
On the Application of Identity-Based
Cryptography in Grid Security

Hoon Wei Lim

Technical Report
RHUL–MA–2006–2

2 May 2006

Royal Holloway
University of London

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway Research Online

https://core.ac.uk/display/78876433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

On the Application of
Identity-Based Cryptography in Grid Security

Hoon Wei Lim

Thesis submitted to the University of London
for the degree of Doctor of Philosophy

Information Security Group
Department of Mathematics

Royal Holloway, University of London

2006

Declaration

These doctoral studies were conducted under the supervision of Prof. Kenneth G.
Paterson and Dr. Matthew J.B. Robshaw.

The work presented in this thesis is the result of original research carried out by
myself, in collaboration with others, whilst enrolled in the Department of Mathe-
matics as a candidate for the degree of Doctor of Philosophy. This work has not
been submitted for any other degree or award in any other university or educational
establishment.

Hoon Wei Lim
January, 2006

2

Acknowledgements

The past three years have been thus far the most exciting, challenging, interesting,
and rewarding part of my life. I am very thankful that I have crossed paths with
many wonderful people who have helped me in many ways in my pursuit of a PhD
in Royal Holloway.

First and foremost, I would like to express my deepest gratitude to Kenny Pater-
son and Matt Robshaw for their invaluable supervision, unfailing enthusiasm, and
respectful professionalism in guiding me through the countless difficult times that I
encountered in my study. In particular, I thank them for their endless constructive
feedback on my work and for nurturing the right research attitudes in me.

I am very grateful to Jason Crampton, Steven Galbraith, Chris Mitchell, Fred Piper,
Geraint Price, Scarlet Schwiderski-Grosche, Allan Tomlinson and Peter Wild for
their guidance and support. I am also indebted to David Mireles, Jacob Schuldt and
Qiang Tang for their very helpful discussions, and many thanks to Ivona Brandic,
Peter Gardfjäll, Maura Paterson, Johan Tordsson and Po-Wah Yau for proof-reading
parts of this thesis.

To my mum, I cannot thank her enough for all her love and support. I wish that
she will always be happy and healthy. To my brother and sister, I hope that they
will excel in their future undertakings.

Many thanks to all my colleagues (especially those in Room 355) and friends for
their good company and encouragement. Their presence has certainly lightened up
my life and I will never forget their sharing and caring.

Finally, this thesis is dedicated to my beloved grandmother, Soo Khoon Chai, who
passed away in October 2004.

3

Abstract

This thesis examines the application of identity-based cryptography (IBC) in de-
signing security infrastructures for grid applications.

In this thesis, we propose a fully identity-based key infrastructure for grid (IKIG).
Our proposal exploits some interesting properties of hierarchical identity-based cryp-
tography (HIBC) to replicate security services provided by the grid security infras-
tructure (GSI) in the Globus Toolkit. The GSI is based on public key infrastructure
(PKI) that supports standard X.509 certificates and proxy certificates. Since our
proposal is certificate-free and has small key sizes, it offers a more lightweight ap-
proach to key management than the GSI. We also develop a one-pass delegation
protocol that makes use of HIBC properties. This combination of lightweight key
management and efficient delegation protocol has better scalability than the existing
PKI-based approach to grid security.

Despite the advantages that IKIG offers, key escrow remains an issue which may
not be desirable for certain grid applications. Therefore, we present an alternative
identity-based approach called dynamic key infrastructure for grid (DKIG). Our
DKIG proposal combines both identity-based techniques and the conventional PKI
approach. In this hybrid setting, each user publishes a fixed parameter set through
a standard X.509 certificate. Although X.509 certificates are involved in DKIG, it
is still more lightweight than the GSI as it enables the derivation of both long-term
and proxy credentials on-the-fly based only on a fixed certificate.

We also revisit the notion of secret public keys which was originally used as a crypto-
graphic technique for designing secure password-based authenticated key establish-
ment protocols. We introduce new password-based protocols using identity-based
secret public keys. Our identity-based techniques can be integrated naturally with
the standard TLS handshake protocol. We then discuss how this TLS-like identity-
based secret public key protocol can be applied to securing interactions between
users and credential storage systems, such as MyProxy, within grid environments.

4

Contents

1 Introduction 11
1.1 Motivation . 11
1.2 Contributions . 12
1.3 Organisation of Thesis . 13

2 Grid Computing and Its Security 16
2.1 Computational Grids . 17

2.1.1 Definition of Computational Grid 18
2.1.2 Evolution of Grid . 19
2.1.3 Grid Properties . 21
2.1.4 Grid Architecture . 22
2.1.5 The Role of Web Services in Grid 24
2.1.6 Grid Applications . 27

2.2 Grid Security . 29
2.2.1 Grid Security Requirements 30
2.2.2 Existing Security Technologies for Grid 33
2.2.3 Emerging Security Technologies for Grid 40

2.3 Globus Toolkit . 44
2.3.1 Key Concepts of GRAM . 45
2.3.2 Key Concepts of GSI . 47

2.4 MyProxy . 50
2.5 Example Scenario . 52
2.6 Summary . 53

3 Identity-Based Cryptography 55
3.1 A Short History . 55
3.2 Certificated-Based PKI and Identity-Based PKI 57
3.3 Mathematical Preliminaries . 60
3.4 Identity-Based Cryptographic Primitives 63

3.4.1 The Boneh-Franklin IBE Scheme 63
3.4.2 The Cha-Cheon IBS Scheme 65
3.4.3 The Gentry-Silverberg HIBE and HIBS Schemes 65
3.4.4 The ZSM IBS Scheme with Message Recovery 69
3.4.5 Signature Schemes from Pairings 70

3.5 Performance and Implementation Considerations 71
3.6 Applications . 75
3.7 Summary . 78

5

CONTENTS

4 Identity-Based Key Infrastructure
for Grid 80
4.1 Current Problems . 81
4.2 Overview of Identity-Based Key Infrastructure for Grid 83
4.3 Related Work . 84
4.4 Design of IKIG . 86

4.4.1 Single Sign-On . 88
4.4.2 Authorization . 88
4.4.3 Mutual Authentication and Key Agreement 89
4.4.4 Delegation . 92

4.5 Key Management in IKIG . 95
4.5.1 Parameter Generation and TA Initialization 95
4.5.2 User Registration . 96
4.5.3 Key Update . 98
4.5.4 Key Revocation . 98
4.5.5 Integrating with MyProxy . 99

4.6 Security Analysis . 100
4.6.1 Mutual Authentication and Key Agreement 101
4.6.2 Delegation . 102

4.7 Performance Analysis . 103
4.8 Discussion . 109

4.8.1 Impact on Web Services Security 110
4.8.2 Implementation Issues . 112
4.8.3 Inter-TA Operation . 113
4.8.4 Limitations . 114

4.9 Summary . 115

5 Dynamic Key Infrastructure for Grid 116
5.1 Motivation . 117
5.2 Overview of Dynamic Key Infrastructure for Grid 117
5.3 Related Work . 119
5.4 Design of DKIG . 120

5.4.1 Single Sign-On . 122
5.4.2 Authorization . 122
5.4.3 Mutual Authentication and Key Agreement 123
5.4.4 Delegation . 125

5.5 Key Management in DKIG . 127
5.5.1 Parameter Generation and TA Initialization 127
5.5.2 User Registration . 129
5.5.3 Key Update . 130
5.5.4 Key Revocation . 130

5.6 Security Analysis . 131
5.6.1 Mutual Authentication and Key Agreement 131
5.6.2 Delegation . 132

5.7 Performance Analysis . 132
5.8 Discussion . 136

6

CONTENTS

5.9 Summary . 138

6 Identity-Based Secret Public Keys 139
6.1 Overview . 140
6.2 Related Work . 142
6.3 Secret Public Key Protocols and Attacks 143
6.4 New Properties from Identity-Based Secret Public Keys 147

6.4.1 ID-SPK as Secret Identifier 148
6.4.2 Random String as ID-SPK 149
6.4.3 Secret Signatures . 150

6.5 The ID-SPK Protocols . 152
6.5.1 The Three-Party ID-SPK Protocol 154
6.5.2 The Two-Party ID-SPK Protocol 158

6.6 Integrating ID-SPKs with TLS . 160
6.7 Application in MyProxy . 163
6.8 Summary . 164

7 Conclusions 165
7.1 Concluding Remarks . 165
7.2 Suggestions for Future Work . 168

Bibliography 170

7

List of Figures

2.1 A typical computational grid environment. 17
2.2 A VO consists of resources and users from different domains. 19
2.3 The layered grid architecture and its mapping to the Internet protocol

architecture [63]. 23
2.4 A sample X.509 certificate and its PEM (base64 encoded) format. . 35
2.5 Message flows for a full TLS handshake [50]. 38
2.6 The shorthand XML schema for <Signature>. 41
2.7 The shorthand XML schema for <EncryptedData>. 42
2.8 Basic components of the GT4 GRAM service. 46
2.9 Job invocation and interaction within a grid environment. 52

3.1 An overview of the Voltage SecureMail architecture [181]. 76

4.1 A hierarchical structure of entities in the IKIG setting. 87
4.2 A performance graph which measures the network bandwidth re-

quired for authenticated key agreement and delegation in the GSI
and IKIG. 109

4.3 A sample of the KeyInfo element based on RSA which is approxi-
mately 1.2 kilobytes. 111

5.1 The hierarchical structure of entities in the DKIG setting. 121
5.2 A performance graph which measures the network bandwidth re-

quired for authenticated key agreement and delegation in the GSI,
IKIG and DKIG. 136

8

List of Tables

2.1 Five classes of grid applications [63]. 27

3.1 Key differences between a certificated-based PKI and an identity-
based approach. 59

3.2 Different sizes of curves with their matching levels of security for RSA
cryptographic schemes. 73

3.3 Computation times for different operations on a Pentium III 1 GHz
machine [12]. 74

4.1 Various entities and the required certificates in the PKI-based GSI.
An issuer who is a proxy entity is denoted by ∗. 82

4.2 A’s long-term and proxy credentials. 87
4.3 Performance trade-offs in computation times (in milliseconds) be-

tween the GSI and the IKIG settings on a Pentium IV 2.4 GHz machine.106
4.4 Performance trade-offs in communication costs (in kilobits) between

the GSI and IKIG. 107

5.1 A’s long-term and proxy credentials. 121
5.2 Performance trade-offs in computation times (in milliseconds) be-

tween the GSI and the DKIG settings on a Pentium IV 2.4 GHz
machine. 133

5.3 Performance trade-offs in communication costs (in kilobits) between
the GSI and DKIG. 135

9

Abbreviations
API: Application Program Interface
BDH: Bilinear Diffie-Hellman
CA: Certification Authority
CDH: Computational Diffie-Hellman
CRL: Certificate Revocation List
DF: Delegation Factory
DDH: Decisional Diffie-Hellman
DH: Diffie-Hellman
DKIG: Dynamic Key Infrastructure

for Grid
DN: Distinguished Name
EPR: EndPoint Reference
GDH: Gap Diffie-Hellman
GGF: Global Grid Forum
GRAM: Grid Resource Allocation and

Management
GSI: Grid Security Infrastructure
GSS-API: Generic Security Service

Application Program Interface
GT: Globus Toolkit
HIBC: Hierarchical Identity-Based

Cryptography
HIBE: Hierarchical Identity-Based

Encryption
HIBS: Hierarchical Identity-Based

Signature
HTTP: HyperText Transport Protocol
IBC: Identity-Based Cryptography
IBE: Identity-Based Encryption
IBS: Identity-Based Signature
ID: Identifier
ID-SPK: Identity-Based Secret Public Key
IKIG: Identity-Based Key Infrastructure

for Grid
MAC: Message Authentication Code
MJF: Managed Job Factory
OCSP: Online Certificate Status

Protocol
OGSA: Open Grid Services Architecture
OGSI: Open Grid Services Infrastructure

PKG: Private Key Generator
PKI: Public Key Infrastructure
PMA: Policy Management Authority
SPK: Secret Public Key
TA: Trusted Authority
TCP: Transmission Control Protocol
TLS: Transport Layer Security
VO: Virtual Organisation
WS: Web Services
WSDL: Web Services Description

Language
WSRF: Web Services Resource

Framework
WWW: World Wide Web
XML: eXtensible Markup Language

10

Chapter 1

Introduction

Contents

1.1 Motivation . 11
1.2 Contributions . 12
1.3 Organisation of Thesis . 13

This chapter gives an overview of the thesis. We provide the motivation for our

research and describe the contributions of this thesis. In this chapter, we also present

the overall structure of the thesis.

1.1 Motivation

Continual improvements to computing power, storage capacity and network band-

width are allowing computing technologies of previously unheard of levels of sophis-

tication. Nevertheless, there remain increasing demands for access to more compu-

tational power and resources, much of this being driven by the demands of large and

complex new problems. Grid computing [67, 70] has been proposed as a mechanism

to meet such demands. In essence, grid computing aims to provide an infrastructure

allowing access to a wealth of sharable resources such as processing power, storage,

databases, applications and any other devices (hardware) or components (software).

All of these can be reached by remote users wishing to solve urgent and/or resource-

intensive problems in computational science and engineering, experimental science,

industrial engineering, corporate communications and so forth.

Provision of appropriate security within a grid environment seems to be more chal-

lenging than most conventional distributed systems. Public key infrastructure (PKI)

technology is presently deployed in most grid implementations as it is perceived as

a stable and mature technology which is widely supported and can be easily in-

11

1.2 Contributions

tegrated with different applications on various platforms. In the Globus Toolkit

(GT) [62, 81], the leading toolkit used in developing many grid systems, proxy

certificates [176] have been designed and deployed in addition to standard X.509

public key certificates [101]. This compensates for some of the shortcomings in

the conventional PKI setting and provides additional properties that align with the

requirements for secure communications among grid entities within a dynamically

changing environment. The motivations for the use of proxy certificates are twofold:

(i) to limit exposure of long-term credentials, and (ii) to enable single sign-on (or

unattended authentication) and delegation services. It is not clear, however, if the

extensive use of certificates in the hierarchical PKI setting forms the basis of the

best possible security architecture for grid environments.

Independent of grid computing, a variant of traditional public key technologies called

identity-based cryptography (IBC) [25, 159] has recently received considerable at-

tention. Through IBC, an identifier which represents a user can be transformed into

his public key and used on-the-fly without any authenticity check. The potential of

IBC to provide more immediate flexibility to entities within a security infrastruc-

ture and its certificate-free approach may well match the dynamic qualities of grid

environments. In other words, it seems that the development of IBC may offer more

lightweight and flexible key usage and management approaches within grid security

infrastructures than does a traditional PKI. The aim of this thesis is to conduct a

detailed investigation into the use of IBC in place of the PKI-based Grid Security

Infrastructure (GSI) that is adopted in the GT. Our main focus is to find out if the

identity-based approach can offer a feasible alternative and is a better solution than

the PKI-based GSI.

1.2 Contributions

The application of IBC in grid security is an emerging and interesting area but the

potential of IBC has only been partially investigated to date. The contributions of

this thesis can be summarised as follows.

• We propose a fully identity-based key infrastructure for grid systems. It in-

12

1.3 Organisation of Thesis

herits attractive properties from IBC such as being certificate-free and having

small key sizes. We present a customised identity-based authenticated key

agreement protocol for grid environments. We also design a lightweight one-

pass delegation protocol that supports short-term identity-based keys. Our

protocols support single sign-on, authenticated key agreement and credential

delegation in a natural way. In our proposals, we identify and discuss the

performance trade-offs in terms of computational and communication costs

between our proposals and current approaches.

• We propose a dynamic key infrastructure for grid applications. This is a hy-

brid certificate/identity-based approach which aims to resolve the key escrow

issue encountered with the fully identity-based approach. Using this approach,

most of the benefits that identity-based techniques offer can be preserved, while

eliminating key escrow from the infrastructure. We examine the performance

trade-offs in this hybrid approach as compared to the fully identity-based ap-

proach and the GSI.

• We introduce and study the concept of identity-based secret public keys. Our

identity-based approach allows secret public keys to be constructed in a very

natural way using arbitrary random strings, removing the structure found in,

for example RSA or Diffie-Hellman keys. Using this and other new properties

of identity-based secret public keys, we propose password-based authentication

protocols and provide informal security analyses on these protocols. We also

extend our work to integrating our identity-based techniques with the standard

TLS handshake protocol. Such a protocol, in turn, seems to fit nicely into

MyProxy, an on-line credential storage system for grid applications.

Parts of the research findings in this thesis have been (or will be) published by

Springer-Verlag in Lecture Notes in Computer Science (LNCS) series [43, 116, 117,

118] and by IEEE Computer Society Press [115].

1.3 Organisation of Thesis

The remainder of this thesis is organised as follows.

13

1.3 Organisation of Thesis

Literature review: We present background material on grid security and identity-

based cryptography in Chapters 2 and 3, respectively. These are prerequisites

for understanding our new proposals for security infrastructures suited to grid

applications. In Chapter 2, we first present the concept of grid computing,

covering topics such as the evolution of grid computing, grid properties, grid

architecture, the role of web services in grid computing, and grid applications.

Subsequently, we describe grid security requirements and the security tech-

nologies used to meet these requirements in current grid implementations. We

also provide technical details of the Globus Toolkit and the MyProxy system

which are widely used in grid applications.

In Chapter 3, we give an overview of identity-based cryptography. We cover

topics such as the comparison between certificate-based and identity-based

public key infrastructures, pairing concepts, some identity-based cryptographic

schemes that we will adopt in our proposals, and general performance and

implementation aspects of identity-based cryptosystems. In addition, we also

review existing or proposed applications of identity-based cryptography, in

particular in email systems.

Security infrastructures for grid applications: Chapters 4 and 5 present our

proposals of security infrastructures/architectures for grid environments. In

Chapter 4, we begin by explaining current issues in PKI-based grid security

architectures. We then give an overview of our proposal for an identity-based

key infrastructure for grid (IKIG) and explain how is it different from cur-

rent related work in the literature. That is followed by the detailed design

of our IKIG proposal, which includes defining how various security services

(supported by the GSI) can be provided by IKIG. We examine the key man-

agement aspects of IKIG and give informal security analyses of the protocols

that underpin our IKIG proposal. Subsequently, we present an analysis of the

performance of the protocols and compare the results with the performance

of the GSI. We also discuss the impact of our IKIG proposal on web services

security, some implementation issues, and limitations of our identity-based

approach.

In Chapter 5, we introduce the concept of a dynamic key infrastructure for

grid (DKIG). The aim of this proposal is to resolve the key escrow problem

that IKIG inherits from its use of IBC. Chapter 5 begins by giving the motiva-

14

1.3 Organisation of Thesis

tion for and an overview of our DKIG proposal. We then review some related

work in the literature. This is followed by the details of our DKIG proposal,

including description of the authenticated key agreement and delegation pro-

tocols that DKIG supports. We provide details of key management aspects

of DKIG. Subsequently, we present security and performance analyses of our

DKIG proposal. Finally in Chapter 5, we highlight some practical issues and

limitations of DKIG.

Secret public key protocols revisited: In Chapter 6, we revisit the concept of

secret public keys and introduce the notion of identity-based secret public

keys. Note that this chapter is rather independent of Chapters 4 and 5, and

the reader should be able to understand most of the material presented in this

chapter without reading Chapters 4 and 5. The aim of Chapter 6 is to examine

new properties of identity-based secret public keys and how these properties

can be used in constructing a password-based analogue of the TLS handshake

protocol. We begin by reviewing the history of secret public keys and some

related work. We then study the early proposals for secret public key protocols

and the attacks on them. This gives us motivation for investigating identity-

based secret public keys. In what follows, we introduce new properties of

identity-based secret public keys. We also present two-party and three-party

identity-based secret public key protocols. Subsequently, we show how our

identity-based techniques can be expanded to support the use of passwords in

an analogue of the standard TLS handshake protocol. Finally in this chapter,

we discuss the application of our TLS-like identity-based secret public key

protocol in the MyProxy system within a grid environment.

Conclusions: In the final chapter of this thesis, Chapter 7, we give concluding re-

marks about our proposals in Chapters 4, 5 and 6. These include the problems

that we have studied, the importance of these problems, and a summary of our

research findings. We also provide some suggestions for future work related to

our proposals.

15

Chapter 2

Grid Computing and Its Security

Contents

2.1 Computational Grids . 17

2.1.1 Definition of Computational Grid 18
2.1.2 Evolution of Grid . 19
2.1.3 Grid Properties . 21
2.1.4 Grid Architecture . 22
2.1.5 The Role of Web Services in Grid 24
2.1.6 Grid Applications . 27

2.2 Grid Security . 29

2.2.1 Grid Security Requirements 30
2.2.2 Existing Security Technologies for Grid 33
2.2.3 Emerging Security Technologies for Grid 40

2.3 Globus Toolkit . 44

2.3.1 Key Concepts of GRAM . 45
2.3.2 Key Concepts of GSI . 47

2.4 MyProxy . 50

2.5 Example Scenario . 52

2.6 Summary . 53

This chapter provides an overview of grid computing and the associated security

concerns. We discuss some grid security issues relevant to our research. To help the

reader understand better the security requirements of grid systems, we also develop

an example scenario of a grid application and discuss the security aspects of this

scenario.

16

2.1 Computational Grids

2.1 Computational Grids

Grid computing [63, 70] has emerged as a fast-evolving and important field which

has gained substantial attention from multidisciplinary researchers worldwide due to

its broad applicability. It is seen as the next generation computing technology, offer-

ing virtually “unlimited” resource sharing for computationally intensive advanced

science and engineering problems. Figure 2.1 shows a classic computational grid

environment which provides pervasive access to different types of computational

resources. Examples of these resources are: processing power, storage capacity,

network bandwidth, scientific instruments, databases, applications, and any other

hardware devices or software components which may be needed to complete resource

demanding and computationally complex tasks. After close to a decade of research

and development, Foster [58, 59] has put forward the view that the grid vision of us-

ing computational power like other utilities, such as water and electricity is feasible

based on a combination of technology trends and research advances.

Computing technologies have improved dramatically and become considerably cheaper

in their costs over the last two decades. A personal computer in 2001 is as fast as

a supercomputer of 1990 [58]. Even though computing power, storage capacity and

network bandwidth are improving steadily, they cannot cope with the increasing

Scheduling

 Services

Security
Resource

Discovery

 Job

Submission

Others
Middle Tier

IDC

Computational

 Power

Storage Printer Database

Desktop PC

iMac

Laptop PDA Mobile Phone

Others

 Data

Management

Figure 2.1: A typical computational grid environment.

17

2.1 Computational Grids

demand for access to more computational resource for solving large and complex

new problems. The emergence of grid computing provides a timely boost to the ad-

vancement of computing technology in developing better ways of enhancing human

endeavour.

2.1.1 Definition of Computational Grid

The term grid1 was first used in the mid-1990s to denote a distributed comput-

ing infrastructure for advanced science and engineering applications [65]. It implies

a common and uniform means of providing computer programs with the required

amount of computational resources, analogous to providing electrical power to house-

hold appliances. That said, the concept of sharing distributed resources is not new.

In 1965, Vyssotsky et al. [183], the designers of the Multics operating system, en-

visaged a computer facility operating “like a power company or water company”.

Licklider and Taylor [114] also anticipated grid-like scenarios in 1968. Since the late

1960s, much work has been devoted to developing distributed systems. From the

launch of Arpanet in 1969, to the Internet era through the 1980s, and to the World

Wide Web (WWW) era during the 1990s, networking and computing technologies

have improved by leaps and bounds. With the technological advancement that we

have seen, the concept of distributed resource sharing may no longer be merely a

myth but an achievable reality.

In [63], Foster and Kesselman, the pioneers of modern grid development, wrote:

A computational grid is a hardware and software infrastructure that

provides dependable, consistent, pervasive and inexpensive access to high-

end computational capabilities.

In a subsequent publication [70], co-authored with Steve Tuecke, they refined the

definition to address social and policy issues, stating that grid computing is a tech-

nology concerned with coordinated resource sharing and problem solving in dynamic,
1We refer to grid computing as a type of distributed computing technology, while a computational

grid indicates the physical infrastructure that supports grid computing. Note that we also use a
more general term grid to represent both grid technology and infrastructure.

18

2.1 Computational Grids

Domain A

 Virtual

Organisation

User

Resource

Domain B Domain C

IDC

IDC

IDC

IDC

IDC

IDC

IDC

IDC

IDC

IDC

Figure 2.2: A VO consists of resources and users from different domains.

multi-institutional collaborations. The term virtual organisation (VO) [64, 70] is of-

ten used for these collaborations because of their distributed and usually ephemeral

nature.

To be more specific, a virtual organisation (VO) is a set of users and resources that

span multiple domains and are governed by a set of defined sharing rules, as shown

in Figure 2.2. This sharing is, necessarily, highly controlled, with resource providers

and users defining clearly and carefully what is shared, who is allowed to share, and

the conditions under which sharing occurs [65, 70]. VOs can vary greatly in terms

of scope, size, duration, structure, distribution and capabilities being shared.

2.1.2 Evolution of Grid

Grid computing has evolved quickly over the past decade. The early grid ef-

forts started in the mid-1990s were known as metacomputing. The metacomputing

projects were partly driven by the need to link a few US national supercomputing

centres and aimed to provide computational resources to a range of high-performance

applications. They were the forerunners of grids as we recognise them today. Two

representative projects were FARNER and I-WAY [60]. In contrast to today’s grids,

they were mainly proprietary solutions.

19

2.1 Computational Grids

The experience gained in the metacomputing projects convinced grid pioneers of the

viability of constructing a global-scale distributed computing infrastructure capable

of supporting diverse applications requiring massive amounts of computation and

data. This vision was documented in [64] which set out the expectation of second

generation grid systems. The focus of grid development at this stage was the building

of middleware components that could support heterogeneous, scalable and adapt-

able distributed computing environments. The grid solutions became more generic

and open than before as a result of the involvement of a larger research community

working to address numerous implementation challenges. Some of the important

new technologies (or projects) that emerged during this period are: Globus Toolkit

(GT) versions 1 and 2 [62] which evolved from I-WAY; Legion [91]; Condor [177];

UNIform Interface to COmputer REsources (UNICORE) [7]; Storage Resource Bro-

ker (SRB) [149]; Common Object Request Broker Architecture (CORBA) [138]; and

Peer-to-Peer computing (P2P) [46]. It is worth noting that some of these technolo-

gies such as CORBA and P2P are not intended to be used in grid computing, but

are nevertheless technologies related to grid.

This second generation of grid computing technologies provided the inter-operability

that was essential to achieve large-scale computation. As grid solutions were further

explored, other aspects of the engineering of the grid became apparent. One of them

was the desire to have re-usable components containing information about resources

and a flexible way of assembling these components. Therefore, the third generation of

grid systems involved increasing adoption of a service-oriented model (which we will

discuss more in Section 2.1.4) and attention to metadata2. The technology enabler

for this is web services which have received strong industry support. An important

milestone is the development of the Open Grid Services Architecture (OGSA) which

adapts the design of grid systems to web services. This is still a continuing process

as web services technologies are still evolving, as with grid computing. GT versions

3 and 4 are two examples of OGSA-compliant implementations. Further background

on the evolution of grid computing can be found in [153].
2Metadata defines the structure of data. It provides information about the content, quality,

condition and other characteristics of data.

20

2.1 Computational Grids

2.1.3 Grid Properties

Having briefly discussed how grid computing has evolved into the technology that

we see today, one can easily understand that grid computing represents both an

extension of and enhancement to current distributed computing technology. For

example, CORBA, an enterprise distributed computing technology, only supports

resource sharing within a single organisation but not across multiple domains [153].

Although P2P computing is effective for large-scale, geographically dispersed par-

ticipants, its resource sharing architecture concentrates mainly on files and compute

cycles [61]. On the other hand, grid computing aims to overcome these limitations

by using a new architecture that we will describe in Section 2.1.4.

We list the properties inherent in grid systems as follows.

• High-performance/throughput orientation. A grid system is viewed as a single

virtual machine (or distributed supercomputers) with massive computational

power to cater for resource intensive and complex tasks.

• Parallelism. Parallel computations have always been essential for scientific

and advanced engineering applications. Through the use of parallel computing

technologies such as Message Passing Interface (MPI) [130, 131] and Parallel

Virtual Machine (PVM) [78] for writing portable parallel programs, compli-

cated tasks that comprise many independent and repetitive subtasks can be

performed in parallel in a grid system.

• Heterogeneity. A grid system allows users to access and utilise resources lo-

cated at different domains with dissimilar communication mechanisms. This

inter-operability enables execution of tasks at different locations and on dif-

ferent platforms to be transparent to the users.

• Scalability. It is envisaged that a grid system allows the establishment of

highly flexible sharing relationships among grid users and resource providers

through various collaborative structures such as client-server and P2P, along

with more complex models like sharing via intermediaries or brokers [65]. A

grid system should be capable of supporting a reasonably large number of users

with minimal performance degradation.

21

2.1 Computational Grids

• Dynamicity & adaptability. A grid system should provide a highly dynamic

and adaptive collaborative environment. Grid users and resource contributors

may join and leave a VO over a short period of time. Ideally, a grid system

should be adaptable enough so that the unavailability of a resource due to

full utilisation or a technical failure would trigger a search for an alternative

resource which meets the required specification.

Given these features, it seems that the grid research community must push the

computing technology boundaries if the grid vision is to be truly realised. Current

distributed computing technologies, such as web services, P2P, CORBA and PVM

all have their own limitations when deployed individually. It is still not clear how

difficult the challenges are for computational grids to function like electric power

grids, if grid computing is developed using or evolved from these technologies.

2.1.4 Grid Architecture

After about a decade of focussed research and development, and experimentation,

considerable consensus has emerged among the grid community on the requirements

and architecture for grid computing. Because of the large-scale and heterogeneous

nature of grid, inter-operability has always been the central architectural issue. Stan-

dardised protocols, defining the content and sequence of message exchanges used to

request remote operations, have emerged as an essential means of achieving inter-

operability.

In what follows, we describe the grid architecture proposed by Foster et al. in [63],

which has now become the foundation for all grid systems.

The Layered Grid Architecture. The original layered grid architecture pro-

posed by Foster et al. is shown in Figure 2.3. A brief description of each component

is as follows:

• The fabric layer provides the lowest level of access to actual resources and im-

plements the mechanisms that allow those resources to be shared and utilised.

22

2.1 Computational Grids

• The connectivity layer defines the communication and security protocols re-

quired for network data transmissions between different fabric layer resources.

• The resource layer builds on the connectivity layer, implementing protocols

that enable secure negotiation, initiation, monitoring, accounting and payment

for sharing operations on individual resources.

• The collective layer deals with the coordination of multiple resources by pro-

viding functions such as resource discovery and scheduling.

• The application layer is where grid applications are implemented by utilising

services defined in any of the previous layers.

Figure 2.3 also shows the mapping between the grid and Internet protocol archi-

tectures. They are similar in that components within each layer of the protocol

architecture share common characteristics with each other, where each layer can

build on the capabilities and behaviour provided by the layer below. The major

difference lies in the interaction between layers of the architecture. In the Internet

protocol, each layer generally interacts only with the layer above or below. For in-

stance, a message created at the application layer can only be passed down to the

transport layer. In the grid architecture, applications are able to call services defined

at any lower layers. At each layer, there are Application Program Interfaces (APIs)

implemented by Software Development Kits (SDKs) that allow exchanges of proto-

col messages with the appropriate services at different layers. Useful services such

as resource discovery, data access, resource scheduling and so forth are normally

not directly mapped to a protocol at a specific layer, but may combine protocol

Application

Fabric

Collective

Resource

Connectivity

Application

Transport

Internet

Link

G
ri
d
 P

ro
to

c
o
l
A

rc
h
it
e
c
tu

re

In
te

rn
e
t
P

ro
to

c
o
l
A

rc
h
it
e
c
tu

re

Figure 2.3: The layered grid architecture and its mapping to the Internet protocol
architecture [63].

23

2.1 Computational Grids

operations from more than one layer [63]. As illustrated in Figure 2.3, APIs at the

application layer have the ability to directly call other APIs at the lower layers.

The Open Grid Services Architecture. By 2001, the rapidly increasing uptake

of grid computing technologies among the gradually enlarging grid community had

resulted in the emergence of the Global Grid Forum (GGF) as a standards body.

One of the early activities of the GGF was developing the Open Grid Services

Architecture (OGSA) [68], which aims to define a common, standard and open

architecture for grid systems. A set of standard interfaces for services applicable to

grid applications such as job management services, resource management services,

and security services are specified in OGSA. These services are termed grid services.

These are web services with extended features that allow them to support grid

applications. However, OGSA is only a high-level architectural view of what grid

services are and this has spawned another standard called the Open Grid Services

Infrastructure (OGSI), also developed by GGF. OGSI gives a formal and detailed

technical specification of what a grid service is.

From an organisational perspective, the OGSA services can be viewed within the

context of the layered architecture of Figure 2.3. For instance, at the connectivity

layer, the OGSA services are defined by a small number of service definitions that

address critical issues such as authentication, credential mapping and policy verifi-

cation. Meanwhile, at the resource level, there is also a set of service definitions for

data access, job submission, bandwidth allocation and so on [66].

2.1.5 The Role of Web Services in Grid

Generally speaking, web services can be defined as self-contained, self-describing

modular applications that can be published, located and invoked across the web [152].

Web services perform functions which can be anything from simple requests to com-

plicated business processes. Publishing services on the web is different from pub-

lishing information on a website. Information displayed on a website is intended for

humans. Information which is available through web services will always be accessed

by software and not directly by a human.

24

2.1 Computational Grids

We now look at a few basic building blocks of web services: eXtensible Markup Lan-

guage (XML) [34], SOAP3 [92], and Web Services Description Language (WSDL) [44].

• XML was created as a structured, self-describing way to represent data that

is totally independent of application, protocol, operating system, or even pro-

gramming language. It was initially developed to overcome the limitations of

HTML, which is good at describing how data should be displayed but is poor

at describing what the data that is being displayed is. XML, being text-based,

is now very important to web services because it is human readable. No tools

are needed to parse and render the data, and simple text tools and editors are

sufficient for its manipulation.

• SOAP was created as a way to transport XML from one computer to another

via a number of standard transport protocols. HTTP is the most common

transport protocol and is prevalently used by the web. The SOAP model

allows a clean separation between infrastructure processing and application

processing of messages. It provides an envelope into which an XML message

is placed. This envelope is a uniform container that can then be carried by a

variety of transports.

• WSDL is an XML-based interface definition language that defines the set of

operations that web services provide and the structure of their related SOAP

messages. A WSDL file has a what section, a how section and a where section.

The what section specifies the input and output structure of messages. The how

section defines how the messages should be packaged in the SOAP envelope

and how the envelope should be transferred. It also defines what information

should be included in the SOAP header. The where section describes a specific

web service implementation and ways to find its endpoint (or address).

Web services, being platform-independent, are the technology of choice for Internet-

based applications with loosely-coupled4 clients and servers. This, in turn, makes

them the natural choice for building the next generation of grid-enabled applications.
3SOAP used to stand for Simple Object Access Protocol, but according to the W3C SOAP 1.2

specification [92], SOAP is now just a name and is no longer an acronym.
4Loosely-coupled services in the context of web services means that even if they are used within

incompatible system technologies, they can still be joined together on demand to create composite
services, or disassembled just as easily into their functional components.

25

2.1 Computational Grids

In addition, web services provide support for dynamic discovery and composition of

services in heterogeneous environments through WSDL. These are also important

functionalities for grid applications [71].

However, web services do have certain limitations. The most notable one is that

web services are stateless5, which is in contrast with one of the most important

requirements of OGSA, i.e. the underlying middleware of a grid system must be

stateful. Thus, as mentioned earlier in Section 2.1.4, grid services are web services

with improved characteristics. Apart from being stateful, other improvements in-

cluded in OGSA (and OGSI) are notifications, portType extensions and life cycle

management, to name just a few. An example of a complete implementation of

OGSI is the third version of the Globus Toolkit (GT) [71].

Although OGSI grid services appear to solve some of the limitations of web services

when adopted within a grid environment, they do have other drawbacks which act

as a barrier to the convergence of web services and grid services. As OGSI is object

oriented, there are compatibility issues with current web services tools (web services

are not supposed to be object oriented) [165]. To improve grid services’ chances of

finally converging with web services, a new standard called Web Services Resource

Framework (WSRF) [84] was proposed in early 2004 as a substitute for OGSI. The

aim of WSRF is to integrate itself into the family of web services standards, instead

of being a “patch over web services” like OGSI was. In other words, OGSA will be

based directly on web services instead of being based on OGSI grid services. WSRF

defines conventions for managing state so that applications can discover, inspect

and interact with stateful resources in standard and inter-operable ways. This, in

turn, provides the stateful services that OGSA needs. This improvement has been

implemented in the latest version of the Globus Toolkit, GT4 [81].

In order to provide a web service with the ability to keep state information while

still keeping it stateless, a separate entity called a resource (different from an actual

computational resource) is introduced. A resource will store state information of a

web service. The pairing of a web service with a resource is termed a WS-Resource

and it will be given an address called an endpoint reference (EPR). Hence, WSRF
5Here ‘stateless’ means that a web service cannot remember or keep information, from one

invocation to another. Although web services can in theory be either stateless or stateful, they are
usually stateless and there is no standard way of making them stateful.

26

2.1 Computational Grids

is a collection of specifications that relate to the management of WS-Resources.

Despite the seemingly promising role of web services in grid computing, it is widely

recognised that transmitting XML data can be significantly less efficient than bi-

nary code [45]. Even so, this shortcoming is usually acceptable in most situations

where bandwidth is not a significant constraint. We will discuss in more detail how

the performance issues in web services affect the design and development of grid

applications in Section 2.3.

2.1.6 Grid Applications

Grid concepts and technologies were first developed to facilitate resource sharing

in far-flung scientific collaborations among universities and research institutions.

Computational grids are normally used for resource intensive and computationally

demanding scientific simulation or analysis, and complex problems which require

dynamically constructed collaborative environments such as climate change simu-

lation, modelling of high energy and nuclear physics, analysis of large statistical

samples in astronomical research and so forth. Table 2.1 presents a classification of

grid applications into the five types identified by Foster and Kesselman in [63].

In order to help develop these applications, there are numerous government-funded

grid projects with the backing of industry players. These projects are both devel-

Table 2.1: Five classes of grid applications [63].
Category Characteristics Examples

Distributed super-
computing

Very large problems needing
lots of CPU, memory, etc

Distributed interactive sim-
ulation, stellar dynamics

High throughput Harness many otherwise idle re-
sources to increase aggregate
throughput

Chip design, parameter
studies, cryptographic
problems

On demand Remote resources integrated
with local computation, often
for bounded amount of time

Medical instrumentation,
network-enabled solvers,
cloud detection

Data intensive Synthesis of new information
from many or large data sources

Sky survey, physics data,
data assimilation

Collaborative Support communication or col-
laborative work between multi-
ple participants

Collaborative design, data
exploration, education

27

2.1 Computational Grids

oping core technologies and deploying production grids. Some of the recent major

projects initiated in the US and Europe are as follows:

• Globus [81] is aimed at bringing together a large community of organisations

and individuals to conduct research in and development of the fundamental

technologies for grid computing. The Globus Toolkit is an open source software

toolkit being developed by the Globus Alliance (the Globus Toolkit will be

discussed in more detail in Section 2.3). Globus is supported by US government

agencies such as the Defence Advanced Research Projects Agency (DARPA),

the National Science Foundation (NSF), the US Department of Energy, and

the National Aeronautics and Space Administration (NASA). It is also being

supported by leading corporate organisations such as IBM, Microsoft and Cisco

Systems.

• TeraGrid [172], completed in September 2004, was a multi-year effort to build

and deploy one of the world’s largest and fastest distributed infrastructures

for open scientific research. The project, which was sponsored by NSF, cur-

rently connects nine supercomputing centres in the US. This brings together

over 40 teraflops6 of computing power, nearly 2 petabytes7 of rotating stor-

age, and specialized data analysis and visualization resources into production.

These resources are interconnected at 10 to 30 gigabits/second via a dedicated

national network.

• EU DataGrid [56] is a project funded by European Union (EU) to build the

next generation computing infrastructure. The project, completed in March

2004, partly serves as a testbed for the European Organisation for Nuclear Re-

search (CERN)’s Large Hadron Collider (LHC) Computing Grid Project [111],

the world’s largest and most powerful particle accelerator. Many of the prod-

ucts and technologies of the DataGrid project are included in newer EU grid

projects such as Enabling Grids for E-SciencE (EGEE) [55].

• UK e-Science [133], also known as National e-Science, is a UK government-

industry programme funded by the Department of Trade and Industry (DTI)

and the Research Councils. The term e-Science refers to large-scale science

that will increasingly be carried out through distributed global collaborations
6A teraflops is equal to one trillion floating-point operations per second.
71 petabyte = 103 terabytes = 106 gigabytes.

28

2.2 Grid Security

enabled by the Internet. It is envisaged that grid computing can realise the

e-Science vision by setting up nation-wide computational grids and data re-

sources.

Apart from the above grid projects, there are close to a hundred other on-going grid

projects and initiatives around the globe [89].

Foster et al. [68] expect that computational grids, which are initially important for

scientific and technical computing applications, will become essential for commercial

distributed computing applications as well, including enterprise application integra-

tion and business-to-business (B2B) partner collaboration over the Internet. In the

same way that the WWW began as a technology for scientific collaboration and was

later adopted for e-business, it is believed that grid technologies will follow the same

path. This is evident from the support provided by industry heavyweights such

as Microsoft, IBM, HP and Sun Microsystems with their respective products, Mi-

crosoft .NET, IBM Websphere, mmGrid and Sun ONE. GRIDtoday [90] named the

five industries where grid may have the biggest impacts as financial services, health

care, energy, manufacturing and entertainment. However, it still remains to be seen

if grid can change the world to the same extent as the Internet. The development

of a new technology will always have the ‘chicken and egg’ problem: applications

are needed to drive the research and development of the new technology, but certain

applications are difficult to develop in the absence of stable and mature technology.

2.2 Grid Security

Security has become a vital and omnipresent issue for any distributed system. Grid

systems, operating in networked, open environments, are no different. Since grid

offers uniform access to resources that may be widely distributed geographically and

organisationally, securing virtual organisations and access to the remote resources

seems to be much more complicated than before [162].

In the remainder of this section, we will begin by providing the security requirements

for grid applications. Most of them are also requirements in typical distributed

29

2.2 Grid Security

systems, but some are unique to grid environments. This will be followed by brief

descriptions of some existing security technologies deployed in grid implementations.

Utilising current technologies is seen to be a rational choice in order to build a grid

system in a less expensive manner. In addition, with existing technologies, a grid

system can be implemented within a shorter time-frame as compared to investing

in new technologies. We will then discuss some emerging security technologies that

the grid community has adopted for grid implementations.

2.2.1 Grid Security Requirements

For better exposition of the security requirements for grid environments, we con-

sider an example grid application. Our example concerns a scientific experiment

called Compact Muon Solenoid [88, 162]. In the experiment, conducted at the Large

Hadron Collider in the CERN Laboratory, Switzerland, the collected data is to be

analysed by more than 2,000 physicists at more than 150 universities and labora-

tories located in 34 countries. Clearly, the security challenges mainly come from

dissemination, processing and sharing of the data.

Before the data is transmitted from one domain to another, the authenticity of the

requestor must be verifiable so that only an authorized requestor is able to access

the available resources. When dealing with dissemination and access of data across

many different resource centres in different countries, integration of security mecha-

nisms and policies becomes a requirement. Also in many cases, data confidentiality

and integrity can be vital to safeguard the physicists’ research findings. When it

comes to processing data, high-end computational resources generally require high

investment and thus it is desirable that their usage can be tightly controlled, possibly

through access control mechanisms. This is essential in balancing the resource usage

between users from the physical organisations and the physicists from the virtual

organisations. While, in certain circumstances, some research laboratories may have

long-term trust relationships with each other, in most cases, remote resource access

is anticipated to be short-term, typically on the order of hours or days. These trust

relationships can be defined in the policies targeted at virtual organisations as well

as hosting resources. From the data sharing aspect, trust establishment between

entities of various universities and laboratories plays a crucial part in grid security.

30

2.2 Grid Security

Policy enforcement can be rather complicated, as expressing and exchanging policies

within a virtual organisation involves remote entities with different security mecha-

nisms and access privileges. All these security challenges must be considered when

designing a sound grid security architecture.

With a rough idea of what security requirements might be expected in a grid ap-

plication, we now compile a more formal list of grid security requirements deemed

to be essential for supporting scalable, dynamic and distributed virtual organisa-

tions [69, 103, 104, 162, 173] .

• Entity authentication. In a grid environment, there are several types of entities

that need to be authenticated. The most common are individual users who

utilise grid resources and hosts which provide resources and services. Some-

times, a system administrator or an organisation can be thought of as an entity

in his own right.

• Single sign-on. Participants in a grid environment often need to co-ordinate

and communicate with multiple resources to accomplish a single job. It may

be overly burdensome to the participants if they have to manually authenticate

with each resource, e.g. by typing in a passphrase. Therefore, they should only

need to perform an authentication process once to the first resource when a

job is initiated, and not have to perform any further authentication with other

resources.

• Delegation. The constantly changing size and membership of a virtual or-

ganisation encourages delegation of credentials and access rights from a job

requestor to an intermediary such as a grid gateway or a resource broker, or

directly to a target resource. This helps to achieve unattended authentica-

tion, i.e. authentication without any physical intervention from the requestor.

This is particularly useful when a job takes a relatively long period of time to

complete. Also, by delegating authority from the requestor to another entity,

remote execution of the job becomes transparent to the requestor. This augurs

well for the realisation of the grid vision in which computational grids are seen

as uniform resources by the users regardless of the users’ physical locations.

• Credential life-span and renewal. To limit the risk of compromising a user’s

credential when the user is performing or using single sign-on and delegation

31

2.2 Grid Security

services, the credential must be limited to a reasonable lifetime. In many cases,

it may be difficult to predict accurately the credential lifetime required for a

specific job. In those cases where the job takes a longer execution time than

the lifetime of the issued credential, the user needs to be notified before the

credential expires so that it can be renewed by the user.

• Data confidentiality and integrity. As with other standard distributed systems,

protection of sensitive information from exposure to unintended parties can be

critical. For example, this may be the case for health care applications, intel-

lectual property oriented experiments, digital rights protected content delivery

and so forth. Many modern security mechanisms which provide data privacy

also offer data integrity protection, preventing unauthorized and undetectable

modification of data by malicious parties.

• Authorization and access control. Grid applications require access to resources

which may be located in different organisational domains with different owners.

The access rights of a user should be based on authorization policies defined by

his virtual organisation, the resource owners and local system administrators.

This process is usually complementary to entity authentication so that policy

enforcement can be targeted at a specific user.

• Integration and inter-operability. Each organisational domain has its own se-

curity infrastructure which supports a set of security mechanisms. These may

be different from other domains or hosting environments. These mechanisms

are typically based on existing security technologies which have been well-

established, some of which will be discussed in Section 2.2.2. Hence, a practical

grid security architecture must be able to support and integrate with current

security mechanisms. Similarly, adoption of new standards or technologies

should place high emphasis on solving potential integration issues that may

arise. In addition, inter-operability between communicating parties should be

achievable at various levels such as transport-level, message-level and service-

level [71].

• Trust relationships. Establishing trust relationships between entities within a

grid environment is arguably one of the most important security requirements.

Trust can be expressed in the form of policies. For example, users or system

administrators can decide whether or not to trust their Certificate Authority

32

2.2 Grid Security

(CA) based on the Certificate Policy and Certification Practices Statement

(CP/CPS) issued by the CA. Trust relationships between CAs can be estab-

lished through a Policy Management Authority (PMA)8. At the user level, a

job requestor who has delegated his credential to a remote resource has to

trust the resource to not misuse the delegated authority that it possesses.

• Miscellaneous. There are additional security requirements which need to be

considered when designing a grid security solution, such as firewall traversal,

security assurance, accounting, auditing, user privacy, security management,

policy management and so forth. Among these, mechanisms capable of al-

lowing data to cleanly traverse firewalls without compromising local control

of firewall policy is crucial for implementing cross-domain grid systems. This

has partly driven the adoption of SOAP message security (which we will dis-

cuss in Section 2.2.3). For more details about other security requirements

and a more comprehensive discussion of grid security requirements in general,

see [162, 173].

In this thesis, our focus will be on the first five items from the above list, namely:

(i) entity authentication; (ii) single sign-on; (iii) delegation; (iv) credential life-span

and renewal; and (v) data confidentiality and integrity. Furthermore, we will look

at the integration of our proposals with current grid security architectures.

2.2.2 Existing Security Technologies for Grid

In this section, we intend to cover only security technologies or mechanisms relevant

to the scope of this thesis. These include public key infrastructure (PKI), proxy

certificates and their role in grid environments, the Transport Layer Security (TLS)

protocol and how it is used to support grid security infrastructure, and some basic

concepts about RSA encryption and signature schemes.
8A Policy Management Authority (PMA) is established among regional CAs to help facilitate

the development of trust between the CAs. Examples of PMAs are European Grid PMA, Asia
Pacific Grid PMA and The Americas Grid PMA. The International Grid Trust Federation which
comprises regional PMAs, in turn, fosters a global trust relationship between PMAs.

33

2.2 Grid Security

Public Key Infrastructure (PKI). In 1976, Diffie and Hellman [51] introduced

public key cryptography, a concept that offers an alternative to conventional se-

cret key cryptography. Later on, the concept of PKI was introduced as a means

of supporting security services using public key encryption and digital signature

techniques. The practicality of a public key cryptosystem relies on the assurance

of the authenticity of the public keys of the users. In order to achieve this, public

key certificates are used to bind public keys with their respective owners’ identities

using digital signatures generated by a trusted third party.

In order to (partly) facilitate the growth and development of PKIs, many standards

such as Lightweight Directory Access Protocol (LDAP) [185], Secure/Multipurpose

Internet Mail Extension (S/MIME) [150] and X.509 [101] have been proposed which

help to define an appropriate certificate framework within a PKI. By using X.509, an

ITU Telecommunication Standardization Sector (ITU-T) standard for PKI, a public

key is bound to a user’s respective Distinguished Names (DNs) through an X.509

public key certificate issued by a CA. Figure 2.4 shows an example of an X.509

certificate which includes information such as the issuer, subject, validity period,

public key and signature of a CA. A certificate, which is approximately 2 kilobytes

in size, is usually transmitted across the network in PEM9 encoding format.

A PKI (in this thesis we assume X.509-based PKI) usually exists in a hierarchical

structure whereby there might be a few intermediate CAs between a user and a

root CA which all users are expected to trust. The CA who issues certificates to

its users normally operates at an organisation’s domain level. Above this CA is an

intermediate CA that, in turn, certifies the domain level CA. A root CA, normally

a worldwide reputable and trusted party, sits at the top of the PKI hierarchy. This

means that to check the validity of a user’s certificate, a verifier needs to trace

and verify all the certificates from the end of a chain back to the beginning, at the

root CA whom the verifier can trust. This can be done through certification path

validation procedures specified in [101].

Currently, PKI is the most widely used security infrastructure for grid implemen-

tations [69, 173]. One early development of a PKI-based security infrastructure for
9PEM stands for Privacy Enhanced Mail and it was published as a set of standards in the early-

1990s to secure emails. It has now been superseded by S/MIME but it is still a widely used 7-bit
ASCII format to encode certificates.

34

2.2 Grid Security

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 19 (0x13)

 Signature Algorithm: md5WithRSAEncryption

 Issuer: C=UK, O=eScience, OU=Authority,

 CN=CA/emailAddress=ca-operator@grid-support.ac.uk

 Validity

 Not Before: Jun 23 11:34:34 2004 GMT

 Not After : Jun 23 11:34:34 2005 GMT

 Subject: C=UK, O=eScience, OU=RoyalHollowayLondon, L=ISG,

 CN=HoonWeiLim

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 RSA Public Key: (1024 bit)

 Modulus (1024 bit):

 00:be:5d:c1:4b:49:37:f0:58:7b:08:c6:f4:3d:25:

 58:39:a6:8c:90:2c:ce:e4:56:ca:92:11:29:6e:28:

 d7:81:8f:0a:a1:f5:38:6b:8f:21:9d:36:67:3a:66:

 d8:bb:a6:86:a8:ee:c1:a9:91:a4:3e:6e:5f:5d:2e:

 75:bd:31:aa:96:ee:16:a4:9a:ec:a7:03:11:89:ed:

 17:ba:d1:52:43:98:ce:0e:d1:59:23:0c:0a:8b:fd:

 0a:f4:b9:99:60:9d:94:16:62:cc:94:8d:f1:4f:ac:

 e2:a4:45:94:87:33:74:90:0a:53:a6:0b:c8:9f:18:

 15:8e:46:de:e5:a5:31:10:ad

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 Netscape Cert Type:

 SSL Client, SSL Server, S/MIME, Object Signing

 Signature Algorithm: md5WithRSAEncryption

 21:ad:81:31:82:d9:f4:25:31:99:9a:96:88:b8:8a:6f:cb:26:

 e3:aa:f4:4c:c9:41:35:40:f7:5f:0c:2c:d2:3a:5f:35:f9:dd:

 31:fb:92:3a:63:a2:67:0d:ee:3c:f0:f7:da:1a:0d:9a:c4:06:

 a6:b0:a8:8f:b2:10:21:a7:3b:05:86:e7:f9:b4:09:2a:15:a2:

 5f:80:ca:c7:e4:44:54:47:03:5e:3a:91:00:d4:4f:6c:59:cd:

 94:32:86:61:56:6f:01:a1:00:3a:b9:6b:c1:fe:e5:82:35:20:

 bf:25:fb:cd:76:29:02:5d:14:96:9f:f9:df:28:e1:65:66:e3:

 5c:05

-----BEGIN CERTIFICATE-----

MIICJzCCAZCgAwIBAgIBEzANBgkqhkiG9w0BAQQFADBYMREwDwYDVQQKEwhHcmlk

d2lzZTEWMBQGA1UECxMNS3Jha293IGJyYW5jaDEYMBYGA1UECxMPb2F4YWNhLmlu

dHJhbmV0MREwDwYDVQQDEwhWZXJpZmllcjAeFw0wNDA2MjMxMTM0MzRaFw0wNTA2

MjMxMTM0MzRaMEQxETAPBgNVBAoTCEdyaWR3aXNlMRYwFAYDVQQLEw1LcmFrb3cg

YnJhbmNoMRcwFQYDVQQDEw5Lcnp5c3p0b2YgV2lsazCBnzANBgkqhkiG9w0BAQEF

AAOBjQAwgYkCgYEAvl3BS0k38Fh7CMb0PSVYOaaMkCzO5FbKkhEpbijXgY8KofU4

a48hnTZnOmbYu6aGqO7BqZGkPm5fXS51vTGqlu4WpJrspwMRie0XutFSQ5jODtFZ

IwwKi/0K9LmZYJ2UFmLMlI3xT6zipEWUhzN0kApTpgvInxgVjkbe5aUxEK0CAwEA

AaMVMBMwEQYJYIZIAYb4QgEBBAQDAgTwMA0GCSqGSIb3DQEBBAUAA4GBACGtgTGC

2fQlMZmaloi4im/LJuOq9EzJQTVA918MLNI6XzX53TH7kjpjomcN7jzw99oaDZrE

BqawqI+yECGnOwWG5/m0CSoVol+AysfkRFRHA146kQDUT2xZzZQyhmFWbwGhADq5

a8H+5YI1IL8l+812KQJdFJaf+d8o4WVm41wF

-----END CERTIFICATE-----

Figure 2.4: A sample X.509 certificate and its PEM (base64 encoded) format.

grid applications was the Globus Toolkit’s Grid Security Infrastructure (GSI) (we

will discuss GSI at length in Section 2.3). Apart from PKI, there are a small number

of grid projects which use Kerberos [136] as the backbone of their security infras-

tructures. Kerberos was an early development of authentication and authorization

services using symmetric key techniques. It is based on the Needham-Schroeder key

establishment protocol [134]. It is generally believed that Kerberos, being based

on symmetric key cryptography, is more efficient compared to PKI. However, for

a highly dynamic environment such as a computational grid, Kerberos is consid-

ered fairly rigid and inflexible because it requires the explicit involvement of site

administrators to establish inter-domain trust relationships or to create new enti-

ties [69, 187]. Therefore, PKI is preferred for grid applications, while Kerberos seems

35

2.2 Grid Security

to be best suited for intra-domain security. In order to achieve inter-operability

with PKI-based systems, the Kerberos-based grid projects make use of a Kerberised

client-side program, called KX.509, to acquire X.509 certificates using a client’s

existing Kerberos ticket [109, 128].

Proxy Certificates. There also exists a variant of X.509 certificates called proxy

certificates [176]. The use of proxy credentials is a common means of allowing an

entity A to grant to another entity B the right for B to be authorized to others as if

it were A, in which case B is said to be acting as a proxy on behalf of A [135]. Tuecke

et al. developed a X.509 proxy certificate profile [176] which works nicely with the

current X.509 public key certificate profile [101] in PKI-based systems. They used

the terminology proxy certificate to denote a short-term certificate that is derived10

from a normal X.509 public key certificate (or another proxy certificate) for the

purpose of providing restricted delegation of rights within a PKI-based system. A

proxy certificate contains a new extension called ProxyCertInfo which differentiates

it from a standard public key certificate. Within the ProxyCertInfo extension, there

exists a ProxyPolicy field that specifies some policies on the use of the certificate

for the purposes of authorization [176]. Proxy certificates can be very useful for

enabling single sign-on and rights delegation in situations where the user wants to

access certain remote servers in an unattended fashion. Reasons for wishing to

do this include a potentially long processing time. Another important motivation

for using proxy certificates is to limit the exposure of long-term credentials (which

normally need to be updated yearly) by using proxy credentials with much shorter

lifetimes (typically on the order of hours or days).

The process of a user A creating a proxy certificate for herself, as described in [176],

can be summarised as follows:

1. A generates a new public/private key pair.

2. The key pair is used to create a request11 for a proxy certificate.
10When we say certificate B is derived from certificate A, we mean certificate B is digitally signed

using the private key related to certificate A.
11A certification request consists of three parts: (i) certification request information; (ii) a signa-

ture algorithm identifier; and (iii) a digital signature on the certification request information. The
certification request information consists of the entity’s DN, the entity’s public key, and a set of
attributes providing other information about the entity [107].

36

2.2 Grid Security

3. A proxy certificate, signed by the long-term private key associated with A’s

long-term public key (or a short-term private key associated with another

proxy certificate), is created in response to the request. During this process,

the proxy certificate request is verified to ensure that the requested proxy

certificate is valid.

When a proxy certificate is created as part of a delegation from A to B, this process

is modified by having B perform steps 1 and 2, then B passes the request to A over

an authenticated and integrity protected channel. Subsequently, A performs step 3

and passes the proxy certificate back to B. For proxy certificates, path validation

is very similar to standard path validation of public key certificates, as specified

in [176]. Note that a valid path begins with a standard public key certificate that

has already been validated by public key certificate validation procedures specified

in [101].

Transport Layer Security (TLS). The TLS protocol [50] was developed from

the Secure Sockets Layer (SSL) protocol version 3.0 [72], which was in turn developed

by Netscape. It is currently one of the most widely used secure communications

protocols on the Internet. The primary goal of the TLS protocol is to provide data

confidentiality and integrity for communications between two parties, a client and

a server. The protocol comprises two layers: the TLS record protocol and the TLS

handshake protocol.

The TLS handshake protocol allows the server and the client to authenticate each

other and to negotiate a key exchange method, cryptographic algorithms, and keying

material from which further keys can be derived as necessary. Figure 2.5 shows a flow

chart representing the TLS handshake protocol. The protocol involves the following

steps [50]:

1. Exchange hello messages to agree on cryptographic algorithms, exchange ran-

dom values and check for session resumption12.
12Both the client and the server can create a new session or resume an old session if they both

still store the old session identifier and state. If they are willing to establish a new connection using
the resumed session state, both parties must proceed directly to the Finished messages.

37

2.2 Grid Security

Client Server

ClientHello

ServerHello

Certificate*

ServerKeyExchange*

CertificateRequest*

ServerHelloDone

Certificate*

ClientKeyExchange

CertificateVerify*

Finished

Finished

(* indicates optional)

Figure 2.5: Message flows for a full TLS handshake [50].

2. Exchange the necessary cryptographic parameters to allow the client and the

server to agree on a pre-master secret.

3. Exchange certificates and cryptographic information to allow the client and

the server to authenticate themselves.

4. Generate a master secret from the pre-master secret and exchanged random

values.

5. Provide security parameters to the record layer, such as symmetric encryp-

tion and MAC algorithms, a compression method, a master secret, and the

exchanged random values.

6. Allow the client and server to verify that their peer has calculated the same

security parameters and that the handshake occurred without tampering by

an attacker.

On the other hand, the TLS record protocol provides the actual security for commu-

nications between the client and the server. It preserves confidentiality and integrity

of data encapsulated in the record layer.

We will discuss more details about the contents of the TLS handshake protocol

messages when we present our proposals in Chapters 4 and 5.

38

2.2 Grid Security

The RSA Cryptosystem. The first algorithm known to be suitable for public

key encryption, as well as signing, is the RSA cryptosystem [151].

In setting up an RSA cryptosystem, each user performs the following steps to gen-

erate his public/private key pair.

1. Generate two large distinct random primes p and q, where |p| ≈ |q|.

2. Compute N = pq and φ(N) = (p− 1)(q − 1).

3. Select a random integer e, where 1 < e < φ(N) and gcd(e, φ(N)) = 1, where

gcd denotes the greatest common divisor.

4. Compute the unique integer d such that ed ≡ 1 mod φ(N) and 1 < d < φ(N).

5. The public key is (N, e) and the private key is d.

Suppose Alice wants to encrypt a message m for Bob. Alice creates the ciphertext

c by computing c = me mod N , where (N, e) is Bob’s public key. To decrypt the

ciphertext, Bob calculates m = cd mod N . The relationship between e and d ensures

that Bob can correctly recover m by performing this calculation.

If Alice wants to sign a message with her private key, she can create a digital sig-

nature s = md mod N . Here d is Alice’s private key. To verify the signature, Bob

checks if the message m can be recovered by calculating se mod N . Here e can be

obtained from Alice’s public key (N, e). Note that the given example is a “naive”

RSA cryptosystem. Practical implementations must employ secure padding schemes

and hash functions to prevent various types of attacks, see for example [18].

In practical applications, it is common to choose a small public exponent for the

public key. This makes encryption faster than decryption and verification faster than

signing. With the typical modular exponentiation algorithms used to implement the

RSA algorithm, public key operations take O(k2) steps, private key operations take

O(k3) steps, and key generation takes O(k4) steps, where k is the number of bits in

the modulus [154].

39

2.2 Grid Security

2.2.3 Emerging Security Technologies for Grid

The Open Grid Services Architecture (OGSA) introduces both new opportunities

and new challenges for grid security. It makes sense that OGSA security should lever-

age as much as possible the existing and emerging web services security standards,

and to augment these only when needed. Emerging web services security specifi-

cations address standard methods for authentication and establishment of security

contexts and trust relationships in WS-SecureConversation [93] and WS-Trust [94];

standard formats for security token exchange in WS-Security [132] and SAML [37];

and expression of web service security policy in WS-Policy [156] and XACML [129].

These specifications have been exploited by grid developers to create uniform and

inter-operable methods to be used in grid security. For more details and examples

of OGSA security and web services security, see [162].

We remark that the adoption of web services security technologies is orthogonal to

the application of identity-based cryptography in grid security. The use of web ser-

vices seems to be mainly driven by the critical need for inter-operable and scalable

grid systems. Therefore, integration between web services security and identity-

based cryptography will not be covered at length in this thesis. We only intend

to discuss the possible impacts of identity-based cryptography on the underlying

fundamental XML security technologies from which web services security are built.

These include XML Signature and XML Encryption. In the remainder of this sec-

tion, we will discuss some basic features of XML Signature and XML Encryption,

and the message-level security that is provided by WS-Security.

XML Signature. XML Signature [53] provides an XML syntax defined for digital

signatures. An XML Signature can be applied to some or all the content of one or

more XML documents or SOAP messages (refer back to page 25 for the definition

of SOAP). Also, a single XML document can contain multiple XML Signatures.

They are represented by a Signature element which has the structure shown in

Figure 2.6. (Notation: ? denotes zero or one occurrence; + indicates one or more

occurrences; and ∗ represents zero or more occurrences.)

Generating an XML Signature involves two phases: reference generation and sig-

40

2.2 Grid Security

<Signature Id?>
<SignedInfo>

<CanonicalizationMethod/>
<SignatureMethod/>
(<Reference URI?>

(<Transforms>)?
<DigestMethod>
<DigestValue>

</Reference>)+
</SignedInfo>
<SignatureValue>
(<KeyInfo>)?
(<Object ID?>)*

</Signature>

Figure 2.6: The shorthand XML schema for <Signature>.

nature generation. Given a data object, the reference generation operation applies

a Transform algorithm to the data object, calculates a digest value over the re-

sulting data object, and creates a Reference element. Subsequently, the signature

generation operation creates a SignedInfo element. It then performs canonicaliza-

tion13 on the SignedInfo element before signing it with the algorithms specified in

SignedInfo. It then constructs a Signature element.

Verifying an XML Signature follows the following process. Given the SignedInfo el-

ement, the reference validation operation performs canonicalization and obtains the

data object pointed to in the Reference element. It applies a Transform algorithm

and computes a digest value with the algorithm specified in the Reference element.

The calculated digest value is compared with the DigestValue in the Reference

element. The verification fails if there is any mismatch. Subsequently, the signature

verification operation obtains the verification key from the KeyInfo element. Using

the output of the SignedInfo canonicalization, it then runs the algorithm specified

in the SignatureMethod, taking as input the SignatureValue. The signature veri-

fication passes if and only if the resulting value matches the value in the SignedInfo

element.
13Canonicalization is a process of converting data that has more than one possible representation

into a standard representation. This is to ensure that two similar data objects with different XML
data representations will give the same digest value. This is essential for preserving data integrity,
a requirement for the signature scheme to work properly.

41

2.2 Grid Security

<EncryptedData Id? Type? MimeType? Encoding?>
<EncryptionMethod/>?
<ds:KeyInfo>

<EncryptedKey>?
<AgreementMethod>?
<ds:KeyName>?
<ds:RetrievalMethod>?
<ds:*>?

</ds:KeyInfo>?
<CipherData>

<CipherValue>?
<CipherReference URI?>?

</CipherData>
<EncryptionProperties>?

</EncryptedData>

Figure 2.7: The shorthand XML schema for <EncryptedData>.

XML Encryption. Meanwhile, XML Encryption [54] is designed to keep all or

part of a SOAP message secret. It also allows a sender to encrypt different sections

of an XML document with different keys, thus making different sections of the

document available to different recipients. Figure 2.7 shows the shorthand schema

for an XML Encryption.

In many ways, the EncryptedData element is simpler than the Signature element

because it is more self-contained. The EncryptedData element represents a single

resource being encrypted and it does not contain pointers to multiple items. On the

other hand, the Signature element contains a collection of pointers that represent

what is being signed.

To encrypt XML data, the XML Encryption scheme first chooses an encryption

algorithm for the EncryptionMethod element. It then specifies an encryption key

and serialises the message data to obtain octets that are input to the encryption

algorithm. Then the actual encryption of the data is performed and the result is

placed in the CipherData element before the associated EncryptedData element is

built.

For decryption, the XML Encryption scheme obtains the necessary information for

decryption such as the encryption algorithm and the associated key information from

the EncryptedData element. The corresponding encryption key is extracted from

42

2.2 Grid Security

the KeyInfo element before the actual decryption of the CipherData takes place.

SOAP Message Security. The confidentiality and integrity of SOAP messages

can be protected through WS-Security. The aim of WS-Security is to use existing

technologies to provide a common format for security of SOAP messages. Message-

level security protects messages in a different way from transport-level security. The

former allows each message to be encrypted or signed independently and thus self-

protected. Thus, message protection persists wherever the message travels. How-

ever, the latter only provides security to messages transmitted from one point to

another in a secure channel, e.g. established using the TLS protocol. The down-

side of the flexibility that message-level security offers is that it results in a rather

complex message that employs many security standards such as XML Signature,

XML Encryption, and a common security token such as an X.509 certificate. This

may raise considerable performance issues when transporting secure SOAP mes-

sages from one entity to another. The performance may be worse when the message

has multiple signatures or data encrypted with different keys targeted at different

recipients.

Security-related information targeted at a specific recipient is provided through a

SOAP security header. There are three types of elements that may make up the

header:

(i). Security tokens: These are data used for authentication or authorization. Ex-

amples of security tokens are username/password, X.509 certificate and Ker-

beros ticket.

(ii). Signatures: These are usually obtained as the result of signing part or all of

the SOAP body using XML Signature.

(iii). ReferenceList or EncryptedKey: This is a reference list that contains refer-

ences to all the possible different EncryptedData elements, or key information

used by a WS-Security processor to decrypt the encrypted data.

Many grid scenarios require end-to-end message protection over a route that tra-

verses one or more intermediate components such as firewalls or routers. To meet the

43

2.3 Globus Toolkit

needs of these scenarios, message-level security is preferred over transport-level [162].

A message may need to traverse a few intermediate components before reaching its

intended recipient. As we have described earlier, message-level security has the flex-

ibility of protecting only parts of the message. That means the information that an

intermediate component requires to process the message can be transmitted in clear

while sensitive data can still be encrypted.

2.3 Globus Toolkit

The Globus Toolkit (GT) [62, 81] is currently the de facto standard open source

software toolkit for building grid systems. In the late 1990s, GT2, which uses proto-

cols that leverage existing Internet standards for transport, resource discovery, and

security, pioneered the creation of inter-operable grid systems and enabled signif-

icant progress on grid programming tools. In 2003, GT3 which implemented the

emerging OGSA and extended GT2 technologies was released. OGSA aligns grid

development with broad industry initiatives in service-oriented architectures and

web services. Grid services employed in GT3 are modified web services to suit the

statefulness and other requirements needed for grid applications. This has resulted

in some drawbacks such as incompatibility of grid services with certain web services

tools because of the object-oriented nature of grid services. Therefore, WSRF, an-

other new grid standards has been specified to define a generic and open framework

for modelling and accessing stateful resources using web services. The first WSRF

implementation in GT4 was made available in April 2005.

GT4 comprises various components/services to support grid applications. These can

be summarised as follows:

• Common runtime is a component which provides a set of fundamental libraries

and tools which are needed to build both services (non-web services) and web

services.

• Security consists of security services such as authentication, authorization and

delegation that are supported by the Grid Security Infrastructure (GSI). These

security services ensure secure job submissions and data transmissions between

44

2.3 Globus Toolkit

grid entities.

• Data management facilitates management of large sets of data within virtual

organisations by using tools such as GridFTP (Grid File Transfer Protocol)

and RFT (Reliable File Transfer).

• Information services are commonly referred to as the Monitoring and Discov-

ery Services (MDS). These contain a set of components used to discover and

monitor resources within a grid environment.

• Execution management deals with initiation, scheduling, monitoring, coordina-

tion of jobs through the Grid Resource Allocation and Management (GRAM)

service and other components.

In what follows, we give a brief overview of two fundamental components in the GT

that are relevant to this thesis: GRAM and GSI.

2.3.1 Key Concepts of GRAM

The Grid Resource Allocation and Management (GRAM) service provides a single

interface for requesting and using remote system resources for execution of jobs. The

most common use of GRAM is remote job submission and control. Figure 2.8 shows

an overview of the basic components of the GRAM service. With GT4 GRAM,

there will be one or more compute elements that reside on each resource. To invoke

a job using GRAM, a user creates a job request, describes the job to be run, and

sends it to a GRAM adapter running on the resource using a Java container14. The

GRAM adapter maps the request onto an appropriate request to a local scheduler.

The local scheduler has an interface called Managed Job Factory (MJF) which has

access to a MJF WS-Resource15. The MJF can create one or more managed job

instances to execute the job(s) submitted by the user. Each new managed job in

turn has a WS-Resource which will be given a handle, called an endpoint reference

(EPR). The user can use this handle to query his job’s status, terminate the job,
14A visual GUI window which can be used to hold Java components.
15A WS-Resource is used to represent state associated with a web service, e.g. a Managed Job in-

stance. This allows other components to use WSRF and other specifications such as WS-Notification
and WS-Addressing to access state information of the web service, manage lifetime, perform noti-
fication and so forth.

45

2.3 Globus Toolkit

Managed

 Job

Managed Job Factory (MJF)

To submit jobs

Resource

GRAM

adapter

Compute element

Local scheduler

Delegation

Delegation Factory (DF)

Delegation service

To delegate

Figure 2.8: Basic components of the GT4 GRAM service.

obtain notifications of output produced by the job and so on [83]. This handle can

be communicated to other entities who can perform the same operation if authorized

to do so.

In GT4, a credential delegation mechanism can be used by the user to delegate his

credential to the GRAM service for additional remote operations. This credential

delegation service is managed by a Delegation Factory (DF) which has access to

a DF WS-Resource that stores information about the certificate chain associated

with the DF. The DF can in turn create one or more delegation instances. Each

Delegate WS-Resource contains a credential. Note that the user can either forward

his credential together with the job request, or upload it to a delegation service

associated with the GRAM service. The latter allows re-use of the user credential

for multiple short-lived jobs.

46

2.3 Globus Toolkit

2.3.2 Key Concepts of GSI

The security services provided by the GT rely upon a security architecture called the

Grid Security Infrastructure (GSI)16. This is based on PKI technology. The focus of

the GSI is primarily on authentication, message protection, and single sign-on and

credential delegation through proxy credentials [69, 146, 186, 187].

In grid applications which employ the GSI, each entity is assigned a unique identity

or DN and issued a public key certificate signed by a Grid CA. As of 30 August 2005,

there were approximately 35 CAs17 operating in the European DataGrid (EDG)

and Enabling Grids for E-SciencE (EGEE) projects, roughly at the scale of one CA

for each nation. These CAs service grid users which comprise mostly researchers

and scientists throughout the whole continent of Europe. Note that no root CA

has been setup and trust relationships between CAs are established through the

European Grid Policy Management Authority (PMA). Depending on the number of

the users, there may be at least a few Registration Authorities (RAs), typically key

persons from research institutions who lead the development and maintenance of

the projects in each nation, who assist the CA(s) in user validation and registration.

For example, there are currently about 50 RAs18 in the UK who work closely with

the UK e-Science CA.

Public key certificates are used to support authentication and key agreement proto-

cols, such as the TLS protocol. In addition, proxy certificates are also used for single

sign-on and delegation. Before a user submits a job request, he must create a proxy

certificate which includes generating a new public/private key pair and signing the

proxy certificate with his long-term private key. This newly created proxy certificate

can then be used for repeated authentication with other grid entities, without the

need to access the user’s long-term private key. For rights delegation from a user A

to a target service provider X, three steps are required: (i) X creates a new pub-

lic/private key pair and sends a request (that is signed with the new private key) to

A; (ii) A verifies the request using the new public key, creates a new proxy certificate
16GSI was originally an acronym for Globus Security Infrastructure in [69]. It later came to be

more commonly known as Grid Security Infrastructure when the GT was gradually becoming the
de facto toolkit in the grid community.

17Source: http://marianne.in2p3.fr/datagrid/ca/ca-table-ca.html, last updated on 30 Au-
gust 2005.

18Source: https://ca.grid-support.ac.uk/, last updated on 5 September 2005.

47

2.3 Globus Toolkit

and signs it with her current proxy credential (short-lived private key); and (iii) A

forwards the new proxy certificate to X [186]. This three-step delegation process is

based on the proxying process described on page 36. Note that A can impose some

constraints in the ProxyPolicy field of the proxy certificate, which specifies what

X can and cannot do. A has to trust that an entity to which X presents this proxy

certificate will impose the constraints.

In the GSI setting, each user has a long-term RSA public/private key pair with

N = 1024 bits. The short-term keys for the user’s proxy credential have only 512-

bit moduli. This substantial reduction of key sizes is driven by the fact that an RSA

key generation is a computationally expensive operation. It is shown in [186] that

generating a key pair with 512-bit moduli can reduce the processing time by approx-

imately 77% of the time required for a 1024-bit key pair. Given the latest progress

in algorithms for factoring integers, a 512-bit modulus provides only marginal se-

curity from a concerted attack. For longer-term security, 1024-bit or larger moduli

should be used [127]. However, since the proxy credential has a relatively short

lifetime, it is believed that the reduction in security implied by using only 512-bit

moduli poses an acceptably low risk in grid systems. In terms of key management,

it is the responsibility of users to keep control of their respective private keys. De-

pending on the Grid CA’s policy, a user’s long-term public/private key pair and its

associated certificate are usually updated and renewed yearly. Should a user realise

or suspect that his private key has been compromised, then the holder himself is

responsible for the notification of the exposure to the Grid CA, in order to have

his certificate revoked. To improve accessibility of the user’s private key from any-

where at anytime and to increase protection of the key, online credential repositories,

such as MyProxy [15, 137], have been developed. The MyProxy server stores users’

long-term credentials and it is anticipated that the server receives round-the-clock

monitoring from security specialists. This will be discussed more in Section 2.4.

The TLS protocol is one of the most important security enablers for PKI-based grid

architectures such as the GSI. The GSI has been built on the Generic Security Ser-

vice Application Program Interface (GSS-API) [119] and incorporates GSI-enabled

OpenSSL [140] to support proxy certificates. Examples of the RSA-based cipher

suites19 are TLS_RSA_WITH_RC4_128_MD5, TLS_RSA_WITH_DES_CBC_SHA and so on.
19A cipher suite defines a cipher specification supported in the TLS protocol.

48

2.3 Globus Toolkit

The following steps, adopted from [187], describe how the GSI facilitates a secure

job invocation from a user to a remote resource through a GRAM service.

1. The user creates a job instantiation request and signs it with his proxy cre-

dential. The signed request and the user’s credentials (both long-term and

short-term) are sent to a GRAM adapter on the target resource.

2. The GRAM adapter verifies the signature on the request and the identity of the

user who sent it based on the credentials that it received. It then determines

the local account (handled by a local scheduler) in which the job should be

run based on the requestor’s identity using the grid-map file20.

3. The local scheduler passes the job request to the MJF. Once the MJF starts

up, it uses the Grid Resource Identity Mapper (GRIM)21 to generate a set

of proxy credentials. This set has embedded in it the user’s grid identity,

local account name, and local policy to help the user verify that the MJF is

appropriate for his needs.

4. The MJF also verifies the signature on the request to ensure that it has not

been tampered with and validates if the requestor is authorized to run in the

local user account. When all checks pass, the MJF instantiates a managed job

service for the job request and returns an EPR to the user.

5. The user connects to the managed job service to initiate the job. The user

client and the managed job service perform mutual authentication using the

TLS protocol, with the user using his proxy credential and the managed job

service using the proxy credential that the MJF acquired from GRIM. The user

verifies the managed job service as having a credential issued by an appropriate

host and containing a grid identity matching its own, thus ensuring that the

managed job service is running on the right host and the correct account. If

all checks succeed, a secure TLS channel is established between the user and

the managed job service for further data exchange. At this point, the user

may, at his discretion, delegate his credential to the managed job service for

later use when necessary. A delegation service is created by the DF to store
20A local configuration file containing mapping from global identities to local identities.
21A setuid program that accesses the local host credentials and uses them to generate a set of

proxy credentials for the MJF.

49

2.4 MyProxy

the user’s credential. The WS-Resource associated to this service also has a

unique EPR which will be returned to the requestor.

Should the user wish to submit multiple short-lived jobs, he can upload his proxy

credential to the Delegation service and re-use it before its expiry.

In this thesis, we will re-use the above secure job invocation process when presenting

our alternative proposals for grid security infrastructures in Chapters 4 and 5. Our

main focus will be on tackling some of the issues encountered in grid-supported

PKI with various alternative key management techniques. We examine security

services such as authentication, single sign-on, delegation and key agreement that

are normally supported by PKI and certificates. We will also use one of the simplest

access control methods through a grid-map file in our discussion for the sake of

completeness, even though the GT also offers a more complicated authorization

component called Community Authorization Service (CAS) [146, 147].

GT4 supports both transport-level and message-level security. The former, which

is the default option, entails SOAP messages being sent over a network connec-

tion through a secure TLS channel, while the latter uses the WS-Trust and WS-

SecureConversation specifications to protect data confidentiality and integrity of

SOAP messages. The recommended use of transport-level security instead of fully

web-services based security is driven by the relatively poor performance of message-

level security implementations [188]. It is not clear when this issue will be solved.

This in turn motivates our focus on transport-level security throughout the thesis.

2.4 MyProxy

There are two common approaches to protecting a private key in a PKI. First it

can be protected by storing it in a file with restricted access, e.g. storing it in

an encrypted file with a decryption passphrase. Alternatively, the private key can

be stored on a hardware token (e.g. a smart card) that is usually protected by

a PIN. While it seems that this method provides the best security, it may be an

expensive option due to the need to deploy hardware support for using the token.

50

2.4 MyProxy

The second approach is to limit the exposure of the private key by regularly issuing

a new short-lived public/private key, usually on the order of hours or days. It is

a convention in cryptography and computer security that if a cryptographic key

is short-lived, then the level of protection which is afforded to it can be eased.

For example, the temporary private key can be stored unencrypted on a local file

system, protected only by file system permissions. Currently, the majority of grid

applications use proxy credentials in the form of X.509 proxy certificates for single

sign-on and delegation services. Even so, the limited security of typical desktop

systems may put users’ long-term private keys at risks through hacking, trojan

horses, viruses and other types of malicious software.

MyProxy [15, 137], a web-based grid portal, has been designed as an online credential

repository which stores users’ long-term credentials. This seems to better prevent

attackers from stealing users’ private keys, as it is expected that a MyProxy system

will receive round-the-clock monitoring from security specialists. Whenever a user

wants to create a proxy credential, he must authenticate himself to the MyProxy

server using a passphrase which he shares with the MyProxy server, and request

a new proxy credential to be issued to him. Furthermore, being web-based, the

MyProxy server can be accessed from any computer with Internet access.

The core protocol for the MyProxy system between a user and the MyProxy Server

is as follows [15].

1. The user establishes a TCP connection to the server and initiates a server-

authenticated TLS handshake protocol. A full TLS handshake is not manda-

tory as in most cases, a user does not have an existing X.509 credential.

2. Once the TLS handshake is complete and a secure channel is established, the

user sends a request message to the server. The request contains the protocol

version, the command (e.g. retrieve, store, or remove a proxy credential), a

username, a passphrase (an ASCII password used to protect the stored proxy

credential) and a lifetime.

3. If all checks succeed, the server will return ‘0’ to indicate success or ‘1’ with

an error text that suggests otherwise.

51

2.5 Example Scenario

Subsequently, should the user want to retrieve a new proxy certificate, he can gener-

ate a new public/private key pair and forward the public key to the server through

the established secure channel. The server will then create a new proxy signed with

the user’s stored private key and return it to the user. Note that the MyProxy

server encrypts the user’s long-term private key in the MyProxy repository with

the user-chosen passphrase included in the request message using an authenticated

symmetric encryption scheme. The passphrase is not stored in the MyProxy repos-

itory. Thus, the client must send the correct passphrase to the server so that it can

decrypt the private key correctly.

Recently, there has been an increasing interest in and support for one-time pass-

words in the MyProxy system. These mitigate the risk of passwords being stolen by

keystroke loggers, trojan horses, or other means.

2.5 Example Scenario

Here, we give a simple grid scenario, as shown in Figure 2.9, which captures some

of the common security requirements within a grid environment.

Alice, who is a member of CryptoGrid, wants to run a differential cryptanalysis

simulation which may take days to complete. She first accesses a trusted MyProxy

server where she has stored her long-term credential, to request a fresh proxy cer-

Virtual Organisation

User

Gatekeeper

Resource pool

Figure 2.9: Job invocation and interaction within a grid environment.

52

2.6 Summary

tificate. She then submits her job to the CryptoGrid Gatekeeper through a Globus

GRAM client. The Gatekeeper verifies Alice’s signed request and checks if Alice is

authorized to access the resources that CryptoGrid provides by consulting its local

grid-map file. Once the check passes, Alice and the Gatekeeper perform mutual au-

thentication using their respective long-term and proxy certificates. Subsequently,

Alice delegates her credential to the Gatekeeper through the secure channel that

they have established by signing a new proxy certificate which contains the Gate-

keeper’s short-term credential. Every time Alice’s job needs to gain access to a new

resource, the Gatekeeper will present this certificate to prove that it is acting on

Alice’s behalf.

Based on the job description, the Gatekeeper queries a local replica catalogue to

determine suitable resources to run the simulation. Once that has been located, the

Gatekeeper passes on the job description to a hosting server. Before the Gatekeeper

submits the job to the hosting server, it must perform mutual authentication with

the server using the delegated credential from Alice. In many cases, the Gatekeeper

may need to further delegate Alice’s credential to the hosting server which requires

access to other resources to complete Alice’s job. For instance, the job may require

additional data from a database server. Also, Alice may monitor the progress of

the job and possibly change her mind about where or how it is executing. Upon

completion of the job, Alice will be notified by the Gatekeeper and the results will

be sent back to her. Finally the Globus GRAM client will clean-up information in

the job submission scripts and remove temporary settings that coordinated the job.

2.6 Summary

We are moving into a future in which the physical location of computational re-

sources does not really matter. It is believed that VOs have the potential to dra-

matically change the way we use computers to solve complex and resource intensive

problems. In this chapter, we have given an introduction to the fundamental con-

cepts of grid computing. We also discussed the role of web services in grid computing

and outlined some applications. Security issues in grid computing have been identi-

fied as major challenges in making computational grids widely used infrastructures.

We have examined these issues, along with the security requirements that they lead

53

2.6 Summary

to. We have also outlined the security technologies in use in current grid systems.

To give a better view of actual grid deployment and usage, we also included some

illustrations of the Globus Toolkit, its security components and an example scenario.

54

Chapter 3

Identity-Based Cryptography

Contents

3.1 A Short History . 55
3.2 Certificated-Based PKI and Identity-Based PKI 57
3.3 Mathematical Preliminaries 60
3.4 Identity-Based Cryptographic Primitives 63

3.4.1 The Boneh-Franklin IBE Scheme 63
3.4.2 The Cha-Cheon IBS Scheme 65
3.4.3 The Gentry-Silverberg HIBE and HIBS Schemes 65
3.4.4 The ZSM IBS Scheme with Message Recovery 69
3.4.5 Signature Schemes from Pairings 70

3.5 Performance and Implementation Considerations 71
3.6 Applications . 75
3.7 Summary . 78

This chapter provides a background study of identity-based cryptography. We review

some basic concepts of pairings and some cryptographic primitives used in identity-

based cryptosystems. We also discuss the performance and implementation issues for

identity-based cryptographic schemes, which may have an impact on the practicality

of the schemes. Some existing applications of identity-based cryptography are pre-

sented to help in the understanding of the prospects for and benefits of identity-based

cryptosystems.

3.1 A Short History

Identity-based cryptography (IBC) was first introduced by Shamir [159] in 1984.

Instead of generating and using a random public/private key pair in a public key

55

3.1 A Short History

cryptosystem such as RSA, Shamir conceived the idea of using a user’s name or his

network address as a public key, with the corresponding private component being

generated by a trusted key generation centre. In fact, any type of identifier, e.g.

email address, social security number, telephone number and so forth, can be used,

so long it can uniquely identify the user and is readily available to the party that

uses it. The main motivation for this approach is to eliminate the need for certifi-

cates and the problems that they bring. Since a user’s public key is based on some

publicly available information that uniquely represents the user, an identity-based

cryptosystem can do away with public key directory maintenance and certificate

management. Despite the novel and ambitious conception, Shamir was only able

to develop an identity-based signature (IBS) scheme based on the RSA primitive.

The construction of an identity-based encryption (IBE) scheme was left as an open

problem. Since then, there were numerous attempts to realise Shamir’s vision of

identity-based encryption, such as those in [49, 124, 139, 171, 175, 178]. However,

none of these proposals were fully satisfactory. Either they did not provide adequate

security or they were not feasible to implement in practical environments. Mean-

while, there were further proposals for IBS schemes in [57, 95], also based on the

RSA primitive.

Only in the early 2000’s did the emergence of cryptographic schemes based on pair-

ings on elliptic curves result in the construction of a feasible and secure IBE scheme.

This area began with the novel work of Sakai et al. [155] on pairing-based key agree-

ment protocols and signature schemes, and subsequent work on the three-party key

agreement protocol by Joux [106]. Boneh and Franklin [25] then presented the first

practical and secure IBE scheme based on the Weil pairings. These three key con-

tributions have stimulated the development of a wide range of pairing-based crypto-

graphic schemes and protocols. Following the publication of [25] (an extended ver-

sion appears in [26]), a number of IBS schemes [39, 99, 142] and hierarchical identity-

based encryption (HIBE) and signature (HIBS) schemes [80, 100] were proposed.

Also, proposals for identity-based authenticated key agreement (IAKA) protocols

(e.g. [42, 163]), identity-based signcryption (IBSC) schemes (e.g. [32, 112, 122]) and

many other identity-based cryptographic schemes soon appeared in the literature.

It is worth noting that apart from Boneh and Franklin’s seminal work, there is also

another feasible and secure solution for IBE due to Cocks [47]. The security of

Cocks’ scheme is based on the Quadratic Residuosity problem. However, although

56

3.2 Certificated-Based PKI and Identity-Based PKI

the scheme of [47] is computationally viable to implement, it is generally considered

very costly in terms of communication overheads due to significant message expan-

sion. More background on cryptography from pairings can be found in [143] and a

good source of research papers on this subject is available at [11].

3.2 Certificated-Based PKI and Identity-Based PKI

In Chapter 2, we gave a review of the conventional certificate-based PKI that sup-

ports the widely used RSA encryption and signature schemes. Here we are going

to describe, at a relatively high-level, how an identity-based PKI works and what

its key differences from the traditional PKI are. The subsequent sections will then

delve into more details, uncovering some of the underlying concepts concerning pair-

ings and describing the identity-based cryptographic primitives that we will employ

throughout this thesis.

We begin by looking at a simplified version of the Boneh-Franklin IBE scheme. This

is defined by four algorithms, as follows:

Setup: Given a security parameter, the algorithm generates a set of system param-

eters (which will be made public) and a master secret (which it keeps private).

Extract: This algorithm is run to extract the private key corresponding to a given

public key. It takes the system parameters, the master secret and an arbitrary

identifier ID (public key string) as input, and returns a private key.

Encrypt: This algorithm uses the system parameters and an ID to encrypt a mes-

sage, and generates a ciphertext.

Decrypt: Using the system parameters, a private key and a ciphertext as input,

this algorithm returns a plaintext (or possibly an indication that the decryption

process has failed).

The Setup and Extract algorithms are normally executed by a Private Key Gen-

erator (PKG), while the Encrypt and Decrypt algorithms are carried out by

57

3.2 Certificated-Based PKI and Identity-Based PKI

users. The PKG in turn will be managed and controlled by a Trusted Authority

(TA), a trusted third party roughly equivalent to a CA in a traditional PKI. Sup-

pose that Alice wants to send a message secretly to Bob using an IBE scheme. She

does not need to first verify the authenticity of Bob’s public key by retrieving Bob’s

public key certificate (which must take place in a conventional PKI). Instead Alice

simply encrypts the message with Bob’s ID, e.g. ‘bob@example.com’. Clearly, Alice

needs to know the system parameters of Bob’s TA. If Bob does not already possess

the corresponding private key, he has to obtain it from his TA. If the TA is satisfied

that Bob is a legitimate receiver, it takes its system parameters, master secret and

Bob’s ID to extract a private key, which will then be used by Bob to decrypt the

ciphertext.

The major technical difference between a certificate-based PKI and an identity-

based PKI is the binding between the public/private keys and the individual. This

can be achieved by using a certificate in the traditional PKI. In the identity-based

setting, the public key is bound to the transmitted data while the binding between

the private key and the individual is managed by the TA. A public key based on

an identifier can be constructed on-the-fly at any time, even before its matching

private component is computed. In terms of key generation, the conventional PKI

allows either a user or his CA to create public/private key pairs. However, it is

only the TA that can compute private keys in the identity-based setting. This

inevitably implies that an identity-based PKI has an escrow facility, which may

or may not be desirable. Boneh and Franklin suggested in [25] that key escrow

can be circumvented by using multiple TAs and threshold cryptography. On the

other hand, because of this built-in feature, the user always needs to set up an

independent secure channel with his TA for retrieving private key material. For

key revocation, Boneh and Franklin proposed the use of date concatenated with the

user’s identifier to achieve automated key expiry. This may obviate the need for

a revocation mechanism. However, it has the disadvantage of increasing the TA’s

workload, since the TA is required to regularly generate private keys and deliver them

to its users. We will examine whether this key revocation approach is sufficient for

grid applications in Chapter 4. Table 3.1 summarises the above comparison between

traditional PKIs and identity-based PKIs. A more detailed discussion comparing the

two architectures can be found in [144]. For discussion of inter-operation between

the certificate-based and the identity-based settings and some of the issues that may

58

3.2 Certificated-Based PKI and Identity-Based PKI

Table 3.1: Key differences between a certificated-based PKI and an identity-based
approach.

Feature Certificate-based PKI Identity-based PKI

Public key generation Using random information Using an explicit identifier

Private key generation By a user or the CA By the PKG

Key certification Yes No

Key distribution Requiring an integrity protected Requiring an integrity and privacy

channel for distributing a new protected channel for distributing

public key from a user to his CA a new private key from the TA to

its user

Public key retrieval From a public directory or from On-the-fly based on the key

the key owner owner’s identifier

Escrow facility No (except when key generation is Yes

run by the CA)

then arise, see [148].

There are applications which do not tolerate key escrow as in the case of an identity-

based cryptosystem. This and other traditional PKI issues such as key revocation

have inspired other new models of infrastructures for supporting public key cryp-

tography. These include the certificate-based encryption scheme of Gentry [79] and

Al-Riyami and Paterson’s certificateless public key cryptography [5]. In Gentry’s

model, a user’s private key comprises two components: (i) a component which is se-

lected by the user and is kept private; and (ii) a component which is time-dependent

and issued by a CA on a regular basis. The second component can be sent across a

public channel. The first matching public component can be made publicly available

in the same manner as a standard public key, whereas the second public component

can be computed by other users using only public parameters of the scheme. This

approach does not suffer from the key revocation and escrow problems that both

traditional PKIs and identity-based PKIs encounter, assuming that the CA issues

a partial private key to its users in every time period, e.g. hour or day. Al-Riyami

and Paterson combined elements from the traditional PKI and the identity-based

approach, with a technical approach that is rather closely related to that of [79]. A

user’s private key in their certificateless setting also consists of two components: (i)

an identity-dependent partial private key (generated in the same way which the nor-

mal identity-based approach does); and (ii) a full private key which can be produced

using the partial private key and some secret known only to the user. Succinctly,

59

3.3 Mathematical Preliminaries

both proposals in [79] and [5] make use of a user’s input in addition to the CA/TA’s

for generating a private key, and thus the possibility of key escrow is eliminated. In

a way, key revocation in these proposals has become simpler than in the traditional

approach, provided the CA/TA can afford to withstand the burden of producing

partial private keys regularly for its users.

3.3 Mathematical Preliminaries

In this section, we give a brief introductory mathematical background on elliptic

curves and pairings. We also establish some computational problems which will be

used throughout the thesis.

Let p be a large prime, m an integer with m ≥ 1, and let Fpm be the finite field

with pm elements. So p indicates the characteristic of the field and m denotes its

extension degree. The multiplicative group of Fpm is denoted as F∗pm .

Let E/Fpm be an elliptic curve over the field Fpm . This is commonly defined by an

equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

where ai ∈ Fpm for i = 1, 2, 3, 4, 6. A point P = (x, y) ∈ Fpm × Fpm is said to be on

the curve if (x, y) satisfies the above equation. Associated with the curve E/Fpm is

an additive Abelian group (E(Fpm), +) whose elements are the points on the curve

together with a null element (or a point at infinity), denoted ∞. The size of E(Fpm)

is called the order of the curve over the field Fpm , denoted #E(Fpm).

Suppose that E(Fpm) has a cyclic subgroup G1 of order q, for some prime q. Define

the embedding degree (or security multiplier) to be the least integer k > 0 such that

q | pkm− 1 and q - pl− 1 for all 0 < l < k. Let G2 denotes a cyclic subgroup of F∗
pkm

of order q. An admissible pairing in the context of IBC is a function ê which maps

a pair of elliptic curve points of G1 to an element of G2, denoted ê : G1×G1 → G2,

and which has the following properties:

60

3.3 Mathematical Preliminaries

• Bilinear : Given P, Q, R ∈ G1, we have

ê(P, Q + R) = ê(P, Q) · ê(P, R) and ê(P + Q,R) = ê(P, R) · ê(Q,R).

Hence, for any a, b ∈ Z∗q ,

ê(aP, bQ) = ê(abP, Q) = ê(P, abQ) = ê(aP, Q)b = ê(P, Q)ab.

• Non-degenerate: There exists P ∈ G1 such that ê(P, P) 6= 1.

• Computable: If P,Q ∈ G1, then ê(P, Q) can be efficiently computed.

A pairing can be derived from either the modified Weil pairing [25] or the Tate pair-

ing [73]. Even though the Boneh and Franklin IBE scheme was proposed based on

the Weil pairing, the Tate pairing is generally preferred since it can be implemented

more efficiently than the Weil Pairing [75]. Supersingular curves are suitable for

pairing-based cryptosystems since it is possible to have embedding degree k = 2,

3, 4 and 6 [75]. In general, smaller values for pm are preferred because that means

arithmetic on the elliptic curve E(Fpm) is faster and transmission of points on the

curve requires less bandwidth. Hence, we tend to want to keep our field as small as

possible and to gain our security from larger values for k [76]. For example, working

on a supersingular curve with characteristic 2, we can arrange to have embedding

degree k = 4. This may offer better performance for arithmetic operations. To

reduce bandwidth requirements, supersingular curves of characteristic 3 which have

k = 6 may be preferred. See [13] for further discussion on choosing suitable curves

for relatively small values of k. We will also return to the issue of selecting curves

in Section 3.5.

Using the point compression technique, the size of an element of G1 is equivalent

to the size of its x-coordinate plus one bit (for the two possible corresponding y-

coordinates). The operation that involves P + Q where P, Q ∈ G1 is called an

elliptic curve point addition, while aP where a ∈ Z∗q is called an elliptic curve point

(or scalar) multiplication. Note that the point multiplication aP can be computed

very efficiently. However, the problem of finding a when given aP is believed to

be intractable, when the curve is appropriately chosen. This problem is known as

the elliptic curve discrete logarithm (ECDL) problem. The ECDL problem can be

harder to solve than the well-known discrete logarithm problem over finite fields of

61

3.3 Mathematical Preliminaries

the same size. This is the case because the best current known methods for solving

the discrete logarithm problem over finite fields do not generally translate to elliptic

curves. It is for this reason that many elliptic curve cryptosystems can operate with

smaller key sizes and yet achieve seemingly equivalent levels of security as compared

to other public key cryptosystems based on the discrete logarithm problem. Some

of the relevant computational problems related to the ECDL problem can be stated

informally as follows.

• Computational Diffie-Hellman (CDH) problem: Given 〈P, aP, bP 〉 ∈ G3
1, where

a, b ∈ Z∗q , compute abP . We say that the CDH assumption is satisfied if there

exists no probabilistic algorithm which can solve the CDH problem with non-

negligible advantage within polynomial time, when a and b are selected at

random from Z∗q .

• Decisional Diffie-Hellman (DDH) problem: Given 〈P, aP, bP, cP 〉 ∈ G4
1 for

a, b, c ∈ Z∗q , decide whether c ≡ ab mod q. This can be solved efficiently

by verifying ê(aP, bP) = ê(P, cP), provided we have an admissible pairing

ê : G1 ×G1 → G2.

• Bilinear Diffie-Hellman (BDH) problem: Given 〈P, aP, bP, cP 〉 ∈ G4
1 for a, b, c ∈

Z∗q , compute ê(P, P)abc ∈ G2. We say that the BDH assumption is satisfied if

there exists no probabilistic algorithm which can solve the BDH problem in

〈G1,G2, ê〉 with non-negligible advantage within polynomial time, when a, b

and c are selected at random from Z∗q .

• Gap Diffie-Hellman (GDH) problem: Solve the CDH problem in G1, possibly

with the help of an oracle that solves the DDH problem in G1. We say that the

GDH assumption is satisfied if there exists no probabilistic algorithm which

can solve the GDH problem with non-negligible advantage within polynomial

time.

It is known that the BDH problem is no harder than the CDH problem in either G1

or G2. The converse, however, is still open [25]. The reader can consult [23] and

[76] for more mathematical background on elliptic curves and pairings, respectively.

62

3.4 Identity-Based Cryptographic Primitives

3.4 Identity-Based Cryptographic Primitives

We are now ready to give more details of a few selected IBE and IBS schemes. These

schemes will be adopted in our grid security proposals later in this thesis. We will

not discuss security proofs for these schemes, as these are beyond the scope of the

thesis, but we assume the schemes have all been at least peer-reviewed by the IBC

research community and deemed sufficiently secure to be used.

3.4.1 The Boneh-Franklin IBE Scheme

The first practical, efficient and provably secure IBE scheme is due to Boneh and

Franklin [25]. This scheme quickly led to a new wave of cryptographic research in

pairing-based cryptography and IBC in particular. The following four algorithms

define Boneh and Franklin’s basic IBE scheme:

Setup: Given a security parameter k ∈ Z+, the PKG:

1. specifies two groupsG1 and G2 of prime order q, and an admissible pairing

ê : G1 ×G1 → G2;

2. chooses an arbitrary generator P ∈ G1;

3. defines two cryptographic hash functions, H1 : {0, 1}∗ → G∗1 and H2 :

G∗1 → {0, 1}n for some n; and

4. picks a master secret s ∈ Z∗q at random and computes the matching public

parameter as sP .

The system or public parameters are 〈q,G1,G2, ê, n, P, sP, H1,H2〉. Here, n

will be the bit length of plaintexts.

Extract: This algorithm is run by the PKG to extract a private key sQID =

sH1(ID) when given an arbitrary identifier string ID ∈ {0, 1}∗.

Encrypt: To encrypt a message m ∈ {0, 1}n under an identifier ID, the public key

used is QID = H1(ID). The resulting ciphertext is c = (U, V), where U = rP ,

V = m⊕H2(ê (QID, sP)r), and r ∈ Z∗q is selected at random.

63

3.4 Identity-Based Cryptographic Primitives

Decrypt: To decrypt a ciphertext c = (U, V) encrypted using the identifier ID, the

private key used is sQID ∈ G∗1. The plaintext m is recovered by calculating

V ⊕H2(ê (sQID, U)).

We remark that the above basic IBE scheme is not secure against adaptive chosen

ciphertext attacks in the identity-based setting (IND-ID-CCA secure). It is only

secure against chosen plaintext attacks (IND-ID-CPA secure), provided the BDH

assumption holds [25].

The full version of the Boneh-Franklin IBE scheme, which has security in the sense

of IND-ID-CCA, is as follows:

Setup: As in the basic IBE scheme. In addition, the PKG picks two more hash

functions, H3 : {0, 1}n × {0, 1}n → Z∗q and H4 : {0, 1}n → {0, 1}n.

Extract: As in the basic IBE scheme.

Encrypt: To encrypt a message m ∈ {0, 1}n under an identifier ID, the public key

used is QID = H1(ID). The algorithm selects a random z ∈ {0, 1}n and sets

r = H3(z,m). The resulting cipertext is then set to be:

c = 〈U, V, W 〉 = 〈rP, z ⊕H2(gr), m⊕H4(z)〉,

where g = ê(QID, sP) ∈ G2, a value which can be pre-computed.

Decrypt: To decrypt a ciphertext c = 〈U, V,W 〉 encrypted using the identifier ID,

the private key used is sQID ∈ G∗1. If U /∈ G∗1, reject the ciphertext. The

plaintext m is then recovered by performing the following steps:

1. compute V ⊕H2(ê(sQID, U)) = z;

2. compute W ⊕H4(z) = m;

3. set r = H3(z,m) and if U 6= rP , reject the ciphertext, otherwise accept

m as the decryption of c.

The full IBE scheme of Boneh and Franklin makes use of a technique due to Fujisaki

and Okamoto [74] to strengthen the basic version. This ensures that the full scheme

is IND-ID-CCA secure.

64

3.4 Identity-Based Cryptographic Primitives

3.4.2 The Cha-Cheon IBS Scheme

Shortly after the appearance of the Boneh-Franklin IBE scheme, a few IBS schemes

that make use of the same keying infrastructure as Boneh and Franklin’s scheme

were published. These include proposals from Paterson [142], Cha and Cheon [39],

and Hess [99] with different performance trade-offs.

Here, we illustrate the Cha-Cheon IBS scheme, whose security is related to the CDH

problem.

Setup: As in the basic IBE scheme, except that we now replace H2 with H6 which

is defined as {0, 1}∗ ×G1 → Z∗q .

Extract: As in the basic IBE scheme.

Sign: Given a private key sQID and a message m ∈ {0, 1}∗, the signer picks a

random number r ∈ Z∗q , and computes U = rQID, h = H6(m,U), and V =

(r + h)sQID. The algorithm outputs σ = (U, V) as the signature.

Verify: Given a signature σ = (U, V) of a message m signed by a user with an

identifier ID, the verifier checks if ê(P, V) = ê(sP, U + hQID). The signature

is accepted as valid if and only if this equality holds.

As mentioned earlier, identity-based cryptographic schemes have built in private key

escrow. It is generally, therefore, difficult to achieve true non-repudiation through

the use of identity-based signatures. Additional infrastructure or fixes are needed to

overcome this issue. For example, it is possible to use multiple TAs and threshold

cryptographic techniques [25].

3.4.3 The Gentry-Silverberg HIBE and HIBS Schemes

Horwitz and Lynn [100] first introduced the concept of HIBE to ease the private key

distribution problem and improve the scalability of the original IBE scheme proposed

in [25]. They proposed a 2-level HIBE scheme with total collusion-resistance at

65

3.4 Identity-Based Cryptographic Primitives

the first level but only partial collusion-resistance at the second level (i.e. users can

collude to obtain the master secret of their domain PKG). Shortly after the proposal

of [100], Gentry and Silverberg [80] proposed a secure, practical and fully scalable

HIBE scheme with total collusion resistance, regardless of the number of levels in the

hierarchy. In the HIBC (e.g. HIBE and HIBS) setting, a root PKG is only required

to produce private keys for domain-level PKGs, who in turn generate private keys

for users in their domains in the next level.

We describe Gentry and Silverberg’s hierarchical HIBE and HIBS schemes as follows.

We assume the root PKG is located at level 0.

Root Setup: The root PKG chooses a generator P0 ∈ G1, picks a random s0 ∈ Z∗q ,
and sets Q0 = s0P0. It also selects cryptographic hash functions H1 : {0, 1}∗ →
G1, H2 : G2 → {0, 1}n for some n, and H3 : {0, 1}∗ → G1. The root PKG’s

master secret is s0 and the system parameters are 〈G1,G2, ê, P0, Q0,H1,H2, H3〉.

Lower-level Setup: A lower-level entity (lower-level PKG or user) at level t picks

a random st ∈ Z∗q which will be kept secret.

Extract: For an entity at level t with ID-tuple 〈ID1, . . . , IDt〉, where 〈ID1, . . . , IDi〉
is the ID-tuple of the entity’s ancestor at level i (1 ≤ i < t), the entity’s

parent computes Pt = H1(ID1, . . . , IDt) ∈ G1, sets the secret point St to be
∑t

i=1 si−1Pi = St−1 + st−1Pt (note that St−1 is the parent’s secret point given

by the parent’s ancestor and st−1 is a secret value only known to the parent),

and defines Q-values by setting Qi = siP0 for 1 ≤ i ≤ t−1. The entity at level

t is given both St and the Q-values by its parent.

Encrypt: Given a message m ∈ {0, 1}n with the ID-tuple 〈ID1, . . . , IDt〉, the mes-

sage can be encrypted by first computing Pi = H1(ID1, . . . , IDi) ∈ G1 for

1 ≤ i ≤ t; then choosing a random r ∈ Z∗q ; and the ciphertext is set to:

c = 〈rP0, rP2, . . . , rPt,m⊕H2(gr)〉,

where g = ê(Q0, P1) ∈ G2, a value which can be pre-computed.

Decrypt: Given a ciphertext c = 〈U0, U2, . . . , Ut, V 〉 encrypted using the ID-tuple

〈ID1, . . . , IDt〉, the ciphertext can be decrypted by computing:

m = V ⊕H2

(
ê(U0, St)∏t

i=2 ê(Qi−1, Ui)

)
.

66

3.4 Identity-Based Cryptographic Primitives

Sign: Given a private key St and a message m ∈ {0, 1}∗, the signer with ID-tuple

〈ID1, . . . , IDt〉 computes h = H3(ID1, . . . , IDt,m) ∈ G1 and σ = St + sth. The

algorithm outputs 〈σ,Q1, . . . , Qt〉 as the signature.

Verify: Given a signature 〈σ,Q1, . . . , Qt〉 of a message m signed by an entity with

ID-tuple 〈ID1, . . . , IDt〉, the verifier checks if:

ê(P0, σ) = ê(Q0, P1)ê(Qt, h)
t∏

i=2

ê(Qi−1, Pi),

where h = H3(ID1, . . . , IDt,m). To improve the verification performance, in

particular in situations where many signatures from the same signer need to be

verified, the values ê(Q0, P1) and
∏t

i=2 ê(Qi−1, Pi) can be pre-computed. This

means that there will be only two pairing computations when the verification

is performed.

We remark that we have only presented a basic HIBE scheme. The full version of the

Gentry-Silverberg HIBE scheme, which has security in the sense of IND-ID-CCA, is

as follows:

Setup: As in the basic HIBE scheme. In addition, the PKG picks two more hash

functions, H4 : {0, 1}n × {0, 1}n → Z∗q and H5 : {0, 1}n → {0, 1}n.

Extract: As in the basic IBE scheme.

Encrypt: Given a message m with the ID-tuple 〈ID1, . . . , IDt〉, the message can be

encrypted by first computing Pi = H1(ID1, . . . , IDi) ∈ G1 for 1 ≤ i ≤ t; then

choosing a random z ∈ {0, 1}n; and setting r = H4(z,m). Subsequently, the

ciphertext is set to:

c = 〈rP0, rP2, . . . , rPt, z ⊕H2(gr),m⊕H5(z)〉,

where g = ê(Q0, P1) ∈ G2, as before.

Decrypt: Given a ciphertext c = 〈U0, U2, . . . , Ut, V,W 〉 encrypted using the ID-

tuple 〈ID1, . . . , IDt〉, the ciphertext can be decrypted by performing the fol-

lowing steps:

67

3.4 Identity-Based Cryptographic Primitives

1. compute

V ⊕H2

(
ê(U0, St)∏t

i=2 ê(Qi−1, Ui)

)
= z;

2. compute W ⊕H5(z) = m;

3. set r = H4(z, m) and test if 〈U0, U2, . . . , Ut, V 〉 is a basic HIBE encryption

of z using r and 〈ID1, . . . , IDt〉. If not, reject the ciphertext, otherwise

accept m as the decryption of c.

It is worth noting that other HIBE and HIBS schemes are available. We have

selected the schemes from [80] because they are efficient and their security is based on

reasonable computational assumptions. More importantly, we observe that the HIBS

scheme of [80] can be extended to an identity-based (partial) aggregate signature

scheme using a simple twist. The aggregate signature scheme, converted from a

1-level HIBS scheme, can be described as follows:

Aggregate: To aggregate n signatures on n distinct messages produced by n dif-

ferent users (who are all at level 1 of the hierarchy used for the HIBS scheme),

each user with identity IDi (for 1 ≤ i ≤ n) computes Ui = s0H1(IDi) +

s1,iH3(IDi, mi) and Q1,i = s1,iP0. Note that s0H1(IDi) is the private key of

the user with identity IDi, while s1,i is an integer that user i selects at random

from Z∗q . The aggregate signature is 〈∑n
i=1 Ui, Q0, Q1,1, . . . , Q1,n〉.

Aggregate Verify: Given an aggregate signature 〈U,Q0, Q1,1, . . . , Q1,n〉 produced

by n users from n messages, the verifier computes H3(IDi,mi) for 1 ≤ i ≤ n

and checks if:

ê(P0, U) =
n∏

i=1

ê(Q0,H1(IDi))ê(Q1,i,H3(IDi,mi)).

Note that this method can compress n signatures each with 2 group elements to

n + 1 group elements. In [189], Yoon et al. also presented an aggregation technique

with roughly the same degree of compression for a modification of the Cha-Cheon

IBS scheme. We will see a non-identity-based aggregate signature scheme with full

compression (into a single signature) in Section 3.4.5.

68

3.4 Identity-Based Cryptographic Primitives

3.4.4 The ZSM IBS Scheme with Message Recovery

In some scenarios, particularly where reducing the bandwidth of messages is im-

portant, an IBS scheme with message recovery may be useful. Zhang, Susilo and

Mu [190] have recently proposed such a scheme based on the work in [4]. Their

scheme is as follows.

Setup: As in the basic IBE scheme. In addition, the PKG selects k1 and k2 such

that |q| = k1 + k2. It also defines additional hash functions H0 : {0, 1}∗ → Z∗q ,
F1 : {0, 1}k2 → {0, 1}k1 , and F2 : {0, 1}k1 → {0, 1}k2 . The system parameters

are now 〈q,G1,G2, ê, n, P, sP,H0,H1, F1, F2, k1, k2〉.

Extract: As in the basic IBE scheme.

Sign: Given a private key sQID and a message m ∈ {0, 1}k2 , the signer computes:

1. v = ê(P, P)k, where k is selected at random from Z∗q ;

2. f = F1(m)‖(F2(F1(m))⊕m);

3. r = (H1(v) + f) mod q;

4. U = kP − r(sQID).

The signature σ is (r, U).

Verify: Given a signature σ = (r, U) signed by a user with a public key QID =

H1(ID), the verifier computes

f = r −H1(ê(U,P)ê(QID, sP)r) and m = [f]k2 ⊕ F2([f]k1).

The verifier also checks if [f]k1 = F1(m). The signature is accepted as valid if

and only if this equation holds. Here [f]k1 denotes the left-most k1 bits of the

string f , while [f]k2 denotes the right-most k2 bits of the string f .

The length of the signature is |r| + |U | = |q| + |element of G1|. For example, if we

select q to be a 170-bit prime and the size of a group element of G1 is 171 bits, the

length of the signature is then 341 bits. The security of this scheme is based on

the hardness of the CDH problem. To obtain approximately similar security as a

69

3.4 Identity-Based Cryptographic Primitives

standard 1024-bit RSA signature and a 2−80 probability of a successful forgery by

an adversary, |k1| ≤ 80 is needed if a group element of G1 is represented by 171

bits [190]. The size of the message is limited to k2 bits, where k2 = |q| − k1.

3.4.5 Signature Schemes from Pairings

Apart from the aforementioned IBS schemes, we would like to draw to the reader’s

attention two ordinary (i.e. not identity-based) pairing-based signature schemes with

attractive properties, namely, the BLS short signature scheme and the BGLS ag-

gregate signature scheme. The BLS short signature scheme will be adopted in our

hybrid certificate/identity-based proposal in Chapter 5.

The BLS short signature scheme was proposed by Boneh, Lynn and Shacham [28] in

2001. It can produce short signatures which provide equivalent security to standard

signatures for environments with bandwidth constraints. The security of the scheme

is based on the CDH assumption. Using the same parameters 〈ê,G1,G2,H1, P 〉 as

in the previous sections, the BLS short signature scheme can be described as follows:

KeyGen: Pick an integer at random from Z∗q and compute sP ∈ G1. The public

key is sP and the matching private key is s.

Sign: Given a private key s ∈ Z∗q and a message m ∈ {0, 1}∗, compute H1(m) ∈ G1.

The signature is σ = sH1(m) ∈ G1.

Verify: Given a public key sP , a message m and a signature σ, compute H1(m)

and accept the signature as valid if and only if ê(P, σ) = ê(sP, H1(m)) holds.

Note that the length of the signature is only the size of a group element of G1, half

the size of a signature produced by the Cha-Cheon IBS scheme.

We remark that the above version of the short signature scheme may well not provide

the expected level of security if we choose an elliptic curve in characteristic 2 or

3 [29, 143]. This is because of the existence of special purpose algorithms to solve

the discrete logarithm problem in these cases (more details about curves selection are

70

3.5 Performance and Implementation Considerations

discussed in Section 3.5). However, this problem can be addressed using a modified

version of the above scheme and non-supersingular curves, as was proposed in [29]1.

In particular, a class of curves called MNT curves can be used and levels of security

around 85 bits can be achieved with a signature size of about 170 bits.

The above BLS short signature scheme can be extended to an aggregate signature

scheme, as proposed by Boneh, Gentry, Lynn and Shacham in [27]. An aggregate

signature is an aggregation of n signatures on n distinct messages from n distinct

users, which produces a single short signature. This can be very useful for verifying

certificate chains that contain signatures on distinct certificates issued by different

parties. The BGLS aggregate signature scheme works as follows:

Aggregate: For the aggregating group U of n users, assign to each user an index i,

where 1 ≤ i ≤ n. Each user ui ∈ U with his private key si provides a signature

σi ∈ G1 on a message mi ∈ {0, 1}∗, where σi = siH1(mi) ∈ G1. The aggregate

signature is σ =
∑n

i=1 σi.

Aggregate Verify: Given an aggregate signature σ for an aggregating group U

of n users, with their respective public key siP ∈ G1 and the original messages

mi ∈ {0, 1}∗, ensure that the messages mi are all distinct and accept the

aggregate signature as valid if ê(P, σ) =
∏n

i=1 ê(siP, H1(mi)) holds.

An aggregate signature produced from the above scheme compresses n signatures

into just a single group element of G1. An aggregate verification requires n + 1

pairing computations.

3.5 Performance and Implementation Considerations

As with any other cryptosystem, the practicality of an identity-based cryptosystem

is highly dependent on its ease of implementation and its level of performance. Even

though Cocks [47] proposed a computationally acceptable identity-based encryption

scheme about the same time as Boneh and Franklin, Cocks’ scheme is too expensive
1We note that [29] is a full and revised version of [28].

71

3.5 Performance and Implementation Considerations

in terms of communication overheads. For instance, transmitting a short cipher-

text of 128 bits (e.g. session key) using a 1024-bit modulus may require up to 32

kilobits of keying material [47], which is roughly 13 times the size of a standard

X.509 certificate. This may not be acceptable in many applications. On the other

hand, identity-based cryptographic schemes based on pairings use small key sizes.

Also, they are, as we shall see below, computationally almost comparable with RSA

schemes [12, 157].

In what follows, we discuss parameter selection for pairing-based cryptographic

schemes, pairing computation times for different parameters sets, and some of the

development tools available for constructing identity-based cryptosystems.

Parameter Selection. Most pairing-based cryptographic schemes need to be

working in a subgroup of E(Fpm) of sufficiently large prime order q so that Fpkm

is a sufficiently large finite field. For current minimum levels of security, we require

q > 2160 and pkm > 21024 to resist algorithms for solving the discrete logarithm

problem in G1 and G2 (as defined in Section 3.3), respectively [75, 76]. Currently,

1024-bit RSA is considered to provide roughly 80 bits of security [9]. This is be-

lieved to be roughly as secure as a cryptosystem based on the discrete logarithm

problem over a field of size 21024. For example, let us consider the case of supersin-

gular curves over fields of characteristic 2 with k = 4. In order to achieve a level

of security roughly similar to 1024-bit RSA, we require our curve to be defined over

F2m with m ≈ 256 (since k = 4 and (2256)4 = 21024). Similarly, if we work on

an elliptic curve in characteristic 3 (k = 6), the curve should be defined over F3m

with m ≈ 108 in order to achieve a level of security roughly equivalent to 1024-bit

RSA. It is, however, not possible to find curves and suitable prime order subgroups

of these exact sizes due to the rarity of suitable supersingular elliptic curves. It is

also worth noting that there are special purpose algorithms which can be applied

to solve the discrete logarithm problem in Fpkm when p is 2 or 3. This may mean

that larger parameters than at first appears must be chosen to obtain the required

security levels [143]. Table 3.2 shows a few curves offering roughly similar levels of

security to 1024-bit RSA.

It is clear from Table 3.2 that the curve defined over a finite field with size 2271

72

3.5 Performance and Implementation Considerations

Table 3.2: Different sizes of curves with their matching levels of security for RSA
cryptographic schemes.

Order of Curve (≈) Characteristic/k Equivalent RSA Modulus (in bits)

2241 2/4 964
2271 2/4 1084
2283 2/4 1132
397 3/6 922
3149 3/6 1417
3163 3/6 1550

has roughly similar levels of security to 1024-bit RSA. Operations in characteristic

2 have the advantage of faster and easier implementation in hardware. However,

working in characteristic 3 can achieve shorter message length than in characteristic

2. One problem with working in characteristics 2 and 3 is that, as we mentioned

earlier, there are only a small number of curves and fields to choose from. Hence,

there is an element of luck in the search for a suitable large prime factor of the curve

order and the choice of parameters is consequently not very flexible. However, no

such problems arise when working over Fp [76].

Pairing Computation. The dominant cost for an identity-based cryptographic

scheme is the evaluation of a pairing which involves an application of the Miller

algorithm [73] or a modification of it (see for example [12, 14, 77]). Table 3.3 shows

some experimental results of various cryptographic algorithms obtained by Barreto

et al. [12].

It is obvious from Table 3.3 that an RSA encryption can be performed very fast as it

involves only a very small public exponent, e.g. 216 + 1. We see that a Tate pairing

computation with underlying base field F2271 is approximately four times slower than

an RSA decryption. On the other hand, a pairing computation with underlying base

field Fp and |p| = 512 is slightly faster than on a curve defined over F2271 but the

penalty is the need to use a bigger key size. The pairing computation time can be

further reduced by more than half with pre-computation, which involves calculations

of certain fixed parameters in the Miller algorithm [12]. An IBE decryption (based

on the Boneh-Franklin IBE scheme in Section 3.4.1) involves one hash function (H2)

evaluation, one XOR operation, and one pairing computation. The timings from

73

3.5 Performance and Implementation Considerations

Table 3.3: Computation times for different operations on a Pentium III 1 GHz
machine [12].

Operation Time (in ms)

RSA encryption, |N | = 1024 bits, |e| = 16 bits 0.4
RSA decryption, |N | = 1024 bits, |d| = 1007 bits 7.9
Tate pairing, F2271 , |q| = 272 bits 23.0
Tate pairing, F397 , |q| = 154 bits 26.2
Tate pairing, Fp, |p| = 512 bits 20.0
Tate pairing, Fp, |p| = 512 bits, pre-computation 8.6
IBE encryption, Fp, |p| = 512 bits 48.0
IBE encryption, Fp, |p| = 512 bits, pre-computation 36.0
IBE decryption, Fp, |p| = 512 bits 30.0
IBE decryption, Fp, |p| = 512 bits, pre-computation 19.0

Table 3.3 shows that a pairing computation can take up to about two-thirds of the

time required to perform an IBE decryption (20 ms out of 30 ms).

In general, although computing the Tate pairing is slower than performing an RSA

modular exponentiation, it is perceived to be acceptably fast to implement in prac-

tice. Implementations of the Boneh-Franklin IBE scheme on smart cards by Gem-

plus2, a world-leading smart card based solutions provider, is a good example [125].

There has been further work in improving the performance of pairing computations,

such as [157, 158]. In particular, it has been shown in [10] that many of the char-

acteristics 2 and 3 timings in Table 3.3 have been improved significantly since the

publication of [12]. This gives hope that faster identity-based cryptosystems can be

built and that the gap in performance between RSA and identity-based cryptosys-

tems can be further reduced.

Development Libraries and Toolkits. There are currently only a few software

libraries and toolkits that support implementations of identity-based cryptographic

schemes. Here, we give a short review of some available libraries and toolkits.

• MIRACL [160] is a C/C++ library used for implementing cryptographic schemes

such as RSA, Diffie-Hellman key exchange, DSA and so on. The latest ver-
2Gemplus International announced the world’s first identity-based encryption for smart cards

on 2 November 2004.

74

3.6 Applications

sion 4.85 of MIRACL offers full support for elliptic curve cryptography over

Fp and F2m . It provides inline assembler and allows a variety of techniques

to be used to improve performance. The results in Table 3.3 are based on

implementations using MIRACL.

• The Stanford IBE Library [167] contains source code which implements the

Boneh-Franklin IBE scheme. The source code is written by members of the

Applied Crypto Group of the Computer Science Department at Stanford Uni-

versity, and is made available through the group’s website. The library relies

on the GNU MP library3 and the OpenSSL library.

• The Voltage IBE Toolkit [180] is a set of tools that enable software developers

to quickly incorporate the Boneh-Franklin IBE scheme into other applications.

The toolkit, written in C, provides high-level interfaces for rapid application

development as well as lower-level cryptographic APIs for advanced security

operations.

Having reviewed various identity-based cryptographic schemes in Section 3.4, and

discussed their seemingly promising performance in this section, we are now ready

to move on to the next section to reviewing some real world applications of IBC.

3.6 Applications

Currently, two leading companies in developing and marketing identity-based se-

curity systems are Voltage Security4 and NoreTech5. Voltage SecureMail was the

first commercial IBE product available in the market, targeted at the financial, gov-

ernmental and healthcare industries. On the other hand, NoreTech has developed

prototype implementations for Symbian OS and Microsoft Smartphone OS mobile

phones [125].

The Voltage SecureMail product [181] offers a secure email communication solution

for enterprises. It does not require pre-enrolment of users before they can receive
3GNU MP is a free library for arbitrary precision arithmetic, operating on signed integers,

rational numbers and floating point numbers.
4http://www.voltage.com/.
5http://www.noretech.com/.

75

3.6 Applications

Company ABC

iMac

SecurePolicy Suite

Alice Bob

Company XYZ

Authentication Server

(Authentication connector)

(Secured email)

(Obtain private key)

Figure 3.1: An overview of the Voltage SecureMail architecture [181].

secure emails. Suppose Alice from company ABC wants to send her customer Bob at

company XYZ a confidential email. After she has composed the message, she simply

types in Bob’s email address ‘bob@xyz.com’ and hits the “Send Secure” button. The

email will be encrypted with Bob’s public key and delivered to Bob, as illustrated

in Figure 3.1.

If this is the first time Bob receives a secure message from Alice, he clicks on a link in

the message header and downloads the Voltage SecureMail client. He then proceeds

to enrol and authenticate to company ABC’s SecurePolicy Suite, an administration

and key generation server that supports Voltage SecureMail. Upon completion of

the authentication, the SecurePolicy Suite presents Bob with his private key which

can be used to decrypt and read the secured email.

Here are more details about the architecture of Voltage SecureMail [181, 182].

• Public parameters: The system parameters for the IBE scheme are created

when the Voltage SecurePolicy Suite is initialised. The authenticated pa-

rameter set can be downloaded by users from the Voltage SecurePolicy Suite

through the Voltage Domain Trust Handshake. This builds on the standard

TLS handshake.

• Authentication and policy enforcement : The Voltage SecurePolicy Suite in-

76

3.6 Applications

cludes an enrolment server, which in turn integrates with existing identity

management systems such as LDAP and Windows Active Directory, to au-

thenticate users before releasing private keys. When the enrolment server

receives a request for an IBE decryption key from Bob, the identity associated

with the request is checked to determine to which identity group it belongs.

Subsequently, a suitable authentication connector such as Windows Domain

Authentication or POP3 Authentication is called to contact Bob’s authentica-

tion server. The appropriate information is passed to the authentication server

to validate Bob’s identity. A key server in the Voltage SecurePolicy Suite will

only grant Bob the private key if the checks by the enrolment server pass and

if Bob complies with whatever policy is bound to the associated identifier.

• Key management : Private keys are derived by the key server and delivered

to the users through TLS secure channels. For key update and to achieve

automated key expiry, Voltage SecureEmail combines an identity and a date

when constructing a public key. For instance,

‘name=bob,validity=01/10/05-02/10/05’.

Thus, the exposure of a compromised key is limited to one day. Furthermore,

if Bob resigns from his company, the Voltage SecurePolicy Suite simply stops

issuing private keys to him.

Smetters and Durfee [164] also proposed another secure email application based on

IBC, which can be built on existing global trust infrastructures. Instead of having

one global PKG, each domain, with its own Domain Name System (DNS) server,

is responsible for creating a set of IBE system parameters and distributing private

keys to users within its domain. Their design make uses of DNS Security Extensions

(DNSSEC), a technique used for securing the DNS, to distribute an authenticated

parameter set to its domain users. The parameters include a Time-to-Live (TTL)

field to force a user client to check for updates to the parameter values at reasonable

time intervals. This limits the possible damage caused by exposure of the IBE master

secret. To communicate with a user from a different domain, a cross-certification

between the DNS servers of these domains using a PKI approach is required. User

clients within a domain communicate with their PKG (handled by a DNS server)

using the standard TLS protocol. To support key revocation based on an identifier,

77

3.7 Summary

Smetters and Durfee suggested the use of a salt as part of the identifier. The salt,

also published in the domain system parameters, should be a random string long

enough to be unlikely to be chosen at random again. When the TTL value has

expired, all user clients need to update the salt value. Work on securing IP-based

network traffic using similar ideas was also presented in [164].

From the above examples, it seems that identity-based techniques are suitable for

email applications. One reason for this may be that the users’ email addresses can

be used directly as their identifiers. In addition, sending a secure message through

an email system may well be one of the easiest methods of delivering confidential

information from one party to another over the Internet. Apart from email appli-

cations, there are other example applications in which IBC may be more beneficial

than conventional public key cryptography. In [48], Dalton studied ways of securely

managing health care records in the UK’s National Health Service. The potential

improvements with IBC, such as policy enforcement using identifiers, workflow man-

agement, access control based on roles or groups and so on, were considered within

the health care environment. Meanwhile, Khalili et al. [108] proposed a key distribu-

tion technique based on the combination of IBC and threshold cryptography for ad

hoc network environments. By using identifiers as the public keys, users need only

propagate their identity information rather than standard full certified public keys.

Stading [166] studied the use of IBC for improving key management techniques in

Scribe which was originally designed for Chord [170], a P2P lookup service. His

proposal made use of threshold cryptography to generate a shared master secret

among some selected servers from a group of overlay network6 nodes without the

need for a trusted third party. The private key of a specific node can be computed by

sending requests to each server holding part of the master secret. For more example

applications of IBC, see [11].

3.7 Summary

In this chapter, we have given a literature review of IBC. We covered some back-

ground facts about the evolution of IBC. We compared a traditional certificate-based
6An overlay network is a type of computer network which is built on top of another network.

Nodes in the overlay can be thought of as being connected by virtual or logical links.

78

3.7 Summary

PKI with an identity-based PKI. We also provided some mathematical background

on pairings sufficient for understanding the identity-based cryptographic primitives

that we will apply to grid applications in the subsequent chapters. Based on the

presented performance figures for pairing computations, we have seen that identity-

based cryptographic schemes are fast enough to be deployed in real life applications,

with other advantages such as being certificate-free and having small key sizes. We

have shown that currently secure messaging systems seem to be the ideal testbeds

for identity-based cryptographic schemes. However, many other applications with

different and more complex security requirements are still to be explored. This

provides our motivation for studying the application of IBC in grid security.

79

Chapter 4

Identity-Based Key Infrastructure
for Grid

Contents

4.1 Current Problems . 81

4.2 Overview of Identity-Based Key Infrastructure for Grid 83

4.3 Related Work . 84

4.4 Design of IKIG . 86

4.4.1 Single Sign-On . 88
4.4.2 Authorization . 88
4.4.3 Mutual Authentication and Key Agreement 89
4.4.4 Delegation . 92

4.5 Key Management in IKIG 95

4.5.1 Parameter Generation and TA Initialization 95
4.5.2 User Registration . 96
4.5.3 Key Update . 98
4.5.4 Key Revocation . 98
4.5.5 Integrating with MyProxy 99

4.6 Security Analysis . 100

4.6.1 Mutual Authentication and Key Agreement 101
4.6.2 Delegation . 102

4.7 Performance Analysis . 103

4.8 Discussion . 109

4.8.1 Impact on Web Services Security 110
4.8.2 Implementation Issues . 112
4.8.3 Inter-TA Operation . 113
4.8.4 Limitations . 114

4.9 Summary . 115

80

4.1 Current Problems

This chapter presents a comprehensive investigation of the use of identity-based tech-

niques to provide an alternative grid security architecture. We propose a customised

identity-based key agreement protocol which fits nicely with the GSI and provides a

more lightweight secure job submission environment for grid users. Single sign-on

and delegation services are also supported in a very natural way in our identity-based

architecture.

4.1 Current Problems

In Chapter 2, we reviewed current grid technologies and described the grid vision.

One can imagine a VO as a giant virtual supercomputer that encompasses thousands

of processing chips and memory cards, hundreds of hard disks and database files,

and other resources. However, unlike an actual personal computer which has its pro-

cessing parts and components integrated within a single physical machine, resources

within a VO are geographically dispersed and managed under different administra-

tive domains. Such a heterogeneous and scalable environment raises many questions

on how various security mechanisms can be efficiently put in place without jeopar-

dising the practicality of a VO.

Despite the ambitious vision, the key management that is essential for support-

ing these security mechanisms can be much more complex than in a conventional

distributed system. To illustrate this, we refer back to the grid example scenario

described in Section 2.5. Consider a single secure job submission. Before Alice

submits her job request, she must make sure that her proxy credential has been

created. When Alice submits a job through the Gatekeeper (GK), another proxy

credential that deals with the job has to be created at the GK. If Alice delegates

her proxy credential to the GK to offload some tasks such as resource allocation and

data transfer, the GK would need to create a separate proxy credential signed with

Alice’s short-term private key. Should the GK want to further delegate Alice’s proxy

credential to resource X, then creation of another proxy certificate is inevitable. The

extensive use of standard X.509 certificates and proxy certificates even for a single

job submission is evident, as shown in Table 4.1.

81

4.1 Current Problems

Table 4.1: Various entities and the required certificates in the PKI-based GSI. An
issuer who is a proxy entity is denoted by ∗.

Entity No. Subject Certificate Type Issuer

Alice (i) A Standard CA
(ii) A Proxy A

Gatekeeper (iii) GK Standard CA
(iv) GK Proxy GK
(v) A Proxy A∗

Resource X (vi) X Standard CA
(vii) X Proxy X

(viii) A Proxy GK∗

Generation, certification and verification of public keys, distribution of certificates,

and other aspects of key management cause non-trivial overheads. For instance,

when the GK and resource X perform mutual authentication through the TLS

handshake protocol before the job is executed, the GK must transmit the complete

certificate chain consisting of: certificates (i), (ii), (iii) and (v) in Table 4.1, to X.

For X to verify the short-term public key that the GK uses on behalf of Alice,

X must check the signatures on all the certificates (v), (iii), (ii) and (i) to ensure

that A has indeed delegated her credential to the GK. It is obvious that when the

delegation chain becomes longer, the verification of the short-term public key used at

the end of the chain becomes more tedious. Note that this process is repeated every

time the GK communicates with a resource provider on Alice’s behalf. Current key

and certificate management techniques are likely to cause bottlenecks at the GK

and resource X when they handle many job requests simultaneously. Hence, the

scalability of the PKI approach seems to be questionable.

From the above description, we see that although current public key management

techniques are workable, they seem to be rather heavyweight. On the contrary, it is

an essential requirement that key management and the security architecture within a

grid environment are lightweight so that a VO that serves as a single virtual machine

can be constructed with minimal performance impact. This brings us to the central

question investigated in this thesis: can an identity-based key infrastructure offer a

more lightweight, and thus a better, solution than the PKI-based GSI?

82

4.2 Overview of Identity-Based Key Infrastructure for Grid

4.2 Overview of Identity-Based Key Infrastructure for Grid

In order to tackle the aforementioned problems, it makes sense to investigate the

benefits of a certificate-free approach to key management. With this in mind, IBC

has the following attractive properties:

• Identity-based : The use of identity-based public keys in IBC allows any entity’s

public key to be generated and used on-the-fly without the need for a directory

look-up or other public key distribution mechanism;

• Certificate-free: IBC does not make use of certificates since public keys can be

computed based on some public identifiers; and

• Small key sizes: Since identity-based cryptographic schemes use pairings which

are, in turn, based on elliptic curves, they can have smaller key sizes than more

conventional public key cryptosystems such as RSA.

These interesting properties of IBC indicate the possibility of developing an alter-

native security infrastructure that provides greater flexibility to entities within a

grid environment and that offers a more lightweight public key management ap-

proach than traditional PKI. The aim of this chapter is to propose and investigate

an identity-based key infrastructure for grid (IKIG). Our proposal incorporates fea-

tures that align with the security services provided by the PKI-based GSI, which is

an essential requirement of any alternative proposal. The challenge of achieving this

lies in the difficulty of creation and management of identity-based proxy credentials,

in addition to long-term credentials that are common to most identity-based cryp-

tosystems. By exploiting some properties from HIBC, IKIG facilitates the creation

and usage of identity-based proxy credentials in a very natural way. These identity-

based proxy credentials, in turn, are needed to support features that match those

provided by the GSI.

Our IKIG proposal has the following features:

1. Single sign-on: As with the GSI, our IKIG proposal supports single sign-on

through the use of identity-based proxy credentials. Since the users’ short-term

83

4.3 Related Work

public keys are based on some predictable identifiers and the matching short-

term private keys are stored locally at the user side, user authentication can

be performed without any physical intervention from the users and without

the need for certificates.

2. Mutual authentication and key agreement: IKIG also supports a certificate-

free authenticated key agreement protocol based on the TLS handshake. Our

protocol allows mutual authentication and session key establishment between

two entities in a more lightweight manner than the traditional TLS as it has

small key sizes and requires no certificates.

3. Delegation: We propose a non-interactive delegation protocol which works in

the same way as in the GSI, in the sense that the delegator signs a new public

key of the delegation target. In addition, IKIG allows partial aggregation

of signatures. This can be useful when the length of the delegation chain

increases. This is a new feature not available in the GSI.

Users in the IKIG setting do not need to obtain short-term private keys from their

respective PKGs. This is because the users themselves act as PKGs for their local

proxy clients. Thus short-term private key distribution is not an issue in IKIG. This

contrasts favourably with the applications of IBC that we discussed in Section 3.6,

where private key distribution is a complicating factor.

4.3 Related Work

A number of researchers have recently started exploring the use of IBC in grid

security. Our first publication on this subject [117] was an exploratory paper that

described some potential benefits of IBC in a grid security architecture. It was

noted in [117] that a VO within a grid environment may have a large number of

members that join and leave over the time and that certificates are used extensively

for every job submission. This would inevitably complicate key management and

increase the bandwidth requirement of a grid system. It was also noted in [117] that

these problems could be simplified by using certificate-free IBC. Moreover in the

IBC setting, a user’s public key can be created and used immediately without the

need for a public key certificate to be forwarded to the intended recipient (normally

84

4.3 Related Work

via a TLS handshake). However, the supposedly dynamic use of identity-based keys

was hindered by some traditional limitations of IBC such as key escrow and the need

to distribute private keys through secure channels. More importantly, some of the

essential security requirements desired in the GT, such as using proxy credentials

for single sign-on and delegation, were not addressed in [117].

At about the same time, Mao [123] revisited the GSI proposed for GT2 [69] and pre-

sented an application of Sakai et al.’s non-interactive identity-based key distribution

technique [155] within the GSI authentication framework. It was assumed in [123]

that a user, who is from an average or low-end platform, may have to execute many

mutual authentication sessions with different resource providers. This would poten-

tially cause a performance bottleneck at the user client. The use of non-interactive

session key establishment technique seems to significantly reduce the communication

overheads between two key sharing parties. Nevertheless, this may not be the case

in practice, particularly in the newer versions of the GT, i.e. GT3 and GT4. A grid

user can always delegate his credential to a resource (or resource broker) which can

act on the user’s behalf. Thus, the performance issues discussed in [123] are only

valid for a special scenario whereby a user client is required to contact and perform

mutual authentication directly with many resources. Also, even though session key

establishment between two parties can be achieved non-interactively in the approach

of [123], these entities must obtain their private keys from the same PKG and on a

regular basis, e.g. daily. Furthermore, ways of securing job submissions using proxy

credentials in the identity-based approach were not addressed in [123].

Subsequently, Huang et al. [102] combined and extended the work of [117] and [123],

and presented an identity-based security infrastructure which seems to work rather

differently to the GSI. Although the authors of [102] showed how to perform creden-

tial delegation between two parties, each run of their delegation protocol involves

additional secure communication with a PKG. This appears to be more costly and

tedious than the current delegation techniques using PKI. In terms of access control

within a grid environment, Huang et al. proposed a framework which requires the

participation of the PKG whose task is to issue authorization assertions to its users.

The need for involvement of the PKG in delegation and access control, and the fact

that the grid entities must share the same system parameters in order to achieve

non-interactive mutual authentication (as in [123]) seems to cause bottlenecks at

85

4.4 Design of IKIG

the PKG and confine the scalability of the system. Huang et al. also investigated a

secure group communication model for a grid application using Joux’s one round tri-

partite key agreement protocol [106]. However, Joux’s protocol was adopted naively

without considering the need for validating the authenticity of Diffie-Hellman key-

ing materials from group members. As pointed out in [6], without authentication,

Joux’s protocol is vulnerable to a simple man-in-the-middle attack.

In summary, the potential of IBC has only been partially investigated to date and

none of the proposals so far satisfactorily address the requirements imposed by grid

applications (and that are currently met by the GSI). In this chapter, we present

a fully developed identity-based infrastructure for grid applications that does meet

these requirements. Our work represents an improvement on [117] and appears in

an abbreviated form in [115].

4.4 Design of IKIG

In our IKIG setting, we propose to replace the CA in the current PKI-based GSI

with a Trusted Authority (TA). The TA’s roles including acting as the PKG and

supporting other user-related administration and management. In this section, we

assume users and resource providers have registered with the same TA. Issues of

inter-operation between TAs in the IKIG setting will be discussed in Section 4.8.3.

We now apply both the Gentry-Silverberg full HIBE and HIBS schemes, as intro-

duced in Section 3.4.3, in our proposal. Figure 4.1 shows the hierarchical setting of

HIBC that matches the hierarchical relationships of various entities within a grid

environment, with the TA at level 0, user at level 1 and user proxy at level 2.

We note that proxy credentials must be used for secure job submissions in order to

match the requirements of the GSI. These short-term credentials are used in security

services such as mutual authentication and delegation. Let the TA have a master

secret s0 and let its system parameters be 〈G1,G2, ê, P0, Q0,H1,H2,H3,H4,H5〉.
The TA distributes long-term private keys to its users (and resource providers) at

level 1, who in turn generate short-term private keys for their own proxies at level

2, as illustrated in Figure 4.1. For example, a user A has identity-based key sets as

86

4.4 Design of IKIG

Level 0

Level 1

Level 2 Resource proxy

TA

User Resource

User proxy

Mutual authentication

Delegation

User machine Hosting server

Figure 4.1: A hierarchical structure of entities in the IKIG setting.

shown in Table 4.2 in our IKIG setting.

In Table 4.2, A’s long-term public key PA is equivalent to a public key computed

using a level-1 identifier in the Gentry-Silverberg HIBE and HIBS schemes. The

corresponding long-term private key SA is generated by the TA. On the other hand,

A can compute a short-term private key for her proxy which is at the second level

of the hierarchy. Note that the proxy’s identifier is defined purely by a lifetime LTA

in some fixed format, and thus A’s short-term public key PĀ is computed based on

the ID-tuple 〈IDA, LTA〉. Here, sA, sĀ ∈ Z∗q are secret values chosen by A and A’s

proxy, respectively. The long-term and short-term credentials of a resource, X, can

be established in the same manner, for example (PX , SX) and (PX̄ , SX̄), respectively.

Details of key generation and various aspects of key distribution and management

will be discussed in Section 4.5. For now, we simply assume that these keys are in

place.

Now that we have described the keys needed by the various entities in our IKIG

approach, we can illustrate how to secure the job invocation process that was dis-

cussed in Section 2.3.2. Consider a simple scenario where A, with identity-based

key sets shown in Table 4.2, wants to submit a job request J_req to a target re-

Table 4.2: A’s long-term and proxy credentials.

Credential Type Public Key Private Key Secret Value

Long-term PA = H1(IDA) SA = s0PA sA

Short-term PĀ = H1(IDA‖LTA) SĀ = SA + sAPĀ sĀ

87

4.4 Design of IKIG

source X. Here, we assume J_req contains information such as the job description

and instructions on how the job is to be executed. For simplicity in describing our

approach, we assume the user can communicate with the resource provider directly,

rather than through a gatekeeper or a resource broker.

4.4.1 Single Sign-On

The first step in a job submission is to create a user proxy credential. With the proxy

credential, A does not need to sign on (i.e. access her encrypted long-term private

key SA with her passphrase) again until the expiry of her short-term public/private

key pair. A can store her short-term private key SĀ in a local file system accessible

by her GT client so that the client can use the key as it wishes. Single sign-on

can be seen as the preliminary but important step before mutual authentication or

delegation are performed between A and another entity. At any point in time during

the job submission session, A’s client can prove possession of SĀ on A’s behalf. A’s

client will need to do this when challenged by other entities during the execution of

key agreement and delegation protocols.

4.4.2 Authorization

A generates an identity-based signature using the Gentry-Silverberg IBS scheme on

J_req with her short-term private key SĀ. The Gentry-Silverberg IBS scheme was

defined in 3.4.3. She then submits the signed request to a Managed Job Factory

(MJF) that resides on X through a GRAM service, by sending the following message:

A → X : IDA, LTA, J_req, SigĀ(J_req)

Here we use SigĀ(.) to denote a signing operation using A’s short-term private

key SĀ. The signed request is of the form 〈σĀ, QA, QĀ〉, where σĀ = SĀ + sĀh,

h = H3(IDA‖LTA‖J_req), QA = sAP0 and QĀ = sĀP0. Note that the MJF can

verify the signed request by first computing PĀ on-the-fly (assuming it has knowledge

of the system parameters) and then checking if:

ê(P0, σĀ) = ê(Q0, PA)ê(QĀ, h)ê(QA, PĀ).

88

4.4 Design of IKIG

Subsequently, the MJF maps A’s identifier to its grid-map file before granting access

to A. If the check succeeds, the MJF instantiates a managed job service for the job

request and returns an endpoint reference to A. Clearly, this technique does not

require standard or proxy certificates to certify the respective public keys. Note

that ê(Q0, PA) and ê(QA, PĀ) can be pre-computed by X and may be used many

times for other purposes such as key agreement and delegation. The values Q0 and

QA are relatively static since they are calculated using the TA’s and A’s long-term

parameters (we will show how the Q-values can be computed in Section 4.5.2). Thus,

the signature verification requires only two real-time pairing computations.

4.4.3 Mutual Authentication and Key Agreement

Before the job can be started, A must perform mutual authentication with the

newly created managed job service. As we have discussed earlier in Section 2.3.2, a

user must verify that he is indeed submitting his job to the right host and correct

account, while the hosting server must check if the user is who he claims he is. In

the GSI, this is achieved using the standard TLS protocol. We present an identity-

based authenticated key agreement protocol based on the TLS handshake protocol,

Protocol 1. Our protocol uses the Gentry-Silverberg full HIBE and HIBS schemes for

encryption and signing operations, respectively. It assumes that the TA’s system

parameters are already known to the protocol participants. We make use of the

terminology of [50] with small changes as appropriate.

Protocol 1 Identity-based authenticated key agreement based on
the RSA TLS handshake

(1) A → X : ClientHello = nA, session id, cipher suite
(2) X → A : ServerHello = nX, session id, cipher suite

ServerIdentifier = IDX, LTX

ServerHelloDone
(3) A → X : ClientIdentifier = IDA, LTA

ClientKeyExchange = EncX̄(pre master secret)
IdentityVerify = SigĀ(handshake messages)
ClientFinished

(4) X → A : ServerFinished

89

4.4 Design of IKIG

Protocol 1 is analogous to a TLS protocol which uses the RSA algorithm to transport

keying material from client to server, as specified in [50]. As with the current

TLS specification, Protocol 1 begins with A (playing the role of client) sending X

(playing the role of server) a ClientHello message. The message contains a fresh

random number and a session identifier as shown in step (1). Here, cipher_suite

contains a cipher specification extending those provided in TLS version 1.0 to handle

the HIBE and HIBS schemes. For example, this specification could take the form

TLS_HIBE_HIBS_WITH_DES_CBC_SHA which would define the use of HIBE and HIBS

for key transport and authentication, and DES-CBC and SHA as the symmetric

encryption algorithm and hash function, respectively.

X responds with a ServerHello message which contains a new random number and

a session identifier which may or may not have the same value as in ClientHello

message depending on the state of the session (e.g. new or resumed session). X also

forwards ServerIdentifier which contains information, such as X’s identifier and

a lifetime that X chooses, that allows A to compute X’s short-term public key1.

The ServerHelloDone message is sent to indicate the end of step (2).

In step (3), A first forwards ClientIdentifier to X. She then chooses a pre-

master secret and encrypts it with X’s short-term public key. Note that EncX̄(.)

denotes an encryption using the HIBE scheme with X’s short-term public key

PX̄ = H1(IDX‖LTX). The encrypted pre-master secret is transmitted to X as

ClientKeyExchange. Next, A generates a signature on handshake_messages for

IdentityVerify. This message component provides entity authentication of A to

X. Here handshake_messages refers to all handshake messages sent or received

starting at ClientHello up to but not including this message. A completes step

(3) by sending ClientFinished that contains a verification value. This allows X

to confirm that it has indeed received the previous handshake messages with the

correct contents. The verification value is computed based on a master secret KAX

and a hash of handshake_messages. The master secret KAX is calculated by A

1Note that in both certificate-based and identity-based settings, an entity’s certificate or identifier
(e.g. email address) can be obtained in advance, through out-of-band mechanisms. For example,
these credentials can be downloaded or found on the entity’s website. In the TLS protocol, however,
these credentials can be exchanged as part of the protocol messages. The key difference between
the two is that a certificate needs to be verified before it can be used, whereas an identifier can be
used on-the-fly. In actual implementation, ServerIdentifier and ClientIdentifier of Protocol 1
may not be needed if entities’ identifiers and the associated lifetimes can be determined at the
application layer when the protocol is initiated.

90

4.4 Design of IKIG

from the value pre_master_secret as:

KAX = PRF(pre_master_secret, “master secret”, nA, nX),

where PRF is a pseudo-random function specified for the TLS protocol in RFC

2246 [50]. Finally X computes its part of the verification value in ServerFinished

in the last step. X authenticates itself successfully to A if and only if A receives

ServerFinished and validates that the message contains the correct verification

value. This implies that X has indeed retrieved the correct pre-master secret chosen

by A. The master secret will subsequently be forwarded to the TLS record protocol

so that further keys used for protecting application data can be derived as necessary.

Protocol 1 can be executed by A when she connects to the managed job service to

initiate her job without any use of certificates, in contrast to the current PKI-based

TLS protocol.

Alternative. We remark that Protocol 1 can be easily transformed into a protocol

that supports Diffie-Hellman key exchange. Protocol 2 shows the identity-based

version of Diffie-Hellman TLS handshake, where cipher_suite now can be specified

as TLS_DH_HIBS_WITH_DES_CBC_SHA.

Protocol 2 Identity-based authenticated key agreement based on the
Diffie-Hellman TLS handshake

(1) A → X : ClientHello = nA, session id, cipher suite
(2) X → A : ServerHello = nX, session id, cipher suite

ServerIdentifier = IDX, LTX

ServerKeyExchange = xP, SigX̄(xP, nA, nX)
ServerHelloDone

(3) A → X : ClientIdentifier = IDA, LTA

ClientKeyExchange = aP
IdentityVerify = SigĀ(handshake messages)
ClientFinished

(4) X → A : ServerFinished

In Protocol 2, A and X exchange ephemeral Diffie-Hellman key values aP and xP ,

respectively, where a, x ∈ Z∗q and P ∈ G1. Thus the key exchange takes place in the

group G1. Note that nA and nX are included along with xP in ServerKeyExchange

91

4.4 Design of IKIG

before the string is signed. This aids in preventing a replay attack using the same

Diffie Hellman key value in subsequent protocol runs executed within the timeframe

of LTX . The pre-master secret is now axP .

Protocol 1 is more computationally lightweight than Protocol 2 at the user’s client

because in Protocol 1, A does not need to perform any pairing computations in

executing the protocol. This is because the Gentry-Silverberg HIBE encryption and

HIBS signing algorithms are pairing-free. On the other hand, in Protocol 2, A has to

perform a signature verification on the ServerKeyExchange from X, which requires

at least two pairing computations.

4.4.4 Delegation

A may, at her discretion, delegate her credential to X for later use when necessary.

Currently, the GSI employs a two-pass delegation protocol [176, 186] between a del-

egator and a delegation target. We propose a one-pass delegation protocol which

works in the same way as GSI in the sense that the delegator signs a new public key

of the delegation target. As we depicted earlier in Protocol 1, the client can easily

compute the server’s short-term public key based on the server’s identifier and a

lifetime, and vice versa. By the same reasoning, the delegator can straightforwardly

sign the delegation target’s new short-term public key which will be used for delega-

tion purposes. This can be done without having the delegation target transmit its

chosen short-term public key to the delegator through an authenticated and integrity

protected channel. In order to compensate for the removal of certain types of policy

enforcement which could have been done through a proxy certificate, we suggest the

use of a delegation token. The delegation token is a 5-tuple containing identifiers

of the delegator and the delegation target, the job request, any policy which the

delegator wants to enforce on the delegation target, and the validity period of the

token. Let DelegationTokenX = (IDA, IDX , J_req, Policy, LTAX), where LTAX is

a lifetime which A imposes on X. Protocol 3 then shows our one-pass delegation

protocol.

92

4.4 Design of IKIG

Protocol 3 Identity-based credential delegation based on
the HIBS scheme

A → X : DelegationTokenX , SigĀ(DelegationTokenX)

Note that A can naturally bind X’s public key information (IDX and LTAX) to the

delegation token without acquiring X’s new short-term public key from X (assuming

A knows X’s identifier). The signed delegation token is of the form 〈σĀ, QA, QĀ〉,
where σĀ = SĀ + sĀh, h = H3(IDA‖LTAX‖DelegationTokenX), QA = sAP0 and

QĀ = sĀP0, as defined by the Gentry-Silverberg HIBS scheme.

X’s status as the delegation target can be confirmed by a third party by: (i) verifying

the signed delegation token using PĀ, and (ii) challenging X for a proof of possession

of the private component associated to PX̄ . This can be achieved when X and the

verifying party perform mutual authentication using Protocol 1. In fact, X can

forward the signed delegation token to the verifying party as part of the handshake

messages exchanged between X and the verifying party. So long as A and X share

the same TA in the hierarchical IKIG setting, X can even aggregate the signature

on the delegation token with other signatures in the handshake protocol in order

to save bandwidth. For example, X can aggregate SigĀ(DelegationTokenX) with

SigX̄(handshake_messages) that X produces in the IdentityVerify message of

Protocol 1, using the technique which we described in Section 3.4.3. Let

σX̄ = SX̄ + sX̄H3(IDX‖LTAX‖handshake_messages),

and as before,

σĀ = SĀ + sĀH3(IDA‖LTAX‖DelegationTokenX).

Then X can create a partial aggregate signature of the form

〈σĀ + σX̄ , QA, QĀ, QX , QX̄〉.

Assuming mA = DelegationTokenX and mX = handshake_messagesX , the veri-

fier, when given the aggregate signature 〈σ,QA, QĀ, QX , QX̄〉, can replace two sep-

arate signature verifications with the check:

93

4.4 Design of IKIG

ê(P0, σ) = ê(Q0,H1(IDA)) · ê(QĀ,H3(IDA‖LTAX‖mA))

· ê(QA,H3(IDA‖LTAX) · ê(Q0,H1(IDX))

· ê(QX̄ , H3(IDX‖LTAX‖mX)) · ê(QX ,H3(IDX‖LTAX).

Clearly, this aggregation technique can save more as the length of the delegation

chain increases. Should X want to further delegate A’s credential to another resource

provider Y , X can in principle, repeat A’s actions with X becoming the delegator

and Y the delegation target. X needs to sign a delegation token for Y in which

case DelegationTokenY = (IDX , IDY , J_req, Policy,LTXY). As before, a verifier

will have no problem constructing the necessary short-term public keys (PĀ, PX̄)

for verifying DelegationTokenX and DelegationTokenY , respectively. In order to

reduce the bandwidth requirement for transmitting signed tokens from Y to the

verifier as part of the TLS handshake, Y can aggregate both signed tokens together

with the signed handshake messages needed for Protocol 1.

We remark that it is currently feasible to produce RSA aggregate signatures with

a special instantiation of the RSA signature scheme [121]. However, not all RSA

public keys can be used to achieve signature compression. For example, no two users

can share the same modulus N and the RSA scheme must have the property of cer-

tified trapdoor permutations2. These and other mathematical constraints discussed

in [121] place more burden on and trust in the CA in ensuring that the public keys

have the correct structure before certification. Hence, it is not clear if such a scheme

is suitable for a grid environment where a huge number of proxy certificates are

issued by the grid entities themselves.

Alternative. There is another straightforward and natural delegation technique

using properties from HIBC. Since A’s proxy is at level 2 of the key hierarchy in the

IKIG setting, she can, in principle, act as a PKG and issue a short-term private key

to X as if X were an entity at level 3 below A in the hierarchy. The issuance of the

private key can indicate an act of delegation if the associated public key contains

information that binds X’s identifier and some delegation policy enforced by A. For
2A trapdoor permutation is certified if one can verify from the public key that it is actually a

permutation [20].

94

4.5 Key Management in IKIG

instance, A can extract SX̄ = SĀ + sĀPX̄ with her secret value sĀ, yielding a short-

term private key matching PX̄ = H1(IDA‖IDX‖J_req‖Policy‖LTAX), and send

〈SX̄ , sAP0, sĀP0〉 to X through a confidential and integrity protected channel. For a

third party to verify if the delegation has taken place, the verifier: (i) authenticates

X3, and (ii) checks if X knows the private key corresponding to PX̄ , through a

challenge-response protocol such as the TLS handshake. This method is related to

the delegation approach proposed in [41]. We opted for Protocol 3 in our proposal

because it works similarly to the delegation protocol deployed in the GSI. Also,

transmission of a signed delegation token in Protocol 3 does not require a secure

channel that preserves data confidentiality and integrity4. Furthermore, confirming

condition (i) in the alternative approach requires an extra step from the delegator

in producing and presenting a signature that proves its authenticity.

4.5 Key Management in IKIG

Here, we look at various aspects of key management including key generation, key

update, key revocation and key storage, for our IKIG proposal.

4.5.1 Parameter Generation and TA Initialization

During the initial system setup phase, the TA runs a Bilinear Diffie-Hellman (BDH)

parameter generator on input a security parameter k to generate groups G1, G2 of

large prime order q and an admissible pairing ê : G1 × G1 → G2. It then performs

the Root Setup of the Gentry-Silverberg HIBE and HIBS schemes to produce a

master secret s0 and its system parameters 〈G1,G2, ê, P0, Q0,H1,H2,H3,H4, H5〉.

Currently the GT uses 1024-bit RSA public keys in public key certificates and 512

bit keys in proxy certificates. Smaller key sizes are used in proxy certificates mainly

because of their frequent use in job submissions and also because of the computa-
3This is needed to convince the verifier that he is indeed interacting with X.
4It is common that delegation from one party to another can be performed after they have

established a secure TLS channel. However, in the latest development of the GT4 (see Figure 2.8),
credential delegation can be an independent service to a job request. Hence, a delegation technique
without the need of a private and integrity protected channel can be seen as an advantage.

95

4.5 Key Management in IKIG

tionally intensive nature of RSA key pair generation [186]. Since IBC primitives use

much smaller key sizes and have efficient key generation algorithms, our proposal

has the luxury of using parameters of roughly similar security level to 1024-bit RSA

keys for both users’ long-term and short-term credentials. This can be achieved by

working with a supersingular elliptic curve of embedding degree 4 over F2271 [75, 77].

This choice results a corresponding group of prime order q approximately equal to

2252. Elements of this group can be represented using 272 bits. Since all arithmetic

is carried out in fields of characteristic 2, group operations and pairing computations

can be implemented efficiently [12]. In addition to the curve and group selections,

we require hash functions for the Gentry-Silverberg HIBE and HIBS schemes. The

outputs of H1 and H3 are elements of G1, while H4 gives an output with approxi-

mately log2(q) bits. Note that the size of outputs of H2 and H5 are dependent on

the bit length of plaintexts, n, and in our case, we assume that n = 256, since this

is sufficient for our proposed protocol messages (e.g. pre-master secrets and hashed

handshake messages). We remark that all these aforementioned parameters of the

TA are assumed to be bootstrapped into the grid system.

4.5.2 User Registration

When a new grid user A goes to a nearby RA, the RA performs the following steps:

1. The RA verifies A’s identity by checking her passport (or an acceptable ID-

card). Once the check succeeds, the RA compares A’s identity with its global

identity list and subsequently assigns her a distinguished string IDA. We

propose that the identifier has the form

“/C=UK/O=eScience/OU=RHUL/CN=Alice/Y=2006”,

which is based on the syntax from [101].

2. The RA submits A’s application to the TA through its website using the

HTTPS protocol (assuming the RA has an authentic and pre-distributed copy

of the TA’s system parameters). One way for the TA to authenticate the RA

is by using a shared secret, for example, a password. If A’s application is

approved, the TA generates A’s long-term private key as SA = s0PA, where

96

4.5 Key Management in IKIG

PA = H1(IDA) is the matching long-term public key, and sends it back to the

RA through the established secure TLS channel. The long-term credential for

A and the TA’s system parameters are distributed to A through a temporary

storage medium such as a pen drive.

3. A performs the Lower-level Setup algorithm of the Gentry-Silverberg

HIBE (or HIBS) scheme, picking a random sA ∈ Z∗q which she will keep secret.

She then defines her Q-values as 〈Q0 = s0P0, QA = sAP0〉.

The user’s client must create a proxy credential every time the user “signs on” to

the grid system. In IKIG, this is done as follows:

1. A runs the Extract algorithm of the Gentry-Silverberg HIBE (or HIBS)

scheme to generate a short-term private key SĀ = SA + sAPĀ, where PĀ =

H1(IDA‖LTA) is the corresponding short-term public key.

2. She also performs the Lower-level Setup algorithm of the Gentry-Silverberg

HIBE (or HIBS) scheme, picking a random sĀ ∈ Z∗q which will be kept secret.

The Q-values for A’s proxy are 〈Q0 = s0P0, QA = sAP0, QĀ = sĀP0〉. Note

that A’s TA does not know SĀ and sĀ, and thus key escrow is limited, unless

the TA behaves maliciously in mounting an active attack to impersonate the

user to other entities.

As described in Section 4.4.1, A’s short-term private key is stored temporarily in a

local file system in unencrypted form. Only then is A ready and allowed to submit

job requests.

It is worth noting that long-term keys used by hosting resources can be obtained

using the above manner by the resource owners.

We have now explained how the long-term and short-term keys discussed in Table 4.2

are derived and used in our IKIG setting.

97

4.5 Key Management in IKIG

4.5.3 Key Update

A’s long-term public key is fixed as PA = H1(IDA), where the associated long-term

private key is s0PA, and s0 is the master secret of the TA. In a grid environment,

it is normal practice to renew the user’s long-term keys on a yearly basis. In our

proposal, this can be done through the TA issuing a new private key s0PA′ directly

to the user through a secure channel which can be established via Protocol 1. For

example, A’s identifier can be updated by updating the year field as follows:

IDA′ = “/C=UK/O=eScience/OU=RHUL/CN=Alice/Y=2007”.

This is a more proactive approach as compared to current practice in PKI because

the TA can easily compute the user’s new long-term public key without requesting

a new public key from the user. However, we have to enforce a policy whereby, in

the event of compromise of the user’s current private key right before the issuance

of a new private key, the user must, upon her discovery of the incident, contact her

RA in person to obtain a new private key.

The user creates a new short-term public/private key pair every time she signs on

to the system. As with the current GSI setting, we assume the default lifetime for

these keys is 12 hours. These short-term keys are used for various security services

such as mutual authentication, single sign-on and delegation. Upon expiry of the

proxy credential, these keys will be deleted from the local file system where they are

temporarily stored. Should the validity of the proxy credential need to be extended,

the user needs to be notified before the credential expires so that it can be renewed

by the user. This may occur, for example, when a job execution takes longer than

12 hours and this event is not foreseen by the user concerned.

4.5.4 Key Revocation

For key revocation in the GSI, the user is expected to periodically check either a

certificate revocation list (CRL) stored in a trusted directory or the CA’s web site,

depending on the policy enforced by their local administrator. It is recommended

that the user updates their local copies of CRLs at least once a day [8]. However,

many users do not bother doing this in reality. This may not cause serious concern

98

4.5 Key Management in IKIG

as the CA can always instruct the user’s entry in a grid Gatekeeper’s (or a Resource

Broker’s) grid-map file to be removed when the CA is notified about key compromise

of the user. At the time of writing, the GSI still does not support online certificate

status protocol (OCSP) [82].

In the IBC setting, a number of revocation mechanisms are possible. We could use

a more fine-grained identifier [25]. For example, we could extend the user’s identifier

to include another field which specifies a month, such as:

“/C=UK/O=eScience/OU=RHUL/CN=Alice/Y=2006/M=January”.

This allows automated expiry of public keys after one month (hence the window of

exposure is also limited to a month). The granularity of the user identifier must not

be so complex that it loses its predictability. In grid environments, only short-term

keys are used to encrypt or sign data (recall in Section 2.2.2, we explained that

one of the motivations for using proxy credentials in grid environments is to limit

the exposure of long-term private keys). Hence, the above suggested granularity

may be adequate for most applications. However, should this approach prove in-

sufficient, e.g. in some grid applications requiring high security, then existing PKI

revocation mechanisms such as CRLs and OCSP can be adapted to the IBC set-

ting. See [144] for a longer discussion of key revocation in identity-based PKI and

traditional certificated-based PKI.

Revocation of short-term keys is a minor concern here as these keys will be destroyed

upon expiry of their validity periods. Again though, this might not be sufficiently

quickly in high security applications. In any case, the current GSI revocation ap-

proach would also need to be improved to handle this.

4.5.5 Integrating with MyProxy

MyProxy [15, 137], which we have discussed in Section 2.4, is gaining in popular-

ity and is widely used in real grid applications. Being web-based, it serves as an

online credential storage system that enables users’ long-term private keys to be ac-

cessed from anywhere through the Internet with users being authenticated through

a password-based mechanism. We envisage that this kind of service could be equally

99

4.6 Security Analysis

useful in our IKIG approach. We show how IKIG functionality can be exploited to

support MyProxy.

As in the current MyProxy architecture, we assume that users’ long-term private

keys are stored at the MyProxy server in an encrypted form, the encryption keys

being derived from passwords shared between users and the MyProxy server. The

user must first establish a secure channel with her MyProxy server through a server-

authenticated TLS protocol. Then she would submit a proxy request which includes

her identity, her password, and the desired lifetime of the proxy credential to the

MyProxy over the secure channel. Unlike the current GSI and MyProxy approach

(which requires new RSA short-term public/private key pair generation on the user

side), in the IKIG setting, the MyProxy server can determine the user’s new short-

term public key PĀ = H1(IDA‖LTA) directly from the user’s identifier and the

indicated lifetime. If the MyProxy server is able to successfully decrypt the user’s

encrypted long-term private key sA using the password, then it extracts the short-

term private key SĀ = s0PA + sAPĀ associated with PĀ. The MyProxy server then

forwards the proxy credential (PĀ, SĀ) back to the user through the secure channel.

It is worth noting that the MyProxy server in such a setting is, in fact, providing

a distribution service for private keys to its users roughly equivalent to private key

distribution from a TA to its users in a typical identity-based cryptosystem.

We remark that the design of MyProxy allows escrow of the user’s private key in

the original GSI setting. A malicious administrator of the MyProxy server can

always intercept the user’s valid password and later impersonate the user to other

grid entities. Therefore, users must trust the MyProxy server to behave honestly.

This places GSI operating with the MyProxy plug-in on roughly an equal footing

with IKIG in terms of key escrow. We also note that, independent of the MyProxy

protocol, the combined use of user passwords and the TLS protocol may have other

security implications. We return to this issue in Chapter 6.

4.6 Security Analysis

One of the main objectives of designing a secure infrastructure for grid applications

is to overcome security threats caused by malicious behavior of adversaries (who

100

4.6 Security Analysis

could be legitimate users or outsiders). By exploiting weaknesses that may be in-

herited or overlooked in the design of the infrastructure, the adversary aims to gain

unauthorized access to grid resources, modify sensitive records or files, steal valu-

able or classified data and so on. When billing comes into place for commercial grid

applications, the adversary will have even more incentive to attempt to get free use

of grid resources. The adversary may realise his goals in causing security breaches,

for example, by trying to:

• impersonate a legitimate user to a MyProxy server using guessed passwords

in order to retrieve a valid proxy credential from the server;

• forge a signature and masquerade as a genuine job requestor in order to get

access to a resource;

• re-use previously negotiated session keys for continued access to a resource; or

• break into a resource hosting server and modify the grid-map file residing in

the server.

In this section, we informally analyse the security of the authenticated key agreement

and delegation protocols (Protocols 1 and 3, respectively). The scope of the analysis

is limited to our protocols since these form the core components of IKIG. In our

analysis, we assume that the adversary is able to eavesdrop and manipulate, insert,

re-route, and/or delete messages. The TA, however, is assumed to be curious but

honest. This means the TA can intercept messages sent by its users but does not

actively impersonate the users to other parties.

4.6.1 Mutual Authentication and Key Agreement

The security of the TLS protocol and its predecessor, SSL, have been well-studied.

Results, for example in [110, 145, 184], show that the TLS (and SSL) protocol is

adequately secure, providing it is implemented carefully. Otherwise, it could be

vulnerable to various side channel attacks [38, 179]. In Protocol 1, we replaced

certificates with identifiers. Here, we will discuss if the changes impact on the

security of the TLS protocol.

101

4.6 Security Analysis

In step (2) of Protocol 1, we have removed the Certificate message that the

server must send to the client in the original TLS specification. It has been replaced

with ServerIdentifier which contains IDX and LTX . Also, the Certificate

message in step (3) which is supposed to contain the client’s certificates has become

ClientIdentifier, containing IDX and LTX . Entities A and X do not have to

verify the validity of the respective identifier that they each received. Since we

assume that the TA has carried out its responsibility appropriately, A and X can

each trust that the exchanged identifier came from the genuine party if this party can

prove possession of the associated private component. Thus, if X can successfully

verify the signed handshake messages from A using a public key constructed from A’s

identifier, then A is authenticated to X. On the other hand, for A to authenticate

X, she must receive the correct verification value in ServerFinished from X, which

was calculated based on the pre-master secret that she has chosen. This confirms

that the server has recovered the correct pre-master secret that she sent encrypted

under the public key that should belong to the server. Should the adversary attempt

to impersonate either the user or the server, he must obtain their respective private

keys or break the Gentry-Silverberg HIBE/HIBS schemes.

We conclude that the replacement of certificates with identifiers has not weakened

the security protection that the original TLS protocol offers.

4.6.2 Delegation

We saw in Section 2.2.2 that delegation in the PKI approach requires the delegation

target to transport a fresh public key to the delegator. We remark that this must

be carried out using an authenticated and integrity protected channel. This can

be established through, for example, the TLS protocol. The failure to do so allows

a simple man-in-the-middle-attack. Let A be the delegator, X be the delegation

target and E be the adversary. The attack can be illustrated as follows:

(1). X → E : PKX̄ , SigX̄(proxy_request)
(2). E → A : PKX̄′ , SigX̄′(proxy_request)
(3). A → E : proxy_certificateX

102

4.7 Performance Analysis

When X sends out a request for proxy certificate to A, E can simply intercept X’s

signed request and replace it with his. These are shown by messages (1) and (2)

above. Note that X signed his request using a short-term private key SKX̄ which

corresponds to a fresh short-term public key PKX̄ as an act to prove possession of

SKX̄ . If X’s request was not transmitted to A through an authenticated channel, E

can make his own request and impersonate X to A. The delegator A will, in turn,

generate a proxy certificate which is intended for X but contains E’s chosen public

key PKX̄′ , as shown in message (3). Now, E possesses a valid proxy certificate that

allows him to act on A’s behalf and using X’s identity.

In our IKIG setting where Protocol 3 is being used, the transmission of a signed

delegation token and the corresponding message does not require the same level of

protection as in the case of the GSI. The adversary cannot impersonate the delegator

to the delegation target unless it has knowledge of the delegator’s private key. This is

so because verification of the signed delegation token using a public key constructed

from the delegator’s identifier explicitly authenticates the identity of the sender.

The only way for the adversary to succeed in impersonating the delegator or the

delegation target is to break the Gentry-Silverberg HIBS scheme. It is also obvious

that the Gentry-Silverberg HIBS scheme does provide message integrity. This can

protect the integrity of the delegation token which contains the identities of the

delegator and the delegation target.

With that, we conclude that the security of Protocol 3 appears to be as strong as

the security that the Gentry-Silverberg HIBS scheme provides.

4.7 Performance Analysis

We have seen how conventional public key usage and management can be replaced

by identity-based techniques in Section 4.5. There are two noticeable differences:

(i) an entity’s long-term or short-term public key can be used immediately without

requiring any form of key authentication; and (ii) the use of certificates is completely

eliminated.

Here we present a performance comparison between the standard GSI approach

103

4.7 Performance Analysis

and our IKIG proposal, by examining two types of overhead: computational cost

and communication cost. Computational cost refers to the amount of computation

required to perform cryptographic operations. Communication cost indicates the

total network bandwidth required for transmission of data between two parties.

Computational Costs. We first review and compare the main cryptographic

operations involved in delivering security services in the standard GSI and in our

IKIG proposal.

• Generation of proxy credentials: The RSA signature scheme is currently used

in the GSI to provide proxy certificate signing and verification. Repeated RSA

key pair generation, which includes generating two large primes5, is easily

the most computationally costly cryptographic operation in the GSI. In our

IKIG proposal, generation of a short-term public key involves application of

a cryptographic hash function while computation of a short-term private key

requires only one elliptic curve point addition and one point multiplication.

• Authenticated key agreement: Although GT4 supports both the TLS pro-

tocol and the WS-SecureConversation/WS-Trust specifications, we will only

compare our IKIG approach with the former as it has been shown that the

transport-level protocol is faster than message-level protocols [161]. Consider-

ing that a mutual authentication within the grid environment requires the full

TLS handshake using both the long-term and the proxy credentials of the two

communicating parties, the main cryptographic tasks that the job requestor

has to perform are as follows:

1. two RSA signature verifications on the resource’s long-term and short-

term certificates;

2. one RSA encryption of a pre-master secret key using the resource’s short-

term public key; and

3. one RSA signature generation on some handshake messages using his own

short-term private key.
5In practice, the way to generate large random primes is to first generate large random numbers,

and then test them with a primality testing algorithm. Even though the algorithm is generally fast,
it may claim that a large random number is prime when it is not. That is why the algorithm must
be run enough times so that the error probability can be reduced below a desired threshold [169].

104

4.7 Performance Analysis

The resource is required to perform the same number of basic cryptographic

operations as the requestor does. This includes decryption of the pre-master

secret and verification of the requestor’s signature on the handshake messages.

For Protocol 1, the user performs one encryption and one signing operation,

while the resource has one decryption and one signature verification to per-

form. Note that even though the Gentry-Silverberg HIBS scheme requires four

pairing computations for a signature verification, it is possible to pre-compute

two of them and store the respective pairing values in a local cache. This can

spread the costs incurred over many protocol runs. There are other computa-

tional costs involved, notably hashing, but these will turn out to be small in

comparison to the costs of point multiplications and pairing computations.

• Delegation: The current GSI delegation protocol (as described in Section 2.3.2)

involves an expensive RSA key generation and a signing operation at the del-

egation target’s side. The delegator has to perform one signing operation and

one signature verification operation. The verifier must perform three signature

verifications6, assuming the length of the delegation chain is one.

On the other hand, our delegation method in Protocol 3 requires only signing

of a delegation token by the delegator. Private key extraction by the delega-

tion target is very efficient and the verifier has to perform only one signature

verification.

Table 4.3 gives a more detailed view of the computational costs in terms of compu-

tation times. These timings were obtained through implementations of the RSA and

HIBE/HIBS schemes based on the MIRACL library [160]. Our implementation uses

the curves and parameters defined in Section 4.5.1, and were written in C/C++ and

compiled with Microsoft Visual C++ 6.0. The small public exponent, e = 216 + 1,

is used for RSA encryptions (or signature verifications), and we assume that pre-

computation of pairing values is possible. We use the Chinese Remainder Theorem

(CRT) method for faster RSA decryptions (or signature generation). We use the

eta pairing [10] for Tate pairing calculations. The time taken for a basic pairing

computation using a Pentium IV 2.4 GHz processor is 3.88 milliseconds. Also, for
6Note that the delegation target must also prove possession of the short-term private key asso-

ciated with the proxy certificate that it presented to the verifier. Since this can be achieved when
the delegation target and the verifier perform mutual authentication using the TLS handshake, we
omit this additional step here for the sake of simplicity.

105

4.7 Performance Analysis

Table 4.3: Performance trade-offs in computation times (in milliseconds) between
the GSI and the IKIG settings on a Pentium IV 2.4 GHz machine.

GSI IKIG
Operation RSA Time HIBE/HIBS Time

Key generation
(a.) Long-term 1 GEN 149.90 1 EXT 1.69

(b.) Short-term 1 GEN 34.85 1 EXT 1.74

Authenticated key agreement
(a.) Requestor 1 1024-bit VER 2.67 1 ENC, 1 SIG 8.79

1 512-bit ENC

1 512-bit SIG

1 512-bit VER

(b.) Resource 1 1024-bit VER 2.67 1 DEC, 1 VER 20.16

1 512-bit DEC

2 512-bit VERs

Delegation
(a.) Delegator 1 512-bit SIG 1.86 1 SIG 3.35

1 512-bit VER

(b.) Delegation target 1 GEN 35.63 1 EXT 1.74

1 512-bit SIG

(c.) Verifier 3 512-bit VERs 0.84 1 VER 8.42

GEN = RSA parameter generation EXT = HIBE/HIBS private key extraction

ENC = Encryption DEC = Decryption

SIG = Signing VER = Verification

simplicity, we limit the length of the delegation chain to one.

From Table 4.3, it is obvious that RSA encryption/verification in the GSI is very

fast. However, we can see that key generation and delegation in the GSI are con-

siderably slower than in IKIG. This is because of the cost of generating fresh RSA

key parameters. Significant computational savings can be achieved by the resource

provider in the IKIG setting when multiple distinct proxy credentials (used by dif-

ferent managed job services) are created simultaneously7. Nevertheless, it seems

that Protocol 1 is slower than the actual TLS protocol. This is mainly because of

the pairing computations (two pairings in both HIBE decryption and HIBS verifi-

cation). Fortunately in our IKIG proposal, the computationally intensive pairing

computations are performed at the high-performance resource side. Operations or
7Note that computing a public key in the IKIG setting is very efficient, i.e. less than a fraction of

a millisecond. This cost is included in ENC/DEC and SIG/VER when we consider the HIBE/HIBS
schemes.

106

4.7 Performance Analysis

computations at the user side are more lightweight than the server. Our proposal

also offers the flexibility of spreading the cost of pairing calculations between the

user and the server by adopting Protocol 2 in place of Protocol 1.

It is worth noting that the RSA and Gentry-Silverberg HIBE/HIBS schemes are

very different from each other in terms of their mathematical properties. We also

note that IKIG uses short-term keys which offer a greater security level than the

512-bit RSA keys do. Therefore, we believe that it is fair to conclude that the

overall computational costs for the IKIG setting are comparable to those of the

GSI. Recent results (see for example [10, 157, 158]) have shown improvements in

computing pairings with the use of various optimisation techniques and this should

give hope to faster HIBE and HIBS schemes in the near future. We remark that it

is unlikely that significant algorithmic improvements for RSA computations will be

forthcoming, since this field has been intensively researched for many years.

Communication Costs. We recall that in the IKIG setting, the TA’s system

parameters are 〈G1,G2, ê, P0, Q0, H1,H2,H3,H4,H5〉. An element of G1 can be

represented by 272 bits since the group is defined as a subgroup of a supersingular

curve of embedding degree 4 over F2271 . Also, H2 and H5 each produces an output

with size 256 bits. The TA’s system parameters are assumed to be pre-distributed

to its users, as with pre-distribution of a CA certificate to users in the GSI setting.

Table 4.4 compares the communication costs of the standard GSI approach and

our IKIG proposal. Note that we only consider the dominant communication costs

between the job requestor and the resource, i.e. signed or encrypted messages and

certificates, which have the biggest contributions to the network bandwidth.

In Figure 2.4, we saw that the size of a certificate for a 1024-bit RSA public key is

Table 4.4: Performance trade-offs in communication costs (in kilobits) between the
GSI and IKIG.

Operation GSI IKIG

Authenticated key agreement 37.8 1.9
Delegation 7.4 0.8

107

4.7 Performance Analysis

about 2 kilobytes. Here, we ignore small fields in a certificate such as issuer, subject

and validity period. Thus, for the purpose of comparison between GSI and IKIG,

we estimate that the size of a standard certificate, which comprises an RSA public

key and the issuer’s signature, is roughly 1.5 kilobytes or 12 kilobits (after omitting

small fields). We assume a proxy certificate has size 0.8 kilobytes or 6.4 kilobits.

Ciphertexts and signatures produced using a short-term RSA key are 512 bits.

On the other hand, the size of a ciphertext produced by the full HIBE scheme

of [80] in our IKIG setting is: 2 × |element of G1| + 2 × 256-bit hash value = 1056

bits. Also, the size of a signature on a message using the HIBS scheme of [80] is:

3× |element of G1| = 816 bits.

From Table 4.4, the communication cost for the TLS protocol in the GSI is estimated

to be 2(12)+2(6.4)+2(0.5) = 37.8 kilobits, since there are two public key certificates,

two proxy certificates, one encrypted pre-master secret (for ClientKeyExchange)

and one signed message (for CertificateVerify) being transmitted over the net-

work8. In the case of IKIG, the figure of 1.9 kilobits refers to the encrypted pre-

master secret and the signed message in Protocol 19. This clearly shows that an

execution of the TLS protocol in the GSI is significantly more costly than our Pro-

tocol 1 in IKIG in terms of bandwidth requirements.

The communication overhead for delegation between the delegator and the delega-

tion target can be estimated straightforwardly from our discussion on delegation

protocols in Section 4.4.4. The delegation protocol for the GSI requires transmis-

sion of a signed request, a short-term public key and a proxy certificate; whereas

Protocol 3 has only a signed token.

Figure 4.2 shows that in the GSI, the communication cost between two entities

rises quickly when delegation chains are extended, reflecting a truly flexible and

scalable grid environment. (We assume that two grid entities would authenticate

each other and establish a session key before delegation takes place.) In contrast,

the communication cost incurred by our IKIG proposal increases at a much slower
8We remark that for simplicity, small components in the TLS protocol are not included in our

calculation. For example, the sizes of a nonce and cipher suite in the ClientHello message are
merely 28 and 2 bytes, respectively [50].

9Similarly, we assume ServerIdentifier and ClientIdentifier are small fields which can be
ignored in our calculation.

108

4.8 Discussion

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 3 4 5 6

B
an

dw
id

th
 (

ki
lo

bi
ts

)

Length of Delegation Chain

Bandwidth Requirements for Key Agreement and Delegation Protocols

GSI
IKIG

IKIG (with agg.)

Figure 4.2: A performance graph which measures the network bandwidth required
for authenticated key agreement and delegation in the GSI and IKIG.

rate. This indicates that IKIG may well be much more scalable than GSI. We also

show, in Figure 4.2, that aggregation of signed delegation tokens and messages (as

explained in Section 4.4.4) can play a part in saving bandwidth in the IKIG setting.

In conclusion, the communication cost resulting from a job submission in IKIG is

significantly lower than in GSI. The main reason for this is that in the IBC setting,

there are no long-term and short-term public keys or certificates being transmitted

between the user and the resource.

4.8 Discussion

In this section, we look into some practical issues surrounding the use of our IKIG

approach. We discuss the possible impact of our identity-based techniques on web

services security, some implementation issues, inter-operation between TAs and the

limitations of our IKIG proposal.

109

4.8 Discussion

4.8.1 Impact on Web Services Security

In GT4, the GSI supports both transport-level and message-level security. The rec-

ommended use of transport-level security as the default option instead of fully web

services based security is driven by the relatively poor performance of message-level

security implementations. This is clearly demonstrated in [161]. XML representa-

tions of data tend to be significantly larger than their equivalent binary formats.

An XML message can expand roughly 4 to 10 times over its equivalent binary rep-

resentation [45, 87]. This can substantially increase the communication costs, the

latency of sending/receiving SOAP messages, and the time needed for parsing the

XML data.

By using IBC in place of conventional public key techniques, we envisage that the

sizes of SOAP headers may well be reduced substantially. For instance, if A wants

to submit a signed job request in XML format to resource X, she would need to

attach10 her public key and certificate in the KeyInfo element if the RSA signature

algorithm was used. This is shown in Figure 4.3. However, if we adopt the identity-

based techniques, she could, in principle, simply include her identifier in the KeyInfo

element of the XML signature. When X receives the signed XML message, it can

construct A’s public key merely based on A’s identifier:

<ds:KeyInfo>

<ds:KeyName>

/C=UK/O=eScience/OU=RHUL/CN=Alice/Y=2006

</ds:KeyName>

</ds:KeyInfo>

which is roughly 85 bytes, as compared to 1.2 kilobytes in Figure 4.3. This shows

more than 90% saving in the content size of the KeyInfo element through the IBC

approach. Note that we have not considered the case of proxy certificates and

the size of signatures in this example. Therefore, the potential saving can be even
10Certificates are normally sent directly from the sender to the intended recipient in a dynamic

environment such as grid. In other applications, it may also be appropriate to reference the sender’s
public key/certificate so that the receiver can obtain the sender’s credential later from a public
directory.

110

4.8 Discussion

<ds:KeyInfo>

 <ds:KeyValue>

 <ds:RSAKeyValue>

 <ds:Modulus>

 3FFtWUsvEajQt2SeSF+RvAxWdPPh5GSlQnp8SDvvqvCwE6PXcRWrIGmV7twNf2T

 UXCxYuztUUClMIy14B0Q+k1ej2nekmYL7+Ic3DDGVFVaYPoxaRY0Y2lV8tOreyn

 WegpFbITXc8V6Y02QfR5O7Pn1/10ElslaF/TF8MQGqYE8=

 </ds:Modulus>

 <ds:Exponent>AQAB</ds:Exponent>

 </ds:RSAKeyValue>

 </ds:KeyValue>

 <ds:X509Data>

 <ds:X509Certificate>

 MIICCTCCAXagAwIBAgIQe0Sk4xr1VolGFFNMkCx07TAJBgUrDgMCHQUAMBIxEDA

 OBgNVBAMTB1Rlc3QgQ0EwHhcNMDMwODE1MDcwMDAwWhcNMDUwODE1MDY1OTU5Wj

 AkMSIwIAYDVQQDExlCb2IgQmFrZXIgTz1Cb2IgQ29ycCBDPVVTMIGfMA0GCSqGS

 Ib3DQEBAQUAA4GNADCBiQKBgQDcUW1ZSy8RqNC3ZJ5IX5G8DFZ08+HkZKVCenxI

 O++q8LATo9dxFasgaZXu3A1/ZNRcLFi7O1RQKUwjLXgHRD6TV6Pad6SZgvv4hzc

 MMZUVVpg+jFpFjRjaVXy06t7KdZ6CkVshNdzxXpjTZB9Hk7s+fX/XQSWyVoX9MX

 wxAapgTwIDAQABo1YwVDANBgNVHQoEBjAEAwIGQDBDBgNVHQEEPDA6gBABpU6Rp

 UssqgWYs3fukLy6oRQwEjEQMA4GA1UEAxMHVGVzdCBDQYIQLgyd1ReM8bVNnFUq

 D4e60DAJBgUrDgMCHQUAA4GBAF4jP1gGDbaq3rg/Vo3JY7EDNTp0HmwLiPMLmdn

 B3WTIGFcjS/jZFzRCbvKPeiPTZ6kRkGgydFOuCo5HMAxIks/LtnKFd/0qYT+AOD

 q/rCrwSx+F+Ro2rf9tPpja9o7gANqxs6Pm7f1QSPZO57bT/6afiVm7NdaCfjgMp

 hb+XNyn

 </ds:X509Certificate>

 </ds:X509Data>

</ds:KeyInfo>

Figure 4.3: A sample of the KeyInfo element based on RSA which is approximately
1.2 kilobytes.

more significant if the SOAP header contains multiple signatures and/or certificates.

Moreover, an identity-based public key is predictable, self-describing and human-

readable. Thus no special tools are needed to parse and render the key information11.

This is indeed a very desirable property and it matches a fundamental objective of

XML.

Another possible impact on web services security is a more lightweight TLS-like key

agreement protocol based on the WS-SecureConversation [93] and WS-Trust [94]

specifications. With similar reasoning to that behind the design of Protocol 1,

simple identity-based security tokens can be used in place of signed security tokens

in the web services setting. We also envisage that the use of IBC may well be able to

simplify the design of XKMS services [97]. For instance, the Locate and Validate

services in the XML Key Information Services specifications may not be needed

since identity-based public keys are predictable and can be used on-the-fly.
11As with data presented in XML format, a simple text editor is sufficient for the manipulation

of an identifier. In the case of a conventional public key such as RSA, it is a common practice to
present the key in a certificate with PEM encoded format.

111

4.8 Discussion

4.8.2 Implementation Issues

Here, we identify some implementation issues that need to be addressed in our IKIG

proposal.

GSS-API. Currently, the GSI is built on top of GSS-API [119]. This allows se-

curity services to be easily added into grid applications through a set of callers in

a generic fashion [69]. GSS-API, which is both transport (communication protocol)

and mechanism (cryptographic scheme) independent, provides functions for obtain-

ing credentials, performing authentication, encrypting and signing messages and so

on. However, extensions to the standard GSS-API are needed to meet some of the

requirements of GSI, such as handling of credential extensions and delegation at any

time [126].

To implement our IKIG proposal, a few additional functions will need to be included

in GSS-API. Firstly, when a client calls GSS_Init_sec_context() to establish a se-

curity token with a server, the server should be able to extract the client’s identifier

rather than obtaining a X.509 certificate in the credential acquisition step. Secondly,

we require a delegation credential handle which can manage the use of signed dele-

gation tokens in Protocol 3. Current standard GSS-API only uses a simple Boolean

parameter for handling a delegation credential. This does not provide enough con-

trol over a delegation target. Since we have replaced proxy certificates with signed

delegation tokens, the delegation handle should be able to support mechanisms that

offer better control including duration of delegation, constraints on the tasks that

may be performed by the delegation target and so on. Also, it is desirable to have

a function which collects and coordinates parameters for aggregation of signatures.

When the client wishes to aggregate a series of signed messages, GSS_Wrap(), which

normally deals with message signing, should be able to handle and facilitate the

aggregation.

OpenSSL. The authentication library of the GSI is based on OpenSSL [140] with

some modification for supporting the use of X.509 proxy certificates. This library, in

turn, makes use of GSS-API (and some extensions) to provide security mechanisms

112

4.8 Discussion

required by the standard TLS handshake protocol.

In the IKIG setting, we must define and include the TLS_HIBE_WITH_DES_CBC_SHA

cipher suite that we proposed in Section 4.4.3 in an extension of the TLS speci-

fication. A version of the OpenSSL library that supports IKIG is needed. This

library should be able to interpret system parameters used for the HIBE and HIBS

schemes and allow creation of identity-based proxy credentials. A client and a server

that are engaged in a run of Protocol 1 must also be provided with the ability to

construct public keys based on identifiers extracted through the IKIG-enabled GSS-

API. Moreover, it is clear that the OpenSSL library will need to support message

encryption/decryption and signature generation/verification using HIBC in order to

implement Protocol 1.

XML Signature & Encryption. In GT4, the optional message-level security

provided by the GSI is based on the WS-Security standard and various specifications

which make use of XML signatures and encryption as the building blocks. The

current XML Signature and Encryption specifications cover only RSA and DSA

based algorithms [53, 54]. Recently, there has been a proposal to use an elliptic

curve based signature algorithm for XML signatures [24].

In order to support web services security using HIBC, we need to define the syntax

and processing of XML signatures and encryption for the HIBS and HIBE schemes.

The HIBS and HIBE XML schema definition should include syntax used for param-

eters for key generation, system parameters, group and element sizes, key values,

and so on. The facts that the identity-based approach is certificate-free and that

public keys can be constructed easily mean that the <KeyInfo> element in the new

XML schemas should be simplified. This should in turn result in shorter schemas

than those using standard certificates.

4.8.3 Inter-TA Operation

If our IKIG proposal is to be deployed roughly at the scale of one TA for each country

(as with the European grid projects that we described in Section 2.3.2), we expect

113

4.8 Discussion

that the TAs’ system parameters would be bootstrapped in the grid system and

updated by the users through their GT clients. As with current grid deployment,

trust relationships between TAs can be established through the European Grid PMA

without a root TA. System parameters of the TAs are then assumed to be trusted

by all users and recognised by the grid system. When a user communicates with a

remote resource registered with a foreign TA, the user’s grid client will select the

foreign TA’s system parameters for data encryption and signature verification. This

is because the Gentry-Silverberg HIBE and HIBS schemes defined in Section 3.4.3

require the use of public parameters of the TA. On the other hand, if the user

decrypts a ciphertext encrypted using her public key or signs a message with her

private key, the grid client should take its own TA’s system parameters as input for

the decryption and signature generation algorithms.

Alternatively, we envisage that the European Grid PMA could serve as a root TA.

This can be achieved by adding an extra level to the hierarchy that we illustrated

in Figure 4.1. In this setting, all users of the grid system share the same root

TA system parameters. With that, the user and the user proxy in Figure 4.1 are

relegated to levels 2 and 3, respectively. These changes, however, would increase the

computational costs of Protocol 1, 2 and 3 because of the extra pairing computations.

4.8.4 Limitations

Our IKIG proposal has several limitations. Being based on IBC, IKIG inevitably

inherits an escrow facility. Although a TA may not be able to forge a signature

using exactly the same private components (short-term credential) chosen by a user

proxy, the TA can always impersonate a user by selecting a different set of secret

values and producing a valid signature that is verifiable using the user’s public key.

Nevertheless, we have explained in Section 4.5.5 that integration of the MyProxy

system into the GSI has introduced a similar property. This seems to be acceptable

in most ongoing grid projects since there is only one or very few CAs/TAs in each

nation that everyone is expected to trust. This “limited” key escrow issue will

become one of the motivations for our study of dynamic key infrastructure for grid

(DKIG) in the subsequent chapter.

114

4.9 Summary

We have shown earlier that the identity-based techniques offer a more flexible and

lightweight approach in creating and using public keys. However, it is worth noting

that the identity-based key revocation method does not seem to offer any clear ad-

vantage over conventional public key revocation techniques. Fine-grained identifiers

which make use of dates and short time periods require issuance of the matching

private components regularly. Grid applications with high security requirements

will still need to rely on traditional means of revoking public key certificates such

as CRLs and OCSP.

Another drawback of employing IBC in our proposal is the cost of pairing com-

putations. Even though IKIG is far more lightweight than the GSI in terms of

communication overhead, the relatively slow pairing computations in the HIBE and

HIBS schemes constrain the advantages that the proposed identity-based techniques

can offer. As mentioned before, pairing-based cryptography is still relatively new

compared to RSA. We believe that the performance of pairing computations will

continue to improve with further research.

4.9 Summary

We have discussed at length how identity-based techniques can replace conventional

PKI and be used to offer an alternative security infrastructure for grid. We proposed

a TLS-supported identity-based authenticated key agreement protocol which uses

only short-term keys. Our infrastructure also supports single sign-on and delega-

tion in a very natural way. The overall computational overheads for our proposed

identity-based key infrastructure seem to be comparable to PKI. Interestingly, the

computational costs that would be incurred at the user’s client in our proposal is

roughly a few times less than it is with PKI, at the expense of increased computation

at the server side. This aligns well with the whole idea of grid computing to allow

the user with an average- or low-end platform to “outsource” her computational

tasks or operations to more powerful and high-performance servers. In terms of

communication costs, our proposal appears to be significantly more lightweight and

less bandwidth-consuming than PKI because of its certificate-free nature and small

key sizes. This may enable the expansion of grids to service users with bandwidth-

limited or low memory platforms.

115

Chapter 5

Dynamic Key Infrastructure for Grid

Contents

5.1 Motivation . 117
5.2 Overview of Dynamic Key Infrastructure for Grid . . . 117
5.3 Related Work . 119
5.4 Design of DKIG . 120

5.4.1 Single Sign-On . 122
5.4.2 Authorization . 122
5.4.3 Mutual Authentication and Key Agreement 123
5.4.4 Delegation . 125

5.5 Key Management in DKIG 127
5.5.1 Parameter Generation and TA Initialization 127
5.5.2 User Registration . 129
5.5.3 Key Update . 130
5.5.4 Key Revocation . 130

5.6 Security Analysis . 131
5.6.1 Mutual Authentication and Key Agreement 131
5.6.2 Delegation . 132

5.7 Performance Analysis . 132
5.8 Discussion . 136
5.9 Summary . 138

This chapter proposes an identity-based and escrow-free key infrastructure for grid

applications. We introduce the concept of a dynamic key infrastructure for grid. In

this approach, each entity in the system acts as his own PKG and obtains a cer-

tificate from a traditional Grid CA for the corresponding public parameters. This

allows support for proxying and single sign-on but removes key escrow inherent in

a pure identity-based approach. We also present TLS-like authenticated key agree-

ment and delegation protocols for our dynamic key infrastructure, and consider their

performance in comparison with the corresponding protocols in the GSI and IKIG.

116

5.1 Motivation

5.1 Motivation

In the previous chapter, we learned that key escrow is inevitable in IBC. Despite

that, key escrow seems to be acceptable for most current grid applications since the

use of MyProxy also involves the same issue. However, we envisage that when com-

putational grids become commercialised and payment is involved, key escrow that

prevents strong non-repudiation1 may become a major issue. Since IBS schemes gen-

erally do not provide the property of strong non-repudiation, users can, for example,

fraudulently deny any charges for grid resource usage.

Even though the issue of key escrow can be circumvented by introducing multiple

TAs and the use of threshold cryptography, it may be unrealistic to deploy such

an approach within a grid environment. In order to enable secret sharing among

multiple TAs, a high degree of co-operation between these TAs is needed. They

must agree on common policy and standardised mechanisms to manage the shared

secret. In addition, the communicating parties must also find out in advance the

set of TAs that their system uses for encryption and decryption. These and other

potential restrictions seem to reduce the suitability of the secret sharing approach

for a heterogenous environment such as grid. This set of problems may become

harder to solve if TAs in a number of different countries are to be employed.

The main objective of this chapter is to investigate a means of resolving the key

escrow problem while preserving, as much as possible, the advantages that identity-

based techniques offer, in particular the benefits of our IKIG proposal. Our focus,

as in the previous chapter, will be on simplifying key management aspects of grid

applications that rely heavily on both long-term and short-term entity credentials.

5.2 Overview of Dynamic Key Infrastructure for Grid

We propose a dynamic key infrastructure for grid (DKIG). This term is intended

to capture the notion that a user proxy credential can be created dynamically and

on-the-fly based on a static long-term credential. DKIG is a hybrid approach com-
1Here, strong non-repudiation refers to the inability of any party, including a malicious CA/TA,

to impersonate a user by producing a valid signature as if it were generated by the actual user.

117

5.2 Overview of Dynamic Key Infrastructure for Grid

bining identity-based techniques at the user level and traditional PKI to support

key management above the user level. In this hybrid setting, each user publishes a

fixed parameter set through a standard X.509 certificate; this parameter set then

allows users to act as their own PKGs for the purpose of managing short-term keys

which will, in turn, be used for single sign-on and delegation.

We envisage that DKIG is suitable for grid applications because of the following

properties, of which some can be difficult to emulate with conventional PKI:

• While we maintain the hierarchical structure of PKI above the user level, our

proposal provides improved flexibility at the user level (ground level), where

peer entities freely create and manage their own proxy credentials without any

intervention from a TA/CA.

• The fixed parameter set that each user possesses is different from a proxy

certificate. The parameter set can be seen as a long-term public-key mould

from which other entities can compute short-lived public keys instantly. The

corresponding private keys can be generated directly by the entity himself

without interacting with the TA, a feature that IKIG also possesses.

• Our DKIG framework not only solves the key escrow problem in IBC, it also

remove the requirement for short-term private key distribution between the

entities and their respective TAs. The latter is an important benefit as dis-

tributing short-term private keys using secure channels can be a tedious and

expensive operation within a grid environment.

• The replacement of the conventional contents of standard X.509 certificates

with identity-based cryptographic system parameters implies minimal changes

to the current overall pure PKI-based GSI framework.

• Most of the attractive properties of IBC, such as using identity-based and

small-size public keys, can still be preserved in the DKIG setting. Even though

each entity needs to publish their system parameters through a certificate,

proxy credential management can be done without any use of proxy certificates.

As with Chapter 4 where we introduced IKIG, we will explain how our hybrid

DKIG approach can be used to support single sign-on, mutual authentication and

118

5.3 Related Work

key agreement, and delegation. In general, DKIG works in a very similar way to

IKIG, but without the key escrow issue. However, each entity in the DKIG set-

ting will possess an authentic and valid certificate that needs to be transmitted to

other parties when performing security services such as mutual authentication and

delegation. In short, we can regard IKIG as a lightweight solution for grid applica-

tions that tolerate key escrow, while we can think of DKIG as a fix to remove the

key escrow problem of IKIG at the expense of an acceptable increase in bandwidth

requirement and computational cost.

5.3 Related Work

Not long after the publication of Boneh and Franklin’s work in [25], Chen et al. [41]

proposed a hybrid certificate-based and identity-based approach related to but dif-

ferent from our work. In Chen et al.’s proposal, they presented a certificate-based

approach for TAs above the domain level, e.g. between a domain TA and a root

TA, and identity-based techniques for entities below the domain TA. It is assumed

that all TAs in this hybrid architecture use non-identity-based public/private keys,

while the users have identity-based key pairs. The root TA will verify the public

keys or system parameters of the domain TAs and issue certificates accordingly.

The domain TAs, in turn, extract identity-based private keys for their respective

users using the certified system parameters. Hence, when a user wants to encrypt

a message for another user belonging to a different domain, the sender must obtain

the system parameters for the domain TA of the receiver and its root TA. Although

the proposal of [41] provides a certificate-free approach at the user level, key escrow

remains possible since the domain TA possesses a master secret which is used to

extract the users’ private keys. We note that the security architecture proposed by

Smetters and Durfee in [164] for a secure email application (also for secure IP-based

communications) using IBC is closely related to Chen et al.’s approach. As we have

already discussed in Section 3.6, the architecture proposed by Smetters and Durfee

uses conventional certificate-based PKI above the domain level, while key manage-

ment within the domain is identity-based. However, private key distribution from a

PKG to its users requires the standard TLS protocol which is still certificate-based.

In our DKIG, this limitation is removed and short-term key management (in the

context of a grid application) is fully identity-based.

119

5.4 Design of DKIG

On the other hand, the key escrow issue of the Boneh-Franklin IBE scheme partly

drove the proposals of certificate-based encryption [79] and certificateless public key

cryptography [5]. As we discussed in Section 3.2, the authors of both proposals split

the private key of a user into two components: one computed by the user himself,

and another by the TA. Because of this requirement, the user’s public key is no

longer identity-based. To encrypt a message, the sender must obtain the intended

recipient’s public key which is an arbitrary string like a conventional public key.

Hence, the benefits that identity-based techniques can bring to grid applications, as

we have discussed in the previous chapter, may no longer be applicable. Although

the certificateless approach of [5] can remove the extensive use of certificates in

grid applications, it is not clear if the use of two-component-based private keys will

actually simplify current PKI-based public key management in grid applications.

In summary, even though the key escrow issue can be resolved using the proposals

of [5, 79], the suitability of these approaches as alternatives to the current PKI-based

GSI requires further exploration.

Parts of the research findings presented in this chapter appear in [118]. In addition,

further aspects of the hybrid DKIG approach are explored in [43], in which we revis-

ited the GSI in GT2 and presented some improvements to the security architecture.

5.4 Design of DKIG

As with IKIG, we envisage that the TAs’ system parameters in the DKIG setting

are boot-strapped into the grid system and can be updated by the users though

their GT clients. Also, trust relationships between TAs2 are established through a

Grid PMA.

In Figure 5.1, we show the hierarchy of entities in our DKIG proposal. Traditional

certificate-based PKI is used by users and resource providers to manage their long-

term credentials. The TA issues standard certificates that contain system parameters

chosen by users and resources, in a similar way as a typical CA certifies user-chosen
2Note that the TA here is in fact a traditional CA. For the purpose of consistency in using

terminology in our proposals, and to avoid confusion between the ‘CA’ in our proposals and the
CA in the GSI, we use the term TA in all our security architectures.

120

5.4 Design of DKIG

Resource proxy

TA

User Resource

User proxy

Mutual authentication

Delegation

User machine Hosting server

Certificate-based

Certificate-free

(Identity-based)

Figure 5.1: The hierarchical structure of entities in the DKIG setting.

Table 5.1: A’s long-term and proxy credentials.

Credential Type Public Key Private Key

Long-term PA = sAP0 SA = sA

Short-term PĀ = H1(IDA‖LTA) SĀ = sAPĀ

public keys. We remark that some of these parameters can be fixed to reduce

communication costs of the system. Further details of parameter selection, key

generation and certification will be given in Section 5.5.

At the user level, the certified system parameters are used by the users (and re-

sources) to extract short-term private keys corresponding to some fixed formatted

identifiers. These short-term private keys and identity-based public keys are then

taken as input to IBE and IBS schemes for providing security services, such as sin-

gle sign-on, mutual authentication and delegation. Here, we will use Boneh and

Franklin’s full IBE scheme [25], and Cha and Cheon’s IBS scheme [39] for data en-

cryption and signing, respectively. Note that we are not using the Gentry-Silverberg

HIBE and HIBS schemes any longer because in our hybrid approach, identity-based

techniques are used starting at the user level. Since the next level is already the

user proxy level, non-hierarchical-based IBE and IBS schemes seem to be sufficient.

Nevertheless, the hierarchical identity-based approach can be used as an alternative

delegation technique. This will be discussed in Section 5.4.4.

We will again consider a simple scenario where A wants to submit a job request

J_req to a target resource X with long-term and short-term credentials as shown

in Table 5.1. We assume A possesses a certificate CertA which contains her system

121

5.4 Design of DKIG

parameter set, including sAP0, and other information such as issuer (A’s TA), sub-

ject (A’s identifier) and validity period. In order to keep the size of the certificate

minimal, we propose the use of the BLS short signature scheme [29] for signing

the certificate by the TA. As with the IKIG setting, A’s short-term public key PĀ

is computed based on her identifier and a lifetime (LTA). The matching private

component is obtained by A using her master secret sA.

5.4.1 Single Sign-On

A can store her certificate and short-term private key SĀ in a local file system acces-

sible by her GT client so that the client can use them when needed for single sign-on.

Since A’s short-term public key is identity-based, a proxy certificate is not needed.

Should A’s client be challenged for proof of possession of its short-term private key,

it could produce a signature using SĀ from the local file system and forward it to

the challenger, along with A’s certificate. The challenger verifies the authenticity

of the system parameters contained in the certificate, and the parameters together

with A’s short-term public key (which can be computed by any entity) are then used

to verify the signature.

5.4.2 Authorization

A generates an identity-based signature using the Cha-Cheon IBS scheme (which

we described in Section 3.4.2) on J_req with her short-term private key SĀ. She

then submits the signed request to a Managed Job Factory (MJF) that resides on

X through a GRAM service.

A → X : CertA,LTA, J_req, SigĀ(J_req)

The signed request is of the form (U, V), where U = rPĀ, V = (r + h)SĀ. Here, r

is a random element of Z∗q and h = H6(J_req, U). Note that the MJF can verify

SigĀ(J_req) by computing PĀ as a function of A’s identifier and the lifetime LTA,

and using the system parameters from CertA. The signature verification can be done

by checking if:

ê(P0, V) = ê(sAP0, U + hPĀ)

122

5.4 Design of DKIG

where P0 and sAP0 are obtained from A’s system parameters. Subsequently, as with

the GSI and IKIG, the MJF maps A’s identifier to its grid-map file before granting

access to A. When the check succeeds, the MJF instantiates a managed job service

for the job request and returns an endpoint reference to A. Clearly, this technique

is very similar to IKIG except that it requires the transmission of a set of certified

system parameters. However, the benefit of doing this is the removal of key escrow

from the system.

5.4.3 Mutual Authentication and Key Agreement

Here, we present a hybrid identity/certificate-based authenticated key agreement

protocol based on the TLS handshake protocol. Our protocol, Protocol 4, is needed

for mutual authentication between A and the created managed job service before

A’s job can be started.

Protocol 4 Identity/certificate-based authenticated key agreement
based on the RSA TLS handshake

(1) A → X : ClientHello = nA, session id, cipher suite
(2) X → A : ServerHello = nX, session id, cipher suite

ServerCertificate = CertX , LTX

CertificateRequest
ServerHelloDone

(3) A → X : ClientCertificate = CertA, LTA

ClientKeyExchange = EncX̄(pre master secret)
CertificateVerify = SigĀ(handshake messages)
ClientFinished

(4) X → A : ServerFinished

Protocol 4 is basically an enhanced version of Protocol 1 from Chapter 4 with the

use of certificates. While Protocol 1 makes use of the Gentry-Silverberg HIBE

and HIBS schemes for encryption and signing operations, respectively, we use the

Boneh-Franklin full IBE and Cha-Cheon IBS schemes for Protocol 4. Note that

Protocol 4 is different from the current TLS protocol used in the GSI in terms of

number of certificates used in the protocol. In the GSI, the client and the server

would exchange both standard and proxy certificates. In the case where the client

has been delegated another user’s credential, the client must also forward a chain of

123

5.4 Design of DKIG

proxy certificates to the server. On the other hand, in Protocol 4, the client and the

server only exchange standard certificates, regardless of the length of the delegation.

We will discuss more about delegation in DKIG in the subsequent section.

As with the current TLS specification, Protocol 4 begins with A (the client) send-

ing X (the server) a ClientHello message. Here, we assume cipher_suite con-

tains a cipher specification that supports the IBE and IBS schemes, for example

TLS_IBE_IBS_WITH_DES_CBC_SHA.

In step (2), X responds with the ServerHello and ServerCertificate messages.

It is worth noting that CertX contains X’s identifier IDX which will be used later

on for identity-based encryption and signing. The CertificateRequest message

is also sent immediately after the transmission of CertX , requesting A’s certificate.

Step (2) ends with the ServerHelloDone message.

A replies to X’s request for her certificate in step (3). She also chooses a pre-

master key and encrypts it with X’s short-term public key which can be calculated

as PX̄ = H1(IDX‖LTX). The encrypted pre-master key is transmitted to X as

ClientKeyExchange. Details of the rest of the protocol messages are similar to

Protocol 1 and will not be repeated here.

If A and X execute the protocol properly, they should share the same master secret

at the end of the protocol run. The master secret can be calculated as:

KAX = PRF(pre_master_secret, “master secret”, nA, nX),

where PRF is a pseudo-random function specified for the TLS protocol in [50].

We remark that neither A nor X are required to generate and sign proxy certificates

when they authenticate each other using Protocol 4. This should be compared with

the authentication protocol used in the GSI. In our Protocol 4, short-term public

keys for both the client and the server can be computed on-the-fly and used without

any authenticity check. This is a major advantage of the identity-based techniques.

Obviously, CertA and CertX must be checked by X and A, respectively.

124

5.4 Design of DKIG

Alternative. As with Protocol 1, Protocol 4 can be easily transformed into a pro-

tocol that supports Diffie-Hellman key exchange by using the relevant cipher_suite,

for example TLS_DH_IBS_WITH_DES_CBC_SHA. As in the Diffie-Hellman key exchange

based standard TLS protocol, both the client and the server in this alternative ap-

proach must agree to the same parameters for the Diffie-Hellman operations during

the TLS handshake. We omit the details of this alternative protocol since the con-

struction of the protocol is a straightforward exercise.

5.4.4 Delegation

For delegation, we can still obtain a one-pass protocol as we did for IKIG, even

though DKIG now involves the use of certificates. As with IKIG, we assume the del-

egation token is a 5-tuple: DelegationTokenX = (IDA, IDX , J_req, Policy, LTAX).

Here LTAX is a lifetime which A imposes on X. Protocol 5 then shows our one-pass

identity/certificate-based delegation protocol.

Protocol 5 Identity/certificate-based credential delegation
based on the IBS scheme

A → X : CertA, DelegationTokenX , SigĀ(DelegationTokenX)

As with Protocol 3 that we proposed for IKIG, A can also naturally bind X’s public

key information (IDX and LTAX) to the delegation token without acquiring the key

from X in Protocol 5. The signed delegation token is of the form of (U, V), where

U = rPĀ, V = (r + h)SĀ and h = H6(DelegationTokenX , U).

X’s status as the delegation target can be confirmed by a third party by: (i) checking

the validity of CertA and the system parameters obtained from CertA, (ii) verifying

the signed delegation token using PĀ, and (iii) challenging X for a proof of pos-

session of the private component associated to PX̄ via the TLS handshake in Pro-

tocol 4 (which involves checking of X’s certificate). We note that unlike our IKIG

proposal in the previous chapter where we proposed partial aggregation between

SigĀ(DelegationTokenX) and SigX̄(handshake_messages), it seems that aggrega-

tion of signatures is not viable in the DKIG setting. Although Yoon et al. [189]

125

5.4 Design of DKIG

have shown that the Cha-Cheon IBS scheme can be easily extended (with slight

modification) to support what they termed as batch verification, all users of the

modified Cha-Cheon IBS scheme must possess private keys obtained from the same

TA. These private keys are generated by the TA using the same master secret. This

contrasts with our DKIG setting, because all users have their own respective master

secrets which can be used to derive (short-term) private keys.

If X wants to further delegate A’s credential to another resource provider Y , X can

repeat A’s actions with X becoming the delegator and Y the delegation target. X

must sign a delegation token for Y where DelegationTokenY = (IDX , IDY , J_req,

Policy, LTXY). A verifier will have no problem constructing the necessary short-

term public keys (PĀ, PX̄) for verifying DelegationTokenX and DelegationTokenY ,

respectively, provided he has obtained the correct system parameter sets for both A

and X from their respective certificates.

Alternative I. In Section 4.4.4, we discussed that as an alternative approach in

the IKIG setting, A’s proxy can delegate her credential to X by issuing a private

key to X. The private key is one associated with the hierarchical structure of HIBC

and thus this technique is quite natural in the IKIG setting. In DKIG, we envisage

that a similar approach can be realised by adopting HIBC in place of IBC at the

user level. Let us imagine that we now include additional parameters needed for

HIBE/HIBS schemes in the grid entities’ existing parameter sets associated with

IBE/IBS schemes. Then so long as the delegator forwards his HIBC related system

parameters in a certificate signed by the TA to the delegation target, the established

delegation chain will be aligned with a hierarchical tree beginning with the delegator

at level 0, the first delegation target at level 1 and so on. One limitation of this

technique is the requirement for a privacy and integrity protected channel to transmit

a private key.

Alternative II. There is also another delegation technique which requires more

radical modification to our Protocol 5 than the previous alternative. This approach

can result in a substantial saving in the protocol’s network bandwidth requirement

by using short signatures [28, 29] and full aggregate signatures [27] (as discussed

in Section 3.4.5). However, the resulting delegation protocol is no longer identity-

126

5.5 Key Management in DKIG

based. The details are as follows.

A’s long-term public/private key pair are of similar form as in the DKIG setting,

i.e. (sAP, sA), where sA is a secret random integer and P is now a fixed point on

an elliptic curve agreed by all system users. Note that this was not a requirement

previously: up till now, each user could have a different parameter set. In this

alternative approach, the public key sAP can be published in a certificate signed

by a TA, as before, using the BLS short signature scheme [28, 29]. To take full

advantage of the BGLS aggregate signature scheme of [27], A must create a proxy

credential of the form (aP, a), where a is a new random integer used as a short-lived

private key of A. However, since the short-term public key aP is not identity-based

and is now unpredictable, A must attach with it a proxy certificate signed using

her long-term private key. Therefore, despite the fact that the BGLS aggregate

signature scheme can compress all signatures (signed delegation tokens by different

parties) into a single signature whose size is that of a single group element, the

saving in communication costs due to the aggregation of signatures may be offset

by the increased bandwidth requirement for transmitting proxy certificates.

5.5 Key Management in DKIG

In this section, we will discuss various key management issues arising in DKIG.

In general, we envisage that management of long-term public keys (in the form of

user-selected parameters) would be rather similar to the GSI, while short-term cre-

dential management may well be more lightweight than the GSI, because of DKIG’s

avoidance of proxy certificates.

5.5.1 Parameter Generation and TA Initialization

Our DKIG proposal makes use of two different sets of system parameters: (i) root

system parameters based on MNT curves for the TA, and (ii) normal system pa-

rameters based on supersingular curves for the users.

During the initial system setup phase, the TA selects the root system parameters

127

5.5 Key Management in DKIG

which are needed for signing certificates using the BLS short signature scheme of [29].

This short signature scheme uses MNT curves in order to obtain short signatures.

It is worth noting that we do not use supersingular curves for the root system

parameters because otherwise the BLS short signature scheme may well not provide

the expected levels of security (as we explained in Section 3.4.5). Hence, we propose

that the TA in our DKIG setting chooses an elliptic curve defined over Fp, where p

has 168 bits and the embedding degree is 6, as in [29]. Further details of certification

will be discussed shortly in the following section.

Each user makes use of system parameters 〈G1,G2, ê, n, P0, sP0, H1,H2,H3,H4,H6〉3
for the Boneh-Franklin full IBE and the Cha-Cheon IBS schemes. In our DKIG

proposal, all these parameters except sP0 are selected by the TA and bootstrapped

in the grid system so that only user-specific values sP0 are transmitted across the

network. This means that in practice, each user is only required to select a unique

sP0 as the system parameter that will be certified by the TA. This represents a trade-

off between savings in communication costs and lack of flexibility in supporting

various groups derived from different elliptic curves. In contrast, we could allow

users to select all the components that form their system parameters, giving more

flexibility to the system and users, but this would require higher bandwidth because

then a full set of system parameters would need to appear in each certificate issued

by the TA.

In IKIG, we proposed the use of keys with 272 bits for both long-term and short-term

credentials, which offer approximately similar security level to 1024-bit RSA keys.

This is an advantage over the GSI because short-term keys in IKIG have roughly

double the security level of 512 bit short-term RSA keys. At the user level of our

DKIG setting, we propose to use the same elliptic curve (of embedding degree 4)

and field (F2271) to obtain a similar group with size approximately 2252. We assume

that the size of output of H1 is equivalent to 272 bits, the size of an element of G1.

The hash function H1 is required in all three Boneh-Franklin full IBE, Cha-Cheon

IBS and BLS short signature schemes. In the Boneh-Franklin full IBE scheme, we

assume that H2 and H4 each has an output size 256 bits, while the output size for

H3 is approximately 252 bits. Also, H6, used in the Cha-Cheon IBS scheme, has an
3For the sake of consistency, as in the previous chapter, we use P0, a generator, as part of a

parameter set, PA as a long-term public key of user A and PĀ as A’s short-term public key.

128

5.5 Key Management in DKIG

output size similar to that of H3.

5.5.2 User Registration

When a new grid user Alice (A) goes to a nearby RA with her generated system

parameter, the RA performs the following steps:

1. The RA verifies A’s identity by checking her passport (or an acceptable ID-

card). Once the check succeeds, the RA compares A’s identity with its global

identity list and subsequently assigns her a distinguished identifier IDA ∈
{0, 1}∗. For example,

IDA = “/C=UK/O=eScience/OU=RHUL/CN=Alice”,

2. The RA submits A’s application to the TA through its website using the

HTTPS protocol. The application includes A’s system parameter sAP0 and a

signed request (as a proof of possession) by A using her master secret sA. This

can be done using the BLS short signature scheme defined in Section 3.4.5. If

approved, the TA generates a certificate CertA (which is signed using the BLS

short signature scheme of [29]) and informs A through e-mail that the certifi-

cate is ready. A can then download her certificate through an authenticated

and integrity protected channel from the TA’s server. We envisage that the

certificate has the following structure:

Issuer: /C=UK/O=eScience/OU=Authority/CN=TA
Subject (ID): /C=UK/O=eScience/OU=RHUL/CN=Alice
Validity: Not Before Oct 6 15:20:05 2005 GMT

Not After Oct 6 15:20:05 2006 GMT
Param: sAP0

Signature: 94:33:6c:f3:58:e2:18:87:7f:9a:59:d1:23:0c:66:
31:fb:92:3a:63:a2:67:0d:ec:3d:f0:c7:b4:09:15

A can verify the signature on her certificate by using the TA’s public key

which is assumed to be bootstrapped in the grid system.

Before A submits a job, she can create a short-term public/private key pair straight-

forwardly using the Extract algorithm from the Boneh-Franklin IBE scheme. As

129

5.5 Key Management in DKIG

we have shown in Table 5.1, A’s short-term public key is PĀ = H1(IDA‖LTA) and

the corresponding private component is sAPĀ. This private component is stored

temporarily in a local file system in unencrypted form for the purpose of single

sign-on.

5.5.3 Key Update

Although DKIG is based on a combination of identity-based and certificate-based

approaches, we expect that the usual annual key update practice in the GSI would

be adopted in our proposal. This is so because certificates are used to carry users’

system parameters. Barring any exposure of the user’s master secret sA, the TA

can renew the user’s current certificate by updating the validity period and serial

number of the certificate. Alternatively, the user can pick a new master secret and

request a new certificate that would contain fresh system parameters, before the

current certificate expires.

For short-term identity-based public/private key pairs, as with IKIG, we assume

that the lifetime of the keys is 12 hours. Each time the user creates a new proxy

credential based on her identifier IDA, a unique LTA and her master secret sA, a

new short-term public/private key pair that is fresh and different from the past

public/private keys is obtained.

5.5.4 Key Revocation

Since the user’s proxy credentials will expire automatically within a short time,

we only concern ourselves with the user’s certificate. Since the user’s long-term

credential is managed in a very similar way as in the GSI, we envisage that a CRL-

based method can also be used in DKIG. Clearly, the efficiency of this technique

relies on the timeliness of the revocation list update, as well as the willingness of the

users to update their local copies of CRLs.

130

5.6 Security Analysis

5.6 Security Analysis

In many ways, the heuristic security analyses of Protocols 4 and 5 are rather similar

to the analyses of Protocols 1 and 3 in Section 4.4. So, our focus in this section

will be to pinpoint the differences between the authenticated key agreement and

delegation protocols in IKIG and DKIG, from a security perspective.

5.6.1 Mutual Authentication and Key Agreement

The security of our Protocol 4 is different from the long-discussed security of the TLS

protocol even though Protocol 4 also makes use of certificates. This is because, as we

mentioned earlier, the actual session key establishment method is through identity-

based techniques, as with Protocol 1. However, in comparison with Protocol 1,

Protocol 4 requires both the client and the server to verify the authenticity of each

other’s system parameters contained in their respective certificates. Only then is it

safe to use identity-based keys for message encryption and signing. For instance,

when A receives CertX and LTX from X in the ServerCertificate message of

Protocol 4, she must verify the signature on CertX . Only then, should she use X’s

identifier and LTX to construct an identity-based public key. In turn, this key is

used to encrypt a pre-master secret for X.

So long as both the client and the server have an authentic copy of the TA’s public

key, the anticipated mutual authentication and key agreement between the two

parties can be achieved if the protocol is executed properly. X is authenticated

to A when A receives a correct verification value in the ServerFinished message

from X, which shows that X has retrieved the pre-master secret chosen by A. On

the other hand, A is authenticated to X if X can successfully verify A’s signature

on the CertificateVerify message using public key PĀ.

It is also worth noting that, even with the use of certificates in DKIG, it is still pos-

sible for the TA to actively impersonate a user by issuing a certificate using its own

chosen master secret and system parameters. However, the TA would run the risk of

leaving cryptographic evidence, in the form of a new certificate, which might identify

its attack. Hence, the likelihood of an undetected active impersonation attack seems

131

5.7 Performance Analysis

to be far lower than the corresponding attack executed by a TA empowered with a

key escrow facility, as in, for example, security infrastructures based on IBC.

5.6.2 Delegation

Protocol 5 in our DKIG is even more similar to the delegation protocol that we

proposed for IKIG than are the TLS-based key agreement protocols in the two

infrastructures. Since certificates are used to confirm the validity of an entity’s

system parameter, a third party must perform additional signature verification on

the certificates to check the status of delegation targets. As in IKIG, our one-

pass delegation protocol message does not require an authenticated and integrity

protected channel. The security of the Protocol 5 seems to rely only on the security

of the BLS short signature and the Cha-Cheon IBS schemes.

5.7 Performance Analysis

In this section, we will discuss the computational and communication overheads of

DKIG and compare them with those incurred in the GSI and in our IKIG proposal.

Computational Costs. Here, we examine the dominant cryptographic operations

involved in delivering the security services provided by DKIG.

• Generation of proxy credentials: In our proposed DKIG setting, generation of

a short-term public/private key pair is very efficient. It involves execution of

a cryptographic hash function when computing the public key, while compu-

tation of the private key requires only one elliptic curve point multiplication.

• Authenticated key agreement: Protocol 4 in DKIG requires more crypto-

graphic operations than Protocol 1 in IKIG since the former makes use of

certificates and the latter is certificate-free. In Protocol 4 the user performs

an encryption on a pre-master secret and produce a signature on handshake

messages using the Boneh-Franklin full IBE and the Cha-Cheon IBS schemes,

132

5.7 Performance Analysis

respectively. In addition, the user must verify the TA’s signature on CertX .

At the server side, the resource has to decrypt the encrypted pre-master secret,

and verify the signed handshake messages and the user’s certificate.

• Delegation: Our delegation protocol for DKIG has computational complexity

similar to Protocol 3. The delegator is required to perform signing on a dele-

gation token. However, the verifier has to perform two signature verifications

(rather than one in Protocol 3) assuming the length of the delegation chain is

one. These signatures include the signed delegation token and the delegator’s

certificate.

Table 5.2 gives more details of the computational costs in both GSI and DKIG. As

with Table 4.3, we obtained the computation times of the IBE and IBS schemes by

using programs written based on the MIRACL library with the curves and parame-

Table 5.2: Performance trade-offs in computation times (in milliseconds) between
the GSI and the DKIG settings on a Pentium IV 2.4 GHz machine.

GSI DKIG
Operation RSA Time IBE/IBS Time

Key generation
(a.) Long-term 1 GEN 149.90 1 EXT 1.69

(b.) Short-term 1 GEN 34.85 1 EXT 1.69

Authenticated key agreement
(a.) Requestor 1 1024-bit VER 2.67 1 ENC, 1 SIG 18.17

1 512-bit ENC 1 VER

1 512-bit SIG

1 512-bit VER

(b.) Resource 1 1024-bit VER 2.67 1 DEC, 2 VER 29.54

1 512-bit DEC

2 512-bit VERs

Delegation
(a.) Delegator 1 512-bit SIG 1.86 1 SIG 3.35

1 512-bit VER

(b.) Delegation target 1 GEN 35.63 1 EXT 1.69

1 512-bit SIG

(c.) Verifier 3 512-bit VERs 0.84 2 VER 16.84

GEN = RSA parameter generation EXT = IBE/IBS private key extraction

ENC = Encryption DEC = Decryption

SIG = Signing VER = Verification

133

5.7 Performance Analysis

ters specified in Section 5.5.1. As before, we adopted known optimisation techniques

wherever possible, such as using a small RSA public exponent for encryptions and

the CRT method for RSA decryptions. We also allow pre-computation of pairing

values. For simplicity, the length of the delegation chain is limited to one.

From Table 5.2, we can see that key generation at the user side of the GSI is

significantly slower than DKIG. However, Protocol 4 is significantly slower than

the TLS protocol used in the GSI, mainly because of the pairing computations.

For credential delegation, the GSI is more computationally expensive than DKIG

because of the RSA parameter generation. Despite that, DKIG is more costly than

the GSI for delegation verification.

Both settings are expensive in certain operations, for example RSA key generation

and pairing computation, but lightweight in others. Overall, DKIG appears to be

slightly more computationally expensive than the GSI because of the high number

of pairing computations. Despite this, we believe that pairing computation, being a

relatively new cryptographic operation, is likely to get faster as further optimisations

are discovered.

Communication Costs. Table 5.3 compares the communication costs of the stan-

dard GSI approach and our DKIG proposal. As with Table 5.2, we only consider

the dominant communication costs between the job requestor and the resource, i.e.

signed or encrypted messages and certificates, which have the biggest contributions

to the network bandwidth.

In Section 5.5.2, we showed that a certificate in the DKIG environment contains

a 272-bit parameter sAP0. If the BLS short signature scheme is used by the TA

to sign the certificate using the parameters of [29], the size of the signature will

be about 170 bits. Hence, by considering only the fields with dominant sizes, we

estimate that the size of a customised certificate in binary form is roughly 272 + 170

= 442 bits, almost half of the size of a proxy certificate (we explained in Section 4.7

that a standard proxy certificate in the GSI has a binary size of roughly 1024 bits).

Therefore, we assume that the size of a certificate in PEM format for our DKIG

setting is 3.2 kilobits.

134

5.7 Performance Analysis

Table 5.3: Performance trade-offs in communication costs (in kilobits) between the
GSI and DKIG.

Operation GSI DKIG

Authenticated key agreement 37.8 7.7
Delegation 7.4 0.5

On the other hand, the size of a ciphertext produced by the Boneh-Franklin full

IBE scheme of [25] in our DKIG setting is: |element of G1|+ 2× 256-bit hash value

= 784 bits. Also, the size of a signature on a message using the Cha-Cheon IBS

scheme of [39] is: 2× |element of G1| = 544 bits.

Since we have discussed the communication costs for the GSI in the previous chapter,

we now only focus on the communication costs for DKIG. In Table 5.3, the figure

of 7.7 kilobits refers to the two certificates, one encrypted pre-master secret and

one signed message in Protocol 4: 2(3.2) + 0.784 + 0.544 = 7.7. This shows that

by avoiding the use of proxy certificates in our DKIG approach, a total saving of

approximately 80% can be made as compared to the authenticated key agreement

protocol in the GSI.

The communication overhead for our delegation protocol in DKIG is estimated to

be 0.5 kilobits, based on the size of a signed delegation token. Note that we do not

include the communication cost for transmitting (long-term) certificates in both the

GSI and DKIG in Table 5.3, because we assume that the certificates for the two

communicating parties have already been exchanged during mutual authentication

through the TLS protocol or Protocol 4.

Figure 5.2 shows that the network bandwidth needed for key agreement and dele-

gation in DKIG is approximately 70% to 80% less than is required in the GSI. (We

assume that two grid entities authenticate each other and establish a session key

before delegation takes place.) However, the communication costs in DKIG are still

higher than in IKIG due to the use of certificates for long-term credentials. This

may be an acceptable price to pay to remove the key escrow facility from a grid

application.

135

5.8 Discussion

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 3 4 5 6

B
an

dw
id

th
 (

ki
lo

bi
ts

)

Length of Delegation Chain

Bandwidth Requirements for Key Agreement and Delegation Protocols

GSI
IKIG

DKIG

Figure 5.2: A performance graph which measures the network bandwidth required
for authenticated key agreement and delegation in the GSI, IKIG and DKIG.

5.8 Discussion

In our description of DKIG in the previous sections, we highlighted that the main

difference between DKIG and the PKI-based GSI is in terms of proxy credential

management. The fact that users’ fixed parameter sets can be published through

certificates implies easier integration of DKIG with existing technologies. In this

section, we discuss some practical issues related to DKIG.

Impact on Web Services Security. The reduced SOAP header sizes in web

services security through identity-based techniques that we discussed in the previous

chapter still holds in DKIG, though with less significant savings than with IKIG.

Since the size of a DKIG-supported certificate is roughly half the size of a proxy

certificate in the GSI, SOAP headers used for Protocol 4 would still be smaller than

those required for the TLS protocol (via WS-SecureConversation) which makes use

of both standard X.509 and proxy certificates.

136

5.8 Discussion

Implementation Issues. In order to implement DKIG, the first essential step

is to extend the current X.509 certificate profile specified in [101] so that system

parameters for identity-based cryptographic schemes can be presented through a

standard certificate. The extensions should allow the use of certificate fields de-

scribed in Section 5.5.2 so that DKIG can inter-operate with PKI. We envisage that

current data fields such as issuer, subject and validity can be re-used; while new

fields such as param, signature algorithm and (short) signature need to be defined.

From the perspective of GSS-API, the credential acquisition function must be able

to support extraction of data fields from DKIG-supported certificates. This is im-

portant so that an entity’s system parameter can be verified and his identity-based

public key can be constructed with ease. In the DKIG setting, we must also define

and include a TLS_IBE_WITH_DES_CBC_SHA cipher suite in the current TLS specifi-

cation to support our Protocol 4. In addition, the OpenSSL library must support

message encryption/decryption and signature generation/verification through IBE

and IBS schemes.

Inter-TA Operation. If the grid user and resource domains are expanded and

span various countries, it is natural to have at least one TA in each nation. In this

case, we envisage that in our DKIG setting, the European Grid PMA can select and

decide on the common system parameters (except for the user-specific component)

which these users and resources would use for the IBE and IBS schemes. At the

TA level, all the TAs (assuming there is no single root TA) could employ different

parameter sets which would be available to all the system users.

Limitations. Our DKIG proposal has two drawbacks in comparison with IKIG.

Firstly, it is obvious that the introduction of certificates inevitably increases the

communication and computational costs in the DKIG setting. The second limitation

is the partial loss of the benefits that identity-based techniques could bring to grid

applications. With the use of certificates to verify entities’ parameters sets, long-

term key management between the entities and their TAs becomes subject to the

conventional limitations of certificate-based PKI.

137

5.9 Summary

5.9 Summary

We presented a different security infrastructure called a dynamic key infrastructure

for grid (DKIG) in this chapter. This infrastructure has solved the key escrow issue

encountered by the fully identity-based approach proposed in the previous chapter.

We described an interesting way of managing users’ proxy credentials whereby the

users act as their own PKGs and publish their individual parameter set through

a certificate. Through this approach, single sign-on and rights delegation can be

achieved without the need for creating proxy certificates. We proposed a TLS-

supported authenticated key agreement protocol using a combination of identity-

and certificate-based techniques. Even though the authenticated key agreement

protocol seems to be slightly more expensive than the TLS protocol in terms of

computational costs, its network bandwidth requirement is still considerably less

than that of TLS within the GSI. In summary, our dynamic key infrastructure for

grid offers the benefits of identity-based techniques at the user level without the key

escrow issue, but at the expense of somewhat increased bandwidth requirements and

computational costs as compared to the fully identity-based approach.

138

Chapter 6

Identity-Based Secret Public Keys

Contents

6.1 Overview . 140

6.2 Related Work . 142

6.3 Secret Public Key Protocols and Attacks 143

6.4 New Properties from Identity-Based Secret Public Keys 147

6.4.1 ID-SPK as Secret Identifier 148
6.4.2 Random String as ID-SPK 149
6.4.3 Secret Signatures . 150

6.5 The ID-SPK Protocols . 152

6.5.1 The Three-Party ID-SPK Protocol 154
6.5.2 The Two-Party ID-SPK Protocol 158

6.6 Integrating ID-SPKs with TLS 160

6.7 Application in MyProxy 163

6.8 Summary . 164

The concept of secret public keys was proposed more than a decade ago as a means of

securing password-based authentication protocols against off-line password guessing

attacks, but was later found vulnerable to various attacks. In this chapter, we revisit

the concept and introduce the notion of identity-based secret public keys. Our new

identity-based approach allows secret public keys to be constructed in a very natural

way using arbitrary random strings, eliminating the structure found in, for example,

RSA or Diffie-Hellman keys. We examine identity-based secret public key proto-

cols and give informal security analyses which show that they may well be secure

against off-line password guessing and other attacks. More importantly, we present

an identity-based secret public key version of the standard TLS protocol. Our new

protocol allows passwords to be tied directly to the establishment of secure TLS chan-

139

6.1 Overview

nels. This, in turn, appears to provide an interesting way for grid users to access a

MyProxy server merely based on simple user-chosen passwords.

6.1 Overview

The use of secret public keys in password-based authentication protocols was first

proposed by Gong et al. [86] in 1993. As implied by its name, a secret public

key is a standard public key which can be generated by a user or a server, and is

known only to them but is kept secret from third parties. A secret public key within

a password-based protocol, when encrypted with a user’s password, should serve

as an unverifiable text1. This may significantly increase the difficulty of password

guessing even if it is a poorly chosen password as an attacker has no way to verify

if he has made the correct guess. The secret public key can then be used by the

user for encrypting protocol messages. However, it may not be easy to achieve

unverifiability of text by simply performing naive symmetric encryption on public

keys of standard types such as RSA or Diffie-Hellman. This was overlooked in [86]

and other variants of secret public key protocols in [85, 174], but later found to be the

main culprit in various attacks on the protocols. These include undetectable on-line

password guessing attacks of Ding and Horster [52] and number theoretic attacks

due to Patel [141]. It is worth noting that the attacks discovered in [52] may not

work against a secret public key protocol which uses a secure public key encryption

scheme such as RSA-OAEP [18]. Nevertheless, Patel’s attacks seem to be one of the

crucial factors that caused diversion of interest away from using secret public keys in

password-based protocols. The concept of secret public keys, therefore, was thought

to be obsolescent. For example, in more recent work on password-based protocols

that requires servers’ public keys2 (e.g. [30, 96]), it is assumed that the public keys

are fixed and known to all users.

Independent of the previous work on secret public key protocols, Steiner et al. [168]

proposed a method for integrating password-based key exchange protocols with the
1Verifiable text/plaintext is a term popularised by Lomas et al. in [120]. It refers to a message

that contains information that is recognisable when decrypted, whether or not it was predictable
in advance.

2We classify password-based authentication protocols into two categories: (i) those which require
the usage of the server’s (or the user’s) public key, and sometimes together with the user’s password,
as a key-encrypting key; and (ii) those which only require the user’s password for key transport.

140

6.1 Overview

TLS protocol. Simple password authentication through a secure TLS channel is

widely used in email and e-commerce applications between a user and a web server.

It can be achieved by first establishing a secrecy and integrity protected channel

between the user’s client (e.g. a web browser) and a remote server owned by a service

provider, normally through the server-authenticated TLS handshake protocol. The

user then submits his user name and password through the secure channel to the

server. Subsequently, the server authenticates the user by verifying the submitted

user name and password. Note that users within a grid environment make use of

exactly the same technique when accessing the MyProxy server to request their

proxy credentials. In such a set-up where the user enters his password only after the

secure channel is established, the authentication of the user (through his password)

is not directly tied to the secure channel. This provided the motivation for the

password-based TLS protocol proposed in [168]. However, the proposal of Steiner et

al. requires significant alterations to the structure of the TLS handshake protocol,

an undesirable property which limits the acceptability of their proposal.

The aims of this chapter are twofold: (i) revisit the notion of secret public keys and

uncover some unexplored potential benefits of using identity-based secret public

keys, through IBC, in password-based protocols; and (ii) show how identity-based

secret public keys can support the use of passwords in the TLS protocol in a more

natural and less disruptive way than was proposed in [168].

In our quest to revive the notion, we introduce some new properties for secret public

keys. In the IBC setting, we show that an identity-based secret public key can offer

more flexibility in terms of key distribution. For example, an identity-based secret

public key can be computed by a user on-the-fly without needing his authentication

server to transport the key to him. More importantly, a random string can be used

as the identifier for constructing a secret public key. This technique can offer a clean

and natural way of eliminating any predictable structure in the secret public key.

Through this, the number theoretic attacks that plague existing secret public key

protocols can easily be prevented.

Since both public and private keys in the IBC setting are kept secret, we also propose

the notion of secret signatures which seem to provide data confidentiality in addition

to their original cryptographic use, i.e. authentication and non-repudiation. This

141

6.2 Related Work

appears to provide additional properties in conventional secret public key protocols

and in password-based authentication protocols in general.

The TLS protocol is becoming increasingly ubiquitous for web-based applications

that require secure authentication and key establishment. Our identity-based ap-

proach to the concept of secret public keys may well be of significant practical value

when it is integrated with the standard TLS handshake protocol. We design a TLS-

compatible identity-based secret public key protocol which requires no structural or

message flow modification but only minimal changes or extensions to the message

contents.

Parts of the research findings presented in this chapter appear in [116].

6.2 Related Work

Extensive work on password-based key exchange protocols (which rely on user pass-

words only) has already been carried out. See for example [1, 2, 3, 17, 33, 35, 105],

which all originate from [21, 22]. In order to circumvent off-line password guessing

attacks, Bellare et al. [17, 19] proposed the use of a mask generation function E(·)
as an instantiation of the encryption primitive for encrypting a Diffie-Hellman com-

ponent, rather than using a standard block (or stream) cipher. For instance, a user

with his password PW can encrypt a Diffie-Hellman component gx by calculating

gx · H(PW), where H is a hash function mapping onto the Diffie-Hellman group

and which is modelled as a random oracle in security proofs. Thus the result of the

encryption is a group element. This special encryption primitive, which needs to be

carefully implemented, is crucial in preventing any leakage of information about the

password when an attacker mounts a guessing attack. To decrypt and recover gx,

one can simply divide the ciphertext by H(PW). All recent work, such as [1, 2, 3],

utilises this encryption primitive for their password-based key exchange protocols.

Our proposal using identity-based techniques can be seen as a novel alternative to

these current protocols. In addition, the identity-based techniques can be integrated

naturally with the TLS handshake protocol, which seems to be difficult to achieve us-

ing current Diffie-Hellman encrypted key exchange techniques without more radical

modification of the TLS handshake.

142

6.3 Secret Public Key Protocols and Attacks

The use of algorithms from a public key encryption scheme in a secret/symmetric key

setting is not new. In 1978, Hellman and Pohlig [98] introduced the Pohlig-Hellman

symmetric key cipher based on exponentiation. Two different keys are involved in

the symmetric key cipher, namely, a secret encrypting key e for the sender and a

secret decrypting key d for the receiver, where e 6= d. Obviously, the communicating

parties must agree in advance to share these two symmetric keys. In more recent

work, Brincat [36] investigated how shorter RSA public/private key pairs can be

used securely in the secret key world. This is slightly different from [98], as each

user has his own secret public/private key pair in [36]. Another related concept is

that of public key privacy from Bellare et al. [16]. The notion of indistinguishability

of keys in public key privacy is an extension of the ciphertext privacy concept:

given a set of public keys and a ciphertext generated by using one of the keys,

the adversary cannot tell which public key was used to generate the ciphertext. In

this chapter, we will make use of identity-based (secret) public keys in the secret

key setting. These public keys are known only to the senders and receivers, and

thus indistinguishability of encryptions and keys somewhat similar to [16] can be

achieved. Moreover, in such a setting, a signature can be made verifiable to only a

specific recipient, hence the moniker secret signature. In many ways, the concepts of

secret public key encryption and signatures seem to be closely related to the notion

of signcryption with key privacy from Libert and Quisquater [113]. The proposal

of [113] combined Zheng’s work on signcryption [191] and the key privacy concept

of [16]. Our concept of secret signatures is also related to the strongest security

notion for undeniable and confirmer signatures called invisibility in [40].

6.3 Secret Public Key Protocols and Attacks

In this section, we revisit the first secret public key protocol proposed in the lit-

erature [86]. We will explain what the problems are with the protocol. This will

motivate our introduction of identity-based techniques to this area.

Notation. We use ˆPK and ˆSK to represent a secret public key (SPK henceforth)

and its matching private key, respectively. These are no different from conventional

asymmetric keys except that they are both kept secret. PW denotes a password-

143

6.3 Secret Public Key Protocols and Attacks

derived symmetric key which is shared between a user and an authentication server.

A nonce and a random number are represented by n and r, respectively. We use

the notation Enc ˆPK(·) to indicate asymmetric encryption using a secret public key
ˆPK and {·}K for symmetric encryption under a symmetric key K. In the three-

party scenarios that we will discuss in this section, we use A and B to denote two

communicating parties, while S denotes a trusted authentication server whose role

is to distribute a copy of a randomly generated session key to both A and B. Other

notations will be introduced as they are needed.

The GLNS SPK Protocol. Gong et al. [86] envisaged that using secret public

keys in a password-based protocol may be useful in a situation where the public

keys are needed for certain protocol messages but the protocol participants do not

know in advance the public key of their authentication server. In addition, they

implicitly assumed that a secret public key could be viewed as a nonce which, when

encrypted with a password, offers unverifiability of text. Assuming A and B share

their respective passwords with the authentication server S, the server can distribute

fresh copies of public keys to A and B encrypted using their respective passwords as

symmetric keys at the beginning of each protocol run. Each public key is only known

between the server and the relevant participant. This seems to make traditional

chosen plaintext attacks more difficult, as the encryption keys are not known to the

attacker. The details of the SPK protocol of [86] are depicted in Protocol 6.

Protocol 6 The GLNS SPK Protocol

(1). A → S : A, B

(2). S → A : A, B, nS , { ˆPKSA}PW A
, { ˆPKSB}PW B

(3). A → B : Enc ˆPKSA
(A,B, nA1, nA2, cA, {nS}PW A

), nS , rA, { ˆPKSB}PW B

(4). B → S : Enc ˆPKSA
(A,B, nA1, nA2, cA, {nS}PW A

),
Enc ˆPKSB

(B,A, nB1, nB2, cB, {nS}PW B
)

(5). S → B : {nA1, KAB ⊕ nA2}PW A
, {nB1, KAB ⊕ nB2}PW B

(6). B → A : {nA1, KAB ⊕ nA2}PW A
, {H(rA), rB}KAB

(7). A → B : {H(rB)}KAB

As shown in Protocol 6, S generates two new sets of secret public/private key pairs

(ˆPKSA, ˆSKSA), (ˆPKSB, ˆSKSB) and distributes the public components to A in en-

144

6.3 Secret Public Key Protocols and Attacks

crypted form whenever A initiates the protocol run. Here, cA and cB are sufficiently

large random numbers known as confounders. They serve no purpose other than to

confound guessing attacks based on some verifiable texts. Also, H is assumed to be

a well-designed hash function.

In [86], the authors assumed that so long as the secret public keys ˆPKSA and
ˆPKSB are randomly generated, it will be difficult for the attacker to verify if his

password guesses on { ˆPKSA}PW A
or { ˆPKSB}PW B

are correct. In reality, however,

this is not completely true. When using conventional public keys such as RSA

exponents or Diffie-Hellman components, the keys contain certain number theoretic

structure even though they are randomly generated. This, in turn, may allow the

attacker to verify his guessed passwords efficiently by predicting and checking the

outcome of the decryption. For example, if ˆPKSA is an RSA public key of the

form N = pq, then the attacker could expect the decryption of { ˆPKSA}PW A
under

a guess PW ′
A for A’s password to be an odd integer. This allows the elimination

of half of all passwords in a simple off-line guessing attack. It is this observation

that led to Patel’s study on various number theoretic attacks on secret public key

protocols [141]. It is also worth noting that {·}K must not represent the action of an

authenticated encryption algorithm as this would also leak information that could

be used to verify the correctness or otherwise of password guesses.

Patel’s Attacks. As we have just seen, it can be dangerous to transmit an RSA

modulus in encrypted form in an SPK protocol. Even if the ciphertext contains

only an RSA exponent, e.g. {e}PW , there are various number theoretic attacks

that would reveal the password PW . For example, the attacker could expect the

decryption of {e}PW under a guess PW ′
A to be an odd integer; an even result would

eliminate PW ′
A as a possible password. Thus, some countermeasures against these

number theoretic attacks such as padding or randomisation of the RSA exponent

are inevitably required.

Patel [141] showed that even when moduli N are sent in clear, and e are randomised

and padded, there is still a lethal off-line guessing attack. Protocol 7 illustrates

Patel’s RSA version of the SPK protocol. We only show the first 3 out of 7 protocol

messages as this is sufficient to describe Patel’s attack.

145

6.3 Secret Public Key Protocols and Attacks

Protocol 7 The RSA SPK Protocol

(1). A → S : A, B
(2). S → A : A, B, nS , {eSA}PWA

, NA, {eSB}PWB
, NB

(3). A → B : EnceSA(A, B, nA1, nA2, cA, {nS}PWA
), nS , rA, {eSB}PWB

...
...

An attacker can impersonate S and block A’s communication with the real authen-

tication server to mount the following attack.

1. When the attacker E detects A is sending message (1) to S, he blocks S’s

response from reaching A. E intercepts message (2) and replaces NA with his

own N ′
A whose prime factors he knows. Also, since E does not know PWA, he

simply replaces {eSA}PWA
with a random string RA.

2. A unwittingly decrypts RA with her password-derived key PWA and obtains

e′SA which A believes was generated by S. Subsequently in message (3), A

forwards Ence′SA
(A, B, . . .) to B.

3. E intercepts message (3) and can now perform off-line password guessing on

RA. For each possible PW ′
A, E decrypts RA and retrieves a possible value

for e′SA. Since E knows the prime factors of N ′
A, he has no problem com-

puting the decryption exponent d′SA for each value of e′SA. By decrypting

Ence′SA
(A, B, . . .) with d′SA and checking if the plaintext is of the form

(A, B, . . .), E can test if PW ′
A is the correct password.

It was pointed out in [141] that the above attack on the RSA-based SPK protocol

is unavoidable unless all protocol participants use an agreed-upon RSA modulus, or

unless the protocol is radically modified.

Even supposing a discrete logarithm based SPK protocol was used, and the cipher-

text (which contains a secret public key) transmitted to A was then of the form

{gx}PW , where g is a generator of a subgroup of Z∗p of prime order q and x is a

random integer, the password can still be discovered. If a naive encryption of ele-

ments in the subgroup is performed with a standard block (or stream) cipher, then

there is an off-line password guessing attack. The attacker simply decrypts {gx}PW

146

6.4 New Properties from Identity-Based Secret Public Keys

with a guessed password and observes if the resulting plaintext is an element of the

subgroup. If it was an incorrect guess, the likelihood that gx is not an element of

the subgroup is at least (p − q)/p > 1/2. This attack can only be prevented by

ensuring that decryption of {gx}PW with a guessed password PW ′ always results in

an element of the subgroup. Furthermore, it is also essential that public parameters

such as g, p and q have been agreed a priori among the users. More examples and

discussion on this subject can be found in [141, 168]. Notice that this kind of attack

is prevented using mask generation functions of the type discussed in Section 6.2.

From the above descriptions of various number theoretic attacks, it should be evident

that designing a SPK protocol can be difficult and not without some extra costs in

ensuring the predictable number theoretic structure within public keys is eliminated.

These observations are crucial for motivating our identity-based approach. We will

show that the aforementioned problems can be prevented easily and naturally, using

identity-based techniques.

6.4 New Properties from Identity-Based Secret Public Keys

We now present properties from identity-based SPKs by using the Boneh-Franklin

IBE and Zhang-Susilo-Mu IBS schemes of Sections 3.4.1 and 3.4.4. Pre-distribution

or fixing of some public/system parameters is common in password-based protocols.

In the following sections, we assume that the system parameters for the Boneh-

Franklin IBE and the Zhang-Susilo-Mu IBS schemes can be distributed by the server

to all its users during the user registration phase using an out-of-band mechanism.

This is important as failure to use an authentic set of system parameters would allow

the attacker to inject his own chosen parameters. Also, during the registration phase

between a user and the server, the user will pick a password pwd and send an image

PW of the password to the server. Typically, one might set PW = H0(pwd) · P ,

where H0 : {0, 1}∗ → Z∗q , G1 is a group of prime order q used elsewhere in the

protocol, and P generates G1. Note then that the server only knows PW and not

pwd. The actual password pwd still remains private to the user only. In some cases

where pwd and PW are used together, stronger authentication can be provided in the

sense that the user’s authenticity can still be guaranteed even if the string PW stored

in the server is revealed. This technique of using an image of the actual user-selected

147

6.4 New Properties from Identity-Based Secret Public Keys

password is common to many password-based protocols, for example [1, 17, 19, 22].

Here, we present and discuss some interesting properties of identity-based SPKs

(ID-SPKs henceforth) which are new as compared to conventional SPKs based on

RSA or Diffie-Hellman primitives. These properties can be obtained from using

the Boneh-Franklin and Zhang-Susilo-Mu schemes, and they form the basis and

motivation for the ID-SPK protocols that we will discuss in Section 6.5.

6.4.1 ID-SPK as Secret Identifier

In the conventional IBC setting, an identifier refers to some public information which

represents a user and is known to all parties. Here, however, we work with secret

identifiers, that is, identifiers only known to the user A (or B) and the server S.

These can be obtained by binding a secret value such as a password to an identifier.

Such an ID-SPK of the form ˆPK = H1(user‖password‖policy) can be generated

by both the user and the server on-the-fly. Here policy denotes constraints that

can be included in the ID-SPK such as a date, nonces, or roles. In other words,

the server does not need to distribute a fresh secret public key to its users, in

contrast to [86, 174]. Here we assume the users have access to the server’s fixed

system parameters. For example, referring back to Protocol 6, when A initiates the

protocol she could, in principle, skip messages (1) & (2) and transmit message (3)

to B as follows:

(3). A → B : Enc ˆPKAS
(A, B, . . .)

where ˆPKAS = H1(A‖S‖PWA‖“10102005”) denotes a public key in the IBE scheme

of [25]. Here “10102005” represents a date. A date with more granularity (e.g.

concatenated with time) or a nonce may well be needed to ensure freshness of ˆPKAS .

We remark that the Boneh-Franklin IBE scheme is IND-ID-CPA secure and thus

the attacker cannot use a guessed password PW ′
A to verify his guess by generating

Enc ˆPKAS
(A,B, . . .) and comparing it with the actual ciphertext produced by A,

even if he knows all the plaintext components. We also assume that given the

ciphertext that A produced, the attacker should learn nothing about the encryption

key, i.e. ˆPKAS .

148

6.4 New Properties from Identity-Based Secret Public Keys

On the server side, the server can extract the matching private key for ˆPKAS using

its master secret. Unless the attacker can break the IBE scheme or recover the

master secret, the above ciphertext is resistant to password guessing attacks. This

identity-based technique offers a form of non-interactive distribution of secret public

keys from the server to its users.

In the above example, A uses an ID-SPK encryption scheme which is adapted from

the full version of the Boneh-Franklin IBE scheme [25] with the encryption key

only known to the user and the server. Formal security definitions and proofs of

security for ID-SPK encryption schemes are beyond the scope of this thesis and will

be addressed in our future work.

6.4.2 Random String as ID-SPK

We have explained earlier in Section 6.3 that a naive encryption of an RSA exponent

or a group element with a standard block cipher would lead to effective off-line

password guessing attacks. Therefore, some form of padding or randomisation of

the keys is needed. In the IBC setting, we note that a random string with arbitrary

length without any predictable structure can also be used as an identifier. The

corresponding public key is usually derived from this identifier by hashing. Since

now only a random string needs to be encrypted under the user password, the

possibility of using a standard block cipher for the encryption is opened up3. For

example, in Protocol 6, the server can transport random strings STA and STB to A

and B, respectively, in message (2) as follows:

(2). S → A : A, B, nS , {STA}PWA
, {STB}PWB

(3). A → B : Enc ˆPKSA
(A, B, nA1, nA2, nS), nS , rA, {STB}PWB

(4). B → S : Enc ˆPKSA
(A, B, nA1, nA2, nS), Enc ˆPKSB

(B, A, nB1, nB2, nS)

Since STA and STB are just random strings, they do not contain any predictable

structure which could leak some information to the attacker as in the case of RSA

or Diffie-Hellman keys. Subsequently, users A and B can derive their ID-SPKs
ˆPKSA = H1(A‖S‖STA) and ˆPKSB = H1(B‖S‖STB), respectively, and respond

3However, it is still necessary to take care to avoid attacks based on the introduction of redun-
dancy, for example padding, in the block cipher encryption.

149

6.4 New Properties from Identity-Based Secret Public Keys

to the server via messages (3) and (4). If the server can decrypt B’s reply and

recover nS from both the ciphertexts produced with ˆPKSA and ˆPKSB, it can be

assured that the users have received the correct random strings. Thus, A and B are

authenticated to S. The use of random strings as identifiers is a key property from

our identity-based approach which may give the concept of SPK protocols new life.

We remark that to prevent off-line attacks, ciphertexts obtained by encryption under

the keys ˆPKSA and ˆPKSB must not leak useful information about STA and STB,

respectively. This is not a traditional requirement of a public key encryption scheme

(it is related to the public key privacy concept in [16]). Also note that since we

use a probabilistic encryption scheme here, we have removed the use of confounders

cA and cB originally proposed in Protocol 6 in messages (3) and (4). Furthermore,

users A and B no longer need to encrypt nS with their respective passwords in

their replies to S, in messages (3) and (4). This is because users A and B can

demonstrate knowledge of their respective passwords by their ability to construct

correct keys from STA and STB.

6.4.3 Secret Signatures

In what follows, we show some extended properties that an ID-SPK can offer as

compared to a conventional SPK. Again, referring to Protocol 6, if in the protocol

A (and B) selects and sends STA (and STB) to the server (rather than the server

sending it to the user), we can, in principle, remove messages (1) & (2) and modify

messages (3) – (5) as follows:

(3). A → B : Enc ˆPKSA1
(A, B, STA), rA

(4). B → S : Enc ˆPKSA1
(A, B, STA), rA,

Enc ˆPKSB1
(A, B, STB), rB

(5). S → B : Sig ˆSKSA2
(KAB), Sig ˆSKSB2

(KAB)

Note that we have replaced nonces nA1, nA2, nB1 and nB2 in Protocol 6 by random

strings STA and STB. For ease of exposition, we concentrate on the interaction

between A and S. In message (3), A encrypts a random string STA with an ID-

SPK ˆPKSA1 = H1(A‖S‖PWA). It is obvious that a symmetric encryption of the

form {A, B, . . . , STA}PWA
cannot be used in message (3) because the identities

150

6.4 New Properties from Identity-Based Secret Public Keys

of A and B are verifiable texts. The server responds with a signature generated

with a private key associated with the public key ˆPKSA2 = H1(S‖A‖PWA‖STA).

The reason for doing this will be clear when we look at the motivation for using

Sig ˆSK(·), a signature scheme with a private key ˆSK, in message (5). As compared

to the modification of Protocol 6 given in Section 6.4.2, the server cannot reply to A

with an encrypted message using an ID-SPK constructed from H1(S‖A‖PWA‖STA).

This is mainly because in such an asymmetric model (where the user only knows an

easy-to-remember password and the server has access to the secret public/private

key pairs), only the server itself can extract the corresponding private key. This

prompts the requirement to use a secret signature which not only provides non-

repudiation of the signed message and message recovery, but also preserves message

confidentiality. This last property is needed because the server wants only A and B

to be able to verify the signatures and recover the signed messages. This, in turn,

leads us to the use of an ID-SPK signature scheme with message recovery which can

be adapted from [190]. So long as the verification keys used in the scheme of [190]

are kept secret between the intended parties, our concept of secret signatures can

be used. However, we remark that the IBS scheme with message recovery must

be used carefully because the scheme provides message integrity. In other words, a

simple off-line password guessing attack would be enabled if a secret signature was

created based on a private key corresponding to ˆPKSA2 = H1(A‖S‖PWA). For

instance, the attacker could construct an ID-SPK ˆPK ′
SA2 = H1(A‖S‖PW ′

A) using

a guessed password PW ′
A and then attempt to verify the signature. If he used the

wrong password, the Verify algorithm would return an error message. Because

of that, the identifier from which the verifying key is derived must contain a secret

value chosen from a space much larger than the password space. We achieve this by

including STA (or STB) in the identifier. It is also worth mentioning that a secret

signature should not leak information about the signing key, the verifying key, or

the plaintext that has been signed.

As we have explained earlier, a secret identifier can bind a user’s password naturally

to a secret public/private key pair. As such, secret signatures may be beneficial in

a password-based protocol when one or both of the following conditions apply:

(i). Non-repudiation, confidentiality and integrity of a signed message are required.

151

6.5 The ID-SPK Protocols

(ii). An additional line of defence is desirable (e.g. assuming the server keeps its

master secret in a tamper-resistant hardware token or smartcard, the attacker

cannot impersonate the server to any of its users even if the users’ passwords

are exposed).

Formal security definitions and proofs of security for ID-SPK signature schemes with

message recovery are beyond the scope of the thesis. These will be addressed in our

subsequent work on ID-SPKs.

6.5 The ID-SPK Protocols

In the previous sections, we learned that to exploit the advantages of using SPKs

in a password-based protocol, the keys must not contain any predictable structure,

such as that appearing in RSA or discrete logarithm-based systems. This section

presents three-party and two-party ID-SPK protocols which can solve this structural

issue in a clean and natural way. We assume that all the protocol participants have

agreed on some system parameters for the ID-SPK encryption and signature schemes

a priori.

Before we look at the ID-SPK protocols, it may be useful to classify some common

attacks on password-based protocols.

• On-line password guessing attacks: The attacker chooses a password from

his dictionary and tries to impersonate a user. He verifies the correctness of

his guess based on responses from a server. If the impersonation fails, the

attacker tries again using a different password from his dictionary. Note that

the attacker can also impersonate the server to the user by intercepting and

modifying a message originating from the server before forwarding it to the

user (assuming the server has used the user’s password in some way in creating

the message). He can verify his password guesses based on responses from the

user.

• Off-line password guessing attacks: The attacker records past communication

and makes a verifiable guess using a password from his dictionary. If the guess

152

6.5 The ID-SPK Protocols

fails, the attacker tries again with a different password until the correct pass-

word is found. No on-line participation of a server (or a user) is required and

the attacks take place without the knowledge of the actual protocol partici-

pants.

• Attacks exploiting exposed secrets: The attacker may occasionally have access

to sensitive information such as past session keys or a user’s password. This is

possible when the user’s machine or the server are compromised, or the user’s

password is revealed through a keystroke logger. It is a desirable security

property that exposure of past session keys will not lead to the exposure of

the user’s password and vice versa.

• Undetectable on-line password guessing attacks: The attacker mounts an on-

line guessing attack. However, a failed guess cannot be detected and logged

by the server (or the user). In other words, the protocol participants cannot

distinguish a genuine protocol message from a modified (malicious) message.

Security Model. We sketch here our definition of the security for a password-

based ID-SPK protocol, using an informal security model. In the model, there

is an adversary E, who is allowed to watch regular runs of the protocol between

a user, U ∈ U , where U is a set of protocol users, and a server S. E can actively

communicate with the user and the server in replay, impersonation, and man-in-the-

middle attacks. The adversary can prompt one of the parties to initiate new sessions.

In each session, E can see all the messages sent between U and S. Furthermore, he

can intercept the messages and modify or delete them. Also, E gets to see whether

S accepts the authentication or not. In addition, we allow the adversary to establish

as many “accounts” as he wishes with the server using his own chosen passwords.

He can then run arbitrarily many authentication sessions using these accounts to

obtain information for his attacks.

It is clear that if the user picks a password from his dictionary D, then the adversary

that attempts n active impersonation attacks (or on-line guessing attacks) over n

distinct sessions with the server can succeed with probability at least n/|D| by trying

a different password from D in each attempt.

153

6.5 The ID-SPK Protocols

Definition 1 (Informal) We say that the ID-SPK protocol is secure if all the

following conditions are satisfied.

1. No useful information about a session key is revealed to the adversary during

a successful protocol run and the exposure of past session keys does not leak

any information about the current session key.

2. The adversary cannot discover the correct user password after n active imper-

sonation attempts with probability significantly higher than n/|D|.

3. The protocol is resistant to off-line password guessing attacks.

4. The protocol is resistant to undetectable on-line password guessing attacks.

5. The exposure of the user’s past session keys will not lead to the exposure of the

user’s password and vice versa.

We remark that a formal security model and definition, such as those used in [17],

have not been employed in this thesis. This is mainly because the objectives of the

chapter are to explore new ways of using SPKs in the IBC setting and to study their

practical application to the TLS protocol. The above informal security model and

definition will be used instead in the following sections in describing three-party and

two-party ID-SPK protocols.

6.5.1 The Three-Party ID-SPK Protocol

In [85], Gong further optimised the original SPK protocol in [86] by reducing the

number of protocol messages to reduce the communication costs incurred by the

protocol. We further modify Gong’s optimised SPK protocol by building on the

example given in Section 6.4.3, as shown in Protocol 8.

154

6.5 The ID-SPK Protocols

Protocol 8 The Modified Gong SPK Protocol

(1). A → B : A, rA, Enc ˆPKA1
(A, STA)

(2). B → S : B, Enc ˆPKB1
(B, STB), A, rA, Enc ˆPKA1

(A, STA)
(3). S → B : Sig ˆSKB2

(KAB), Sig ˆSKA2
(KAB)

(4). B → A : Sig ˆSKA2
(KAB), MACKAB

(rA), rB

(5). A → B : MACKAB
(rB)

In Protocol 8, users A and B select their respective random strings STA and STB and

encrypt them with an ID-SPK. As before, ˆPKA1 = H1(A‖S‖PWA) and ˆPKB1 =

H1(B‖S‖PWB). The server recovers STA and STB, and computes private keys
ˆSKA and ˆSKB matching the ID-SPKs constructed from the random strings, where
ˆPKA2 = H1(S‖A‖PWA‖STA) and ˆPKB2 = H1(S‖B‖PWB‖STB). The private

keys are then used to sign a session key. We assume that an IBS scheme with

message recovery is used, so that the intended recipients are able to recover the

session key. These secret signatures also provide non-repudiation. Even though this

is rarely a requirement in protocols for authentication and key establishment, it

automatically provides the important data integrity and data origin authentication

services [31]. Note that MACKAB
(rA) and MACKAB

(rB) in messages (4) and (5) are

used by A and B, respectively, to prove to each other that they are indeed sharing

the same session key. This provides key confirmation.

To improve the performance of Protocol 8, Sig ˆSKA2
(KAB) and Sig ˆSKB2

(KAB) in

message (3) can be replaced with {KAB}KA
and {KAB}KB

, respectively, where

KA = F (STA) and KB = F (STB), with F being a key derivation function. It is

worth noting that KA and KB must not be derived from user passwords because

this would allow the attacker to mount an off-line password guessing attack. The

correctness of a candidate password could be verified by comparing MACKAB
(rA)

from message (4) with MACK′
AB

(rA), where K ′
AB is obtained using the guessed

password.

Security Analysis. Protocol 8 shows that users A and B communicate with

S using secret identifiers IDA = A‖S‖PWA and IDB = B‖S‖PWB, respectively.

These identifiers involve the users’ passwords. Since S is the only party who has

knowledge of PWA and PWB apart from A and B, the users should receive the

155

6.5 The ID-SPK Protocols

same session key created by the server provided the correct private keys are used

to transport the session key. If A and B can successfully recover KAB from their

respective received secret signatures, they can be assured of the authenticity of the

server.

It is clear that requirement 1 of Definition 1 can be satisfied if the session key is

randomly generated by the server. Moreover, the session key cannot be computed

directly by the adversary E.

By observing a protocol run, E can gather information such as Enc ˆPKA1
(A, STA),

Enc ˆPKB1
(B, STB), Sig ˆSKA2

(KAB) and Sig ˆSKB2
(KAB). However, since we assume

that the ID-SPK encryption scheme used in this protocol is IND-ID-CCA secure, E

cannot gain any useful information about STA and STB from the encrypted random

strings Enc ˆPKA1
(A, STA) and Enc ˆPKB1

(B, STB) without knowledge of the master

secret held by the server. As for the session key transportation in the form of

secret signatures from the server to the users, E can choose his own verification keys

in an attempt to recover the session key. However, there seems to be no efficient

way for E to predict the correct ID-SPK if the ID-SPK signature scheme used in

the protocol offers appropriate security. In particular, we assume that E cannot

distinguish a secret signature from a randomly generated string if the identifier is

constructed using sufficient randomness. We also assume that the adversary cannot

forge valid secret signatures, impersonating the server to users. Apart from that,

it is very unlikely that E can impersonate a legitimate user by guessing the user’s

password. This is so since the adversary’s impersonation attack would be detected

immediately by the server if the user’s chosen random string cannot be recovered

successfully from message (2). Note that the number of impersonation attempts can

be kept acceptably small by using mechanisms that can log and control the number

of failed authentication attempts. A brute force attack on message (3) or (4) to

deduce the session key can be easily thwarted by using random strings STA and

STB with entropy significantly larger than the password space of D. Also, so long

as STA and STB are fresh and randomly generated for each protocol run, E would

not be able to mount a replay attack. It is thus conjectured that requirement 2 is

satisfied.

When E uses a password PW ′
A ∈ D to mount an off-line password guessing attack

156

6.5 The ID-SPK Protocols

on a recorded Enc ˆPKA1
(A, STA), there is no way for the adversary to verify the

correctness of ˆPK ′
A1 = H1(A‖S‖PW ′

A) if the ID-SPK encryption is randomised

and IND-ID-CPA secure. If E selects PW ′
A ∈ D and ST ′A at random, computes

ˆPK ′
A2 = H1(S‖A‖PW ′

A‖ST ′A), and then attempts to verify Sig ˆSKA2
(KAB), his

check will almost certainly fail since the entropy of STA is much larger than the

entropy of PWA. Thus this form of off-line guessing attack will not succeed and

therefore, Protocol 8 also satisfies requirement 3.

If E has a valid account with S, he may possibly mount an insider attack by im-

personating A to S, pretending to be wanting to establish a session key KAE with

himself. In the attack, E initiates the protocol by computing Enc ˆPK′
A1

(A, ST ′A)

with a guessed password PW ′
A, and hence ˆPK ′

A1 = H1(A‖S‖PW ′
A). However, once

this message has reached S, the server should get an error message when decrypt-

ing Enc ˆPK′
A1

(A, ST ′A) using the decryption key matching ˆPK ′
A1. Therefore it is

clear that the protocol can detect on-line guessing attacks and thus requirement 4

is satisfied.

On certain rare occasions, E may have access to A’s or B’s machine and thus

the past session keys shared between them are exposed. However, since E has no

knowledge of the master secret of S and the matching private component of ˆPKA2,

E still cannot determine PWA even though he can mount a brute-force attack on
ˆPKA2. On the other hand, if for some reason, E has the correct password for A,

he may attempt to find the value of STA given A’s password and the ciphertext

Enc ˆPKA1
(A, STA). Since the encryption scheme is IND-ID-CCA secure, E only has

a negligible success probability to discover the correct STA. Also, since the value

of the verification key for Sig ˆSKA2
(KAB) depends on the secret value STA, E can

only recover the session key with negligible probability and forward secrecy of the

protocol is preserved. Hence, requirement 5 is also satisfied and we conclude that

Protocol 8 is a secure ID-SPK assuming that the ID-SPK encryption and signature

schemes are appropriately secure.

Nevertheless, it is worth noting that if the server’s master secret is compromised, the

adversary can deduce the users’ passwords without much difficulty. For instance,

for each candidate password PW ′
A, E can extract the private key matching the

identifier ID′A = A‖S‖PW ′
A and use it to attempt to decrypt Enc ˆPKA1

(A, STA)

157

6.5 The ID-SPK Protocols

from message (1), and check if the decryption unveils A’s identity. Hence, it is of

the utmost importance that the server’s master secret is kept private, for example by

using a strong protective mechanism such as storing it in a tamper-resistant device.

6.5.2 The Two-Party ID-SPK Protocol

We now present a Diffie-Hellman type two-party ID-SPK protocol. Our protocol is

adapted from [1, 17] which make use of the encrypted Diffie-Hellman ephemeral key

exchange technique between two parties. We apply the identity-based techniques

that we introduced in Section 6.4 to obtain Protocol 9, as shown below.

Protocol 9 The Diffie-Hellman ID-SPK Protocol

(1). A → S : A, Enc ˆPKA1
(aP)

(2). S → A : S, Sig ˆSKA2
(xP)

In Protocol 9, the user randomly selects a ∈ Z∗q and computes aP , where P ∈ G1

is part of the system parameters. A then encrypts the Diffie-Hellman component

with ˆPKA1 = H1(A‖S‖PWA) and sends message (1) to S. The server extracts the

matching private key ˆSKA1 with its master secret to recover aP . Subsequently,

S picks a random number x ∈ Z∗q and calculates xP . The server then extracts

another private key which is associated with ˆPKA2 = H1(S‖A‖PWA‖aP), produces

Sig ˆSKA2
(xP), and transmits it to A. After receiving message (2), the user retrieves

xP with ˆPKA2. Both the user and the server calculate a session key as KAS =

F (A‖S‖PWA‖aP‖xP‖axP), where F is a key derivation function. Note that key

confirmation can be provided by adding a third message from A to S, in which

A provides a MAC computed on all the protocol messages using the session key

(derived using a different key derivation function to F).

Security Analysis. As with Protocol 8, user A uses an ID-SPK, but in this case

to transport a Diffie-Hellman ephemeral key aP to the server. It is worth noting

that message (1) can be replayed but this is not an issue because the purpose of the

protocol is to authenticate the session key. If the adversary E has captured message

158

6.5 The ID-SPK Protocols

(1) and replays it, he will not gain any information about the session key, unless he

has access to a and to xP in message (2). Also, we note that since only S other

than A has access to PWA, S is authenticated to A when A successfully recovers xP

(recall that an ID-SPK signature scheme provides a message integrity check) using
ˆPKA2 = H1(S‖A‖PWA‖aP).

Clearly, requirement 1 of Definition 1 can be satisfied if the ephemeral Diffie-Hellman

components from A and S are randomly generated and information used to compute

the session key including a, aP, x, xP, and PWA cannot be computed directly by E.

E has access to Enc ˆPKA1
(aP) and Sig ˆSKA2

(xP) through watching a protocol run

between A and S. However, since we assume that the ID-SPK encryption scheme

used in this protocol is IND-ID-CCA secure, E cannot obtain any useful information

about aP from Enc ˆPKA1
(aP) without knowledge of the master secret held by the

server. Also, we assume that the ID-SPK signature scheme used in the protocol

produces secret signatures Sig ˆSKA2
(xP) that are indistinguishable from random

strings. Hence it is hard for E to deduce any information about the Diffie-Hellman

component chosen by the server. Apart from that, as we have discussed when

analysing Protocol 8, it appears unlikely that E will successfully impersonate A in n

attempts with probability significantly higher than n/|D| or mount a replay attack,

provided aP and xP are fresh and their entropy is significantly higher than the

entropy of D. Also, the use of an incorrect password in generating ˆPKA1 can be

easily detected by the server when the server uses the wrong matching private key

to recover aP . It is thus conjectured that requirements 2, 3 and 4 are satisfied.

It is possible that E may have access to A’s machine and recover the past session

keys used by A. In that case, despite the fact that E knows K ′
AS , he must be able

to break the key derivation function F in order to deduce A’s password. On the

other hand, if for some reason A’s password is revealed to E, E may attempt to

find the value of aP given A’s password and the ciphertext Enc ˆPKA1
(aP). Since the

encryption scheme is IND-ID-CCA secure, E only has a negligible success probability

to find the correct aP . Also, since the value of the verification key for Sig ˆSKA2
(xP)

depends on the secret value aP , E can only recover the session key with negligible

probability. This is related to the forward secrecy of protocols discussed in [1, 17].

Therefore, requirement 5 is also satisfied. We note that in addition to having met

159

6.6 Integrating ID-SPKs with TLS

this requirement, even if E knows aP and xP , he has to solve the intractable CDH

problem in order to calculate axP and hence the session key. We conclude that

Protocol 9 is a secure ID-SPK protocol.

As with the security of Protocol 8, it is essential to have the server’s master secret

adequately protected to ensure that the aforementioned security conditions hold.

6.6 Integrating ID-SPKs with TLS

Steiner et al. [168] first proposed the integration of password-based Diffie-Hellman

encrypted key exchange with the TLS handshake protocol (DH-EKE/TLS). Here we

propose a server-authenticated, TLS-compatible ID-SPK protocol (ID-SPK/TLS)

by building on the ideas developed in the previous sections.

Protocol 10 The ID-SPK/TLS Protocol

(1) A → S : ClientHello = nA, session id, cipher suite
(2) S → A : ServerHello = nS, session id, cipher suite

ServerKeyExchange = {STA}PWA

ServerHelloDone
(3) A → S : ClientKeyExchange = Enc ˆPKA

(pre master secret)
ClientFinished

(4) S → A : ServerFinished

The description of Protocol 10 and comparison with the standard TLS handshake

protocol are as follows.

(1) As with the current TLS specification [50], Protocol 10 begins with A sending

S a ClientHello message. The message contains a fresh nonce, a session iden-

tifier and a cipher specification. In the standard TLS protocol, session_id

contains a value which identifies a previously established session between A

and S some or all of whose security parameters A wishes to re-use. Otherwise

it is an empty field. In Protocol 10, we envisage that if there is no session

identifier to be re-used or resumed, then session_id would carry the identity

160

6.6 Integrating ID-SPKs with TLS

of A. Meanwhile, cipher_suite contains a cipher specification extended from

TLS version 1.0 to handle the ID-SPK encryption and signature schemes. For

example, TLS_ID_SPK_WITH_DES_CBC_SHA would define an ID-SPK-supported

cipher specification that uses DES-CBC and SHA as the symmetric encryption

algorithm and hash function, respectively.

(2) S responds with a ServerHello message which contains an independent nonce

and a session identifier whose value depends on the client’s input. For instance,

if session_id = A, S will create a new session identifier. Otherwise, S will

search its local cache to check if there is a session identifier which matches the

value submitted by A and decide whether or not to resume the session. S then

generates a random string STA that will be used by A to communicate a pre-

master secret. String STA is encrypted using DES-CBC with A’s password. As

in Section 6.4.2, care must be taken to avoid introduction of redundancy that

would enable off-line guessing attacks. The encrypted random string is sent to

A in ServerKeyExchange. The ServerHelloDone message is then transmitted

to indicate the end of step (2).

It is worth noting that if we replace {STA}PWA
in the ServerKeyExchange

message with Sig ˆSKA
(STA), the protocol will be insecure. For let the correct

verification key for Sig ˆSKA
(STA) be ˆPKA = H1(A‖S‖PWA). At first glance,

it may seem that the ServerKeyExchange message would achieve its intended

purpose in Protocol 10, i.e. securely transporting a random string to A. How-

ever, the signature integrity check in an IBS scheme with message recovery

can be used to mount a simple off-line password guessing attack, as described

in Section 6.4.3.

(3) A uses her password to recover STA. A then selects a random pre-master

secret and encrypts it using an ID-SPK encryption scheme with ˆPKA =

H1(A‖S‖PWA‖STA). It appears that the attacker could not learn any in-

formation about PWA by mounting an off-line password guessing attack on

a recorded Enc ˆPKA
(pre master secret), since the ID-SPK encryption is as-

sumed to be IND-ID-CPA secure (as discussed in the security analysis of Pro-

tocol 8 in Section 6.5.1). For the same reason, the attacker only has a negligible

success probability to discover the correct pre-master secret chosen by A even

if PWA is revealed.

A transmits the encrypted pre-master key to S using the ClientKeyExchange

161

6.6 Integrating ID-SPKs with TLS

message. Note that A still cannot authenticate S (and its system parameters)

at this stage because A has only decrypted {STA}PWA
and used the recovered

STA to perform the ID-SPK encryption. However, S can authenticate A when

A completes step (3) as the ClientFinished message contains a verification

value:

PRF(master_secret, “client finished”, h_messages_1, h_messages_2),

where PRF is a pseudo-random function, and

master_secret = PRF(pre_master_secret, “master secret”, nA, nS).

Here, h_messages_1 and h_messages_2 represent hash values of all handshake

messages up to but not including this message, using different hash functions.

If A has used the correct password in deriving the key ˆPKA used to encrypt

the pre-master secret and S has retrieved this value, then the verification value

computed by S matches the value sent by A in ClientFinished, and thus A

is authenticated.

(4) S calculates a verification value as above with “server finished” replacing

“client finished” and transmits it to A in ServerFinished. A checks the

verification value received from S. If it was correctly calculated, only now

has S been authenticated by A, since only S could have derived the appropri-

ate decryption key using the shared password PWA and its master secret to

retrieve the correct pre-master secret.

Subsequently, master_secret will be used to derive further keys for protecting

application data between A and S.

As with Protocols 8 and 9, Protocol 10 also achieves forward secrecy. The exposure

of the user’s long-term credential, i.e. password, does not compromise the user’s past

session keys since the encryption scheme used is IND-ID-CPA secure. The master

secret of the server must not be compromised in order for this condition to hold.

Discussion. In [168], the authors claimed that five protocol flows are the best pos-

sible design to prevent dictionary attacks in the DH-EKE/TLS protocol. Also, swap-

ping the order of ClientFinished and ServerFinished was necessary. Our Proto-

col 10 shows that no structural changes are required but only minimal alterations

162

6.7 Application in MyProxy

to the contents of the standard TLS protocol messages: (i) inclusion of the client’s

identity in session_id; and (ii) replacement of a signed temporary RSA or a Diffie-

Hellman ephemeral key with an encrypted random string in ServerKeyExchange.

These modifications only require small adjustments to data fields of the current TLS

protocol specification. Hence, the advantages that changes (i) and (ii) could bring

seem to outweigh any implementation issues that they may cause.

One limitation of our proposed protocol is the need for pre-distribution of the server’s

system parameters. Otherwise, a man-in-the-middle attack similar to Patel’s attack

on Protocol 7 is possible. In this attack, the attacker can impersonate S to A by

inserting his own set of system parameters and substituting {STA}PWA
with a ran-

dom string RA. A would then use her password to recover a value ST ′A from RA.

When A replies with his chosen pre-master secret encrypted under the identifier

ID′A = A‖S‖PWA‖ST ′A, for each candidate password PW ′
A, the attacker now de-

crypts RA using PW ′
A to obtain a value ST ′A, and then uses ST ′A to derive a private

key corresponding to the identifier ID′A = A‖S‖PW ′
A‖ST ′A. Subsequently, the server

recovers a pre-master secret and computes a ClientFinished value. The guessed

password can then be verified by comparing the ClientFinished value that S com-

puted with the ClientFinished value that A sent to S. If they match, then the

guessed password is a correct one.

6.7 Application in MyProxy

It is not uncommon that many users within the grid community fail to take the neces-

sary precautions to protect their machines such as installing the latest vulnerability

patches and updating the virus definition lists on their machines. This may lead

to partial or complete control of the machines by a remote attacker who exploits

vulnerabilities found on the machines. Even if the users do care about patching

vulnerabilities, it may not be difficult for the attacker to install trojan horses on

the users’ computers. This may well explain why many grid implementations have

incorporated the MyProxy system to securely store and protect users’ long-term

credentials.

Our ID-SPK/TLS protocol can fit nicely into our IKIG proposal since all the required

163

6.8 Summary

identity-based cryptographic primitives will already be in place. A user can access

the MyProxy server to retrieve her long-term credential by using a password-based

TLS protocol. We note that there also exist trojans or keystroke loggers that can

track and steal user passwords. Luckily, there are also countermeasures against this

kind of attack such as the use of one-time passwords and virtual keyboards4.

From a more general perspective, our ID-SPK/TLS protocol seems to be a good can-

didate for a password-based, authenticated key agreement protocol used in identity-

based cryptographic schemes for delivering private keys. The protocol aligns nicely

with the certificate-free property of the schemes, unlike the common proposal of us-

ing the certificate-based TLS protocol for private key distribution, such as in [164].

6.8 Summary

We studied the history of secret public key protocols and discussed some known

problems with these protocols. We explored some interesting properties of identity-

based cryptography which form the basis of our proposed identity-based secret public

key protocols. These properties also allow us to convert a conventional identity-based

encryption scheme and a standard identity-based signature scheme (with message

recovery) into their secret public key equivalents.

We presented three-party and two-party identity-based secret public key protocols

for key exchange. Our heuristic security analyses show that the protocols appear

to be secure against off-line password guessing attacks and undetectable on-line

password guessing attacks, and provide forward secrecy. Then we combined the

new properties from identity-based secret public keys and the techniques used in

constructing the identity-based secret public key protocols, and showed that secret

public keys can support the use of passwords in the TLS handshake protocol in a

very natural way.

4A virtual keyboard is one of the latest technologies used to combat stealing of passwords through
keystroke loggers. It is a keyboard displayed as a pop-up window on the user’s desktop. The user
must use his mouse to input his password. The order of the characters on the virtual keyboard is
normally unpredictable.

164

Chapter 7

Conclusions

Contents

7.1 Concluding Remarks . 165
7.2 Suggestions for Future Work 168

This chapter summarises the thesis and gives some concluding remarks which reflect

the problems that we have studied and the results that we have achieved. We also

give suggestions for future work in this area.

7.1 Concluding Remarks

The development of grid computing and identity-based cryptography are amongst

today’s most important technical innovations in the field of computer science and

cryptology. As we have described in Chapter 2, security issues in grid applications

are numerous due to complex grid properties such as heterogeneity, scalability and

adaptability. One of the unique security requirements for grid applications is the

use of short-term or proxy credentials to achieve single sign-on, delegation and other

security services. These are made possible through the combined use of standard

X.509 and proxy certificates, supported by PKI.

In this thesis, we studied the application of some identity-based cryptographic

schemes presented in Chapter 3, in designing security infrastructures for grid ap-

plications. The main focus has been on simplifying current PKI-based security

architectures which make extensive use of certificates for supporting grid security

services. We addressed issues related to certificate and public key management, such

165

7.1 Concluding Remarks

as certification and verification of public keys, and distribution of certificates, which

cause extra overheads to and potentially limit the scalability of grid applications. It

is natural to consider the application of IBC to grid security because of its attractive

properties, such as being certificate-free and using small key sizes, which may well

match the requirements of grid computing. The properties of IBC, in turn, are likely

to result in a more lightweight security architecture than the certificate-based PKI

approach. We presented our findings that pertain to the use of IBC for constructing

IKIG in Chapter 4. Our results show that even though the PKI-based GSI is work-

able, it is still far from lightweight in terms of the network bandwidth requirement.

On the other hand, IKIG, which makes use of identity-based techniques, consumes

minimal communication bandwidth. The significant saving in message sizes in IKIG

augurs well for the on-going transition from transport-level to message-level security

based on web services. In addition, we observed that identity-based public keys can

be used in a very natural way to support various grid security services, such as mu-

tual authentication and delegation. However, one limitation is that IKIG inherits

the key escrow property that plagues identity-based cryptographic schemes. Despite

that, the drawback may not pose a major problem since the use of the MyProxy

system technically also introduces a key escrow facility. Both IKIG and GSI with

the MyProxy plug-in require strong trust relationships to be in place between users

and the relevant trusted third parties.

There may be circumstances where key escrow is not desirable for grid applications.

In Chapter 5, we proposed DKIG as a solution that not only removes key escrow,

but that also eliminates the requirement for short-term private key distribution

from a PKG/TA to its users. In our DKIG proposal, each user publishes a fixed

IBC parameter set through a standard X.509 certificate. The parameter set can be

used by the user to manage his proxy credentials by acting as his own PKG. This

simple technique appears to be cleaner than the use of threshold cryptographic or

secret sharing techniques that we highlighted in Chapter 5. Our research findings

show that, even though the communication costs in DKIG are higher than in IKIG,

they are still relatively low compared to those of the GSI. We have also shown that

the computational overhead in DKIG is increased as compared to IKIG, due to the

increased number of pairing computations. We foresee that further improvements

in the speed of pairing computations are likely to be made with the discovery of

new algorithmic techniques. This is especially so, considering that pairing-based

166

7.1 Concluding Remarks

cryptography is still at a relatively young age. On the other hand, we remark that

since certificates are used for users’ long-term credentials in DKIG, identity-based

techniques are applicable only to the users’ proxy credentials. The benefits that the

identity-based techniques could offer are therefore limited to the user level.

In Chapter 6, we extended our study of the application aspects of IBC to secret

public keys. The concept of secret public keys has historically been employed in

password-based authentication protocols. However, the use of more conventional

secret public keys such as RSA and Diffie-Hellman keys can allow various number

theoretic attacks and this concept was thus thought to be unworkable. In this thesis,

we explored and introduced new properties of identity-based secret public keys. In

the IBC setting, a secret public key can be computed based on a random string.

This technique appears to offer a clean and natural way of removing any predictable

structure in the secret public key. By using identity-based techniques, we designed

a TLS-like identity-based secret public key protocol. This protocol allows passwords

to be tied directly to the establishment of secure TLS channels. Furthermore, our

protocol requires only relatively small changes to the message contents of the current

TLS handshake protocol, and is only based on the use of easy-to-remember user

passwords. These advantages seem to make our approach a sensible and practical

improvement over the design of the current authentication protocol that MyProxy

employs.

We have highlighted some of the fundamental issues in the PKI-based GSI. Some

identity-based solutions aimed at resolving these issues have been proposed. In

conclusion, we believe that a security infrastructure designed using identity-based

techniques has more advantages than disadvantages as compared to the PKI-based

GSI. Our identity-based approach offers more flexibility in terms of key usage and

management than the more conventional PKI approach. There are some useful

security features that seem to be provided only by identity-based cryptographic

schemes, for example, generation of public keys on-the-fly and binding of a policy

or password to a public key. More importantly, identity-based techniques offer a

more natural and clean way of delivering various grid security services. We expect

that the identity-based concepts and techniques presented in this thesis may well be

useful in other applications. These may include, for example, P2P systems, ad hoc

network environments, and distributed systems in which it is desirable to use and

167

7.2 Suggestions for Future Work

manage public keys in a lightweight, natural and flexible manner.

7.2 Suggestions for Future Work

At the time of writing, no implementation of an identity-based grid security archi-

tecture has been carried out either by grid or IBC research communities. This is

partly because the study of the application of IBC in grid security at the architec-

tural level is still an ongoing research avenue. This study is essential to understand

and answer various fundamental issues and questions in regards to the suitability

of IBC in grid applications, for example, could an identity-based security architec-

ture support the use of short-term keys in a better way than using the conventional

RSA-based PKI? In the medium-term, however, the development of prototypes that

implement our IKIG and DKIG proposals would seem to be a sensible and natural

follow-on. Nevertheless, constructing prototypes may not be straightforward and

could be time-consuming. This is so because it is believed that all the currently

available tools and mechanisms used to construct grid systems do not yet have the

capability of supporting IBC. As we have discussed in Sections 4.8.2 and 5.8, GSS-

API, OpenSSL, various web services security standards, and other grid-related tools

must be modified/extended to support the adoption of identity-based cryptographic

schemes. If prototypes of IKIG and DKIG can be developed successfully, actual

performance figures could be obtained by testing the prototypes. These would be

very useful in further assessing the efficiency and suitability of our IKIG and DKIG

proposals.

The concept of identity-based secret public keys appears to be new. In this thesis, we

focussed on investigating new properties possessed by identity-based secret public

keys and how these properties can be used to design password-based protocols. We

also explored the practical use of the concept, aligning with the theme of this thesis.

However, our proposed identity-based secret public key protocols require formal

security analyses to prove the security of the protocols. Before we can do that, we

must also develop security models and proofs for identity-based secret public key

encryption and signature schemes. It is not clear if this is a straightforward exercise

since these schemes have unusual properties compared to standard schemes. For

example, secret signatures produced by an identity-based secret public key signature

168

7.2 Suggestions for Future Work

scheme should not only provide authentication and non-repudiation, but also data

confidentiality. In summary, studying security models and proofs for identity-based

secret public key protocols and schemes seems to be a natural and important step to

further develop the concept of identity-based secret public keys. This may, in turn,

stimulate new research on the concept.

169

Bibliography

[1] M. Abdalla, O. Chevassut, and D. Pointcheval. One-time verifier-based en-

crypted key exchange. In S. Vaudenay, editor, Proceedings of the 8th Interna-

tional Workshop on Theory and Practice in Public Key Cryptography - PKC

2005, pages 47–64. Springer-Verlag LNCS 3386, 2005.

[2] M. Abdalla, P. Fouque, and D. Pointcheval. Password-based authenticated

key exchange in the three-party setting. In S. Vaudenay, editor, Proceedings of

the 8th International Workshop on Theory and Practice in Public Key Cryp-

tography - PKC 2005, pages 65–84. Springer-Verlag LNCS 3386, 2005.

[3] M. Abdalla and D. Pointcheval. Simple password-based encrypted key ex-

change protocols. In A. Menezes, editor, Proceedings of the RSA Conference:

Topics in Cryptology - the Cryptographers’ Track (CT-RSA 2005), pages 191–

208. Springer-Verlag LNCS 3376, 2005.

[4] M. Abe and T. Okamoto. A signature scheme with message recovery as secure

as discrete logarithm. In K. Lam, E. Okamoto, and C. Xing, editors, Advances

in Cryptology - Proceedings of ASIACRYPT 1999, pages 378–389. Springer-

Verlag LNCS 1716, 1999.

[5] S.S. Al-Riyami and K.G. Paterson. Certificateless public key cryptography. In

C.S. Laih, editor, Advances in Cryptology - Proceedings of ASIACRYPT 2003,

pages 452–473. Springer-Verlag LNCS 2894, 2003.

[6] S.S. Al-Riyami and K.G. Paterson. Tripartite authenticated key agreement

protocols from pairings. In K.G. Paterson, editor, Proceedings of the 9th

IMA International Conference on Cryptography and Coding, pages 332–359.

Springer-Verlag LNCS 2898, 2003.

170

BIBLIOGRAPHY

[7] J. Almond and D. Snelling. UNICORE: Uniform access to supercomputing

as an element of electronic commerce. Future Generation Computer Systems,

15(5-6):539–548, October 1999.

[8] J. Astalos, R. Cecchini, B. Coghlan, R. Cowles, U. Epting, T. Genovese,

J. Gomes, D. Groep, M. Gug, A. Hanushevsky, M. Helm, J. Jensen, C. Kanel-

lopoulos, D. Kelsey, R. Marco, I. Neilson, S. Nicoud, D. O’Callaghan, D. Ques-

nel, I. Schaeffner, L. Shamardin, D. Skow, M. Sova, A. Wäänänen, and P. Wol-

niewiczand W. Xing. International Grid CA interworking, peer review and

policy manangement through the European DataGrid Certification Authority

Coordination Group. In P.M.A. Sloot, A.G. Hoekstra, T. Priol, A. Reinefeld,

and M. Bubak, editors, Proceedings of the European Grid Conference (EGC

2005), pages 285–294. Springer-Verlag LNCS 3470, 2005.

[9] E. Barker, W. Barker, W. Burr, W. Polk, and Miles Smid, editors. Recomen-

dation for Key Management Part 1: General. NIST Special Publication 800-

57, August 2005. Available at http://csrc.nist.gov/publications/nistpubs/800-

57/SP800-57-Part1.pdf, last accessed in January 2006.

[10] P. S. L. M. Barreto, S. D. Galbraith, C. Ó h́Eigeartaigh, and M. Scott.

Efficient Pairing Computation on Supersingular Abelian Varieties. Cryp-

tology ePrint Archive, Report 2004/375, September 2005. Available at

http://eprint.iacr.org/2004/375.

[11] P.S.L.M. Barreto. The Pairing-Based Crypto Lounge. Available

at http://paginas.terra.com.br/informatica/paulobarreto/pblounge.html, last

accessed in November 2005.

[12] P.S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for

pairing-based cryptosystems. In M. Yung, editor, Advances in Cryptology -

Proceedings of CRYPTO 2002, pages 354–368. Springer-Verlag LNCS 2442,

2002.

[13] P.S.L.M. Barreto, B. Lynn, and M. Scott. Constructing elliptic curves with

prescribed embedding degrees. In S. Cimato, C. Galdi, and G. Persiano, edi-

tors, Proceedings of the 3rd International Conference on Security in Commu-

nication Networks (SCN 2002), pages 263–273. Springer-Verlag LNCS 2576,

2002.

171

BIBLIOGRAPHY

[14] P.S.L.M. Barreto, B. Lynn, and M. Scott. On the selection of pairing-friendly

groups. In M. Matsui and R. Zuccherato, editors, Proceedings of the 10th

International Workshop on Selected Areas in Cryptography(SAC 2003), pages

17–25. Springer-Verlag LNCS 3006, 2004.

[15] J. Basney, M. Humphrey, and V. Welch. The MyProxy online credential

repository. Journal of Software: Practice and Experience, 35(9):817–826, July

2005.

[16] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-

key encryption. In C. Boyd, editor, Advances in Cryptology - Proceedings of

ASIACRYPT 2001, pages 566–582. Springer-Verlag LNCS 2248, 2001.

[17] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange

secure against dictionary attacks. In B. Preneel, editor, Advances in Cryptology

- Proceedings of EUROCRYPT 2000, pages 139–155. Springer-Verlag LNCS

1807, 2000.

[18] M. Bellare and P. Rogaway. Optimal asymmetric encryption – how to encrypt

with RSA. In A.D. Santis, editor, Advances in Cryptology - Proceedings of

EUROCRYPT ’94, pages 92–111. Springer-Verlag LNCS 950, 1995.

[19] M. Bellare and P. Rogaway. The AuthA Protocol for Password-Based Authen-

ticated Key Exchange. Contribution to IEEE P1363, March 2000.

[20] M. Bellare and M. Yung. Certifying permutations. Journal of Cryptology,

9(1):149–166, 1996.

[21] S.M. Bellovin and M. Merritt. Encrypted key exchange: Password-based pro-

tocols secure against dictionary attacks. In Proceedings of the 1992 IEEE

Symposium on Security and Privacy, pages 72–84. IEEE Computer Society

Press, 1992.

[22] S.M. Bellovin and M. Merritt. Augmented encrypted key exchange: A

password-based protocol secure against dictionary attacks and password file

compromise. In Proceedings of the 1st ACM Computer and Communications

Security Conference, pages 244–250. ACM Press, 1993.

[23] I.F. Blake, G. Seroussi, and N.P. Smart, editors. Elliptic Curve Cryptography.

Cambridge University Press, LMS 265, Cambridge, 1999.

172

BIBLIOGRAPHY

[24] S. Blake-Wilson, G. Karlinger, T. Kobayashi, and Y. Wang. Using the elliptic

curve signature algorithm (ECDSA) for XML digital signatures. The Internet

Engineering Task Force (IETF), RFC 4050, April 2005.

[25] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing.

In J. Kilian, editor, Advances in Cryptology - Proceedings of CRYPTO 2001,

pages 213–229. Springer-Verlag LNCS 2139, 2001.

[26] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing.

SIAM Journal on Computing, 32(3):586–615, 2003.

[27] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably en-

crypted signatures from bilinear maps. In E. Biham, editor, Advances in Cryp-

tology - Proceedings of EUROCRYPT 2003, pages 416–432. Springer-Verlag

LNCS 2656, 2003.

[28] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.

In P. Gaudry and N. Gurel, editors, Advances in Cryptology - Proceedings of

ASIACRYPT 2001, pages 514–532. Springer-Verlag LNCS 2248, 2001.

[29] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.

Journal of Cryptology, 17(4):297–319, 2004.

[30] M.K. Boyarsky. Public-key cryptography and password protocols: The multi-

user case. In Proceedings of the 6th ACM Computer and Communications

Security Conference, pages 63–72. ACM Press, 1999.

[31] C. Boyd and A. Mathuria. Protocols for Authentication and Key Establish-

ment. Springer-Verlag, Berlin, 2003.

[32] X. Boyen. Multipurpose identity-based signcryption: A swiss army knife for

identity-based cryptography. In D. Boneh, editor, Advances in Cryptology -

Proceedings of CRYPTO 2003, pages 383–399. Springer-Verlag LNCS 2729,

2003.

[33] V. Boyko, P. MacKenzie, and S. Patel. Provably secure password authenticated

key exchange using Diffie-Hellman. In B. Preneel, editor, Advances in Cryp-

tology - Proceedings of EUROCRYPT 2000, pages 156–171. Springer-Verlag

LNCS 1807, 2000.

173

BIBLIOGRAPHY

[34] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, and F. Yergeau,editors.

eXtensible Markup Language Version 1.0 (Third Edition), February 2004.

Available at http://www.w3.org/TR/REC-xml/, last accessed in November

2005.

[35] E. Bresson, O. Chevassut, and D. Pointcheval. Security proofs for an efficient

password-based key exchange. In Proceedings of the 10th ACM Computer and

Communications Security Conference, pages 241–250. ACM Press, 2003.

[36] K. Brincat. On the use of RSA as a secret key cryptosystem. Designs, Codes,

and Cryptography, 22(3):317–329, 2001.

[37] S. Cantor, J. Kemp, R. Philpott, and E. Maler, editors. Assertions and Proto-

cols for the OASIS Security Assertion Markup Language(SAML) Version 2.0.

OASIS Standard 200503, March 2005.

[38] B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux. Password intercep-

tion in a SSL/TLS channel. In D. Boneh, editor, Advances in Cryptology -

Proceedings of CRYPTO 2003, pages 583–599. Springer-Verlag LNCS 2729,

2003.

[39] J.C. Cha and J.H. Cheon. An identity-based signature from Gap Diffie-

Hellman groups. In Y.G. Desmedt, editor, Proceedings of the 6th International

Workshop on Theory and Practice in Public Key Cryptography - PKC 2003,

pages 18–30. Springer-Verlag LNCS 2567, 2003.

[40] D. Chaum, E.v. Heijst, and B. Pfitzmann. Cryptographically strong unde-

niable signatures, unconditionally secure for the signer. In J. Feigenbaum,

editor, Advances in Cryptology - Proceedings of CRYPTO’91, pages 470–484.

Springer-Verlag LNCS 576, 1992.

[41] L. Chen, K. Harrison, A. Moss, D. Soldera, and N.P. Smart. Certification of

public keys within an identity based system. In A.H. Chan and V. Gligor,

editors, Proceedings of the 5th International Information Security Conference

(ISC2002), pages 322–333. Springer-Verlag LNCS 2433, 2002.

[42] L. Chen and C. Kudla. Identity-based authenticated key agreement protocols

from pairings. In Proceedings of 16th IEEE Computer Security Foundations

Workshop (CSFW’03), pages 219–233. IEEE Computer Society Press, 2003.

174

BIBLIOGRAPHY

[43] L. Chen, H.W. Lim, and W. Mao. User-friendly grid security architecture

and protocols. In Proceedings of the 13th International Workshop on Security

Protocols 2005, to appear.

[44] R. Chinnici, J. Moreau, A. Ryman, and S. Weerawarana, editors. Web Ser-

vices Description Language (WSDL) Version 2.0 Part 1: Core Language, May

2005. Available at http://www.w3.org/TR/2005/WD-wsdl20-20050510/, last

accessed in November 2005.

[45] K. Chiu, M. Govindaraju, and R. Bramley. Investigating the limits of SOAP

performance for scientific computing. In Proceedings of 11th IEEE Symposium

on High Performance Distributed Computing, pages 246–254. IEEE Computer

Society Press, 2002.

[46] D. Clark. Face-to-face with peer-to-peer networking. IEEE Computer,

34(1):18–21, January 2001.

[47] C. Cocks. An identity based encryption scheme based on quadratic residues.

In B. Honary, editor, Proceedings of the 8th IMA International Conference on

Cryptography and Coding, pages 360–363. Springer-Verlag LNCS 2260, 2001.

[48] C.R. Dalton. The NHS as a proving ground for cryptosystems. Information

Security Technical Report, 8(3):73–88, 2003.

[49] Y. Desmedt and J. Quisquater. Public-key systems based on the difficulty of

tampering. In A.M. Odlyzko, editor, Advances in Cryptology - Proceedings of

CRYPTO’86, pages 111–117. Springer-Verlag LNCS 263, 1987.

[50] T. Dierks and C. Allen. The TLS protocol version 1.0. The Internet Engi-

neering Task Force (IETF), RFC 2246, January 1999.

[51] W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Transac-

tions on Information Theory, 22(6):644–654, November 1976.

[52] Y. Ding and P. Horster. Undetectable on-line password guessing attacks. ACM

Operating Systems Review, 29(4):77–86, 1995.

[53] D. Eastlake, J.M. Reagle, and D. Solo. (Extensible Markup Language)

XML-Signature syntax and processing. The Internet Engineering Task Force

(IETF), RFC 3275, March 2002.

175

BIBLIOGRAPHY

[54] D. Eastlake and J.M. Reagle, editors. XML Encryption Syntax and Process-

ing, December 2002. Available at http://www.w3.org/TR/xmlenc-core/, last

accessed in November 2005.

[55] The Enabling Grids for E-SciencE Project. EGEE. Available at

http://public.eu-egee.org/, last accessed in November 2005.

[56] The European DataGrid Project. DataGrid. Available at http://eu-

datagrid.web.cern.ch/eu-datagrid/, last accessed in November 2005.

[57] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identi-

fication and signature problems. In A.M. Odlyzko, editor, Advances in Cryp-

tology - Proceedings of CRYPTO ’86, pages 186–194. Springer-Verlag LNCS

263, 1987.

[58] I. Foster. The Grid: A new infrastructure for 21st century science. Physics

Today, 55(2):42–47, February 2002.

[59] I. Foster. The Grid: Computing without bounds. Scientific American,

288(4):78–85, April 2003.

[60] I. Foster, J. Geisler, W. Nickless, W. Smith, and S. Tuecke. Software infras-

tructure for the I-WAY high performance distributed computing experiment.

In Proceedings of 5th IEEE Symposium on High Performance Distributed Com-

puting, pages 562–571. IEEE Computer Society Press, 1997.

[61] I. Foster and A. Iamnitchi. On death, taxes, and the convergence of Peer-to-

Peer and Grid computing. In F. Kaashoek and I. Stoica, editors, Proceedings

of 2nd International Workshop on Peer-to-Peer Systems (IPTPS’03), pages

118–128. Springer-Verlag LNCS 2735, 2003.

[62] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.

International Journal of Supercomputing Applications, 11(2):115–128, 1997.

[63] I. Foster and C. Kesselman. Computational grids. In I. Foster and C. Kessel-

man, editors, Chapter 2 of The Grid: Blueprint for a New Computing Infras-

tructure, pages 15–51, San Francisco, 1999. Morgan Kaufmann.

[64] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann, San Francisco, 1999.

176

BIBLIOGRAPHY

[65] I. Foster and C. Kesselman. The grid in a nutshell. In J. Weglarz, J. Nabrzyski,

J. Schopf, and M. Stroinski, editors, Chapter 1 of Grid Resource Management:

State of the Art and Future Trends, pages 3–13, Boston, 2003. Kluwer Aca-

demic.

[66] I. Foster and C. Kesselman. Concepts and architecture. In I. Foster and

C. Kesselman, editors, Chapter 4 of The Grid: Blueprint for a New Computing

Infrastructure, pages 37–63, San Francisco, 2004. Elsevier.

[67] I. Foster and C. Kesselman, editors. The Grid 2: Blueprint for a New Com-

puting Infrastructure. Elsevier, San Francisco, 2004.

[68] I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. The Physiology of the Grid:

An Open Grid Services Architecture for Distributed Systems Integration. Open

Grid Service Infrastructure Working Group, Global Grid Forum, June 2002.

[69] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture for

computational Grids. In Proceedings of the 5th ACM Computer and Commu-

nications Security Conference, pages 83–92. ACM Press, 1998.

[70] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling

scalable virtual organizations. International Journal of High Performance

Computing Applications, 15(3):200–222, 2001.

[71] I. Foster, C. Kesselman, and S. Tuecke. The open grid services architecture. In

I. Foster and C. Kesselman, editors, Chapter 17 of The Grid: Blueprint for a

New Computing Infrastructure, pages 215–257, San Francisco, 2004. Elsevier.

[72] A.O. Freier, P. Karlton, and P.C. Kocher. Internet Draft: The SSL Pro-

tocol Version 3.0. The Internet Engineering Task Force (IETF), November

1996 (expired). Available at http://wp.netscape.com/eng/ssl3/draft302.txt,

last accessed in November 2005.

[73] G. Frey, M. Müller, and H. Rück. The Tate pairing and the discrete logarithm

applied to elliptic curve cryptosystems. IEEE Transactions on Information

Theory, 45(5):1717–1719, July 1999.

[74] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric

encryption schemes. In M. Wiener, editor, Advances in Cryptology - Proceed-

ings of CRYPTO’99, pages 537–554. Springer-Verlag LNCS 1666, 1999.

177

BIBLIOGRAPHY

[75] S.D. Galbraith. Supersingular curves in cryptography. In C. Boyd, editor,

Advances in Cryptology - Proceedings of ASIACRYPT 2001, pages 495–513.

Springer-Verlag LNCS 2248, 2001.

[76] S.D. Galbraith. Pairings. In I.F. Blake, G. Seroussi, and N.P. Smart, edi-

tors, Chapter 9 of Advances in Elliptic Curve Cryptography, pages 183–213,

Cambridge, 2005. Cambridge University Press, LMS 317.

[77] S.D. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pair-

ing. In C. Fieker and D.R. Kohel, editors, Proceedings of the 5th Interna-

tional Symposium on Algorithmic Number Theory (ANTS-V), pages 324–337.

Springer-Verlag LNCS 2369, 2002.

[78] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Mancbek, and V.S. Sun-

deram. PVM: Parallel Virtual Machine - A User’s Guide and Tutorial for

Networked Parallel Computing. MIT Press, Cambridge, MA, 1994.

[79] C. Gentry. Certificate-based encryption and the certificate revocation problem.

In E. Biham, editor, Advances in Cryptology - Proceedings of EUROCRYPT

2003, pages 272–293. Springer-Verlag LNCS 2656, 2003.

[80] C. Gentry and A. Silverberg. Hierarchical ID-Based cryptography. In

Y. Zheng, editor, Advances in Cryptology - Proceedings of ASIACRYPT 2002,

pages 548–566. Springer-Verlag LNCS 2501, 2002.

[81] The Globus Alliance. Globus Toolkit. Available at

http://www.globus.org/toolkit/, last accessed in November 2005.

[82] The Globus Alliance. GT 4.0 Security Features. Available at

http://www.globus.org/toolkit/docs/4.0/security/WS AA Features.html,

last accessed in November 2005.

[83] The Globus Alliance. GT 4.0 WS GRAM. Available at

http://www.globus.org/toolkit/docs/4.0/execution/wsgram/, last accessed in

November 2005.

[84] The Globus Alliance. The WS-Resource Framework. Available at

http://www.globus.org/wsrf/, last accessed in November 2005.

178

BIBLIOGRAPHY

[85] L. Gong. Optimal authentication protocols resistant to password guessing

attacks. In Proceedings of 8th IEEE Computer Security Foundations Workshop

(CSFW’95), pages 24–29. IEEE Computer Society Press, 1995.

[86] L. Gong, T.M.A. Lomas, R.M. Needham, and J.H. Saltzer. Protecting poorly

chosen secrets from guessing attacks. IEEE Journal on Selected Areas in Com-

munications, 11(5):648–656, 1993.

[87] M. Govindaraju, A. Slominski, V. Choppella, R. Bramley, and D. Gannon.

Requirements for and evaluation of RMI protocols for scientific comput-

ing. In Proceedings of the 2000 ACM/IEEE Conference on Supercomputing

(SC2000),CD-ROM. ACM Press, November 2000.

[88] G. Graham, R. Cavanaugh, P. Couvares, A.D. Smet, and M. Livny. Distributed

data analysis - federated computing for high-energy physics. In I. Foster and

C. Kesselman, editors, Chapter 10 of The Grid: Blueprint for a New Comput-

ing Infrastructure, pages 135–145, San Francisco, 2004. Elsevier.

[89] GridCafé. Grid Projects in the World. Available at

http://gridcafe.web.cern.ch/gridcafe/gridprojects/grid-tech.html, last ac-

cessed in November 2005.

[90] GRIDtoday. Revolutionary Grid Offers Glimpse into Future, September 2003.

Available at http://www.gridtoday.com/03/0929/102012.html, last accessed

in November 2005.

[91] A.S. Grimshaw, W.A. Wulf, and the Legion Team. The Legion vision of

a worldwide virtual computer. Communications of the ACM, 40(1):39–45,

January 1997.

[92] M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, and H.F. Nielsen. Sim-

ple Object Access Protocol (SOAP) Version 1.2, June 2003. Available at

http://www.w3.org/TR/soap/, last accessed in November 2005.

[93] M. Gudgin and A. Nadalin, editors. Web Services Secure Conversation

Language (WS-SecureConversation) Version1.1, February 2005. Available

at http://www-106.ibm.com/developerworks/library/specification/ws-secon/,

last accessed in November 2005.

179

BIBLIOGRAPHY

[94] M. Gudgin and A. Nadalin, editors. Web Services Trust Language

(WS-Trust) Version 1.1, February 2005. Available at http://www-

106.ibm.com/developerworks/library/specification/ws-trust/, last accessed in

November 2005.

[95] L.C. Guillou and J-J. Quisquater. A “paradoxical” identity-based signature

scheme resulting from zero-knowledge. In S. Goldwasser, editor, Advances

in Cryptology - Proceedings of CRYPTO ’88, pages 216–231. Springer-Verlag

LNCS 403, 1990.

[96] S. Halevi and H. Krawczyk. Public-key cryptography and password protocols.

ACM Transactions on Information and System Security, 2(3):230–268, August

1999.

[97] P. Hallam-Baker and S.H. Mysore, editors. XML Key Management Specifica-

tion (XKMS 2.0), June 2005. Available at http://www.w3.org/TR/xkms2/,

last accessed in November 2005.

[98] M.E. Hellman and S.C. Pohlig. Exponentiation Cryptographic Apparatus and

Method. U.S. Patent #4,424,414, 3 January 1984 (expired).

[99] F. Hess. Efficient identity based signature schemes based on pairings. In K. Ny-

berg and H. Heys, editors, Proceedings of the 9th International Workshop on

Selected Areas in Cryptography (SAC 2002), pages 310–324. Springer-Verlag

LNCS 2593, 2003.

[100] J. Horwitz and B. Lynn. Towards hierarchical identity-based encryption. In

L.R. Knudsen, editor, Advances in Cryptology - Proceedings of EUROCRYPT

2002, pages 466–481. Springer-Verlag LNCS 2332, 2002.

[101] R. Housley, W. Polk, W. Ford, and D. Solo. Internet X.509 public key infras-

tructure certificate and certificate revocation list (CRL) profile. The Internet

Engineering Task Force (IETF), RFC 3280, April 2002.

[102] X. Huang, L. Chen, L. Huang, and M. Li. An identity-based grid security

infrastructure model. In R.H. Deng, F. Bao, H. Pang, and J. Zhou, edi-

tors, Proceedings of the 1st International Conference on Information Security

Practice and Experience (ISPEC 2005), pages 314–325. Springer-Verlag LNCS

3439, 2005.

180

BIBLIOGRAPHY

[103] M. Humphrey and M.R. Thompson. Security implications of typical grid com-

puting usage scenarios. In Proceedings of the 10th IEEE International Sym-

posium on High Performance Distributed Computing (HPDC-10 2001), pages

95–103. IEEE Computer Society Press, August 2001.

[104] M. Humphrey, M.R. Thompson, and K.R. Jackson. Security for grids. Pro-

ceedings of the IEEE, 93(3):644–652, 2005.

[105] D.P. Jablon. Strong password-only authenticated key exchange. ACM SIG-

COMM Computer Communication Review, 26(5):5–26, October 1996.

[106] A. Joux. A one round protocol for tripartite Diffie-Hellman. In W. Bosma,

editor, Proceedings of 4th Algorithmic Number Theory Symposium (ANTS-

IV), pages 385–394. Springer-Verlag LNCS 1838, 2000.

[107] B. Kaliski. PKCS #10: Certification request syntax version 1.5. The Internet

Engineering Task Force (IETF), RFC 2314, March 1998.

[108] A. Khalili, J. Katz, and W.A. Arbaugh. Toward secure key distribution in truly

ad-hoc networks. In Proceedings of the 2003 Symposium on Applications and

the Internet Workshops (SAINT’03), pages 342–346. IEEE Computer Society

Press, 2003.

[109] O. Kornievskaia, P. Honeyman, B. Doster, and K. Coffman. Kerberized cre-

dential translation: A solution to web access control. In Proceedings of 10th

USENIX Security Symposium, pages 235–250, August 2001.

[110] H. Krawczyk. The order of encryption and authentication for protecting com-

munications (or: How secure is SSL?). In J. Kilian, editor, Advances in Cryp-

tology - Proceedings of CRYPTO 2001, pages 310–331. Springer-Verlag LNCS

2139, 2001.

[111] LHC Computing Grid Project. LHC Computing Grid: Distributed

Production Environment for Physics Data Processing. Available at

http://lcg.web.cern.ch/LCG/, last accessed in November 2005.

[112] B. Libert and J-J. Quisquater. New Identity Based Signcryption Schemes

from Pairings. Cryptology ePrint Archive, Report 2003/023, February 2003.

Available at http://eprint.iacr.org/2003/023.

181

BIBLIOGRAPHY

[113] B. Libert and J-J. Quisquater. Efficient signcryption with key privacy from

gap Diffie-Hellman groups. In F. Bao, R.H. Deng, and J. Zhou, editors, Pro-

ceedings of the 7th International Workshop on Theory and Practice in Public

Key Cryptography - PKC 2004, pages 187–200. Springer-Verlag LNCS 2947,

2004.

[114] J.C.R. Licklider and R.W. Taylor. The computer as a communication

device. Science and Technology, April 1968. Reprint is available at

http://memex.org/licklider.pdf, last accessed in November 2005.

[115] H.W. Lim and K.G. Paterson. Identity-based cryptography for grid security.

In H. Stockinger, R. Buyya, and R. Perrott, editors, Proceedings of the 1st

IEEE International Conference on e-Science and Grid Computing (e-Science

2005), pages 395–404. IEEE Computer Society Press, 2005.

[116] H.W. Lim and K.G. Paterson. Secret public key protocols revisited. In Pro-

ceedings of the 14th International Workshop on Security Protocols 2006, to

appear.

[117] H.W. Lim and M.J.B. Robshaw. On identity-based cryptography and Grid

computing. In M. Bubak, G.D.v. Albada, P.M.A. Sloot, and J.J. Dongarra,

editors, Proceedings of the 4th International Conference on Computational

Science (ICCS 2004), pages 474–477. Springer-Verlag LNCS 3036, 2004.

[118] H.W. Lim and M.J.B. Robshaw. A dynamic key infrastructure for Grid. In

P.M.A. Sloot, A.G. Hoekstra, T. Priol, A. Reinefeld, and M. Bubak, editors,

Proceedings of the European Grid Conference (EGC 2005), pages 255–264.

Springer-Verlag LNCS 3470, 2005.

[119] J. Linn. Generic security service application program interface version 2, up-

date1. The Internet Engineering Task Force (IETF), RFC 2743, January 2000.

[120] T.M.A. Lomas, L. Gong, J.H. Saltzer, and R.M. Needham. Reducing risks

from poorly chosen keys. ACM Operating Systems Review, 23(5):14–18, 1989.

[121] A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential aggre-

gate signatures from trapdoor permutations. In C. Cachin and J. Camenisch,

editors, Advances in Cryptology - Proceedings of EUROCRYPT 2004, pages

74–90. Springer-Verlag LNCS 3027, 2004.

182

BIBLIOGRAPHY

[122] J. Malone-Lee. Identity-Based Signcryption. Cryptology ePrint Archive, Re-

port 2002/098, July 2002. Available at http://eprint.iacr.org/2002/098.

[123] W. Mao. An Identity-based Non-interactive Authentication Framework for

Computational Grids. HP Lab, Technical Report HPL-2004-96, June 2004.

Available at http://www.hpl.hp.com/techreports/2004/HPL-2004-96.pdf.

[124] U.M. Maurer and Y. Yacobi. A non-interactive public-key distribution system.

Designs, Codes, and Cryptography, 9(3):305–316, 1996.

[125] N. McCullagh. Securing e-mail with identity-based encryption. IT Profes-

sional, 7(3):61–64, May/June 2005.

[126] S. Meder, V. Welch, S. Tuecke, and D. Engert. GSS-API Extensions.

Global Grid Forum (GGF) Grid Security Infrastructure Working Group, June

2004. Available at http://www.ggf.org/documents/GFD.24.pdf, last accessed

in November 2005.

[127] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied

Cryptography. CRC Press, Florida, 1997.

[128] P.C. Moore, W.R. Johnson, and R.J. Detry. Adapting Globus and Kerberos

for a secure ASCI Grid. In Proceedings of the 2001 ACM/IEEE Conference on

Supercomputing (SC2001), CD-ROM, page 21. ACM Press, November 2001.

[129] T. Moses, editor. eXtensible Access Control Markup Language (XACML) 2.0.

OASIS Standard 200502, February 2005.

[130] MPI Forum. MPI: A message-passing interface standard. International Jour-

nal of Supercomputer Applications, 8(3-4):165–414, 1994.

[131] MPI Forum. MPI2: A message-passing interface standard. International Jour-

nal of High Performance Computing Applications, 12(1-2):1–299, 1998.

[132] A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo, editors. Web Services

Security: SOAP Message Security 1.0 (WS-Security 2004). OASIS Standard

200401, March 2004.

[133] The National e-Science Center. National e-Science. Available at

http://www.nesc.ac.uk/, last accessed in November 2005.

183

BIBLIOGRAPHY

[134] R.M. Needham and M.D. Schroeder. Using encryption for authentication in

large networks of computers. Communications of the ACM, 21(12):993–999,

December 1978.

[135] B.C. Neuman. Proxy-based authorization and accounting for distributed sys-

tems. In Proceedings of the 13th International Conference on Distributed Com-

puting Systems, pages 283–291, 1993.

[136] B.C. Neuman and T. Ts’o. Kerberos: An authentication service for computer

networks. IEEE Communications, 32(9):33–38, September 1994.

[137] J. Novotny, S. Tuecke, and V. Welch. An online credential repository for the

Grid: MyProxy. In Proceedings of the 10th IEEE International Symposium on

High Performance Distributed Computing (HPDC-10 2001), pages 104 –111.

IEEE Computer Society Press, August 2001.

[138] Object Management Group. CORBA/IIOP Specification. Available at

http://www.omg.org/technology/documents/formal/corba iiop.htm, last ac-

cessed in November 2005.

[139] E. Okamoto. Key distribution systems based on identification information. In

C. Pomerance, editor, Advances in Cryptology - Proceedings of CRYPTO’87,

pages 194–202. Springer-Verlag LNCS 293, 1988.

[140] The OpenSSL Project. OpenSSL: The Open Source Toolkit for SSL/TLS,

2005. Available at http://www.openssl.org/, last accessed in November 2005.

[141] S. Patel. Number theoretic attacks on secure password schemes. In Proceedings

of the 1997 IEEE Symposium on Security and Privacy, pages 236–247. IEEE

Computer Society Press, 1997.

[142] K.G. Paterson. ID-based signatures from pairings on elliptic curves. Electron-

ics Letters, 38(18):1025–1026, 2002.

[143] K.G. Paterson. Cryptography from pairings. In I.F. Blake, G. Seroussi, and

N.P. Smart, editors, Chapter 10 of Advances in Elliptic Curve Cryptography,

pages 215–251, Cambridge, 2005. Cambridge University Press, LMS 317.

[144] K.G. Paterson and G. Price. A comparison between traditional public key in-

frastructures and identity-based cryptography. Information Security Technical

Report, 8(3):57–72, 2003.

184

BIBLIOGRAPHY

[145] L.C. Paulson. Inductive analysis of the Internet protocol TLS. ACM Trans-

actions on Information and System Security, 2(3):332–351, August 1999.

[146] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. A commu-

nity authorization service for group collaboration. In Proceedings of the 3rd

IEEE International Workshop on Policies for Distributed Systems and Net-

works (POLICY’02), pages 50–59. IEEE Computer Society Press, June 2002.

[147] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. The commu-

nity authorization service: Status and future. In Proceedings of Computing in

High Energy and Nuclear Physics (CHEP03), eConf, March 2003.

[148] G. Price and C.J. Mitchell. Interoperation between a conventional PKI and an

ID-based infrastructure. In D. Chadwick and G. Zhao, editors, Proceedings of

the 2nd European Public Key Infrastructure Workshop (EuroPKI 2005), pages

73–85. Springer-Verlag LNCS 3545, 2005.

[149] A. Rajasekar and R. Moore. Data and metadata collections for scientific ap-

plications. In L.O. Hertzberger, A.G. Hoekstra, and R. Williams, editors,

Proceedings of the 9th International Conference on High-Performance Com-

puting and Networking, pages 72–80. Springer-Verlag LNCS 2110, 2001.

[150] B. Ramsdell, editor. S/MIME version 3 message specification. The Internet

Engineering Task Force (IETF), RFC 2633, June 1999.

[151] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-

tures and public-key cryptosystems. Communications of the ACM, 21(2):120–

126, February 1978.

[152] J. Rosenberg and D. Remy. Securing Web Services with WS-Security: Demys-

tifying WS-Security, WS-Policy, SAML, XML Signature, and XML Encryp-

tion. Sams, Indiana, 2004.

[153] D.D. Roure, M.A. Baker, N.R. Jennings, and N.R. Shadbolt. Grid Computing:

Making the Global Infrastructure a Reality, chapter 3: The Evolution of the

Grid, pages 65–100. John Wiley and Sons, West Sussex, 2003.

[154] RSA Security. How fast is the RSA algorithm?, 2004. Available

at http://www.rsasecurity.com/rsalabs/node.asp?id=2215, last accessed in

November 2005.

185

BIBLIOGRAPHY

[155] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. In

Proceedings of the 2000 Symposium on Cryptography and Information Security

(SCIS 2000), January 2000.

[156] J. Schlimmer, editor. Web Services Policy Framework (WS-

Security Policy), September 2004. Available at http://www-

128.ibm.com/developerworks/webservices/library/specification/ws-polfram/,

last accessed in August 2005.

[157] M. Scott. Computing the Tate pairing. In A. Menezes, editor, Proceedings

of the RSA Conference: Topics in Cryptology - the Cryptographers’ Track

(CT-RSA 2005), pages 293–304. Springer-Verlag LNCS 3376, 2005.

[158] M. Scott and P.S.L.M. Barreto. Compressed pairings. In M. Franklin, edi-

tor, Advances in Cryptology - Proceedings of CRYPTO 2004, pages 140–156.

Springer-Verlag LNCS 3152, 2004.

[159] A. Shamir. Identity-based cryptosystems and signature schemes. In G.R.

Blakley and D. Chaum, editors, Advances in Cryptology - Proceedings of

CRYPTO’84, pages 47–53. Springer-Verlag LNCS 196, 1985.

[160] Shamus Software Ltd. MIRACL. Available at http://indigo.ie/∼mscott/, last

accessed in November 2005.

[161] S. Shirasuna, A. Slominski, L. Fang, and D. Gannon. Performance comparison

of security mechanisms for grid services. In Proceedings of 5th IEEE/ACM In-

ternational Workshop on Grid Computing (GRID2004), pages 360–364. IEEE

Computer Society Press, 2004.

[162] F. Siebenlist, N. Nagaratnam, V. Welch, and C. Neuman. Security for vir-

tual organizations - federating trust and policy domains. In I. Foster and

C. Kesselman, editors, Chapter 21 of The Grid: Blueprint for a New Comput-

ing Infrastructure, pages 353–387, San Francisco, 2004. Elsevier.

[163] N.P. Smart. An identity-based authenticated key agreement protocol based

on the Weil pairing. Electronics Letters, 38(13):630–632, 2002.

[164] D.K. Smetters and G. Durfee. Domain-based administration of identity-based

cryptosystems for secure email and IPSEC. In Proceedings of 12th USENIX

Security Symposium, pages 215–229, August 2003.

186

BIBLIOGRAPHY

[165] B. Sotomayor. The Globus Toolkit 3 Programmer’s Tutorial, 2004. Available

at http://gdp.globus.org/gt3-tutorial/, last accessed in November 2005.

[166] T. Stading. Secure communication in a distributed system using identity based

encryption. In Proceedings of 3rd IEEE International Symposium on Cluster

Computing and the Grid (CCGrid 2003), pages 414–420. IEEE Computer So-

ciety Press, May 2003.

[167] Stanford University. IBE Secure Email. Available at

http://crypto.stanford.edu/ibe/, last accessed in November 2005.

[168] M. Steiner, P. Buhler, T. Eirich, and M. Waidner. Secure password-based

cipher suite for TLS. ACM Transactions on Information and System Security,

4(2):134–157, May 2001.

[169] D.R. Stinson. Cryptography: Theory and Practice. Chapman & Hall/CRC,

Florida, 2002.

[170] I. Stoica, R. Morris, D.R. Karger, M.F. Kaashoek, and H. Balakrishnan.

Chord: A scalable peer-to-peer lookup service for internet applications. In

Proceedings of the ACM SIGCOMM 2001 Conference on Applications, Tech-

nologies, Architectures, and Protocols for Computer Communication, pages

149–160. ACM Press, 2001.

[171] H. Tanaka. A realization scheme for the identity-based cryptosystem. In

C. Pomerance, editor, Advances in Cryptology - Proceedings of CRYPTO’87,

pages 340–349. Springer-Verlag LNCS 293, 1988.

[172] The TeraGrid Project. TeraGrid. Available at http://www.teragrid.org/, last

accessed in November 2005.

[173] M.R. Thompson and K.R. Jackson. Security issues of grid resource man-

agement. In J. Weglarz, J. Nabrzyski, J. Schopf, and M. Stroinski, editors,

Chapter 5 of Grid Resource Management: State of the Art and Future Trends,

pages 53–69, Boston, 2003. Kluwer Academic.

[174] G. Tsudik and E.v. Herreweghen. Some remarks on protecting weak keys and

poorly chosen secrets from guessing attacks. In Proceedings of the 12th IEEE

Symposium on Reliable Distributed Systems (SRDS’93), pages 136–141. IEEE

Computer Society Press, 1993.

187

BIBLIOGRAPHY

[175] S. Tsuji and T. Itoh. An ID-based cryptosystem based on the discrete loga-

rithm problem. IEEE Journal on Selected Areas in Communications, 7(4):467–

473, 1989.

[176] S. Tuecke, V. Welch, D. Engert, L. Pearman, and M. Thompson. Internet

X.509 public key infrastructure proxy certificate profile. The Internet Engi-

neering Task Force (IETF), RFC 3820, June 2004.

[177] University of Wisconsin-Madison. Condor Project. Available at

http://www.cs.wisc.edu/condor/, last accessed in November 2005.

[178] S.A. Vanstone and R.J. Zuccherato. Elliptic curve cryptosystems using curves

of smooth order over the ring zn. IEEE Transactions on Information Theory,

43(4):1231–1237, July 1997.

[179] S. Vaudenay. Security flaws induced by CBC padding - applications to SSL,

IPSEC, WTLS... In L.R. Knudsen, editor, Advances in Cryptology - Pro-

ceedings of EUROCRYPT 2002, pages 534–546. Springer-Verlag LNCS 2332,

2002.

[180] Voltage Security. The Voltage IBE Toolkit Overview. Available at

http://www.voltage.com/ibe dev/about ibe/overview.htm, last accessed in

November 2005.

[181] Voltage Security. Email Security – The IBE Advantage, white paper, July

2004. Available at http://www.voltage.com/whitepaper/index.htm, last ac-

cessed in November 2005.

[182] Voltage Security. Voltage Security Platform Architecture, white paper, June

2004. Available at http://www.voltage.com/whitepaper/index.htm, last ac-

cessed in November 2005.

[183] V.A. Vyssotsky, F.J. Corbató, and R.M. Graham. Structure of the Multics

supervisor. In Proceedings of AFIPS Fall Joint Computer Conference, pages

203–212. Spartan Books, 1965.

[184] D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocol. In Proceedings

of 2nd USENIX Workshop on Electronic Commerce, pages 29–40, November

1996.

188

BIBLIOGRAPHY

[185] M. Wahl, T. Howes, and S. Kille. Lightweight directory access protocol (v3).

The Internet Engineering Task Force (IETF), RFC 2251, December 1997.

[186] V. Welch, I. Foster, C. Kesselman, O. Mulmo, L. Pearlman, S. Tuecke,

J. Gawor, S. Meder, and F. Siebenlist. X.509 proxy certificates for dynamic

delegation. In Proceedings of the 3rd Annual PKI R&D Workshop, pages 42–

58, 2004.

[187] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor,

C. Kesselman, S. Meder, L. Pearlman, and S. Tuecke. Security for Grid ser-

vices. In Proceedings of the 12th IEEE International Symposium on High Per-

formance Distributed Computing (HPDC-12 2003), pages 48–61. IEEE Com-

puter Society Press, June 2003.

[188] V. Welch, editor. Globus Toolkit version 4 Grid Security Infrastructure: A

Standards Perspective. The Globus Security Team, September 2005. Available

at http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-Overview.pdf,

last accessed in November 2005.

[189] H. Yoon, J.H. Cheon, and Y. Kim. Batch verifications with ID-based signa-

tures. In C. Park and S. Chee, editors, Proceedings of the 7th International

Conference on Information Security and Cryptology (ICISC 2004), pages 233–

248. Springer-Verlag LNCS 3506, 2005.

[190] F. Zhang, W. Susilo, and Y. Mu. Identity-based partial message recovery sig-

natures (or how to shorten ID-based signatures). In A.S. Patrick and M. Yung,

editors, Proceedings of the 9th International Conference on Financial Cryp-

tography and Data Security (FC 2005), pages 45–56. Springer-Verlag LNCS

3570, 2005.

[191] Y. Zheng. Digital signcryption or how to achieve cost(signature & encryption)

¿ cost(signature) + cost(encryption). In B.S. Kaliski Jr., editor, Advances

in Cryptology - Proceedings of CRYPTO’97, pages 165–179. Springer-Verlag

LNCS 1294, 1997.

189

