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Abstract: Computer vision has been applied to fish recognition for at least three decades. With the
inception of deep learning techniques in the early 2010s, the use of digital images grew strongly, and
this trend is likely to continue. As the number of articles published grows, it becomes harder to keep
track of the current state of the art and to determine the best course of action for new studies. In
this context, this article characterizes the current state of the art by identifying the main studies on
the subject and briefly describing their approach. In contrast with most previous reviews related
to technology applied to fish recognition, monitoring, and management, rather than providing a
detailed overview of the techniques being proposed, this work focuses heavily on the main challenges
and research gaps that still remain. Emphasis is given to prevalent weaknesses that prevent more
widespread use of this type of technology in practical operations under real-world conditions. Some
possible solutions and potential directions for future research are suggested, as an effort to bring the
techniques developed in the academy closer to meeting the requirements found in practice.

Keywords: digital images; artificial intelligence; machine learning; deep learning

1. Introduction

Monitoring the many different aspects related to fish, including their life cycle, impacts
of human activities, and effects of commercial exploration, is important both for optimizing
the fishing industry and for ecology and conservation purposes. There are many activities
related to fish monitoring, but these can be roughly divided into four main groups. The
first, recognition, has as its main goal to detect and count the number of individuals in
a given environment. The second, measurement, aims at non-invasively estimating the
dimensions and weight of fish. The third, tracking, aims at following individuals or shoals
over time, which is usually done to either aid in the counting process or to determine the
behavior of the fish as a response to the environment or to some source of stress. The
fourth, classification, aims to identify the species or other factors in order to obtain a better
characterization of a given area. Monitoring activities are still predominantly carried out
visually, either “in loco” or employing images or videos. There are many limitations associ-
ated with visual surveys, including high costs [1,2], low throughput [1,3], subjectivity [2],
etc. In addition, human observers have been shown to be less consistent than computer
measurements due to individual biases, and the presence of humans and their equipment
often causes animals to display avoidance behavior and make data collection unreliable [4].
Imaging devices also enable the collection of data in dangerous areas that could pose risks
to a human operator [5].

Given the limitations associated with visual surveys, it is no surprise that new methods
capable of automating at least part of the process have been increasingly investigated over
the last three decades [6]. Different types of devices have been used for gathering the
necessary information from the fish, including acoustic sensors [7], sonars [8], and a wide
variety of imaging sensors [9]. In this work, only studies employing conventional RGB
(red/green/blue) sensors were considered, as these are by far the most widely used due to
their relatively low price and wide availability.
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Digital images and videos have been explored for some time, but with the rapid
development of new artificial intelligence (AI) algorithms and models and with the increase
in computational resources, this type of approach has become the preferred choice in most
circumstances [10]. Deep learning models have been particularly successful in dealing
with difficult detection, tracking, and classification problems [5]. Despite the significant
progress achieved recently, very few methods found in the literature are suitable for use
under real conditions. One of the reasons for this is that although the objective of most
studies is to eventually arrive at some method for monitoring the fish underwater under
real, uncontrolled conditions, a substantial part of the research is carried out using images
captured either under controlled underwater conditions (for example, in tanks with artificial
illumination) or out of the water. This makes it much easier to generate images in which
fish are clearly visible and have good contrast with the background, which is usually not
the case in the real world. On the other hand, research carried out under more realistic
conditions often has trouble achieving good accuracies [10]. In any case, it is important
to recognize that image-based methods may not be suitable to tackle all facets of fish
monitoring [5], which underlies the importance of understanding the problem in depth
before pursuing a solution that might ultimately be unfeasible. The combination of digital
images and videos with artificial intelligence algorithms has been very fruitful in many
different areas [5], and significant progress has also been achieved in fish monitoring and
management. With hundreds of different strategies already proposed in the literature, it
is difficult to keep track of which aspects of the problem have already been successfully
tackled and which research gaps still linger. This is particularly relevant considering that
the impact of those advancements in practice is still limited. There are many reviews in
the literature that offer a detailed technical characterization of the state of the art on the
use of digital images/videos for the detection and characterization of fish in different
environments (Table 1). Although there is some overlap between this and previous reviews,
here the focus is heavily directed at current limitations and what has to be done in order to
close the gap between academic research and practical needs. In order to avoid too much
redundancy with other reviews and keep the text relatively short, technical details about
the articles cited in the next sections are not mentioned unless relevant to the problem or
challenge being discussed.

Table 1. Review and survey articles dealing with computer vision applied to fish recognition,
monitoring, and management.

Reference Theme

Alsmadi and Almarashdeh [11] Fish classification
An et al. [12] Fish feeding systems
Delcourt et al. [13] Fish behavior (tracking)
Han et al. [14] Enhancement of underwater images
Goodwin et al. [15] Deep learning for marine ecology
Li et al. [16] Fish feeding behavior (not exclusively computer vision)
Li et al. [17] Fish biomass estimation (not exclusively computer vision)
Li and Du [18] Deep learning for aquaculture
Li et al. [19] Fish classification
Li et al. [20] Fish stress behavior (not exclusively computer vision)
Zhou et al. [21] Fish behavior
Saberioon et al. [9] Machine vision systems in aquaculture
Saleh et al. [3] Fish classification using deep learning
Saleh et al. [22] Deep learning in fish habitat monitoring
Sheaves et al. [23] Deep learning for juvenile fish surveys
Shortis et al. [24] Automated identification, measurement, and counting of fish

Ubina and Cheng [25] Unmanned systems for aquaculture monitoring
and management
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Table 1. Cont.

Reference Theme

Wang et al. [26] Intelligent fish farming
Xia et al. [27] Fish behavior (toxicology)
Yang et al. [28] Deep learning for smart fish farming
Yang et al. [29] Computer vision applied to aquaculture
Zha [30] Machine learning applied to aquaculture
Zion [31] Computer vision applied to aquaculture

2. Definitions and Acronyms

Some terms deemed of particular importance in the context of this work are defined
in this section. Most of the definitions are adapted from [15,32]. A list of acronyms used in
this article with their respective meanings is given in Table 2.

Artificial intelligence: a computational data-driven approach capable of performing
tasks that normally require human intelligence to independently detect, track, or clas-
sify fish.

Data annotation: the process of adding metadata to a dataset, such as indicating where
the fish are located in the image. This is typically performed manually by human specialists
making use of image analysis software.

Data fusion: the process in which different types of data are combined in order to
provide results that could not be achieved using single data sources (e.g., combining
images and meteorological data to provide accurate detection of a specific fish species).

Deep learning: a special case of machine learning that utilizes artificial neural networks
with many layers of processing to implicitly extract features from the data and recognize
patterns of interest. Deep learning is appropriate for large datasets with complex features
and where there are unknown relationships within the data.

Feature: measurement of a specific property of a data sample. It can be a color, texture,
shape, reflectance intensity, index values, or spatial information.

Image augmentation: the process of applying different image processing techniques to
alter existing images in order to create more data for training the model.

Imaging: the use of sensors capable of capturing images in a certain range of the
electromagnetic spectrum. Imaging sensors include RGB (red/green/blue), multispectral,
hyperspectral, and thermal images.

Machine learning: the application of artificial intelligence (AI) algorithms that have
the ability to learn characteristics of fish via extraction of features from a large dataset.
Machine learning models are often based on knowledge obtained from annotated training
data. Once the model is developed, it can be used to predict the desired output on test data
or unknown images.

Mathematical morphology: this type of technique, usually applied to binary images,
can simplify image data, eliminating irrelevant structures while retaining the basic shapes
of the objects. All morphological operations are based on two basic operators, dilation
and erosion.

Model: a representation of what a machine learning program has learned from the data.
Overfitting: when a model closely predicts the training data but fails to fit testing data.
Segmentation: the process of partitioning a digital image containing the objects of

interest (fish) into multiple segments of similarity or classes (based on sets of pixels with
common characteristics of hue, saturation, and intensity) either automatically or manually.
In the latter case, the human-powered task is also called image annotation in the context
of training AI algorithms. When performed at the pixel level, the process is referred to as
semantic segmentation.

Semi-supervised learning: a combination of supervised and unsupervised learning in
which a small portion of the data is used for a first supervised training, and the remainder
of the process is carried out with unlabeled data.
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Supervised learning: a machine learning model based on a known labeled training
dataset that is able to predict a class label (classification) or numeric value (regression) for
new unknown data.

Unsupervised learning: machine learning that finds patterns in unlabeled data.
Weakly supervised learning: noisy, limited, or imprecise sources are used as references

for labeling large amounts of training data, thus reducing the need for hand-labeled data.

Table 2. Acronyms used in this review.

Acronym Meaning Acronym Meaning

AI Artificial Intelligence LSTM Long Short-Term Memory

ANN Artificial Neural Network LTP Local Ternary Patterns

APMM Adaptive Poisson Mixture Model MLPNN Multilayer Perceptron Neural
Network

BPNN Back Propagation Neural Network MSR Multi-Scale Retinex

CMFTNet Counterpoised Multiple Fish
Tracking Network NB Naive Bayes

CNN Convolutional Neural Network ODKELM Optimal Deep Kernel Extreme
Learning Machine

DNN Deep Neural Network PCA Principal Component Analysis

DPANet Depth Potentiality-Aware Network PNN Probabilistic Neural Network

DSRN Dual-Stream Recurrent Network R-CNN Region-Based Convolutional Neural
Network

FCN Fully Convolutional Network RF Random Forests

FFRNet Fish Face Recognition Network RPN Region Proposal Network

GAN Generative Adversarial Network SIFT Scale-Invariant Feature Transform

GLCM Gray Level Co-Occurrence Matrix SRC Sparse Representation Classification

GMM Gaussian Mixture Model SSD Sigle-Shot Detector

kNN k-Nearest Neighbors SOM Self Organizing Map

LDA Linear Discriminant Analysis SVM Support Vector Machine

LR Logistic Regression YOLO You Only Look Once

3. Literature Review

The search for articles was carried out in September 2022 on Scopus and Google
Scholar, as both encompass virtually all relevant bibliographic databases. The terms used
in the search were “fish” and “digital images”. The terms were kept deliberately general
in order to reduce the likelihood of relevant work being missed. The downside of this
strategy is that the filtering process was labor-intensive and time-consuming. Initially, all
journal articles that employed images to tackle any aspect related to fish were considered.
Conference articles were excluded as a rule, but a few of those that had highly relevant
content were ultimately included. Articles were further filtered by keeping only those
devoted either to live fish monitoring or to the analysis of fish shortly after catch (for
example, for screening or auditing purposes). Articles aiming at estimating the quality
and freshness of fish products were thus removed. Manuscripts published in journals
widely considered predatory were also removed. Studies published prior to 2010 were
only included when deemed historically relevant in the context of fish monitoring and
management. A few articles that were originally missed were subsequently included by
careful inspection of the reference lists of some selected review articles (Table 1).

The following four subsections discuss many issues that are specific to each type of
application: recognition, tracking, measurement, and classification (Figure 1). However,
there are some issues that are common to all of them, such as the difficulties caused by
underwater conditions. In those cases, the discussion will be either concentrated in the
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subsection in which that specific issue has more impact, or in multiple subsections if there
are some specific consequences attached to those particular applications.

Figure 1. Categories of applications considered in this work. Applications that involve the detection
and analysis of objects other than fish (e.g., food pellets) were not considered. This categorization is
one among several possible options and was chosen as the best fit for the purposes of this review.

3.1. Recognition

One of the most basic tasks in fisheries, aquaculture, and ecological monitoring is the
detection and counting of fish and other relevant species. This can be done underwater
in order to determine the population in a given area [33], over conveyor belts during the
process of buying and selling and tank transference [34], or out of the water to determine,
for example, the number of fish of different species captured during a catch. Estimating
fish populations is important to avoid over-fishing and keep production sustainable [35,36],
as well as for wildlife conservation and animal ecology purposes [33]. Automatically
counting fish can also be useful for the inspection and enforcement of regulations [37]. Fish
detection is often the first step of more complex tasks such as behavior analysis, detection
of anomalous events [38], and species classification [39].

Table 3 shows the studies dedicated to this type of task. The column “context” in
this and in the following tables categorizes the main application based on their scope,
using the classification suggested by Shafait et al. [6], with some adaptations. The term
“accuracy” in Tables 3–6 is used in a wide sense, as several different performance evaluation
metrics can be found in the literature. Thus, the numbers in the last column of those tables
may represent not only the actual accuracy but also other metrics, which are specified in
a legend at the bottom of the tables. Because of this and the fact that most studies use
different datasets, direct comparison between different methods is not possible unless new
tests using the exact same setups are carried out [19]. A description of several different
evaluation metrics can be found in [22].
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Table 3. List of articles dealing with detecting and counting fish.

Reference Context Species Main Technique Accuracy

Aliyu et al. [40] Underwater (controlled) Catfish MLPNN 1.00 1

Banno et al. [2] All Saithe, mackerel, cod YOLOv4 0.95 1

Boudhane and Nsiri [41] Underwater (uncontrolled) N/A Mean shift, Poisson–Gaussian
mixture 0.94 1

Coro and Walsh [42] Underwater (uncontrolled) Tuna, sharks, mantas YOLOv3 0.65–0.75 1

Coronel et al. [43] Underwater (controlled) Tilapia (fingerlings) Local Normalization, median filters,
Minimum-Error threshold 0.95–1.00 2

Costa et al. [44] Petri dishes Tilapia (larvae) CNN (10 architectures) 0.97 3

Ditria et al. [5] Underwater (uncontrolled) Luderick Mask R-CNN 0.93 3

Ditria et al. [4] Underwater (uncontrolled) Luderick Mask R-CNN 0.88–0.92 3

Ditria et al. [45] Underwater (uncontrolled) Luderick Mask R-CNN 0.88–0.92 3

Follana-Berná et al. [33] Underwater (uncontrolled) Painted comber Mathematical model 0.74–0.76 4

French et al. [37] Out of water (conveyor belt) N/A CNN 0.84–0.98 1

Jiang et al. [46] Underwater
(Fish4Knowledge) 10 fish species CNN 0.91 1

Labao and Naval [36] Underwater (uncontrolled) Several fish species Region-based CNNs, LSTM
networks 0.44–0.56 2

Laradji et al. [47] Underwater (uncontrolled) Several fish species B Affinity LCFCN 0.75–0.88 5

Lee et al. [48] Underwater (controlled) N/A LABView (3rd party software) 0.8 1

Li et al. [49] Out of water Several fish species YOLO-V3-Tiny 0.40–0.99 3

Li et al. [50] Underwater (uncontrolled) N/A CME-YOLOv5 0.95 1

Lin et al. [51] Underwater (controlled) Golden crucian carp YOLOv5, DNN regression, AlexNet 0.9 2

Liu et al. [52] Underwater (uncontrolled) N/A Adaptive multi-scale Gaussian
background model 0.51 5

Marini et al. [53] Underwater (uncontrolled) N/A Genetic programming 0.98 6

Marini et al. [54] Underwater (uncontrolled) N/A Genetic programming 0.92 6

Park and Kang [55] Underwater (uncontrolled) Bluegill, Largemouth YOLOv2 0.94–0.97 4

Salman et al. [10] Underwater
(Fish4Knowledge) 15 species GMM, region-based CNN 0.80–0.87 2

Zhang et al. [56] Underwater (uncontrolled) Atlantic salmon CNN 0.95 1

Zhao et al. [38] Underwater (controlled) Porphyry seabream YOLOv4 with MobileNetV3
backbone 0.95 1

Legend: 1 Accuracy; 2 F-score; 3 mAP; 4 Probability of detection; 5 IoU; 6 Pearson correlation.

Lighting variations caused by turbidity, light attenuation at lower depths, and waves
on the surface may cause severe detection problems, leading to error [5,10,36,41,52]. Possi-
ble solutions for this include the use of larger sensors with better light sensitivity (which
usually cost more), or employing artificial lighting, which under natural conditions may
not be feasible and can also attract or repel fish, skewing the observations [2]. Addition-
ally, adding artificial lighting often makes the problem worse due to the backscattering
of light in front of the camera. Other authors have used infrared sensors together with
the RGB cameras to increase the information collected under deep water conditions [42].
Post-processing the images using denoising and enhancement techniques is another option
that can at least partially address the issue of poor quality images [41,57], but it is worth
pointing out that this type of technique tends to be computationally expensive [52]. Finally,
some authors explore the results obtained under more favorable conditions to improve the
analysis of more difficult images or video frames [55].

The background of images may contain objects such as cage structures, lice skirts,
biofouling organisms, coral, seaweed, etc., which greatly increases the difficulty of the
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detection task, especially if some of those objects mimic the visual characteristics of the
fish of interest [10]. Banno et al. [2] reported a considerable number of false positives due
to complex backgrounds, but added that those errors could be easily removed manually.
The buildup of fouling on the camera’s lenses was also pointed out by Marini et al. [54] as
a potential source of error that should be prevented either by regular maintenance or by
using protective gear.

One of the main sources of errors in underwater fish detection and counting is the
occlusion by other fish or objects, especially when several individuals are present simulta-
neously [54]. Some of the methods proposed in the literature were designed specifically
to address this problem [5,40,50], but the success under uncontrolled conditions has been
limited [2]. Partial success has been achieved by Labao and Naval [36], who devised a
cascade structure that automatically performs corrections on the initial estimates by includ-
ing the contextual information around the objects of interest. Another possible solution is
the use of sophisticated tracking strategies applied to video recordings, but even in this
case occlusions can lead to low accuracy (see Section 3.3). Structures and objects present
in the environment can also cause occlusions, especially considering that fish frequently
seek shelter and try to hide whenever they feel threatened. Potential sources of occlusion
need to be identified and taken into account if the objective is to reliably estimate the fish
population in a given area from digital images taken underwater [33].

Underwater detection, tracking, measurement, and classification of fish requires
dealing with the fact that individuals will cross the camera’s line of sight at different
distances [58]. This poses several challenges. First, fish outside the range of the camera’s
depth of field will appear out of focus and the consequent loss of information can lead to
error. Second, fish located too far from the camera will be represented by only a few pixels,
which may not be enough for the task at hand [36], thus increasing the number of false
negatives [54]. Third, fish that pass too close to the camera may not appear in their entirety
in any given image/frame, again limiting the information available. Coro and Walsh [42]
explored color distributions in the object to compensate for the lack of resolvability of fish
located too close to the camera.

One way to deal with the difficulties mentioned so far is by focusing the detection on
certain distinctive body structures rather than the whole body. Costa et al. [44] dealt with
problems caused by body movement, bending, and touching specimens by focusing the
detection on the eyes, which more unambiguously represented each individual than their
whole bodies. Qian et al. [59] focused on the fish heads in order to better track individuals
in a fish tank.

The varying quality of underwater images poses challenges not only to automated
methods but also to human experts responsible for annotating the data [4]. Especially
in the case of low-quality images, annotation errors can be frequent and, as a result, the
model ends up being trained with inconsistent data [60]. Banno et al. [2] have shown that
the difference in counting results yielded by two different people can surpass 20%, and
even repeated counts carried out by the same person can be inconsistent. Annotation
becomes even more challenging and prone to subjectivity-related inconsistency with more
complex detection tasks, such as pose estimation [51]. With the intrinsic subjectivity of
the annotation process, inconsistencies are mostly unavoidable, but their negative effects
can be mitigated by using multiple experts and applying a majority rule to assign the
definite labels [32]. The downside of this strategy is that manual annotation tends to be
expensive and time-consuming, so the best strategy will ultimately depend on how reliable
the annotated data needs to be.

With so many factors affecting the characteristics of the images, especially when
captured under uncontrolled conditions, it is necessary to prepare the models to deal with
such a variety. In other words, the dataset used to train the models needs to represent
the variety of conditions and variations expected to be found in practice. In turn, this
often means that thousands of images need to be captured and properly annotated, which
explains why virtually all image datasets used in the reported studies have some kind of



Fishes 2022, 7, 335 8 of 26

limitation that decreases the generality of the models trained [38,47,51] and, as a result,
limits their potential for practical use [2,4]. This is arguably the main challenge preventing
more widespread use of image-based techniques for fish monitoring and management.
Given the importance of this issue, it is revisited from slightly different angles both in
Sections 3.4 and 4.

3.2. Measurement

Non-invasively estimating the size and weight of fish is very useful both for ecological
and economic purposes. Biomass estimation in particular can provide clues about the feeding
process, possible health problems, and potential production in fisheries. It can also reveal
important details about the condition of wild species populations in vulnerable areas. In
addition, fish length is one of the key variables needed for both taking short-term management
decisions and modeling stock trends [1], and automating the measurement process can reduce
costs and produce more consistent data [61,62]. Automatic measurement of body traits can
also be useful after catch to quickly provide information about the characteristics of the fish
batch, which can, for example, be done during transportation on the conveyor belts [34].

Bravata et al. [63] enumerated several shortcomings of manual measurements. In partic-
ular, conventional length and weight data collection requires the physical handling of fish,
which is time-consuming for personnel and stressful for the fish. Additionally, measurements
are commonly taken in the field, where conditions can be suboptimal for ensuring precision
and accuracy. This highlights the need for a more objective and systematic way to ensure
accurate measurements. Table 4 shows the studies dedicated to measurement tasks.

Table 4. List of articles dealing with measuring fish.

Reference Target Context Species Main Technique Accuracy

Al-Jubouri et al. [64] Length Underwater
(controlled) Zebrafish Mathematical model 0.99 1

Alshdaifat et al. [65] Body segmentation Underwater
(Fish4Knowledge) Clownfish Faster R-CNN, RPN,

modified FCN 0.95 7

Álvarez Ellacuría et al. [1] Length Out of water European hake Mask R-CNN 0.92 6

Baloch et al. [66] Length of body parts All Several fish species Mathematical
morphology, rules 0.87 1

Bravata et al. [63] Length, weight,
circumference Out of water 22 species CNN 0.73–0.94 1

Fernandes et al. [67] Length, weight Out of water Nile tilapia SegNet-based model 0.95–0.96 5

Garcia et al. [68] Length Underwater
(controlled) 7 species Mask R-CNN 0.58–0.90 5

Jeong et al. [34] Length, width Out of water
(conveyor belt) Flatfish Mathematical

morphology 0.99 1

Konovalov et al. [69] Weight Out of water Asian Seabass FCN-8s (CNN) 0.98 8

Monkman et al. [70] Length Out of water European sea bass NasNet, ResNet-101,
MobileNet 0.93 5

Muñoz-Benavent et al.
[61] Length Underwater

(uncontrolled) Bluefin tuna Mathematical model 0.93–0.97 1

Palmer et al. [62] Length Out of water Dolphinfish Mask R-CNN 0.86 1

Rasmussen et al. [71] Length (larvae) Petri dishes 6 species Mathematical
morphology 0.97 1

Ravanbakhsh et al. [72] Body segmentation Underwater
(controlled) Bluefin tuna PCA, Haar classifier 0.90–1.00 1

Rico-Díaz et al. [73] Length Underwater
(uncontrolled) 3 species Hough algorithm, ANN 0.74 1

Shafait et al. [74] Length Underwater
(uncontrolled) Southern Bluefin Tuna Template matching 0.90–0.99 1

Tseng et al. [75] Length Out of water 3 species CNN 0.96 1
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Table 4. Cont.

Reference Target Context Species Main Technique Accuracy

White et al. [76] Length Out of water 7 species Mathematical model 1.00 1

Yao et al. [77] Body segmentation Out of water Back crucian carp,
common carp K-means N/A

Yu et al. [78] Length, width, others Out of water Silverfish Mask R-CNN 0.97–0.99 1

Yu et al. [79] Length, width, area Out of water Silverfish Improved U-net 0.97–0.99 1

Zhang et al. [80] Weight Out of water Crucian carp BPNN 0.90 8

Zhang et al. [81] Body segmentation Underwater
(uncontrolled) Several DPANet 0.85–0.91 1

Zhou et al. [82] Body segmentation Out of water 9 species Atrous pyramid GAN 0.96–0.98 5

Legend: 1 Accuracy; 5 IoU; 6 Pearson correlation; 7 AP; 8 R2.

Fish are not rigid objects and models must learn how to adapt to changes in posture,
position, and scale [1]. High accuracies have been achieved with dead fish in an out-of-
water context using techniques based on the deep learning concept [1,56,75], although
even in those cases errors can occur due to unfavorable fish poses [70]. Measuring fish
underwater has proven to be a much more challenging task, with high accuracies being
achieved only under tightly controlled or unrealistic conditions [64,65,72], and even in this
case, some kind of manual input is sometimes needed [71]. Despite the difficulties, some
progress has been achieved under more challenging conditions [66], with body bending
models showing promise when paired with stereo vision systems [61]. Other authors have
employed a semi-automatic approach, in which the human user needs to provide some
information for the system to perform the measurement accurately [74].

Partial or complete body occlusion is a problem that affects all aspects of image-
based fish monitoring and management, but it is particularly troublesome in the context
of fish measurement [68,75]. Although statistical methods can partially compensate for
the lost information under certain conditions [1], usually errors caused by occlusions are
unavoidable [66], even if a semi-automatic approach is employed [74].

Some studies dealt with the problem of measuring different fish body parts for a better
characterization of the specimens [66]. One difficulty with this approach is that the limits
between different body parts are usually not clear even for experienced evaluators, making
the problem relatively ill-defined. This is something intrinsic to the problem, which means
that some level of uncertainty will likely always be present.

One aspect of body measurement that is sometimes ignored is that converting from
pixels to a standard measurement unit such as centimeters is far from trivial [1]. First, it is
necessary to know the exact distance between the fish and the camera in order to estimate
the dimensions of each pixel, but such a distance changes through the body contours,
so in practice, each pixel has a different conversion factor associated. The task is further
complicated by the fact that pixels are not circles, but squares. Thus, the diagonal will be
more than 40% longer than any line parallel to the square’s sides. These facts make it nearly
impossible to obtain an exact conversion, but properly defined statistical corrections can
lead to highly accurate estimates [1]. Proper corrections are also critical to compensate for
lens distortion, especially considering the growing use of robust and waterproof action
cameras which tend to have significant radial distortion [70].

Most models are trained to have maximum accuracy as the target, which normally
means properly balancing false positives and false negatives. However, there are some
applications for which one or another type of error can be much more damaging. In the
context of measurement, fish need to be first detected and then properly measured. If
spurious objects are detected as fish, their measurements will be completely wrong, which
in practice may cause problems such as lowering prices paid for the fisherman or skewing
inspection efforts [60].
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Research on the use of computer vision techniques for measuring fish is still in its
infancy. Because many of the studies aim at proving a solid proof of concept instead of
generating models ready to be used in practice, the datasets used in such studies are usually
limited in terms of both the number of samples and variability [67,72,82]. As the state of the
art evolves, more comprehensive databases will be needed (see Section 4). One negative
consequence of dataset limitations is that overfitting occurs frequently [63]. Overfitting
is a phenomenon in which the model adapts very well to the data used for training but
lacks generality to deal with new data, leading to low accuracies. There are a few measures
that can be taken to avoid overfitting, such as early training stop and image augmentation
applied to the training subset, but the best way to deal with the problem is to increase the
number and variability of the training dataset [4,5].

One major reason for the lack of truly representative datasets in the case of fish
segmentation and measuring is that the point-level annotations needed in this case are
significantly more difficult to acquire than image-level annotations. If the fish population is
large, a more efficient approach would be to indicate that the image contains at least one
fish, and then let the model locate all the individuals in the image [47], thus effectively
automating part of the annotation process. More research effort is needed to improve
accuracy in order for this type of approach to become viable.

3.3. Tracking

Many studies dedicated to the detection, counting, measurement, and classification of
fish use individual images to reach their goal. However, videos or multiple still images
are frequently used in underwater applications. This implies that each fish will likely
appear in multiple frames/images, some of which will certainly be more suitable for image
analysis. Thus, considering multiple recognition candidates for the same fish seems a
reasonable strategy [6,39]. This approach implicitly requires that individual fish be tracked.
Fish tracking is also a fundamental step in determining the behavior of individuals or
shoals [59,83,84], which in turn is used to detect problems such as diseases [85], lack
of oxygenation [86], the presence of ammonia [87] and other pollutants [88], feeding
status [58,89], changes in the environment [86], welfare status [90,91], etc. The detection of
undesirable behaviors, such as a rise in the willingness to escape from aquaculture tanks, is
another important application that has been explored [92,93]. Table 5 shows the studies
dedicated to this type of task.

The term “tracking” is adopted here in a broad sense, as it includes not only studies
dedicated to determining the trajectory of fish over time but also those focusing on the
activity and behavior of fish over time, in which case the exact trajectory may not be as
relevant as other cues extracted from videos or sequences of images [84].

Table 5. List of articles dealing with tracking fish.

Reference Target Context Species Main Technique Accuracy

Abe et al. [35] Individual Underwater
(uncontrolled) Bluefin tuna SegNet 0.72 2

Anas et al. [85] Individual Underwater (controlled) Goldfish, tilapia YOLO, NB, kNN, RF 0.8–0.9 1

Atienza-Vanacloig et al.
[60] Individual Underwater

(uncontrolled) Bluefin tuna Deformable adaptive 2D
model 0.9 1

Boom et al. [94] Individual Underwater
(Fish4Knowledge) Several GMM, APMM, ViBe,

Adaboost, SVM 0.80–0.93 1

Cheng et al. [95] Individual Underwater (controlled) N/A CNN 0.93–0.97 2

Delcourt et al. [96] Individual Underwater (controlled) Tilapia Mathematical morphology 0.83–0.99 1
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Table 5. Cont.

Reference Target Context Species Main Technique Accuracy

Ditria et al. [58] Individual Underwater Luderick ResNet50 0.92 2

Duarte et al. [90] Individual Underwater (controlled) Senegalese sole Mathematical model 0.8–0.9 8

Han et al. [86] Shoal Underwater (controlled) Zebrafish CNN 0.71–0.82 1

Huang et al. [97] Individual Underwater
(uncontrolled) N/A Kalman filter, SSD, YOLOv2 0.94–0.96 1

Li et al. [98] Individual Underwater (controlled) N/A CMFTNet 0.66 1

Liu et al. [99] Individual Underwater (controlled) Zebrafish Mathematical models 0.95 1

Papadakis et al. [92] Individual Underwater (controlled) Gilthead sea bream LABView (3rd party software) N/A

Papadakis et al. [93] Individual Underwater (controlled) Sea bass, see bream Mathematical model N/A

Pérez-Escudero et al.
[100] Individual Underwater (controlled) Zebrafish, medaka Mathematical morphology 0.99 1

Pinkiewicz et al. [91] Individual Underwater
(uncontrolled) Atlantic salmon Kalman filter 0.99 1

Qian et al. [59] Individual Underwater (controlled) Zebrafish Kalman filter, feature
matching 0.96–0.99 1

Qian et al. [83] Individual Underwater (controlled) Zebrafish Mathematical model 0.97–0.98 1

Saberioon and Cisar [101] Individual Underwater (controlled) Nile tilapia Mathematical morphology 0.97–0.98 1

Sadoul et al. [102] Shoal Underwater (controlled) Rainbow trout Mathematical model 0.94 1

Sun et al. [103] Shoal Underwater (controlled) Crucian K-means 0.93 1

Teles et al. [104] Individual Underwater (controlled) Zebrafish PNN, SOM 0.94 1

Wageeh et al. [105] Individual Underwater (controlled) Goldfish MSR-YOLO N/A

Wang et al. [106] Individual Underwater (controlled) Zebrafish CNN 0.94–0.99 2

Wang et al. [84] Individual Underwater (controlled) Spotted knifejaw FlowNet2, 3D CNN 0.95 1

Xia et al. [107] Individual Underwater (controlled) Zebrafish Mathematical model 0.98–1.00 1

Xu et al. [87] Individual Underwater (controlled) Goldfish Faster R-CNN, YOLO-V3 0.95–0.98 1

Zhao et al. [88] Individual Underwater (controlled) Red snapper Thresholding, Kalman filter 0.98 1

Legend: 1 Accuracy; 2 F-score; 8 R2.

There are many challenges that need to be overcome for proper fish tracking. Arguably,
the most difficult one is to keep track of large populations containing many visually similar
individuals. This is particularly challenging if the intention is to track individual fish
instead of whole shoals [35,96]. Occlusions can be particularly insidious because as fish
merge and separate, their identities can be swapped, and tracking fails [13]. In order to deal
with a problem as complex as this, some authors have employed deep learning techniques
such as semantic segmentation [35], which can implicitly extract features from the images
which enable more accurate tracking. Other authors adopted a sophisticated multi-step
approach designed specifically to deal with this kind of challenge [94]. However, when
too little individual information is available, which is usually the case in densely packed
shoals with a high rate of occlusions [60], camera-based individual tracking becomes nearly
unfeasible. For this reason, some authors have adopted strategies that try to track the shoal
as a whole, rather than following individual fish [86,102].

Another challenge is the fact that it is more difficult to detect and track fish as they
move farther away from the camera [35]. There are two main reasons for this. First, the
farther away the fish are from the camera, the smaller the number of pixels available to
characterize the animal. Second, some level of turbidity will almost always be present, so
visibility can decrease rapidly with distance. In addition, real underwater fish images are
generally of poor quality due to limited range, non-uniform lighting, low contrast, color
attenuation, and blurring [60]. These problems can be mitigated using image enhance-
ment and noise reduction techniques such as Retinex-based and bilateral trigonometric
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filters [35,85], but not completely overcome. A possible way to deal with this issue is to
employ multiple cameras bringing an extended field of view, which can be very useful
not only to counteract visibility issues but also to meet the requirements of shoal track-
ing and monitoring [86]. However, the additional equipment may cause costs to rise to
unacceptable levels and make it more complex to manage the system and to track across
multiple cameras.

Due to body bending while free swimming, the same individual can be observed with
very different shapes and fish size and orientation can vary [60]. If not taken into account,
this can cause intermittency in the tracking process [59,83]. A solution that is frequently
employed in situations such as this is to use deformable models capable of mirroring the
actual fish poses [60,91]. Some studies explore the posture patterns of the fish to draw
conclusions about their behavior and for early detection of potential problems [107].

Tracking is usually carried out using videos captured with a relatively high frame
rate, so when occlusions occur, tracking may resume as soon as the individual reappears
a few frames later. However, there are instances in which plants and algae (both moving
and static), rocks, or other fish hide a target for too long a time for the tracker to be able
to properly resume tracking. In cases such as this, it may be possible to apply statistical
techniques (e.g., covariance-based models) to refine tracking decisions [94], but tracking
failures are likely to happen from time to time, especially if many fish are being tracked
simultaneously [59,101]. If the occlusion is only partial, there are approaches based on
deep learning techniques that have achieved some degree of success in avoiding tracking
errors [98]. Another solution that has been explored is a multi-view setup in which at
least two cameras with different orientations are used simultaneously for tracking [99].
Exploring only the body parts that have more distinctive features, such as the head [106],
is another way that has been tested to counterbalance the difficulties involved in tracking
large groups of individuals. Under tightly controlled conditions, some studies have been
successful in identifying the right individuals and resuming tracking even days after the
first detection [100].

As in the case of fish measurement, the majority of studies related to fish tracking are
performed using images captured in tanks with at least partially controlled conditions. In
addition, many of the methods proposed in the literature require that the data be recorded in
shallow tanks with depths of no more than a few centimeters [101]. While these constraints
are acceptable in prospective studies, they often are too restrictive for practical use. Thus,
further progress depends on investigating new algorithms more adapted to the conditions
expected to occur in the real world.

One limitation of many fish tracking studies is that the trajectories are followed in a 2D
plane, while real movement occurs in a tridimensional space, thus limiting the conclusions
that can be drawn from the data [80,101]. In order to deal with this limitation, some authors
have been investigating 3D models more suitable for fish tracking [84,87,95,97,99]. Many
of those efforts rely on stereo-vision strategies that require accurate calibration of multiple
cameras or unrealistic assumptions about the data acquired, making them unsuitable for
real-time tracking [101]. This has led some authors to explore single sensors with the
ability to acquire depth information, such as Microsoft’s Kinect, although in this case, the
maximum distance for detectability can be limited [101].

3.4. Classification

When multiple species are present, simply counting the number of individuals may
not be enough to draw reliable conclusions. In cases such as this, it is necessary to identify
the species of each detected individual [108], especially if the objective is to obtain a
detailed survey of the fish resources available in a given area [109]. Species classification
is also useful for the detection of unwanted or invasive species, so control measures can
be adopted [110]. Identification of fish species can be useful for after-catch inspection
purposes, as many countries have a list of protected species that should not be fished and
vessels may have quotas that should not be exceeded. Additionally, keeping track of fish



Fishes 2022, 7, 335 13 of 26

harvests in a cheaper and more effective way is important to building sustainable and
profitable fisheries, a goal that relies heavily on the correct identification and enumeration
of different species [111]. Manual classification of fish in images and videos normally
requires highly trained specialists and is a demanding, time-consuming, and expensive
task, so efficient automatic methods are in high demand [108]. Table 6 shows the studies
dedicated to fish classification. All values in the last column are actual accuracies, so in this
case, the legend specifying the performance metrics is not shown.

Table 6. List of articles dealing with the classification of fish.

Reference Target Context Species Main Technique Accuracy

Ahmed et al. [112] Diseased/healthy Out of water Salmon SVM 0.91–0.94

Allken et al. [113] Species Underwater (controlled) 3 fish species CNN 0.94

Alsmadi et al. [114] Broad classes Out of water Several fish species Memetic algorithm 0.82–0.90

Alsmadi [115] Broad classes Out of water Several fish species Hybrid Tabu search, genetic
algorithm 0.82–0.87

Banan et al. [116] Species Out of water Carp (4 species) CNN 1.00

Banerjee et al. [117] Species Out of water Carp (3 species) Deep convolutional
autoencoder 0.97

Boom et al. [94] Species Underwater
(Fish4Knowledge) Several GMM, APMM, ViBe,

Adaboost, SVM 0.80–0.93

Chuang et al. [118] Species Underwater
(Fish4Knowledge) Several fish species Hierarchical partial classifier

(SVM) 0.92–0.97

Coro and Walsh [42] Size categories Underwater
(uncontrolled) Tuna, sharks, mantas YOLOv3 0.65–0.75

Hernández-Serna and
Jiménez-Segura [119] Species Out of water Several fish species MLPNN 0.88–0.92

Hsiao et al. [120] Species Underwater
(uncontrolled) Several fish species SRC-MP 0.82–0.96

Hu et al. [121] Species Out of water 6 fish species Multi-class SVM 0.98

Huang et al. [39] Species Underwater
(uncontrolled) 15 fish species Hierarchical tree, GMM 0.97

Iqbal et al. [122] Species All 6 fish species Reduced AlexNet (CNN) 0.9

Iqbal et al. [89] Feeding status Underwater (controlled) Black scrapers CNN 0.98

Ismail et al. [123] Species All 18 species AlexNet, GoogleNet,
ResNet50 0.99

Jalal et al. [124] Species Underwater
(Fish4Knowledge) Several fish species YOLO-based model, GMM 0.8–0.95

Joo et al. [125] Species Underwater (controlled) Cichlids (12 species) SVM, RF 0.67–0.78

Ju and Xue [126] Species All Several fish species AlexNet (CNN) 0.91–0.97

Knausgård et al. [127] Species Underwater
(Fish4Knowledge) 23 fish species YOLOv3, CNN 0.84–0.99

Kutlu et al. [128] Species Out of water 25 fish species kNN 0.99

Li et al. [129] Fish face
recognition Underwater (controlled) Golden crucian carp Self-SE module, FFRNet 0.9

Liu et al. [130] Feeding
activity Underwater (controlled) Atlantic salmon Mathematical model 0.92

Lu et al. [131] Species Out of water 6 species Modified VGG-16 (CNN) 0.96

Måløy et al. [132] Feeding status Underwater
(uncontrolled) Salmon DSRN 0.8

Mana and Sasipraba [133] Species Underwater
(Fish4Knowledge)

Corkwing, pollack,
coalfish Mask R-CNN, ODKELM 0.94–0.96

Mathur et al. [134] Species Underwater
(Fish4Knowledge) 23 species ResNet50 (CNN) 0.98
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Table 6. Cont.

Reference Target Context Species Main Technique Accuracy

Meng et al. [135] Species Underwater
(uncontrolled)

Guppy, snakehead,
medaka, neontetora GoogleNet, AlexNet (CNN) 0.85–0.87

Ovalle et al. [111] Species Out of water 14 species Mask R-CNN, MobileNet-V1 0.75–0.98

Pramunendar et al. [136] Species Underwater
(Fish4Knowledge) 23 species MLPNN 0.93–0.96

Qin et al. [137] Species Underwater
(Fish4Knowledge) 23 species SVM, CNN 0.98

Qiu et al. [138] Species Underwater
(uncontrolled) Several Bilinear CNN 0.72–0.95

Rauf et al. [139] Species
identification Out of water 6 species 32-layer CNN 0.85–0.96

Rohani et al. [140] Fish eggs
(dead/alive) Out of water Rainbow trout MLPNN, SVM 0.99

Saberioon et al. [141] Feeding status Out of water
(anesthetized fish) Rainbow trout RF, SVM, LR, kNN 0.75–0.82

Saitoh et al. [142] Species Out of water 129 species RF 0.30–0.87

Salman et al. [143] Species Underwater
(Fish4Knowledge) 15 species CNN 0.90

dos Santos and
Gonçalves [144] Species All 68 species CNN 0.87

Shafait et al. [6] Species Underwater
(Fish4Knowledge) 10 species PCA, nearest neighbor

classifier 0.94

Sharmin et al. [145] Species Out of water 6 species PCA, SVM 0.94

Siddiqui et al. [146] Species Underwater
(uncontrolled) 16 species CNN, SVM 0.94

Smadi et al. [147] Species Out of water 8 species CNN 0.98

Spampinato et al. [148] Species Underwater
(Fish4Knowledge) 10 species SIFT, LTP, SVM 0.85–0.99

Štifanić et al. [149] Species Underwater
(Fish4Knowledge) 4 species CNN 0.99

Storbeck and Daan [150] Species Out of water (conveyor
belt) 6 species MLPNN 0.95

Tharwat et al. [151] Species Out of water 4 species LDA, AdaBoost 0.96

Ubina et al. [152] Feeding
intensity Water tank N/A 3D CNN 0.95

Villon et al. [108] Species Underwater
(uncontrolled) 20 species CNN 0.95

White et al. [76] Species Out of water 7 species Canonical discriminant
analysis 1.00

Wishkerman et al. [153] Pigmentation
patterns Out of water Senegalese sole GLCM, PCA, LDA >0.9

Xu et al. [154] Species Out of water 6 species SE-ResNet152 0.91–0.98

Zhang et al. [110] Species Out of water 8 species AdaBoost 0.99

Zhang et al. [109] Species Underwater
(uncontrolled) 9 species ResNet50 (CNN) 0.85–0.90

Zhou et al. [155] Feeding
intensity Underwater (controlled) Tilapia LeNet5 (CNN) 0.9

Zion et al. [156] Species Underwater (controlled) 3 species Mathematical model 0.91–1.00

Zion et al. [157] Species Underwater (controlled) 3 species Mathematical model 0.89–1.00

The majority of the studies dedicated to fish classification aim at species recognition,
but there are a few exceptions. Alsmadi et al. [114] and Alsmadi [115] tried to classify
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fish into four broad groups: garden, food, predatory, and poisonous. Coro and Walsh [42]
proposed a system for counting large fish, so a necessary intermediate step was to classify
individuals according to their size. Iqbal et al. [89] classified fish according to their feeding
status (normal or underfed), Liu et al. [130] and Måløy et al. [132] tried to classify feeding
and non-feeding periods by analyzing consecutive video frames, and Ubina et al. [152] and
Zhou et al. [155] categorized feeding intensity according to four classes. Saberioon et al. [141]
tested a number of machine learning models to determine the type of diet ingested by
rainbow trout (fish or plants). Li et al. [129] aimed at recognizing individual fish from
distinctive visual cues in their faces.

Most techniques for classification under unconstrained conditions assume that the fish
have already been detected and properly delineated [6], with only a few exceptions [42,146].
This happens because both the detection and the classification tasks are difficult under
uncontrolled conditions, and detection errors propagate to the classification case, leading
to low accuracies. This is a limitation that needs to be addressed in order to improve the
usefulness of the classifiers proposed in the literature.

Species classification using digital images relies on visual cues that need to be clearly
visible in order to provide enough information for the classifier to properly perform
the task. Under uncontrolled conditions, visibility can be limited and lighting condi-
tions vary unpredictably, making it harder for the models to extract the information
needed [94,108,111,118,124,132,143,146], for example, by changing the animal textural
features or their contrast with the background [54]. To make matters more complicated,
fish can be partially occluded and their orientation with respect to the camera may not be
favorable [42,111,113,130,143,146]. Depending on the severity of these effects, the amount
of information that can be extracted from the images will not be enough to resolve the
species, leading to error [148]. For this reason, authors have proposed some techniques to
enhance the images and make them more suitable for information extraction [14,158]. Arti-
ficial intelligence techniques, and deep learning in particular, are well suited for extracting
information from less than ideal data [108,111], as long as they have been trained to deal
with those more challenging conditions [146]. This underlies the importance to train AI
models with data that truly represent the entire variability associated with the problem
being addressed. With so many variables being at play under real uncontrolled conditions,
such a comprehensive image dataset should include a large number of images captured
under a wide range of conditions. This is far from trivial, especially considering the in-
trinsic difficulty of capturing underwater images. One solution that has been increasingly
explored is the generation of realistic synthetic images using techniques such as transfer
learning, augmentation, and generative adversarial networks (GANs), or simply by pasting
images of real fish into synthetic backgrounds [113]. This procedure can certainly increase
the robustness of the models under limited real data availability, but in many cases, real
data are still essential to meet the requirements of real-world applications [4].

The distinction between species with similar characteristics is another major challenge
with no simple solution, especially in an uncontrolled underwater context [113,124,143,144].
The body color of imaged fish, which is one of the major cues used for distinguishing be-
tween species, is strongly affected by the fact that different light wavelengths are absorbed
at different rates as depth changes [36,52,132], increasing the color variability, and, as a
consequence, the color variation between species becomes less evident [131,148]. Color
variations that often exist within the same species make the problem even more challeng-
ing. In this context, the subtler the differences between species, the better must be the
quality of the images used for classification, which has led some authors to use only ideal
images (out-of-water images with high contrast between fish and background) in their
studies [116,117,121,125]. In an extreme case of a study dealing with similar species,
Joo et al. [125] tried to classify 12 species of the Cichlidae family that populate Lake Malawi,
reporting that the relatively poor results were due mostly to the model’s inability to capture
distinctive traits using the setup adopted in the experiments, the genetic similarity between
the species, and potential cross-breeding between species mixing their traits to some degree.
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In any case, all methods trying to discriminate between relatively similar species employ
some kind of machine learning model [35], and the degree of success seems to be directly
related to the representativeness of the dataset used for training, reinforcing the importance
of creating good quality datasets as discussed in the previous paragraph.

Non-lateral fish views or curved body shapes can lead to loss of critical informa-
tion [118,146]. In cases such as these, the answer provided by the model might not be
reliable. Since it is not possible to explore information that is not there, one way to deal
with the problem is to evaluate the confidence level associated with each output provided
by the model, and then act accordingly. Chuang et al. [118] proposed a hierarchical partial
classifier to deal with the uncertainty and to reduce misclassifications by avoiding making
guesses with low confidence. Villon et al. [159] proposed a framework that identifies the
fish species and associates a “sure” or “unsure” label based on a confidence threshold
applied to the output of the deep learning model.

A problem that arises often in classification problems is the imbalance between
classes [94,127,131]. It is common for some classes to have many more samples than
others, a situation that may impact negatively the training of artificial intelligence models,
as these will tend to strongly favor the most numerous classes. This can lead, for example,
to rare species being misidentified, which might be particularly important when conducting
fish surveys. The most straightforward way to compensate for this problem is to equalize
the classes by either augmenting the smaller classes with artificially generated images
(image augmentation) or reducing the larger classes by removing part of the samples for
training. More sophisticated approaches in which the classes are properly weighted during
training also exist, for instance by using deep learning models with class-balanced focal
loss functions [154].

As discussed in Section 3.1, annotation of the reference data can be prone to incon-
sistencies. In the case of classification problems, the data used to train and validate the
models are often unambiguous enough to avoid this type of issue. However, classification
tasks that are inherently more ambiguous, such as the analysis of feeding activity [130],
can pose annotation difficulties that are at least as damaging as those found in detection
and counting applications. Because of these challenges, datasets used for classification
purposes are often limited both in terms of the number of samples and representativeness.
Models trained under these conditions tend to overfit the data and lack robustness when
dealing with new data [132]. Overfitting becomes an even greater problem if the number
of classes is high [146].

Due to all challenges mentioned above, some classification problems may not be prop-
erly solved by fully automatic methods even when state-of-the-art classifiers are employed,
as images may simply not carry enough information to resolve all possible ambiguities.
One solution adopted by some authors is to employ a semi-automatic approach [121], in
which the human user is required to provide some kind of input to refine the classification,
for example by manually correcting possible misclassifications.

4. General Remarks

Almost all articles describing techniques designed to work with images captured
underwater under uncontrolled conditions mention image quality degradation as a major
source of misestimates and misclassifications [12]. Saleh et al. [22] divided these environ-
mental challenges into five categories: (1) the underwater environment is noisy and has
large lighting variation, causing the same object to potentially having a wide range of
visual characteristics; (2) underwater scenes are highly dynamic and can change quickly;
(3) depth and distance perception can be incorrect due to refraction; (4) images are affected
by water turbidity, light scattering, shading, and multiple scattering; (5) image data are
frequently under-sampled due to low-resolution cameras and power constraints. Due to
the importance of these issues, many authors have proposed different types of techniques
to enhance the images and make them more suitable for further analysis [158,160–163], and
review articles on the subject have already been published [14]. It is important to consider,
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however, that these techniques cannot recover information that has been lost due to poor
conditions, rather they can only emphasize image features that are obscured and might be
useful for the model being used. One way to tackle this unavoidable loss of information is
to employ other types of sensors, such as sonars [164] and near-infrared images [165], and
then apply data fusion techniques to merge those different types of data into a meaningful
answer [16,22].

As discussed throughout Section 3, the variability associated with images and videos
captured under real conditions is very high. As a consequence, in order to cover the condi-
tions found in practice and avoid overfitting [23,63,132], a large amount of images or videos
needs to be captured and, considering that the vast majority of methods proposed in the
literature require some kind of supervised training, the data collected need to be properly
labeled [15,108]. Unsupervised and semi-supervised approaches can drastically decrease
the amount of data that needs to be actually labeled, but the former rarely is suitable for
fish-related applications and the latter still needs to be properly investigated [15], because
it is not clear if existing techniques can be successfully adapted to the characteristics of fish
images. Weakly supervised methods which use noisy labels to train the model can also be
applied, but the training process becomes substantially more challenging [22].

The labeling process is usually labor-intensive and expensive, especially in the case of
fine-grained object recognition, which often requires a deep understanding of the specific
domain by the human operator [148]. Those facts make building truly comprehensive and
representative datasets a task that is largely out of the reach of most (if not all) research
groups. An undesirable consequence of this situation is that most methods found in the
literature are developed and tested using data that do not properly represent the conditions
likely to be found in a potential practical application [54,146]. At the same time, there
is a reluctance or inability of some parties to share annotated datasets, which certainly
slows the progress in the development and applications of computer vision techniques for
monitoring [45]. The situation is slowly changing though, with at least 10 datasets currently
being made available for training and testing computer vision models [45]. One of these
datasets, known as Fish4Knowledge (http://www.fish4knowledge.eu/) (accessed on 16
November 2022) , has been extensively used in many studies as it provides a large number
of images of several marine species of interest. As useful and important an initiative as
Fish4Knowledge is, it is not without limitations. This dataset only provides underwater
images acquired during the daylight in oligotrophic and transparent coral reef waters [54],
conditions that can differ greatly from those potentially facing practical technologies. It
is also worth pointing out that most datasets, including Fish4Knowledge, do not cover
the characteristics found in marine and freshwater aquaculture [52], resulting in an even
deeper data gap. Thus, the challenge of building more realistic datasets is yet to be met.

A possible solution to increase both the number of samples and data variety is to
involve individuals outside the research community in the efforts to build datasets, using
the principles of citizen science [148,166,167]. There are many incentives that can be applied
in order to engage people, including the reward mechanisms extensively used in social
networks, early or free access to new technologies and applications, and direct access to
ichthyologists, among others. This type of approach may not be applicable in the case of
problems that require expert knowledge for proper image annotation [148].

Deep learning models are particularly useful for analyzing underwater images due
to their superior ability to model complex and highly nonlinear attributes often found
in this type of environment [10,15]. Because deep learning models are capable of finely
capturing the characteristics of those attributes, they frequently have trouble dealing with
data with characteristics that were not present in the original training dataset. Given the
difficulties involved in building truly comprehensive datasets, some alternative solutions
have been proposed. Two of those solutions, transfer learning and image augmentation,
are widely applied.

Although deep learning architectures can be developed from scratch by properly
combining different types of layers (fully connected, convolution, LSTM, etc.), there are

http://www.fish4knowledge.eu/
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several standard architectures available that have been thoroughly tested with a wide range
of applications. More importantly, almost all available architectures have versions that were
pretrained using massive datasets such as ImageNet [168]. Interestingly, those networks
can be retrained for a new application simply by “freezing” most of the layers and using
the new data to update only those dedicated to the classification itself [15]. This process,
called transfer learning, usually greatly reduces the amount of data needed to properly
train the deep learning model while producing results that can be even more accurate than
those yielded by models trained from scratch [3,138]. For this reason, this technique is
widely employed in many areas of research [169].

Image augmentation is the process of applying different image processing techniques
to alter existing images in order to create more data for training the model. It is frequently
applied when the data available are deemed insufficient for proper model training. This
strategy has been used by almost 20% of the articles cited in this review. Image augmen-
tation must be applied only to the training set after the division of the original dataset.
Unfortunately, many authors first apply image augmentation, and only afterward the
division into training and test sets is carried out [18,46,122,123,126,135,144,155]. As a result,
both sets will contain the exact same samples, with only some minute differences, making
it very easy for the model to perform well on the test set. This produces heavily biased
results that in no way represent the true accuracy of the proposed model. It is important
that both authors and reviewers be aware of this fact, in order to avoid the publication of
articles with a methodological error as serious as this.

Improper image augmentation is not the only methodological problem associated with
the application of deep learning. The deep learning community is very active and has made
available many platforms, architectures, and tutorials, making it relatively straightforward
to apply deep learning models without much training. However, the correct application
of those models has many subtleties and intricacies that, if not properly addressed, can
lead to unrealistic results and render the investigation useless. These intricacies include
the number of images used for training, how images are preprocessed, how models are
built, how models are fine-tuned, how features are extracted, how features are combined to
produce final predictions, what metric is used to assess the model performance, among
others [22]. Thus, despite all tools available to assist deep learning users, some effort is
needed to achieve results that are actually relevant and useful.

Deep learning models are often viewed as computer-intensive techniques that require
powerful and expensive hardware to work effectively [19,23]. While it is true that, de-
pending on the size of the training dataset and the number of parameters to be tuned, the
training process can take a long time to be completed even if powerful graphics processing
units (GPUs) are employed, in general, the final trained models can be executed quickly and
effectively even in devices with limited computational power, including smartphones and
small computers such as the Raspberry Pi [170]. Therefore, contrary to what is sometimes
claimed in the literature [28], in general, deep learning models do not require considerable
investment in dedicated hardware from end users.

Besides the technical difficulties, there are some practical challenges that need to be
taken into account, especially for underwater imaging. For example, communications
between the underwater cameras and storage servers can be troublesome, with loss of
data being always a possibility if expensive redundant systems are not employed [54].
Additionally, debris and algae can accumulate on the lenses, causing blurring and reduction
of the field of view [52,54,94]. Underwater systems may also consume too much power,
thus requiring an expensive infrastructure to work properly [42]. The excessive storage
requirements for long-term monitoring have been mentioned by the authors of [107], who
argued that it may be necessary to employ low-resolution images/videos in order to reduce
the amount of data to be recorded. Another possible solution for the storage problem
is to process the data in real time through edge computing, and store/transmit only the
information of interest [3]. It is worth considering, however, that unforeseen new techniques
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and ideas might greatly benefit from the raw data being discarded, so the benefits of having
a robust storage infrastructure can frequently outweigh its drawbacks.

The main challenges and issues identified in this review are synthesized in Figure 2.

Figure 2. Synthesis of the main challenges and issues identified in this review.

5. Concluding Remarks

The use of computer vision for fish recognition, monitoring, and management has
been growing steadily as imaging technologies and artificial intelligence techniques evolve
(Figure 3) . The literature contains several investigations addressing a wide range of
applications. The good results reported in the literature often lead to a false sense of
“mission accomplished”, when in fact most studies suffer from severe limitations that
prevent the proposed techniques to be readily applicable in the real world. In most cases,
those limitations are linked to the fact that collecting good-quality image data on fish is
very difficult, especially in an underwater setup. Overcoming the challenges discussed
in this review will require considerable effort, but this is essential for enabling practical
technologies capable of improving the way fish resources are managed and explored.

Knowing the challenges in need of suitable solutions and understanding the real stage
of maturity of the techniques and related technologies is very important not only for scien-
tists and researchers but also for entrepreneurs willing to explore the potential market, in
order to avoid botched products and services. Other economic sectors for which computer
vision and artificial intelligence have been explored for a longer period of time have seen
many technology-based companies and startups fail due to the introduction of immature
technologies to the market. Beyond the loss caused by those failures, flawed products often
ruin the perception of potential customers regarding that particular technology, making
it more difficult for new entrants to succeed, even if the product is good. Hopefully, this
situation can be avoided in the fish sector.

It is difficult to foresee how the research will progress in the future, especially consid-
ering how dynamic and fast changing the computer vision and artificial intelligence areas
have been so far. However, two trends seem more likely to continue to gain momentum,
the use of deep learning techniques and the application of data fusion principles to bring
together the information yielded by different types of data sources. As more representative
datasets are collected and made available, the gap between academic results and real-world
requirements will tend to close.
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Figure 3. Evolution of the number of computer vision articles applied to fish monitoring and
management. Numbers were compiled using the search results described in Section 3.
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