancer [16]. On the other hand, tumors with higher oxygen levels may
be more receptive to radiation and chemotherapy, resulting in a more favorable prognosis [17].
DCE-MRI can be employed to anticipate cervical cancer treatment outcomes [16] [18] [19] and
demonstrate progressive alterations in tumor perfusion throughout therapy [20].
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Figure 2.1: Cross section DCE-MRI images of the heart, kidney, and prostate at different time
instants before and after administering the contrast agent into the bloodstream. Source: [2]

2.2 Pharmacokinetic Analysis

Once the contrast agent has been administered to the targeted tissue, the signal intensity
changes on DCE-MR images, showing a progressive decrease in signal intensity over time, can
be evaluated through either semi-quantitative or quantitative means. Semi-quantitative assess-
ment involves calculating parameters from the time-intensity curve, which is straightforward
and enables simple calculation of signal intensity changes. However, these parameters are not
easily applicable to different MR scanners or pulse sequences because baseline signal levels
vary between systems, and the measurements do not accurately represent the concentration
of contrast in the region of interest. Additionally, semi-quantitative methods lack inherent
physiological significance [17].

In contrast, the quantitative evaluation, which involves converting signal intensity to concentra-
tion and estimating parameters that describe physiology, relies on contrast agent concentration
curves over time and utilizes pharmacokinetic models to calculate permeability constants [21].
Typically, alterations in signal intensity, i.e., relative signal intensity (RSI), can be measured
over time [22]:

RSI(t) =
SI(t)− SI(0)

SI(0)
(2.1)

where SI(t) represents the signal intensity at a given time point t, and SI(0) indicates the
signal intensity prior to the injection of the contrast agent. Pharmacokinetic models can be
applied to the RSI equation using Levenberg-Marquardt’s least squares minimization [23]. The
Brix pharmacokinetic model [24] describes RSI as:

RSI(t) = ABrix
Kep

Kel −Kep

(e−Kept − e−Kelt) (2.2)

where ABrix is the amplitude of contrast uptake, Kep is the transfer rate of the contrast agent
from the tumor tissue into the plasma, and Kel is the tracer washout rate from the bloodstream.
The fitting procedure permits unrestricted variations of all three parameters, except for the
constraints that ABrix, Kep, and Kel must be greater than or equal to 0. [22]. RSI can also be
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described with the Tofts pharmacokinetic model [25]:

RSI(t) = KtransAIF (t)⊗ e−
Ktrans

Ve
t (2.3)

where Ktrans denotes the transfer rate of the contrast agent from blood to the extravascular
extracellular space (EES), AIF represents the contrast agent concentration at a given time
t, and Ve defines the fraction of EES volume. With the exception of the constraints that
0 <= Ve <= 1 and Ktrans >= 0, both parameters can vary without restrictions during the
fitting process [26].

Studies suggest that the pharmacokinetic parameters obtained from DCE-MRI investigations
have the potential for predictive applications in managing cervical cancer. In their study,
Andersen et al. [27] demonstrate that by employing two pharmacokinetic parameters, Ktrans

and Ve, it is possible to categorize intratumoral regions with similar vascularization into three
groups. Additionally, they found that the volume fraction of one of these groups was signifi-
cantly linked to primary tumor control, as evidenced by a log-rank survival test. Specifically,
patients with a high volume fraction of voxels from DCE-MR images were observed to have a
reduced risk of treatment failure.

Semple et al. [28] show that integrating radiologic assessment with pharmacokinetic modeling,
particularly the Ktrans parameter, and applying it to DCE-MRI data prior to chemoradiation
treatment made it feasible to anticipate over 88% of the variation in therapy response. This
approach could improve therapy response prediction, leading to the development of personalized
and more effective therapy plans for these specific patients with locally advanced cervical cancer.

2.3 Clinical Examination and Gene Expression

The FIGO classification, a globally accepted staging method for cervical cancer, exclusively de-
pends on clinical examination for determining tumor stage. The present FIGO classification ac-
knowledges imaging methods as a supplementary tool for staging cervical cancer [29]. Different
studies have demonstrated that imaging outperforms clinical examination alone in accurately
assessing cervical carcinoma, especially in the initial cancer stages [30] [31] [32] [33] [34].

However, employing imaging techniques without clinical evaluation in advanced stages of cancer,
where the tumor extends beyond the uterine cervix, necessitates additional research. Notably,
tumors that have spread into the surrounding supporting tissues, known as parametria (stage 2B
from the Figo classification), are significant, as they are typically considered a contraindication
for surgical intervention [35]. Multiple studies indicate that, on average, the specificity for
identifying parametrial invasion is higher in clinical examination than in MRI [36] [37] [38] [39].
Sodeikat et al. [35] provide evidence that when a gynecologic oncologist performs a clinical
assessment of the parametrium during general anesthesia, accompanied by MR images displayed
in the operating room, it yields higher accuracy in detecting parametrial tumor involvement in
cervical cancer compared to relying solely on MR imaging.

On the other hand, Solid tumors often exhibit hypoxia, frequently linked to unfavorable out-
comes across various cancer types and treatment methods such as radiotherapy, chemotherapy,
surgery, and potentially immunotherapy. Hypoxia is not evenly distributed within tumors but
varies among different tumors and within the same tumor. Moreover, there are significant vari-
ations in the prevalence and, importantly, the hypoxia level among patients. Therefore, the
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hypoxia level could play a crucial role in determining how effective cancer treatments such as
radiation, chemotherapy, and targeted molecular drugs are, and it can significantly impact the
therapeutic outcomes [40]. Several research investigations have been carried out to explore the
impact of varying hypoxia levels on the progression of cancer and treatment results [41] [42] [43].

The hypoxia level in a tumor can be achieved indirectly by assessing gene expression signatures,
which reflect the cellular response to low oxygen levels. This approach holds the potential for
developing classifiers that can assist in medical decision-making. Gene expression assays are
more straightforward to standardize compared to standardizing images across different MR
machines [44]. Gene signatures provide insights into the underlying resistance mechanisms in
individual tumors, aiding in selecting personalized, combined radiotherapy regimes and opti-
mizing targeted therapies [45].

Additionally, multigene signatures have proven valuable in guiding treatment choices for various
cancer types, including breast and prostate cancer [46] [47]. Halle et al. [48] suggest that DCE-
MRI can detect patients with hypoxia-related chemoresistance by associating hypoxia-related
gene sets with a previously established prognostic DCE-MRI parameter (ABrix). This could
potentially prompt a shift in treatment strategy, advancing the move towards a more tailored
approach to therapy.

2.4 Machine Learning

Machine learning (ML) is a form of artificial intelligence (AI) that enables systems to learn
from data and recognize patterns without much human interaction. Machine learning’s impact
on daily life has been substantial, and it has the potential to improve healthcare accuracy,
forecasting, and quality of care to a significant extent. Current developments in ML and
AI support physicians and analysts in identifying healthcare trends, developing models for
predicting illnesses, and performing their roles more effectively [49].

2.4.1 Learning Techniques and Algorithms

Most AI and ML algorithms rely on three learning techniques, Supervised, Unsupervised, and
Reinforcement learning. Supervised learning is employed in training classification and predic-
tion algorithms by utilizing past examples or outputs. A critical aspect of this approach is that
the training set involves both features and corresponding predictions or outcomes. Supervised
learning entails deriving knowledge from the features in the training set to construct a model
that can accurately predict outcomes and subsequently employ this model to predict results
using new features in the testing data set. Logistic Regression (LR), Random Forest (RF),
Support Vector Machines (SVM), and Artificial Neural Networks (ANN) are some machine
learning algorithms implementing supervised learning techniques [50].

Unsupervised learning is another ML-based method commonly used for data analysis and clus-
tering. Unlike supervised learning, unsupervised learning is not typically focused on prediction
applications but on data analysis, stratification, and reduction. Unsupervised clustering meth-
ods primarily aim to group unclassified or uncategorized data into independent clusters using
algorithms. Although data preprocessing and feature extraction are typically performed before
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the input in most machine learning types, unsupervised learning involves identifying underlying
relationships or features in the data and grouping them according to their similarities. Some ex-
amples of unsupervised learning approaches include K-Means Clustering, Principal Component
Analysis (PCA), and Hierarchical Clustering [51].

Reinforcement learning is a distinct learning method that differs from both supervised and
unsupervised learning. It operates based on rewards and generates a strategy for addressing
a specific problem. Reinforcement learning techniques can impact their surroundings, seek
to optimize the error criterion, and are considered the most comparable form of learning to
that observed in humans and animals. The Recurrent Neural Network (RNN) is an example
of a neural network commonly used in reinforcement learning [52]. As mentioned, many ma-
chine learning algorithms have been explored in different healthcare research. However, the
implementation of reinforcement learning in healthcare applications is currently limited due
to requirements for structure, heterogeneous data, definition, and implementation of rewards,
as well as extensive computational resources. Nonetheless, reinforcement learning still holds
immense potential to make significant advancements in healthcare.

2.4.2 ML and Medical Imaging

Medical imaging has undergone significant advancements with the help of machine learning
due to the digital nature of data and the availability of structured data formats. Machine
learning-based approaches have been applied to various imaging modalities such as MRI, CT,
and X-Ray. Multiple models based on machine learning have been developed for identifying
tumors [53], lesions [54], tears [55], and fractures [56].

Shao et al. [57] conducted a study wherein they utilized pharmacokinetic parameters obtained
from DCE-MR images. They developed models for predicting cervical cancer by employing ma-
chine learning techniques like SVM and deep learning, including a hybrid model called APITL
built with convolutional neural networks (CNNs). These models could predict cervical cancer
with an accuracy of over 94%. Torheim et al. [58] devised a machine-learning approach to auto-
matically segment and outline cervical cancer tumors. They merged data from multiparametric
MRI and demonstrated that their technique achieved excellent sensitivity and specificity. Re-
markably, their method required no input or adjustments from users, making it a valuable tool
for radiologists.

2.4.3 Overfitting

There is a persistent problem in machine learning known as ”overfitting.” This occurs when a
model cannot generalize well from observed data to new, unseen data. As a result, the model
may perform well on the data it was trained on but poorly on new data. The reason for this is
that an overfitted model has difficulty handling information that is different from what it was
trained on. Instead of learning the underlying patterns in the data, overfitted models tend to
memorize all the data, including any noise or irrelevant information [59].

The Bias-Variance dilemma refers to the conflicting requirement for models to predict both
training and unseen samples well. Bias evaluates the overall deviation of predictions from the
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correct values when rebuilding the model on different training datasets. A model with high bias
oversimplifies the underlying relationships in the data and consistently makes systematic errors.
On the other hand, Variance quantifies the stability or variability of the model’s predictions
when trained multiple times on various subsets of the training data. A model with high variance
demonstrates high flexibility and can fit the training data accurately. However, it may struggle
to generalize to new, unseen data. The bias-variance dilemma presents a challenge because
optimizing for one often means sacrificing the other [60].

Regularization is a method employed in machine learning to avoid overfitting and enhance the
overall performance of a model by mitigating its tendency to become too specialized to the
training data. Taking the linear regression model as an example, where there are n predictors
x1, x2, ..., xn, the anticipated outcome ŷ is determined by:

ŷ = w0 + w1x1 + ...+ wnxn (2.4)

Where w0 to wn are the weights or coefficients of the predictors. The model fitting process
generates a coefficient vector denoted as w = (w0, w1, ..., wn). With that being mentioned,
regularization involves incorporating a penalty component into the model’s cost function. The
cost function is a mathematical function that quantifies the discrepancy between the predicted
values of a model and the actual values in the training data. The introduced penalty term
encourages the model to find a balance between fitting the training data well and avoiding
excessive complexity [60]. Various regularization techniques are frequently employed in machine
learning, including:

1. L1 regularization, also known as Lasso regularization, incorporates the total absolute val-
ues of the coefficients into the cost function during model training. This regularization
technique promotes solutions with fewer non-zero coefficients, effectively conducting fea-
ture selection by driving some coefficients to precisely zero. The L1 regularization can be
written as follows [60]:

L1 : ∥w∥1 = λ
n∑

j=1

|wj| (2.5)

Here, the hyperparameter λ represents the degree of regularization. This implies that as
the value of λ is raised, the regularization effect becomes stronger, causing the model’s
weights to decrease in magnitude. The acceptable range for λ can differ based on the
implementation or framework employed. However, a typical range for lambda is [0, +∞).

2. L2 regularization, also called Ridge regularization, introduces the sum of squared coeffi-
cients into the objective function. This regularization method encourages coefficients to
have smaller and smoother magnitudes by reducing their overall values. The equation for
L2 regularization can be represented as follows [60]:

L2 : ∥w∥22 = λ

n∑
j=1

w2
j (2.6)

Likewise, the hyperparameter λ controls the regularization strength and ranges typically
from 0 to +∞.

3. Elastic Net integrates L1 and L2 regularization, achieving a trade-off between selecting
relevant features and shrinking coefficients. It is particularly beneficial when dealing with
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predictors that are correlated. The following notation gives the elastic net regularization
[3]:

ElasticNet : γ(αL1 + (1− α)L2) (2.7)

Where γ is the regularization parameter controlling the overall amount of regularization
applied, and α is the mixing parameter determining the balance between L1 and L2
regularization. γ and α are typically set within the range of [0, 1]. Elevating the γ’s value
from 0 to 1 leads to a more robust regularization, while for the α, 0 represents pure L2
regularization, and 1 signifies pure L1 regularization.

2.5 Classification Models

As explained in Section 2.4.1, classification models in supervised learning are algorithms em-
ployed to classify or categorize data into predefined classes. These models are trained on labeled
datasets, where each instance is assigned a known class label. A classification model aims to
establish a connection between input features and their respective class labels, enabling the
prediction of class labels for new, unseen instances. This section delves into three prominent
examples of classification models extensively employed in machine learning.

2.5.1 Logistic Regression

Logistic regression, a linear model used for binary classification, is suitable when dealing with
linearly separable classes and is simple to implement. It stands as one of the most widely
employed algorithms in the industry for classification tasks, even capable of handling multi-
class classification scenarios. It is vital to emphasize that logistic regression, despite its name,
functions as a classification model rather than a regression model [60].

To explain the idea behind logistic regression as a probabilistic model, let us first introduce the
odds ratio: the odds in favor of a particular event. The odds ratio, denoted as the ratio of the
event occurring to not occurring ( p

(1−p)
), captures the likelihood of a positive event, which does

not necessarily imply a good outcome but refers to the event we want to predict. For instance, it
could be the probability that a patient has a certain disease, where the positive event represents
the class label y = 1. The logit function can be defined as the natural logarithm of the odds
ratio or the log-odds [60]

logit(p) = log
p

(1− p)
(2.8)

By applying the logit function, we transform input values ranging from 0 to 1 into the entire real-
number range. This transformation facilitates the expression of a linear relationship between
feature values and the log-odds

logit

(
p(y = 1|x)

)
= w0x0 + w1x1 + . . .+ wmxm =

m∑
i=0

wixi = wTx (2.9)

where x0 to xm represent the feature values, w0 to wm indicate the weights assigned to those
features, and the term p(y = 1|x) denotes the conditional probability that a given sample is
assigned to class 1 given its features [60].
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Our primary focus lies in predicting the probability that a specific sample belongs to a particular
class, which entails the inverse of the logit function. This inverse is called the logistic sigmoid
function, or the sigmoid function (ϕ(z)), due to its distinct S-shape (as illustrated in Figure
2.2).

ϕ(z) =
1

1 + e−z
(2.10)

The net input, denoted as z, represents the linear combination of weights and sample features,
where z = wTx = w0x0 +w1x1 + . . .+wmxm. It is worth noting that w0 denotes the bias unit,
an additional input value set equal to 1. A threshold function can then be employed to convert
the predicted probability into a binary outcome (ŷ) [60].

ŷ =

{
1 if ϕ(z) ≥ 0.5

0 otherwise
(2.11)

The excellent capability of logistic regression to predict the probability of a patient having
a specific disease based on certain symptoms contributes to its widespread popularity within
medicine [60].

Figure 2.2: The Logistic Sigmoid Function Curve maps real-number inputs onto a bounded
range of [0, 1], making it a powerful mathematical tool to predict binary outcomes. The sig-
moid function (equation 2.10) exhibits an S-shaped curve, characterized by its property of
asymptotically approaching 1 as the net input (z) tends towards positive infinity and approach-
ing 0 as the net input tends towards negative infinity.

2.5.1.1 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a popular optimization algorithm employed in machine
learning to train models such as logistic regression. It is a modified version of Gradient De-
scent designed to determine the best model parameters by minimizing a cost function. In the
traditional Gradient Descent, the algorithm calculates the gradients of the cost function, which
are the partial derivatives of the function concerning its parameters. It takes into account
all training samples in the dataset and adjusts the model parameters based on the average
of these gradients. However, this approach can be computationally expensive, especially with
large datasets.
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In contrast, SGD takes a different approach by randomly selecting a single training example or
a small subset of examples (known as a mini-batch) for gradient computation at each iteration.
The model’s parameters are then updated based on this estimated gradient. This process is
repeated for a fixed number of iterations or until convergence. In the context of SGD, an epoch
refers to a complete pass through the entire training dataset during the training process. In
other words, an epoch is completed when the algorithm has processed each training example or
mini-batch once. The maximum number of epochs is a hyperparameter determining how often
the SGD algorithm will iterate over the entire training dataset.

2.5.2 Random Forest

If interpretability is important, decision tree classifiers serve as appealing models. As the term
”decision tree” implies, this model operates by sequentially dividing our data using a binary split
based on feature values. The decision tree begins with the complete dataset and chooses the
optimal feature and threshold to divide the data, forming child nodes. This process continues
until a stopping criterion is met. The leaf nodes represent the final predictions based on the
majority class or mean value. When making a prediction, the tree follows the splitting rules
from the root to the leaf node associated with the sample’s features [60]. The concept of the
decision tree is visualized in Figure 2.3.

Figure 2.3: The decision tree concept. This model acquires a sequence of questions to deduce
the class labels of the samples by analyzing the features present in our training dataset.

A random forest (Figure 2.4) can be seen as a collection of decision trees aiming to mitigate the
high variance of individual trees by averaging their results. This approach creates a more robust
model with improved generalization and reduced vulnerability to overfitting. In fact, Random
Forest generates multiple subsets of the original training data using a technique called bagging,
where each subset, known as a bootstrap sample, is used to train an independent decision
tree. This approach introduces variability by training trees on different data subsets, which
diminishes the risk of overfitting to specific patterns or noise in the data. Random Forest also
employs random feature selection, whereby a subset of features is randomly chosen for each
tree. This process promotes diversity among the trees, reducing their reliance on particular
features and enabling them to capture different data aspects, resulting in a more robust model.
Random forests have become widely popular in machine-learning applications over the past
decade due to their strong classification performance and scalability [60].

13



CHAPTER 2. THEORY

Figure 2.4: The random forest concept. This model is an ensemble learning method that
combines multiple decision trees. Each decision tree in the random forest is built independently
using a random subset of the training data. This process introduces randomness into the model
and helps reduce overfitting.

The random forest algorithm can be summarized in four straightforward steps:

1. Randomly select a subset of n samples (with replacement) from the training set.

2. Create a decision tree using the chosen subset. At each node:

(a) Randomly pick d features without repetition.

(b) Split the node using the feature that yields the best split based on the objective
function, such as maximizing information gain.

3. Repeat steps 1 and 2 k times.

4. Combine the predictions of each tree and assign the class label based on the majority
vote, which can also be used to obtain probability distribution over the classes.

Although not as interpretable as decision trees, random forests have a distinct advantage when
selecting hyperparameters. Unlike decision trees, we do not need to worry extensively about
choosing optimal hyperparameter values for random forests. The ensemble nature of random
forests makes them robust to noise introduced by individual decision trees, reducing the need
for pruning. In practice, the main parameter we need to focus on is the number of trees (k)
chosen for the random forest (step 3). Generally, increasing the number of trees enhances
the performance of the random forest classifier, albeit at the cost of increased computational
resources [60].

Decreasing the bootstrap sample size (n in step 1) can increase the diversity among the individ-
ual trees. This is because the probability of including a specific training sample in the bootstrap
sample diminishes. Consequently, reducing the size of the bootstrap samples enhances the ran-
domness of the random forest and aids in mitigating overfitting. However, smaller bootstrap
samples tend to result in a lower overall performance of the random forest, with a reduced
gap between training and test performance, indicating subpar test performance overall. On
the other hand, increasing the bootstrap sample size can exacerbate overfitting. The bootstrap
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samples and individual decision trees become more similar as they learn to fit the original
training dataset closely.

Random Forest incorporates a criterium (in step 2.b) that assesses the splitting quality during
the construction of decision trees in the forest. This is crucial in guiding the algorithm’s
evaluation and selecting the optimal feature for dividing the data at each tree node. Random
forests commonly employ two well-known criteria for this purpose [60]:

• Gini impurity: The Gini impurity measures the probability of misclassifying a randomly
chosen element in the dataset. A low Gini impurity indicates that the elements within a
node predominantly belong to a single class. The criterion minimizes the Gini impurity
by selecting the feature that produces the purest splits. In a binary classification scenario,
the Gini impurity of a node is calculated using the following formula:

Gini(node) = 1− p(A)2 − p(B)2 (2.12)

In this equation, p(A) represents the proportion of elements of class A within the node,
while p(B) represents the proportion of elements of class B.

The Gini impurity value spans from 0 to 0.5, where 0 denotes a node with complete purity
(all elements belonging to the same class), and 0.5 signifies a completely impure node (an
equal distribution of elements from both classes). When determining the optimal feature
to split the data at a specific node, the algorithm calculates the Gini impurity for each
potential split. It then computes the information gain associated with that split which
is the difference between the current Gini of the node and the weighted average of the
Ginies of the child nodes resulting from the split. By selecting the feature with the highest
information gain, the algorithm identifies the one that would lead to the most substantial
reduction in Gini impurity when generating the splits.

• Entropy: Entropy measures the level of impurity or disorder in a set of elements. In
the context of decision trees, it quantifies the uncertainty in the target variable given
the values of a specific feature. The criterion based on entropy aims to minimize the
information gain, representing the reduction in entropy achieved by splitting a particular
feature. Considering a binary classification problem, the entropy of a node is calculated
using the following formula:

Entropy(node) = −p(A)× log2 p(A)− p(B)× log2 p(B) (2.13)

Where p(A) is the proportion of elements belonging to class A in the node, and p(B) is
the proportion of elements belonging to class B.

The entropy value ranges from 0 to 1, where 0 represents a pure node (all elements belong
to the same class) and 1 represents a completely impure node (an equal distribution of
elements from both classes). When deciding on the best feature to split the data at a
particular node, the algorithm calculates the entropy for each possible split and then
computes the information gain associated with that split. When creating the splits, the
algorithm selects the feature with the highest information gain, indicating the feature
that would lead to the most significant reduction in entropy or impurity.
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2.5.3 Support Vector Machines

The Support Vector Machine (SVM) is a widely used and robust learning algorithm. Its main
goal is to find the best hyperplane that separates data points into different classes, maximizing
the margin, which is the distance between the decision boundary and the closest training
samples of each class. The explained max-margin concept does not allow misclassification, and
by doing so, SVM aims to improve generalization, avoid overfitting and handle unseen data
more effectively. Support vectors are crucial in SVM and refer to the data points nearest to
the decision boundary or within the margin. These points are vital in defining the hyperplane,
making SVM memory-efficient and suitable for high-dimensional data [60]. Figure 2.5 depicts
the concept of a support vector machine.

Figure 2.5: Visualization of the SVM concept showcasing the fundamental elements of the SVM
algorithm, including decision boundary, hyperplanes, margin, and support vectors.

Furthermore, SVM incorporates a regularization parameter, denoted as C, which controls the
balance between maximizing the margin and minimizing classification errors. As shown in
Figure 2.6, A smaller C value widens the margin but may misclassify some training samples,
meaning it may struggle to capture the underlying patterns and exhibit high bias (underfitting).
In comparison, a larger C value aims to classify all training samples accurately, potentially
resulting in a narrower margin and causing the model to become overly sensitive to the training
data (overfitting) [60].

Figure 2.6: The effect of the regularization parameter, C, on the decision boundary in the SVM
algorithm. A smaller value of C leads to a wider margin between the classes. However, a larger
value of C aims to classify all training examples correctly.

For handling non-linearly separable data, SVM utilizes the kernel trick. The main idea behind
the kernel trick is to implicitly map the original input data into a higher-dimensional feature
space where the data becomes linearly separable, even if it was not linearly separable in the
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original input space. This technique uses a kernel function that calculates the similarity or
inner product between data points in the transformed feature space. It measures how similar
or dissimilar two data points are in the new space. Using the kernel function, the SVM algorithm
can implicitly learn a decision boundary that maximally separates the data points belonging
to different classes. Commonly used kernel functions include [61]:

• Linear Kernel: The linear kernel represents the original feature space and is equivalent
to no kernel transformation.

• Radial Basis Function (RBF) Kernel: The RBF kernel is popular as it can effectively
represent complex non-linear relationships. It converts the data into a space with infi-
nite dimensions, employing a Gaussian distribution centered around each support vector.
Mathematically, the RBF kernel function can be defined as: [60]:

K(x(i), x(j)) = e−γ∥x(i)−x(j)∥2 (2.14)

Where x(i) and x(j) represent two data points in the original input space, ∥x(i) − x(j)∥2
denotes the Euclidean distance or squared norm between x(i) and x(j), and γ is a pa-
rameter that controls the width of the Gaussian distribution. A smaller γ value results
in a broader distribution and smoother decision boundaries, potentially leading to un-
derfitting. Conversely, a larger γ value narrows the distribution and can result in more
complex decision boundaries, potentially leading to overfitting. Tuning the γ parameter
is important to achieve the right balance and avoid overfitting or underfitting.

• Sigmoid Kernel: The sigmoid kernel maps the data into a higher-dimensional space using
a sigmoid function. It is often used in binary classification problems.

• Polynomial Kernel: The polynomial kernel maps the data into a higher-dimensional space
using polynomial functions.

2.6 Evaluation Metrics

Evaluation metrics in machine learning are metrics used to evaluate and measure the effective-
ness of a machine learning model. These metrics help quantify the model’s performance on a
given task, such as classification. Using evaluation metrics, researchers and practitioners can
compare different models, fine-tune their algorithms, and decide which models to deploy for
their specific objectives. The following section will investigate multiple evaluation metrics and
their calculation methods.

Before exploring different scoring metrics in detail, it is helpful to analyze a confusion matrix,
which illustrates the performance of a machine learning classification model. Regarding Figure
2.7, in binary classification, the confusion matrix is a square matrix that displays the num-
ber of True positive (TP), True negative (TN), False positive (FP), and False negative (FN)
predictions generated by a classifier. [62].

To clarify, TP denotes instances that the model correctly predicts as positive, while FP refers to
instances that are inaccurately predicted as positive when they are actually negative. Similarly,
TN represents instances that the model correctly predicts as negative, while FN indicates
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Figure 2.7: Confusion Matrix in machine learning - True Positives (TP), True Negatives (TN),
False Positives (FP), and False Negatives (FN) are four parts of the matrix enabling the eval-
uation of a model’s classification performance.

instances that are inaccurately predicted as negative when they are actually positive. The
confusion matrix can also be utilized for multi-class classification problems. In this scenario,
the rows of the confusion matrix correspond to the true classes, while the columns correspond
to the predicted classes, similar to the binary case. It should also be noted that the labels
assigned to the classes as ”positive” or ”negative” can vary depending on the application,
and the interpretation of the labels is determined by the user or the specific context of the
classification problem. By providing the predicted classes against the actual ones, the confusion
matrix is a foundation for calculating other evaluation metrics.

2.6.1 Accuracy

Accuracy (ACC) is a commonly used evaluation metric in machine learning that measures the
overall correctness of a model’s predictions. It quantifies the proportion of correctly classified
instances (positive and negative) out of the total instances [62].

ACC =
TP + TN

FP + FN + TP + TN
(2.15)

This metric typically ranges from 0 to 1, where 1 represents perfect accuracy, indicating that
all predictions the model makes match the actual labels. A value of 0 indicates no accuracy,
meaning that none of the predictions align with the actual labels. It is important to note that
accuracy alone might not be sufficient to assess model performance, especially when the dataset
is imbalanced, or the costs of false positives and negatives are unequal [63]. Other evaluation
metrics, such as Recall or F1-score, consider the specific requirements and costs associated with
false positives and negatives.

2.6.2 Precision, Recall and F1-score

Precision (PRE), Recall (REC), and F1-Score are evaluation metrics commonly used in machine
learning for classification tasks. These metrics provide insights into a model’s performance,
particularly when identifying positive instances is crucial. In particular, Precision measures the
proportion of correctly predicted positive instances out of all instances predicted as positive.
In contrast, Recall measures the proportion of correctly predicted positive instances out of all
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actual positive instances. [64].

PRE =
TP

TP + FP
(2.16)

REC =
TP

TP + FN
(2.17)

Both PRE andREC have a range of 0 to 1, where values closer to 1 indicate better performance,
while values closer to 0 indicate poorer performance in their respective aspects of evaluation.
The F1-Score is a composite measurement that finds a balance between Precision and Recall
by calculating their harmonic mean. It is particularly useful when there is an uneven class
distribution or when false positives and negatives need to be minimized [64].

F1-Score = 2× PRE ×REC

PRE +REC
(2.18)

The F1-Score ranges from 0 to 1, with 1 representing ideal Precision and Recall and 0 indicating
the worst performance. Considering limitations, Precision disregards false negatives and may
yield misleading outcomes if false negatives carry significant implications. Recall overlooks
false positives, potentially providing incomplete insights into the overall model performance.
Similarly, the F1-Score fails to consider the costs related to false positives and negatives, making
it less appropriate in certain situations.

2.6.3 Matthews Correlation Coefficient

The Matthews Correlation Coefficient (MCC) is another evaluation metric used to assess the
performance of classification models. It takes into account all four components of the confusion
matrix to provide a balanced measure of a model’s performance, especially in scenarios with
imbalanced datasets [64].

MCC =
TP × TN − FP × FN√

(TP + FP )× (TP + FN)× (TN + FP )× (TN + FN)
(2.19)

The MCC ranges between -1 and +1, where +1 indicates a perfect prediction, 0 represents a
random prediction, and -1 indicates a completely opposite prediction. The MCC is particularly
beneficial when dealing with imbalanced datasets where one class is dominant, as it considers the
performance across all classes and balances the impact of false positives and false negatives [64].
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Chapter 3

Materials and Methods

3.1 Data

This study utilized a multi-source dataset compiled from various research studies conducted by
different researchers. The dataset’s composition and origins are briefly outlined below.

Anderson et al. [26] conducted a study to assess the predictive value of pharmacokinetic pa-
rameters derived from DCE-MRI before chemoradiotherapy in cervical cancer patients. They
performed MRI scans on the patient cohort using a 1.5 T Signa Horizon LX tomograph. The
resulting images were analyzed to calculate the RSI for each tumor voxel and time point. Two
pharmacokinetic models, Brix and Tofts, were then applied to the RSI data in each voxel. The
obtained pharmacokinetic parameters (ABrix, Kep, Kel, K

trans, Ve) were later used to create his-
tograms representing the distribution of values for each parameter and tumor. The histogram
values were eventually analyzed using a percentile screening method to identify the most clini-
cally relevant portion of the intratumoral parameter distribution in predicting progression-free
survival and locoregional control. To evaluate the prognostic significance of pharmacokinetic
parameters, researchers also conducted univariate and multivariate Cox regression analyses in-
corporating representative pharmacokinetic parameters, tumor volume, FIGO stage, and lymph
node status.

In a study by Hompland et al. [65], prostate cancer patients were examined using diffusion-
weighted MR images to derive the apparent diffusion coefficient and fractional blood volume.
They introduced the CSH (consumption and supply-based hypoxia) tool, which integrates oxy-
gen consumption and supply data into a single image to visualize hypoxia in tumors. Afterward,
they employed the images generated by CSH to predict the hypoxia condition of each pixel
within a tumor and picture the predicted value within an image. In a separate study, Hillestad
et al. [66] utilized the CSH tool using the Ve and Ktrans parameters extracted from DCE-MR
images of cervical cancer tumors. Since these parameters indicate tumor oxygen consumption
and oxygen supply, respectively, the CSH tool was employed to create a pixel-wise plot of Ktrans

versus Ve for each tumor. This plot represented decreasing oxygen consumption along the hori-
zontal Ve-axis and increasing oxygen supply along the vertical Ktrans-axis. Using the generated
images, the researchers then developed an algorithm to estimate surrogate measures of hypoxia
levels in cervical cancer tumors. Furthermore, they also utilized gene set enrichment analysis
(GSEA) with a collection of 50 hallmark gene sets from the Molecular Signature Database [67]
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to identify the association between MRI-derived hypoxia levels and gene expression profiles.
As a result, they determined distinct hypoxia levels linked to each hallmark.

In a separate study, Fjeldbo et al. [44] developed a classifier using specific signature genes
and a predetermined threshold to categorize cervical cancer patients into two groups: a more
hypoxic group and a less hypoxic group. These groups exhibited distinct responses to chemora-
diotherapy, and the classifier could provide an early indication of the risk of hypoxia-related
failure in treatment. Briefly, the classifier utilizes gene expression signatures of tumors as an
indirect measure of hypoxia. It consists of three parameters for each gene, determined using a
pre-established algorithm and recorded for future tumor classification. When classifying a new
tumor, the expression of each classifier gene in that tumor is compared to the recorded param-
eters to calculate two expression distances, Dmore and Dless. By considering the difference
between Dless and Dmore (Dless -Dmore), tumors with a negative difference are categorized as
less hypoxic. In contrast, tumors with a positive difference are categorized as more hypoxic. Re-
searchers then examined the ABrix pharmacokinetic parameter obtained from DCE-MRI images
of tumors as a hypoxia indicator and discovered a strong correlation between the Dless -Dmore

values and ABrix.

Yoshihara et al. [68] introduced ESTIMATE (Estimation of STromal and Immune cells in MA-
lignant Tumour tissues using Expression data) in their study. This new algorithm utilizes the
unique properties of cancer sample transcriptional profiles. The algorithm focuses on stromal
and immune cells, the primary non-tumor constituents of tumor samples. By identifying spe-
cific signatures associated with the infiltration of stromal and immune cells in tumor tissues,
the researchers performed single-sample gene set-enrichment analysis (ssGSEA) to calculate
stromal and immune scores. These scores served as the foundation for the ESTIMATE score,
enabling the estimation of tumor purity by inferring tumor cellularity and the presence of
different infiltrating normal cells in tumor tissue.

3.1.1 Description of the Data Blocks

There were a total of six different data blocks available for analysis, each corresponding to one
data source.

• Clinical Data: comprised clinical data from 291 patients with six specific features.

• Gene Scores: contained information on 54 features, including 50 Hallmark gene scores, 3
ESTIMATE scores, and the Dless -Dmore values of the same 291 patients.

• The remaining four data blocks provide information about pharmacokinetic parameters
obtained from DCE-MR images:

– ABrix Data: included information on 118 patients and nine features extracted using
the Brix pharmacokinetic model.

– Ve Data: encompassed data from 67 patients with nine features derived using the
Tofts pharmacokinetic model.

– Ktrans Data: contained information on 67 patients with nine features derived using
the Tofts pharmacokinetic model.
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– CSH Data: combining the Ve and Ktrans parameters encompassed data from 67
patients with nine features.

A summary explanation of each available pharmacokinetic parameter can be found in Table
3.1, while Table 3.2 provides explanations for each feature in the six data blocks.

Table 3.1: Summary of Pharmacokinetic Parameters Assessed in the Study [4]

Parameter Description

ABrix Is the amplitude of contrast uptake and in this data has been associated
with hypoxia. Low ABrix values are more hypoxic than high ABrix values.

Ve Is a measure of the extracellular extravascular volume fraction (Space be-
tween cells) and can be negatively correlated with tumor cell density.

Ktrans Denotes the transfer rate of the contrast agent from blood to the extravas-
cular extracellular space.

CSH A combination of Ve and Ktrans (proxies of oxygen consumption and supply
respectively) images to new images of hypoxia. High values of CSH are more
hypoxic than lower values.

Table 3.2: Overview of Dataset Features [4]

Dataset Variable Description
All datasets PasientID Patient number

FIGO stage Staging of the tumor. FIGO, Federation Interna-
tional de Gynecologie et d’Obstetrique

LN status Lymph node invovlement. 0 = no, 1 = yes
Clinical data n.voxels Tumor volume estimated by the number of voxels

in images of tumor
Tumor volum mm3 Tumor volume in cubic millimeters
FIGO stage 2groups Dividing Figo stage into two groups. 0 = 2B and

below, 1 = 3A and above

Dless MINUS Dmore 6-gene hypoxia classifier from Fjeldbo et al, Clin
Cancer Res 2016. Negative values indicate less hy-
poxic tumors while positive values indicate more
hypoxic tumors. The classification threshold is
zero.

Gene scores ESTIMATEScore ESTIMATE: Estimate of Stromal and Immune
Cells in Malignant Tumor Tissues from Expression
Data. Yoshihara et al 2013, Nature Comm. Pre-
dicts the presence of stromal and immune cells in
tumor tissue. The method is based on single sam-
ple gene set enrichment analysis (ssGSEA) algo-
rithm. ESTIMATEScorenumeric scalar specifying
tumor cellularity

ESTIMATE ImmuneScore StromalScorenumeric scalar specifying the pres-
ence of stromal cells in tumor tissue

Continued on next page
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Table 3.2 – continued from previous page

Dataset Variable Description
ESTIMATE StromalScore ImmuneScorenumeric scalar specifying the level of

infiltrating immune cells in tumor tissue
Gene scores Variables starting with

Score HALLMARK
Hallmark gene sets from the MSigDB. Scores
calculated as mean of median-centered log2-
transformed gene expression levels

ABrix interval 1 The fraction of voxels with ABrix values between
(-0.24, 0.56]

ABrix interval 2 The fraction of voxels with ABrix values between
(0.56, 1.06]

ABrix interval 3 The fraction of voxels with ABrix values between
(1.06, 1.56]

ABrix interval 4 The fraction of voxels with ABrix values between
(1.56, 2.06]

ABrix ABrix interval 5 The fraction of voxels with ABrix values between
(2.06, 2.56]

ABrix interval 6 The fraction of voxels with ABrix values between
(2.56, 3.06]

ABrix interval 7 The fraction of voxels with ABrix values between
(3.06, 4.06]

ABrix interval 8 The fraction of voxels with ABrix values between
(4.06, 10]

ABrix below1.56 The fraction of voxels with ABrix values below
1.56. This parameter is used to reflect hypoxia.

Ve interval 1 The fraction of voxels with Ve values between
(0, 0.1]

Ve interval 2 The fraction of voxels with Ve values between
(0.1, 0.2]

Ve interval 3 The fraction of voxels with Ve values between
(0.2, 0.3]

Ve interval 4 The fraction of voxels with Ve values between
(0.3, 0.4]

Ve Ve interval 5 The fraction of voxels with Ve values between
(0.4, 0.5]

Ve interval 6 The fraction of voxels with Ve values between
(0.5, 0.6]

Ve interval 7 The fraction of voxels with Ve values between
(0.6, 0.7]

Ve interval 8 The fraction of voxels with Ve values between
(0.7, 10]

Ktrans interval 1 The fraction of voxels with Ktrans values between
(0, 0.05]

Ktrans Ktrans interval 2 The fraction of voxels with Ktrans values between
(0.05, 0.1]

Ktrans interval 3 The fraction of voxels with Ktrans values between
(0.1, 0.15]

Continued on next page
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Table 3.2 – continued from previous page

Dataset Variable Description
Ktrans interval 4 The fraction of voxels with Ktrans values between

(0.15, 0.2]
Ktrans interval 5 The fraction of voxels with Ktrans values between

(0.2, 0.25]
Ktrans Ktrans interval 6 The fraction of voxels with Ktrans values between

(0.25, 0.3]
Ktrans interval 7 The fraction of voxels with Ktrans values between

(0.3, 0.4]
Ktrans interval 8 The fraction of voxels with Ktrans values between

(0.4, 1]

CSH interval 1 The fraction of voxels with CSH values between
(0.05, 0.1]

CSH interval 2 The fraction of voxels with CSH values between
(0, 0.05]

CSH interval 3 The fraction of voxels with CSH values between
(-0.05, 0]

CSH interval 4 The fraction of voxels with CSH values between
(-0.1, -0.05]

CSH CSH interval 5 The fraction of voxels with CSH values between
(-0.15, -0.1]

CSH interval 6 The fraction of voxels with CSH values between
(-0.2, -0.15]

CSH interval 7 The fraction of voxels with CSH values between
(-0.3, -0.2]

CSH interval 8 The fraction of voxels with CSH values between
(-∞, -0.3]

In addition, the Y-Block dataset included information regarding the treatment outcomes of 67
patients. This was represented by a variable that indicated the overall recurrence status of the
tumor within 60 months, irrespective of whether it was a local or distant recurrence. A detailed
description of this data block can be found in Table 3.3.

Table 3.3: Summary of Features in Y-Block

Variable Description

PasientID Patient number
Status res dodcancer 60mnd Recurrence status: 0 = no recurrence, 1 = recurrence

Regarding the description of the numeric properties of the data blocks, Table 3.4 provides de-
tails on the discrete and numerical features in each block, along with their dimensions (where
the first value denotes the sample count and the second value indicates the number of fea-
tures.) Additionally, Figure 3.1 depicts the distribution of classes within the binary variable
”Status res dodcancer 60mnd” in the Y-Block dataset, including 42 patients who have com-
pletely recovered after the treatment period (referred to as Cured) and 25 who have encountered
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a cervical cancer tumor relapse (referred to as Relapsed). This variable will serve as the target
variable in this study.

Table 3.4: Information about the size and data type of features in each data block

Blok Dimention Feature Name Data Type

Clinical data (291, 6)
FIGO stage Categorical
The rest of the features Numerical

Gene scores (291, 55) All features Numerical
ABrix (118, 10) All features Numerical
Ve (67, 9) All features Numerical
Ktrans (67, 9) All features Numerical
CSH (67, 9) All features Numerical
Y-Block (67, 2) All features Numerical

Figure 3.1: The distribution of binary target classes present in the dataset.

3.2 Programming and Software

3.2.1 Scikit-Learn

The Python-based scikit-learn project [69] offers an open-source machine-learning library.
It aims to provide efficient and reliable machine-learning tools that are easily accessible to indi-
viduals without expertise in machine learning and can be reused in various scientific domains.
Rather than being a new domain-specific language, the project functions as a library that offers
machine learning idioms in a high-level, general-purpose programming language. Scikit-learn
is a collection of functions and classes imported into Python programs as a library. Hence, hav-
ing basic knowledge of Python programming is preferable. The library encompasses traditional
learning algorithms, model selection and evaluation tools, and preprocessing procedures. The
1.2.2 version of Scikit-learn was employed in this study.
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3.2.2 Pandas

Pandas [70] is a Python library that offers statistical tools and data structures. Statistical data
sets frequently come in a tabular format, which comprises a two-dimensional list of observations
and field names for each observation. Typically, an observation can be identified uniquely by
one or more labels or values. While structured or record arrays may be useful in certain
scenarios, they are not as versatile or user-friendly as other statistical environments. Instead,
Pandas offers the DataFrame class, which presents various beneficial functionalities for data
structures. A DataFrame object is adjustable in size, can be transformed into different forms,
can store mixed-type data (numerical/categorical), can be appropriately aligned with data sets
of differing sizes, and can be utilized to identify, eliminate, or substitute missing data, among
other capabilities. Pandas version 1.5.2 was utilized in this research.

3.2.3 Matplotlib and Seaborn

Data visualization plays an essential role in the scientific process, and creating effective vi-
sualizations enables individuals to comprehend their data and effectively communicate their
findings to others. Matplotlib [71] is a fundamental plotting library for the Python program-
ming language and is an open-source plotting toolkit. It is the most frequently employed among
Python visualization packages and can export visualizations to popular image formats such as
PDF, SVG, JPG, PNG, BMP, and GIF. It has the ability to create a variety of visualization
styles, such as line graphs, scatter plots, histograms, bar charts, error charts, pie charts, box
plots, and more.

Seaborn [72] is another Python library that produces statistical graphics. It streamlines the
process of creating graphics by generating complete graphics with minimal arguments in a single
function call, thus enabling quick prototyping and exploratory data analysis. Additionally,
Seaborn provides numerous options for customization and exposes the underlying Matplotlib

objects, making it possible to develop polished, publication-quality figures. Matplotlib version
3.7.0 and Seaborn version 0.12.2 were employed in this study.

3.2.4 Imbalanced-Learn

Imbalanced-learn is a Python toolbox available as open-source software. Its goal is to offer a
diverse collection of methods for managing imbalanced datasets, which are frequently encoun-
tered in pattern recognition and machine learning. The toolbox employs the latest methods,
such as SMOTE, that can be sorted as under-sampling, over-sampling, a combination of over
and under-sampling, and ensemble learning methods. Imbalanced-learn is fully compatible
with scikit-learn and is a component of the scikit-learn-contrib supported project [73]. This
research took advantage of Imbalanced-learn version 0.10.1.

In order to replicate and further investigate the experiments conducted in this master’s thesis,
the code utilized is openly available in a dedicated GitHub repository. Interested readers can
access the code repository at the provided link1.

1https://github.com/SinaRokhideh/Cervical Cancer Outcome Prediction
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3.3 Data Preprocessing

The initial stage in developing a machine learning model is data preprocessing, which involves
cleaning and preparing raw data to make it appropriate for machine learning models. Actual
data frequently contains noise or missing values and may be in a format that cannot be used
directly for machine learning. Therefore, cleaning and formatting the data before performing
any operation is necessary. Data preprocessing techniques are used to achieve these objectives
[74]. The following tasks are commonly involved in data preprocessing:

• Cleaning data and managing missing values

• Converting qualitative and/or quantitative data

• Normalizing or standardizing data

• Extracting features

• Reducing dimensions or selecting features

This section initially presents an overview of various preprocessing methods and then provides
a detailed description of the data preprocessing pipeline employed in this study.

3.3.1 Missing Values

Typically, the occurrence of missing values is ascribed to human error during data processing,
equipment malfunction resulting in machine error, respondents who decline to answer certain
questions, drop-out in studies, and the merging of unrelated data [75]. Missing values issue
is widespread across all domains that handle data and can give rise to various problems such
as a decline in performance, difficulties in data analysis, and biased outcomes caused by the
differences between complete and incomplete data [76]. Furthermore, the severity of missing
values is partly determined by the quantity of missing data, the missing data pattern, and the
underlying mechanism responsible for the missing values [77].

How missing data is observed and recorded in a dataset is referred to as missing data patterns.
Although no universal catalog of missing data patterns is available in the literature, it has
identified three primary missing data patterns: univariate, monotone, and non-monotone.

• Univariate: A univariate missing data pattern arises when only a single variable has
missing data [78], an infrequent occurrence in most fields and usually seen in experimental
studies.

• Monotone: In this missing data pattern, the data missingness is linked to the values of
another variable within the dataset. Specifically, if a particular observation has a missing
value for a variable, it indicates that all subsequent variables for that observation are also
missing. Since missing value patterns are readily observable, the monotone missing data
pattern is easier to manage than the following pattern [79].
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• Non-monotone: In this pattern, the data missingness is unrelated to any specific pattern
or order in the dataset. The missing values are randomly distributed across the variables
and observations without any clear relationship to other variables or observations [80].

Various methods exist to manage missing data. One approach to handling incomplete datasets
is eliminating rows and/or columns with missing values. However, this strategy results in losing
information that may be useful (despite being incomplete), especially in situations where the
number of samples available for the study is highly restricted (as is the case in this particular
study). A more effective approach is to estimate the missing values using the available data, a
technique called imputation [81]. In practice, there are two types of imputation algorithms [82]:

• Univariate: Fills in missing values for one feature or variable in the dataset using only the
non-missing values within that feature, for instance, when missing values are substituted
with the mean or median value of the existing data for the corresponding variable.

• Multivariate: Estimates missing values by considering all available feature dimensions.
For example, when the missing values are imputed iteratively using conditional models
for each variable, taking into account the relationships with other variables in the dataset.

3.3.2 Categorical Features

The efficiency of a machine learning model relies not only on the model itself and the hyperpa-
rameters used but also on how we handle and input different variable types into the model. As
many machine learning models can only handle numerical variables, it is crucial to preprocess
categorical variables beforehand. This involves converting categorical variables into numerical
equivalents to enable the model to comprehend and extract useful information.

Categorical variables are a form of data that we can measure using nominal or ordinal scales
and divide into groups, such as sex, race, educational level, and age group. A nominal variable
is a variable with values that cannot be ordered, like gender, where it does not make sense to
say that ”Male” comes before ”Female.” On the other hand, Ordinal variables can be ranked
but are not necessarily associated with numerical values. For example, dress size is an ordinal
variable with ”Medium” or ”Large” levels. ”categorical data” and ”qualitative data” are often
interchangeable [83].

One-hot encoding is a frequently used method to convert categorical attributes into a suit-
able format for machine learning models. It involves creating a sparse vector where only one
element is set to 1, and the rest are 0, which is helpful for representing finite sets of strings.
Although high cardinality can result in high dimensional feature vectors, one-hot encoding re-
mains popular due to its simplicity. A one-hot vector is a 1 × N matrix with 0 in all its cells
except for one that is set to 1 to uniquely identify one string value [84]. For example, if our
dataset contains the Sex attribute of different individuals, it can be transformed into numerical
values using the one-hot method, as depicted in Figure 3.2.
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Figure 3.2: Nominal Feature Encoding. In this example, a nominal categorical feature in the
dataset called Sex has been transformed into numerical values using the One-Hot encoding
method.

3.3.3 Data Scaling

Feature scaling is a vital step in data preprocessing that ensures all variables or features in
a dataset are in a comparable range. This process is crucial for numerous machine learning
algorithms, such as LR or SVM, which rely heavily on the numerical characteristics of features
to make accurate predictions [85]. Scaling the features prevent the domination of those with
larger magnitudes or ranges, which could otherwise overshadow the influence of other features
during the learning process. Additionally, feature scaling aids optimization algorithms like
gradient descent in converging faster by preventing oscillation and slow convergence caused by
features with disparate scales. Consequently, it also helps reduce the time required to learn the
predictive model [86].

Two commonly used methods for making features comparable are normalization and stan-
dardization. Normalization typically involves rescaling features to a range between 0 and 1,
a specific instance of min-max scaling. To normalize the data, one can easily apply min-max
scaling to each feature column. In this process, the new value, x

(i)
norm, for a given sample, x(i),

can be calculated using the following formula [86]:

x(i)
norm =

x(i) − xmin

xmax − xmin

(3.1)

Here, x(i) represents a specific sample, xmin is the smallest value in the feature column, and xmax

is the largest value. While min-max scaling and normalization are widely employed techniques
for bringing values within a specific range, standardization is often more advantageous for
machine learning algorithms, particularly optimization algorithms like gradient descent. This
preference arises because specific linear models such as LR and SVM initialize weights to 0
or values close to 0. Using standardization, feature columns are centered around a mean of 0
and have a standard deviation of 1, resulting in a normal distribution shape. This facilitates
weight learning, making it easier for the algorithm to converge. Furthermore, standardization
preserves valuable information about outliers and reduces the algorithm’s sensitivity toward
them. In contrast, min-max scaling restricts the data to a limited range, potentially discarding
useful outlier information [60].

The formula for standardization is given by

x
(i)
std =

x(i) − µx

σx

(3.2)
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In this equation, for each sample x(i), µx represents the sample mean of a specific feature
column, while σx corresponds to the respective standard deviation [86].

3.3.4 Imbalanced Data

Machine learning has consistently been affected by the problem of imbalanced datasets. It is
challenging to extract knowledge accurately from datasets with a skewed distribution, where
one of the target classes (majority class) has substantially more instances than the other class
(minority class). In simple terms, the primary issue with predicting imbalanced datasets is the
accuracy of predicting both majority and minority classes [87].

For example, in a disease diagnosis scenario, we have a dataset where only 2 out of 100 patients
are diagnosed with a disease. This means that the majority class is 98% of patients without the
disease, while the minority class is only 2% with the disease. If our model predicts that all 100
patients do not have the disease, it is biased towards the majority class due to the significant
difference in the number of records. Confusion matrices are usually used to evaluate how well
the model classifies the target classes. In this scenario, the accuracy would be 98/(98+2)=0.98
or 98%. This means that although the model fails to identify the minority class, the accuracy
score would still be 98%.

Therefore, it is crucial to identify the minority classes correctly, and our conventional model
accuracy calculation methods are ineffective for imbalanced datasets. Essentially, the model
must not only focus on detecting the majority class but also assign equal significance or weight
to the minority class. While there is no definitive solution to this issue, various techniques
are available for solving the class imbalance problem. These may include using appropriate
evaluation metrics, random resampling (either through undersampling or oversampling), the
synthetic minority oversampling technique, and more [87].

Section 2.6 explained choosing appropriate evaluation metrics for datasets exhibiting imbal-
anced or balanced distribution. Resampling is another method that can be used to address an
imbalanced dataset. In this method, the minority class can be increased by randomly adding
records of the same class to the dataset, and this process is known as oversampling. Conversely,
the majority class can be reduced by randomly deleting rows to match the size of the minority
class, and this method is known as undersampling. By resampling the data in this way, we
can achieve a balanced dataset for both classes, enabling the classifier to treat both classes
equally [88].

However, merely replicating instances of the minority class may not necessarily provide new
information or insights into the model. To address this, an alternative technique called Synthetic
Minority Oversampling Technique (SMOTE) can be used for oversampling. SMOTE generates
new instances for the minority class by synthesizing data from existing instances. This technique
works by examining instances of the minority class and selecting a random nearest neighbor
from the k nearest neighbors, and then creating a new synthetic instance at a random location
within the feature space [89].

The main steps involved in the SMOTE algorithm are as follows:

1. Identify the minority class, which is the one in the dataset that has fewer instances.
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2. Randomly pick an instance from the minority class.

3. Calculate the k nearest neighbors of the chosen instance from the minority class. The
user typically specifies k.

4. For each selected instance, randomly choose one of its k nearest neighbors. Create a
synthetic instance by combining attributes from the selected neighbor and the original
instance. The synthetic instance is created along the line connecting the two instances.

5. Repeat steps 2 to 4 until the desired oversampling level is achieved or the minority class
is appropriately balanced with the majority class [89].

Given all the explanations provided in this section, the data preprocessing pipeline utilized in
this study is illustrated in Figure 3.3.

Due to the unavailability of registered information for specific patients across all datasets,
only the data belonging to patients whose PatientID appeared in all datasets (comprising 67
patients) were preserved as the first step. Following that, considering Figure, the missing
data within each dataset were initially substituted using the scikit-learn’s SimpleImputer
class and the most frequent strategy. This involved replacing the missing values with the most
commonly occurring value for the same feature. It is worth noting that during this step, only the
Clinical data block contained a single missing value that was addressed through replacement.
Categorical features were processed using the OneHotEncoder class, while the numeric features
were prepared using the StandardScaler class from scikit-learn, ensuring they were centered
around a mean of 0 and had a standard deviation of 1. Ultimately, the dataset used for the
subsequent stages of the study consisted of data from 67 patients and 96 different features,
along with the binary target variable extracted from the Y-Block dataset.
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Figure 3.3: Preprocessing pipeline for the data blocks

3.4 Feature Selection

The swift advancement of contemporary technologies is causing an exceptional speed of data
generation, including images, videos, texts, and voices gathered from social interactions, cloud
computing, or medical equipment. Analyzing health and medical data is essential for enhancing
the accuracy of diagnoses, treatments, and prevention. However, machine learning and data
mining researchers often face challenges in analyzing health data as they are usually high-
dimensional, i.e., they have many features and may include duplicated, noisy, or irrelevant
information. One way to address this issue is through feature selection techniques [90].

Feature selection involves selecting a subset of features from the original set based on specific
criteria that identify the most relevant features within the dataset. This technique aids in
compressing the data processing scale by removing redundant or irrelevant features. Feature
selection techniques generally pursue two primary objectives. Firstly, they aim to alleviate
the curse of dimensionality, i.e., when there is a substantial imbalance between the number
of features and the number of samples in a dataset, by reducing complexity and enhancing
the mathematical properties of the machine learning model. Secondly, they strive to enhance
result interpretability by identifying the most crucial influential features. Alvarez et al. [91] have
utilized feature selection techniques in machine learning to enhance the diagnosis of Primary
Progressive Aphasia as a group of neurodegenerative disorders using high-dimensional data
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derived from FDG-PET images. Their approach obtained similar or even better classification
and clustering outcomes with only half the features.

Feature selection methods can be classified into wrapper, filter, and embedded approaches.
Wrapper methods choose features based on their predictive performance. They train super-
vised models on various subsets of the feature set and select the subset that yields the most
accurate predictions on a test set. Filter methods rank features using criteria like mutual in-
formation or correlation coefficients between features and target variables. On the other hand,
embedded feature selection methods integrate the selection process directly into the learning
algorithm. One type of embedded method involves regularization in generalized linear mod-
els, where regularization terms are incorporated as penalties into the target function during
parameter estimation. [3].

3.4.1 Repeated Elastic Net Technique (RENT)

The majority of feature selection methods face a common challenge known as instability, where
even slight modifications in the random initialization or the division of data into training and
testing sets can cause substantial variations in the chosen feature set [92]. Additionally, some
feature selection methods encounter another issue: the selected features may have small weights
or exhibit alternating signs across different elementary models. This can lead to the selection of
unclear or conflicting information, which in turn can adversely affect both the comprehensibility
and the ability to make accurate predictions.

The Repeated Elastic Net Technique (RENT) is an ensemble-driven approach for feature se-
lection that falls under the category of embedded feature selection models. It aims to identify
robust features for binary classification tasks by employing a logistic regression (LR) model
with elastic net regularization, which is trained on multiple subsets of the data [3]. The RENT
pipeline is illustrated in Figure 3.4.

Figure 3.4: The RENT workflow. It involves dividing the input dataset into K submodels
for training. Subsequently, it selects features based on three criteria that measure the feature
selection percentage, stability, and weight. The outcome is a collection of features that have
been chosen [3].

By randomly selecting the primary training data and replacing some samples, unique subsets
are created for each model in the ensemble. This process allows for a more accurate assessment
of the features’ relevance by determining the frequency of feature selection across multiple
models. Elastic Net is responsible for determining the inclusion of specific features in each
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model. Features that are not selected are assigned a zero weight, while the chosen features
have non-zero weights [3].

After training, each model possesses a feature weight vector represented by n, which is subse-
quently incorporated into a weight matrix denoted as B. In a feature space with N dimensions,
the weight matrix B will have dimensions of (K × N), where K represents the number of models.
The user can control the frequency of feature selection across all K models using a user-provided
threshold (τ1).

τ1(βn) = c(βn) =
1

K

K∑
K=1

1[βK,n ̸=0]; (3.3)

The significance of a feature, as determined by c(βn), is calculated based on its average occur-
rence frequency across the K models.

The stability of a feature (τ2) is determined by the occurrence of only a few weight signals
switching between positive and negative values. Ideally, a feature should have weights that are
uniformly signed, either all positive or all negative. When all non-zero weights share the same
polarity, the significance of τ2 reaches its maximum potential, matching or surpassing the value
of τ1. The user can specify the desired proportions of feature weights with the same sign [3].

τ2(βn) =
1

K

∣∣∣∣∣
K∑

K=1

sign(βK,n)

∣∣∣∣∣; (3.4)

In an ideal scenario, a feature consistently demonstrates substantially non-zero weights across
all K submodels with minimal variance (τ3). The τ3 criterion is defined as

τ3(βn) = tK−1

(
|µ(βn)|√

σ2(βn)
K

)
; (3.5)

The formula involves the feature-specific mean (µ), variance (σ), and the cumulative density
function of the Student’s t-distribution with K − 1 degrees of freedom (tK−1). The user is
empowered to establish a threshold value (τ3) between 0 and 1 for the analysis. For instance, a
τ3 value of 0.975 corresponds to a 5% significance level. These selection criteria enable the user
to define the level of strictness in the feature selection process. All RENT criteria, including
τ1, τ2, and τ3, fall within the range of 0 to 1 ([τ1, τ2, τ3] ∈ [0, 1]) [3].

Several Python functions were developed to implement the RENT feature selection technique
in this study. Since the data was initially divided into seven subsets, a function was designed
to create a RENT ensemble for each subset. This function utilizes the RENT Classification
function with various hyperparameters from the author’s official Python package [93]. Ulti-
mately, the custom function returns a Python dictionary comprising 7 RENT ensembles, each
using training and test data specific to one subset to start the feature selection procedure.
Table 3.5 briefly explains some parameters within the RENT Classification function and the
corresponding values tested for each parameter.

Subsequently, another function was created to train all RENT ensemble models simultaneously.
As discussed in section 3.4.1, the third criterion in the RENT method, τ3, can be associated
with the well-known statistical Student’s t-test. By setting this criterion to 0.975, a significance
level of 5% was established for all models. However, determining the appropriate values for
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Table 3.5: The hyperparameters tested in the RENT Classification function along with the
corresponding values that were examined.

Parameter Description Value(s)

C Inverse values of γ (the elastic net regularization
strength)

10i ∀ i ∈ [-3,-2,...,2]

l1 ratios The elastic net mixing parameter (α), with 0 <=
l1 ratios <= 1. l1 ratios=0 corresponds to L2
penalty, l1 ratios=1 to L1

[0, 0.1, 0.25, 0.5, 0.75, 0.9, 1]

classifier Classification algorithm used for model training
(Logistic Regression (’logreg’) by default)

’logreg’

K The number of models within each ensemble 100

the other two criteria, τ1 and τ2, required experimentation. Therefore, a new Python function
was developed in this study to test various values for these criteria across all seven folds. The
function simultaneously considers values ranging from 0.1 to 0.9, with an increment of 0.1,
aiming to identify the selected features using each value for both criteria. Specifically, the
function returns a Python dictionary containing a list of selected feature names when the pair
(τ1, τ2) matches any of the abovementioned values across all seven subsets of data (N.B. τ1 and
τ2 have the same value in all pairs).

With the collection of selected features for each fold and different values of the pair (τ1, τ2), it
became feasible to construct the ultimate function for training machine learning models solely
using the chosen features. It is important to highlight that the hyperparameter values employed
for the machine learning models in this phase were set to match the values obtained through
GridSearchCV when the models were trained using all available features since the aim was to
observe the impact on the models’ performances solely by altering the number of introduced
features, rather than modifying other parameters.

3.5 Baseline Models

A baseline model in machine learning serves as a simple and often naive benchmark against
which the performance of more complex models can be compared. The main goal of a baseline
model is to establish a minimum level of performance that any model should surpass to be
considered useful. Baseline models are typically simple and easy to implement. They may
involve basic algorithms or heuristic approaches that rely on basic assumptions about the
data. In a classification problem, a typical baseline model could adopt different approaches.
For instance, it might randomly assign class labels to samples based on the observed class
distribution in the training data. Alternatively, it may assign labels without considering the
class distribution at all. Another random classifier might assign all labels to the samples based
on the majority class observed in the dataset.

When used as a baseline model, a random classifier does not consider any patterns or features in
the data and serves as a baseline for random guessing. That being stated, this kind of baseline
typically has an accuracy score corresponding to the baseline accuracy determined by the class
distribution in the data. Mathematically, in a binary classification scenario, the probability of
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the true classes (c(xi)) of samples x1, . . . , xn belonging to class 0 could be denoted as p, while
the probability of them belonging to class 1 would be (1− p). In other words, P (c(xi) = 0) = p
and P (c(xi) = 1) = 1 − p. A random classifier that assigns a label (ĉ(xi)) according to the
observed class distribution would have the same probability of assigning labels to sample xi,
i.e., P (ĉ(xi) = 0) is q, where q = p, and P (ĉ(xi) = 1) is (1 − q). However, since it is random,
ĉ(xi) is independent of c(xi), and thus, the probability that both are 0 is:

P (c(xi) = 0 and ĉ(xi) = 0) = P (c(xi) = 0)× P (ĉ(xi) = 0) = p× q (3.6)

Similar calculations can be performed to determine the probabilities of three other combina-
tions:

P (c(xi) = 0 and ĉ(xi) = 1) = P (c(xi) = 0)× P (ĉ(xi) = 1) = p× (1− q) (3.7)

P (c(xi) = 1 and ĉ(xi) = 0) = P (c(xi) = 1)× P (ĉ(xi) = 0) = (1− p)× q (3.8)

P (c(xi) = 1 and ĉ(xi) = 1) = P (c(xi) = 1)× P (ĉ(xi) = 1) = (1− p)× (1− q) (3.9)

These equations correspond to the four components of the confusion matrix, namely true neg-
atives (TN), false positives (FP), false negatives (FN), and true positives (TP), respectively.
Since all samples x1, . . . , xn are independent of each other and have an equal probability of
being classified as TP, TN, FP, or FN, the expected value for each component is multiplied by
n. Once all the components are available, various performance metrics, as discussed in Section
2.6, can be directly calculated.

It is worth noting that If the random classifier disregards the class distribution, regardless of
the p values, both q and (1 − q) will equal 0.5 or 50%. Similarly, if the classifier assigns all
samples to the majority class, the value of either q or (1− q) will be 1, while the other will be
0, depending on the label of the majority class. In addition, when a random classifier assigns
all samples to the majority class, its MCC score will be undefined. This occurs because one
column of the confusion matrix (either TP and FP or both TN and FN) will have a zero value,
resulting in a division by 0 in the MCC equation. However, research conducted by Chicco et
al. [64] demonstrates that the MCC score tends to approach zero even in this scenario.

This study employs all three abovementioned random classifiers as baseline models. On the
other hand, it also examines the impact of employing RENT feature selection and SMOTE
balancing methods on the performance of machine learning models. This allows for comparing
the scores obtained by these models before and after implementing the mentioned methods.
In other words, the scores obtained from models trained using all the features in the dataset
without sample balancing can serve as a second benchmark for evaluating the performance of
models trained exclusively with features selected by the RENT technique or those utilizing
balanced datasets through the SMOTE method.

3.6 Workflow

Before delving into the workflow, an explanation will be provided regarding data partitioning
for training machine learning models. This step is crucial and serves as this study’s initial stage
following data preprocessing.
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3.6.1 Data Splitting

Using the complete dataset to fit the model would result in overfitting and may cause inaccurate
forecasts in upcoming situations. Thus, reserving a fraction of the dataset for testing and
verifying the model’s performance before deployment can help prevent unanticipated problems
resulting from overfitting. When building statistical and machine learning models, it is typical
to divide the dataset into two subsets: training and testing. The training subset is utilized to
fit the model and estimate the unknown parameters. Subsequently, the accuracy of the model
is assessed using the testing subset [94].

The most straightforward approach to divide the dataset is randomly splitting it into two
sections for training and testing, such as using the initial 70% of the data for training the
model and the remaining 30% for evaluation (as shown in Figure 3.5.) Despite its simplicity,
this method has some limitations. On the one hand, when the dataset is small, this method
can lead to high variance because different test sets can produce vastly different results due to
random partitioning. Some partitions may contain easy-to-classify samples, while others may
contain difficult ones. On the other hand, in typical machine learning scenarios, we also want to
tune and compare different parameter settings to enhance the model’s prediction performance
on unseen data. However, reusing the same test dataset for this purpose can result in overfitting
as it becomes part of the training data [60].

Figure 3.5: The Train-Test split method. In this example, the dataset has been partitioned
into training and test sets using a 70/30 ratio.

Cross-validation is a method to address the abovementioned challenges. In cross-validation, the
dataset is divided into smaller groups multiple times, and the model’s performance is assessed
and averaged for each group. This helps minimize the effect of partition randomness on the
results. Cross-validation is a popular method to strike a balance between low Bias and low
Variance in a model. It can also be employed when comparing multiple models or searching for
the best model hyperparameters during evaluation. [95]. Numerous cross-validation methods
exist that specify various approaches to splitting a dataset. This research utilizes the two most
commonly employed methods: k-fold and leave-one-out.

As shown in Figure 3.6, the K-fold cross-validation method involves dividing the dataset into k
equally-sized subsets without replacement. The train-test procedure is then repeated k times,
where each time, one of the k subsets is used as the test set, and the remaining k − 1 subsets
are used for training. The model’s performance estimate is obtained by averaging the scores
over the k trials. This technique is advantageous because it is a resampling method without
replacement, ensuring that each sample point is used once for validation and k-1 times for
training, thereby resulting in a lower variance estimate of model performance than the simplest
train-test split method [60].
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Figure 3.6: The K-fold cross-validation technique. In this example, the dataset has been
partitioned into five training and test sets using a 5-fold cross-validation.

However, when dealing with limited training data, increasing the number of folds can be helpful.
Raising the value of k allows more training data to be used in each iteration, resulting in a
lower bias when estimating generalization performance by averaging individual model estimates.
Referring to figure 3.7, Leave-One-Out (LOO) cross-validation involves training a machine-
learning model n times, where n is the size of the dataset. In each iteration, only one sample
is utilized as the test set, while the rest are used for training the model. In essence, LOO is
an extreme form of k-fold cross-validation. Nevertheless, higher k values will lead to longer
runtime for cross-validation algorithms and estimates with greater variance due to the more
similar training folds. [96].

Figure 3.7: This example employs the Leave-One-Out cross-validation approach and divides
the dataset into n training and test sets, where n represents the total number of samples in the
dataset.

As previously mentioned, cross-validation methods are also useful when looking for the best
model hyperparameters during evaluation. One approach is to divide the dataset into three
parts: a training set, a validation set, and a test set. The training set is used to fit different
models, while selecting optimal values of tuning parameters relies on the performance of the
validation set. After achieving satisfactory hyperparameter tuning, we estimate the models’
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generalization performance on the test dataset. This concept is illustrated in Figure 3.8, where a
validation set is used to repeatedly assess the model’s performance after training using different
parameter values [60].

Figure 3.8: In this example, the train-test split method was applied to partition the dataset into
training and testing subsets. In order to adjust the model’s hyperparameters, the leave-one-out
cross-validation technique was then employed, which divides the training set into n segments,
where n corresponds to the total number of data samples in the training subset.

The study follows the workflow depicted in Figure 3.9. In the initial step, the preprocessed data
is divided into seven subsets using a personalized Python function. Within this function, the
scikit-learn’s StratifiedKFold class is used to partition the initial dataset while maintaining
the proportion of samples for each class, resulting in a Python dictionary that contains a
user-defined number of distinct training and test subsets. By generating multiple folds, each
representing a different train-test-split, the estimation of the model’s performance becomes
more reliable and robust. This approach also facilitates optimal hyperparameter tuning and
maximizes the utilization of the available data compared to using a single train-test-split.
Additionally, considering the total number of samples available for the study, the dataset was
divided into seven distinct subsets, each with nearly equal sizes, to establish an approximate
training-to-test ratio of 85:15.

The subsequent procedures were designed based on the overarching objectives of the study.
Firstly, to evaluate the effectiveness of the available data in predicting the treatment outcomes
of locally advanced cervical cancer using machine learning models. Secondly, to explore the
influence of the RENT feature selection technique and the SMOTE balancing method on the
classification performance of the models.

For implementing the ML classifiers, the support vector machine algorithm utilized the SVC
class, the random forest algorithm employed the RandomForestClassifier class (RFC), and the
logistic regression algorithm used the SGDClassifier class (SGC) from scikit-learn. It is
worth mentioning that SGC, which incorporates stochastic gradient learning (SGD) for regu-
larized linear models, was chosen over the LogisticRegression class due to its greater flexibility
in adjusting hyperparameters. SGC functions like a logistic regression classifier by selecting the
log loss value as the loss hyperparameter. Furthermore, this research took advantage of the
scikit-learn’s GridSearchCV class to explore and identify the optimal set of hyperparameters
for each classifier using the LOO method. Table 3.6 displays the hyperparameters examined in
each classifier and the values tested for each parameter.

On top of that, the SMOTE and make pipeline classes from the Imbalanced-Learn library
were employed to address data imbalance by applying the SMOTE method with the minority
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Figure 3.9: The workflow used in this research

sampling strategy and constructing appropriate pipelines for each classifier, respectively. This
study also utilized the scikit-learn’s classification report and matthews corrcoef classes to
obtain comprehensive performance reports for the classifiers. These reports include metrics
such as Precision, Recall, F1-Score, and Accuracy for the classification report class and the
MCC score for the matthews corrcoef class.
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Table 3.6: The hyperparameters examined in each machine learning classifier used in this study
and their corresponding values.

Classifier Parameter Description Value(s)

SGC loss The loss function to be used ‘log loss’
penalty The regularization term to be used [‘elasticnet’, ’None’]
alpha Constant that multiplies the regularization

term. The higher the value, the stronger
the regularization

[0.0, 0.1, 1.0, 10.0]

l1 ratio The elastic net mixing parameter (α), with
0 <= l1 ratio <= 1. l1 ratio=0 corre-
sponds to L2 penalty, l1 ratio=1 to L1.

[0.0, 0.5, 1.0]

max iter The maximum number of epochs [100, 1000, 8000]

RFC criterion The function to measure the quality of a
split

[’entropy’, ’gini’]

n estimators The number of trees in the forest [500, 1000, 1500]

SVC C Regularization parameter. The strength of
the regularization is inversely proportional
to C

10i ∀ i ∈ [-4,-2,...,2]

kernel Specifies the kernel type to be used in the
algorithm

[’linear’, ’rbf’]

gamma Kernel coefficient for the rbf kernel 10i ∀ i ∈ [-4,-2,...,2]
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Chapter 4

Experiments and Results

This chapter aims to objectively present the findings, highlighting the key observations and
statistical analyses performed. In this chapter, the results are organized in the following manner:
Initially, a comprehensive evaluation is conducted on the results derived from machine learning
models trained with features selected through the RENT feature selection technique. This
evaluation aims to determine the optimal values for the (τ1, τ2) pairs associated with each
model. In the subsequent section, the study will compare the baseline models and those utilizing
the RENT and SMOTE methods. This comparison seeks to evaluate the models’ effectiveness
in achieving the primary research objective of exploring the potential for early detection of
treatment outcomes in locally advanced cervical cancer using DCE-MRI data. Finally, to
address the second primary goal, the most informative features within the available dataset
in achieving the highest prediction scores will be identified and introduced using the RENT
feature selection technique.

4.1 RENT Hyperparameter Selection

Once the RENT ensemble was created for every seven subsets of data using the values presented
in Table 3.5, the optimal combination of C and l1-ratios hyperparameters was determined for
each ensemble. The chosen values for all data subsets were 0.1 and 0.25 for the C and l1-
ratios hyperparameters, respectively. This means that every ensemble employs both L1 and L2
regularization techniques, with a ratio of 25 to 75 and an overall strength of 0.1, to carry out
the feature selection process.

In the next step, machine learning models were trained using the chosen features for all seven
folds after collecting the selected features for different values of the (τ1, τ2) pairs, where τ1 =
τ2 in all pairs. Figures 4.1.a and 4.1.b depict the MCC scores acquired from logistic regression
(LR), random forest (RF), and support vector machine (SVM) for every combination of (τ1,
τ2) values in each fold. The final row of Figure 4.1.b displays the average MCC score across all
seven folds.
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(a)

Figure 4.1: Classification MCC scores obtained from Logistic Regression (LR), Random Forest
(RF), and Support Vector Machine (SVM) models with different values for the (τ1, τ2) pair
in the initial four data folds. Solid lines represent the scores of the models trained with the
RENT features, while dashed lines with markers depict the scores of the models trained with
all available features. The markers on the dashed lines are purely for visual convenience and
do not indicate specific data points.
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(b)

Figure 4.1: Classification MCC scores obtained from Logistic Regression (LR), Random Forest
(RF), and Support Vector Machine (SVM) models with different values for the (τ1, τ2) pair in
the last three data folds. The average scores across all folds are presented in the final row of
the figure. Solid lines represent the scores of the models trained with the RENT features, while
dashed lines with markers depict the scores of the models trained with all available features.
The markers on the dashed lines are purely for visual convenience and do not indicate specific
data points.
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Within these figures, the scores obtained from models that utilized the RENT-selected features
for training are depicted by solid lines. On the other hand, the scores obtained by models that
utilized all available features are represented by dashed lines with markers. Furthermore, the
lines are color-coded as blue or gray to indicate whether the models employed the SMOTE
balancing method. It is worth noting that the dashed lines with markers exhibit a consistent
value within each fold because they are not affected by changes in τ values, and the markers are
purely for visual convenience and do not indicate specific data points. In addition, the average
scores of the dashed lines could not be presented in these graphs as they possess distinct values
across different folds, regardless of the τ values. Therefore, those scores will be examined in
the subsequent section.

According to Figures 4.1.a and 4.1.b, while the models utilizing the balanced datasets through
the SMOTE method generally exhibit higher scores compared to those without SMOTE, the
scores achieved by all three models vary for different combinations of (τ1, τ2) in each fold,
regardless of whether RENT features or all available features were used. One possible expla-
nation could be the disparity between each fold’s training and test samples. This variation
between the samples can impact the obtained results based on the relative ease or difficulty of
classifying the samples. Hence, the average scores across all folds were employed to determine
the optimal values for the (τ1, τ2) pairs in each model. A noteworthy observation about the
gray lines in the SVM model, irrespective of utilizing the RENT features, is that the model
consistently obtains an MCC score of zero for all (τ1, τ2) combinations. This indicates that the
SVM’s performance was no better than that of a random classifier when the SMOTE balancing
method was not employed.

Table 4.1 provides a more detailed breakdown of the average values obtained by the models
trained using the RENT-selected features considering whether the SMOTE balancing method
is employed. In the logistic regression model, the best (τ1, τ2) pairs are determined as 0.3 for
models utilizing the SMOTE method and 0.8 for models not employing it. In the Random
Forest model, the optimal (τ1, τ2) value remains constant at 0.2, regardless of whether the
SMOTE method is used. Lastly, in the support vector machine model, where the average
score remains at zero when the SMOTE method is not used, the optimal (τ1, τ2) pair is 0.4,
exclusively for the models that utilize SMOTE.

Table 4.1: Average MCC scores of logistic regression (LR), random forest (RF), and support
vector machine (SVM) models trained with RENT-selected features, grouped by the utilization
of SMOTE balancing method, across various (τ1, τ2) values.

MCC scores belonging to each (τ1, τ2) value
Model SMOTE 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LR Yes 0.307 0.269 0.411 0.296 0.288 0.262 0.277 0.265 0.285
No 0.267 0.243 0.207 0.143 0.211 0.243 0.258 0.273 0.255

RF Yes 0.367 0.415 0.415 0.310 0.269 0.232 0.161 0.295 0.233
No 0.369 0.367 0.215 0.251 0.161 0.152 0.115 0.231 0.080

SVM Yes 0.378 0.339 0.424 0.444 0.328 0.254 0.353 0.412 0.412
No 0 0 0 0 0 0 0 0 0

Similar to this section, Appendix A.1 presents the accuracy scores of the models in a comparable
manner.
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4.2 Classification Modelling and Evaluation

To this point, the evaluation has focused on the performance analysis of models trained using
features selected by the RENT feature selection technique, both prior to and after undertaking
the SMOTE class balancing method. Now that the best scores have been obtained from these
models, it becomes feasible to compare them against both the scores of the random classifier
as the first baseline model and the scores of the models that employed all available features to
predict the treatment outcomes of the patients as the second benchmark.

As mentioned in Section 3.5, this study utilizes three random classifiers as baseline models.
Considering the class distribution depicted in Figure 3.1, the value of p is 0.63, while (1− p) is
0.37. Table 4.2 presents the q and (1−q) values, which rely on the random classifier. According
to the information provided in this table, random classifier #1 disregards the distribution of
classes in the dataset. In contrast, random classifier #2 assigns samples randomly based on the
existing class distribution. On the other hand, classifier #3 assigns all samples to the majority
class.

Table 4.2: The possibility of predicted sample classes belonging to class 0 (denoted as q) and
the probability of them belonging to class 1 (denoted as 1− q).

Model q 1− q

Random Classifier #1 0.5 0.5
Random Classifier #2 0.63 0.37
Random Classifier #3 1 0

Using these values, the confusion matrix components were determined for each random classifier,
and subsequently, the Accuracy, MCC score, and F1-Score were computed. The corresponding
results are presented in Table 4.3. Consequently, any classifier that achieves higher scores than
those obtained from these baseline models is favored over them.

Table 4.3: Performance metrics (Accuracy, F1-Score, and MCC score) of three random clas-
sifiers: Random Classifier #1 randomly assigns labels without considering class distribution,
whereas classifier #2 accounts for the dataset’s class distribution. Random classifier #3 assigns
all samples to the class with the highest count based on the class distribution.

Model Accuracy F1-Score MCC

Random Classifier #1 50% 0.56 0
Random Classifier #2 53% 0.63 0
Random Classifier #3 63% 0.77 0

As stated in Section 3.6, the machine learning models were initially trained without using the
RENT and SMOTE methods on each fold’s subset of data. This was done to establish a second
benchmark for performance evaluation. As part of the training process during this stage,
the optimal hyperparameters for each model were obtained from the tested range through
GridSearchCV, as indicated in Table 4.4. These hyperparameter values were subsequently
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utilized in training the models that incorporated the features selected by RENT. It is important
to highlight that these values remained consistent across all folds.

Table 4.4: Optimal hyperparameter values chosen for logistic regression (LR), random forest
(RF), and support vector machine (SVM) models.

LR RF SVM
penalty alpha l1 ratio max iter criterion n estimators C kernel

elasticnet 0.1 0.0 100 entropy 500 0.0001 linear

To assess the performance of the machine learning models, Figure 4.2 compares the MCC
scores of the models trained using the complete feature set (referred to as ”All”) before and
after balancing the classes with SMOTE, serving as the second benchmark. Additionally,
the scores of the models trained using the RENT-selected features (referred to as ”RENT”),
corresponding to the optimal (τ1, τ2) pairs mentioned in the previous section, are included in
the comparison. Notably, In each plot, the final set of columns (marked as Avg) displays the
average scores achieved across 7 folds, the standard deviation of each category, and the highest
average score is also indicated in the respective column. Notably, the plots in this figure do not
include the random classifiers’ MCC scores, which remain constant at zero.

According to Figure 4.2, the scores achieved by models in each category varied when using
different training and test data in each fold. One noteworthy observation is that the support
vector machine model outperformed the random classifiers (used as the baseline) only when the
training samples were balanced using the SMOTE method. Otherwise, it always predicts the
majority class, resulting in an MCC score of 0. Among the support vector machine models, the
group trained with the RENT features and SMOTE method exhibited the best performance,
with an average MCC score of 0.444.

On the other hand, within the Random Forest models, the classifiers in all four categories
exhibited closer average scores compared to the other two models, namely logistic regression and
support vector machine. Furthermore, the average scores of all four groups were significantly
higher than zero, surpassing the performance of the initial baseline model. In addition, the
performance of the Random Forest models also showed improvement after applying the SMOTE
method. The models utilizing the RENT and SMOTE techniques achieved the highest average
score of 0.415.

Lastly, in logistic regression, the group that utilized all the features and the SMOTE method
displayed more fluctuation between positive to negative values across different folds. As a result,
this group’s average score was lower than the other categories and only slightly improved over
the initial baseline models. In contrast, the remaining categories within this model exhibited
significantly better average MCC scores than the random classifiers. Similar to the previous
two machine learning models, in logistic regression, the group that employed features obtained
from the RENT technique and the SMOTE method achieved the highest average score, with
an MCC score of 0.411.
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Figure 4.2: The classification MCC scores achieved by machine learning models in seven differ-
ent folds. The models were color-coded based on whether they were trained using all available
features (referred to as ”All”) or the features selected by the RENT method (referred to as
”RENT”), with or without the utilization of the SMOTE balancing technique. The final set
of columns in each plot displays the average scores across all folds, along with the standard
deviations for each category. The column representing the highest average value is highlighted
accordingly.
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To facilitate comparison, Table 4.5 summarizes the data from the average score columns in
Figure 4.2 and the percentage of changes observed after applying the RENT and SMOTE
methods.

Table 4.5: MCC scores averaged across all seven folds for each model trained with all features
and RENT-selected features, with and without applying the SMOTE method. The final two
columns present the corresponding changes after applying the RENT and SMOTE methods.

All Features RENT Features Change (after RENT)

Model No SMOTE SMOTE No SMOTE SMOTE No SMOTE SMOTE

LR 0.322 0.062 0.273 0.411 -15.2 % +562.9 %
RF 0.346 0.409 0.367 0.415 +6.06 % +1.46 %
SVM 0 0.33 0 0.444 0 % +34.5 %

The results from Table 4.5 indicated that except for the logistic regression model with all
features, where incorporating SMOTE had a negative impact on the results, the performance
of all other models was enhanced using SMOTE. In addition, all three machine learning models
outperformed all benchmarks when simultaneously employing RENT and SMOTE techniques.
However, as the best scores of the models were relatively similar and the number of selected
features varied based on different values of τ1 and τ2 in the RENT method, a statistical ANOVA
(analysis of variance) test was employed to determine how each factor affects the achieved
outcomes.

The test was performed with the null hypothesis that the means of the tested groups were the
same. By selecting a significance level of 5%, any group with a p-value below 0.05 would reject
this hypothesis. The independent factors examined in this 3-way test were the classifier with
three values (LR, RF, SVM), SMOTE usage, and RENT usage, each with two values (0 for not
using, 1 for using). In addition, the test incorporated interaction terms between the classifier
and the other two factors, and the response variable was the MCC score. The test results
are presented in Table 4.6. Also, to ensure that the test results were attributed to statistical
significance rather than random variation between groups, both assumptions of the ANOVA
test were examined. These assumptions involve verifying that the data adheres to a normal
distribution and that the variances among the compared groups are roughly equal.

Table 4.6: The results derived from the ANOVA test

sum sq df F PR(>F)

C(Classifier) 0.524243 2.0 5.606698 0.005458
C(SMOTE) 0.235821 1.0 5.044129 0.027779
C(RENT) 0.008502 1.0 0.181851 0.671060
C(Classifier):C(RENT) 0.008931 2.0 0.095516 0.909019
C(Classifier):C(SMOTE) 0.610876 2.0 6.533222 0.002470
C(Classifier):C(SMOTE):C(RENT) 0.299108 3.0 2.132605 0.103564
Residual 3.366109 72.0 NaN NaN

Based on the p-values listed in the table’s final column, it can be observed that the classifier,
SMOTE, and their interaction reject the null hypothesis and have a statistically significant
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impact on the MCC score, as their p-values are less than 0.05. On the other hand, the p-values
associated with the RENT factor and its interactions were higher than 0.05, indicating no
statistically significant interaction can be concluded at the present sample size. Investigating
Figure 4.2 reveals that the utilization of RENT did not have a significant negative impact
on the results either. However, this method proved highly effective in reducing the models’
computational time and enhancing their interpretability by introducing the most significant
features.

The ANOVA results indicated that employing different classifiers and the SMOTE method
leads to a statistically significant different outcome. However, to identify which specific groups
among these factors potentially exhibited significant differences compared to other groups,
Tukey’s HSD statistical test was employed in this study. This test served as a post hoc analysis
following the ANOVA test to determine if there were significant statistical differences between
the LR, RF, and SVM models and between these models when interacting with the SMOTE
factor. Table 4.7 presents Tukey’s HSD outcomes, explicitly assessing the dissimilarity between
the classifiers. On the other hand, Table 4.8 displays the results of this test, examining the
disparity between groups of the classifier factor when employing SMOTE versus not employing
it.

Table 4.7: Results of Tukey’s HSD test comparing the statistical differences among classifiers

group1 group2 Diff Lower Upper q-value p-value

LR RF 0.117429 -0.024353 0.259210 2.798602 0.124384
LR SVM 0.073571 -0.068210 0.215353 1.753382 0.435383
RF SVM 0.191000 0.049218 0.332782 4.551984 0.005273

Table 4.8: Tukey’s HSD test results investigating the statistical difference between various
combinations of classifiers and the SMOTE utilization. In the first two columns, the first value
within each pair represents the classifier name, while the second value indicates the SMOTE
method’s usage (1) or non-usage (0).

group1 group2 Diff Lower Upper q-value p-value

(LR, 0) (LR, 1) 0.060929 -0.178340 0.300197 1.054356 0.900000
(LR, 0) (RF, 0) 0.059143 -0.180125 0.298411 1.023454 0.900000
(LR, 0) (RF, 1) 0.114786 -0.124483 0.354054 1.986342 0.698841
(LR, 0) (SVM, 0) 0.297643 0.058375 0.536911 5.150646 0.006480
(LR, 0) (SVM, 1) 0.089571 -0.149697 0.328840 1.550014 0.873690
(LR, 1) (RF, 0) 0.120071 -0.119197 0.359340 2.077810 0.662189
(LR, 1) (RF, 1) 0.175714 -0.063554 0.414983 3.040698 0.274119
(LR, 1) (SVM, 0) 0.236714 -0.002554 0.475983 4.096290 0.054192
(LR, 1) (SVM, 1) 0.150500 -0.088768 0.389768 2.604370 0.448044
(RF, 0) (RF, 1) 0.055643 -0.183625 0.294911 0.962888 0.900000
(RF, 0) (SVM, 0) 0.356786 0.117517 0.596054 6.174100 0.001000
(RF, 0) (SVM, 1) 0.030429 -0.208840 0.269697 0.526560 0.900000
(RF, 1) (SVM, 0) 0.412429 0.173160 0.651697 7.136988 0.001000
(RF, 1) (SVM, 1) 0.025214 -0.214054 0.264483 0.436328 0.900000
(SVM, 0) (SVM, 1) 0.387214 0.147946 0.626483 6.700660 0.001000

With the same null hypothesis in Tukey’s HSD test and setting a confidence level of 0.95, any
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group with a p-value below 0.05 indicated a significant difference among the tested groups.
Table 4.7 demonstrates no statistically significant distinction between LR and RF classifiers
and between LR and SVM. However, RF and SVM exhibit a statistically significant distinction
in obtaining MCC scores. These findings align with the standard deviations depicted in Figure
4.2.

On the other hand, based on the p-values in Table 4.8, a statistically significant difference
exists between SVM when not employing SMOTE and almost all the other combinations.
Considering Figure 4.2, this is not unexpected as it demonstrates that SMOTE has the most
substantial impact on SVM. Therefore, except for the combinations having (SVM, 0), the
remaining interaction terms do not display any statistically significant differences. Thus, an
ANOVA model without interactions would suffice for all other combinations. Lastly, it is worth
mentioning that the p-value of 0.054 between the LR model with SMOTE and the SVM model
without SMOTE is marginally higher than 0.05. While it does not reject the null hypothesis,
it does indicate that significant differences might be detected in a larger sample size.

Appendix A.2 provides supplementary details for this section, including accuracy, precision,
recall, and F1 scores for models before and after applying RENT and SMOTE techniques.

4.3 The Most Informative Features

A secondary objective of this study was to identify the most informative features from the
available data for the early detection of treatment outcomes in patients with locally advanced
cervical cancer using the RENT feature selection method. As explained in Section 3.4, various
features were collected with different combinations of (τ1, τ2) values to achieve this goal. Figures
4.3.a, 4.3.b, 4.3.c, and 4.3.d display the proportion and quantity of selected features from each
available data block, along with the total number of features chosen in each subset across all
seven folds, corresponding to the values 0.2, 0.3, 0.4, and 0.8 for the (τ1, τ2) pair, respectively.

While the selected features are accessible for all tested values for the (τ1, τ2) pair (as indicated
in Section 3.4), only the features corresponding to the abovementioned values are presented in
this section because the machine learning models achieved the highest average MCC score when
utilizing the selected features associated with these specific values. Additional figures associated
with the combinations of (τ1, τ2) not presented in this section can be found in Appendix A.3.

Regarding Figures 4.3.a–d, it is essential to note that the number of selected features from
the Clinical dataset considers preprocessing and applying the One-Hot Encoding technique.
Therefore, the presented share may exceed this dataset’s original number of features. Based on
these figures, the total number of selected features is decreased by over 42%, even when opting
for a value of 0.2 for the (τ1, τ2) pair, which implies a relatively lenient restriction on the feature
selection process. In order to evaluate the impact of this reduction in the number of features
used in training each model, the training time for the models utilizing the best hyperparameter
values was measured before and after applying the RENT and SMOTE methods1. The average
training time, measured in seconds, for each model across seven folds is presented in Table 4.9.

1The outcomes were obtained through the execution of scripts on a Microsoft Windows 10 Pro device
equipped with an Intel i7 CPU with two cores running at 1.8 GHz and 8 GB of RAM.
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Table 4.9: Average training duration, in seconds, for logistic regression (LR), random forest
(RF), and support vector machine (SVM) models across all seven folds, before and after em-
ploying the RENT method (referred to as All features or RENT features, respectively) and
SMOTE technique.

All Features RENT Features
Model Without SMOTE With SMOTE Without SMOTE With SMOTE

LR 1.49 8.29 0.01 0.03
RF 39.778 94.4 1.3 10.49
SVM 0.5 5.9 0.02 0.04

Based on the findings displayed in this table, reducing the number of features after employing
the RENT method leads to a significant decrease in the average training time for all models,
regardless of whether the SMOTE technique is utilized. However, it is worth noting that
the training process for all models is considerably more time-consuming when the SMOTE
technique is applied.

Upon further comparing Figures 4.3.a–d, it becomes evident that as the value of τ1 and τ2
increases, resulting in stricter constraints on the feature selection process features from the
Clinical data block are prioritized over other data blocks. This is clear by the greater inclusion
of features from the Clinical dataset among the total selected features. Simultaneously, the
features from other data blocks are either partially or entirely eliminated in different folds.
In addition to these figures, Tables 4.10 to 4.13 were presented to facilitate a comprehensive
analysis of the chosen features categorized by each data block. These tables include the names
of the selected features in the second column, the frequency with which each feature was selected
for the given (τ1, τ2) value across all folds in the third column, and the specific folds in which
each feature was chosen, outlined in the last column. Notably, if a feature was selected in all
seven folds, the entry ”All Folds” is indicated in the last column for that particular feature.
Otherwise, the number of folds in which the feature was selected is stated.

These tables serve as a complementary source of information to Figures 4.3.a–d, offering further
insights. Similarly, they demonstrate that as the values of τ1 and τ2 increase, fewer features
from each block surpass the imposed thresholds. For instance, Table 4.13 reveals that when
selecting a value of 0.8 for the (τ1, τ2) pair, only three features from the Clinical dataset
(’FIGO stage 2groups’, ’FIGO stage 2B’, and ’FIGO stage 3B’) were consistently chosen in
all seven folds. The remaining features exhibited lower frequency and stability throughout
the feature selection process. Similar exploration can be conducted for other data blocks. In
the gene scores block, when lower τ values are used, specific Hallmark scores like ”APICAL
SURFACE” or ”PANCREAS BETA CELLS,” ”Dless MINUS Dmore” scores, and ”ESTIMATE
ImmuneScore” scores are selected in all or most folds. However, as the τ values increase, only
Hallmark scores remain selected from this block. Regarding the pharmacokinetic parameters
obtained from DCE-MRI images, it is evident that when the (τ1, τ2) pair holds a higher value,
such as 0.8, features from the Ve and CSH blocks, specifically ”Ve interval 6” and ”CSH interval
6,” are chosen more frequently compared to other features.

Detailed information regarding the selected features for other τ1 and τ2 values not provided in
this section can be found in Appendix A.4.
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(a)

Figure 4.3: Distribution of dataset shares within the RENT-selected features for τ1 and τ2 = 0.2
across all seven folds. The number displayed above each color represents the count of features
from that dataset selected in the corresponding fold.
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(b)

Figure 4.3: Distribution of dataset shares within the RENT-selected features for τ1 and τ2 = 0.3
across all seven folds. The number displayed above each color represents the count of features
from that dataset selected in the corresponding fold.
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(c)

Figure 4.3: Distribution of dataset shares within the RENT-selected features for τ1 and τ2 = 0.4
across all seven folds. The number displayed above each color represents the count of features
from that dataset selected in the corresponding fold.
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(d)

Figure 4.3: Distribution of dataset shares within the RENT-selected features for τ1 and τ2 = 0.8
across all seven folds. The number displayed above each color represents the count of features
from that dataset selected in the corresponding fold.
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Table 4.11: The selected features, among all available features, by the RENT feature selection
technique for τ1 and τ2 equal 0.3. The table also provides information on how frequently each
feature was selected across seven experiment folds and the specific folds each feature was chosen,
indicated in the Count In Folds and Fold Details columns, respectively.

Block Feature Name Count In Folds Fold Details

Clinical Features

’Tumor volum mm3’ 7 All Folds

’LN status’ 7 All Folds

’FIGO stage 2groups’ 7 All Folds

’n.voxels’ 7 All Folds

’FIGO stage 2B’ 7 All Folds

’FIGO stage 3B’ 7 All Folds

’FIGO stage 4A’ 7 All Folds

’FIGO stage 2A’ 1 7

Gene Features

’Score HALLMARK PANCREAS BETA CELLS’ 7 All Folds

’Score HALLMARK APICAL SURFACE’ 6 1,2,3,4,5,6

’Score HALLMARK NOTCH SIGNALING’ 5 1,4,5,6,7

’Score HALLMARK P53 PATHWAY’ 5 1,4,5,6,7

’Score HALLMARK WNT BETA CATENIN SIGNALING’ 5 1,2,4,5,6

’Dless MINUS Dmore’ 4 1,4,5,7

’Score HALLMARK CHOLESTEROL HOMEOSTASIS’ 4 1,2,4,5

’Score HALLMARK MYC TARGETS V2’ 4 2,5,6,7

’Score HALLMARK MITOTIC SPINDLE’ 3 1,5,6

’Score HALLMARK PI3K AKT MTOR SIGNALING’ 3 1,3,7

’ESTIMATEScore’ 3 2,4,7

’ESTIMATE ImmuneScore’ 3 2,4,5

’Score HALLMARK INTERFERON ALPHA RESPONSE’ 2 1,6

’ESTIMATE StromalScore’ 2 2,7

’Score HALLMARK COAGULATION’ 2 2,7

’Score HALLMARK REACTIVE OXYGEN SPECIES PATHWAY’ 2 2,3

’Score HALLMARK ALLOGRAFT REJECTION’ 1 2

’Score HALLMARK HEME METABOLISM’ 1 3

’Score HALLMARK G2M CHECKPOINT’ 1 6

Abrix Features

’ABrix interval 1’ 7 All Folds

’ABrix interval 8’ 6 1,2,3,4,5,6

’ABrix interval 3’ 6 2,3,4,5,6,7

’ABrix interval 2’ 4 2,4,5,7

’ABrix interval 6’ 1 4

’ABrix interval 7’ 1 6

Ve Features

’Ve interval 8’ 7 All Folds

’Ve interval 3’ 6 1,2,3,4,5,6

’Ve interval 6’ 6 1,3,4,5,6,7

’Ve interval 7’ 6 1,3,4,5,6,7

’Ve interval 5’ 5 3,4,5,6,7

’Ve interval 2’ 2 6,7

’Ve interval 1’ 1 7

Ktrans Features

’Ktrans interval 1’ 4 1,4,5,6

’Ktrans interval 5’ 3 1,5,7

’Ktrans interval 6’ 3 3,5,7

’Ktrans interval 3’ 1 7

CSH Features

’CSH interval 6’ 7 All Folds

’CSH interval 1’ 6 1,2,3,4,5,6

’CSH interval 2’ 6 1,2,3,4,5,7

’CSH interval 5’ 4 1,4,5,7

’CSH interval 7’ 4 3,4,5,7

’CSH interval 3’ 1 7
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Table 4.12: The selected features, among all available features, by the RENT feature selection
technique for τ1 and τ2 equal 0.4. The table also provides information on how frequently each
feature was selected across seven experiment folds and the specific folds each feature was chosen,
indicated in the Count In Folds and Fold Details columns, respectively.

Block Feature Name Count In Folds Fold Details

Clinical Features

’LN status’ 7 All Folds

’FIGO stage 2groups’ 7 All Folds

’n.voxels’ 7 All Folds

’FIGO stage 2B’ 7 All Folds

’FIGO stage 3B’ 7 All Folds

’FIGO stage 4A’ 7 All Folds

’Tumor volum mm3’ 6 1,2,3,4,5,6

Gene Features

’Score HALLMARK PANCREAS BETA CELLS’ 7 All Folds

’Score HALLMARK APICAL SURFACE’ 6 1,2,3,4,5,6

’Score HALLMARK P53 PATHWAY’ 5 1,4,5,6,7

’Score HALLMARK WNT BETA CATENIN SIGNALING’ 5 1,2,4,5,6

’Score HALLMARK NOTCH SIGNALING’ 4 1,4,5,6

’Score HALLMARK MITOTIC SPINDLE’ 3 1,5,6

’Score HALLMARK PI3K AKT MTOR SIGNALING’ 3 1,3,7

’ESTIMATE ImmuneScore’ 3 2,4,5

’Score HALLMARK MYC TARGETS V2’ 3 2,6,7

’Dless MINUS Dmore’ 3 4,5,7

’ESTIMATEScore’ 2 2,7

’ESTIMATE StromalScore’ 2 2,7

’Score HALLMARK HEME METABOLISM’ 1 3

’Score HALLMARK REACTIVE OXYGEN SPECIES PATHWAY’ 1 3

’Score HALLMARK CHOLESTEROL HOMEOSTASIS’ 1 4

’Score HALLMARK G2M CHECKPOINT’ 1 6

Abrix Features

’ABrix interval 8’ 6 1,2,3,4,5,6

’ABrix interval 3’ 5 3,4,5,6,7

’ABrix interval 1’ 4 1,4,5,7

’ABrix interval 2’ 3 2,4,7

’ABrix interval 6’ 1 4

Ve Features

’Ve interval 8’ 7 All Folds

’Ve interval 7’ 6 1,3,4,5,6,7

’Ve interval 3’ 5 1,3,4,5,6

’Ve interval 6’ 4 3,5,6,7

’Ve interval 5’ 3 5,6,7

’Ve interval 1’ 1 7

’Ve interval 2’ 1 7

Ktrans Features

’Ktrans interval 1’ 3 1,5,6

’Ktrans interval 5’ 2 5,7

’Ktrans interval 6’ 2 5,7

’Ktrans interval 3’ 1 7

CSH Features

’CSH interval 6’ 7 All Folds

’CSH interval 1’ 6 1,2,3,4,5,6

’CSH interval 5’ 3 1,5,7

’CSH interval 2’ 3 2,5,7

’CSH interval 7’ 3 3,5,7

’CSH interval 3’ 1 7
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Table 4.13: The selected features, among all available features, by the RENT feature selection
technique for τ1 and τ2 equal 0.8. The table also provides information on how frequently each
feature was selected across seven experiment folds and the specific folds each feature was chosen,
indicated in the Count In Folds and Fold Details columns, respectively.

Block Feature Name Count In Folds Fold Details

Clinical Features

’FIGO stage 2groups’ 7 All Folds

’FIGO stage 2B’ 7 All Folds

’FIGO stage 3B’ 7 All Folds

’FIGO stage 4A’ 5 1,4,5,6,7

’n.voxels’ 5 2,3,4,5,6

’LN status’ 2 1,7

’Tumor volum mm3’ 1 6

Gene Features

’Score HALLMARK WNT BETA CATENIN SIGNALING’ 2 1,4

’Score HALLMARK NOTCH SIGNALING’ 1 1

’Score HALLMARK PANCREAS BETA CELLS’ 1 4

Abrix Features ’ABrix interval 2’ 1 7

Ve Features

’Ve interval 6’ 2 6,7

’Ve interval 3’ 1 6

’Ve interval 5’ 1 6

’Ve interval 7’ 1 6

’Ve interval 2’ 1 7

’Ve interval 8’ 1 7

Ktrans Features ’Ktrans interval 1’ 1 1

CSH Features

’CSH interval 6’ 3 1,5,7

’CSH interval 1’ 1 1

’CSH interval 2’ 1 7

’CSH interval 3’ 1 7

’CSH interval 3’ 1 7

’CSH interval 5’ 1 7
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Chapter 5

Discussion

5.1 Data

Insufficient data poses challenges to the applications of machine learning in diagnosing, treating,
and predicting treatment outcomes for cancer tumors. ML models require sufficient data to
learn intricate patterns and develop precise predictive models. When data is scarce, it can lead
to model overfitting, where the model performs well on the training data but fails to generalize
to unseen cases. This compromises the accuracy and reliability of ML models. However,
the availability of such data is often limited due to factors such as a small number of patients,
issues with data consistency and confidentiality (as cross-border data sharing to generate larger
databases is not easily feasible), data fragmentation across various systems and institutions,
or the absence of standardized mechanisms for data collection. These limitations require more
advanced methodologies to tackle the challenges that inadequate data presents.

This study utilized a multi-source dataset comprising pharmacokinetic parameters extracted
from DCE-MR images, gene scores, and clinical data to address the limited available data.
Using multiple data sources brought both advantages and disadvantages. On the positive
side, pooling information from various sources offered a larger amount of data, enabling the
training of models with better generalization capabilities to unseen data. However, it also posed
challenges related to the diverse nature of the data sources. Firstly, the lack of accessible data
for numerous patients across different data blocks led to the decision to exclude incomplete
records. Secondly, by employing a multi-source dataset, quantifying the impact of each source
became more complex, and the higher dataset dimensionality necessitated engaging in more
complex data preprocessing.

By acknowledging these challenges associated with the multi-source nature of the data and the
specific data types involved, this study aimed to mitigate potential limitations while leveraging
the advantages of utilizing a comprehensive dataset. Furthermore, in this research, the pre-
diction of tumor recurrence was examined regardless of whether it was locoregional or distant
recurrence. Nonetheless, it is also possible to explore the prediction of these specific statuses
individually.
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5.2 Data Preprocessing

An imbalance or skewed distribution of classes or categories within a dataset can impose several
problems on machine learning algorithms. Machine learning models tend to be biased toward
the majority class and prioritize accuracy on the dominant class while performing poorly on
minority classes. This can lead to poor detection or prediction performance for the minority
class(es). Since medical data is often unbalanced, and here the preference of minority samples
is sometimes even higher than the majority samples, it is essential to investigate how to reduce
biased model performance caused by imbalanced data. This study found that out of the patients
who underwent therapy, 63% fully recovered, while 37% experienced tumor relapse within a
5-year follow-up period. Instead of randomly duplicating samples from the minority class, the
SMOTE method was employed as a more sophisticated approach to simulate minority samples.
The results indicate that using this method significantly improves the performance of some
machine-learning models. However, it is vital to acknowledge that the SMOTE method may
have its limitations and issues.

Aside from the evident increase in model runtime shown in Table 4.9, SMOTE can introduce
synthetic instances that are too similar to existing minority class samples, leading to overgen-
eralization. This can cause the model to become overly confident in its predictions, potentially
compromising its ability to distinguish between the minority and majority classes accurately.
By creating synthetic samples, SMOTE effectively increases the size of the minority class. Sup-
pose the synthetic samples are not carefully generated. In that case, the risk of overfitting may
increase, especially if the generated samples do not accurately represent the actual distribution
of the minority class or if the minority class is inherently similar or overlaps with the majority
class. Furthermore, SMOTE may amplify the impact of noise or outliers in the minority class.
Since SMOTE generates synthetic samples by interpolating between existing minority class
samples, noisy or outlier instances may also be used in the interpolation process, potentially
creating misleading synthetic samples. In their study, Fernandez et al. [89] introduce several
extensions of SMOTE that aim to examine and resolve the issues mentioned above and to
create more robust ML models.

Furthermore, to better utilize the small available data, minimize bias in performance evalua-
tion, and obtain reliable performance estimates, this study prioritized Stratified K-Fold Cross-
Validation for dataset splitting rather than relying on a single Train-Test-Split. This way, by
preserving the relative distribution of samples from each class in the original dataset, the study
ensured that more training and testing subsets (specifically 7, in this case) were made avail-
able to the models. While implementing this approach alone can yield the benefits mentioned
above, an additional possibility is to employ the Repeated Stratified K-Fold Cross-Validation
technique, which involves repeating the partitioning process N ×K times instead of K times.
On the one hand, this approach might offer additional advantages, including increased model
robustness, enhanced evaluation of model stability, improved hyperparameter tuning, and even
more efficient utilization of the available data. However, on the other hand, it may impact
runtime due to training a higher number of elementary models.

This research employed the One-Hot encoding approach for preprocessing categorical features.
This method represents each category as a binary feature, effectively avoiding the introduction
of ordinality or numerical relationships. However, it can lead to a high-dimensional and sparse
representation, mainly when dealing with categorical features with numerous unique values.
Other alternative options like Count Encoding and Label Encoding could be considered to
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assess if they improve classification performance. Count Encoding provides information on
category frequency but may not be suitable when categories have similar counts, as they would
be encoded with the same value. Label Encoding offers a compact representation by assigning a
unique numerical label to each category. However, it introduces an arbitrary ordinal relationship
between categories that can mislead the model by assuming a meaningful order. Exploring
these alternative encoding techniques could help to determine if they yield better classification
performance in this study.

5.3 Feature Selection

Feature selection serves various objectives, including reducing complexity, enhancing inter-
pretability, facilitating efficient data processing, or improving model performance in machine
learning applications. This study employed the RENT feature selection technique, which falls
under the embedded feature selector category and utilizes Elastic Net regularization to perform
feature selection. In this study, RENT helped accomplish some of these objectives while oth-
ers did not achieve. Figure 4.3.a illustrates that employing even a small RENT criteria value
proved effective in detecting and eliminating over 42% of unnecessary or redundant features.
This led to a streamlined and more manageable set of features. By reducing the dataset dimen-
sionality, the subsequent modeling algorithms’ complexity was significantly decreased, resulting
in considerably faster training times.

RENT also facilitated a deeper comprehension of the underlying factors contributing to pre-
dictions. By referring to Tables 4.10–4.13, it was revealed that by segregating the influential
features based on individual data blocks, the analysis and explanation of each block’s impact
on the model’s outcomes were made more accessible. Specifically, the findings indicated that
the clinical data block played a more substantial role in predicting patients’ treatment out-
comes than other blocks. This was evident since clinical features were consistently chosen over
others as the τ values increased. However, regarding enhancing model performance, the post
hoc analysis demonstrated that RENT did not exhibit a statistically significant impact on the
obtained results. Nevertheless, it was observed that RENT did not have a detrimental effect
on the results either.

Despite its strengths, RENT also has limitations. Its efficacy can be restricted when dealing
with strongly non-linear problems due to its reliance on linear or logistic regression for feature
selection. The limitations of these methods stem from their inherent assumptions and func-
tional forms, which primarily allow them to capture linear or additive effects between variables.
Consequently, when confronted with complex relationships, linear and logistic regression may
struggle to adequately capture the underlying patterns and relationships in strongly non-linear
problems. In addition, there are situations where expert knowledge can be highly advantageous
in selecting the most crucial features, particularly in domains like medicine or life sciences that
prioritize model interpretability. However, the RENT method, similar to numerous other fea-
ture selection techniques, does not incorporate the input or expertise of domain experts during
the feature selection process.

The User-Guided Bayesian Framework for Feature Selection (UBayFS) method is a poten-
tial alternative—a recently developed ensemble feature selection technique operating within a
Bayesian statistical framework. This method takes into account two sources of information:
data and domain knowledge. It constructs an ensemble of feature selectors based on a multi-
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nomial likelihood model derived from the data. Additionally, the user can guide UBayFS by
assigning weights to features and imposing penalties on feature blocks or combinations using a
Dirichlet-type prior distribution, thereby incorporating domain knowledge. The specific func-
tionality and potential advantages of utilizing UBayFS can be explored in detail within the
official paper [97]. However, it is essential to note that this method may also introduce particu-
lar challenges. For instance, the confidence level of experts in their applied opinions during the
feature selection process and the resolution of potential conflicts between domain knowledge
and data-driven information are important considerations to address.

This research noted that the hyperparameters chosen for the models during cross-validation
were also employed to train the models that utilized the features selected by RENT. It is
important to highlight from Table 4.4 that a l1-ratio value of zero indicates that this regu-
larization method, which can also serve as a feature selection technique, was not employed
again. Consequently, the features were not further limited or filtered by LR. However, the
Entropy criterion in RF can be viewed as an additional feature selector or constraint on top
of the features selected by RENT. In addition to the benefits the Entropy criterion brings to
the RF classifier, such as maintaining diversity and information richness across the ensemble of
decision trees by encouraging balanced splits and preventing overfitting, it also complicates the
interpretability of RF during this study. This is because, by utilizing this criterion, RF tends
to prioritize features that offer the highest information gain, possibly making the previously
selected features even more filtered.

Feature correlation is another problem that can make it challenging to determine the true
importance of each feature in a machine-learning model. When two or more features are
highly correlated, they provide similar information to the model. As a result, the model may
assign similar weights or importance to these features, making it difficult to distinguish their
contributions. This redundancy can lead to overemphasizing certain features while neglecting
others. Since one of the goals of this study was to identify the most informative indicators
for predicting the patients’ treatment outcomes, the research aimed to incorporate all available
features into the ML models and the RENT feature selection technique. Nevertheless, it may
be worthwhile exploring the potential impact of excluding highly correlated features on the
classification performance of the models in subsequent investigations.

5.4 Outcome Prediction using Machine Learning

Given that this study focuses on a binary issue, the selection of classifiers may significantly
impact the outcomes. The initial choice was to utilize logistic regression due to its noteworthy
advantages. Logistic regression is a widely used algorithm that is relatively straightforward
and comprehensible compared to more intricate classification algorithms. The coefficients in
the logistic regression model can be interpreted as the impact of each feature on the likelihood
of belonging to a specific class, resulting in more easily understandable outcomes. This model
can handle noisy data and outliers reasonably, thanks to the sigmoid activation function that
compresses extreme values towards the boundaries of 0 and 1. Considering Table 4.9, logistic
regression also exhibits computational efficiency, as it demonstrates the second shortest average
training time when utilizing all features and achieves the fastest runtime after reducing features
using the RENT method. However, LR assumes a linear relationship between the independent
variables and the log-odds of the target variable. If the actual relationship is highly non-linear,
logistic regression may not capture it effectively, leading to suboptimal performance.
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The subsequent option was the random forest, a popular ensemble learning algorithm known
for its various strengths. By combining multiple decision trees and averaging their predictions,
the random forest algorithm tends to achieve high accuracy. It also exhibits robustness against
overfitting and outliers due to its independent construction of each decision tree, resulting
in less influence from outliers on the overall prediction because of the averaging effect. This
characteristic may explain its relatively higher stability in performance when faced with diverse
subsets of data in each fold, distinguishing it from the other two models (as shown in Figure 4.2).
Furthermore, random forests can handle complex datasets with non-linear relationships and
capture a wide range of patterns. However, it has its limitations. Interpreting the random forest
can be challenging compared to simpler models like logistic regression. Each decision tree within
the random forest learns from different random subsets of features and observations, making
it more intricate to comprehend the combined impact of multiple trees and their interactions.
Additionally, random forests can be computationally expensive, particularly when involving
hyperparameter tuning. Table 4.9 illustrated that random forest was noticeably the slowest
model.

Support vector machine was the third choice because it generally performs well on short-
wide datasets, where the number of features is larger than the number of samples. This is
commonly referred to as the ”curse of dimensionality,” SVMs address this issue using the
kernel trick. Outliers in the data have less impact on SVMs because they aim to maximize
the margin between classes, reducing the influence of individual data points. By utilizing the
regularization parameter (C), SVMs control the trade-off between achieving maximum margin
and minimizing classification errors, preventing overfitting by penalizing misclassified samples.
Nevertheless, SVMs require careful tuning of various parameters, including the choice of kernel
and the regularization parameter (C). The model’s performance is sensitive to these settings,
and improper tuning can lead to suboptimal outcomes. Additionally, SVM may encounter
challenges when working with imbalanced datasets. Since SVMs prioritize correctly classifying
samples near the decision boundary, they may focus more on the majority class and neglect
the minority class in imbalanced datasets. Consequently, the classification performance for the
minority class tends to be poor, as observed in this study. When SMOTE was not employed
as a class balancing technique, the SVM models assigned all samples to the majority class,
resulting in MCC scores of zero.

The chosen evaluation metric in this study, the MCC Score, has several advantages. It addresses
the issue of imbalanced datasets by considering the balance between positive and negative
class samples. The MCC score considers both correct and incorrect predictions across all four
categories (TP, TN, FP, FN), and it is specifically designed for binary classification tasks.
However, a limitation of the MCC score is that it needs to be adapted or extended for multi-
class classification tasks. Additionally, interpreting the MCC score can be challenging without
context or a baseline for comparison, as there is no clear definition of what constitutes a good
or bad score.

Apart from Precision, Recall, and F1-score, alternative evaluation metrics, such as the Area
Under the ROC Curve (AUROC), exist. The AUROC measures the trade-off between the true
positive rate (TPR) and the false positive rate (FPR) at different classification thresholds, as
represented by the receiver operating characteristic (ROC) curve. It provides a single-value
metric that summarizes the integral of this curve. AUROC is particularly useful when focusing
on overall classification performance and the model’s ability to distinguish between positive
and negative classes, regardless of the chosen threshold. However, AUROC does not address
the class imbalance or provide insights into the model’s performance at a specific threshold.
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Overall, given the limited sample size, the developed models demonstrated remarkable perfor-
mance. Based on the information discussed in the preceding and current chapters, as well as the
evaluations and statistical analyses, it appears that the SVM model is the preferred choice com-
pared to the other two models. This is due to the SVM model achieving the highest MCC score
and not having significant drawbacks in the other two models. Unlike logistic regression, the
SVM model overcomes the limitation of capturing relationships in non-linear data by utilizing
the kernel trick. Furthermore, compared to the random forest model, the computational cost of
SVM is considerably lower. When employing SVM, it is crucial to apply the SMOTE method
to address the issue of classifying minority class samples and employ the RENT technique to
enhance the interpretability of the models by introducing the most significant features rather
than improving classification performance. The research findings also indicate that among the
various data blocks incorporated into the models, the clinical data block contains the most
influential features for predicting patients’ treatment outcomes. Ultimately, it should be noted
that complete reliance on the models’ results without human supervision is still not feasible.
Continued research is necessary to enhance the data quality used for model training, explore
different advanced ML algorithms, and improve overall performance in predicting treatment
outcomes.

69



CHAPTER 5. DISCUSSION

70



Chapter 6

Conclusion

Machine learning’s abilities to discover intricate data relationships, identify patterns in data
of various dimensions, continuously learn and adapt to new research findings, and process
information quickly for real-time decision support have rendered it valuable in medical research.
Several research studies have been conducted to investigate the applications of machine learning
in early detection, imaging analysis, prognosis, and outcome prediction of cervical cancer, one
of the prevalent cancers affecting women globally. This research aimed to create three distinct
machine learning models —logistic regression, random forest, and support vector machine— to
predict the overall treatment outcomes of patients diagnosed with locally advanced cervical
cancer within a 60-month timeframe. In addition, the impact of employing the RENT feature
selection method and the SMOTE class balance technique on enhancing the performance and
interpretability of the models was also explored.

The training data for the machine learning models consisted of diverse sources, including phar-
macokinetic parameters extracted from DCE-MR images, gene scores, and clinical data. A
dataset comprising 67 patients and 97 features was obtained after establishing a data prepro-
cessing pipeline. The models underwent multiple training iterations: one before implementing
the RENT and SMOTE techniques and another after applying these methods individually or
in combination. The results obtained from the developed models were initially compared with
the outcomes of three random classifiers, serving as the first baseline. Subsequently, the results
from the models trained without utilizing the RENT and SMOTE methods were used as the
second benchmark for the more complex models that incorporated these techniques.

Given the imbalanced class distribution, the MCC score was chosen as the classification perfor-
mance metric. The findings revealed that all the models developed in this research (except for
SVM when the SMOTE method was not employed) outperformed the three random classifiers.
The best results were achieved among the developed models when the RENT and SMOTE
methods were utilized simultaneously, with an MCC score of 0.411 for LR, 0.415 for RF, and
0.444 for SVM. These scores demonstrate enhancements of 27.6% for LR, 19.9% for RF, and
an impressive 44,300% for SVM when compared to the models not employing the RENT and
SMOTE techniques. However, as the best scores were comparable, post hoc statistical analy-
sis employing ANOVA and Tukey’s HSD tests was conducted and indicated that between the
classifier, SMOTE, and RENT, the first two factors and their interaction exhibited statistically
significant effects on the MCC scores, with p-values of 0.005, 0.02, and 0.002, respectively. Fur-
thermore, according to Tukey’s HSD test, the SVM model demonstrated significant differences
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from other models when the SMOTE method was not utilized. This indicates that the SMOTE
method had a more substantial impact on the SVM model than the others.

Overall, while the obtained MCC scores are not the highest, they hold significance given the
limited number of samples. This suggests that the presented models possess the potential
for further investigation, improvement, and utilization as auxiliary tools for medical profes-
sionals. Furthermore, to enhance the interpretability of the models in predicting treatment
outcomes, the study employed the RENT feature selection method to introduce the most influ-
ential features. The findings demonstrated that as the RENT criteria values increased, implying
more significant restrictions on the feature selection process, the clinical block features such
as ”FIGO stage 2groups,” ”FIGO stage 3B,” ”FIGO stage 2B,” and ”n.voxels” were more fre-
quently selected compared to features from other data blocks. This suggests that clinical data
block features are vital in predicting patient treatment outcomes.
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Appendix A

Additional Results

A.1 RENT Hyperparameter Selection - Accuracy Scores

In addition to the details shared in Section 4.1, this appendix presents the accuracy scores
achieved by logistic regression (LR), random forest (RF), and support vector machine (SVM)
models in each fold, as well as the average scores across all folds. These results provide further
evidence of the effectiveness of the values selected in Section 4.1 for the (τ1, τ2) pairs, as
demonstrated by the average accuracy obtained.
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APPENDIX A. ADDITIONAL RESULTS

(a)

Figure A.1: Classification Accuracy scores obtained from Logistic Regression (LR), Random
Forest (RF), and Support Vector Machine (SVM) models with different values for the (τ1, τ2)
pair in the initial four data folds. Solid lines represent the scores of the models trained with
the RENT features, while dashed lines with markers depict the scores of the models trained
with all available features. The markers on the dashed lines are purely for visual convenience
and do not indicate specific data points.
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APPENDIX A. ADDITIONAL RESULTS

(b)

Figure A.1: Classification Accuracy scores obtained from Logistic Regression (LR), Random
Forest (RF), and Support Vector Machine (SVM) models with different values for the (τ1, τ2)
pair in the last three data folds. The average scores across all folds are presented in the final row
of the figure. Solid lines represent the scores of the models trained with the RENT features,
while dashed lines with markers depict the scores of the models trained with all available
features. The markers on the dashed lines are purely for visual convenience and do not indicate
specific data points.
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APPENDIX A. ADDITIONAL RESULTS

A.2 Classification Performance - Other Metrics

Figure A.2: The classification MCC scores achieved by machine learning models in seven differ-
ent folds. The models were color-coded based on whether they were trained using all available
features (referred to as ”All”) or the features selected by the RENT method (referred to as
”RENT”), with or without the utilization of the SMOTE balancing technique. The last group
of columns in each plot showcases the average scores across all folds. Furthermore, the accu-
racy score of the initial baseline (referred to as Random) is also presented, taking into account
whether the samples are balanced or unbalanced. The τ1 and τ2 values utilized in RENT cor-
respond to the same values chosen in Section 4.1.
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APPENDIX A. ADDITIONAL RESULTS

A.3 Datasets’ Shares in the RENT-Selected Features

This appendix offers additional details for Section 4.3, specifically regarding the distribution of
selected features across available datasets for the following values of the (τ1, τ2) pair: 0.1, 0.5,
0.6, 0.7, and 0.9.
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(a)

Figure A.3: Distribution of dataset shares within the RENT-selected features for τ1 and τ2
= 0.1 across all seven folds. The number displayed above each color represents the count of
features from that dataset selected in the corresponding fold.
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(b)

Figure A.3: Distribution of dataset shares within the RENT-selected features for τ1 and τ2
= 0.5 across all seven folds. The number displayed above each color represents the count of
features from that dataset selected in the corresponding fold.
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(c)

Figure A.3: Distribution of dataset shares within the RENT-selected features for τ1 and τ2
= 0.6 across all seven folds. The number displayed above each color represents the count of
features from that dataset selected in the corresponding fold.
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(d)

Figure A.3: Distribution of dataset shares within the RENT-selected features for τ1 and τ2
= 0.7 across all seven folds. The number displayed above each color represents the count of
features from that dataset selected in the corresponding fold.
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(e)

Figure A.3: Distribution of dataset shares within the RENT-selected features for τ1 and τ2
= 0.9p across all seven folds. The number displayed above each color represents the count of
features from that dataset selected in the corresponding fold.
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A.4 Further Details Regarding the Most Informative Fea-

tures

This appendix provides supplementary information to expand upon the content discussed in
Section 4.3. Specifically, the feature names within each dataset and the frequency of their
selection across different folds. The feature names and their respective selection counts are
displayed for each dataset, considering various (τ1, τ2) values such as 0.1, 0.5, 0.6, 0.7, and 0.9.
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APPENDIX A. ADDITIONAL RESULTS

Table A.4: The selected features, among all available features, by the RENT feature selection
technique for τ1 and τ2 equal 0.5. The table also provides information on how frequently each
feature was selected across seven experiment folds and the specific folds each feature was chosen,
indicated in the Count In Folds and Fold Details columns, respectively.

Block Feature Name Count In Folds Fold Details

Clinical Features

’LN status’ 7 All Folds

’FIGO stage 2groups’ 7 All Folds

’FIGO stage 2B’ 7 All Folds

’FIGO stage 3B’ 7 All Folds

’FIGO stage 4A’ 6 1,3,4,5,6,7

’Tumor volum mm3’ 6 1,2,3,4,5,6

’n.voxels’ 6 1,2,3,4,5,6

Gene Features

’Score HALLMARK WNT BETA CATENIN SIGNALING’ 5 1,2,4,5,6

’Score HALLMARK PANCREAS BETA CELLS’ 5 2,4,5,6,7

’Score HALLMARK APICAL SURFACE’ 3 1,2,5

’Score HALLMARK MITOTIC SPINDLE’ 3 1,5,6

’Score HALLMARK NOTCH SIGNALING’ 3 1,4,5

’Score HALLMARK P53 PATHWAY’ 2 1,6

’Score HALLMARK PI3K AKT MTOR SIGNALING’ 2 1,3

’ESTIMATEScore’ 2 2,7

’Score HALLMARK MYC TARGETS V2’ 1 2

’Score HALLMARK HEME METABOLISM’ 1 3

’Score HALLMARK REACTIVE OXYGEN SPECIES PATHWAY’ 1 3

’Dless MINUS Dmore’ 1 4

’ESTIMATE ImmuneScore’ 1 4

Abrix Features

’ABrix interval 8’ 5 1,3,4,5,6

’ABrix interval 3’ 4 3,4,5,6

’ABrix interval 1’ 3 1,5,7

’ABrix interval 2’ 1 7

Ve Features

’Ve interval 8’ 6 1,3,4,5,6,7

’Ve interval 3’ 5 1,3,4,5,6

’Ve interval 6’ 4 3,5,6,7

’Ve interval 7’ 3 3,6,7

’Ve interval 5’ 3 5,6,7

’Ve interval 1’ 1 7

’Ve interval 2’ 1 7

Ktrans Features
’Ktrans interval 1’ 2 1,5

’Ktrans interval 3’ 1 7

CSH Features

’CSH interval 6’ 6 1,2,3,4,5,7

’CSH interval 1’ 4 1,4,5,6

’CSH interval 5’ 3 1,5,7

’CSH interval 2’ 3 2,5,7

’CSH interval 7’ 2 3,7

’CSH interval 3’ 1 7

’CSH interval 3’ 1 7
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APPENDIX A. ADDITIONAL RESULTS

Table A.5: The selected features, among all available features, by the RENT feature selection
technique for τ1 and τ2 equal 0.6. The table also provides information on how frequently each
feature was selected across seven experiment folds and the specific folds each feature was chosen,
indicated in the Count In Folds and Fold Details columns, respectively.

Block Feature Name Count In Folds Fold Details

Clinical Features

’FIGO stage 2groups’ 7 All Folds

’FIGO stage 2B’ 7 All Folds

’FIGO stage 3B’ 7 All Folds

’FIGO stage 4A’ 6 1,3,4,5,6,7

’n.voxels’ 6 1,2,3,4,5,6

’LN status’ 5 1,2,5,6,7

’Tumor volum mm3’ 5 1,3,4,5,6

Gene Features

’Score HALLMARK WNT BETA CATENIN SIGNALING’ 4 1,2,4,6

’Score HALLMARK PANCREAS BETA CELLS’ 4 2,4,5,7

’Score HALLMARK APICAL SURFACE’ 3 1,2,5

’Score HALLMARK NOTCH SIGNALING’ 2 1,4

’Score HALLMARK P53 PATHWAY’ 2 1,6

’Score HALLMARK REACTIVE OXYGEN SPECIES PATHWAY’ 1 3

’Dless MINUS Dmore’ 1 4

’Score HALLMARK MITOTIC SPINDLE’ 1 6

Abrix Features

’ABrix interval 8’ 4 1,3,4,5

’ABrix interval 3’ 3 3,4,6

’ABrix interval 2’ 1 7

Ve Features

’Ve interval 8’ 5 1,3,4,6,7

’Ve interval 6’ 3 3,6,7

’Ve interval 7’ 3 3,6,7

’Ve interval 3’ 2 3,6

’Ve interval 5’ 2 6,7

’Ve interval 1’ 1 7

’Ve interval 2’ 1 7

Ktrans Features ’Ktrans interval 1’ 2 1,5

CSH Features

’CSH interval 6’ 5 1,3,4,5,7

’CSH interval 1’ 2 1,5

’CSH interval 2’ 1 7

’CSH interval 3’ 1 7

’CSH interval 5’ 1 7
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APPENDIX A. ADDITIONAL RESULTS

Table A.6: The selected features, among all available features, by the RENT feature selection
technique for τ1 and τ2 equal 0.7. The table also provides information on how frequently each
feature was selected across seven experiment folds and the specific folds each feature was chosen,
indicated in the Count In Folds and Fold Details columns, respectively.

Block Feature Name Count In Folds Fold Details

Clinical Features

’FIGO stage 2groups’ 7 All Folds

’FIGO stage 2B’ 7 All Folds

’FIGO stage 3B’ 7 All Folds

’n.voxels’ 6 1,2,3,4,5,6

’FIGO stage 4A’ 5 1,4,5,6,7

’Tumor volum mm3’ 4 3,4,5,6

’LN status’ 3 1,5,7

Gene Features

’Score HALLMARK WNT BETA CATENIN SIGNALING’ 4 1,2,4,6

’Score HALLMARK PANCREAS BETA CELLS’ 4 2,4,5,7

’Score HALLMARK APICAL SURFACE’ 2 1,5

’Score HALLMARK NOTCH SIGNALING’ 2 1,4

’Score HALLMARK MITOTIC SPINDLE’ 1 6

’Score HALLMARK P53 PATHWAY’ 1 6

Abrix Features

’ABrix interval 8’ 3 1,3,4

’ABrix interval 3’ 2 4,6

’ABrix interval 2’ 1 7

Ve Features

’Ve interval 7’ 3 3,6,7

’Ve interval 8’ 3 3,6,7

’Ve interval 3’ 2 3,6

’Ve interval 5’ 2 6,7

’Ve interval 6’ 2 6,7

’Ve interval 1’ 1 7

’Ve interval 2’ 1 7

Ktrans Features ’Ktrans interval 1’ 1 1

CSH Features

’CSH interval 6’ 4 1,3,4,7

’CSH interval 1’ 1 1

’CSH interval 2’ 1 7

’CSH interval 3’ 1 7

’CSH interval 5’ 1 7
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APPENDIX A. ADDITIONAL RESULTS

Table A.7: The selected features, among all available features, by the RENT feature selection
technique for τ1 and τ2 equal 0.9. The table also provides information on how frequently each
feature was selected across seven experiment folds and the specific folds each feature was chosen,
indicated in the Count In Folds and Fold Details columns, respectively.

Block Feature Name Count In Folds Fold Details

Clinical Features

’FIGO stage 2groups’ 7 All Folds

’FIGO stage 3B’ 7 All Folds

’FIGO stage 2B’ 6 1,2,3,4,5,7

’n.voxels’ 4 2,4,5,6

’LN status’ 2 1,7

’FIGO stage 4A’ 2 1,7

Gene Features
’Score HALLMARK NOTCH SIGNALING’ 1 1

’Score HALLMARK WNT BETA CATENIN SIGNALING’ 1 4

Abrix Features ’ABrix interval 2’ 1 7

Ve Features

’Ve interval 3’ 1 6

’Ve interval 5’ 1 6

’Ve interval 6’ 1 6

’Ve interval 2’ 1 7

CSH Features ’CSH interval 6’ 2 5,7
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