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This research considers a single-item two-echelon supply chain facing a sequence 

of stochastic bulky customer demand with random order inter-arrival time and random 

demand size. The demand process is a general renewal process and the cost functions for 

both parties involve the renewal function and its integral. The complexity of the general 

renewal function causes the computational intractability in deciding the optimal order 

quantities, so approximations for the renewal function and its integral are introduced to 

address the computational complexity. Asymptotic expansions are commonly used in the 

literature to approximate the renewal function and its integral when the optimal decisions 

are relatively large compared to the mean of the inter-renewal time. However, the optimal 

policies do not necessarily fall in the asymptotic region. So the use of asymptotic 

expansions to approximate the renewal function and its integral in the cost functions may 

cause significant errors in decision making. To overcome the inaccuracy of the 

asymptotic approximation, this research proposes a modified approximation. The 

proposed approximation provides closed form functions for the renewal function and its 

integral which could be applied to various optimization problems such as inventory 
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planning, supply chain management, reliability and maintenance. The proposed 

approximations are tested with commonly used distributions and applied to an application 

in the literature, yielding good performance. By applying the proposed approximation 

method to the supply chain cost functions, this research obtains the optimal policies for 

the decentralized and the centralized cases. The numerical results provide insights into 

the cost savings realized by the centralization of the supply chain compared to the 

decentralized case. Furthermore, this research investigates coordination schemes for the 

decentralized case to improve the utilities of parties. A cost sharing mechanism in which 

the vendor offers the retailer a contract as a compensation of implementing vendor-

desired inventory policy is investigated. The sharing could be realized by bearing part of 

the retailer’s inventory holding cost or fixed cost. The contract is designed to minimize 

the vendors cost while satisfying the individual rationality of the retailer. Other forms of 

coordination mechanisms, such as the side payment and delayed payment, are also 

discussed. 
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CHAPTER I 

AN IMPROVED APPROXIMATION FOR THE RENEWAL FUNCTION AND ITS 

INTEGRAL 

1.1 Introduction and literature review 

Let the random variable  denote the intercurrence or inter-renewal time 

between the 1 th and th events in a renewal process. Assume , , … to be a 

sequence of non-negative, independent random variables having a common probability 

distribution   ,  0,  1,2, …,and  , 0 ∞. 

Define 0, ∑   , 1,2, …, so that  would be the time epoch at   

which the th event occurs. For each 0,  is the largest integer 0 so that   

. The random variable of  represents the number of events up to time  and the 

renewal function is defined by  ,   0  (Tijms 2003). 

Define the cumulative distribution function (cdf)   ,   0,   

1,2, … , and   . It is implied that ,  1,2, … . Given an 

, the renewal function satisfies the integral equation (1.1) 

 (1.1)
 

 

The integral equation has a unique solution of , which is bounded on finite 

intervals under the assumption that is continuous in , 0   0, and ∞  1 

(Cox 1962). Let  denote the corresponding probability density function (pdf), if 

exists, for . Then, 
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 (1.2)
    .

 

The renewal function  and its integral     play an important 

role in decision makings involving the renewal process, such as inventory planning, 

supply chain planning, reliability and maintenance analysis (e.g., Bahrami et al. 2000, 

Barlow and Proschan 1965, Sheikh and Younas 1985, Tijms 1994). However, obtaining 

the renewal function, , analytically is complicated and even impossible for most 

distribution functions. As an analytical method, the Laplace transform  of the 

renewal function satisfies  

 (1.3)
  

1  
, 

where  is the Laplace transforms of the density function of the inter-renewal time, 

 (From 2001). It is usually difficult to obtain  through the inversion of  

(Jaquette 1972). We can obtain an exact computation of the renewal function,  for 

all 0 analytically only for a few special cases of  (Tijms 2003), such as the 

exponential distribution. Furthermore, in many real-life applications the distribution for 

the inter-renewal time may not be known. Therefore, approximations of the renewal 

function have drawn much interest in the literature and result in various methods. 

The asymptotic expansion is very helpful in the approximation of the renewal 

function and its integral because of its simplicity (Tijms 2003). The asymptotic 

approximation only requires the first several moments (the first two moments for the 

renewal function approximation and the first three for its integral) and does not need the 

exact distribution function for the inter-renewal times. Because it provides a closed-form, 

the asymptotic approximation has been widely applied to the optimization problems that 
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involve the renewal process, such as inventory planning, reliability and maintenance 

planning (e.g., Cetinkaya et al. 2008). However, asymptotic expansions for  are not 

accurate for small values of  and may yield poor optimal solutions. This research tries to 

address this drawback of asymptotic approximations by proposing a new approach of 

approximation. At the same time, our proposed approximations keep the positive features 

of asymptotic approximations such as simplicity, closed-form expression for 

optimization, and independence from the distributions of inter-renewal times. 

It is rather easy to compute  numerically for a given value of  (Jaquette 

1972) and a variety of approaches have been developed in the literature, such as cubic-

splining algorithm by McConalogue (McConalogue 1981) to compute the renewal 

function by numerical convolution, the generating function algorithm by Giblin (1984), 

and power series expansion. The power series method is used for Weibull distribution in 

most studies (e.g., Weiss 1981, White 1964) but can be extended to all distributions with 

a power series expansion (Smeitink and Dekker 1990).  Smith and Leadbetter (1963) 

found an iterative solution for the case in which the inter-renewal time follows a Weibull 

distribution. Another iterative solution method with the Weibull distributed inter-renewal 

time was given by White (1964). A numerical integration approach, which covers 

Weibull, Gamma, Lognormal, truncated Normal and inverse Normal distributions, was 

offered by Baxter et al. (1982). Garg and Kalagnanam (1998) proposed a Pade 

approximation (a class of rational polynomial approximants (Baker and Graves-Morris 

1996)) approach to solve the renewal equation for the inverse Normal distribution. Their 

method uses Pade approximants to compute the renewal function near the origin and 

switches to the asymptotic values farther from the origin. They presented a polynomial 

switchover function in terms of the coefficient of variation of the distribution, enabling 
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one to determine a priori if the asymptotic value can be used instead of computing the 

Pade approximant. A shortcoming of their method is that it does not provide a compact 

closed-form until applying the numerical method of Xie (1989). Kaminskiy and Krivtsov 

(1997) used a Monte Carlo simulation, which provides a universal numerical solution to 

the renewal function equation, covering essentially any parametric or empirical 

distribution used to model time-to-failure distributions. A method called the RS-method 

was established by Xie (1989) for solving renewal-type integral equations based on direct 

numerical Riemann-Stieltjes integration. The RS-method is particularly useful when the 

probability density function has singularities. The numerical method of Xie (1989) was 

used as a starting point of a numerical approximation proposed by From (2001) that 

constructs a two-piece modified rational function with the second piece being a linear 

function of . An approximation for the renewal function of a failure distribution with an 

increasing failure rate was proposed by Jiang (2010).  Although all the methods that 

numerically compute the renewal function are generally accurate for the small values of  

but do not provide a closed-form expression that is useful for decision makings. Our 

proposed approximation not only is accurate in the range of small values of  but also 

provides a closed-form expression to facilitate optimization. 

Another approach to compute the renewal function is the approximation based 

on  of a given distribution by the well known equation (Cox 1962): 

 (1.4)
  ,

 

where  is the cdf of , the epoch of the th renewal and is the convolution of f  

and . For most of the distributions, it is difficult to calculate . Therefore, 

Gamma distribution, whose  are easy to obtain, is often used to approximate 
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, , … based on the first two moments. The idea of exact computation of the first 

few terms of the renewal function in the series and approximation of the other terms 

using a two-moment match was developed by Smeitink and Dekker (1990). Their 

suggested approximation for  is in the form of ∑  ,   0, where 

is the distribution function of   and , … ,  are independent and have 

a common gamma , distribution. The values of  and  parameters are determined 

such that the first two moments of the original inter-renewal times  are matched by the 

first two moments of the gamma ,  distribution (Tijms 2003). Their numerical 

experiments show that their approximation yields quick and useful approximation of the 

renewal function provided that coefficient of variation is not too large. However, 

Gamma’s distribution function is already too complicated for optimization in addition to 

possibly complicated . Our proposed approximation is independent of the inter-

renewal time distribution and easy to apply for decision making. 

A very important issue that has been only discussed in a small number of studies 

(e.g., Baxter et al. 1982) is the computation of the renewal function integral. The integral 

of a renewal function is extensively used in the studies that deal with the waiting and/or 

accumulating counting process such as inventory holding cost in inventory planning 

problems or cumulative damage process in reliability and maintenance problems (Zacks 

2010). Baxter et al. (1982) developed a recursively defined algorithm to numerically 

compute the values of renewal function and its integral for a given  but their method is 

not useful for cases where a closed-form expression is required for optimizing an 

objective function. Our work provides closed-form approximations for both the renewal 

function and its integral. 
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Approximations of the renewal function are required to meet the following three 

requirements of simplicity, accuracy and applicability (Jiang 2010). Simplicity requires 

that the approximation has a closed-form expression and can be directly used without the 

need of further numerical computation. The approximation should be accurate enough 

from an engineering perspective within the potential value range of decision variables. 

The applicability means that the range of t in which the approximation is accurate should 

be large and it is applicable for a wide range of distribution families rather than a specific 

distribution. Some researchers have tried to address all of these requirements (e.g., Giblin 

1984, Kaminskiy and Krivtsov 1997, Spearman 1989), but they could not meet all of 

them, missing either one or more of the requirements due to the complicated nature of the 

renewal function. In this paper, we propose a simple, yet accurate and applicable, 

approximation of the renewal functions and their integrals. The numerical results show 

that our approximation performs well in the entire range of  and is easy enough to get 

the closed-form expressions with respect to  and plug into objective functions (e.g. cost 

functions) to be optimized.  

The remainder of the chapter is organized as follows. Section 1.2 discusses the 

asymptotic approximation of the renewal function and its integral. Section 1.3 presents 

the proposed approximation called Modified Approximation followed by Section 1.4 

where numerical results are presented to verify the proposed Modified Approximation. 

An application is shown with an example from the literature to demonstrate the 

outperformance of the proposed approximation versus the commonly used asymptotic 

approximation in Section 1.5. Finally, Section 1.6 concludes the chapter. 
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2  2  1   

4  6

1.2 Asymptotic approximation of the renewal function 

The asymptotic expansion is useful in the approximation of the renewal function 

and its integral because of its simplicity. As a result of the elementary renewal theorem 

and key renewal theorem the following limits hold as asymptotic approximations of the 

renewal function and its integral (Tijms 2003): 

(1.5)lim  
2  1,  and  

 
  

 

, (1.6) 

where ,  and  denote the first, second and third moments of the inter-

renewal time distribution. Being a result of asymptotic behavior of the renewal function, 

Equations (1.5) and (1.6) approximate the renewal function when  approaches infinity or 

is large enough. In real-life applications, however,  in the solution space may not be 

large enough to justify the usage of the asymptotic approximation. Some studies (e.g., 

Cetinkaya et al. 2008) use the asymptotic expansions (1.5) and (1.6) regardless of the 

value of , which may result in errors in the calculation of the renewal function and 

therefore the optimal decisions. The numerical experiments in Tijms (1994) show that 

whether the asymptotic approximation is appropriate is related to the squared coefficient 

of variation of the inter-renewal time, , which equals  . When  1 (i.e., 

exponentially distributed inter-renewal times), the asymptotic expansion of (1.5) and 

(1.6) are exact. Numerical experiments in Tijms (1994) show that the asymptotic 

approximation works accurately enough when   where, 
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3
2  if  1,  
 

  if 0.2 1,  
1 if 0 0.2.  

2  
 

 

 

 

 

(1.7)

Equation (1.7) presents a general guidance about when the asymptotic 

approximation is appropriate only based on the first two moments of the inter-renewal 

time distribution. Please note that the asymptotic approximation does not work very well 

when  is much larger than 1 or close to 0. Both cases yield a large value of . Equation 

(1.7) also indicates that the threshold value heavily depends on . When  , the 

asymptotic approximation does not work well. As pointed by Tijms (1994), the 

asymptotic expansion especially deteriorates as  0. For a distribution with a given 

variance,  increases rapidly in  because both  and  in the third case of (1.7) 

increase. Figures 1.1 through 1.3 show several typical examples of the renewal function 

and its asymptotic approximation for different distributions and different  values. The 

comparison of the approximated renewal function and the corresponding simulation 

results shows that there is a big gap between the actual value of renewal function and its 

estimation from the asymptotic approximation when  is small. Our approach is to build a 

function with a smaller gap versus simulation result than that of asymptotic 

approximation for the small values of . The asymptotic approximation yields negative 

values when  is small in Figures 1.1 and 1.2, which can favor the decision of zero when 

some cost terms are positively correlated to the renewal function. 

Knowing more information about the inter-renewal time distribution in addition to 

the first two moments could make the computation of the renewal function easier and/or 

more accurate (Gou et al. 2008, Heisig 1998, Jin and Liao 2009). Gou et al. (2008) 
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assume that the customer arrivals follow a Poisson process. Heisig (1998) presents an 

exact expression for  only for the case that demand is distributed according to a K2-

distribution. Jin and Liao (2009) proposed different approaches for different cases. They 

discussed that the closed form solution for the renewal function exists only for a few 

failure time distributions (e.g., exponential distribution), and many other distributions 

such as Weibull, Normal and Lognormal have to be solved numerically. 

Figure 1.1 Simulated renewal function and asymptotic approximation - Normal 
distribution (100, 20) with  100,   400 and  0.04. 
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Figure 1.2 Simulated renewal function and asymptotic approximation - Erlang 
distribution (2, 10) with  20,   200 and  0.5. 

Figure 1.3 Simulated renewal function and asymptotic approximation - Lognormal 
distribution (3, 1) with   33.12,   1,884.32 and  1.72. 
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To take advantage of the simple approximation for standard Normal distribution 

with high accuracy by Zelen and Severo (1964), Wang and Pham (1999) approximate the 

renewal function for a special case of Normal distribution in their study of maintenance 

and reliability. To fill the gap in the current studies, especially, to answer the question of 

what the approximation should be when   , we will introduce our proposed 

approximation in the next section. 

1.3 Modified approximation 

The modified approximation is proposed for two cases under which the 

approximation is slightly different. In the first case the distribution of inter-renewal time 

is known while in the second case we do not know the distribution but know the first and 

second moments (or mean and variance) of inter-renewal time distribution. Subsections 

1.3.1 and 1.3.2 discuss these two cases respectively. 

1.3.1 Modified approximation knowing the inter-renewal time distribution 

If we plot a typical renewal function (e.g., Figure 1.1), we find that the general 

shape of the renewal function starts from the 0,0  point, remains at very small values for 

a while, and then approaches the asymptotic approximation line with a smooth transition. 

Inspired by this observation, we define a three-piece approximation, , with two 

switch-over points  and  where  . 

0  ,
 , (1.8)  

 
 
2  1    . 

As shown in Figure 1.4 and,  denotes the modified approximation when  is 

between  and . Equation (1.7) can be used in determining the point of  based on the 
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value of  and , but Equation (1.7) provides no clue about the value of . If we know 

the distribution of the inter-renewal times, we can determine  and  points based on a 

predefined probability and the inverse function of the associate inter-renewal time 

distribution, , as 

 and  . (1.9) 

Our extensive numerical experiments show a good choice of  and  would be 

given by 

0.5 if 1
  0.02 and  1

. (1.10)
0.9 if 

To calculate , we define a linear function that goes through the points , 0  

 and , 1 , where the asymptotic approximation is used at the point of 

. Please see Figure 1.4 for an illustration. Therefore, the modified approximation 

function between , would be 

 
 
2  1  

(1.11)   .
  

We use the same structure to have the approximation of  for the integral of the 

renewal function, , 

0  
  (1.12)  

 
2  2  1    

4   
6   . 

Since  is a linear function, we define  as a quadratic function that goes 

through the points , 0  and ,  1     and make 

continuous at both  and . Please see Figure 1.5 for an illustration. Furthermore, the 

slope of  is set at zero when   to make  smooth at   because 
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4   

6
 

2  1   2  
. 

 
  

 

 

 

 

 

simulations show that the integral of the renewal function, , increases from zero with 

a small rate at the beginning. Therefore, 

 

  
4  6 2  1  2

1

 
 

  

 

2
4   

6
 
2  1   2

1
  

   (1.13) 

 

1

Figure 1.4 The simulated and approximated renewal function for Erlang distribution 
(2, 2.5) 
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Figure 1.5 The simulated and approximated integral of the renewal function for Erlang 
distribution (2, 2.5) 

1.3.2 Modified approximation not knowing the inter-renewal time distribution 

In practice, the distribution for the inter-renewal time distribution could be 

unknown while the first several moments are available. In this case, the way of 

determining  and  points by Equation (1.9) needs to be changed in order to use the 

modified approximations defined by Equations (1.8) and (1.12). Let denote the 

variance of the inter-renewal time. Then, the values of  and  are given by. 

 max , 0  and  . (1.14) 

Our numerical experiments show that the coefficients of  1 and  0  

define good values of  and  respectively. 

Numerical experiments show that the determination of  based on the 

distribution rather than the first two moments as in Equation (1.7) yields better 

approximations. Table 1.1 shows a comparison of average deviation of approximated 
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renewal function from simulated values for the two approaches of obtaining , based on 

the distribution or based on the first two moments as in Equation (1.7). 

Table 1.1 Comparison of average deviation of approximated  and its integral for 
the two cases of obtaining  from simulated renewal function 

Distribution  

Average deviation from the 
simulated  

 based on 
  

Equation (1.3) 

Average deviation from the 

simulated    
 based on 

  
Equation (1.3) 

Erlang (2, 2.5) 0.5 0.0057 0.0088 0.0180 0.0203 
Erlang (2, 10) 0.5 0.0065 0.0093 0.0590 0.0700 

Lognormal (1, 0.5) 0.284 0.0349 0.0405 0.0790 0.0829 
Lognormal (3, 1) 1.718 0.0461 0.0566 0.0400 0.0769 

Weibull (1, 5) 0.052 0.2640 0.2589 0.1929 0.2127 
Weibull (35, 345) 0.273 0.0147 0.0168 0.0845 0.0980 

1.3.3 Modified approximation not knowing the inter-renewal time distribution 

In practice, the distribution for the inter-renewal time distribution could be 

unknown while the first several moments are available. In this case, the way of 

determining  and  points by Equation (1.9) needs to be changed in order to use the 

1.4 Numerical results 

Numerical experiments are conducted to evaluate the effectiveness of the 

proposed modified approximation for the renewal function and its integral. Simulation 

results are used as a baseline in order to compare the asymptotic and the proposed 

approximations for various distributions with different parameters. Tables 1.2, 1.3 and 

1.4 show sample numerical results for three different distributions with the coefficient of 

variation falling in different ranges as in Equation (1.7),  1, 0.2  1, and 
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0  0.2. Each table shows simulation results, asymptotic approximation and 

modified approximation of and for different values. 

Table 1.2 shows numerical results for Erlang distribution (2, 2.5) with  0.5. 

To obtain the modified approximation value in this table, we have  0.54 and 

 4.19 respectively, following Equations (1.9) and (1.10). As the table shows, the 

deviations of modified approximation are much smaller than that of asymptotic 

approximation, especially for small values of  . Figures 1.4 and 1.5 illustrate the results 

in Table 1.2. We consider a Normal distribution with the mean of 100 and standard 

deviation of 20 in Table 1.3. The smaller deviations of modified approximation from the 

simulated values compared to that of asymptotic approximation show a good 

performance of modified approximation while is very small 

Table 1.2 Results for Erlang distribution (2, 2.5) with  5.0 and  0.5  

Sim.1 Asy.  App.2 Dev.* Mod. App.3 Dev. 

 
(1) (2) (2) vs.(1) 

 
(3) (3) vs.(1) 

0 0.00 -0.25 0.25 0.00 0.00 
1 0.06 -0.05 0.11 0.07 0.01 
2 0.20 0.15 0.05 0.24 0.04 
3 0.37 0.35 0.02 0.40 0.02 
4 0.56 0.55 0.01 0.56 0.00 

 
 

0 0.000 0.3125 0.31 0.000 0.00 
1 0.022 0.1625 0.14 0.016 0.01 
2 0.148 0.2125 0.06 0.164 0.02 
3 0.432 0.4625 0.03 0.464 0.03 
4 0.894 0.9125 0.02 0.917 0.02 

*) Deviation is calculated as the absolute value of difference between simulation result 
and approximation. 

1) Simulation, 
2) Asymptotic approximation, and 
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3) Modified approximation. 

 The numerical results show that the modified approximation outperforms the 

asymptotic approximation for other distribution function of inter-renewal time, for 

example, Lognormal and Weibull distribution functions in Tables 1.4 and 1.5 

Table 1.3 Results for Normal distribution (100, 20) whose  0.04  

Sim. Asy.  App. Dev. Mod. App. Dev. 

 
0

(1) 

 0.00 

(2) 

-0.48 

(2) vs.(1) 
 

0.48 

(3) 

0.00 

(3) vs.(1) 

0.00 
10 0.00 -0.38 0.38 0.00 0.00 
20 0.00 -0.28 0.28 0.00 0.00 
30 0.00 -0.18 0.18 0.00 0.00 
40 0.00 -0.08 0.08 0.00 0.00 
50 0.01 0.02 0.01 0.00 0.01 
60 0.02 0.12 0.10 0.01 0.01 
70 0.07 0.22 0.15 0.14 0.07 
80 0.16 0.32 0.16 0.27 0.11 
90 0.31 0.42 0.11 0.39 0.09 

 
 

0 0.00 8.37 8.37 0.00 0.00 
10 0.00 4.07 4.07 0.00 0.00 
20 0.00 0.77 0.77 0.00 0.00 
30 0.00 -1.53 1.53 0.00 0.00 
40 0.01 -2.83 2.83 0.00 0.01 
50 0.03 -3.13 3.16 0.00 0.03 
60 0.11 -2.43 2.53 0.00 0.10 
70 0.56 -0.73 1.29 0.52 0.05 
80 1.74 1.97 0.23 1.97 0.23 
90 3.92 5.67 1.75 5.67 1.75 

Table 1.6 compares the deviation of asymptotic and modified approximation from 

simulation results for Weibull distributions with different parameters. The numerical 

results show that for different  values, the modified approximation has less deviation 
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from simulation results on average compared to the asymptotic approximation. Less 

deviation are also observed for each of the Weibull distributions. Please see Table A.1 in 

Appendix A. 

Table 1.4 Results of  for Lognormal distribution (3, 1) with   33.1,  

1884.3 and  1.72  

Sim. Asy.  App. Dev. Mod. App. Dev. 

 
0 

(1) 

0.00 

(2) 

0.36

(2) vs.(1) 
 

 0.36 

(3) 

0.00

(3) vs.(1) 

 0.00 
1 0.00 0.39 0.39 0.04 0.04 
2 0.01 0.42 0.41 0.08 0.07 
3 0.03 0.45 0.42 0.11 0.09 
4 0.05 0.48 0.43 0.15 0.10 
5 0.08 0.51 0.43 0.19 0.11 
6 0.12 0.54 0.42 0.23 0.11 
7 0.15 0.57 0.42 0.27 0.12 
8 0.18 0.60 0.42 0.30 0.12 
9 0.22 0.63 0.41 0.34 0.12 

10 0.26 0.66 0.40 0.38 0.12 

    
 

0 0.000 -49.684 49.68 0.000 0.00 
1 0.000 -49.31 49.31 0.015 0.01 
2 0.005 -48.905 48.91 0.060 0.06 
3 0.024 -48.471 48.49 0.136 0.11 
4 0.064 -48.006 48.07 0.242 0.18 
5 0.131 -47.511 47.64 0.378 0.25 
6 0.229 -46.986 47.21 0.544 0.32 
7 0.358 -46.43 46.79 0.740 0.38 
8 0.524 -45.845 46.37 0.967 0.44 
9 0.725 -45.229 45.95 1.224 0.50 

10 0.972 -44.583 45.55 1.511 0.54 
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 Table 1.6  Deviation for Weibull distributions with different  

 

 

  

 0.004 

  

  Asy. App.  Mod. App. 
 0.159 0.101

    
 

  Asy. App.  Mod. App. 
   0.555  0.409 

 0.053  0.030 0.018    0.421  0.399 
 0.273  0.027 0.016    0.729  0.662 
 0.461  0.035 0.026    1.098  1.050 

5.000 
 Average 

0.342 
 0.118 

0.272  
0.086

16.814 
   3.923 

14.565
 3.417 

 

 

Table 1.5 Results of for Weibull distribution (1, 5) with   0.918,   0.044 
and   0.052 

Sim. Asy.  Dev. Mod. App. Dev. 

 
(1) App. (2) (2) vs.(1) 

 
(3) (3) vs.(1) 

0 0.00 -0.36 0.36 0.00 0.00 
1 0.00 -0.34 0.34 0.00 0.00 
2 0.00 -0.31 0.31 0.00 0.00 
3 0.01 -0.28 0.28 0.00 0.01 
4 0.01 -0.25 0.26 0.00 0.01 
5 0.02 -0.22 0.24 0.00 0.02 
6 0.02 -0.19 0.22 0.00 0.02 
7 0.03 -0.17 0.20 0.02 0.01 
8 0.04 -0.14 0.18 0.04 0.00 
9 0.05 -0.11 0.16 0.05 0.00 

10 0.06 -0.08 0.14 0.07 0.00 

    
 

0 0.000 3.08318 3.08 0.000 0.00 
1 0.000 2.7339 2.73 0.000 0.00 
2 0.002 2.41284 2.41 0.000 0.00 
3 0.006 2.11998 2.11 0.000 0.01 
4 0.014 1.85533 1.84 0.000 0.01 
5 0.027 1.6189 1.59 0.000 0.03 
6 0.047 1.41067 1.36 0.001 0.05 
7 0.073 1.23065 1.16 0.013 0.06 
8 0.107 1.07884 0.97 0.040 0.07 
9 0.150 0.95524 0.80 0.081 0.07 

10 0.207 0.85985 0.65 0.138 0.07 
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Table 1.7 Average deviation of approximated  from simulation results for three 
methods of determining switch-over points 

[0, ) [ , ) 

Asy. Mod. Asy. Mod. 
App. App. App. App. 

Distribution Method I 

Erlang (2,2.5) 0.0743 0.0190 0.0523 0.0211 

Normal (100,20) 0.1736 0.0304 0.1251 0.0706 

Lognormal (3,1) 0.3319 0.1470 0.3313 0.1503 

Distribution Method II 

Erlang (2,2.5) 0.0632 0.0454 0.0269 0.0490 

Normal (100,20) 0.1736 0.0284 0.1085 0.0622 

Lognormal (3,1) 0.3579 0.1777 0.3579 0.1831 

Distribution Method III 

Erlang (2,2.5) 0.0632 0.0264 0.0436 0.0292 

Normal (100,20) 0.1039 0.0525 0.0720 0.0677 

Lognormal (3,1) 0.2677 0.0874 0.2666 0.0884 

Table 1.8 Average deviation of approximated     from simulation results for 
three methods of determining switch-over points 

[0, ) [ , ) 

Asy. 
App. 

Mod. 
App. 

Asy. 
App. Mod. App. 

Distribution Method I 

Erlang (2,2.5) 0.0951 0.0162 0.0679 0.0188 

Normal (100,20) 2.3664 0.4675 1.5087 1.1175 

Lognormal (3,1) 41.4273 10.3084 41.2438 10.5375 

Distribution Method II 

Erlang (2,2.5) 0.0816 0.0741 0.0372 0.0980 

Normal (100,20) 2.3664 0.4049 1.6272 1.3251 

Lognormal (3,1) 43.3314 12.2720 43.1389 12.6439 

Distribution Method III 

Erlang (2,2.5) 0.0816 0.0240 0.0575 0.0272 

Normal (100,20) 1.6190 1.5434 1.2122 2.0054 

Lognormal (3,1) 36.3162 8.2881 36.1589 8.3856 
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The three methods are I) determining  and  based on  and  

 in the case of knowing the inter-renewal time distribution, II) determining    

and    in the case of not knowing the inter-renewal time distribution, 

and III) Determining    based on the value of coefficient of variation as in Equation 

(1.7). Since method III does not offer any formula to determine , method I is used 

instead. The same comparison is also made for the Weibull distributions with different 

parameters in Appendix A in Tables A.2 through A.7. 

1.5 An application example 

The proposed approximation method can be used in many application areas, such 

as maintenance and reliability, inventory planning, supply chain planning, in which the 

challenge is to derive an explicit expression for a renewal function that is often used in an 

optimization model. As an example to show the performance of our proposed method, we 

discuss a Vendor-Managed Inventory (VMI) problem studied by Cetinkaya et al. (2008). 

Consider a single item inventory system involving one retailer and one vender 

with stochastic demand. For some reason, the retailer does not keep any stock. Each 

customer order arriving at the retailer is immediately transmitted to the vendor. The 

vendor must satisfy all orders eventually, though he could consolidate multiple orders 

into one outbound shipment to the retailer to achieve economies of scale inherent in 

transportation. Once the inventory level of the vendor drops below zero, a replenishment 

order is placed to bring the inventory back to its base stock. The replenishment lead time 

is assumed to be zero and the time between two consecutive replenishments is defined as 

a replenishment cycle. In this setting, successive orders from customers reach the retailer 

following a stochastic process with inter-arrival times . The stochastic process 

 , 1,2, … consists of independently and identically distributed nonnegative 
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random variables with finite mean . The orders are considered to be bulky where the 

size of the  order from customers to the retailer is denoted by . The stochastic 

process  ,   1,2, …  also consists of independently and identically distributed 

nonnegative random variables with distribution   with finite mean . The inventory 

decision variables of interest are the order-up-to level  and the critical dispatch 

quantity , which is a threshold value that triggers a dispatch to the retailer. Letting  

∑   , 1 and  0, we define  sup :  .  is the arrival 

time of the  retailer order and  denotes the renewal process that registers the 

number of retailer orders placed by time . Letting ∑   , 1 and  0, we 

also define  sup  :   .  is the cumulative demand immediately after the 

 retailer order and  denotes the renewal process that counts the number of 

retailer orders consolidated up to  units. It is assumed that the two stochastic processes 

of   and   are independent. The costs of the system include , fixed cost of 

dispatching, , fixed cost of replenishing the vendor inventory, , unit inventory 

holding cost at the vendor’s warehouse, and , waiting penalty cost per unit per unit time 

at the retailer side. 

Under the above assumptions, the inventory process is a regenerative process and 

the regeneration points are the vendor’s replenishment moments, when the target 

inventory level  is reached. Based on the renewal-reward theorem (Tijms 2003), the 

long-run average cost rate is 

,   
   (1.15)

  
. 

The optimal policy parameters  and  are then computed by solving the 

optimization problem of 
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                min ,  
(1.16)

 s.t.  0,  0.  

Let  denote the length of the th consolidation cycle (that is the time between 

two consecutive dispatches) and  denote the size of the consolidated load accumulated 

during the th consolidation cycle. Therefore, ~   ∑   and 

~   ∑   and consequently  
 

  

1  1  and  1    

1  where ·  is the renewal function for ·  and characterizes the renewal process of 

 ,   1,2, … . Let K denote the number of consolidation cycles within a given 

replenishment cycle so that E    ∑  . Letting 

.  denote the renewal function of · , the distribution function of , we have 

∑   1  1 1 , and 

   
(1.17)

 1  1 . 

The expected cost in one replenishment cycle is the summation of the expected 

customer waiting cost, expected inventory holding cost, replenishment cost, and expected 

dispatching cost to the retailer. 

   

1
 

1  

 
(1.18)

 1.  
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(1.19) 
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Combining the above results, we have (please see Appendix A.3 for how to obtain 

this result) 

1  

1  

Equation (1.19) cannot be optimized in its current shape because of the 

complexity of the renewal functions and their integrals. Approximations of the renewal 

function and its integral are necessary to obtain optimal values of  and . We solve 

this problem using the proposed modified approximations and compared the results with 

those from the asymptotic approximation, presented by Cetinkaya et al. (2008). 

It is noteworthy to mention that the retailer order to the vendor is essentially the 

summation of  and excess life of the process defined by beyond . Equations 

(1.8) and (1.12) for approximating require the first, second and third moments of 

· , denoted by ,  and  respectively. We have 

(1.20)
 1 , 

1 2
 

 (1.21) 

and 

 

3 3 . (1.22)
  

Here,  is the first-order derivative of . To be able to calculate , we 

need to calculate  or  for a general renewal process as 
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2  

  
(1.23)

 

Theorem 1. Suppose that  is non-arithmetic with  ∞ then, 

(1.24) 

Provided that  ∞  and   ∞. 

Proof. Please see Appendix A4. 

In general, the distribution of · , although not known, has smaller variance 

compared to the initial inter-renewal time distribution, · , and consequently has a 

rather small coefficient of variation. Please note that · ,  has the same variance as the 

excess life for the renewal process of  beyond . For example, for the initial 

renewal process given in Table 1.2 with  0.5, we observe that ·  has  0.05  

and the reason can be explained by Equations (1.20) and (1.21). This phenomenon is 

considered to be a disadvantage in terms of approximating the renewal function and its 

integral for the renewal process associated with ·  since convergence of the asymptotic 

approximations for   happens at relatively larger values of  based on Equation 

(1.7). Furthermore, the values of the renewal function  and its integral keep zero 

from 0 until   . This in return, is an advantage for the modified approximation 
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described in Section 3.2 which keeps the values of the renewal function and its integral at 

zero for small values of . 

We compare the results using three measures of Δ , Δ  used in the study of 

Cetinkaya et al. (2008) and Δ , where 

|  , | (1.25)Δ %   100, 
,  

| , , |
Δ %  100, (1.26)

,  

|  , |
Δ %  100 (1.27)

,  

In the Equations (1.25) through (1.27) superscript * indicates that the values of 

the variables are obtained by minimizing the cost function of (1.19) and superscript S 

indicates that the values of the variables are obtained by simulation.  denotes the 

calculated optimum cost obtained by minimizing approximated Equation (1.19). The 

simulated cost of the optimum policy obtained by minimizing approximated Equation 

(1.19), is denoted by ,  and the optimum cost obtained by simulation 

(enumeration) is denoted by , . Among the three measures, Δ % is the most 

important because it measures the actual performance of a policy that is obtained based 

on the selected approximations. 

The asymptotic approximation defined in Equations (1.5) and (1.6) to minimize 

Equation (1.19) sometimes results in smaller calculated cost compared to the modified 

approximation. The reason is the negative renewal function values at small  (here ) 

and large values of integral of renewal function values at small due to the negatively 

signed integral of renewal function in Equation (1.19) (Please see Appendix A.3 for more 
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details). Although smaller calculated cost value of a policy seems to be favorable, it is not 

achievable practically and different from the actual cost of implementing the policy.  

Table 1.9 Policy and cost comparison: asymptotic versus modified approximation* 

     % % % 

Parameters Asymptotic approximation 

80 1 10 4 1 3 24 37.08 0.58% 0.29% 0.87% 

80 1 40 4 1 7 23 53.98 1.86% 0.31% 2.17% 

80 1 40 8 1 4 24 60.03 0.98% 0.03% 1.01% 

80 1 80 16 0.1 13 82 284.12 0.85% 0.13% 0.99% 

80 4 10 16 0.1 6 40 251.57 1.19% 0.49% 1.67% 

320 1 10 4 1 3 52 65.41 0.45% 0.13% 0.58% 

320 1 40 8 0.1 4 52 88.29 0.81% 0.07% 0.86% 

320 4 10 8 0.1 11 82 410.39 2.12% 0.56% 2.66% 

320 4 40 16 0.1 14 81 540.35 2.38% 0.59% 2.98% 

320 4 40 16 1 3 24 148.3 0.47% 0.42% 0.88% 

Parameters 

       

Modified approximation 

 % % % 

80 1 10 4 1 2 24 37.32 0.05% 0.03% 0.02% 

80 1 40 4 1 7 22 53.13 0.23% 0.08% 0.14% 

80 1 40 8 1 4 24 60.72 0.16% 0.03% 0.13% 

80 1 80 16 0.1 12 81 287.83 0.44% 0.05% 0.39% 

80 4 10 16 0.1 5 40 255.42 0.33% 0.02% 0.30% 

320 1 10 4 1 2 53 65.70 0.00% 0.06% 0.06% 

320 1 40 8 0.1 4 53 89.11 0.11% 0.05% 0.04% 

320 4 10 8 0.1 8 83 420.63 0.32% 0.05% 0.27% 

320 4 40 16 0.1 12 81 555.70 0.39% 0.06% 0.33% 

320 4 40 16 1 2 24 149.26 0.17% 0.15% 0.02% 

* Demand follows Erlang distribution (2, 2.5) 

Consider a policy that is obtained by applying asymptotic approximation, e.g. 

3, 24   148.3. The simulation result shows that if we put this policy into practice, 

the system yields the cost of 3, 24   149.62 with a deviation of 0.47% compared to 
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0.17% when the policy of (2, 24) from the modified approximation is applied. Other 

values of accuracy measures are shown in Table 1.9 for the instances with small  

values. Please note that the integral for  in modified approximation is zero from 

0 to  for any  value (Please see Appendix A.3 for more details) 

1.6 Summary and conclusion 

In this chapter we introduced a simple but effective approximation for the renewal 

function and its integral. The commonly used approximations of the renewal function and 

its integral based on asymptotic behaviors do not perform well for small values of . The 

main focus of this research is to improve the performance of the approximation when the 

values of  are outside the typical asymptotic range. By plotting and studying the 

simulated values of renewal function and renewal function integral, we developed a 

three-piece function with two switch-over points that resembles the simulation results of 

renewal function and its integral. Intensive numerical studies show that our modified 

approximation outperforms the asymptotic approximation. The modified approximation 

is easy to implement, especially useful for decision makings. A comprehensive 

application case from the literature is used to demonstrate the applicability and 

performance of the proposed modified approximation. In the future, more applications 

will be investigated to test the effectiveness of the proposed modified approximations. 
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CHAPTER II 

A STOCHASTIC PROCESS STUDY OF TWO-ECHELON SUPPLY CHAIN 

INVENTORY DECISIONS WITH BULKY DEMAND 

2.1 Introduction and literature review 

This chapter compares the centralized and decentralized systems for a supply 

chain comprised of a vendor and a retailer, who faces bulky demands. Customers arrive 

as a renewal process and the amount of each customer order follows an independent and 

identical distribution. Some literature of supply chain management assumes policies are 

set by a central decision maker to optimize total supply chain performance (Lee and 

Whang 1999) while some other research studies the decentralized case (e.g. Cachon and 

Zipkin 1999, Lee and Whang 1999, Chen et al. 2001, Porteus 2000). As a centralized 

system, the benefits of Vendor-Managed Inventory (VMI) in a supply chain have been 

well recognized by numerous success stories in the retail industry. A VMI supplier has 

the right of controlling the downstream resupply decision rather than just filling orders 

placed by downstream players. On the other hand, many supply chains in practice still 

operate in a decentralized mode, in which each business entity is responsible for its own 

inventory policy decisions (Horngren and Foster 1991) based on individual entity 

performance. Lee and Whang (1999) assumed that the most downstream echelon is 

charged for all backorder penalties and the upstream echelon is charged for their holding 

cost. Porteos (2000) offered a scheme called responsibility tokens that endow the system 

with a self-correcting property. The game theory is often involved in studying 
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decentralized systems. Cachon and Zipkin (1999), for example, studied the echelon 

inventory game and the local inventory game. In their study the parties across two 

echelons played a Nash equilibrium. Many studies investigated how a supplier could 

induce a retailer to behave in a manner that is more favorable to the supplier (Donohue 

2000, Tsay 1999, Ha 2001, Lal and Staelin 1984, Moses and Seshadri 2000, Kraiselburd 

et al. 2004, Pasternack 1985). Chen (1999) studied competitive selection of inventory 

policies in a multi-echelon model with deterministic demand. 

This study considers the case in which both the customer order arrivals and sizes 

are stochastic as a general stochastic processes, similar to the problem setting used by 

Cetinkaya et al. (2008). The compound Poisson process has been widely used to model 

demand process in the inventory management literature. Chen (1998), for example, 

considered discrete distributed demand size with a Poisson customer arrival process to 

study the value of demand information sharing in a supply chain. It has been also shown 

that inventory coordination can help save costs for the case of compound Poisson demand 

and zero lead time (Thompstonej and Silver 1975). This study will relax the assumption 

of the Poisson arrivals of customers and use a general distribution to model the inter-

arrival times of customers. In order to attack the non-Poisson arrivals, the renewal 

function will be used in the analysis (Tijms 2003). 

2.2 Problem statement 

Consider a two-echelon supply chain including a vendor and a retailer, both 

implementing a base-stock inventory policy. All the demands must be satisfied and it is 

assumed that the order lead-times are negligible. Both the vendor and the retailer follow a 

quantity-based policy and place an order immediately after their inventory goes below 

zero. The costs in the system include , fixed cost of shipment from the vendor to the 
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retailer, , fixed cost of shipment to the vendor, , unit inventory holding cost for the 

supplier, and , unit inventory holding cost for the vendor. In the decentralized case, the 

retailer is responsible for Ar and hr while the vendor is responsible for Av and hv. 

Successive orders from customers reach the retailer following a stochastic process with 

inter-arrival times . The stochastic process  ,   1,2, …  consists of independent 

and identically distributed nonnegative random variables with finite mean 1/ . The 

orders are considered bulk where the size of the  order from customers to the retailer 

is denoted by . The stochastic process  ,   1,2, …  also consists of independent 

and identically distributed nonnegative random variables with distribution   with finite 

mean . The inventory decision variables are  as the base stock of the retailer and 

 as the base stock of vendor. The time at which  customer order reaches the retailer 

is ∑   , 1,  0 and therefore the number of retailer’s order arrivals up 

to time t is defined by  sup :  . The accumulated demand immediately 

after the  customer order is   ∑   and the number of customer order to 

accumulate the total demand just beyond  is 1  inf :   

where  sup  :   . By assuming the two stochastic processes of 

  and   are independent, we may face three inventory management cases based on 

the values of  and . First, if   0, then each replenishment of the vendor 

consists of more than one replenishment of retailer. Second, if  , then each 

replenishment of the retailer triggers one replenishment of vendor so that  will be 0 to 

eliminate the vendor’s inventory holding cost without changing the vendor’s ordering 

costs. The final case is that  0 while  0, in which the retailer does not hold any 

inventory and places an order with the vendor when seeing a customer order. 
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Figure 2.1 A replenishment cycle at the retailer 

Figure 2.2 A replenishment cycle at the vendor 

2.3 Problem formulation and analysis 

The inventory process for the whole system is a regenerative process and 

regeneration happens when the vendor replenishes her inventory. Therefore, the cycle for 
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the overall system is defined as the replenishment cycle of the vendor. In each cycle, the 

retailer may replenish her inventory once or more. Figure 2.1 shows a sample 

replenishment cycle at the retailer and Figure 2.2 illustrates a cycle that happens at the 

vendor for the case in which   0. Let  denote the total cost incurred at both 

parties during the  cycle length and  denote the  cycle length for the overall 

system. Based on the Renewal-Reward theorem, the expected long-run average total cost 

per time unit is ,    
 denote the  replenishment cycle  for any . Let  

length at the retailer and  is the cumulated customer orders during the  retailer 

replenishment cycle. Under our assumptions, processes  ,   1,2, …  and  ,   

1,2, …  are independent and identically distributed nonnegative random variables as 

 ~     , and  (2.1)

 

 

~    . (2.2)

 

Therefore,

     
1

1   
1

1 , and  (2.3)

     1   1 , (2.4) 

where ·  is the renewal function for · , which characterizes the renewal process of 

 ,   1,2, … . 

2.3.1 Expected cycle length 

Based on the definition, each cycle (between two consecutive replenishments at 

the vendor) consists of at least one retailer replenishment, so  ∑  , 

where K denotes the number of retailer replenishments in one cycle and  
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1   
 

 

 
1 

1  . 
 

 

inf : ∑   . Having .  as the distribution function of , ·  denotes the 

-fold convolution of · . Therefore,    and   

∑   , so

    1,  (2.5)
 

where .  denotes the renewal function of · . Based on the Wald’s equation 

(Tijms 2003), we have 

  
1

 
 1   

1
 

 1  1 . (2.6) 

2.3.2 Expected cycle cost 

The cost of each cycle consists of two components: inventory holding cost and 

shipment cost for both the retailer and the vendor. The area below the inventory line in 

Figure 2.1 times the retailer’s unit inventory holding cost times the number of retailer 

replenishments in one cycle calculates the total holding cost of the retailer in one cycle as 

1
(2.7)

Similarly the area below the inventory line in Figure 2.2 times the vendor’s unit 

inventory holing cost calculates the total holding cost of the vendor in one cycle, which 

is, 

(2.8)

Since the cycle length is defined as one vendor’s replenishment cycle, the 

shipment cost to the vendor is   and the shipment cost to the retailer is 

   1 . The total cost in one system-wide cycle is then 

        . 
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per time unit is ,    for any  and 

2.3.3 Expected long-run average cost 

Based on the Renewal-Reward theorem, the expected long-run average total cost 

(2.9) 
1    

.  1  1  

The optimal inventory policy for the centralized system is 

,  argmin ,  , . Please note that when  , Equation (2.9)

 
will be reduced to 

  
 

 
 because  0. 

 

In the decentralized case, each party is responsible for her own cost and the two 

parties make their decisions in a sequential way. The retailer’s long-term average total 

 
cost per time unit is   

  
, which is the first term in 

 

Equation (2.9). 

The optimal policy for the retailer in the decentralized case is decided by   

argmin  . After knowing , the vendor minimizes her cost   

 
, which is the second term in Equation (2.9), to get

  

her optimal policy as  argmin  . 

2.4 Approximation 

Equation (2.9) is too complicated to be optimized directly, we propose 

 approximations for ,  , , and    based on the 

results of chapter one. We approximate the cost function in three regions of  and . In 

the first region, the renewal function and its integral have the value of zero. In the second 
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region, we apply the modified approximations and in the third region we use the 

asymptotic expansions to approximate the cost function. Comparing the minimum costs 

in the three regions lead to the global minimum cost and the corresponding optimal 

policy. The approximations for the third region is as follows, 

  2  (2.10)   

2  , 

(2.11)

(2.12)

(2.13) 

Here, ,  and  denote the first, second and third moments of ·  and ,  

and  denote the first, second and third moments of ·  respectively. For the moments 

of · , we have 
(2.14)

  1 , 

1 2
 

, and  (2.15) 

 

  3   3    . (2.16)
  

In order to obtain , we need to apply the following approximation 

for  .
 

  
 

(2.17)
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(2.10), (2.12), (2.14), and (2.15) are only used in the study of Cetinkaya et al. 

(2008) to approximate their cost functions.  Their approximation was verified by 

simulation for exponentially distributed or Erlang-k distributed demand quantities. We

suspect that application of their approximations to   may introduce more 

errors when the customer order quantities follow other distributions. Therefore, we 

introduce the approximations of (2.11) (see Tijms (2003), (2.13), (2.16), and (2.17) to 

obtain the approximate total cost function for the centralized case as

(2.18)
 

The optimal inventory policy for the centralized system is 

,   argmin  , . (2.19)
    

In the decentralized case, the retailer’s long-term average cost per time unit is 

approximated by  and the optimal policy for the 

retailer has a close form of Q  max . 

The vendor’s long-term average cost per time unit is approximated by   

 and the optimal policy for the vendor is decided by 

argmin , which has the close form of 
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(2.20)

The vendor’s optimal policy under the approximation is given by solving 

argmin  If argmin  
  (2.21)

  Otherwise.argmin
   

 

2.5 Numerical experiments 

In order to demonstrate the analysis procedure laid out in Section 2.4 and evaluate 

the benefit of centralization, such as VMI, comprehensive numerical experiments with 

the parameter values in Table 2.1, same as those in the study of Cetinkaya et al. (2008) 

for their one-player’s case, are conducted. There are 1,024 instances for all combinations 

of parameters’ values. The demand inter-arrival is assumed to follow an exponential 

distribution. 

Table 2.1 Parameters’ values used in numerical experiments 

   
40 1 5 2 1 5 
80 2 10 4 10 20 
160 4 20 8 
320 8 40 16 

Tables 2.2 summarizes the average savings under different ratios of ⁄  and 

/ . Figure 2.3 also illustrates the changes in saving separately for ⁄  and /  
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ratios. In general, the savings are more significant when  is relatively small compared 

to hv. The reason can be explained as that by increasing  , assuming fixed ,  and 

, the vendor tends to shift the inventory to the retailer where the inventory holding cost 

is not increased. This is what happens in the centralized system to minimize the system-

wide cost. But in a decentralized system it is too late for the vendor to shift the inventory 

to the retailer’s side since the retailer has already minimized her cost and determined the 

inventory decisions. The reason of changes in saving when the ⁄  ratio is more 

complicated in a way that it relates to the inventory holding costs as well. Supposing 

fixed costs of ,  and , by increasing  the vendor tries to order less frequently or 

more at a time. This is the only option for the vendor in a decentralized system. But in the 

centralized system, the vendor has another important option specially when the vendor’s 

inventory holding cost, , is relatively high and the retailers costs are relatively small.  

Table 2.2 Average savings caused by centralization for all cases 

⁄  
1 

0.0625 
0.00% 

0.125 
0.00% 

0.25 
2.41% 

/  
0.5 

4.18% 
1 

4.91% 
2 

5.08% 
4 

5.88% 
2 0.00% 0.00% 0.00% 6.57% 11.28% 12.17% 12.95% 
4 0.00% 0.00% 0.00% 2.69% 16.83% 23.03% 25.03% 
8 0.00% 0.00% 0.00% 0.00% 13.67% 31.17% 37.55% 

16 0.00% 0.00% 0.00% 0.00% 10.47% 31.27% 47.12% 
32 0.00% 0.00% 0.00% 0.00% 7.52% 31.41% 49.26% 
64 0.00% 0.00% 0.00% 0.00% 5.16% 31.60% 50.75% 

So in this case the vendor’s option in the centralized system is to shift the 

inventory to the retailer’s side and benefit from low costs of the retailer; the strategy that 
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is not possible in the decentralized system. This is the case where a significant saving can 

be observed. But even in centralized case and where the costs of the retailer are also high, 

the vendor just considers a tradeoff between her own inventory holding and fixed costs to 

determine her inventory decision. This case is not expected to result in a significant 

saving. 

Figure 2.3 Average savings caused by centralization for all cases 

Tables 2.3 and 2.4 show in detail how changes in inventory holding and fixed 

costs of the retailer affect the retailer’s and the vendor’s inventory policy decisions in a 

relative slow moving and fast moving consumer demand processes. As both tables how, 

by increasing the retailer’s inventory holding cost the retailer’s order quantity decreases. 

And by increasing the retailer’s fixed cost the retailer’s order quantity increases to escape 
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from high inventory holding cost charges. Table 2.5 also shows how the vendor’s 

inventory decisions are affected by changes in her inventory holding and fixed costs. As 

it is expected by increasing the vendor’s inventory holding cost, the vendor’s order 

quantity decreases and by increasing the vendor’s fixed cost, her order quantity increases. 

Please note that unlike the Tables 2.3 and 2.4 and since the retailer’s costs are fixed, the 

retailer’s order quantities of decentralized case are all the same in Table 2.5. 

Table 2.3 Sample centralization saving with  10,  5, , and  

    
      ,   

320 2 5 2 
4 
8 
16 

12 
7 
0 
0 

118 
120 
123 
123 

283.699 
295.571
302.9 
302.9 

123 
7 
0 
0 

0 
120 
123 
123 

254.87 
295.57 
302.9 
302.9 

10.16% 
0.00% 
0.00% 
0.00% 

10 2 
4 
8 
16 

18 
12 
7 
0 

114 
118 
120 
123 

296.866 
314.627 
338.292
352.9 

125 
12 
7 
0 

0 
118 
120 
123 

256.82 
314.62 
338.29 
352.9 

13.49% 
0.00% 
0.00% 
0.00% 

20 2 
4 
8 
16 

28 
18 
12 
7 

110 
114 
118 
120 

315.172 
341.101 
376.48 
423.73 

126 
19 
12 
7 

0 
115 
119 
120 

260.69 
341.09 
376.49 
423.74 

17.29% 
0.00% 
0.00% 
0.00% 

40 2 
4 
8 
16 

41 
28 
18 
12 

103 
110 
114 
118 

340.808 
378.07 
429.57 
500.2 

130 
28 
18 
12 

0 
110 
115 
118 

268.25 
378.07 
429.56 
500.2 

21.29% 
0.00% 
0.00% 
0.00% 

Tables 2.6 and 2.7 shows how the inventory policy decisions of the vendor and 

the retailer are affected by the parties fixed cost and inventory holding cost respectively. 

Table 2.6 shows that by increasing the vendors fixed cost her order quantity increases. 

Also by increasing the retailer’s fixed cost the retailer’s order quantity increases in both 
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decentralized and centralized systems and that of the vendor’s decreases in decentralized 

case. 

Table 2.4 Sample centralization saving with  10,  20, , and  

    
      ,   

320 8 5 2 
4 
8 
16 

0 
0 
0 
0 

111 
111 
111 
111 

1056.4 
1056.4 
1056.4 
1056.4

239 
164 
112 

0 

0 
0 
0 

111 

509.22 
719.17 
1014.3 
1056.4 

51.80% 
31.92% 
3.99% 
0.00% 

10 2 
4 
8 
16 

28 
0 
0 
0 

102 
111 
111 
111 

1088.942
1106.4 
1106.4 
1106.4

 241 
166 
112 

0 

0 
0 
0 

111 

513.13 
724.71 
1022.2 
1106.4 

52.88% 
34.50% 
7.61% 
0.00% 

20 2 
4 
8 
16 

47 
28 
0 
0 

93 
102 
111 
111 

1122.07 
1174.38 
1206.4 
1206.4

246 
169 
115 

0 

0 
0 
0 

111 

520.87 
735.66 
1037.7 
1206.4 

53.58% 
37.36% 
13.98% 
0.00% 

40 2 
4 
8 
16 

73 
47 
28 
0 

0 
93 

102 
111 

904.193 
1245.77 
1345.27 
1406.4

254 
174 
118 

0 

0 
0 
0 

111 

536.01 
757.1 
1068.1 
1406.4 

40.72% 
39.23% 
20.60% 
0.00% 

Table 2.5 Sample centralization saving with 1,  5, , and  

    
      ,   

5 2 40 1 
2 
4 
8 

0 
0 
0 
0 

16 
10 
6 
0 

24.725 
32.5 

42.769 
45 

0 
11 
11 
11 

16 
0 
0 
0 

24.725 
29.263 
29.263 
29.263 

0.00% 
9.96% 
31.58% 
34.97% 

80 1 
2 
4 
8 

0 
0 
0 
0 

24 
16 
10 
6 

33.092 
44.449 

60 
80.538 

0 
17 
17 
17 

24 
0 
0 
0 

33.092 
40.705 
40.705 
40.705 

0.00% 
8.42% 
32.16% 
49.46% 

160 1 
2 
4 
8 

0 
0 
0 
0 

36 
24 
16 
10 

44.863 
61.185 
83.899 

115 

0 
25 
25 
25 

36 
0 
0 
0 

44.863 
57.065 
57.065 
57.065 

0.00% 
6.73% 
31.98% 
50.38% 

320 1 
2 
4 
8 

0 
0 
0 
0 

53 
36 
24 
16 

61.472 
84.726 
117.37 
162.8 

0 
36 
36 
36 

53 
0 
0 
0 

61.472 
80.355 
80.355 
80.355 

0.00% 
5.16% 
31.54% 
50.64% 
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Table 2.6 Sample centralization saving with  10,  20, , and  

    
      ,   

2 2 5 40 
80 

160 
320 

0 
0 
0 
0 

74 
111 
163 
236 

226.92 
301.6 

406.79 
555.28 

79 
115 
166 
239 

0 
0 
0 
0 

187.88 
259.42 
362.35 
509.22 

17.20% 
13.99% 
10.92% 
8.29% 

10 40 
80 

160 
320 

28 
28 
28 
28 

64 
102 
154 
228 

261.322 
336.312 
441.722 
590.352 

84 
119 
169 
241 

0 
0 
0 
0 

198.24 
267.02 
367.83 
513.13 

24.14% 
20.60% 
16.73% 
13.08% 

20 40 
80 

160 
320 

47 
47 
47 
47 

0 
93 

146 
219 

252.722 
373.28 
479.07 
627.97 

94 
126 
174 
246 

0 
0 
0 
0 

217.49 
281.6 

378.55 
520.87 

13.94% 
24.56% 
20.98% 
17.05% 

40 40 
80 

160 
320 

73 
73 
73 
73 

0 
0 

132 
206 

267.8291 
358.738 

530.5 
679.93 

111 
140 
185 
254 

0 
0 
0 
0 

251.6 
308.71 
399.13 
536.01 

6.06% 
13.95% 
24.76% 
21.17% 

Table 2.7 Sample centralization saving with  10,  20, , and  

    
      ,   

40 10 2 1 
2 
4 
8 

28 
28 
28 
28 

102 
64 
0 
0 

210.872 
261.322 
271.489 
271.489 

84 
84 
84 
84 

0 
0 
0 
0 

198.24 
198.24 
198.24 
198.24 

5.99% 
24.14% 
26.98% 
26.98% 

4 1 
2 
4 
8 

0 
0 
0 
0 

111 
74 
47 
28 

225.8 
276.92 
347.39 
441.77 

0 
0 
54 
54 

111 
74 
0 
0 

225.8 
276.92 
277.86 
277.86 

0.00% 
0.00% 
20.01% 
37.10% 

8 1 
2 
4 
8 

0 
0 
0 
0 

111 
74 
47 
28 

225.8 
276.92 
347.39 
441.77 

0 
0 
0 
33 

111 
74 
47 
0 

225.8 
276.92 
347.39 
385.75 

0.00% 
0.00% 
0.00% 
12.68% 

16 1 
2 
4 
8 

0 
0 
0 
0 

111 
74 
47 
28 

225.8 
276.92 
347.39 
441.77 

0 
0 
0 
0 

111 
74 
47 
28 

225.8 
276.92 
347.39 
441.77 

0.00% 
0.00% 
0.00% 
0.00% 

Table 2.7 illustrates the decrease in order quantity of the vendor as inventory 

holding cost increases. The savings are also increasing as the vendor’s inventory holding 

cost is increasing since higher inventory holding costs lead to smaller order quantity of 

45 



 

 

the vendor and larger order quantity of the retailer. Tables 2.6 and 2.7 also explain how 

the trends in savings may not be monotone as what is expected. For an example consider 

Table 2.6. 

The increase in the vendor’s fixed cost results in larger order quantity of the 

vendor and smaller savings. But as we see in the row where  20 or  40, the 

saving on the contrary is decreasing and the reason is that the inventory policy pairs are 

similar i.e. the retailer orders a large quantity while the vendor does not order at all. 

In the next section we discuss about the channel inventory and how it has been 

evolved over time letting the supply chain parties to benefit from the savings caused by 

altering their inventory management decision. Also we indicate how the shifts in 

inventory are initiated in different industries as a practical evidence of our findings. 

2.6 Discussion on channel inventory 

In a conventional supply chain there is no collaboration between the supply chain 

parties and the buyer determines her order quantity and timing of order placement and is 

responsible for managing her inventory. The vendor is also responsible for her own 

operations of ordering and inventory holding. By the growth of information technology, 

Continues Replenishment Programs (CRP) and Vendor Managed Inventory (VMI) 

systems appeared to improve supply chain performance. In VMI supply chain systems 

the vendor decides on the buyer’s order quantity and schedule while managing her own 

operations. In this arrangement the buyer is responsible for her inventory. However, in 

practice the buyer and the vendor deviate from this arrangement by placing inventory at 

the buyer under consignment.  The vendor may offer the buyer to keep the buyer’s stock 

in consignment. In this case, the vendor holds the ownership of the inventory until they 

are used by the buyer or delivered to the consumer. Some example of consignment stock 
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can be found in various industries e.g. the high-tech and automotive industries and the 

industries such as supply medical good, chemicals, construction materials and spare parts. 

When the vendor owns the buyer’s inventory as a consignment stock in a VMI setting, 

the system is called Vendor-Owned Inventory (VOI). Consignment stock is also possible 

in conventional supply chain, which is called conventional-plus arrangement (Verheijen 

2010). Under VOI, the vendor might share a portion of the cost savings that she gains 

from knowing the buyer’s inventory cost and implementing a VOI system. The buyers 

always prefer consignments stocks since they are not liable for the risks and do not need 

to reserve cash for holding the inventory. Therefore, it may be considered as an incentive 

offer to the buyer in order to place larger order quantities from the vendor. In some 

industries such as publishing if a vendor wants to remain in business it is viable for her to 

offer consignment stock. The same situation exist is seasonal product where the buyer 

does not accept to own the inventory. In some other industries, a vendor initiates the 

agreement on consignment stock in contrast with the case where the buyer forces the 

vendor to agree on consignment stock (Verheijen 2010). We investigate the shift in 

inventory between the buyer and the inventory and its impact on the potential cost 

savings. The cost structure in general and ratios of the vendors to retailer’s inventory 

holding cost and fixed cost in particular play an important role in determining the 

inventory decisions of the parties. This concept is the foundation of channel coordination 

in our study and describes how the parties can benefit from intentionally altering these 

ratios. 

2.7 Conclusion 

This study considers a two-echelon supply chain facing a bulk demand process in 

which the customer order quantities follow a general distribution. After deriving the 

47 



 

 

optimal policy for both the centralized and decentralized cases based on the renewal 

theory, approximations for the renewal function and its integral are introduced to easily 

calculate the optimal base stocks. The numerical experiments show that the centralization 

can lead to significant savings under some circumstances such as the ratio of /  is 

large. We also explain the changes in inventory policy decision of the parties as the cost 

structure changes as well as different trends in savings caused by changes in cost ratios of 

the vendor to that of the retailer. 
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CHAPTER III 

SUPPLY CHAIN COORDINATION OF ORDERING POLICIES INCORPORATING 

COST SHARING STRATEGIES 

This chapter proposes supply chain coordination mechanisms based on cost 

sharing of either inventory holding costs or ordering costs between the retailer and the 

vendor in the supply chain described in chapter two. 

3.1 Introduction and literature review 

The buyer–vendor coordination problem is one of the classical research areas in 

the multi-echelon inventory literature (e.g., Aysegul and Cetinkaya 2008). A fundamental 

research stream in this area, known as centralized modeling, recommends integrating and 

solving the decision problems of the buyer and the vendor together (e.g., Chan et al. 

2002, Goyal 1976, Hill 1999, Hoque and Goyal 2000, Lee et al.  2003). Although this 

approach provides the best result in terms of total system-wide profit/cost, it may not be 

feasible or desirable by all parties in many practical cases due to incentive conflicts. The 

alternative approach, known as decentralized modeling, suggests that the retailer and the 

vendor solve their decision problems independently of each other. However, the total 

system profits resulting from the centralized approach are superior to those resulting from 

the corresponding decentralized approach. In other words, decentralized models often 

result in lost profits for the system when compared to centralized models. As a remedy, 

another line of research in the literature proposes an alternative approach that relies on 

using the profit/cost gap between the centralized and decentralized approaches as an 
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inducement to improve decentralized solutions (e.g., Lee and Rosenblatt 1986, Monahan 

1984, Taylor 2001). In general, a supply chain is composed of independent firms with 

individual preferences (Cachon 1999). In contrast to the management of multi-echelon 

systems, which coordinates inventory, production and distribution decisions at multiple 

locations of one firm, supply chain management involves coordination of such decisions 

among multiple and independent firms (Johnson and Pyke 2001). One the major task of 

supply chain management is to coordinate the processes in the supply chain in such a 

way, that a given set of objectives is achieved (Stadler 2000). Most commonly, the 

relevant objectives, pursued by supply chain management, are minimizing system-wide 

costs while satisfying a predetermined service level (Lee and Billington 1993). The 

complexity in coordinating the processes in supply chains is introduced by the 

organizational structure within the network. (Bhatnagar et al. 1993) identify the issue of 

coordination-at the most general level, which they call general coordination-in integrating 

decisions of different functions. Within this problem of functional coordination, 

Bhatnagar et al. (1993) as well as Thomas and Griffin (1996) distinguished three 

categories of coodinations: (1) supply-production coordination, (2) production-

distribution coordination, and (3) inventory-distribution coordination. In this study we 

will focus on the third category, which is also called buyer–supplier coordination 

(Thomas and Griffin 1996). For each set of nodes in a supply chain, e.g. a location of a 

manufacturer and a site of an assembler, a supplier–buyer relationship can be identified 

(Anupindi and Bassok 1999). Material flows from a supplier to a buyer while information 

and financial flows are bi-directional. Both in the scientific discussion and in practice 

considerable attention is paid to the importance of a coordinated relationship between 

suppliers and buyers. As Goyal and Gupta (1989) noted, coordination between the 
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supplier and the buyer can be mutually beneficial to both. Studies on buyer–supplier 

coordination have focused on determining the order and production policy that is jointly 

optimal for both (Sucky 2006). Using such a joint optimal order and production policy-as 

opposed to independently derived policies- leads to a significant total cost reduction. 

However, there is an additional set of problems involved in implementing joint policies. 

Channel coordination requires the decentralized solution to be improved in a way 

that (i) it results in the same values for the decision variables as the centralized solution, 

and (ii) it suggests a mutually agreeable way of sharing the resulting profits. The sharing 

can be done by means of quantity discounts, rebates, refunds, fixed payments between the 

parties, and so on. All of these methods represent different forms of incentive schemes, or 

so-called coordination mechanisms, whose terms can be made explicit under a contract. 

Consequently, the output of channel coordination, i.e., the coordinated solution, combines 

the benefits of both centralized and decentralized solutions. However, the above two 

targets often cannot be both reached, especially when the information is asymmetric. 

As an immediate consequence of our analysis in Chapter 2, we observe that the 

potential cost savings can be obtained by centralization and more importantly, we 

observe that even a cooperative supply chain model can benefit from savings by changing 

the cost structures, which lead us to develop coordination strategies. 

3.2 Convexity and optimality property for system’s cost function 

We investigate the convexity of the retailer’s and the vendor’s cost functions in 

centralized and decentralized cases to ensure that there exist a unique optimal solution. 

Equations (3.1) and (3.3) show long-run average cost per time unit of the retailer and the 

vendor. Equations (3.2) and (3.4) are the derivatives of the cost functions. For functions 

(3.1) and (3.3) to be convex, the derivative functions (3.2) and (3.4) are required to be 
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increasing functions. Since the behavior and shape of the renewal function, its integral 

and derivative do not have close forms and are different for different distribution 

functions. It is technically difficult to investigate the convexity of (3.1) and (3.3) under 

their current forms. 

  
       

(3.1)
 1  

 
 

  
(3.2)

 1

(3.3)

(3.4)

Using the renewal function and its integral we first derive the approximated 

functions for the three regions where different approximations are used and then 

investigate the convexity for each region. The three regions include 1) the inventory 

policy is greater than or equal to the second switchover point,  , , 2) the inventory 

policy is greater than or equal to the first switchover point but less than the second 

switchover point ,   ,  and 3) the inventory policy is less than the first 

switchover point,  ,  where  ,  . In the first and second cases we use the 

asymptotic approximation and modified approximations respectively and the renewal 

function and its integral are approximated by zero for the third case. In the following, we 

first investigate the optimal order quantity for the retailer. 

Region1: When the inventory policy is greater than or equal to the second 

switchover point,  , , we plug in the asymptotic approximations of    

 
1 and  1  into (3.2) to obtain  
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(3.5)

 
The term of     in (3.5) is nonnegative because   is the variance

of the excess life, , when ∞ (Tijms, 2003). There are two cases regarding the 

minimum cost for the approximated . 
 

Case 1: When    , the approximated  increases in the 

region of  ,  and yields the lowest cost at  
, . 

 
Case 2: When    , the approximated  is convex in the

region of  ,  and yields the lowest cost at   
 

 

   
 

by setting 0 if ,  or at 
  

 

 

 
,  if , . 

Region 2: When the order quantity of the retailer falls between the two switchover 

points, ,   , , we apply the modified approximation to (3.2) and obtain 

   

 
  

 

 1  

(3.6)
   ,   

.
 , 1
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Here, 

(3.7)

(3.8)

Furthermore, we can obtain the second order derivative as 

 

1 2  ,  ,  1
 

2   ,  ,  1
.

 ,  1
 

(3.9)

If we just have a look at  that makes 0, we have

 
 

1 2  ,  ,  1
 

2  ,  1  ,  1  

 ,  1

  
1 2  ,  ,  1

 

.
 , 1

 

(3.10) 

Because 0, the sign of is decided by 1  2   , .
 

When ,  0,  is quasiconvex and unimodal. When , we
  

consider 1 2   , 1   2  ,  , . Furthermore, we have 
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(3.11) 

(3.12) 

because ,   and ,  . 

In summary,  is quasiconvex and unimodal in Region 2. Therefore, the 

minimum cost in the second region of ,   ,  is given by  ,  

1
 

   ,   0 if the solution falls into the region or at the 

boundary point of ,  and , . 

Region 3: When the order quantity of the retailer is less than the first switchover 

points,  , , we have the approximation of both  0 and    

0. Therefore, the minimum cost order quantity is at  0. 

The cost function  in (3.4) is similar to (3.2) by changing , , and  

into , , and  and considering  equivalent to . In the decentralized
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Since  1     0 and  
  1  0 the

optimal solution is given by solving 
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system, the optimal order quantity for the vendor is given in the following for a given 

order quantity of the retailer. 

  
1    

1  1  

(3.13) 

 

(3.14) 

(3.15)

which results in 
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(3.16) 

and  denotes the optimal inventory policy for the vendor under decentralized 

case using approximation of the renewal function and its integral. 

We also investigate the convexity for the cost functions in the centralized system 

to ensure there exist a unique optimal solution in this specific case. Equation (3.17) 

shows per-time-unit cost function of the centralized system. Equations (3.18) and (3.19) 

shows the derivative of the cost function (3.17) with respect to both decision variables. 

For cost function (3.17) to be a convex function, the derivative functions (3.18) and 

(3.19) are required to be an increasing function. Similar to the decentralized system’s 

case, since the behavior and shape of the renewal function, its integral and consequently 

the derivatives are not known and are different for different distribution functions, this 

cannot be investigated under the current forms of Equations (3.18) and (3.19). 

(3.17)
1   

1 1  

(3.18)
 1 1 1 

1 1
 

 
,  

1   
(3.19)

 1 1  
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,  0.  

 

Therefore we consider the three regions where different approximations are used 

and we use the earlier results of convexity analysis of the decentralized system discussed 

in section 3.2 since sum of two convex functions is a convex function. And the optimal 

solution is given by solving 

(3.20) 

Approximations are used based on the value of the decision variables: 1) the 

decision variables are greater than or equal to the second switchover point,  , , 2) 

the decision variables are greater than or equal to first switchover point and less than the 

second switchover point ,   ,  and 3) the decision variables are less than the 

first switchover point,   where  ,  . In the first and second cases we use the 

asymptotic approximation and modified approximations respectively and the renewal 

function and its integral are approximated by zero for the third case. So we consider nine 

cases base on the values of  and  which may fall in either of the three regions. Due 

to similarity of cases we discuss the case when the inventory policy is greater than or 

equal to the second switchover point,  ,  and  , , and we use asymptotic 

approximations to optimize the cost functions and to obtain the optimal inventory 

policies. For the other cases we may use proper approximations that are introduced in 

chapter 1 based on the values of  and . So Equation (3.17) is approximated by 
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(3.21) 

where 

(3.22)
  1 , 

1 2
 

 (3.23) 

and 

  

3 3 . 
  

(3.24)

It is important to note that the moments of the distribution function .  should 

be updated based on the value of . So we consider three cases as follows. 

Case 1:  , . 

(3.25) 
2

  
 

 3  
(3.26)

 
3

  
(3.27)

2   4  

See appendix B.1 for details. 

Therefore the costs function in case of  ,  and  ,  would be 

61 



 
 

 
2  1  

4   
6

 
2  1    2

1
 

1  2 
 

  

 

2  4   
6 2  1    2

1
 

 
 

 
2  1  

2   
 

  
    

  

 
 
2  1  

4   
6 2  1    2

1
 

2  
 

  
 

  

    

 1 3 3  

3
2 4 

2
   

 

  
2   2  

2   2  
4   2  

6   2  

 
 

   
  

2
  

  3  

  2  
2   2

 

 

 

        

 

  
2

1

1  
2

1

  

 
 
2  1

  

 

,  

4   
6

 
 2

1
 

  
2    

 

  
2  

(3.28) 

Case 2: ,   , . 

(3.29)

(3.30) 

See appendix B.2 for  and details. 

Case 3:  , . 
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(3.31)

   (3.32)

   (3.33) 

Now that the quasiconvexity of cost functions is ensured, we propose a method 

for obtaining an agreement on the decision for inventory policies of the vendor and the 

retailer in the decentralized case. We assume that the retailer has the market power to 

implement her optimal policy. For the retailer to implement any policy other her 

individual optimal one, the increase in her total cost must be compensated from the 

vendor. Suppose the vendor initiates the agreement where she offers to bear a fraction 

1  of the retailer’s fixed cost of shipment and/or a fraction 1  of cost of 

inventory carried by the retailer. The costs functions are then modified as follows 

compared to Equations (3.1) and (3.3). 

(3.34)

(3.35)

The terms involving (1 ) and (1 ) in Equation (3.8) reflect the cost sharing 

arrangement that the vendor bears. 

We assume that both parties involved have complete information about their cost 

functions. To persuade the retailer to deviate from her individual optimal policy, the 

vendor makes a take-it-or-leave-it-offer to pay portion of her costs and determine 

retailer’s order quantity. The negotiation is immediately terminated once the retailer 
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accepts or refuses the vendor’s offer while no transaction costs are assumed and the 

vendor has complete information about the cost functions of the retailer. 

In the following two sections 3.3 and 3.4we analyze two cases of fixed cost 

sharing and inventory holding cost sharing for supply chain coordination. 

3.3 Fixed cost sharing mechanism for supply chain coordination 

3.3.1 Individual rationality 

If the retailer and the vendor behave individually rational, they determine their 

individual optimal policies  and  where 

(3.36)

(3.37)

(3.38)

(3.39) 

Based on the vendor’s offer, , the retailer determines her optimal inventory 

policy,  obtained from the cost function  where 

(3.40)

and 

  . (3.41)
 

Subject to retailer’s individual rationality constraint, it is required that 

  0  (3.42) 
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or 

(3.43) 

To ensure the retailer’s individual rationality, we reduce Equation (3.43) to obtain 

the feasible range where contract parameter  is accepted by the retailer. This is given by 

Equation (3.44). 

 
   

 
 

  
 

1  1  
1  (3.44) 

Also by offering  to the retailer, the vendor determines her optimal policy  

based on the cost function ,  where 

(3.45)

and 
  , . (3.46) 

Subject to vendor’s individual rationality constraint, it is required that 

 ,  0  (3.47) 

or 

(3.48) 
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To ensure the vendor’s individual rationality, we reduce Equation (3.48) to obtain 

the feasible range of the contract parameter  for the vendor. This is given by Equation 

(3.49). 

(3.49) 

3.3.2 Optimal policies and contract 

In this section we analyze that what contract parameters  are offered to retailer 

by the vendor. Following the preceding individual rationality analysis, if there exist a  

that satisfies Equations (3.44) and (3.49), the following provides the optimal contract 

parameter  . 

  ,  (3.50)
,  

In Equation (3.50), ,  is given by (3.45) and  is a function in  

given by (3.41). Using the renewal function approximation, the problem would be 

minimizing the following vendor’s cost function with respect to  and . 

,  
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2  12  2  
 

2 2
 (3.51) 
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where 

(3.52)

If the resulting  satisfies the retailer’s and the vendor’s individual rationality 

constraints, the vendor offers the contract  to the retailer. 

Proposition1. The vendor’s optimal contract is achieved at 1 if 

,
   1 ,

 1   ,
   1 ,

  1  (3.53) 

for each  where   and ,  and ,  represent the optimal inventory 

policies obtained under contract parameter . 

Proof. See appendix B.3. 

3.4 Inventory holding cost sharing mechanism for supply chain coordination 

3.4.1 Individual rationality 

If the retailer and the vendor behave individually rational, they determine their 

individual optimal policies  and  following equations given in (3.37) and (3.39). 

Based on the vendor’s offer, , the retailer determines her optimal inventory 

policy,  based on the cost function , α  where 

   (3.54)α   
     

, 1  

and 
  . (3.55) 

Subject to retailer’s individual rationality constraint, it is required that

   0  (3.56) 
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or 

 

(3.57)

To ensure the retailer’s individual rationality, we reduce Equation (3.57) to obtain 

the feasible range where contract parameter  is accepted by the retailer. This is given by 

Equation (3.58). 

 
     1  (3.58)

1  1
 

Also by offering  to the retailer, the vendor determines her optimal policy  

based on the cost function ,  where 

(3.59) 

and 
  , . (3.60) 

Subject to vendor’s individual rationality constraint, it is required that 

,  0  (3.61) 

or 
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(3.62) 

To ensure the vendor’s individual rationality, we reduce Equation (3.62) to obtain 

the feasible range of the contract parameter  for the vendor. This is given by Equation 

(3.63). 

 

1  

(3.63) 

Therefore assuming the individual rationality of the retailer and the vendor, 

contract parameter should satisfy (3.58) and (3.63). 

3.4.2 Optimal policies and contract 

In this section it will be analyzed that which contract parameter are offered to 

the retailer by the vendor. Following the preceding individual rationality analysis, if there 

exist an  that satisfies Equations (3.58) and (3.63) the following provides the optimal 

contract parameter  
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In Equation (3.23), ,  is given by (3.64) and  is a function in  

given by (3.41). Using the approximation of the renewal function and it’s integral, the 

problem would be minimizing the following vendor’s cost function with respect to  and 
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(3.65) 
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where 

(3.66)

If the resulting  satisfies the retailer’s and the vendor’s individual rationality 

constraints, the vendor offer the contract  to the retailer. 

3.5 Discussion on other coordination mechanisms 

One approach is to consider system wide optimal contract. In section 3.3 and 3.4 

we discussed the cases where the retailer imposes her optimal policy to the vendor and 

the vendor take the initiative and offers her optimal contract to the retailer. Assuming the 

individual rationality of the parties, the retailer accepts or refuses to accept the vendor’s 

offer. However, if the parties in the system are interested in reducing the cost of the entire 
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system by a joint decision, their problem would be to minimize system wide cost 

regardless of achieving the lowest individual cost. 

Thus the contract parameter, , that is given by solving 

   , 
,  (3.67) 

minimizes the system wide cost of the supply chain. In Equation (3.67), 

functions , ,  can be given by (3.34) and (3.35) respectively. 

A side-payment is also often considered an effective tool to coordinate a supply 

chain. A side-payment is in general an additional monetary transfer between the supplier 

(buyer) and the buyer (supplier) that is used as an incentive for deviating from the 

individual optimal policy which comes under different contract types e.g. cost sharing, 

revenue sharing, quantity flexibility, price discount sharing, buyback, constant wholesale 

price, quantity discount, price discount and sales rebate.  In some of these contracts the 

side-payment is from the buyer to the vendor e.g. the constant wholesale-price where the 

side-payment is the buyer’s purchase quantity times the supplier’s unit wholesale price 

and revenue sharing where the side payment is a portion of the buyer’s sales revenue. In 

other contracts the side-payment is from the supplier to buyer including the cost sharing 

(Leng and Zhu 2009). In cost sharing mechanism, the side-payment that is offered to the 

buyer from the vendor is interpreted as a decrease in retailer’s inventory holding cost. 

And as a result of that reduction, the buyer will be able to determine her optimal order 

quantity as discussed in inventory holding cost sharing mechanism earlier this chapter. 

Another stream of research for supply chain coordination considers delay in 

payments. With permissible delay in payments, the vendor gives buyer the opportunity to 

invest the unpaid balance and in return expects the buyer to place larger order quantities. 
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3.6 Numerical experiment 

We use the cost structure for the retailer and the vendor discussed in the 

numerical experiments section in chapter 2 to demonstrate the supply chain coordination. 

As an example consider the information given in Table 3.1. The retailer decides her 

optimal policy  73 and realized her associated cost of   176.92. Without 

contract the vendor comes up with her optimal policy   206 with the total cost of 

  503.01. Therefore the vendor offers the joint optimal policy and portion of the 

retailers holding cost,  to minimize her cost. Figure 3.1 shows the cost savings for the 

information given in Table 3.1. By implementing the joint inventory policy and deviating 

from her individual optimal policy, the retailer’s total cost decreases to   66.83. 

Also, the vendor’s total cost decreases to   472.69. 

Table 3.1 Sample supply chain cost and inventory decisions information 

20  0.1  
40  2  73  224 
40  4  206 0 

   679.93 
,   539.52,   14% 

,   536.01 

Under the complete information assumption,   14% and the system wide cost 

saving of coordination is 20.6% while the centralization results in 21.2% cost saving. As 

discussed in section 2.5, the significant saving are expected to be observed where there is 
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a shift in inventory resulting in zero order quantity of the vendor. This can be also seen in 

this numerical example where the contract is offered at   0. 

Figure 3.1 Cost savings of the coordinated supply chain (information in Table 3.1) 

3.7 Conclusion 

In this study we consider a two-echelon supply chain system discussed in Chapter 

two and investigate the convexity of centralized and decentralized systems’ cost 

functions considering the proposed approximation in chapter one to ensure there exist a 

unique optimal solution for the system regarding the cost and inventory policy decisions. 

It is well known that implementing the joint optimal policies always results in savings in 

total cost of the system. However, usually one party has more power over the other to 

impose her individual optimal policy and ask the other party for incentives in order to act 

73 



 

  

cooperatively. As a coordination tool, we proposed a cost sharing mechanism with which 

the vendor offers the retailer a contract as a compensation of implementing vendor-

desired inventory policy. Assuming the complete information model, we discussed about 

sharing of inventory holding cost and fixed cost. The solution to the models results in a 

contract offered by the vendor which aims to minimize the vendors cost while satisfying 

the individual rationality of the retailer. We also discussed about some other form of 

coordination mechanisms including side payment, delayed payment and the contract that 

provide system wide optimal decisions and cost. 
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A.1 Comparison of Approximations for Weibull Distributions 

Table A.1 Comparison of approximations for Weibull distributions 

Deviation from simulation results 

Distribution Mean Variance  

Asy. App.1 Mod. App.2 

 
 

Asy. App. Mod. App. 
Weibull (5, 20) 4.86 0.91 0.107 0.025 0.236 0.228 

Weibull (10, 20) 9.73 0.36 0.148 0.125 0.290 0.260 
Weibull (20, 20) 19.47 1.45 0.179 0.136 0.529 0.416 
Weibull (40, 20) 38.94 5.82 0.200 0.116 1.167 0.734 

Weibull (2, 5) 1.8 0.17 0.030 0.025 1.074 1.072 
Weibull (5, 5) 4.59 1.11 0.016 0.008 0.241 0.235 
Weibull (10, 5) 9.18 4.42 0.026 0.013 0.178 0.160 
Weibull (20, 5) 18.36 17.69 0.048 0.024 0.193 0.129 
Weibull (1, 2) 0.886 0.21 0.039 0.036 2.263 2.262 
Weibull (10, 2) 8.86 21.46 0.012 0.005 0.184 0.168 
Weibull (20, 2) 17.72 85.84 0.020 0.008 0.155 0.102 
Weibull (40, 2) 35.44 343.36 0.038 0.015 0.315 0.116 
Weibull (1, 1.5) 0.902 0.38 0.088 0.085 3.584 3.583 
Weibull (5, 1.5) 4.51 9.39 0.013 0.009 0.394 0.388 
Weibull (15, 1.5) 13.54 84.53 0.014 0.004 0.169 0.130 
Weibull (30, 1.5) 27.08 338.12 0.023 0.005 0.245 0.099 
Weibull (0.1, 0.5) 0.2 0.2 0.570 0.551 31.641 31.630 
Weibull (0.5, 0.5) 1 5 0.156 0.125 3.806 3.692 
Weibull (1, 0.5) 2 20 0.156 0.109 4.212 3.823 
Weibull (5, 0.5) 10 500 0.485 0.304 27.596 19.117 

1) Asymptotic approximation, 
2) Modified approximation 
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A.2 Comparison of approximation for different methods of obtaining switch-over 
points 

Table A.2 Average deviation of approximated  from simulation result using 
method I 

[0, ) [ , ) 

Distribution 
Asy. 
App. 

Mod. 
App. 

Asy. 
App. 

Mod. 
App. 

Weibull (5, 20) 0.2271 0.0150 0.2556 0.0881 

Weibull (10, 20) 0.2248 0.0150 0.2547 0.0872 

Weibull (20, 20) 0.2333 0.0152 0.2743 0.0964 

Weibull (40, 20) 0.2264 0.0149 0.2563 0.0818 

Weibull (2, 5) 0.1627 0.0425 0.0934 0.0815 

Weibull (5, 5) 0.1634 0.0430 0.1089 0.0998 

Weibull (10, 5) 0.1632 0.0429 0.0924 0.0811 

Weibull (20, 5) 0.1632 0.0429 0.0942 0.0824 

Weibull (1, 2) 0.1017 0.0380 0.0605 0.0448 

Weibull (10, 2) 0.1018 0.0384 0.0607 0.0453 

Weibull (20, 2) 0.1019 0.0378 0.0607 0.0445 

Weibull (40, 2) 0.1029 0.0376 0.0615 0.0444 

Weibull (1, 1.5) 0.0925 0.0187 0.0761 0.0199 

Weibull (5, 1.5) 0.0920 0.0191 0.0755 0.0204 

Weibull (15, 1.5) 0.0931 0.0188 0.0765 0.0201 

Weibull (30, 1.5) 0.0935 0.0192 0.0761 0.0206 

Weibull (0.1, 0.5) 0.9523 0.2769 0.9120 0.2876 

Weibull (0.5, 0.5) 0.9552 0.2793 0.9150 0.2900 

Weibull (1, 0.5) 0.8833 0.3184 0.8473 0.3287 

Weibull (5, 0.5) 0.9567 0.2784 0.9165 0.2891 
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Table A.3 Average deviation of approximated  from simulation result using 
method II 

[0, ) [ , ) 

Distribution 
Asy. 
App. 

Mod. 
App. 

Asy. 
App. 

Mod. 
App. 

Weibull (5, 20) 0.2286 0.0192 0.1536 0.2645 

Weibull (10, 20) 0.2269 0.0154 0.1500 0.1031 

Weibull (20, 20) 0.2333 0.0102 0.2437 0.0755 

Weibull (40, 20) 0.2309 0.0147 0.2833 0.1055 

Weibull (2, 5) 0.1661 0.0668 0.1047 0.0561 

Weibull (5, 5) 0.1659 0.0323 0.1076 0.0581 

Weibull (10, 5) 0.1658 0.0347 0.1073 0.0575 

Weibull (20, 5) 0.1665 0.0344 0.1064 0.0557 

Weibull (1, 2) 0.0967 0.0617 0.0151 0.0650 

Weibull (10, 2) 0.0969 0.0611 0.0159 0.0648 

Weibull (20, 2) 0.0988 0.0629 0.0153 0.0679 

Weibull (40, 2) 0.0977 0.0619 0.0160 0.0675 

Weibull (1, 1.5) 0.0816 0.0628 0.0378 0.0632 

Weibull (5, 1.5) 0.0811 0.0622 0.0381 0.0640 

Weibull (15, 1.5) 0.0818 0.0624 0.0382 0.0642 

Weibull (30, 1.5) 0.0811 0.0614 0.0367 0.0622 

Weibull (0.1, 0.5) 1.3082 0.2913 1.3082 0.2913 

Weibull (0.5, 0.5) 1.3087 0.2908 1.3087 0.2908 

Weibull (1, 0.5) 1.3052 0.2898 1.3052 0.2898 

Weibull (5, 0.5) 1.3100 0.2923 1.3100 0.2923 
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Table A.4 Average deviation of approximated  from simulation result using 
method III 

[0, ) [ , ) 

Distribution 
Asy. 
App. 

Mod. 
App. 

Asy. 
App. 

Mod. 
App. 

Weibull (5, 20) 0.1604 0.1762 0.1460 0.2010 

Weibull (10, 20) 0.1591 0.1802 0.1493 0.2028 

Weibull (20, 20) 0.1593 0.1826 0.1512 0.2045 

Weibull (40, 20) 0.1582 0.1831 0.1510 0.2044 

Weibull (2, 5) 0.1013 0.0445 0.0613 0.0571 

Weibull (5, 5) 0.1011 0.0446 0.0617 0.0591 

Weibull (10, 5) 0.1012 0.0448 0.0611 0.0571 

Weibull (20, 5) 0.1017 0.0449 0.0618 0.0577 

Weibull (1, 2) 0.0967 0.0426 0.0572 0.0499 

Weibull (10, 2) 0.969 0.0431 0.0575 0.0505 

Weibull (20, 2) 0.9880 0.0431 0.0587 0.0506 

Weibull (40, 2) 0.0977 0.0422 0.0581 0.0494 

Weibull (1, 1.5) 0.0816 0.0265 0.0665 0.0283 

Weibull (5, 1.5) 0.0811 0.0269 0.0659 0.0288 

Weibull (15, 1.5) 0.0818 0.0268 0.0666 0.0287 

Weibull (30, 1.5) 0.0811 0.0270 0.0653 0.0290 

Weibull (0.1, 0.5) 0.6622 0.5779 0.6388 0.5881 

Weibull (0.5, 0.5) 0.5785 0.4621 0.5593 0.4683 

Weibull (1, 0.5) 0.5641 0.4689 0.5446 0.4753 

Weibull (5, 0.5) 0.5815 0.4614 0.5624 0.4676 
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Table A.5 Average deviation of approximated   from simulation result using 
method I 

[0, ) [ , ) 
Distribution Asy. Mod. Asy. Mod. 

App. App. App. App. 

Weibull (5, 20) 0.1518 0.0156 0.2203 0.1133 

Weibull (10, 20) 0.3060 0.0363 0.4366 0.2229 

Weibull (20, 20) 0.6275 0.0581 0.8526 0.3841 

Weibull (40, 20) 1.2414 0.1483 1.6687 0.8396 

Weibull (2, 5) 0.0414 0.0096 0.0279 0.0187 

Weibull (5, 5) 0.1030 0.0250 0.0525 0.0655 

Weibull (10, 5) 0.2061 0.0490 0.1440 0.0941 

Weibull (20, 5) 0.4164 0.1020 0.2852 0.1996 

Weibull (1, 2) 0.0164 0.0024 0.0080 0.0029 

Weibull (10, 2) 0.1635 0.0247 0.0790 0.0296 

Weibull (20, 2) 0.3282 0.0495 0.1595 0.0592 

Weibull (40, 2) 0.6691 0.0919 0.3301 0.1099 

Weibull (1, 1.5) 0.0219 0.0024 0.0172 0.0026 

Weibull (5, 1.5) 0.1111 0.0133 0.0875 0.0148 

Weibull (15, 1.5) 0.3379 0.0408 0.2666 0.0451 

Weibull (30, 1.5) 0.6837 0.0827 0.5348 0.0920 

Weibull (0.1, 0.5) 0.9165 0.2821 0.9055 0.2929 

Weibull (0.5, 0.5) 4.5806 1.4088 4.5260 1.4630 

Weibull (1, 0.5) 8.8064 3.4540 8.7034 3.5655 

Weibull (5, 0.5) 45.7896 14.0718 45.2431 14.6130 
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Table A.6 Average deviation of approximated   from simulation result using 
method II 

[0, ) [ , ) 
Distribution Asy. Mod. Asy. Mod. 

App. App. App. App. 

Weibull (5, 20) 0.1504 0.0040 0.2901 0.0655 

Weibull (10, 20) 0.3030 0.0123 0.5725 0.1883 

Weibull (20, 20) 0.6275 0.0299 1.0057 0.2794 

Weibull (40, 20) 1.2125 0.0972 1.7112 0.7408 

Weibull (2, 5) 0.0415 0.0198 0.0162 0.0323 

Weibull (5, 5) 0.1033 0.0263 0.0440 0.0770 

Weibull (10, 5) 0.2068 0.0571 0.0839 0.1555 

Weibull (20, 5) 0.4176 0.1121 0.1799 0.3060 

Weibull (1, 2) 0.0157 0.0180 0.0040 0.0291 

Weibull (10, 2) 0.1560 0.1791 0.0383 0.2891 

Weibull (20, 2) 0.3197 0.3668 0.0821 0.6042 

Weibull (40, 2) 0.6400 0.7281 0.1711 1.1817 

Weibull (1, 1.5) 0.0191 0.0190 0.0067 0.0258 

Weibull (5, 1.5) 0.0970 0.0934 0.0374 0.1259 

Weibull (15, 1.5) 0.2944 0.2809 0.1124 0.3807 

Weibull (30, 1.5) 0.5893 0.5526 0.2225 0.7483 

Weibull (0.1, 0.5) 1.0750 0.2830 1.0750 0.2830 

Weibull (0.5, 0.5) 5.3756 1.4154 5.3756 1.4154 

Weibull (1, 0.5) 10.7537 2.8337 10.7537 2.8337 

Weibull (5, 0.5) 53.7561 14.1561 53.7561 14.1561 
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  Table A.7 Average deviation of approximated  from simulation result using 
method III 

 [0, ) [ , ) 
Distribution Asy.  Mod. Asy.  Mod. 

 App.  App.  App.  App. 

 Weibull (5, 20)  1.8497  0.1139  2.1139  1.8497 

Weibull (10, 20)  3.7244  0.2694  4.1965  3.7244 

Weibull (20, 20)  7.4963  0.4904  8.4001  7.4963 

Weibull (40, 20)  15.0670  1.0199  16.8300  15.0670 

Weibull (2, 5)  0.0166  0.0192  0.0215  0.0166 

Weibull (5, 5)  0.0452  0.0443  0.0634  0.0452 

Weibull (10, 5)  0.0836  0.1037  0.1154  0.0836 

Weibull (20, 5)  0.1874  0.2169  0.2435  0.1874 

Weibull (1, 2)  0.0037  0.0077  0.0040  0.0037 

Weibull (10, 2)  0.0346  0.0757  0.0411  0.0346 

Weibull (20, 2)  0.0681  0.1562  0.0813  0.0681 

Weibull (40, 2)  0.1301  0.3180  0.1547  0.1301 

Weibull (1, 1.5)  0.0035  0.0147  0.0038  0.0035 

Weibull (5, 1.5)  0.0192  0.0755  0.0209  0.0192 

Weibull (15, 1.5)  0.0576  0.2292  0.0630  0.0576 

Weibull (30, 1.5)  0.1173  0.4547  0.1285  0.1173 

Weibull (0.1, 0.5)  0.3186  0.7199  0.3242  0.3186 

Weibull (0.5, 0.5)  1.7050  3.2077  1.7281  1.7050 

Weibull (1, 0.5)  3.5252  6.5322  3.5728  3.5252 

Weibull (5, 0.5)  17.1609  32.1893  17.3928  17.1609 

 

 

 

 

 

  

A.3 Details of obtaining the supply chain inventory holding cost 

 The waiting penalty cost in Equation (1.19) can be computed based 

 on      , where the integral of renewal function 

has a negative sign. If the asymptotic approximation is used to minimize the cost 

function, decreasing the values of  and consequently increasing the value 

of   will reduce the waiting penalty cost and the total cost. However, if the

modified approximation is used,   does not increase at small values of . 
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The inventory holding cost in Equation (1.19) is calculated based on 

(A.1)

If the modified approximation is used, since  , the renewal function and 

its integral of excess life at the age of initial renewal process,  and 

 , would get zero values and the equation for calculating the inventory 

holding cost reduces to     . 

A.4 Proof of Theorem 1 
 The asymptotic result  1  as ∞   

suggests that for some constant , 

   
(A.2)     

2  
 

2  1    
4   

6
    

  

for large . To determine the constant , we define the function 

    
(A.3)      

6  
 

2  1  
2

  
4   

6
      ,   0 

 

By integrating both sides and interchanging the order of integration, we get the 

following renewal equation for the function 
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 So the constant term       and we have

(A.4)

From this renewal equation, we can obtain,         

where 

(A.5) 

Now by using the key renewal theorem we can get 

(A.6)
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B.1 Renewal function moments for the region 1 approximation 

(B.1)

(B.2) 

(B.3)

 where ,  and  denote the first, second and third moment of the order size  and 
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where 
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So we have 

  

(B.9)
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B.2 Renewal function moments for the region 2 approximation 

(B.10)

(B.11)

91 



 

 

     

  1  2     

 
 
2  1

 1  
  

 

 

 

 
  

 2   , 
  

2    

 

 
 
2

 
 1  

 
  

 
   

2
 
 1

4   
6

 
  2

1 
  

 
 

 

  

(B.12) 

 
2   

 
  

2
 
 1

4   
6

 
  2

1 
  

 
 

 

  

 
    

2
 
 1

4   
6

 
  2

1 
  

, and    
 

  

  

  3   
 

3   
 

  ,
 

(B.13) 

where ,  and  denote the first, second and third moment of the order size  and 

(B.14)

where 
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So to obtain  we have 

(B.16)

(B.117) 

and 
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Therefore 
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B.3 Proof of Proposition 1 

 Consider the individual rationality constraint of the vendor. 

(B.20) 

Suppose a contract parameter  where   and that ,  and ,  are the 

optimal inventory policies obtained under contract parameter . We show the condition 

under which by decreasing the contract parameter  to  the vendors cost increases i.e. 

the above constraint holds as equality only if 1. Since   we have that ,
  

,  and consequently ,
 

,
  or ,

 
 ,  which also results in 
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,
  and ,    ,
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Thus if ,
   1 ,

 1  is greater than 

,
 1 ,

 1  we have 
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, 1  , 1  
(B.22) 
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