thesis

On the Application of Identity-Based Cryptography in Grid Security

Abstract

This thesis examines the application of identity-based cryptography (IBC) in designing security infrastructures for grid applications. In this thesis, we propose a fully identity-based key infrastructure for grid (IKIG). Our proposal exploits some interesting properties of hierarchical identity-based cryptography (HIBC) to replicate security services provided by the grid security infrastructure (GSI) in the Globus Toolkit. The GSI is based on public key infrastructure (PKI) that supports standard X.509 certificates and proxy certificates. Since our proposal is certificate-free and has small key sizes, it offers a more lightweight approach to key management than the GSI. We also develop a one-pass delegation protocol that makes use of HIBC properties. This combination of lightweight key management and efficient delegation protocol has better scalability than the existing PKI-based approach to grid security. Despite the advantages that IKIG offers, key escrow remains an issue which may not be desirable for certain grid applications. Therefore, we present an alternative identity-based approach called dynamic key infrastructure for grid (DKIG). Our DKIG proposal combines both identity-based techniques and the conventional PKI approach. In this hybrid setting, each user publishes a fixed parameter set through a standard X.509 certificate. Although X.509 certificates are involved in DKIG, it is still more lightweight than the GSI as it enables the derivation of both long-term and proxy credentials on-the-fly based only on a fixed certificate. We also revisit the notion of secret public keys which was originally used as a cryptographic technique for designing secure password-based authenticated key establishment protocols. We introduce new password-based protocols using identity-based secret public keys. Our identity-based techniques can be integrated naturally with the standard TLS handshake protocol. We then discuss how this TLS-like identity-based secret public key protocol can be applied to securing interactions between users and credential storage systems, such as MyProxy, within grid environments

    Similar works