118 research outputs found

    Condition based Ensemble Deep Learning and Machine Learning Classification Technique for Integrated Potential Fishing Zone Future Forecasting

    Get PDF
    Artificial Intelligence (AI) technologies have become a popular application in order to improve the sustainability of smart fisheries. Although the ultimate objective of AI applications is often described as sustainability, there is yet no proof as to how AI contributes to sustainable fisheries. The proper monitoring of the longitudinal delivery of different human impacts on activities such as fishing is a major concern today in aquatic conservation. The term "potential fishing zone" (PFZ) refers to an anticipated area of any given sea where a variety of fish may congregate for some time. The forecast is made based on factors including the sea surface temperature (SST) and the sea superficial chlorophyll attentiveness. Fishing advisories are a by-product of the identification procedure. Normalization and preliminary processing are applied to these unprocessed data. The gathered attributes, together with financial derivatives and geometric features, are then utilised to make projections about IPFZ's Technique are used to get the final determination (CECT). In this study, we offer a technique for identifying and mapping fishing activity. Experimentations are performed to validate the efficacy of the CECT method in comparison to machine learning (ML) and deep learning (DL) methods across a variety of measurable parameters. Results showed that CECT obtained 94% accuracy, while Convolutional neural network only managed 92% accuracy on 80% training data and 20% testing data

    Autonomous temporal pseudo-labeling for fish detection

    Get PDF
    The first major step in training an object detection model to different classes from the available datasets is the gathering of meaningful and properly annotated data. This recurring task will determine the length of any project, and, more importantly, the quality of the resulting models. This obstacle is amplified when the data available for the new classes are scarce or incompatible, as in the case of fish detection in the open sea. This issue was tackled using a mixed and reversed approach: a network is initiated with a noisy dataset of the same species as our classes (fish), although in different scenarios and conditions (fish from Australian marine fauna), and we gathered the target footage (fish from Portuguese marine fauna; Atlantic Ocean) for the application without annotations. Using the temporal information of the detected objects and augmented techniques during later training, it was possible to generate highly accurate labels from our targeted footage. Furthermore, the data selection method retained the samples of each unique situation, filtering repetitive data, which would bias the training process. The obtained results validate the proposed method of automating the labeling processing, resorting directly to the final application as the source of training data. The presented method achieved a mean average precision of 93.11% on our own data, and 73.61% on unseen data, an increase of 24.65% and 25.53% over the baseline of the noisy dataset, respectively.info:eu-repo/semantics/publishedVersio

    Deep learning for internet of underwater things and ocean data analytics

    Get PDF
    The Internet of Underwater Things (IoUT) is an emerging technological ecosystem developed for connecting objects in maritime and underwater environments. IoUT technologies are empowered by an extreme number of deployed sensors and actuators. In this thesis, multiple IoUT sensory data are augmented with machine intelligence for forecasting purposes

    Development of object detection and classification with YOLOv4 for similar and structural deformed fish

    Get PDF
    Food scarcity is an issue of concern due to the continued growth of the human population and the threat of global warming and climate change. Increasing food production is expected to meet the challenges of food needs that will continue to increase in the future. Automation is one of the solutions to increase food productivity, including in the aquaculture industry, where fish recognition is essential to support it. This paper presents fish recognition using YOLO version 4 (YOLOv4) on the "Fish-Pak" dataset, which contains six species of identical and structurally damaged fish, both of which are characteristics of fish processed in the aquaculture industry. Data augmentation was generated to meet the validation criteria and improve the data balance between classes. For fish images on a conveyor, flip, rotation, and translation augmentation techniques are appropriate. YOLOv4 was applied to the whole fish body and then combined with several techniques to determine the impact on the accuracy of the results. These techniques include landmarking, subclassing, adding scale data, adding head data, and class elimination. Performance for each model was evaluated with a confusion matrix, and analysis of the impact of the combination of these techniques was also reviewed. From the experimental test results, the accuracy of YOLOv4 for the whole fish body is only 43.01 %. The result rose to 72.65 % with the landmarking technique, then rose to 76.64 % with the subclassing technique, and finally rose to 77.42 % by adding scale data. The accuracy did not improve to 76.47 % by adding head data, and the accuracy rose to 98.75 % with the class elimination technique. The final result was excellent and acceptabl

    Unveiling the frontiers of deep learning: innovations shaping diverse domains

    Full text link
    Deep learning (DL) enables the development of computer models that are capable of learning, visualizing, optimizing, refining, and predicting data. In recent years, DL has been applied in a range of fields, including audio-visual data processing, agriculture, transportation prediction, natural language, biomedicine, disaster management, bioinformatics, drug design, genomics, face recognition, and ecology. To explore the current state of deep learning, it is necessary to investigate the latest developments and applications of deep learning in these disciplines. However, the literature is lacking in exploring the applications of deep learning in all potential sectors. This paper thus extensively investigates the potential applications of deep learning across all major fields of study as well as the associated benefits and challenges. As evidenced in the literature, DL exhibits accuracy in prediction and analysis, makes it a powerful computational tool, and has the ability to articulate itself and optimize, making it effective in processing data with no prior training. Given its independence from training data, deep learning necessitates massive amounts of data for effective analysis and processing, much like data volume. To handle the challenge of compiling huge amounts of medical, scientific, healthcare, and environmental data for use in deep learning, gated architectures like LSTMs and GRUs can be utilized. For multimodal learning, shared neurons in the neural network for all activities and specialized neurons for particular tasks are necessary.Comment: 64 pages, 3 figures, 3 table

    A Novel Detection Refinement Technique for Accurate Identification of Nephrops norvegicus Burrows in Underwater Imagery

    Get PDF
    With the evolution of the convolutional neural network (CNN), object detection in the underwater environment has gained a lot of attention. However, due to the complex nature of the underwater environment, generic CNN-based object detectors still face challenges in underwater object detection. These challenges include image blurring, texture distortion, color shift, and scale variation, which result in low precision and recall rates. To tackle this challenge, we propose a detection refinement algorithm based on spatial–temporal analysis to improve the performance of generic detectors by suppressing the false positives and recovering the missed detections in underwater videos. In the proposed work, we use state-of-the-art deep neural networks such as Inception, ResNet50, and ResNet101 to automatically classify and detect the Norway lobster Nephrops norvegicus burrows from underwater videos. Nephrops is one of the most important commercial species in Northeast Atlantic waters, and it lives in burrow systems that it builds itself on muddy bottoms. To evaluate the performance of proposed framework, we collected the data from the Gulf of Cadiz. From experiment results, we demonstrate that the proposed framework effectively suppresses false positives and recovers missed detections obtained from generic detectors. The mean average precision (mAP) gained a 10% increase with the proposed refinement technique.Versión del edito

    Applications of deep learning in fish habitat monitoring: A tutorial and survey

    Get PDF
    Marine ecosystems and their fish habitats are becoming increasingly important due to their integral role in providing a valuable food source and conservation outcomes. Due to their remote and difficult to access nature, marine environments and fish habitats are often monitored using underwater cameras to record videos and images for understanding fish life and ecology, as well as for preserve the environment. There are currently many permanent underwater camera systems deployed at different places around the globe. In addition, there exists numerous studies that use temporary cameras to survey fish habitats. These cameras generate a massive volume of digital data, which cannot be efficiently analysed by current manual processing methods, which involve a human observer. Deep Learning (DL) is a cutting-edge Artificial Intelligence (AI) technology that has demonstrated unprecedented performance in analysing visual data. Despite its application to a myriad of domains, its use in underwater fish habitat monitoring remains under explored. In this paper, we provide a tutorial that covers the key concepts of DL, which help the reader grasp a high-level understanding of how DL works. The tutorial also explains a step-by-step procedure on how DL algorithms should be developed for challenging applications such as underwater fish monitoring. In addition, we provide a comprehensive survey of key deep learning techniques for fish habitat monitoring including classification, counting, localisation, and segmentation. Furthermore, we survey publicly available underwater fish datasets, and compare various DL techniques in the underwater fish monitoring domains. We also discuss some challenges and opportunities in the emerging field of deep learning for fish habitat processing. This paper is written to serve as a tutorial for marine scientists who would like to grasp a high-level understanding of DL, develop it for their applications by following our step-by-step tutorial, and see how it is evolving to facilitate their research efforts. At the same time, it is suitable for computer scientists who would like to survey state-of-the-art DL-based methodologies for fish habitat monitoring

    A review on the use of computer vision and artificial intelligence for fish recognition, monitoring, and management.

    Get PDF
    Abstract: Computer vision has been applied to fish recognition for at least three decades. With the inception of deep learning techniques in the early 2010s, the use of digital images grew strongly, and this trend is likely to continue. As the number of articles published grows, it becomes harder to keep track of the current state of the art and to determine the best course of action for new studies. In this context, this article characterizes the current state of the art by identifying the main studies on the subject and briefly describing their approach. In contrast with most previous reviews related to technology applied to fish recognition, monitoring, and management, rather than providing a detailed overview of the techniques being proposed, this work focuses heavily on the main challenges and research gaps that still remain. Emphasis is given to prevalent weaknesses that prevent more widespread use of this type of technology in practical operations under real-world conditions. Some possible solutions and potential directions for future research are suggested, as an effort to bring the techniques developed in the academy closer to meeting the requirements found in practice
    • …
    corecore