1,167 research outputs found

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Physical Representation-based Predicate Optimization for a Visual Analytics Database

    Full text link
    Querying the content of images, video, and other non-textual data sources requires expensive content extraction methods. Modern extraction techniques are based on deep convolutional neural networks (CNNs) and can classify objects within images with astounding accuracy. Unfortunately, these methods are slow: processing a single image can take about 10 milliseconds on modern GPU-based hardware. As massive video libraries become ubiquitous, running a content-based query over millions of video frames is prohibitive. One promising approach to reduce the runtime cost of queries of visual content is to use a hierarchical model, such as a cascade, where simple cases are handled by an inexpensive classifier. Prior work has sought to design cascades that optimize the computational cost of inference by, for example, using smaller CNNs. However, we observe that there are critical factors besides the inference time that dramatically impact the overall query time. Notably, by treating the physical representation of the input image as part of our query optimization---that is, by including image transforms, such as resolution scaling or color-depth reduction, within the cascade---we can optimize data handling costs and enable drastically more efficient classifier cascades. In this paper, we propose Tahoma, which generates and evaluates many potential classifier cascades that jointly optimize the CNN architecture and input data representation. Our experiments on a subset of ImageNet show that Tahoma's input transformations speed up cascades by up to 35 times. We also find up to a 98x speedup over the ResNet50 classifier with no loss in accuracy, and a 280x speedup if some accuracy is sacrificed.Comment: Camera-ready version of the paper submitted to ICDE 2019, In Proceedings of the 35th IEEE International Conference on Data Engineering (ICDE 2019

    A Survey on Soft Biometrics for Human Identification

    Get PDF
    The focus has been changed to multi-biometrics due to the security demands. The ancillary information extracted from primary biometric (face and body) traits such as facial measurements, gender, color of the skin, ethnicity, and height is called soft biometrics and can be integrated to improve the speed and overall system performance of a primary biometric system (e.g., fuse face with facial marks) or to generate human semantic interpretation description (qualitative) of a person and limit the search in the whole dataset when using gender and ethnicity (e.g., old African male with blue eyes) in a fusion framework. This chapter provides a holistic survey on soft biometrics that show major works while focusing on facial soft biometrics and discusses some of the features of extraction and classification techniques that have been proposed and show their strengths and limitations

    From 3D Point Clouds to Pose-Normalised Depth Maps

    Get PDF
    We consider the problem of generating either pairwise-aligned or pose-normalised depth maps from noisy 3D point clouds in a relatively unrestricted poses. Our system is deployed in a 3D face alignment application and consists of the following four stages: (i) data filtering, (ii) nose tip identification and sub-vertex localisation, (iii) computation of the (relative) face orientation, (iv) generation of either a pose aligned or a pose normalised depth map. We generate an implicit radial basis function (RBF) model of the facial surface and this is employed within all four stages of the process. For example, in stage (ii), construction of novel invariant features is based on sampling this RBF over a set of concentric spheres to give a spherically-sampled RBF (SSR) shape histogram. In stage (iii), a second novel descriptor, called an isoradius contour curvature signal, is defined, which allows rotational alignment to be determined using a simple process of 1D correlation. We test our system on both the University of York (UoY) 3D face dataset and the Face Recognition Grand Challenge (FRGC) 3D data. For the more challenging UoY data, our SSR descriptors significantly outperform three variants of spin images, successfully identifying nose vertices at a rate of 99.6%. Nose localisation performance on the higher quality FRGC data, which has only small pose variations, is 99.9%. Our best system successfully normalises the pose of 3D faces at rates of 99.1% (UoY data) and 99.6% (FRGC data)

    Iris Indexing and Ear Classification

    Get PDF
    To identify an individual using a biometric system, the input biometric data has to be typically compared against that of each and every identity in the existing database during the matching stage. The response time of the system increases with the increase in number of individuals (i.e., database size), which is not acceptable in real time monitoring or when working on large scale data. This thesis addresses the problem of reducing the number of database candidates to be considered during matching in the context of iris and ear recognition. In the case of iris, an indexing mechanism based on Burrows Wheeler Transform (BWT) is proposed. Experiments on the CASIA version 3 iris database show a significant reduction in both search time and search space, suggesting the potential of this scheme for indexing iris databases. The ear classification scheme proposed in the thesis is based on parameterizing the shape of the ear and assigning it to one of four classes: round, rectangle, oval and triangle. Experiments on the MAGNA database suggest the potential of this scheme for classifying ear databases

    Unsupervised video indexing on audiovisual characterization of persons

    Get PDF
    Cette thèse consiste à proposer une méthode de caractérisation non-supervisée des intervenants dans les documents audiovisuels, en exploitant des données liées à leur apparence physique et à leur voix. De manière générale, les méthodes d'identification automatique, que ce soit en vidéo ou en audio, nécessitent une quantité importante de connaissances a priori sur le contenu. Dans ce travail, le but est d'étudier les deux modes de façon corrélée et d'exploiter leur propriété respective de manière collaborative et robuste, afin de produire un résultat fiable aussi indépendant que possible de toute connaissance a priori. Plus particulièrement, nous avons étudié les caractéristiques du flux audio et nous avons proposé plusieurs méthodes pour la segmentation et le regroupement en locuteurs que nous avons évaluées dans le cadre d'une campagne d'évaluation. Ensuite, nous avons mené une étude approfondie sur les descripteurs visuels (visage, costume) qui nous ont servis à proposer de nouvelles approches pour la détection, le suivi et le regroupement des personnes. Enfin, le travail s'est focalisé sur la fusion des données audio et vidéo en proposant une approche basée sur le calcul d'une matrice de cooccurrence qui nous a permis d'établir une association entre l'index audio et l'index vidéo et d'effectuer leur correction. Nous pouvons ainsi produire un modèle audiovisuel dynamique des intervenants.This thesis consists to propose a method for an unsupervised characterization of persons within audiovisual documents, by exploring the data related for their physical appearance and their voice. From a general manner, the automatic recognition methods, either in video or audio, need a huge amount of a priori knowledge about their content. In this work, the goal is to study the two modes in a correlated way and to explore their properties in a collaborative and robust way, in order to produce a reliable result as independent as possible from any a priori knowledge. More particularly, we have studied the characteristics of the audio stream and we have proposed many methods for speaker segmentation and clustering and that we have evaluated in a french competition. Then, we have carried a deep study on visual descriptors (face, clothing) that helped us to propose novel approches for detecting, tracking, and clustering of people within the document. Finally, the work was focused on the audiovisual fusion by proposing a method based on computing the cooccurrence matrix that allowed us to establish an association between audio and video indexes, and to correct them. That will enable us to produce a dynamic audiovisual model for each speaker

    Face Detection from Images Using Support Vector Machine

    Get PDF
    Detection of patterns in images using classifiers is one of the most promising topics of research in the field of computer vision. A large number of practical applications for face detection exist and contemporary work even suggests that any specialized detectors can be approximated by using fast detection classifiers. In this project, I have developed an algorithm which will detect face from the input image with less false detection rate using combined effects of computer vision concepts. This algorithm utilizes the concept of recognizing skin color, detecting edges and extracting different features from face. The result is supported by the statistics obtained from calculating the parameters defining the parts of the face. The project also implements the highly powerful concept of Support Vector Machine that is used for the classification of images into face and non-face class. This classification is based on the training data set and indicators of luminance value, chrominance value, saturation value, elliptical value and nose, eye & mouth map values

    Dynamic texture recognition using time-causal and time-recursive spatio-temporal receptive fields

    Full text link
    This work presents a first evaluation of using spatio-temporal receptive fields from a recently proposed time-causal spatio-temporal scale-space framework as primitives for video analysis. We propose a new family of video descriptors based on regional statistics of spatio-temporal receptive field responses and evaluate this approach on the problem of dynamic texture recognition. Our approach generalises a previously used method, based on joint histograms of receptive field responses, from the spatial to the spatio-temporal domain and from object recognition to dynamic texture recognition. The time-recursive formulation enables computationally efficient time-causal recognition. The experimental evaluation demonstrates competitive performance compared to state-of-the-art. Especially, it is shown that binary versions of our dynamic texture descriptors achieve improved performance compared to a large range of similar methods using different primitives either handcrafted or learned from data. Further, our qualitative and quantitative investigation into parameter choices and the use of different sets of receptive fields highlights the robustness and flexibility of our approach. Together, these results support the descriptive power of this family of time-causal spatio-temporal receptive fields, validate our approach for dynamic texture recognition and point towards the possibility of designing a range of video analysis methods based on these new time-causal spatio-temporal primitives.Comment: 29 pages, 16 figure

    A systemic approach to automatic metadata extraction from multimedia content

    Get PDF
    There is a need for automatic processing and extracting of meaningful metadata from multimedia information, especially in the audiovisual industry. This higher level information is used in a variety of practices, such as enriching multimedia content with external links, clickable objects and useful related information in general. This paper presents a system for efficient multimedia content analysis and automatic annotation within a multimedia processing and publishing framework. This system is comprised of three modules: the first provides detection of faces and recognition of known persons; the second provides generic object detection, based on a deep convolutional neural network topology; the third provides automated location estimation and landmark recognition based on state-of-the-art technologies. The results are exported in meaningful metadata that can be utilized in various ways. The system has been successfully tested in the framework of the EC Horizon 2020 Mecanex project, targeting advertising and production markets
    • …
    corecore