492 research outputs found

    MOMA: Visual Mobile Marker Odometry

    Full text link
    In this paper, we present a cooperative odometry scheme based on the detection of mobile markers in line with the idea of cooperative positioning for multiple robots [1]. To this end, we introduce a simple optimization scheme that realizes visual mobile marker odometry via accurate fixed marker-based camera positioning and analyse the characteristics of errors inherent to the method compared to classical fixed marker-based navigation and visual odometry. In addition, we provide a specific UAV-UGV configuration that allows for continuous movements of the UAV without doing stops and a minimal caterpillar-like configuration that works with one UGV alone. Finally, we present a real-world implementation and evaluation for the proposed UAV-UGV configuration

    Highly efficient Localisation utilising Weightless neural systems

    Get PDF
    Efficient localisation is a highly desirable property for an autonomous navigation system. Weightless neural networks offer a real-time approach to robotics applications by reducing hardware and software requirements for pattern recognition techniques. Such networks offer the potential for objects, structures, routes and locations to be easily identified and maps constructed from fused limited sensor data as information becomes available. We show that in the absence of concise and complex information, localisation can be obtained using simple algorithms from data with inherent uncertainties using a combination of Genetic Algorithm techniques applied to a Weightless Neural Architecture

    Application of augmented reality and robotic technology in broadcasting: A survey

    Get PDF
    As an innovation technique, Augmented Reality (AR) has been gradually deployed in the broadcast, videography and cinematography industries. Virtual graphics generated by AR are dynamic and overlap on the surface of the environment so that the original appearance can be greatly enhanced in comparison with traditional broadcasting. In addition, AR enables broadcasters to interact with augmented virtual 3D models on a broadcasting scene in order to enhance the performance of broadcasting. Recently, advanced robotic technologies have been deployed in a camera shooting system to create a robotic cameraman so that the performance of AR broadcasting could be further improved, which is highlighted in the paper

    Fireground location understanding by semantic linking of visual objects and building information models

    Get PDF
    This paper presents an outline for improved localization and situational awareness in fire emergency situations based on semantic technology and computer vision techniques. The novelty of our methodology lies in the semantic linking of video object recognition results from visual and thermal cameras with Building Information Models (BIM). The current limitations and possibilities of certain building information streams in the context of fire safety or fire incident management are addressed in this paper. Furthermore, our data management tools match higher-level semantic metadata descriptors of BIM and deep-learning based visual object recognition and classification networks. Based on these matches, estimations can be generated of camera, objects and event positions in the BIM model, transforming it from a static source of information into a rich, dynamic data provider. Previous work has already investigated the possibilities to link BIM and low-cost point sensors for fireground understanding, but these approaches did not take into account the benefits of video analysis and recent developments in semantics and feature learning research. Finally, the strengths of the proposed approach compared to the state-of-the-art is its (semi -)automatic workflow, generic and modular setup and multi-modal strategy, which allows to automatically create situational awareness, to improve localization and to facilitate the overall fire understanding

    Visual Localization of Mobile Robot

    Get PDF
    Tato práce se zaměřuje na prozkoumání současné situace na poli určování polohy z kamerových dat a na navržení vhodného řešení pro mobilní robotickou platformu vybavenou vertikálně orientovanou RGB kamerou s fisheye čočkou. Navržený systém by měl být schopen dlouhodobě vykonávat globální lokalizaci v měnícím se vnitřním prostředí výrobních závodů a kancelářských budov. Pro ověření funkč nosti vybraných metod byl nasnímán dataset fisheye obrazů spolu s jejich polohou. VLAD a NetVLAD deskriptory byly otestovány v kombinaci s dlaždicovou reprezentací panoramat. Jako řešení byla navržena jednoduchá metoda, určující aktuální polohu na základě polohy nejpodobnějšího obrazu z databáze.This work aims to examine the current state of the art in visual localization and find a suitable solution for an indoor mobile robotic platform equipped with a single upward-looking RGB camera and fisheye lens. The system should be able to perform longterm global localization in changing indoor industrial or office environment. A dataset of localized omnidirectional images was captured and used for evaluation of the performance of selected methods. VLAD and NetVLAD descriptors were tested in combination with tiled panorama representation. A simple localization method based on taking the position of the most similar database image is proposed as the solution

    Building an enhanced vocabulary of the robot environment with a ceiling pointing camera

    Get PDF
    Mobile robots are of great help for automatic monitoring tasks in different environments. One of the first tasks that needs to be addressed when creating these kinds of robotic systems is modeling the robot environment. This work proposes a pipeline to build an enhanced visual model of a robot environment indoors. Vision based recognition approaches frequently use quantized feature spaces, commonly known as Bag of Words (BoW) or vocabulary representations. A drawback using standard BoW approaches is that semantic information is not considered as a criteria to create the visual words. To solve this challenging task, this paper studies how to leverage the standard vocabulary construction process to obtain a more meaningful visual vocabulary of the robot work environment using image sequences. We take advantage of spatio-temporal constraints and prior knowledge about the position of the camera. The key contribution of our work is the definition of a new pipeline to create a model of the environment. This pipeline incorporates (1) tracking information to the process of vocabulary construction and (2) geometric cues to the appearance descriptors. Motivated by long term robotic applications, such as the aforementioned monitoring tasks, we focus on a configuration where the robot camera points to the ceiling, which captures more stable regions of the environment. The experimental validation shows how our vocabulary models the environment in more detail than standard vocabulary approaches, without loss of recognition performance. We show different robotic tasks that could benefit of the use of our visual vocabulary approach, such as place recognition or object discovery. For this validation, we use our publicly available data-set

    Low-Resolution Vision for Autonomous Mobile Robots

    Get PDF
    The goal of this research is to develop algorithms using low-resolution images to perceive and understand a typical indoor environment and thereby enable a mobile robot to autonomously navigate such an environment. We present techniques for three problems: autonomous exploration, corridor classification, and minimalistic geometric representation of an indoor environment for navigation. First, we present a technique for mobile robot exploration in unknown indoor environments using only a single forward-facing camera. Rather than processing all the data, the method intermittently examines only small 32X24 downsampled grayscale images. We show that for the task of indoor exploration the visual information is highly redundant, allowing successful navigation even using only a small fraction (0.02%) of the available data. The method keeps the robot centered in the corridor by estimating two state parameters: the orientation within the corridor and the distance to the end of the corridor. The orientation is determined by combining the results of five complementary measures, while the estimated distance to the end combines the results of three complementary measures. These measures, which are predominantly information-theoretic, are analyzed independently, and the combined system is tested in several unknown corridor buildings exhibiting a wide variety of appearances, showing the sufficiency of low-resolution visual information for mobile robot exploration. Because the algorithm discards such a large percentage (99.98%) of the information both spatially and temporally, processing occurs at an average of 1000 frames per second, or equivalently takes a small fraction of the CPU. Second, we present an algorithm using image entropy to detect and classify corridor junctions from low resolution images. Because entropy can be used to perceive depth, it can be used to detect an open corridor in a set of images recorded by turning a robot at a junction by 360 degrees. Our algorithm involves detecting peaks from continuously measured entropy values and determining the angular distance between the detected peaks to determine the type of junction that was recorded (either middle, L-junction, T-junction, dead-end, or cross junction). We show that the same algorithm can be used to detect open corridors from both monocular as well as omnidirectional images. Third, we propose a minimalistic corridor representation consisting of the orientation line (center) and the wall-floor boundaries (lateral limit). The representation is extracted from low-resolution images using a novel combination of information theoretic measures and gradient cues. Our study investigates the impact of image resolution upon the accuracy of extracting such a geometry, showing that centerline and wall-floor boundaries can be estimated with reasonable accuracy even in texture-poor environments with low-resolution images. In a database of 7 unique corridor sequences for orientation measurements, less than 2% additional error was observed as the resolution of the image decreased by 99.9%
    • …
    corecore