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Abstract

This work aims to examine the current
state of the art in visual localization and
find a suitable solution for an indoor mo-
bile robotic platform equipped with a sin-
gle upward-looking RGB camera and fish-
eye lens. The system should be able to
perform longterm global localization in
changing indoor industrial or office envi-
ronment. A dataset of localized omnidi-
rectional images was captured and used
for evaluation of the performance of se-
lected methods. VLAD and NetVLAD de-
scriptors were tested in combination with
tiled panorama representation. A simple
localization method based on taking the
position of the most similar database im-
age is proposed as the solution.

Keywords: visual localization, mobile
robotics, fisheye, panorama, VLAD,
NetVLAD, tiled panorama descriptor
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Abstrakt

Tato prace se zaméruje na prozkoumani
soucasné situace na poli ur¢ovani polohy
z kamerovych dat a na navrzeni vhod-
ného reseni pro mobilni robotickou plat-
formu vybavenou vertikdlné orientovanou
RGB kamerou s fisheye ¢ockou. Navrzeny
systém by mél byt schopen dlouhodobé
vykonavat globalni lokalizaci v ménicim
se vnitinim prostiedi vyrobnich zdvodu a
kancelarskych budov. Pro ovéreni funké-
nosti vybranych metod byl nasniman da-
taset fisheye obrazii spolu s jejich polo-
hou. VLAD a NetVLAD deskriptory byly
otestovany v kombinaci s dlazdicovou re-
prezentaci panoramat. Jako feSeni byla
navrzena jednoduchéd metoda, urcujici ak-
tuadlni polohu na zakladé polohy nejpo-
dobnéjsiho obrazu z databaze.

Klicova slova: vizualni lokalizace,
mobilni robotika, fisheye, panorama,
VLAD, NetVLAD, dlazdicova

reprezentace panorama

Pteklad nazvu: Urceni polohy
mobilniho robotu z kamerovych dat
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Chapter 1

Introduction

This thesis is part of the Hermes project ongoing in the RMP-ROP group
at CIIRC CTU in Prague. The project aims to develop a prototype of an
autonomous mobile transportation platform for indoor environments. The
cornerstone of the system is NDT SLAM, which needs a coarse pose estimate
for initialization. The initial pose should be provided by the visual localization
approach presented in this thesis.

The rest of this chapter provides an overview of the task, used hardware
and the target environment. Chapter 2| contains short survey of the visual
localization field and applicable technologies. Chapter [3] describes the process
of selecting suitable technologies, discusses the selected methods and proposes
a possible task solution. The implementation and programming point of
view is summarized in Chapter |4, and finally, the description of the captured
dataset and undertaken experiments is present in Chapter |5|

B Specification of the problem

The implemented system should be capable of global localization with previous
knowledge of the environment using fisheye camera data. The targeted use
case is the estimation of position after system startup, where the position
could change during the period when the system was turned off (similar
to the kidnapped robot problem). The time demands are not as strict as
during robot motion, where the localization process should have a sub-second
duration. The environment should not be adjusted in any way for the robot
operation, which demands the localization method to work markerless.

B Experimental platform

We use the Clearpath Jackal four-wheel holonomic robot with ROS (Robot
Operating System). The robot provides wheel odometry and IMU data.
Moreover, the platform is equipped with a single lidar (Sick TiM561) and a
single RGB camera (Basler daA2500-14uc) with a fisheye lens (Sunex PN
DSL215). The lidar scans in a horizontal plane approximately 30 c¢m above
the ground.



1. Introduction

Camera pose is assumed to be restricted to 3 DOF (Degrees of Freedom),
fixedly mounted to the mobile robot performing a planar motion. Height
above the floor is constant, and the camera optical axis is assumed to be
perpendicular to the floor plane (roll and pitch rotations of the robot are
7Z€ero).

B Environment and possible challenges

We assume that the robot will operate in an indoor environment, specifically
interiors of office buildings or production halls, transporting production ma-
terial, goods or paper documents.

Outdoor global localization can be today solved mainly by the use of GNSS
(Global Navigation Satellite System), which are able to achieve decimeter
position precision with publicly available services and centimeter precision
with commercial services [I]. Problems start to occur in urban areas, where
buildings can cause attenuation of signal from satellites, significantly reducing
the precision. Indoor environments are an extreme case, often almost blocking
the signal and making the satellite navigation unusable at all. That brings
an excellent opportunity to solve the localization e.g., by visual algorithms.
However, the indoor environment brings many challenges, which will be briefly
enumerated in the following paragraphs.

Lighting conditions change throughout the day with natural illumination
cycles, weather, and seasonal variations, and artificial light sources. Highly
reflective surfaces changing appearance with view angle can be present. The
physical structures (parts of buildings, furniture) and texture patterns can
be repetitive. Walls and other surfaces are commonly textureless.

We cannot assume the ceiling to be in constant height above the camera. The
ceiling height in manufacturing plants can vary from tens of centimeters in
low underpasses to tens of meters in production halls. The suspended ceilings
in office buildings can change levels between rooms.

The environment contains dynamic elements as people, forklifts, cranes,
doors, which cannot be used for localization and which can cause camera
occlusion. The localization should be able to function in the long run, so we
have to also count on changes of more static elements such as furniture and
production machines.

On the other hand, the indoor environment is relatively stable in the means
of seasonal or weather changes such as snow cover, fog, and also vegetation
growth and its seasonal cycles.



Chapter 2
State of the art

Robot localization using a camera fixed on the robot is equivalent to the cam-
era pose estimation task. There are two major approaches to pose estimation
in the computer vision field. The first one is the visual place recognition task,
which focuses on coarser localization e.g., identification of room in a building.
The second approach is the visual localization task aiming to retrieve precise
camera coordinates.

Localizing a robot is different from the localization of a single photo be-
cause the camera is mobile and can produce a video feed or at least a
sequence of images from multiple places. This feature allows to exploit not
only "discrete" visual localization methods, but also "continuous' ones, such
as visual odometry or visual SLAM. This thesis concluded into the implemen-
tation of system prototype used for single-time-per-run location initialization,
where continuous methods could not be appropriately utilized. However,
the foregoing visual localization field survey counted also on the possibility
of continuous localization so that the methods will be briefly mentioned in
Section (2.2l

The field of visual localization and computer vision generally is being explored
since the invention of the digital camera. The advances in digital imagery and
computational power performed in the last decade resulted in much faster
progress and growth of papers published on the topic. As a consequence, no
survey can fully cover the whole field, and only selected works, which came
across during the thesis preparation, are mentioned in this paper.

B21 A survey of surveys on visual localization

We should start with available surveys of the available methods to see all
possible ways, which can be followed. A good introduction could be the
survey from Zhou [2], briefly mentioning all aspects of visual localization
without going into details of particular papers.

The survey from Piasco et al. [3] goes much deeper, providing a comprehen-
sive overview of available visual-based localization methods. It introduces
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a division of methods into two main categories: direct and indirect. Direct
methods estimate the camera pose straight away from the image data, and the
survey mentions e.g., PoseNet from Kendall et al. [4] as an example of such
a method. Indirect methods employ an intermediate step, most often in the
form of most similar database image retrieval, and InLoc from Taira et al. [5]
can be taken as an example. In addition to the localization methods overview,
the survey also provides an overview of possible image representations and
available datasets.

The paper by Morar et al. [6] is similarly broad as the previous one, however,
it specializes in the indoor environment and classifies methods by different
criteria. The first divider is an environment representation that can be a
3D model, image or feature database, saved locations of static cameras, or
markers placed in the environment. The second employed criterion is a type
of used cameras, which can be mobile or statically placed and 2D or 3D. The
last measures are whether the method uses artificial markers, or uses the
natural appearance of the environment and whether some kind of Al system
is employed. The survey divides research papers into groups based on the
criteria and mentions available information about used datasets, performance
results, and computation time. This approach allows us to quickly find several
papers relevant to our hardware setup and desired system concept.

. 2.2 Local visual localization methods

The task of camera pose transformation estimation from a sequence of images
is called Visual Odometry and was introduced in the work of Nistér et al. [7].
The original algorithm first detects Harris corners, then matches the features
in consecutive image frames by simple correlation over windows around the
detected corners. The matched features are triangulated, and obtained 3D
points are used for camera pose estimation. The work provides algorithms for
both the monocular and the stereo system. The main difference of algorithm
for the monocular system is the use of SfIM (Structure from Motion) over
MVS (Multi-View Stereo) 3D point triangulation.

An example of visual odometry use is motion estimation of MER (Mars
Exploration Rover) robots described in the paper of Cheng et al. in [§]
and later evaluated in [9]. The papers are interesting mainly because of the
reliability requirements on the rovers, operating several years predominantly
in autonomous mode. The system uses the NAVCAM stereo camera and
employs an error model for greater robustness and precision. The difficulties
experienced during MER missions are, in many ways, similar to our own.
Both systems operate in GNSS denied environments, solve unreliable odome-
try measurements caused by wheel slippering, and inaccurate IMU (Inertial
Measurement Unit) pose estimation.

Another example is the work of Scaramuzza et al. [10]. The camera setup is

4
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very similar to our own, which is an omnidirectional camera placed at the roof
of a vehicle. The work is based on the fact that the points in the ground plane
observed from different views are related by a homographic transformation.
The homography is estimated from matched SIFT features in the RANSAC
scheme and decomposed to obtain a camera pose transformation between the
frames. Our camera does not see the majority of the ground plane, which
could, therefore, be replaced by a ceiling in our case.

Of course, an end-to-end neural network solution also exists, e.g., DeepVO
from Wang et al. [I1]. It uses CNN (Convolutional Neural Network) for the
extraction of features on the concatenation of a pair of subsequent images.
The output of the last CNN layer is passed to the RNN (Recurrent Neural
Network) part of the system, which cares about motion modeling.

Some papers deal with the detection and tracking of geometric features
specific to the environment. The paper of Xu et al. [I2] extracts lines from
dropped ceiling tiles employing Hough transform. Known dimensions of
dropped ceiling tiles can be used for initial camera pose estimation with the
PnP algorithm. Position estimation during motion is provided by tracking of
detected line or point features. In the paper of Krotkov [I3], the vertically
oriented lines in the environment are being detected and taken as landmarks.
The camera-landmark rays are computed, and an ideal matching between the
rays and prepared landmark map is found, resulting in simple localization
within the map.

. 2.3 Global visual localization methods

The paper of Lowe et al. [14] is today one of rather older works in the field of
visual localization. This method performs 3D reconstruction of SIFT features
detected by a stereo camera and incrementally generates a 3D landmark
map. All the reconstructed landmarks also keep information about positional
uncertainty. The paper proposes to track the landmarks in a SLAM like
system or to match all visible landmarks to map and localize a robot globally.

Paper of Torii et al. [I5] deals with localization in urban environments
under significant changes. The used database is prepared from cutouts of
Google Street View panoramas. Description of the images is done by a dense
sampling of RootSIFT features in multiple scale levels and subsequent aggre-
gation by VLAD. The dense sampling makes the image representation less
invariant to viewpoint change, which is being overcame by virtual viewpoints
synthesis. The virtual panoramas are computed in a regular grid around
streets thanks to depth maps provided by Street View.

InLoc is an indoor localization system invented by Taira et al. [5]. The
used database consists of cutouts from panoramas generated by an RGBD

scanner. The system uses NetVLAD [I7] image descriptor for the first retrieval

5
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stage. Pixel-to-pixel matching is done for the retrieved images, and candidate
query positions are computed by P3P-RANSAC. This first stage is called
DensePE (Dense Pose Estimation). The second stage is DensePV (Dense
Pose Verification). Virtual viewpoints at the places of estimated camera
positions are generated from the nearest panorama scan, and a comparison
of densely sampled RootSIFT patches between virtual viewpoints and query
image is applied to confirm the match.

The pose verification, which is the last step of the InLoc system, was further
extended in the paper of Taira et al. [40]. The first improvement is the
introduction of a scan-graph, which allows to generate virtual viewpoints
from multiple near database scans. The other novelty is DenseNV (Dense
Normal Verification), which is a similar approach to DensePV, but the surface
normals are taken instead of feature descriptors. Combined system DensePNV
takes normals consistency as a weight for descriptor comparison. Semantics
is another modality that can be taken into account. 3D point clouds and
query images are being semantically labeled, and the semantic classes are
divided into superclasses depending on the reliability of the object position.
The pixels belonging to unreliable (easily movable) objects are then ignored
during the dense verification steps.

Another work of Torii et al. [42] deals with localization of panoramas. A
fixed number of vertical tiles is cut out from the panorama and described
with BoW or VLAD descriptor, generating an ordered list of tile descriptors.
The retrieval step is performed with the circular ordering of the tiles in mind.
An optimal circular shift between the tiled description of query and database
image is sought during retrieval.

One of the recent works dealing with visual place recognition is the pa-
per of Camara et al. [16]. It uses VGG-16 CNN proposed by Simonyan et al.
[44] and extracts outputs of two convolutional layers. The outputs of those
two layers are spatially aggregated into a fixed number of vectors, which
are similar to descriptors of densely sampled features. The later layer with
less spatial, but more semantical information is used in the filtering stage,
preselecting similar images while ignoring the geometrical arrangement of
the features. The output of the earlier layer with more spatial information
is used for re-ranking, where corresponding descriptor patches and other
patches in the same row and column are being checked, emphasizing their
geometrical order. The paper has been revisited in another work of Camara
et al. [43], further polishing parameters of spatial aggregation and changing
the re-ranking step, so it checks not only the similarity of rows and columns
of the current patch but the similarity of features in the square area around
the patch.
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. 2.4 Image representations overview

In the image retrieval task, we need some efficient image representation, which
allows us to compare the images and find the ones capturing the same scene.
There is a vast number of ways, how to describe an image. This section tries
to briefly introduce and classify the ones, which were encountered along the
way of writing this thesis.

The first divider of image representation methods could be whether we
use a single description of the whole image, or we find some interesting local
image features, which are stable despite scene changes and describe them
instead. Both of these approaches are covered in the following subsections.

Other approaches exist, some exploiting geometric features in the image
or geometric relations between local features, such as in papers from Chum et
al. [48,49]. These methods seem very attractive, mainly because they could
largely improve the robustness of the local features, however, none of them
was tested because of the unavailability of any public implementation and
lack of time for writing our own implementation.

Many methods use 3D data, either in the form of matching 2D image features
to 3D map or in the form of reconstruction of the image features and matching
3D point clouds on each other. The advantages and disadvantages of these
approaches are well described in the paper by Sattler et al. [39]. The necessity
of consistent 3D map maintenance of a dynamic environment is the major
reason why this thesis tries to perform the localization without using any
kind of 3D map.

To have a complete list of all possible image representations, semantical
approaches should also be mentioned. Utilization of outputs or semi-products
of object recognition networks could provide a quiet robust system as de-
scribed in the paper of Taira et al. [40], which is further explained in Section
2.9l

B 2.4.1 Local image features

Local feature processing is standardly divided into two subsequent steps.
Firstly, the features (sometimes called key points) have to be detected, that
is, interesting patches of the image have to be localized. Then, the found
patch (area of defined size around detected key point) is described, and a
feature descriptor, which is usually a numerical array is generated. These two
steps are done by the feature detector and feature descriptor, respectively.
Some methods specify both the detector and the descriptor, and some specify
only single of them and leave the choice of the other one on the user.

Algorithms for local features detection and description are being evaluated

7



2. State of the art

on the basis of invariance to certain changes. Invariance to a change means
that if we apply the change to an image, the features will be detected on the
same (or corresponding) spots, and generated descriptors will be the same.
Let us mention invariance to intensity change, rotation, scaling, and affine
geometric transformation.

The process of feature detection on specific places in the image described
above can sometimes be called sparse feature extraction. The opposite is the
dense feature extraction, where the detection step is being replaced by sam-
pling in a regular grid. This technique can be beneficial in environments with
texture-less surfaces, where some detectors could not find any valid key points.

Harris corner detector introduced by Harris et al. in [24] is probably the most
well-known feature detection algorithm. It searches for corners, which are
patches unique in their vicinity. That is done by detecting local maximums of
thresholded (corner) response function. The response function has high value
at the points where the image function changes significantly in all directions.
The problem comes with a lack of scale invariance.

FAST(Features from Accelerated Segment Test) feature detector presented
by Rosten et al. in [25] generates a circle of specified radius around each
pixel and sums the number of the pixels on the circle, which differ from the
central one by the given threshold. If that is more than % of the pixels on
the circle than the central pixel is accepted as a feature. The detector is not

scale invariant.

BRIEF (Binary Robust Independent Elementary Features) is a feature de-
scriptor from Calonder et al. [26]. It takes a smoothed image patch and
generates a binary vector of length ng by performing ny intensity comparison
tests on sampled pairs of patch pixels. The paper proposes several sampling
strategies, where the one using single Gaussian distribution performs the best.

ORB (Oriented FAST and Rotated BRIEF) by Rublee et al. in [27] is
presented as an efficient alternative to the other existing systems. It uses the
FAST feature detector on multiple scale pyramid levels. Specified constant
number of features with the highest Harris corner response are accepted on
each level. Orientations of features are computed using the intensity centroid
method introduced by Rosin [28]. The resulting detector is named oFAST
(Oriented FAST). BRIEF descriptor is applied on a rotationally normalized
patch with pre-learned pairs sampling strategy to improve the variance of the
tests. This alteration of BRIEF descriptor is called rBRIEF (Rotated BRIEF).

SIFT (Scale-Invariant Feature Transform) by Lowe [29] is probably the most
used detector and descriptor system, with many variations aimed at better
performance. The detector part searches for extrema of DoG (Difference of
Gaussian) filtered images with multiple scale levels. The keypoint locations
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are further filtered as described in another paper by Lowe [30]. The prevail-
ing gradient orientations in feature patch are retrieved, which can be used
for feature orientation normalization, providing rotational invariance. The
patch around the key point is divided into 16 4x4 pixel blocks, and 8-bin
HOG (Histogram of Oriented Gradients) is generated for each, generating
128 element descriptor vector.

Upright SIFT is a variant of SIFT, which omits feature orientation normaliza-
tion, making the descriptor rotational invariant, but improving descriptiveness
in applications with stable camera orientation as can be seen in paper of
Baatz et al. [31].

RootSIFT described in the paper of Arandjelovi¢ et al. [32] is obtained
by applying an element-wise square root on the L1 normalized SIFT descrip-
tor. The matching procedure is done using the Euclidean distance, which is
equivalent to the use of Hellinger distance on the original STFT descriptors.

D2-net of Dusmanu et al. [41] is an approach using CNN for local fea-
tures detection and description. The tensor output of H x W x D dimensions,
which is generated by a CNN, is interpreted in two ways. D layers of H x W
size are taken as response maps similar to ones used for Harris corners search,
and features are detected at local maximums. The other interpretation of
the tensor is that each vector of length D in the H x W grid is taken as a
descriptor for the corresponding image patch. Image pyramids are applied to
ensure scale invariance.

B 2.4.2 Global image representations

Global image descriptors represent the whole image with a single vector,
allowing straightforward similarity search with the possibility of a low mem-
ory footprint. The representation can be derived directly from an image, or
aggregated from a set of described local features.

BoW (Bag of Words), BoVW (Bag of Visual Words) or BoF (Bag of Features)
is an aggregation algorithm introduced by Csurka et al. [33] and later ex-
tended by Sivic et al. [34], following procedures from text analysis. It prepares
a vocabulary by dividing descriptor space into clusters and then describes the
image by numbers of local feature descriptors belonging to each of the clusters.

FV (Fisher Vector) is another aggregation approach used for the first time for
image description by Sanchez et al. in their paper about image classification
task [35]. The BoW descriptor space clustering is replaced by soft assignment
to GMM (Gaussian Mixture Model), and the resulting score is computed as
a gradient of log-likelihood of the feature descriptors on the model.

VLAD (Vector of Locally Aggregated Descriptors) is an aggregation tech-
nique by Jégou et al. [36], which can be taken as a simplification of FV. The

9
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hard feature-cluster assignment from BoW is used, and pooling is done by
summing the distance of all features corresponding to the cluster from the
cluster centroid along each dimension. The experiments indicate an increase
in retrieval performance compared to BoW and FV.

NetVLAD of Arandjelovi¢ et al. [I7] is the only representative of direct
image descriptors in this list. It uses an off-the-shelf CNN (Convolutional
Neural Network) with a custom-designed aggregation layer, which imitates
the VLAD descriptor pooled from densely extracted features. It is currently
considered one of the best image representations for the place recognition
task.

10



Chapter 3

Solution proposal

This chapter describes the course of solution development and discusses the
used methods in more detail.

B 3.1 Dataset preparation

The robotic platform which has been used for dataset capturing runs ROS
Kinetic on Ubuntu 16.04. The script provided by colleague Vaclav Plavec
was used for publishing camera data to a ROS topic with a given period
of driven distance measured by odometry. The topics containing captured
images and the data needed for NDT SLAM were recorded into ROS bag
files. NDT SLAM package by Novacek [I8] was launched offline on the
recorded data, with the possibility of slowing down the data playback in
case of localization issues. The database processing script from implemented
visual_localization package is being launched together with NDT SLAM
and matches the results of localization with captured images, generating a
text file with the position of each captured image.
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Figure 3.1: Dataset images position estimation performed by NDT SLAM and
visualized by rviz. Estimated positions are marked by red color, blue part of the
NDT map was generated from CAD building drawings, green part was generated
dynamically by the SLAM system.
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B 32 Early development stages and implemented
ROS package

Our first idea of how to solve the problem of visual localization was to detect
the local features in the fisheye image, find similar images by performing fea-
ture matching between images, apply triangulation, and estimate camera pose
by PnP (Perspective-n-Point) algorithm. With this idea in mind, an initial
part of the system was implemented for ROS in the visual_localization
package. The package contains functions for detection and descriptions of
local features, assignment of a pose to the database images based on localiza-
tion output of NDT SLAM system, and matching of local features between
described images. The implemented package was used through dataset collect-
ing, to assign pose from NDT SLAM to the captured images. Unfortunately,
there has not been enough time to integrate the following parts, evaluated in
experiments, into the package, so these are separate pieces of software.

There have also been a few tries to use the COLMAP system from Schén-
berger et al. [51),62]. COLMAP is SfM and MvS pipeline, not meant to work
as a visual localization system. However, our idea was that the camera pose
computation, which is already performed during the SfM process, could be
used for robot localization. This approach was abandoned after several tests
because the localization took too long, failed to converge most of the time,
and the converged results were deformed in various ways. We later found out
that none of the camera models implemented in COLMAP is able to model
our camera lens with FoV larger than 180°.

. 3.3 InLoc

A literature survey was performed simultaneously with the implementation
of the visual_localization package. It was clear early that many more
advanced approaches exist. One of such systems is InLoc, briefly mentioned
in 2.3, which had for us an advantage of the availability of personal consul-
tations with the authors. The InLoc system has available Matlab code and
also provides a testing dataset. That allowed us to test if we were able to
install the system so that the results on the dataset match the results from
the paper. The results of the localization can be evaluated to ground truth by
The Visual Localization Benchmark [47]. The performance did not match the
paper exactly, which was explained by the use of the P3P algorithm within
RANSAC, producing slight variations in results.

InLoc uses precise RGBD panoramas for database and perspective images
as queries. To provide the same query image type, for which the method
was prepared, we studied, implemented, and tested fisheye to perspective
image mapping. The datasheet of the used fisheye lens (Sunex PN DSL215)
[19] mentions that the lens geometry can be modeled by equidistant (f-0)
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model with 6% distortion. The mapping can be done by taking a perspective
camera of selected parameters with the same center as the real fisheye camera,
reprojecting the perspective image’s pixels to a unit sphere, and projecting
these 3D points into the fisheye camera image using the equidistant model.
Values at the projected points are retrieved using an interpolation.

Many other fisheye projection models exist, some of them with available
implementation. The problem appears when we want to apply the projection
on a lens with FoV (Field of View) greater than 180° (sometimes called super
fisheye). Many projection algorithms perform division by Z coordinate of
a 3D point, which for the rays with angles (from the optical axis) greater
than 90° results in projection into the wrong image half-plane, if not handled
correctly. The model from Scaramuzza et al. [21], which is used in Matlab
Computer Vision Toolbox and the OpenCV fisheye camera model, contain
this flaw and are not usable for our purposes. OpenCV public code repository
already contains the improved code version [20], which is able to handle the
super fisheye case, but the code was not published yet in main branch. Worth
mentioning is the model from Mei et al. [22], which comes with the camera
calibration toolbox for Matlab [23] and is able to perform the super fisheye
projection.

The 3D data in the InLoc database is used for camera pose computation
and virtual view synthesis. Our robotic platform has only an RGB fisheye
camera and planar lidar, which cannot substitute the RGBD scanner used for
generating InLoc database. Our approach also tends to eliminate the need for
on-site preparations before starting the robot operation, which discourages
us from manual scanning the environment. That was the leading cause, why
we did not continue in testing this approach.

B 3.4 Tiled descriptors

We used the idea of describing a panorama by a set of tiles introduced in
the paper of Torii et al. [42], adjusted it for our environment and tested in
combination with VLAD and NetVLAD descriptors. The approach seems
interesting for our application because generating a panorama from an upward-
looking fisheye image is a simple operation.

Our use case differs in the target environment. Indoor localization meets
different challenges than outdoor, where the main one for tiled descriptors is
that the objects have a smaller distance to the camera, and consequently, the
scene changes significantly even for small camera motions. An experiment,
described in Section |5.3, was done to find out how should be the tile parame-
ters adjusted for the target environment.

The paper performs tests on two datasets from the outdoor urban envi-
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3. Solution proposal

ronment. Pittsburgh dataset used Google Street View panoramas for both
the database and query images. Their own dataset, called Shibuya, uses
Google Street View for database and panoramas captured by various cellphone
hardware and software for query images. The performance graphs indicate
that the methods have much better results on the Pittsburgh dataset, but
it is not clear if the cause is that the Shibuya dataset uses different image
sources for database and query, or there exists any other cause. Our approach
tends to use the same fisheye camera for capturing both the database and
query images, which eliminates possible loss of performance while matching
images captured by different methods.

VLAD and NetVLAD descriptors were selected for describing the tiles because
of their performance and popularity for purposes of visual localization and
visual place recognition tasks. The tiled representations are tested in detail
in Section along with VLAD and NetVLAD descriptors applied directly
on fisheye images.

R ResResshoo:

Figure 3.2: Fisheye image description procedure by Tiled VLAD: 1. the fisheye
image is transformed into a panorama, 2. SIFT features are detected in the
panorama and described, 3. local features are assigned to tiles, 4. local features
are aggregated into VLAD descriptor for each tile

- | HOOE
1 2 3

Figure 3.3: Fisheye image description procedure by Tiled NetVLAD: 1. the
fisheye image is transformed into a panorama, 2. the panorama is divided into
tiles, 3. individual tiles are described by NetVLAD

The procedure of description of fisheye image by Tiled VLAD descriptor is
presented in Figure We have to obtain the panorama from the fisheye
image, as described in Section The SIFT features are detected and
described upright by RootSIFT descriptors. The descriptors are divided into
tiles and aggregated into VLAD representations. In the case of NetVLAD,
which can be seen in Figure 3.3, the panorama is divided into tiles first, and
the descriptor is computed directly on the tile images. The result of image
description phase is a set of N described tiles with circular ordering constraint.

The computation of the distance of two described images is shown in Figure
It starts with generating all possible circular shifts of the query image

tiled descriptor. The Euclidean distance is used to compute individual tile
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Figure 3.4: Computation of description distance of two images described by
tiled descriptor: 1. all possible circular shifts of query image (red) tiles are
generated, 2. descriptor distance between database image (blue) and query
image (red) representations is computed for each shift by taking the sum of
Euclidean distances of corresponding tile descriptors, 3. the minimal distance
over all possible shifts is taken as the resulting distance value

descriptors’ dissimilarity, and the distances of individual tiles are summed to
obtain the distance between the tiled representations with particular shift.
The minimal distance among the shifts is taken as the resulting distance
of the tiled representations. The angle of the best circular shift is kept for
orientation estimate. This procedure is applied to each database image, so
all the distances are obtained, and the database can be ordered by similarity
to the query image.

The position of the most similar database image is taken as the position
estimate of the query image. This approach is possible only when the database
images cover the working area with sufficient density. However, an interesting
property of this approach is that the computations are kept strictly in the
2D domain.

The tiled descriptors have an advantage of a direct orientation estimate.
The angle of the best circular shift can be summed with the orientation of
the database image to obtain the orientation of the query image up to the
tiles angular resolution. The global descriptors applied directly to the fisheye
image can be, in theory, very similar to the representations of images of
completely different orientations, making the orientation estimation quite
difficult. However experimental results presented in Section [5.4.5/ show, that
the performance of orientation estimation is nearly equal for descriptors
applied directly to fisheye images and tiled descriptors.
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3. Solution proposal

The used solution should provide invariance to basic transformations. Invari-
ance to light changes should be ensured by the underlying SIFT descriptor
in the case of Tiled VLAD, and by properly built training set in the case of
Tiled NetVLAD. The real performance under changing lighting conditions
is tested in Section [5.4.4. Rotational invariance should be ensured by the
circular ordering constraint of the tiles. Invariance to camera translation is
currently partly solved by the use of global descriptors and partly by densely
captured database images, which is not an ideal solution.

There are many adjustments and improvements, which could be examined in
the following works. One such improvement is to estimate the position from
multiple retrieved images or use retrieval results of multiple subsequent query
images. The latter idea has already been examined by Haraoka in [50].
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Chapter 4

Implementation

This chapter deals with details of the implemented software. The implemen-
tation of experiments is described in the following Section [4.1. The second
Section introduces the implemented ROS package.

B 41 wmatlab experimental scripts

All experiments described in Chapter [5| were implemented in Matlab lan-
guage, because of compatibility with available codes of state of the art

approaches, such as NetVLAD. The code uses VLFeat library (https://www

vlfeat.org/)), which has to be downloaded and installed separately. Also the
NetVLAD code and one of the provided networks have to obtained separately

(http://github.com/Relja/netvlad).

B 4.1.1 Image preprocessing

The tiled descriptors are computed from panoramas, which we have to gener-
ate from fisheye images. The transformation is performed by mapping the
polar coordinate system of the fisheye image on the panorama’s Cartesian
coordinate system. The situation is depicted in Figure 4.1 The origin of
the polar system was obtained from camera calibration, further described
in Section The whole omnidirectional image can be used to generate
the panorama, however, the distortion of the mapping in the top part of the
panorama (which is mapped from the central area of the omnidirectional
image) is quite large, so this area is being excluded, and the mapping is
performed only for the area bounded by two circles. The outer circle matches
the circular edge of the fisheye image, and the inner circle has selected radius,
which is 7;, = 200 pz in our case. The radius of the circular edge of the
omnidirectional image was manually measured and is equal to 1y, = 1116 px
for our image of 2592 x 1944 resolution.

Height of the output panorama is equal directly to the difference of the
radii of the outer and inner circles h = roy — 15 = 1116 — 200 = 916.
Width was selected as w = 2 (Teutlin ) = 2877, resulting in the panorama
of 2877 x 916 resolution.
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4. Implementation

The mapping is done in a standard way. First, a regular grid that represents
the pixels of the panoramic image of the precomputed size is generated. Then,
the positions of corresponding points in the fisheye image are computed, and
finally, quadratic interpolation is used to retrieve the values for the panorama
pixels.

(a) : Fisheye image (b) : Panoramic image

Figure 4.1: The mapping from a fisheye image into a panorama

Proper masking should be applied to overcome the detection of local
features in inappropriate places. The panorama areas, which are mapped
from outside of the fisheye image, should be masked out, and the edges
should be smoothed, so they do not attract local feature detectors. The same
procedure should be applied to the rest of the fisheye image around the main
circular area, so the features are not detected e.g., on the light reflections
from optics.

B 4.1.2 SIFT

The SIFT features are detected and described using the VLFeat library. The
feature orientation normalization is being done only for experiments on fisheye
images. Tiled descriptors use Upright SIFT, where the detected orientation
is omitted. The descriptors are RootSIFT normalized as suggested in the
paper of Arandjelovié¢ et al. [32]. The peak threshold parameter was tuned
for the detection of a sufficient number of features. The final value is set to 1
because many tiles did not contain any features while using higher thresholds.
The rest of the VLFeat SIFT parameters is set to default values.

B 413 VLAD

The VLAD aggregation is performed using a function from VLFeat library
and custom vocabulary with 256 centroids, trained on a random subset
of database images. The dimensionality of the resulting representation is
equal to the length of the underlying local descriptor times the number of
centroids, which is 128 - 256 = 32768 for our case. Intranormalization of the
VLAD representation from the paper of Arandjelovi¢ et al. [45] is used to
reduce the influence of burstiness. PCA reduction is applied, so the final
descriptor has a length of 128 elements. The initial vocabulary size and the
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number of dimensions after PCA reduction was selected based on the results
of experiments from the paper of Torii et al. [42]. Matching of the descriptors
is done using Euclidean distance.

B 4.1.4 Tiled VLAD

Tiled VLAD image representation was implemented by the description in the
paper of Torii et al. [42]. The omnidirectional images from our dataset are
transformed into panoramas. The SIFT features are being described upright,
which is made possible thanks to the geometry of panoramic images. Root-
SIFT normalization is applied to the descriptors, and the features are divided
into NV tiles of defined parameters. Precomputation of the local features and
their descriptors allows cheap changes of feature-to-tile assignments with
adjustments of tile parameters. The VLAD descriptor is computed for each
tile the same way, as mentioned in Section 4.1.3. The final representation of
the image consists of N VLAD descriptors in a fixed order.

The representations are matched by computing sum of Euclidean distances
over all tiles for each of the possible circular shifts. The minimal distance is
taken as a result.

B 4.1.5 NetVLAD

The NetVLAD paper authors provide code [37] and also a trained network.
The network version based on the convolutional part of the VGG-16 network
trained on the Pitts250k dataset [46], connected with the NetVLAD layer
and whitening, is marked as the best performing in the paper and so was
used in this thesis. The resulting descriptor has 4096 dimensions. Only single
function computeRepresentation for image description computation was
used from the provided repository.

B 4.1.6 Tiled NetVLAD

Because Tiled NetVLAD produces the global description of the provided
image, it lacks the possibility of dynamic assignment of local features to tiles
as in Tiled VLAD. A workaround in the form of panorama image vertical
cutouts is applied. Each of the image tiles is fed into the neural network
with the NetVLAD layer, which generates its descriptor. In the case of
tile parameters change, the tiling and description steps have to be rerun,
which makes each tile parameter change computationally expensive. Image
matching step is identical to Tiled VLAD descriptors matching, with the only
difference of descriptor dimensions.

B 4.1.7 Software structure and usage

Each tested method (e.g., Tiled NetVLAD) has its own script for the descrip-
tion of images (tiled_netvlad_describe.m), which takes the images from
a dataset and produces MAT file with descriptors into the corresponding
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dataset directory. The expected structure of the dataset directories can be
seen in Figure [4.2l In the case of VLAD and Tiled VLAD, MAT file with
SIFT features is generated first, and the VLAD description is computed based
on the prepared SIFT features. The next step is to run load_positions.txt
script, which takes the positions file generated by visual_localization
package and assigns the positional information to the described images.

The second source file present for each method is the retrieval script
(tiled_netvlad_retrieval_script.m). It loads all existing description
MAT files with assigned positions for both the database and query datasets
and finds the most similar database images for each query image. Com-
pressed results are written into another MAT files, which can be loaded by
plot_performance.m script and the performance graphs used in Section |5.4
can be generated.

= database

= dataset_01

= images

t image_O1. jpg

-adataset_Ol1_positions.txt

s dataset_01_tiled_netvlad.mat

Ly ...

-adataset_02

la...

L ...

L query

la...

Figure 4.2: Example structure of the dataset directories and files

Initialization script init.m is used to set all parameters needed to run the
experiments. Brief descriptions and examples accompany the parameters for
better understanding. The user should set paths to VLFeat and NetVLAD
libraries and to test data directories, so the software finds all necessary func-
tions and inputs.

The individual scripts can be run manually, or by using automation script

auto_process.m, which contains examples of whole experiments. Thanks to
this approach, multiple experiments can run continuously without the need
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for supervision.

There are other minor scripts and functions, which are not presented here.
Their use and interface are described directly in the source code.

B a2 visual_localization ROS package

The package should be used to create a database of localized described images
and subsequently to match newly coming captured images to the database.
As the design of the solution at the time of implementation counted only
with local image features, the whole system is adjusted for this purpose.
There is prepared a parent class dd_orb_cv.py for local detect-and-describe
methods, which can be exchanged as needed. Class for ORB detector and
descriptor dd_orb_cv.py was implemented as an example. Both the Python
and C++ classes are prepared so that a larger number of the available public
implementations of local image feature methods can be used.

The database preparation script desc_pose_generator.py listens to a speci-
fied ROS topic with camera data and matches each new image with positional
information of the camera. The source of the pose, in our case, is the NDT
SLAM system. The script node runs in parallel with the selected local feature
description node, takes the generated local features and descriptors, and
integrates them into the data structure. The data structure of localized
and described images can be exported and imported again by using a JSON
format file, so the database collecting can be continued even after system
rebooting. The script can also generate the TXT positions file, used in our
Matlab experiments. The last possible output of the script is the images
file, which is needed in the COLMAP system (https://colmap.github.io/)).

Image retrieval is done by desc_pose_user_single.py and desc_pose_user_live.py
scripts. The first one is used for testing the retrieval of individual images from

files and communicates with the user through prepared CLI (Command-Line
Interface). The second is intended to work with the image data stream from

ROS topics, whether it comes from a rosbag, or live from a robot.

Each of the use cases has its own launch file. The image retrieval can be started

by launching match_individual_images.launch ormatch_live_images.launch.
The database preparation is controlled by process_database.launch file.

It tries to run SLAM node from ndt_ciirc_slam package by Novacek [18],
which has to be obtained separately. An important step is to provide the
correct initial position for the SLAM system, so it can correctly localize in

the prepared NDT map of the environment. The starting positions can be
measured in the CAD drawing of the environment.
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Chapter 5

Experimental results

B 51 Camera settings

The first thing that had to be done was camera preparation, especially
choosing the right exposure settings. Auto-exposure was tested, but the
results with optimally chosen constant value were evaluated as the better
ones. An example of images captured by two different exposure settings can
be seen in Figure[5.1. The exposure time should be a compromise between the
minimization of saturated and black areas in the image. Because the camera
uses a rolling shutter, interference with the blinking of artificial lighting had
to be also considered. The interference causes light and dark strips visible in
the left part of Figure |5.1. The final chosen value is 10 ms, with which the
image is saturated only at the places with direct sunlight, the environment
illuminated only with artificial lighting is clearly visible, and rolling shutter
artifacts are minimized.

(a) : Automatic exposure (b) : 10 ms constant exposure

Figure 5.1: Influence of exposure settings on the image

The Basler camera provides drivers for use with ROS, so the parameters can
be set using rosparam at system initialization. Changing other parameters
than exposure time seems unimportant for our application.

The camera calibration was performed with possibilities of geometrical im-
age transformations and 3D point cloud reconstruction in mind. We used
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the fisheye camera calibration procedure from OpenCV, with integration of
yet unsupported functions (J20]), to ensure the functionality with our super
fisheye lens. Obtained principal point coordinates are used for fisheye to
panoramic image conversion as the origin of the polar system.

. 5.2 Dataset

This chapter briefly presents the dataset prepared for testing of various ap-
proaches on our robotic platform. The dataset captures multiple rooms and
the corridor on the 6th floor of CIIRC building B by a monocular verti-
cally oriented fisheye camera. The images were captured with approximately
0.25 m travel distance period measured by robot odometry. All data needed
for image positions retrieval has been saved into rosbag files, and the locations
were obtained offline by the NDT SLAM system. Capturing was done in
multiple runs to get images containing various lighting conditions and to
reduce the SLAM localization error by shortening the driven distance from a
starting position. The individual runs were performed over a period of four
months, and therefore slight changes in the environment can be observed.
Figure [5.2| contains examples of captured images at several places under
different lighting conditions. The data from each run is kept in a separate
subset named by daytime, day, and place of the run.

Figure 5.2: Examples of dataset images captured by fisheye camera - top and
bottom rows depict same places in different lighting conditions

The localization error of the NDT SLAM at the time of capturing was quite
high. The process of image positions retrieval demanded visual supervision
because of the possibility of SLAM position estimate divergence. SLAM
parameters had to be tunned for individual runs to obtain reasonable results.
The especially challenging environment is corridors, which lack distinctive
features for planar lidar. Localization along corridor length can have errors in
the order of tens of percent of the driven distance. One of the used solutions
was to install artificial obstacles that are nearly not visible in the captured
images but make a significant change in the lidar scans and improve the
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localization results. The other problem is that the lidar scans can match on
the opposite side of the wall, shifting the location estimate. Because of the
mentioned issues, the threshold between correctly and incorrectly localized
image is set to 1 m distance between the image locations. For comparison,
The Visual Localization Benchmark [47] uses three distance thresholds for
methods evaluation, where the most strict is 0.25 m, which we are not able
to achieve with our ground truth precision. The work of Boxan [38] has
improved the system and should allow flawless processing of future datasets
and eventually lowering our evaluation distance threshold.

(e) : Southern kitchenette
= A,s“".‘

(g) : Lecture hall (h) : Laboratory

Figure 5.3: Examples of the environment (captured by cellphone)

25



5. Experimental results

Totally 6106 images in 34 subsets were localized successfully and have
been divided into a database of 20 subsets with 3906 images and a query
dataset of 14 subsets with 2200 images. The individual subsets correspond to
the runs, where the robot was initialized at a position with accurately mea-
sured coordinates within a building CAD drawing and then driven along some
path while periodically capturing images and saving the data into a rosbag file.

Both the database and query dataset contain at least one day and one
dark subset for each place. The captured locations contain a corridor, one
office, kitchenettes, printer corners, a laboratory, and a lecture hall. Examples
of the captured environment are shown in Figure [5.3.

All the localized positions are in the coordinate system of the CAD architec-
tural drawing, which is used for NDT SLAM initialization. The estimated
image positions can be visualized inside the map, as shown in Figure |5.4.
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(b) : Query image datasets

Figure 5.4: Estimated image positions for a day (yellow) and dark (red) images

captured dataset (6106)

— ™~

database (3906) query images (2200)

N /N

day (2589) dark (1317) day (1424) dark (776)

Figure 5.5: Division of the dataset into subsets used for experiments - the
brackets contain the number of images in each set
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5.3. Optimal tiled descriptor parameters

B 53 Optimal tiled descriptor parameters

The tile width for Tiled VLAD and Tiled NetVLAD descriptors was estimated
by the following experiment. 3D point grids were generated, simulating the
environment in which the robot with the camera operates.

X [m]

(@) : A 3D scene containing hemi-

sphere of points connected by wire
mesh for clarity. Omnidirectional
cameras (A and B) are placed around
the center of the hemisphere, 0.25 m
from each other, and vertically ori-
ented.

(b) : Merged projections of points
from the cameras (A and B). The
corresponding points are connected.
The grey rectangle marks the limits of
the fisheye image and the grey circles
bound panorama mapping area.

Figure 5.6: Experiment for estimation of the optimal tile width - environment

imitated by a hemisphere of 1 m radius.

y [m]

x [m]

(a) : A scene containing hemisphere
of points and cameras (A and B)

(b) : Merged projections of points
from the cameras (A and B)

Figure 5.7: Experiment for estimation of the optimal tile width - environment

imitated by a hemisphere of 2 m radius.
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The projection of the environment has been computed for two camera
positions with a distance of 0.25 m from each other. The selected camera
distance is the same as the travel distance period with which was the dataset
captured, as explained in Section The scene can be seen on a simple case
of a hemisphere with a radius of 1 m in Figure

The projections from both cameras were merged into a single image, and the
corresponding points were connected by lines, as can be seen in Figure |5.6b
A simplified equidistant camera model was used for the projections. A grey
rectangle marks the limits of the resulting fisheye image, and the two gray
circles bound the area from which the panorama is generated.

If the objects are farther away from the camera, the resulting shift in the
omnidirectional image is smaller, which is a natural behavior for all cameras
using other than a telecentric lens. The effect is clearly visible while compar-
ing Figures and [5.7, where the cameras are placed inside the hemispheres
of 1 m and 2 m radius respectively. A more realistic case is captured in
Figure trying to simulate a camera moving along a corridor. The corridor
model dimensions were selected to be similar to the testing environment.
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(a) : A scene containing a corridor
model from points and cameras (A (b) : Merged projections of points
and B). from the cameras A and B

Figure 5.8: Experiment for estimation of the optimal tile width - the environment
imitated by a corridor of 6.0 m x 1.8 m x 2.4 m dimensions

The tile width was selected to be more than double the maximum angular
change between two corresponding projected points. The idea is that more
than half of the content in the most changing tile will remain in the tile after
the shift of the camera by the specified distance. That should allow successful
matching of the corresponding panorama tiles. Both the maximum angular
change of approximately 15.8° and the selected tile width of 40° are marked
in Figure The angle of the maximum change can be measured from the
image, or computed by equation , where d(A, B) is the distance between
the cameras, d(AB, C) is the distance from the line between the cameras to
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Figure 5.9: Figure with marked angle of maximal point shift (yellow) of
15.8° and the selected angular width of tiles (green) of 40°. Only tiles with a
shift of 40° are displayed for clarity. The final method uses tiles shifted by 10°.

the point of maximal change. The values in the equation are taken from the
case in Figure |5.8

et (YABY2Y L 025/2Y
Pmaz = 2 - tan (d(AB,C)>_2 tan ( 59 )—15.8 (5.1)

. 5.4 Descriptor tests

Multiple combinations of descriptors and their parameters were tested. Evalu-
ation metrics were selected to comply with the standardly used methodology.
Namely The Visual Localization Benchmark [47], InLoc [5] and D2-Net [41]
were used as reference. All mentioned works employ the percentage of cor-
rectly localized images within a distance threshold as the metric. Two figures
were generated for each test. The first captures the percentage of correctly
localized queries within the constant distance threshold of 1 meter by taking
the nearest database image out of N best retrieved, where N is tested for
values from 1 (the single best) to 20. The second figure plots the percentage of
correctly localized images for the nearest image out of N = 20 best retrieved
and variable distance threshold from 0 m up to 5 m. The approach was
selected to count with the possibility of employing multiple retrieved images
into a final position estimate calculation.

B 5.4.1 Tiled descriptors parameters

The results of the first experiment in Figure |5.10| show the difference between
Tiled VLAD and Tiled NetVLAD descriptors for two different sets of tile
parameters. The first set produces tiles of 20° width with a 20° shift from
each other. These values were an initial guess based on the values used in
the original paper [42]. The second set uses 40° wide tiles with a 10° shift,
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which were selected based on the experiment described in Section and
should correspond more to the indoor environment.

The later values definitely perform better, which is, on the other hand,
compensated by higher memory, computational, and, consequently, also time
requirements. All further experiments were performed with the later param-
eters. Tiled NetVLAD performs better than Tiled VLAD for both cases,
which corresponds with results from the NetVLAD paper [17].
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Figure 5.10: Comparison of retrieval results between Tiled VLAD and Tiled
NetVLAD and two different sets of tiling parameters - t20a20 (tiles of 20° width
with 20° shift) and t40a10 (tiles of 40° width with 10° shift)

B 5.4.2 Fisheye image central area information gain

The second experiment deals with information gain from the central part of
the fisheye image, which, in our case, captures the ceiling most of the time.
The mentioned central part can be seen in Figure bounded by the inner
gray circle.

The first tested case is directly described fisheye image. The second is
a tiled descriptor with the better performing parameters from the previous
experiment. The last tested case uses descriptor applied on the fisheye image
with masked central part, which is being omitted in the tiled descriptors.
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Figure 5.12: Retrieval results for Tiled VLAD descriptor without and with

appended center

The results (in Figure 5.11)) of described fisheye images with and without

masked central parts are nearly the same, which indicates that the center
carries only minimal information usable by the global descriptors. The re-
sults of the tiled descriptors seem to be better for both, VLAD aggregation
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and NetVLAD. It is probably caused by the circular shift constraint, where
part of the features positional information is taken into account in contrast
with directly described fisheye image, entirely omitting the keypoint positions.

Incorporating the central part of the fisheye image into a tiled descriptor as
another tile, on which the circular shift constraint does not apply, was also
tested. The results are shown in Figure [5.12 The performance is nearly the
same for both cases, which confirms the results of the previous experiment
and validates that incorporating the central part of the fisheye image to the
retrieval does not pay off.

The results of the experiments suggest that the central part of the fish-
eye image carries a negligible amount of information, and integrating this
part of the image into the description does not have any advantage. However,
these conclusions are specific to our environment, where the central part
captures a repetitive suspended ceiling with only a few distinct elements such
as lights, sprinklers, or air conditioning exhausts.

B 5.4.3 Influence of image resolution on NetVLAD

The next test deals with an influence of the panorama resolution on the Tiled
NetVLAD descriptor. The tiles with the original, 50% and 25% resolution
were tried, and the results can be seen in Figure [5.13. It is clear that the full
resolution performs the worst. The lower resolution results are nearly equal,
with 50% slightly the best. An explanation of the results could be that the
used network was trained on images with the larger side size of 640 pz, as
mentioned in the NetVLAD paper [I7], and it could perform better on the
images of similar resolution.

Resolution [%] Resolution [px] Processing time [ms]

100 % 917 x 320 110
50 % 459 x 160 80
25 % 230 x 80 79

Table 5.1: Table of the tested tile resolutions with corresponding times for a
single tile description by NetVLAD (computeRepresentation function) - the
experiment was performed on tiles with 40° in width

The processing time declines with reducing resolution as expected. However
for our Matlab implementation, where we load the fisheye image, transform
it into a panorama, apply masking, divide into tiles, describe all the tiles and
save the results into structure array, the description step itself takes only a
little time fraction.
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Figure 5.13: Comparison of NetVLAD performance on different tile resolutions

Only smaller subset of our dataset was used to perform this test to save
time. All the other experiments use a 100% resolution, but the results from
this test should be taken into account for the final system implementation.
The same experiment for the Tiled VLAD descriptor should not be necessary
due to the scale invariance of used SIFT features.

B 5.4.4 Influence of lighting conditions

The influence of lighting conditions was tested for both Tiled VLAD and
Tiled NetVLAD. The database datasets and query datasets were divided
into day and dark groups, based on the table in Figure [5.5, which were then
tested separately. The results for Tiled VLAD and Tiled Netvlad can be
seen in Figure It is clear that Tiled VLAD performs the best for the
day database in combination with day query images. Multiple tests were
performed to find out why the other methods perform worse.

One of the hypotheses was that there are more detected SIFT features
in day images than in the night ones, which could result in more descriptive
VLAD representation. The average number of features per image in the
datasets can be seen in Table It shows that the average number of
detected features is similar for all subsets and is not the cause of the inferior
results while using the datasets from dark environments.
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Figure 5.14: Retrieval results of Tiled VLAD and Tiled NetVLAD descriptors
for different lighting conditions

Dataset Average number of SIFTs per image
Database - day 565
Database - night 602
Query - day 625
Query - night 726

Table 5.2: Average number of SIFT features per image from database and query
datasets divided into day and dark subsets

The second hypothesis deals with the ratio of day and dark images in the
VLAD vocabulary training dataset. The initial vocabulary, which is also used
in all tests, was trained at an early stage of dataset capturing and contained
only daylight images. A new training dataset with more dark images was
generated, and the vocabulary was recomputed. The comparison of new and
old VLAD vocabulary can be seen in Figure |5.15. The dark images in the
training dataset caused that VLAD started to differentiate between SIFT
features from the day and dark environment, causing lower performance in
the matching across different lighting conditions. There is no significant
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improvement for both the day-day and night-night tests while using the new
vocabulary. It is not clear, why there is such performance difference between
day-dark and dark-day experiments.

NetVLAD descriptor performs well when both the database and query dataset
contain images with the same lighting conditions. The performance drops
when the lighting conditions differ. The cause is probably similar to the
newly trained VLAD vocabulary, where the descriptor successfully distin-
guishes between features captured in different lighting conditions. That can
be overcome if the database is being built continually through robot operation
because various lighting conditions are captured for the whole working area,
and the correct place should be retrieved regardless of the daytime.
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Figure 5.15: Retrieval results of Tiled VLAD descriptor for different lighting
conditions and two vocabularies

B 5.4.5 Orientation estimation

The previous experiments tested only position estimation performance re-
gardless of the orientation, so this section tries to correct this shortcoming
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and deal with the testing of the orientation estimate. The testing procedure
is the same as for the previous tests, but the distance threshold was replaced
by an angular threshold of 5°. The threshold was selected so that the used
SLAM system should be able to correct the remaining error by itself.

Expected results were that the descriptors applied on fisheye images would
have quiet poor performance because the images captured with different
camera orientations are except the top and bottom sensor crop very similar,
and their description could be easily matched. The tiled descriptors have
the ability to correct the orientation by using the rotation of the optimal tile
circular shift, which should result in better performance. The rotation can
be estimated up to the sliding interval between individual tiles o which is
equal to 360/N, where N is the number of tiles in the used representation.
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Figure 5.16: Performance of orientation estimation for used descriptors

The results can be seen in Figure [5.16l Unexpectedly descriptors applied
to fisheye images have very similar performance to the tiled descriptors. The
possible cause is that there exists a database image of a similar orientation
for nearly every query image, and there are not many similar images with
different orientations. This cause is quite probable, because the dataset was
captured by driving the mobile robot along very similar paths for both the
database and query sets. However, this scenario can be common even in
real applications, where the mobile robot drives between several stops along
nearly identical paths.
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B 5.4.6 Time demands

The experiments were performed on PC with Intel Core i7-9750H 2.60GHz
CPU and Nvidia GeForce RTX 2070 Max-Q GPU. Most of the operations
ran on a single CPU core. The parallelization was successfully applied on
retrieval tests on precomputed representations so that multiple query images
could be processed at once, however, RAM capacity had to be kept in mind.
A single-core variant has been used for time demands tests. NetVLAD de-
scription generation function supports GPU computation, which was also
used for the following experiments.

The experiments were performed on a sample of 100 query and 100 database
images. Mean durations of individual operations over the sample are written
in the Tables 5.3, 5.4, [5.5, [5.6. The measurements include all operations from
loading the necessary data, applying computations, and storing the results.
E.g., SIFT operation in Table |5.5| involves loading of the image, masking
of the central and edge areas, transformation to a panorama, detection and
description of local features by Upright RootSIFT and saving the results into
MAT file.

The shorter time durations are rather approximative, because the measure-
ments are influenced by used Matlab tic toc functions, adding some unspec-
ified time instant. The influence is clearly visible on example in Table |5.5,
where duration of score computation for single circular shift multiplied by the
number of tiles is greater than the measured duration of score computation
for the whole image (36 - 14 ps = 504 ps > 400 ps).

VLAD in Table [5.3] and NetVLAD in Table 5.4 which are directly applied
to fisheye images have nearly equally long description phase duration. The
difference in the score computation time is caused by different descriptor
dimensionality, where VLAD after PCA compression has 128 dimensions, and
the output of the used NetVLAD network has 4096 dimensions.

Tiled VLAD and Tiled NetVLAD representations use the parameters pro-
posed in Section [5.3, which means, that 36 tiles are generated. Tiled VLAD
in Table 5.5/ is more than twice faster in the description phase than Tiled
NetVLAD with measurements in Table [5.6. The possible cause of poor
NetVLAD results is that the used function computeRepresentation loads
the network to the GPU before each new image, which is each tile in our case.
Faster function, which loads the network only once, exists, however, it is not
usable in our implementation. Score computation per image is approximately
twenty times faster in the case of Tiled VLAD, which is again caused by the
length of VLAD and NetVLAD descriptors, in addition, multiplied by the
number of tiles.
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Operation Per data unit Time
SIFT image 1.8 s

VLAD + PCA image 5.9 ms
retrieval image to database (100) 0.8 ms
score computation image to image 5.2 us

Table 5.3: Table of fisheye VLAD time demands

Operation Per data unit Time
NetVLAD image 1.7 s

retrieval image to database (100) 1.4 ms
score computation image to image 7.5 us

Table 5.4: Table of fisheye NetVLAD time demands

Operation Per data unit Time
SIFT image 2.0s
Tiled VLAD + PCA image 29.1 ms
Tiled VLAD + PCA tile 1.0 ms
retrieval image to database (100) 36.3 ms
score computation image to image 0.4 ms
score computation circular shift 14.0 us

Table 5.5: Table of Tiled VLAD time demands

Operation Per data unit Time
Tiled NetVLAD image 5.4 s
NetVLAD tile 0.1s
retrieval image to database (100) 0.8 s
score computation image to image 7.8 ms
score computation circular shift 0.4 ms

Table 5.6: Table of Tiled NetVLAD time demands

The panorama has approximately 2.6 MP (megapixels), and the original
fisheye image has about 5 MP. That should cause faster descriptions in the
case of the panorama. However, our selected tiling parameters (40° width,
10° shift) cause, that each part of the panorama is present in four tiles, which
are being described separately. The result is the same as describing a four
times larger image. This does not apply to the local features used with VLAD,
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which are detected and described only once and then assigned to the tiles.

We can easily estimate the duration of the retrieval operation for a database
with more images because the time is approximately linear to the size of
the database. For Tiled NetVLAD and our database with 3906 images, the
length of the retrieval phase for a single query image is 3906/100-0.8 s = 31.2 s.

The presented measurements should be taken only as an approximate com-
parison between individual methods. The implementation was not done with
any particular emphasis on time efficiency in mind. A different programming
language such as C++ should be used for final implementation, and the
efficiency of individual operations can change significantly.
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Chapter 6

Conclusion

The main tasks of this thesis were to make a survey of available visual local-
ization methods, select some of them, and evaluate the selected ones on real
data. The used system should be able to provide a global initial pose guess
for NDT SLAM system.

Dataset of fisheye images was captured using the target robotic platform. The
dataset contains images of multiple rooms on the 6th floor of CTU CIIRC
building. The images were captured for different lighting conditions. The
ground truth positions were generated using NDT SLAM system.

ROS package was prepared for the purpose of database preparation and
visual localization based on local image features. VLAD and NetVLAD
global image descriptors with a combination of tiled panorama representa-
tion were selected as a foundation of the system. Description and retrieval
functions using selected methods were implemented in Matlab language and
thoroughly evaluated on the captured dataset. The results indicate that the
tiled descriptors perform slightly better than the directly described fisheye
images. However, better results are achieved at the cost of much higher
computational demands. Localization procedure based on the location of the
most similar image retrieved from a database was proposed.

The thesis should be a valuable source of information and cornerstone of
visual localization system for anybody, who will continue in work on this topic.
Future work should provide full integration into ROS, based on prepared
visual_localization package. Aggregation of information from multiple
retrieved database images and connection of results from several consequent
query images could result in great advance in performance. Query expansion
based on database images location graph could also have a great impact.
Training NetVLAD network on images from the target environment could be
worth a try.
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