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Abstract: With the evolution of the convolutional neural network (CNN), object detection in the 
underwater environment has gained a lot of attention. However, due to the complex nature of the 
underwater environment, generic CNN-based object detectors still face challenges in underwater 
object detection. These challenges include image blurring, texture distortion, color shift, and scale 
variation, which result in low precision and recall rates. To tackle this challenge, we propose a de-
tection refinement algorithm based on spatial–temporal analysis to improve the performance of ge-
neric detectors by suppressing the false positives and recovering the missed detections in underwa-
ter videos. In the proposed work, we use state-of-the-art deep neural networks such as Inception, 
ResNet50, and ResNet101 to automatically classify and detect the Norway lobster Nephrops norvegi-
cus burrows from underwater videos. Nephrops is one of the most important commercial species in 
Northeast Atlantic waters, and it lives in burrow systems that it builds itself on muddy bottoms. To 
evaluate the performance of proposed framework, we collected the data from the Gulf of Cadiz. 
From experiment results, we demonstrate that the proposed framework effectively suppresses false 
positives and recovers missed detections obtained from generic detectors. The mean average preci-
sion (mAP) gained a 10% increase with the proposed refinement technique. 
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1. Introduction 
Research in underwater image analysis has gained popularity in many applications 

of marine sciences. There are various research directions in underwater image analysis, 
for instance, underwater species classification and detections [1], seafloor image recogni-
tion [2], coral reef classification [3], and flora and fauna recognition [4]. Underwater image 
analysis requires a set of image processing tasks including underwater object detection, 
classification, visual content recognition, and image annotation of large-scale marine spe-
cies [5]. Certain challenges such as turbidity, color variations, and illumination changes 
make underwater environments very difficult for the models to detect and classify the 
objects automatically. 

There are thousands of species in the ocean all over the world. One of the most im-
portant commercial species in Europe is the Norway lobster Nephrops norvegicus. Figure 1 
shows the Nephrops norvegicus species (hereafter referred to as Nephrops). This species is 
distributed from 10 m to 800 m of depth in the Atlantic NE waters and the Mediterranean 
Sea [6], where sediment is suitable for them to construct their burrows. This species 
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excavates into and inhabits burrow systems mainly in muddy seabed sediments, with 
more than 40 percent silt and clay [7]. These burrows systems have a single or multiple 
openings or holes with characteristic features that make them different to burrows built 
for other burrowing species [8][9]. At least one opening has a crescent moon shape and a 
shallowly descending tunnel. It is often proof of expelled sediment forming a wide delta-
like tunnel opening, and signals such as scratches and tracks are frequently observed. If a 
burrow system consists of more than one entrance, then the center of all the openings has 
a raised gain. It is assumed that each burrow system is occupied by a unique individual. 
Figure 2 shows the features of the Nephrops burrows system. 

 
Figure 1. Some individuals of Nephrops norvegicus. 

 
Figure 2. Nephrops burrow system. 

Nephrops spend most of their time inside the burrows, and their emergence behavior 
is influenced by several factors: time of year, light intensity, or tidal strength [10]. For this 
reason, abundance indices obtained from the commercial catch or the traditional bottom 
trawl surveys are thought to be poorly representative of the Nephrops population and they 
are not considered appropriate [11,12]. 

The abundance of Nephrops populations is currently monitored by underwater tele-
vision (UWTV) surveys on many European grounds. The methodology used in UWTV 
surveys was developed in Scotland in the 1990s and is based on the identification and 
quantification of the burrows systems over the known area of Nephrops distribution [13]. 
Nephrops abundance from UWTV surveys is the basis of assessment and advice for man-
aging these stocks [14]. 

Videos are recorded using a camera system mounted in a sledge with angle with 
respect to the bottom ranging between 37–60° depending to the country [15]. They are 
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reviewed manually by trained experts and quantified following the protocol established 
by ICES [8,16]. 

With the recent advancement in artificial intelligence and computer vision technol-
ogy, many researchers employ AI-based tools to analyze marine species. Some people use 
feature extraction mechanisms to count and identify the species while others use some 
advanced techniques [17] such as neural networks. Convolutional neural networks (CNN) 
bring a revolution in object detection. Deep convolutional neural networks gain tremen-
dous success in the tasks of object detection [18,19], classification [20,21], and segmenta-
tion [22,23]. These networks are data-driven and require a huge amount of labeled data 
for training. 

In our previous work [24], we developed a deep learning model based on state-of-
the-art Faster RCNN [19] models Inceptionv2 [25] and MobileNetv2 [26] for the detection 
of Nephrops openings. Those models were trained on Gulf of Cadiz and Irish datasets. 
These models achieved good results in detecting the burrows from the image test data. 
However, when these trained models were tested on a video from Gulf of Cadiz, the ac-
curacy of the detectors degraded. We figured out many false positive (FP) and missed true 
positive (TP) detections that adversely affect the accuracy of these models. 

In this work, we proposed a detection refinement mechanism based on spatial–tem-
poral information to enhance the detection of missed true positive and suppress the false 
positive detections. The work presented in [27] used the temporal information to track the 
faces and suppresses the false positive detections. Their approach used low-level tracking 
to detect the faces in real images. Furthermore, their approach does not recover the missed 
detections. In our case, the low-level tracking cannot be applied as we are using under-
water videos and the objects we are detecting are not real species but the burrows on the 
ground, where the characteristics are very different than the natural image. The previous 
work integrates the temporal information to track the faces and suppress the false posi-
tives. In our approach we are using the spatial and temporal information to suppress the 
false positives and recover the missed detections. Our work is divided into two parts. At 
first, we trained the model using state-of-the-art Faster RCNN [19] models Inceptionv2 
[25], ResNet50 [28], and ResNet101 [29] for the detection of Nephrops burrows. We built 
the dataset for training and testing the models. In the second part of our work, we pre-
sented a spatial–temporal-based detection refinement algorithm. We detected the bur-
rows in each frame in a video sequence and then obtained the spatial and temporal infor-
mation across the multiple frames to refine the Nephrops burrows detections. The spatial–
temporal mechanism helped in suppressing the FP burrows and allowed us to find the 
missed TP detection that led us to achieve a better accuracy as well as tracking and count-
ing burrows in a video sequence. Figure 3 shows the result of the detector that we trained 
using the Inception model. The bounding boxes in blue color show the ground truth, while 
the red color bounding boxes show the detections from the Inception model. Due to vari-
ation in camera direction and appearance of burrows, the detector accumulates FPs and 
missed detection in some frames. The figure clearly shows the missed detection in the 
intermediate frames. 

 
Figure 3. Ground truth (blue color, bounding boxes). The result of detector (Inception) (red color, 
bounding boxes). Due to camera angle variation and burrows appearance, the detector missed de-
tections in consecutive frames. 
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To address these challenges, we proposed a detection refinement approach based on 
spatial–temporal analysis that enhances the mAP of a generic detector. Our proposed de-
tection refinement mechanism identified these missed detections, recovered them, and 
suppressed the false positives. Generally, our approach has the following contributions: 

i. We propose the spatial–temporal filtering (STF) model that extracts the spatial and 
temporal information of all the detections of the consecutive frames of an input video 
by suppressing the false positives and recovering the missed detections. The pro-
posed method will improve the performance of the generic detectors (such as Incep-
tion and ResNet, in our case). 

ii. We evaluate the performance of the proposed framework on our proposed novel da-
taset. From the experiment results, we demonstrate the effectiveness of the proposed 
approach. 
The rest of the paper is organized as follows: the related work is presented in Section 

2. The Materials and Methods section given in Section 3 presents the data collection 
method and proposed methodology to refine the detections. The achieved results with the 
proposed methodology are discussed in Section 4. Finally, Section 5 concludes the article. 

2. Related Work 
Object detection and classification is a challenging computer vision problem. Re-

searchers have developed many methods for object detection and classification tasks. The 
existing object detection approaches use handcrafted feature-based models [30–33] and 
deep features models [34]. The hand-crafted features models use basic features such as 
shape [35], texture [36–38], and edges [35,38] to train the classifier. On the other hand, 
convolutional neural networks automatically learn hierarchical features from the training 
set. Deep learning replaces the handcrafted features and introduces some efficient algo-
rithms for object detection and classification. Over the last few years, deep learning mod-
els have enjoyed tremendous success in various object detection and classification tasks. 
Due to this reason, deep learning models are also employed in the detection and classifi-
cation of underwater species. Although the underwater environment is hard and chal-
lenging compared to the ground, the deep learning algorithms perform much better com-
pared to the conventional and handcrafted features. State-of-the-art deep learning-based 
object detectors include region-based convolution network (R-CNN) [39], Fast R-CNN 
[40], and Faster R-CNN [19]. R-CNN uses deep ConvNet to classify the object proposals. 
R-CNN algorithm is computationally expensive as it uses a selective search [41] strategy 
to generate a large number of object proposals followed by the object proposal classifica-
tion step. On the other hand, Fast R-CNN is the improvement of R-CNN, where a faster 
training process is achieved compared to R-CNN. Fast R-CNN uses multitasking in up-
dating all the network layers and handling the loss which improves the speed and accu-
racy of the network. Compared to both methods, Faster R-CNN introduces region pro-
posal network (RPN) as it combines the RPN with Fast R-CNN into a single network. 

Li et al. [42] developed a deep learning model for the detection of marine objects. The 
model detects and recognizes fishes using deep convolutional network. They applied the 
Fast R-CNN algorithm to classify the twelve different classes of underwater fishes. They 
also introduced a dataset of 24,272 images of all these classes. They achieved more than 
90% of accuracy in detection. Similarly, Villon et al. [43] applied the deep learning algo-
rithms to the Fish4Knowledge dataset project to detect and classify the fishes. Rathi et al. 
[44] combined Faster R-CNN with three classification networks (ZF Net, CNN-M, and 
VGG16) to detect 50 fish and crustacean species from Queensland beaches and estuaries. 
The regional proposal method consists of a regional proposal network coupled with a 
classifier network. Xu et al. [45] applied the YOLO deep learning model to recognize the 
fishes in underwater videos. They used three different types of datasets that were rec-
orded at real-world waterpower sites. They achieved an mAP up to 53.92%. Mandal et al. 
[46] presented a Faster R-CNN approach to identify the fishes and their different species 
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using deep neural networks. Gundam et al. [47] also proposed a fish classification tech-
nique based on the Kalman filter that used partial automation of fish classification from 
underwater videos. Jalal et al. [1] proposed a hybrid approach that combines the YOLO-
based object detection with optical flow and Gaussian matrix models to detect and classify 
the fishes from underwater videos. A similar method based on YOLO to detect and clas-
sify the fishes was proposed by Sung et al. [48]. They used 892 images and achieved the 
fish classification accuracy up to 93%. Jager et al. [49] proposed a deep CNN approach 
based on AlexNet architecture for the classification of fish species. They used the dataset 
of LifeCLEF 2015. Zhuang et al. [50] proposed a deep learning model based on SSD detec-
tor to automatically identify the fishes and their species. In their approach they used Res-
Net-10 as a classifier for species identification. Zhao et al. [51] proposed an automatic de-
tection and classification method for fish and underwater species. The proposed method, 
called "Composed FishNet", is based on the composite backbone and a path aggregation 
network. The composite backbone method is the improvement of ResNet. The enhanced 
path aggregation network is designed to improve the semantic information caused by un-
sampling. The results show that they achieved an average precision (AP) of 75.2%. Labao 
et al. [52] proposed a multilevel object detection network that used R-CNN as network 
framework. Their proposed network contained two region proposal networks and seven 
CNNs connected by long short-term memory (LSTM). The proposed network showed an 
improvement in the performance over the simple one-stage detection networks. Salman 
et al. [53] proposed an R-CNN-based two-stage automatic fish detection and location 
method. They used the fish motion information and combined it with the background and 
optical flow information to generate the candidate region of the fish. Their proposed 
model requires a fixed size input image and the candidate region extraction needs a sub-
stantial disk space as well. 

Deep learning models also have been employed to detect marine objects other than 
fishes, such as planktons and corals. These two are also major components of the under-
water marine ecosystem. Plankton are the basics of aquatic food. Dieleman et al. [54] used 
a deep neural network to classify the plankton. They introduced the inception module for 
image information extraction. Lee et al. [55] also proposed a deep neural network for 
plankton classification on a large dataset. Their convolutional neural network used three 
convolutional layers and two fully connected layers. The problem with the coral classifi-
cation is its color, size, texture, and shape. Shiela et al. [56] introduced a local binary pat-
tern for texture and color coordination. For classification purposes, they used the neural 
network with three backpropagation layers. Elawady et al. [57] used supervised CNN for 
the classification of corals. Table A1 in Appendix B summarizes the key findings of the 
papers discussed in this section. 

3. Materials and Methods 
In this section, we discuss the proposed methodology of improving the detections of 

Nephrops burrows. Figure 4 shows the pipeline of proposed framework. This section also 
presents the equipment and method used in the data collection in detail. Generally, the 
proposed framework has two sequential stages. The first stage is object detection, while 
detection refinement is performed during the second stage. During the first stage, we use 
state-of-the-art generic detectors, for example, Faster RCNN, Inception, ResNet50, and 
ResNet101, to detect the Nephrops burrows. For this purpose, we first divide the input 
video sequence into temporal segments, with each segment consisting of N number of 
frames. We then apply state-of-the-art detectors to each temporal segment to detect 
Nephrops burrows. The obtained results are passed to the refinement module that will em-
ploy spatial–temporal filtering (STF) to recover the missed detections from the frames and 
suppress the false positive detections. This process improves the mean average precision 
(mAP) of the results obtained from the detectors. 
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Figure 4. Detection refinement framework based on spatial–temporal filtering. 

3.1. Nephrops Burrows Detections 
To detect and classify the Nephrops burrows, state-of-the-art Faster R-CNN deep 

learning algorithms, Inceptionv2 [25], ResNet50 [28], and ResNet101 [29], were used to 
train the models. Figure 5 shows the pipeline of the proposed detection framework. 

 
Figure 5. Nephrops burrows detection framework. 

3.1.1. Data Collection 
High-resolution footage was collected using a sledge during the 2018 Underwater TV 

(UWTV) survey at the Gulf of Cadiz by marine scientists who belong to IEO (Instituto 
Español de Oceanografía), a Spanish research institution devoted to promoting ocean re-
search and knowledge, including government assessment for sustainable fisheries. A 
sledge is a stainless-steel underwater vehicle equipped with multiple cameras, sensors, 
lasers, and lights to record the footage. Figure 6 shows the setup of the instruments 
mounted in the sledge and a sample image, and a complete description is presented in 
Table 1. 
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Figure 6. Sledge and equipment use in 2018 UWTV survey at the Gulf of Cadiz. 

Table 1. Equipment details used in data collection. 

Image System 
Life Camera 

Full HD (1920 × 1080) @ 30 fps 
Mounting angle 45° 

Recording Camera: SONY FDRAX33 
4K Ultra HD (3840 × 2160) and Full HD (1920 × 1080) @ 50 fps 

Mounting angle 45° 
Photo camera: SONY ILCE QX1 

20.1 MPixel 
Mounting Angle variable 

Lighting System 
28,640 lumens, distributed in 4 spotlights with individual intensity system 

TST-OFL 7000 (Thalassatech—Oil Filled LED) 
Photogrammetry System 

3-point lasers (5 mW & λ = 670 nm) forming a triangle of side 70 mm 
2-line lasers (200 mW & λ = 670 nm) separated 75 cm (Field of view) 

Auxiliary System 
Battery (Li-ion, size 18,650, 3.7 V & 2400 mAh = capacity 480 Wh) 

Sensors 
Altimeter: Tritech PA500 

CTD (conductivity, temperature, and depth): AML Oceanographic MINOS X 

Sampling on 70 stations were conducted in the 2018 UWTV survey. A station is a 
geostatistical location where the Nephrops burrow density is estimated to obtain the 
Nephrops abundance index over the known survey area using geostatistical analysis. At 
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each station, the sledge was deployed and towed with constant speed between 0.6–0.7 
knots to obtain the best possible conditions for counting Nephrops burrows. Once the 
sledge is stable on the seabed, a video footage of 10–12 min at 25 frames per seconds is 
recorded, which corresponds to 200 m swept, approximately. Vessel position (dGPS) and 
position of sledge, using a HiPAP transponder, are recorded every 1 to 2 s. The distance 
over ground (DOG) is estimated from the position of sledge in all stations, and the field 
of view of the video footage is 75 cm (FOV), which was confirmed using two line lasers. 
Out of all these 70 stations, we selected seven based on the better lighting conditions, high 
contrast, and high density of Nephrops burrows, as well as the better visibility of burrows. 
The recorded footages were saved into hard disks for further analysis on Nephrops density. 

3.1.2. Image Annotation 
The obtained frames were annotated using Microsoft VOTT [58] tool. We adopted 

the mechanism to annotate the burrows manually in the Microsoft VOTT image annota-
tion tool and saved the annotations in Pascal VOC format. The saved XML annotation file 
contains image name, class name (Nephrops), and bounding box details of each object of 
interest in the image. The annotated frames led to formulating the ground truths (GT) for 
model training. To create the datasets for training and testing, from the set of annotated 
frames (more than 100,000), we selected those which contained Nephrops burrows, using 
the criteria of using only one frame per individual object, selected to increase the diversity 
of its appearance, which the aim of creating a small dataset which contained most of the 
typical cases of Nephrops burrows. 

3.1.3. Annotation Validation 
The Nephrops burrows annotation is a tedious job, and it requires a lot of experience 

to annotate a burrow, because different species build burrows with similar appearance on 
the bottom of the sea. Once all the burrows are annotated, it is very important to validate 
each one of them with the advice of marine experts from IEO institution, Gulf of Cadiz. 
Only the validated annotations were used in the model training. 

3.1.4. Prepare Dataset 
After validating all the annotations, the dataset was divided in two independent 

groups, the first one for training and the second one for testing purposes. Details are given 
in Table 2. 

Table 2. Dataset distribution. 

Dataset Distribution 
Functional Unit Training Images Testing Images Total 

Gulf of Cadiz Dataset 200 (80%) 48 (20%) 248 

3.1.5. Model Training 
We utilized transfer learning [59] to fine-tune the models in TensorFlow [60]. Incep-

tionv2 [25] is one of the architectures that have a high degree of accuracy, which helps to 
reduce the complexity of CNN. Inceptionv2 has 3 × 3 convolutions layers, which increases 
the performance of the network with respect to computational speed and processing. 

ResNet50 [28] is a variant of the model ResNet. The ResNet50 has 48 convolutional 
layers, one max pool, and one average pool layer so it is a 50-layers-deep convolutional 
network. Out of these 50 layers, one layer is used in the first convolution with a kernel 
size of 7 × 7 64 kernels with stride 2 and a max pool of size 3 × 3 with stride 2, nine layers 
are used in the second convolution with a kernel size of 1 × 1, 64 kernels and 3 × 3, 128 
kernels. In the next step, 12 layers are used with 1 × 1, 128; after that, a kernel of 3 × 3, 128, 
and, at last, a kernel of 1 × 1, 512. The fourth convolution uses 18 layers with kernel of 1 × 
1, 256 and two more kernels with 3 × 3, 256 and 1 × 1, 1024. The fifth convolution uses nine 
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layers with 1 × 1, 512 kernel with two more of 3 × 3, 512 and 1 × 1, 2048. Finally, the last 
layer is used for avg pool and a softmax function. ResNet50 is a widely used ResNet 
model. 

The ResNet101 [29] is a dense convolutional neural network that is 101 layers deep. 
The first convolution has a kernel size of 7 × 7 64 kernels with stride 2 and a max pool of 
size 3 × 3 with stride 2. Nine layers are used in the second convolution with a kernel size 
of 1 × 1 64 kernels and 3 × 3 128 kernels. In the next step 12 layers are used with 1 × 1, 128; 
after that, a kernel of 3 × 3, 128, and, at last, a kernel of 1 × 1, 512. The fourth convolution 
uses 69 layers with kernel of 1 × 1, 256 and two more kernels with 3 × 3, 256 and 1 × 1, 
1024. The fifth convolution uses 9 layers with 1 × 1, 512 kernel with two more of 3 × 3, 512 
and 1 × 1, 2048. Finally, the last layer is used for avg pool and a softmax function. The 
ResNet50 and ResNet101 have better accuracy when compared to the other models for 
our problem. 

3.1.6. Testing 
To test our algorithm, we selected another station from the Gulf of Cadiz whose 

frames were not used in the training dataset. The test video, which is five minutes long 
and contains 7500 frames, was divided into temporal segments and then passed to our 
trained models to obtain the Nephrops burrows detections. 

3.2. Detection Refinements 
After the detections of Nephrops burrows, we performed a post analysis of the ob-

tained results. After a critical analysis of the results, we found that the detectors encounter 
many FP and missed many TP, which degrades accuracy. To recover missed detections 
and suppress FP, we propose a detection refinement algorithm that exploits the spatial–
temporal information among consecutive frames of the given temporal segment. The In-
ception, ResNet50, and ResNet101 models are tested on a video of five minutes in length. 
The proposed detection refinement algorithm takes V, λ, and W as inputs, where V is the 
video, λ, is a threshold value for displacement vector, the threshold value is the value of 
IoU (intersection over union) that is compared later with the IoU of detected Nephrops 
burrow, and W is a size of temporal window which determines the number of frames in 
the temporal window. These models provide a set of TP, FP, and missed detections. The 
criteria for definition of TP, FP, and working of the proposed detection algorithm is dis-
cussed in the next sections. 

3.2.1. True Positives (TP) 
The algorithm considers every detection as a TP if it is continuously detected by the 

detector within the temporal window and its average IoU in all the frames in the temporal 
window is more than or equal to the threshold value λ. Therefore, if the detector marks 
any FP detection as TP and the detection continues to occur in all the consecutive frames, 
then our algorithm considers it as a TP detection. 

3.2.2. False Positives (FP) 
The FP detections are those detections which are not detected in the consecutive 

frames and their combined IoU is less than the threshold value λ. These FP detections are 
also declared as FP in the ground truth dataset. The detectors detect them as TP because 
of camera angle (45°) and the position and angle of the burrow. 

3.2.3. Missed Detections 
The missed detections are those detections which are TP and are detected in some 

frames by the detector but missed in some intermediate frames due to position or visibility 
of the burrow. The missed detections are very important to identify because without 
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identifying them we cannot track a burrow. We can increase the performance of models 
by recovering the missed detections. 

3.3. Working of Detection Refinement Algorithm 
The proposed algorithm is presented in Appendix A and shows the refinement mech-

anism using the spatial temporal analysis of data. This algorithm is divided into two sec-
tions, i.e., suppression of false positives and identification of missed detections. Figure 7 
shows the basic processing steps of false positive suppression and missed detection iden-
tification and recovery. 

 
Figure 7. Detection refinement algorithm. 

3.3.1. Suppression of False Positives 
The first step towards the refinement of detections is to suppress the FP. Let Fi = {B1, 

B2,…, Bn} be the frame i with n detections obtained with a deep learning model . Let sF be 
the set of consecutive frames within a temporal window with size W. The algorithm takes 
Bj for frame Fi as an input for refinement and provides a refined output as FR. To suppress 
the FP in the current frame i, we compute the overlapping of each detection Bj of the cur-
rent frame and the detection in the next frame from sF. 

The algorithm receives three inputs: an input video with detections V, threshold 
value λ, and temporal window size W. For each detection in the current frame b ∈ Bj at 
frame Fi, we first identify the current detection location in the next frame of sF and then 
compute δκ = ΙoU value of current detection with consecutive k frame’s detection in sF 
using Compare_Displacement_Vector(fb_Index, fcb_Index) method (k = 1,…,W). Then, δavg = 1/W 
∑δk is the estimated average within the temporal window. We marked the detection as FP 
if δavg < λ, and as TP if otherwise, suppressing the FP. We process the whole video V de-
tections in the same way. 
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3.3.2. Identification of Missed Detections 
After refining the detections by suppressing the FP in the previous step, the next step 

is to identify the missed detections that were missed by our detector. For this purpose, we 
track each detection Bj ∈ Fi to identify the missed detection. If the detection is found in 
frame i + 1, we continue to track it till the temporal window size W. If the current detection 
is not tracked in any frame, we mark that as missed detection and store it in the set index-
Set. To calculate the value of the missed detection, we define the Set_BoundingBox_Value( 
) method. We first compute the location of the missed detection from the indexSet. Letting 
Bj be the current detection and indexSetj the missed detection, we calculate the accumula-
tive value of detection from the current frame till the indexSet location and then calculate 
the average, called bBValue_missing. As we are maintaining the number of frames N be-
tween the current detection and the missed detection, we calculate the missed detection 
value by adding the N value to the bBValue_missing. The missed detections information is 
then filled and updates the refined output FR. 

4. Experiments and Results 
In this section, we evaluate the results of different experiments performed using the 

proposed detection refinement algorithm. We use three different models (Inception, Res-
Net50, and ResNet101) for training with Gulf of Cadiz dataset. Each model is trained up 
to 100k iterations, and a log is maintained for each 10k iteration for evaluation. 

4.1. Quantitative Analysis 
In the quantitative analysis, an annotated video with frame rate of 25 fps is used for 

testing the Inception, ResNet50, and ResNet101 models. The video is divided into five 
temporal segments, each of one minute. Each temporal segment has 1500 frames. 

We record number of detection from each temporal segment by all three models. The 
detection is then processed through the proposed detection refinement algorithm to iden-
tify the TP, FP, and missed detections. Tables A2–A6 in Appendix B clearly show the ob-
tained results in each temporal segment by each model and their corresponding improve-
ment by the proposed detection refinement algorithm. The algorithm is run with W = 8, 
12, and 16. In each temporal window, the algorithm is tested with λ = 0.3 and 0.4 and finds 
out the number of TP, FP, missed detection, and F1-score (geometric mean of precision 
and recall metrics) in each minute of the video. 

Table 3 shows the accumulative ground truth (GT), TP, FP, and missed (Miss) detec-
tions along with the mean values of precision, recall, and F1-score of each temporal seg-
ment. The %Before is the result obtained before applying the STF, while the %After shows 
the results obtained after applying the refinement algorithm. Table 3 shows that Res-
Net101 gives the best F1-score in each one of the five temporal segments, followed by 
ResNet50 and Inception. It was found that a small IoU value of 0.3 is clearly better than 
0.4 in terms of precision, recall, and F1-score values because area surrounding burrows is 
sometimes not well defined for all three models. The effect of window size W shows a 
trend of better results for smaller values (mostly, W = 8 is better than W = 12 and W = 16). 
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Table 3. Detections of all temporal segments with refinements. Detections are refined using W = 8, 
12, and 16 with λ = 0.3 and 0.4. The refined detection shows total number of TP, FP, and missed 
detections and F1-score. 

 GT = 2359 Recall Precision F1-Score 

 W λ TP FP Miss %Age 
Before 

%Age 
After 

%Age 
Before 

%Age 
After 

%Age 
Before 

%Age 
After 

Inception 

8 0.3 1380 115 256 58.5 69.4 92.3 93.4 71.6 79.6 
8 0.4 1150 345 204 48.7 57.4 76.9 79.7 59.7 66.7 

12 0.3 1316 179 277 55.8 67.5 88.0 89.9 68.3 77.1 
12 0.4 899 596 170 38.1 45.3 60.1 64.2 46.7 53.1 
16 0.3 1308 187 374 55.4 71.3 87.5 90.0 67.9 79.6 
16 0.4 804 691 209 34.1 42.9 53.8 59.4 41.7 49.9 

ResNet50 

8 0.3 1619 163 356 68.6 90.6 90.9 92.9 78.2 91.8 
8 0.4 1389 393 274 58.9 87.2 77.9 84.0 67.1 85.5 

12 0.3 1557 225 400 66.0 92.5 87.4 90.7 75.2 91.6 
12 0.4 1069 713 239 45.3 85.7 60.0 73.9 51.6 79.4 
16 0.3 1495 287 506 63.4 97.0 83.9 88.9 72.2 92.7 
16 0.4 962 820 260 40.8 86.6 54.0 71.3 46.5 78.2 

ResNet101 

8 0.3 1894 180 336 80.3 94.5 91.3 92.5 85.5 93.5 
8 0.4 1720 454 262 72.9 84.0 79.1 81.4 75.9 82.7 

12 0.3 1874 265 340 79.4 93.9 87.6 89.3 83.3 91.5 
12 0.4 1267 907 209 53.7 62.6 58.3 61.9 55.9 62.3 
16 0.3 1754 296 421 74.4 92.2 85.6 88.0 79.6 90.1 
16 0.4 1154 1020 228 48.9 58.6 53.1 57.5 50.9 58.1 

We performed experiments to find out the accuracy using mean average precision 
(mAP) after applying the detection refinement algorithm. We selected two different image 
sets from the third (image set 1) and fifth (image set 2) temporal segments. Each set con-
sists of almost 200 images. Table 4 shows the definition of experiments performed. 

Table 4. Experiments definition for detection refinement. 

Experiment Model Testing Set 
Experiment 1 Inception Image set 1 
Experiment 2 ResNet50 Image set 1 
Experiment 3 ResNet101 Image set 1 
Experiment 4 Inception Image set 2 
Experiment 5 ResNet50 Image set 2 
Experiment 6 ResNet101 Image set 2 

Figures 8 and 9 show the results of experiments performed on image sets 1 and 2, 
respectively. The graphs show the results of detections with and without applying the 
detection refinement algorithm. The performance is evaluated after every 10k iterations. 
Results clearly show that the mAP increases after applying the refinement algorithm for 
all three models (Inception (a), ResNet50 (b), and ResNet101 (c)) and iteration number. 
Figure 8 shows a higher improvement in mAP after applying the proposed refinement 
algorithm as compared to Figure 9, where some improvement is also achieved, in part due 
to that image set 1 had obtained a lower mAP before the refinement. Image set 2 has better 
quality as compared to the images in image set 1, in terms of better appearance of burrows 
and less camera movement artifacts. This suggest that mAP is quite sensitive to video 
quality and that the proposed refinement algorithm compensates for this to some degree. 
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Figure 8. Experiment performed with image set 1 show mean average precision (mAP) of detection 
refinement with (a) detections with Inception model and refinements; (b) detections with ResNet50 
model and refinements; (c) detections with ResNet101 model and refinements. 

 
(a) (b) (c) 

Figure 9. Experiment performed with image set 2 show mean average precision (mAP) of detection 
refinement with (a) detections with Inception model and refinements; (b) detections with ResNet50 
model and refinements; (c) detections with ResNet101 model and refinements. 

4.2. Qualitative Analysis 
In this section, we qualitatively analyze the performance of the proposed detection 

refinement algorithm by applying it to the results obtained from Inception, ResNet50, and 
ResNet101 models. The red bounding boxes on the images shown in this section are the 
original detections obtained from the models; green bounding boxes are the recovered 
missed detections after applying the refinement algorithm, and ground truth data are 
marked with blue bounding boxes. 

Figure 10 shows a typical example of suppression of FP from the detections obtained 
from the Inception model. Figure 10a–c shows three frames where all burrows’ entrances 
are detected correctly but some FP detections are also obtained, yet are suppressed by our 
proposed algorithm, resulting in a correct detection, which is shown in Figure 10d–f. 
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Figure 10. False positive suppression using detection refinement algorithm (a–c) are the ground 
truth (blue color bounding boxes), and original detections from Inception model (red color bound-
ing boxes) (d–f) are the refined detections. 

A second rectification performed by the proposed detection refinement algorithm is 
the identification of missed detections. Figure 11 shows an example of six consecutive 
frames, before (a–f) and after (g–l) the application of this algorithm. Figure 11a shows two 
Nephrops burrows detections but missed one detection in (b), (c), (d), and (e) which is cor-
rectly rectified by the algorithm, as it is shown in the corresponding images (h), (i), (j), and 
(k). It can be shown also that ground truth annotations contain a third object in Figure 10 
(d) and (f), which are correctly detected by the models, but are not shown in Figure 10 (a–
c) and (e), possibly due to the viewing angle of some frames. However, the identification 
of missed detections has a good impact on the improvement of accuracy and precision of 
the results. A similar approach is followed to rectify the detections from ResNet50and 
ResNet101 models. 
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Figure 11. Identification of true positive missed detections. Panels (a–f) are the original detections 
from the Inception model, and (g–l) are the identification of missed detections in the consecutive 
frames. 
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5. Conclusions 
Deep learning algorithms were performed very well on the Gulf of Cadiz dataset in 

identifying the burrows of Nephrops norvegicus. We applied the Faster RCNN algorithms 
Inception, ResNet50, and ResNet101 for detections. To increase the results accuracy, a spa-
tial–temporal-based detection refinement algorithm was proposed and tested. The pro-
posed algorithm suppresses the false positive detections and recovers the missed true pos-
itive detections. The proposed method when integrated with any detector always in-
creased the performance. The performance was calculated using mAP. This mechanism 
helps marine science experts in the assessment of the abundance of this species. 

In future work, we plan to use diverse datasets from UWTV surveys conducted in 
other Nephrops stocks by other countries. We will train the YOLO detectors with more and 
diverse datasets. In addition, we plan to track the burrows to estimate the abundance of 
Nephrops. We also plan to correlate the spatial and morphological distribution of burrow 
holes to estimate the number of burrow systems that are present and compare with human 
inter-observer variability studies. 
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Appendix A 

Algorithm A1: Detection Refinement 
Input Data V, λ, W, where V is an input video, λ is a threshold value for displacement 
vector, W is a size of temporal window 
Results FR = {F1, F2, ..., Fn}, where FR is a list of refined frames 
begin 

F = Extract_Frames_With_BoundingBox(V) // F = {F1, F2, ..., Fn} where F is the list 
of frames and each one Fi = {B1, B2,…, Bn} has n bounding boxes Bj = {xj, yj, wj, hj}, 
where (xj, yj) are coordinates of initial pixel of the bounding box j and wj, hj are 
width and height. 
T = Extract_Duration(V) // T = {T1, T2, …, Tn} where T is total time of the video 
Foreach frame f ∈ F do 
      FR = Add_Frame(f) 
      sF = Create_Subset_Frame_W_Range(F) // sf is list of frames that need to 
                  compare with current frame till ‘W’ temporal window size 
  deleteFlag = Set (FALSE) 

          Foreach boundingbox b ∈ f do 
              b_Index = Get_Bounding_Box_Index(b) 
              Foreach frame fc ∈ sF do //where fc = f+1 
               delta += Compare_Displacement_Vector (fb_Index, fcb_Index) 
              endFor 
              avgDelta = delta/W 
              if avgDelta < λ then 
                deleteFlag = Set (TRUE) 
              endif 
              if deleteFlag is FALSE then   
         FR= Add_ Bounding_Box_in_Frame (f, fb_Index) 
              endif 
           endFor 
           Foreach boundingbox b ∈ f do 
             indexSet = Identify_Missing_Detection(b, FR) 
      endFor 
          lastIndex = 0 
          for index in FR do 
         if index is in indexSet 
        j = index 
               for lastIndex to j 
              bBValue += Get_BoundingBox_Value(b, f lastIndex) 
               endfor 
              bBValue_missing = bBValue/j 
            Set_BoundingBox_Value(b, fj, bBValue_missing) 
           lastIndex = j; 
            endif 
          endFor 
      endFor 

return FR 
end 
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Appendix B 

Table A1. Underwater object detection with key findings. 

Author Year Approach Object Detection Dataset Performance 
Parameters 

Li et al. 2015 Deep Convolutional Net-
work 

Marine Objects ImageCLEF_Fish_TS da-
taset 24272 Images 

mAP 

Villon et al. 2016 HOG, SVM and Deep 
Learning 

Fish Detection Fish4Knowledge 
13000 fish thumbnails 

Precision, Recall, F-
Score 

Rathi et al. 2018 
Faster R-CNN (ZF 

Net,CNN-M,VGG16) 
Fishes & crustacean 

species 
Fish4Knowledge 

27,142 Images AP 

Xu et al. 2018 YOLO Fishes 3 datasets mAP 

Mandal et al. 2018 Faster R-CNN Fishes Uni of Sunshine Coast 
12365 Images 

mAP 

Jalal et al. 2020 YOLO based Hybrid ap-
proach 

Fish Classification LifeCLEF 2015 
93 Videos 

F-Score 

Sung et al. 2017 YOLO Fish detection 892 Images Precision, Recall, FPS 
Jager et al. 2016 CNN AlexNet Fish Classification LifeCLEF2015 AP, Precision, Recall, 

Zhuang et al. 2017 ResNet-10 Underwater Species SEACLEF2017 AP 

Zhao et al. 2021 Composed FishNet 
Fish and Underwa-
ter Species detec-

tions 

SeaCLEF 2017 
20,0000 images AP, F-Measure 

Labao et al. 2019 Multilevel R-CNN Fish detection 300 Underwater Images 
Precision, Recall, F-

Score 

Salman et al. 2019 Two stage R-CNN Fish detection Fish4Knowledge, LCF-15 
Precision, Recall, F-

Score 

Lee et al. 2016 Three layers CNN Plankton detection WHOI-Plankton database 
3.2 million Images 

F1-Score 

Table A2. Detections and refinement results of 1st temporal segment. 

1st Temporal Segment 
 GT = 255 Recall Precision F1-Score 

 W λ TP FP Miss %Age 
Before 

%Age 
After 

%Age 
Before 

%Age 
After 

%Age 
Before 

%Age 
After 

Inception 

8 0.3 166 9 13 65.1 70.2 94.9 95.2 77.2 80.8 
8 0.4 149 26 12 58.4 63.1 85.1 86.1 69.3 72.9 

12 0.3 165 10 15 64.7 70.6 94.3 94.7 76.7 80.9 
12 0.4 68 107 9 26.7 30.2 38.9 41.8 31.6 35.1 
16 0.3 163 12 41 63.9 80.0 93.1 94.4 75.8 86.6 
16 0.4 66 109 19 25.9 33.3 37.7 43.8 30.7 37.9 

ResNet50 

8 0.3 188 20 31 73.7 85.9 90.4 91.6 81.2 88.7 
8 0.4 177 31 20 69.4 77.3 85.1 86.4 76.5 81.6 

12 0.3 186 22 43 72.9 89.8 89.4 91.2 80.3 90.5 
12 0.4 110 98 19 43.1 50.6 52.9 56.8 47.5 53.5 
16 0.3 175 33 41 68.6 84.7 84.1 86.7 75.6 85.7 
16 0.4 93 115 12 36.5 41.2 44.7 47.7 40.2 44.2 

ResNet101 

8 0.3 217 26 24 85.1 94.5 89.3 90.3 87.1 92.3 
8 0.4 164 79 20 64.3 72.2 67.5 70.0 65.9 71.0 

12 0.3 188 55 28 73.7 84.7 77.4 79.7 75.5 82.1 
12 0.4 100 143 18 39.2 46.3 41.2 45.2 40.2 45.7 
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16 0.3 181 62 21 71.0 79.2 74.5 76.5 72.7 77.8 
16 0.4 96 147 13 37.6 42.7 39.5 42.6 38.6 42.7 

Table A3. Detections and refinement results of 2nd temporal segment. 

2nd Temporal Segment 
 GT = 585 Recall Precision F1-Score 

 W λ TP FP Miss 
%Age 
Before 

%Age 
After 

%Age 
Before 

%Age 
After 

%Age 
Before 

%Age 
After 

Inception 

8 0.3 398 33 61 68.0 78.5 92.3 93.3 78.3 85.2 
8 0.4 324 107 46 55.4 63.2 75.2 77.6 63.8 69.7 

12 0.3 393 38 73 67.2 79.7 91.2 92.5 77.4 85.6 
12 0.4 271 160 41 46.3 53.3 62.9 66.1 53.3 59.0 
16 0.3 393 38 115 67.2 86.8 91.2 93.0 77.4 89.8 
16 0.4 269 162 68 46.0 57.6 62.4 67.5 53.0 62.2 

ResNet50 

8 0.3 420 45 105 71.8 89.7 90.3 92.1 80.0 90.9 
8 0.4 306 159 85 52.3 66.8 65.8 71.1 58.3 68.9 

12 0.3 404 61 114 69.1 88.5 86.9 89.5 77.0 89.0 
12 0.4 241 224 78 41.2 54.5 51.8 58.7 45.9 56.6 
16 0.3 363 102 168 62.1 90.8 78.1 83.9 69.1 87.2 
16 0.4 232 233 104 39.7 57.4 49.9 59.1 44.2 58.2 

ResNet101 

8 0.3 441 31 103 75.4 93.0 93.4 94.6 83.4 93.8 
8 0.4 433 139 89 74.0 89.2 75.7 79.0 74.8 83.8 

12 0.3 468 49 103 80.0 97.6 90.5 92.1 84.9 94.8 
12 0.4 309 263 68 52.8 64.4 54.0 58.9 53.4 61.6 
16 0.3 415 57 145 70.9 95.7 87.9 90.8 78.5 93.2 
16 0.4 300 272 89 51.3 66.5 52.4 58.9 51.9 62.4 

Table A4. Detections and refinement results of 3rd temporal segment. 

3rd Temporal Segment 
 GT = 480 Recall Precision F1-Score 

 W λ TP FP Miss 
%Age 
Before 

%Age 
After 

%Age 
Before 

%Age 
After 

%Age 
Before 

%Age 
After 

Inception 

8 0.3 163 23 45 34.0 43.3 87.6 90.0 48.9 58.5 
8 0.4 132 54 37 27.5 35.2 71.0 75.8 39.6 48.1 

12 0.3 160 26 47 33.3 43.1 86.0 88.8 48.0 58.1 
12 0.4 106 80 30 22.1 28.3 57.0 63.0 31.8 39.1 
16 0.3 159 27 46 33.1 42.7 85.5 88.4 47.7 57.6 
16 0.4 64 122 28 13.3 19.2 34.4 43.0 19.2 26.5 

ResNet50 

8 0.3 291 43 87 60.6 78.8 87.1 89.8 71.5 83.9 
8 0.4 269 65 69 56.0 70.4 80.5 83.9 66.1 76.6 

12 0.3 280 54 106 58.3 80.4 83.8 87.7 68.8 83.9 
12 0.4 203 131 59 42.3 54.6 60.8 66.7 49.9 60.0 
16 0.3 274 60 114 57.1 80.8 82.0 86.6 67.3 83.6 
16 0.4 181 153 55 37.7 49.2 54.2 60.7 44.5 54.3 

ResNet101 

8 0.3 354 40 105 73.8 95.6 89.8 92.0 81.0 93.8 
8 0.4 335 59 88 69.8 88.1 85.0 87.8 76.7 87.9 

12 0.3 368 46 111 76.7 99.8 88.9 91.2 82.3 95.3 
12 0.4 302 92 64 62.9 76.3 76.6 79.9 69.1 78.0 
16 0.3 325 45 136 67.7 96.0 87.8 91.1 76.5 93.5 



Sensors 2022, 22, 4441 20 of 23 
 

 

16 0.4 268 126 79 55.8 72.3 68.0 73.4 61.3 72.8 

Table A5. Detections and refinement results of 4th temporal segment. 

4th Temporal Segment 
 GT = 468 Recall Precision F1-Score 

 W λ TP FP Miss 
%Age 
Before 

%Age 
After 

%Age 
Before 

%Age 
After 

%Age 
Before 

%Age 
After 

Inception 

8 0.3 304 24 64 65.0 78.6 92.7 93.9 76.4 85.6 
8 0.4 280 48 51 59.8 70.7 85.4 87.3 70.4 78.2 

12 0.3 296 32 67 63.2 77.6 90.2 91.9 74.4 84.1 
12 0.4 235 93 48 50.2 60.5 71.6 75.3 59.0 67.1 
16 0.3 293 35 72 62.6 78.0 89.3 91.3 73.6 84.1 
16 0.4 206 122 43 44.0 53.2 62.8 67.1 51.8 59.4 

ResNet50 

8 0.3 330 28 66 70.5 84.6 92.2 93.4 79.9 88.8 
8 0.4 284 74 50 60.7 71.4 79.3 81.9 68.8 76.3 

12 0.3 327 31 81 69.9 87.2 91.3 92.9 79.2 90.0 
12 0.4 247 111 50 52.8 63.5 69.0 72.8 59.8 67.8 
16 0.3 325 33 98 69.4 90.4 90.8 92.8 78.7 91.6 
16 0.4 232 126 49 49.6 60.0 64.8 69.0 56.2 64.2 

ResNet101 

8 0.3 388 42 50 82.9 93.6 90.2 91.3 86.4 92.4 
8 0.4 352 78 37 75.2 83.1 81.9 83.3 78.4 83.2 

12 0.3 387 43 57 82.7 94.9 90.0 91.2 86.2 93.0 
12 0.4 247 183 38 52.8 60.9 57.4 60.9 55.0 60.9 
16 0.3 380 50 61 81.2 94.2 88.4 89.8 84.6 92.0 
16 0.4 232 198 31 49.6 56.2 54.0 57.0 51.7 56.6 

Table A6. Detections and refinement results of 5th temporal segment. 

5th Temporal Segment 
 GT = 571 Recall Precision F1-Score 

 W λ TP FP Miss 
%Age 
Before 

%Age 
After 

%Age 
Before 

%Age 
After 

%Age 
Before 

%Age 
After 

Inception 

8 0.3 349 26 73 61.1 73.9 93.1 94.2 73.8 82.8 
8 0.4 265 110 58 46.4 56.6 70.7 74.6 56.0 64.3 

12 0.3 302 73 75 52.9 66.0 80.5 83.8 63.8 73.8 
12 0.4 219 156 42 38.4 45.7 58.4 62.6 46.3 52.8 
16 0.3 300 75 100 52.5 70.1 80.0 84.2 63.4 76.5 
16 0.4 199 176 51 34.9 43.8 53.1 58.7 42.1 50.2 

ResNet50 

8 0.3 390 27 67 68.3 80.0 93.5 94.4 78.9 86.6 
8 0.4 353 64 50 61.8 70.6 84.7 86.3 71.5 77.6 

12 0.3 360 57 56 63.0 72.9 86.3 87.9 72.9 79.7 
12 0.4 268 149 33 46.9 52.7 64.3 66.9 54.3 59.0 
16 0.3 358 59 85 62.7 77.6 85.9 88.2 72.5 82.6 
16 0.4 224 193 40 39.2 46.2 53.7 57.8 45.3 51.4 

ResNet101 

8 0.3 494 41 54 86.5 96.0 92.3 93.0 89.3 94.5 
8 0.4 436 99 28 76.4 81.3 81.5 82.4 78.8 81.8 

12 0.3 463 72 41 81.1 88.3 86.5 87.5 83.7 87.9 
12 0.4 309 226 21 54.1 57.8 57.8 59.4 55.9 58.6 
16 0.3 453 82 58 79.3 89.5 84.7 86.2 81.9 87.8 
16 0.4 258 277 16 45.2 48.0 48.2 49.7 46.7 48.8 
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