15 research outputs found

    Authentication protocols for D2D communications

    Get PDF
    Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2019.A comunicação Dispositivo-a-Dispositivo (D2D) é uma das tecnologias promissoras para ser usada na conexão de grandes quantidades de dispositivos, como previsto para a Internet das Coisas (IoT, do inglês Internet of Things), ao proporcionar a oportunidade de conexão direta entre dispositivos, sem a obrigatoriedade de emprego da infraestrutura de redes tradicionais. A segurança é um item crucial para o sucesso da IoT e das comunicações D2D e pode ser proporcionada por protocolos de autenticação e acordo de chaves (AKA, do inglês Authentication and Key Agreement). Entretanto, os protocolos de autenticação utilizados nas redes tradicionais (como os protocolos EPS-AKA e EAP-AKA) não estão adaptados para D2D, e seu emprego em situação de grande aumento no número de dispositivos conectados imporia um elevado consumo de recursos, especialmente de banda e de processamento computacional. Adicionalmente, no início do trabalho foram identificados poucos protocolos dessa categoria, especificamente voltados para D2D. Este trabalho apresenta o projeto e a avaliação de 3 (três) protocolos de autenticação e acordo de chaves para comunicações D2D, desenvolvidos para 3 (três) cenários:1) dispositivos integrantes de Telecare Medical Information Systems (TMIS) baseados em sistema de nuvem computacional; 2) grupos de dispositivos em cenário genérico de emprego de comunicações D2D, onde sejam esperadas grandes quantidades de dispositivos; 3) grupos de dispositivos em comunicações D2D em cenário m-health. A metodologia para obtenção de novos protocolos seguros considerou, como passo inicial, uma revisão da literatura, buscando identificar protocolos que tenham sido empregados, de forma específica, em cada cenário considerado. Em seguida, foi definida uma arquitetura específica de cada cenário considerado, bem como propriedades de segurança a serem alcançadas e possíveis ataques contra os quais caberia oferecer proteção. Foram então criados novos protocolos de autenticação para os cenários e arquiteturas citados, considerando o emprego de comunicações D2D. Em todos os três cenários, dentre as propriedades de segurança tidas como requisitos para o correto funcionamento da comunicação D2D, incluem-se a preservação da confidencialidade, a integridade e a disponibilidade do sistema; em termos de possíveis ataques, ataques tais como os dos tipos man-in-the-middle, repetição e personificação foram tratados, visando proteção pelo protocolo contra os mesmos. Após a descrição de cada protocolo, esta dissertação apresenta comparações em relação a propriedades de segurança entre cada um dos protocolos propostos e alguns de seus respectivos trabalhos relacionados. Uma comparação envolvendo custos de computação, de comunicação e de energia é então realizada. Os resultados obtidos mostram bom desempenho e robustez em segurança para os três esquemas propostos. As propostas mostram-se adequadas para uso futuro, na autenticação de dispositivos IoT que utilizarem comunicação D2D, dentro dos cenários adotados e sob as condições em que foram avaliadas. Uma validação semiformal dos protocolos é também apresentada. A ferramenta AVISPA é utilizada para verificar a robustez da segurança dos protocolos desenvolvidos.Device-to-Device (D2D) communication is one of the promising technologies to be used to connect the large quantity of devices, as forecasted for the Internet of Things (IoT), by providing to devices the opportunity of connecting each other without mandatory use of traditional networks infrastructure. Security is a crucial item for the success of IoT and D2D communication and can be provided by robust authentication and key agreement protocols (AKA). However, the authentication protocols used for traditional networks (such as EPS-AKA and EAP-AKA) are not adapted for D2D and their use in the situation of large number of devices connected would impose high consume of resources, specially bandwidth and computational processing. Additionally, in the beginning of the work, it was identified a small quantity of protocols of the described category, specifically for D2D. This work provides the project and evaluation of 3 (three) authentication protocols designed to meet the demand on Device-to-Device (D2D) communications authentication and key agreement protocols, developed for 3 (three) scenarios: 1) devices that are members of Telecare Medical Information Systems (TMIS) based on cloud system; 2) groups of devices in generic scenario for the use of D2D communications, which there are expected large quantities of devices; 3) groups of devices for D2D communication in m-health scenario. The methodology for obtaining of new secure protocols considered, as initial step, a literature review, searching for protocols that might be specifically used in each of the scenarios considered. Next, a specific architecture for each scenario considered was developed, as well as security properties to be accomplished and possible attacks that might be suitable for the protocol to have protection. Therefore, authentication protocols were created for the scenarios and architecture cited, considering the use of D2D. In all three cases, among the security objectives required for the proper functioning of D2D communication, there are included the preservation of confidentiality, integrity, and availability of the system; in terms of attacks, such as man-in-the-middle, replay and impersonation were treated, aiming the protection of the protocols against the cited attacks. After the description of each protocol, this dissertation presents comparisons regarding security properties among each of the proposed protocols and some of their respective related works. A comparison involving computational, communication and energy costs is executed. The results obtained show good performance and robust security to the three proposed schemes. The proposals show up suitable future use, in the authentication of IoT devices using D2D communication, in the scenarios adopted and under the conditions evaluated. A semi-formal validation of the protocols is also presented. The tool AVISPA is used to verify the security robustness of the protocols developed

    Lightweight Three-Factor Authentication and Key Agreement Protocol for Internet-Integrated Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) will be integrated into the future Internet as one of the components of the Internet of Things, and will become globally addressable by any entity connected to the Internet. Despite the great potential of this integration, it also brings new threats, such as the exposure of sensor nodes to attacks originating from the Internet. In this context, lightweight authentication and key agreement protocols must be in place to enable end-to-end secure communication. Recently, Amin et al. proposed a three-factor mutual authentication protocol for WSNs. However, we identified several flaws in their protocol. We found that their protocol suffers from smart card loss attack where the user identity and password can be guessed using offline brute force techniques. Moreover, the protocol suffers from known session-specific temporary information attack, which leads to the disclosure of session keys in other sessions. Furthermore, the protocol is vulnerable to tracking attack and fails to fulfill user untraceability. To address these deficiencies, we present a lightweight and secure user authentication protocol based on the Rabin cryptosystem, which has the characteristic of computational asymmetry. We conduct a formal verification of our proposed protocol using ProVerif in order to demonstrate that our scheme fulfills the required security properties. We also present a comprehensive heuristic security analysis to show that our protocol is secure against all the possible attacks and provides the desired security features. The results we obtained show that our new protocol is a secure and lightweight solution for authentication and key agreement for Internet-integrated WSNs

    On the Application of Identity-Based Cryptography in Grid Security

    Get PDF
    This thesis examines the application of identity-based cryptography (IBC) in designing security infrastructures for grid applications. In this thesis, we propose a fully identity-based key infrastructure for grid (IKIG). Our proposal exploits some interesting properties of hierarchical identity-based cryptography (HIBC) to replicate security services provided by the grid security infrastructure (GSI) in the Globus Toolkit. The GSI is based on public key infrastructure (PKI) that supports standard X.509 certificates and proxy certificates. Since our proposal is certificate-free and has small key sizes, it offers a more lightweight approach to key management than the GSI. We also develop a one-pass delegation protocol that makes use of HIBC properties. This combination of lightweight key management and efficient delegation protocol has better scalability than the existing PKI-based approach to grid security. Despite the advantages that IKIG offers, key escrow remains an issue which may not be desirable for certain grid applications. Therefore, we present an alternative identity-based approach called dynamic key infrastructure for grid (DKIG). Our DKIG proposal combines both identity-based techniques and the conventional PKI approach. In this hybrid setting, each user publishes a fixed parameter set through a standard X.509 certificate. Although X.509 certificates are involved in DKIG, it is still more lightweight than the GSI as it enables the derivation of both long-term and proxy credentials on-the-fly based only on a fixed certificate. We also revisit the notion of secret public keys which was originally used as a cryptographic technique for designing secure password-based authenticated key establishment protocols. We introduce new password-based protocols using identity-based secret public keys. Our identity-based techniques can be integrated naturally with the standard TLS handshake protocol. We then discuss how this TLS-like identity-based secret public key protocol can be applied to securing interactions between users and credential storage systems, such as MyProxy, within grid environments

    Fuzzy-in-the-Loop-Driven Low-Cost and Secure Biometric User Access to Server

    Get PDF
    Fuzzy systems can aid in diminishing uncertainty and noise from biometric security applications by providing an intelligent layer to the existing physical systems to make them reliable. In the absence of such fuzzy systems, a little random perturbation in captured human biometrics could disrupt the whole security system, which may even decline the authentication requests of legitimate entities during the protocol execution. In the literature, few fuzzy logic-based biometric authentication schemes have been presented; however, they lack significant security features including perfect forward secrecy (PFS), untraceability, and resistance to known attacks. This article, therefore, proposes a novel two-factor biometric authentication protocol enabling efficient and secure combination of physically unclonable functions, a physical object analogous to human fingerprint, with user biometrics by employing fuzzy extractor-based procedures in the loop. This combination enables the participants in the protocol to achieve PFS. The security of the proposed scheme is tested using the well-known real-or-random model. The performance analysis signifies the fact that the proposed scheme not only offers PFS, untraceability, and anonymity to the participants, but is also resilient to known attacks using light-weight symmetric operations, which makes it an imperative advancement in the category of intelligent and reliable security solutions

    Protocols and Architecture for Privacy-preserving Authentication and Secure Message Dissemination in Vehicular Ad Hoc Networks

    Get PDF
    The rapid development in the automotive industry and wireless communication technologies have enhanced the popularity of Vehicular ad hoc networks (VANETs). Today, the automobile industry is developing sophisticated sensors that can provide a wide range of assistive features, including accident avoidance, automatic lane tracking, semi-autonomous driving, suggested lane changes, and more. VANETs can provide drivers a safer and more comfortable driving experience, as well as many other useful services by leveraging such technological advancements. Even though this networking technology enables smart and autonomous driving, it also introduces a plethora of attack vectors. However, the main issues to be sorted out and addressed for the widespread deployment/adoption of VANETs are privacy, authenticating users, and the distribution of secure messages. These issues have been addressed in this dissertation, and the contributions of this dissertation are summarized as follows: Secure and privacy-preserving authentication and message dissemination in VANETs: Attackers can compromise the messages disseminated within VANETs by tampering with the message content or sending malicious messages. Therefore, it is crucial to ensure the legitimacy of the vehicles participating in the VANETs as well as the integrity and authenticity of the messages transmitted in VANETs. In VANET communication, the vehicle uses pseudonyms instead of its real identity to protect its privacy. However, the real identity of a vehicle must be revealed when it is determined to be malicious. This dissertation presents a distributed and scalable privacy-preserving authentication and message dissemination scheme in VANET. Low overhead privacy-preserving authentication scheme in VANETs: The traditional pseudonym-based authentication scheme uses Certificate Revocation Lists (CRLs) to store the certificates of revoked and malicious entities in VANETs. However, the size of CRL increases significantly with the increased number of revoked entities. Therefore, the overhead involved in maintaining the revoked certificates is overwhelming in CRL-based solutions. This dissertation presents a lightweight privacy-preserving authentication scheme that reduces the overhead associated with maintaining CRLs in VANETs. Our scheme also provides an efficient look-up operation for CRLs. Efficient management of pseudonyms for privacy-preserving authentication in VANETs: In VANETs, vehicles change pseudonyms frequently to avoid the traceability of attackers. However, if only one vehicle out of 100 vehicles changes its pseudonym, an intruder can easily breach the privacy of the vehicle by linking the old and new pseudonym. This dissertation presents an efficient method for managing pseudonyms of vehicles. In our scheme, vehicles within the same region simultaneously change their pseudonyms to reduce the chance of linking two pseudonyms to the same vehicle

    ISSUES AND SOLUTIONS OF APPLYING IDENTITY-BASED CRYPTOGRAPHY TO MOBILE AD-HOC NETWORKS

    Get PDF
    Concept of Mobile Ad-hoc Networks (MANETs) was brought up a few decades ago with assumed prosperous future. Unfortunately, we do not see many practical applications of them in real life. Security of MANETs is a big concern considered by investors and industries, and hinders them from putting MANETs into application. Requirements of security, and difficulties to meet these requirements have been stated clearly already; yet solutions to these difficulties are not quite clear. Cryptographic technologies seem to be capable of satisfying most of the requirements, which has been proved in Internet or wired networks. However, most of the technologies, including symmetric and traditional asymmetric cryptography (such as Public Key Infrastructure (PKI)), are inapplicable or inconvenient to use inMANETs context. Identity-based Cryptography (IBC), as a special form of asymmetric cryptography, carries many features interesting for MANETs. IBC has been studied a lot recently by researchers of MANET security, and many applications have been proposed and claimed to address this difficult problem. However, it is still the case that most of the solutions are not sound enough to be used in a practical MANET. This thesis starts with an intensive survey on the proposals of applications of IBC in MANETs, and points out the issues, limitations and weaknesses in these proposals and also in IBC itself. The thesis proposes a novel framework with key management and secure routing scheme integrated aiming to address these issues. This scheme brings these contributions: compared to symmetric key solutions, it has more functionality derived from asymmetric keys, and is more secure due to using 1-to-m broadcasting key instead of only 1 group broadcasting key, and has less keys to store per node due to using asymmetric keys instead of pairwise symmetric keys; compared to traditional asymmetric cryptography solutions, the storage and communication requirements are lower due to IBC properties; compared to previous IBC solutions, it has no key management and secure routing interdependency cycle problem. Security of the proposed scheme is proved and performance of the scheme is simulated and analyzed in the thesis. To the end of a complete solution for an arbitraryMANET running in an arbitrary environment, the thesis proposes enhancements to counter various attacks and options to abate or eliminate limitations and weaknesses of IBC. The proposed scheme has a wide range of applicability for various MANETs with little or no administrative overhead depending on situations where it is considered

    An Approach to Guide Users Towards Less Revealing Internet Browsers

    Get PDF
    When browsing the Internet, HTTP headers enable both clients and servers send extra data in their requests or responses such as the User-Agent string. This string contains information related to the sender’s device, browser, and operating system. Previous research has shown that there are numerous privacy and security risks result from exposing sensitive information in the User-Agent string. For example, it enables device and browser fingerprinting and user tracking and identification. Our large analysis of thousands of User-Agent strings shows that browsers differ tremendously in the amount of information they include in their User-Agent strings. As such, our work aims at guiding users towards using less exposing browsers. In doing so, we propose to assign an exposure score to browsers based on the information they expose and vulnerability records. Thus, our contribution in this work is as follows: first, provide a full implementation that is ready to be deployed and used by users. Second, conduct a user study to identify the effectiveness and limitations of our proposed approach. Our implementation is based on using more than 52 thousand unique browsers. Our performance and validation analysis show that our solution is accurate and efficient. The source code and data set are publicly available and the solution has been deployed

    A patient agent controlled customized blockchain based framework for internet of things

    Get PDF
    Although Blockchain implementations have emerged as revolutionary technologies for various industrial applications including cryptocurrencies, they have not been widely deployed to store data streaming from sensors to remote servers in architectures known as Internet of Things. New Blockchain for the Internet of Things models promise secure solutions for eHealth, smart cities, and other applications. These models pave the way for continuous monitoring of patient’s physiological signs with wearable sensors to augment traditional medical practice without recourse to storing data with a trusted authority. However, existing Blockchain algorithms cannot accommodate the huge volumes, security, and privacy requirements of health data. In this thesis, our first contribution is an End-to-End secure eHealth architecture that introduces an intelligent Patient Centric Agent. The Patient Centric Agent executing on dedicated hardware manages the storage and access of streams of sensors generated health data, into a customized Blockchain and other less secure repositories. As IoT devices cannot host Blockchain technology due to their limited memory, power, and computational resources, the Patient Centric Agent coordinates and communicates with a private customized Blockchain on behalf of the wearable devices. While the adoption of a Patient Centric Agent offers solutions for addressing continuous monitoring of patients’ health, dealing with storage, data privacy and network security issues, the architecture is vulnerable to Denial of Services(DoS) and single point of failure attacks. To address this issue, we advance a second contribution; a decentralised eHealth system in which the Patient Centric Agent is replicated at three levels: Sensing Layer, NEAR Processing Layer and FAR Processing Layer. The functionalities of the Patient Centric Agent are customized to manage the tasks of the three levels. Simulations confirm protection of the architecture against DoS attacks. Few patients require all their health data to be stored in Blockchain repositories but instead need to select an appropriate storage medium for each chunk of data by matching their personal needs and preferences with features of candidate storage mediums. Motivated by this context, we advance third contribution; a recommendation model for health data storage that can accommodate patient preferences and make storage decisions rapidly, in real-time, even with streamed data. The mapping between health data features and characteristics of each repository is learned using machine learning. The Blockchain’s capacity to make transactions and store records without central oversight enables its application for IoT networks outside health such as underwater IoT networks where the unattended nature of the nodes threatens their security and privacy. However, underwater IoT differs from ground IoT as acoustics signals are the communication media leading to high propagation delays, high error rates exacerbated by turbulent water currents. Our fourth contribution is a customized Blockchain leveraged framework with the model of Patient-Centric Agent renamed as Smart Agent for securely monitoring underwater IoT. Finally, the smart Agent has been investigated in developing an IoT smart home or cities monitoring framework. The key algorithms underpinning to each contribution have been implemented and analysed using simulators.Doctor of Philosoph

    Secure and Privacy-Preserving Vehicular Communications

    Get PDF
    Road safety has been drawing increasing attention in the public, and has been subject to extensive efforts from both industry and academia in mitigating the impact of traffic accidents. Recent advances in wireless technology promise new approaches to facilitating road safety and traffic management, where each vehicle (or referred to as On-board unit (OBU)) is allowed to communicate with each other as well as with Roadside units (RSUs), which are located in some critical sections of the road, such as a traffic light, an intersection, and a stop sign. With the OBUs and RSUs, a self-organized network, called Vehicular Ad Hoc Network (VANET), can thus be formed. Unfortunately, VANETs have faced various security threats and privacy concerns, which would jeopardize the public safety and become the main barrier to the acceptance of such a new technology. Hence, addressing security and privacy issues is a prerequisite for a market-ready VANET. Although many studies have recently addressed a significant amount of efforts in solving the related problems, few of the studies has taken the scalability issues into consideration. When the traffic density is getting large, a vehicle may become unable to verify the authenticity of the messages sent by its neighbors in a timely manner, which may result in message loss so that public safety may be at risk. Communication overhead is another issue that has not been well addressed in previously reported studies. Many efforts have been made in recent years in achieving efficient broadcast source authentication and data integrity by using fast symmetric cryptography. However, the dynamic nature of VANETs makes it very challenging in the applicability of these symmetric cryptography-based protocols. In this research, we propose a novel Secure and Efficient RSU-aided Privacy Preservation Protocol, called SERP^3, in order to achieve efficient secure and privacy-preserving Inter-Vehicle Communications (IVCs). With the commitments of one-way key chains distributed to vehicles by RSUs, a vehicle can effectively authenticate any received message from vehicles nearby even in the presence of frequent change of its neighborship. Compared with previously reported public key infrastructure (PKI)-based packet authentication protocols for security and privacy, the proposed protocol not only retains the security and privacy preservation properties, but also has less packet loss ratio and lower communication overhead, especially when the road traffic is heavy. Therefore, the protocol solves the scalability and communication overhead issues, while maintaining acceptable packet latency. However, RSU may not exist in some situations, for example, in the early stage deployment phase of VANET, where unfortunately, SERP^3 is not suitable. Thus, we propose a complementary Efficient and Cooperative Message Validation Protocol, called ECMVP, where each vehicle probabilistically validates a certain percentage of its received messages based on its own computing capacity and then reports any invalid messages detected by it. Since the ultimate goal of designing VANET is to develop vehicle safety/non-safety related applications to improve road safety and facilitate traffic management, two vehicle applications are further proposed in the research to exploit the advantages of vehicular communications. First, a novel vehicle safety application for achieving a secure road traffic control system in VANETs is developed. The proposed application helps circumvent vehicles safely and securely through the areas in any abnormal situation, such as a car crash scene, while ensuring the security and privacy of the drivers from various threats. It not only enhances traveler safety but also minimizes capacity restrictions due to any unusual situation. Second, the dissertation investigates a novel mobile payment system for highway toll collection by way of vehicular communications, which addresses all the issues in the currently existing toll collection technologies
    corecore