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Abstract 

Efficient localisation is a highly desirable property for an autonomous navigation 

system. Weightless neural networks offer a real-time approach to robotics 

applications by reducing hardware and software requirements for pattern recognition 

techniques. Such networks offer the potential for objects, structures, routes and 

locations to be easily identified and maps constructed from fused limited sensor data 

as information becomes available. We show that in the absence of concise and 

complex information, localisation can be obtained using simple algorithms from data 

with inherent uncertainties using a combination of Genetic Algorithm techniques 

applied to a Weightless Neural Architecture. 

1 Introduction 

Operating mobile robots in enclosed environments, such as buildings, requires an 

element of distinguishability between locations or rooms to permit consistent 

localisation and mapping of that environment. Localisation is considered the most 

important aspect of mobile robotics [1]; without determining the robot’s position and 

orientation within an environment, no trajectory can be generated [1]. Accurate 

localisation is required in modern manufacturing environments for robust control [2] 

however in the case of mobile robotics in real-world scenarios, simple sensor 

information, for example, may suffice to initially localise, particularly in a highly 

dynamic environment, yet when compounded may still provide adequate 

environmental mapping [3]. Whilst uncertainties exist using simple single sensors, 

fusing of different source data can improve the estimation to a desirable level. For 

example, Neira et al. [4] fused laser range data with reflected intensity to improve 

estimation, concluding fusing simple sensor data was computationally inexpensive. 

Dong et al. [5] discuss fusing multi spectral imagery with radar altimetry improving 

spatial resolution for object identification, reporting self-adaptive Artificial Neural 

Networks (ANNs) are more powerful tools than traditional for pattern recognition [5].  

Buschka and Saffiotti [6] describe identifying a cluttered room using a dimensional 

histogram, Tardós et al. [7] review geometric mapping using sonar based sensors, and 

they suggest a new method for detection of line segments successfully combining 
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several stochastic maps. Sturm and Visser [8] show that vision based localisation 

could determine pose and place from discretised colours, for real-time applications. 

Stone et al. [9] determined that, despite uncertainties in vision based systems, 

collective data and learning could consistently enable team based robots to behave 

reactively in real-time. Natural ceiling features provide a visual positioning method 

suggested by Xu et al. [10] whilst Hyun Chul Roh et al. [111] suggest point pattern 

matching using ceiling spot lightings; their high degree of accuracy and fast update 

algorithm suggests suitability for real-time tasks. Jeong et al. [12] propose a quick 

ceiling vision based technique using a single ceiling vision sensor resolving the 

rotation and affine transform problems. Nguyen et al. [13] introduced another natural 

ceiling landmark system using a 360 degree view angle single camera sensor. They all 

agree that ceiling data generally suffers less from clutter and are seldom occluded. 

In this paper, we therefore propose a multi-modal localisation system using a 

combination of real-time low quality ceiling images and noisy ranging data combined 

to classify and identify location using an adaptive Weightless Neural Network 

(WNN). The main contribution is the ability of the system to change and adapt to the 

data it is being given to better identify and localise the robot. The system possesses 

the following advantages, which are highly significant in a practical environment. 

 The system is able to operate in real time. 

 The system is adaptive; potentially modifying performance in dynamic situations. 

 Efficient use of Sensor data; few samples are needed in order to identify a room. 

 Reduced susceptibility to occlusion due to the camera pointing at the ceiling. 

 

In order to tune the Weightless Neural Network a heavily modified Genetic 

Algorithm is used to create and control the WNN architectures. This improves the 

performance and recognition ability of the WNN as it continues to run [14-16]. 

2 Weightless Artificial Neural Architectures 

Weightless Neural Networks (WNN) first conceived by Bledsoe and Browning [17] 

are not weighted between inputs and nodes; instead they operate on simple binary 

values. WNNs are trained by modifying look-up tables rather than weights whereas 

conventional weighted networks need significant training and processing to converge. 

WNNs are therefore best suited to real-time hardware implementation, particularly 

pattern recognition, despite their simplicity. They best perform where data samples 

can be simply thresholded into binary values, such as facial recognition and character 

recognition [18]. We employ the Generalised Convergent Network (GCN) [19] 

architecture in this experiment illustrated in Fig. 1 with the following properties: 

 Pattern elements are linked to a given neuron within a particular layer, neuron 

location defined by connectivity pattern relating to input. Layers have unique 



connectivity patterns, thus each neuron distinguished by its position within the 

input matrix. Created layers are then put into either 'Pre' group or 'Main' group.  

 Component layer outputs of each group are then combined in a single merge 

layer. Merge is performed within group for corresponding positions within each 

layer. Layers within each group are connectively bound to each merge operation. 

Output of each merge is feedback into inputs of each layer in each group.  

 Neuron connectivity and layer numbers within group, defined by the Genetic 

Algorithm, depend on network performance of the given data. The constituent 

layers of group differ in selecting elements attached to the neuron inputs. 

 Each of the neurons in a single layer is connected in the same way, relative to 

their location within the parsed code matrix. 

 

 

Figure 1: Example of GCN Network Architecture, Howells, Fairhurst and Bisset 1995 [16] 

3 Identifying room signatures 

 

Many potential identifying features exist to uniquely identify a room: clutter, colour, 

texture, size, shape, fixtures and fittings. Benet et al. [20] use sonar return signal 

amplitude to identify corners; Buschka and Saffiotti [6] identify rooms from length 

and breadth histograms. We propose to identify and fuse simple unique characteristics 

for better decision making in a computationally fast neural network for real-time 

autonomous robotic application. Nurmaini et al. [21] demonstrate real-time 

identification of corridors, corners and obstacles using sonar data and a Weightless 

Neural Network, demonstrating a 0.25μs execution time on a small microprocessor. 

 

We chose a narrow beam, 15m range, single ultrasonic transmitter/receiver for 

measuring geometric properties at each location, X, Y and Z dimensions were 

sampled at various translations without regard for fixtures and clutter. The second 

data collection used a single fisheye lens 360 degree camera, pointed at the ceiling, 3 

images were taken at each position and up to 4 positions within a room, dependent on 

size. Images were formatted to 180 x 180 pixels; and a 45 pixel radius core was 

removed to leave an iris shaped image, as shown in Fig. 2 left image. Subsequent to 

being formatted correctly, the data was processed using a parsing algorithm. This 

algorithm quantized the image and split the image into 48 equal sections in a manner 

similar to that shown in Fig. 2 right image. 



 

 

 
Figure 2: Typical cropped and formatted camera image left, sectioned image right 

Images were normalised by subtracting the greyscale from each colour channel, 

leaving those pixels more distinctive in colour. The number of sections was chosen so 

that small objects with unique colours could be identified. Median pixel values for 

each section were obtained and a resultant channel ratio found.  

3 Data collection 

Various locations around the campus of the University of Kent and at a typical house 

were sampled to provide sufficient data to recognize unique signatures for room 

identification. Training data comprised of 10 sets of data and testing data was 

collected on a different day and time comprising of 5 sets of data from all locations. 
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32: 1 0 0 0 0 0

31: 0 1 0 0 0 0

32: 1 1 0 0 0 0

Binary Gray Code

 
Figure 3: The difference between Gray Code and normal Binary 

The statistical colour histogram data collected from twenty one locations is tabulated 

in Table 1: Thirty raw measurements, ten room lengths (y), ten room breadths (x) and 

ten room heights (z) from each of the locations were also collected. Data from sonar 

and the camera parsing algorithms were collated and binarised, to create a binary 

matrix. Regular binary suffers from large changes at certain values, as shown in Fig 3. 

Gray Code removes this weakness and provides a much smoother change in bits from 

one value to the next [22] serving as the input to the neural network.  

4 Weightless Neural Network Outputs 

 
The WNN will self-improve until a point is reached where it is no longer able to; the 

results are shown in Table 2. A 70.4% recognition rate was obtained in the final test. 

Some locations were easier to identify than others, for example highly non-geometric 

rooms with complex ceilings. Although only 10 training data sets were used for each 

room with high degrees of variance between them.  

 



 Location Median Standard Deviation 

  R G B None R G B None 

EDA Lab 8 1 19.5 22 2.514403 1.8135294 5.797509 8.0718991 

EDA Corridors 4.5 0.5 6 35.5 2.2010099 1.0327956 4.2176876 4.8085572 

EDA Downstairs 13 1.5 6.5 27.5 4.9888765 2.9230882 3.1989582 7.4654761 

EDA Back Door 12 1 14.5 21 2.3781412 0.6749486 2.7182511 4.0565448 

Physics Building 21.5 0 12 13.5 5.7927157 0.4830459 5.9898062 2.8596814 

Octagon Building 12 1 9 24 6.7032331 2.3309512 3.7178249 7.202623 

Back of Registry Building 11 0.5 19.5 20.5 4.2373996 0.9189366 7.6310768 4.9227364 

Front of Registry Building 16.5 0 7.5 24 6.3595947 4.4484704 4.0496913 8.5277325 

Entrance to Darwin 5.5 0.5 16 25 6.6298986 1.1005049 8.3426614 10.339246 

Outside Origins Bar 6.5 0.5 10 31 8.0863396 1.3333333 4.976612 12.020353 

Origins Bar 18 0 3.5 25 7.1211734 0.6992059 4.5264654 9.6401936 

Rutherford Quad 3 0 6 39 1.9364917 3.7178249 1.8708287 2.7131368 

Law School Reception 9.5 1 15 20.5 3.6270588 1.2692955 4.2478753 6.8968592 

Architecture Social Area 8 2.5 14.5 21 2.9458068 1.8378732 7.7753171 8.819171 

Audio/Visual Lab 7 0.5 4.5 34 3.7058512 0.6992059 3.7058512 5.6999025 

EDA Lab Meeting Room 5.5 0 11.5 31.5 4.8488257 0.421637 7.3703611 8.9845546 

House Lounge 1 0 8.5 38 1.1352924 0.3162278 3.6270588 3.9171985 

House Kitchen 0.5 0 7.5 38 0.6992059 0.843274 2.6583203 2.2705848 

House Bathroom 2 0 9.5 36.5 1.8135294 0 1.3498971 1.3984118 

House Bedroom (Large) 0 0 6.5 41 0.6749486 0 2.5905812 2.8067379 

House Bedroom (Small) 0 0 5.5 42.5 0.421637 0 3.3015148 3.2128215 

 

Room Test 1 Test 2 Test 3 Test 4   Mean 

EDA Lab 20.0% 0.0% 7.6% 0.0% 

 

6.9% 

EDA Corridors 100.0% 95.8% 100.0% 100.0% 

 

99.0% 

EDA Downstairs 62.0% 45.2% 60.0% 60.0% 

 

56.8% 

EDA Back Door 60.0% 75.8% 71.0% 88.8% 

 

73.9% 

Physics Building 26.8% 20.6% 33.6% 40.0% 

 

30.3% 

Octagon 30.0% 42.4% 34.4% 47.2% 

 

38.5% 

Back of Registry  21.4% 31.0% 1.6% 20.0% 

 

18.5% 

Front of Registry  88.6% 99.0% 51.2% 100.0% 

 

84.7% 

Entrance to Darwin 20.0% 34.2% 40.0% 40.0% 

 

33.6% 

Outside Origins Bar 100.0% 73.0% 57.8% 100.0% 

 

82.7% 

Origins Bar 80.0% 80.0% 62.0% 80.0% 

 

75.5% 

Rutherford Quad 100.0% 100.0% 100.0% 100.0% 

 

100.0% 

Law School Reception 69.8% 59.4% 60.0% 65.4% 

 

63.7% 

Architecture Social Area 50.0% 73.2% 60.0% 60.6% 

 

61.0% 

Audio/Visual Lab 42.6% 73.0% 63.0% 76.4% 

 

63.8% 

EDA Lab Meeting Room 100.0% 50.2% 96.2% 60.0% 

 

76.6% 

House Lounge 60.0% 60.0% 60.0% 60.0% 

 

60.0% 

House Kitchen 80.0% 88.4% 80.0% 80.0% 

 

82.1% 

House Bathroom 100.0% 100.0% 100.0% 100.0% 

 

100.0% 

House Bedroom (Large) 100.0% 100.0% 84.4% 100.0% 

 

96.1% 

House Bedroom (Small) 100.0% 100.0% 100.0% 100.0% 

 

100.0% 

Mean 67.2% 66.7% 62.9% 70.4%   66.8% 

 

5 Conclusions 

The paper has introduced a novel neural architecture which is able to address the 

significant practical problems associated with indoor robot localisation in real time 

with reduced sensor data and within a noisy or cluttered environment. The system has 

employed a Weightless Neural Architecture using simple one shot learning which 

allows environmental changes and variable conditions to be easily updated in the 

stored training data, an example may be to store different data sets for night and day 

ceiling illumination or peak human occupancy and low occupancy.  

Table 1: Statistical camera data from various locations 

Table 2: Weightless Neural Network location identification results 
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