417 research outputs found

    Quantitative Models for Centralised Supply Chain Coordination

    Get PDF

    Analysis of a Vendor Managed Consignment Inventory System with Kan-ban Withdrawals and Payment Delays

    Get PDF
    Vendor Managed Inventory (VMI) System with Consignment Inventory (CI) policy is a solution for many supply chain leaders in a highly competitive market. In this paper, totally eight different inventory supply chain models are studied. The profit function of supplier and manufacturer in different environments are compared in order to show the profitability of the overall supply chain management system in a manufacturing industry with different time horizons. The inventory systems are applied on a supply chain consisting of a single supplier and a manufacturer. The main focus of this study is to analyze the effect of payment deferral and the time value of money in push and pull (Kanban) manufacturing systems when VMI-CI policy is applied

    Decentralized and centralized supply chains with trade credit option

    Get PDF
    The notion of a trade credit period is a common business practice, where a supplier allows a buyer a specified period to make a payment in full for a purchase made. The objective of this thesis is to explore the role of such a credit payment option in supply chain management. Towards this end, a two-echelon supply chain, consisting of a single supplier (e.g. manufacturer) and the cases of both a single and multiple buyers (e.g. retailers) is examined under decentralized (independent) and centralized (coordinated) decision making scenarios. The major emphasis of this research is limited to the case of a single product with price-sensitive deterministic, as well as stochastic market demand.The conditions under which a trade credit period should be offered and its appropriate length are determined from the supplier’s perspective under the decentralized case. Under the centralized decision scenario, the efficacy of a trade credit policy as a supply chain coordination mechanism is thoroughly analyzed and guidelines for pricing, production and delivery decisions are developed. The concepts developed in this study are illustrated via a number of numerical examples, in conjunction with thorough sensitivity analyses involving some selected problem parameters.The major contribution of this thesis is that we incorporate the pricing and inventory issues in supply chains with an endogenous credit payment period. This is the first study that examines the efficacy of trade credit option as a coordination mechanism. We propose a coordination mechanism that coordinates the supply chain, when a trade credit by itself is not sufficient to serve such a purpose, while preserving the benefits of a trade credit option. Also, this study is the first to examine the issues concerning trade credit under price sensitive stochastic demand. Another first for this work is the exploration of the implications of a trade credit policy in supply chains consisting of multiple competing retailers. The effects of the extent of competition and the market size on trade credit policy are evaluated. Our analyses lead to some important practical implications, to serve as managerial guidelines.Ph.D., Decision Sciences -- Drexel University, 201

    A Stochastic Process Study of Two-Echelon Supply Chain with Bulky Demand Process Incorporating cost Sharing Coordination Strategies

    Get PDF
    This research considers a single-item two-echelon supply chain facing a sequence of stochastic bulky customer demand with random order inter-arrival time and random demand size. The demand process is a general renewal process and the cost functions for both parties involve the renewal function and its integral. The complexity of the general renewal function causes the computational intractability in deciding the optimal order quantities, so approximations for the renewal function and its integral are introduced to address the computational complexity. Asymptotic expansions are commonly used in the literature to approximate the renewal function and its integral when the optimal decisions are relatively large compared to the mean of the inter-renewal time. However, the optimal policies do not necessarily fall in the asymptotic region. So the use of asymptotic expansions to approximate the renewal function and its integral in the cost functions may cause significant errors in decision making. To overcome the inaccuracy of the asymptotic approximation, this research proposes a modified approximation. The proposed approximation provides closed form functions for the renewal function and its integral which could be applied to various optimization problems such as inventory planning, supply chain management, reliability and maintenance. The proposed approximations are tested with commonly used distributions and applied to an application in the literature, yielding good performance. By applying the proposed approximation method to the supply chain cost functions, this research obtains the optimal policies for the decentralized and the centralized cases. The numerical results provide insights into the cost savings realized by the centralization of the supply chain compared to the decentralized case. Furthermore, this research investigates coordination schemes for the decentralized case to improve the utilities of parties. A cost sharing mechanism in which the vendor offers the retailer a contract as a compensation of implementing vendordesired inventory policy is investigated. The sharing could be realized by bearing part of the retailer’s inventory holding cost or fixed cost. The contract is designed to minimize the vendors cost while satisfying the individual rationality of the retailer. Other forms of coordination mechanisms, such as the side payment and delayed payment, are also discussed

    Modelling of Coordinating Production and Inventory Cycles in A Manufacturing Supply Chain Involving Reverse Logistics

    Get PDF
    In today’s global and competitive markets selling products at competitive prices, coordination of supply chain configuration, and environmental and ecological consciousness and responsibility become important issues for all companies around the world. The price of products is affected by costs, one of which is inventory cost. Inventory does not give any added value to products but must be kept in order to fulfill the customer demand in time. Therefore, this cost must be kept at the minimum level. In order to reduce the amount of inventory across a supply chain, coordination of decisions among all players in the chain is necessary. Coordination is needed not only for a two-level supply chain involving a manufacturer and its customers, but also for a complex supply chain of multiple tiers involving many players. With increasing attention being placed to environmental and ecological consciousness and responsibility, companies are keen to have a reverse supply chain where used products are collected and usable components remanufactured and reused in production to minimize negative impacts on the environment, adding further complexity to decision making across a supply chain. To deal with the above issues, this thesis proposes and develops the mathematical models and solution methods for coordinating the production inventory system in a complex manufacturing supply chain involving reverse logistics and multiple products. The supply chain consists of tier-2 suppliers for raw materials, tier-1 suppliers for parts, a manufacturer who manufactures and assembles parts into finished products, distributors, retailers and a third party who collects the used products and returns usable parts to the system. The models consider a limited contract period among all players, capacity constraints in transportation units and stochastic demand. The solution methods for solving the models are proposed based on decentralized, semi-centralized and centralized decision making processes. Numerical examples are used by adopting data from the literature to demonstrate, test, analyse and discuss the models. The results show that centralised decision making process is the best way to coordinate all players in the supply chain which minimise total cost of the supply chain as a whole. The results also show that the selection of the length of limited horizon/ contract period will be one of the main factors which will determine the type of coordination (decentralised, centralised or semi-centralised) among all players in the supply chain. We also found that the models developed can be viewed as generalised models for multi-level supply chain by examining the models using systems of different tiers from the literature. We conclude that the models are insensitive to changes of input parameters since percentage changes of the supply chain’s total cost are less than percentage changes of input parameters for the scenarios studied

    Supply Chain

    Get PDF
    Traditionally supply chain management has meant factories, assembly lines, warehouses, transportation vehicles, and time sheets. Modern supply chain management is a highly complex, multidimensional problem set with virtually endless number of variables for optimization. An Internet enabled supply chain may have just-in-time delivery, precise inventory visibility, and up-to-the-minute distribution-tracking capabilities. Technology advances have enabled supply chains to become strategic weapons that can help avoid disasters, lower costs, and make money. From internal enterprise processes to external business transactions with suppliers, transporters, channels and end-users marks the wide range of challenges researchers have to handle. The aim of this book is at revealing and illustrating this diversity in terms of scientific and theoretical fundamentals, prevailing concepts as well as current practical applications

    Research on quantity discount pricing by container liner shipping

    Get PDF

    Supply Chain Coordination under Trade Credit and Quantity Discount with Sales Effort Effects

    Get PDF
    The purpose of this paper is to investigate the role of trade credit and quantity discount in supply chain coordination when the sales effort effect on market demand is considered. In this paper, we consider a two-echelon supply chain consisting of a single retailer ordering a single product from a single manufacturer. Market demand is stochastic and is influenced by retailer sales effort. We formulate an analytical model based on a single trade credit and find that the single trade credit cannot achieve the perfect coordination of the supply chain. Then, we develop a hybrid quantitative analytical model for supply chain coordination by coherently integrating incentives of trade credit and quantity discount with sales effort effects. The results demonstrate that, providing that the discount rate satisfies certain conditions, the proposed hybrid model combining trade credit and quantity discount will be able to effectively coordinate the supply chain by motivating retailers to exert their sales effort and increase product order quantity. Furthermore, the hybrid quantitative analytical model can provide great flexibility in coordinating the supply chain to achieve an optimal situation through the adjustment of relevant parameters to resolve conflict of interests from different supply chain members. Numerical examples are provided to demonstrate the effectiveness of the hybrid model

    A Metaheuristic-Based Simulation Optimization Framework For Supply Chain Inventory Management Under Uncertainty

    Get PDF
    The need for inventory control models for practical real-world applications is growing with the global expansion of supply chains. The widely used traditional optimization procedures usually require an explicit mathematical model formulated based on some assumptions. The validity of such models and approaches for real world applications depend greatly upon whether the assumptions made match closely with the reality. The use of meta-heuristics, as opposed to a traditional method, does not require such assumptions and has allowed more realistic modeling of the inventory control system and its solution. In this dissertation, a metaheuristic-based simulation optimization framework is developed for supply chain inventory management under uncertainty. In the proposed framework, any effective metaheuristic can be employed to serve as the optimizer to intelligently search the solution space, using an appropriate simulation inventory model as the evaluation module. To be realistic and practical, the proposed framework supports inventory decision-making under supply-side and demand-side uncertainty in a supply chain. The supply-side uncertainty specifically considered includes quality imperfection. As far as demand-side uncertainty is concerned, the new framework does not make any assumption on demand distribution and can process any demand time series. This salient feature enables users to have the flexibility to evaluate data of practical relevance. In addition, other realistic factors, such as capacity constraints, limited shelf life of products and type-compatible substitutions are also considered and studied by the new framework. The proposed framework has been applied to single-vendor multi-buyer supply chains with the single vendor facing the direct impact of quality deviation and capacity constraint from its supplier and the buyers facing demand uncertainty. In addition, it has been extended to the supply chain inventory management of highly perishable products. Blood products with limited shelf life and ABO compatibility have been examined in detail. It is expected that the proposed framework can be easily adapted to different supply chain systems, including healthcare organizations. Computational results have shown that the proposed framework can effectively assess the impacts of different realistic factors on the performance of a supply chain from different angles, and to determine the optimal inventory policies accordingly

    Application of Optimization in Production, Logistics, Inventory, Supply Chain Management and Block Chain

    Get PDF
    The evolution of industrial development since the 18th century is now experiencing the fourth industrial revolution. The effect of the development has propagated into almost every sector of the industry. From inventory to the circular economy, the effectiveness of technology has been fruitful for industry. The recent trends in research, with new ideas and methodologies, are included in this book. Several new ideas and business strategies are developed in the area of the supply chain management, logistics, optimization, and forecasting for the improvement of the economy of the society and the environment. The proposed technologies and ideas are either novel or help modify several other new ideas. Different real life problems with different dimensions are discussed in the book so that readers may connect with the recent issues in society and industry. The collection of the articles provides a glimpse into the new research trends in technology, business, and the environment
    • …
    corecore