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Abstract

Iris Indexing and Ear Classification

by

Ravindra B Gadde
Master of Science in Electrical Engineering

West Virginia University

Arun A. Ross, Ph.D., Chair

To identify an individual using a biometric system, the input biometric data has to be typically
compared against that of each and every identity in the existing database during the matching stage.
The response time of the system increases with the increase in number of individuals (i.e., database
size), which is not acceptable in real time monitoring or when working on large scale data. This
thesis addresses the problem of reducing the number of database candidates to be considered during
matching in the context of iris and ear recognition. In the case of iris, an indexing mechanism
based on Burrows Wheeler Transform (BWT) is proposed. Experiments on the CASIA version
3 iris database show a significant reduction in both search time and search space, suggesting the
potential of this scheme for indexing iris databases. The ear classification scheme proposed in the
thesis is based on parameterizing the shape of the ear and assigning it to one of four classes: round,
rectangle, oval and triangle. Experiments on the MAGNA database suggest the potential of this
scheme for classifying ear databases.
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Chapter 1

Introduction

1.1 Biometrics

Human recognition systems have gained great importance recently in a wide range of appli-

cations like access, control, criminal investigation and border security [5]. Traditionally these

applications are based on passwords or simple authentication tokens such as ID cards which are

susceptible to security threats especially when the passwords are weak (easily predictable), shared

with unauthorized users or when ID cards are lost [5].

Given the disadvantages associated with these systems, biometrics has become an area of great

research interest. The word biometrics originating from the Greek words [6] “bios” meaning life

and “metrics” meaning measure refers to recognition of individuals based on their physical or

behavioral traits such as fingerprints, iris, face, ear and voice. Recognition systems based on

biometrics have an edge over other traditional systems as they are based on ‘who you are’ rather

than ‘what you know or have’ (that includes passwords or I.D cards) [7].

Not all physical or biological traits may be used as biometric traits [5]. An ideal biometric trait

should have the following characteristics:

• Universality: for a trait to be considered as a biometric trait, all the individuals must possess

this trait.

• Distinctiveness: the trait should have sufficient variation across individuals.

• Permanence: the trait should be relatively invariant (with respect to the matching criterion)
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over a period of time.

• Collectability: the trait should be compatible enough to be quantitatively collected from

different individuals.

Some of the commonly used biometric traits that more or less satisfy some of these characteris-

tics include fingerprint, hand geometry, face, iris, voice, etc. Each biometrics has its own strengths

and limitations, and the choice of a biometric trait depends on the application [5]. Also, sometimes

a combination of these traits can be used to get a better performance [8].

1.2 Biometric Systems

Having identified the biometric trait for a specific application, a biometric based identification

system is then developed and usually operates in two distinct modes, enrollment and authentication

(verification/identification) modes [9]. In the enrollment mode, the biometrics traits are captured

from the subjects and relevant information is extracted from these traits by the feature extractor

and stored in a database. Each database entry is labeled with the identity of an individual. In

identification mode, the system extracts the features from the raw data of the subject and compares

it with the features in the database to determine the identity of the subject, while in verification the

features from the raw measurements of the subject are compared with the enrolled features of the

claimed identity.

Figure 1.1: Fingerprint scanner at the entrance of Universal studios (Image taken from entertain-
ment planet)
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As a general example, in entertainment parks like universal studios a single ticket could be

used as a multiple entry pass for a year. In such cases there is a possibility that the tickets could

be misused by sharing among the individuals . Universal studios thus started adapting finger-print

based biometric identification system. During the first visit, the biometric system works in the

enrollment mode, where fingerprint is collected from the user and stored it with an associated ID

(usually ticket). During the subsequent visits, the system operates in the authentication mode and

the access is provided based on the confidence score. The architecture of a simple biometric system

is indicated in Figure 1.2.

Figure 1.2: Block diagrams of enrollment, verification and identifications modes of a biometric
system

1.3 Iris as a biometric

Iris is a thin circular diaphragm, between the cornea and and the lens of the human eye sur-

rounding the pupil[10]. Human iris is usually expected to form during the third through the eight

month of gestation, with the pigmentation to continue for a year after the birth of the baby. An iris

as reported in literature usually has four layers [11]:

1. Posterior pigment epithelium
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2. Dilator pupillae

3. Stroma

4. Anterior border layer(visible layer)

The posterior pigment epithelium, being the closest layer to the pupil controls the amount of

light leaking through the iris. The iris controls the size of the pupil through the sphincter and

dilator muscles. Iris acts like a knob to control the pupil size. The pupil is contracted during bright

light by sphincter and enlarged during dark light by dilator muscles respectively. Literature reports

indicate that irides usually have an average diameter of around 12mm, with the size of the pupil

varying anywhere between 10 to 80 % of the diameter of the iris enlarging the size of pupil [12].

The stroma is a layer of loosely connected tissue containing collagen, melanocytes, mast cells and

macrophages. The anterior border layer is a dense collection of fibroblasts and melanocytes. It

is deficient in some areas, causing crypts and heavily pigmented in other areas causing nevi [11].

The anterior surface of the iris is further divided into the ciliary zone and the pupillary zone by a

thickened region called the collarette which forms the visible iris pattern. The color of the iris is

usually determined by each of these layers together with a combination of scattering effects and

pigmentation [11]. Some other factors that could play a role in determining the iris pattern include,

crypts, pigmented areas, moles, freckles etc.

Figure 1.3: Cross section of iris (adapted from 2005 Mission for Vision)

The rich structure, apparent stability and individuality of the iris structure account for its use

as a biometric. Some other factors, that contribute for iris to be a useful biometric include:
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• The iris is not easily affected by environmental changes.

• People with identical faces; even genetically identical twins have been observed to have

different irides.

• Daugman’s algorithm based commercially deployed iris recognition systems have exhibited

a false non-match rate of less than 1% [13].

• Having known that the iris lies within the eye, it is relatively difficult to alter the structure of

the iris.

Iris recognition systems are built to take the advantage of its rich texture for identification,

and the goal of such a system is to extract, represent and compare the iris texture. In an image

processing, pattern recognition point of view these steps can be defined as segmentation, feature

extraction and matching and are the building blocks of an iris recognition system. A typical iris

recognition system is as indicated in Figure 1.4.

Figure 1.4: Block diagram of iris recognition system

Images are acquired using near-infrared cameras in the 700-900nm wavelength. Use of NIR

wavelengths over visible wavelengths helps in illuminating the rich and complex features even for

dark-colored irides. The common stages during enrollment and authentication are image acqui-

sition, segmentation, normalization, enhancement and feature extraction. During enrollment, the
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features extracted are stored in the database, while during authentication they are used to match

against the stored templates and a decision is made accordingly.

The review of iris recognition techniques in literature suggests three major approaches to iris

segmentation and three categories of iris encoding techniques. The three mostly used segmenta-

tion techniques are 1) Integro-differential operator [14] 2) Hough transform [10] 3) Active shape

models [15]. The three basic categories for encoding the iris are [16] a) appearance based [17][18]

b) filter based [14][19] and c) feature based [20][21]. The features thus extracted are some times

encoded as a binary image (IrisCode) which is compared against another using hamming distance,

euclidean distance etc.

Besides having tremendous advantages over other biometrics, there are some shortcomings like

sensor cost, need for user cooperation, need for high quality images, susceptibility to spoofing, etc.

1.4 Ear as a biometric

The ear first appears during the fifth week of the embryonic life as in the shape of six individual

hillocks [22]. These hillocks progress and combine to form the structure of the ear. The hillocks for

a six week old embryo can be seen in Figure 1.5. Starting from the year 1882 [22], there have been

many theories, some them proposed by Davis [23], Wood [24], Streeter [22], etc., as how these six

hillocks progress and combine to form the ear. According to these theories, the uniqueness of the

ear across individuals is due to the difference in growth and alignment of these hillocks [25].

Figure 1.5: The six auricular hillocks in a six week old human embryo (taken from [1])

The commonly used terminology for the external ear can be seen in Figure 1.6. The most
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prominent rim on the ear is the helix. Parallel to it is another curved rim named antihelix. The

antihelix divides into two crura at the top, between which a triangular depression is formed, known

as triangular fossa. The space between the helix and antihelix is the scapha. The concha is a

deep cavity, which is surrounded by antihelix. The concha extends into the lower part as the

incisura. The incisura is surrounded by two bumps namely tragus and antitragus. As mentioned,

due to difference in growth and alignment of the hillocks, the structure of the ear can be used as a

biometric.

Figure 1.6: Ear Terminology

Till this point of time, there is no clear evidence that ears are unique, although no evidence to

the contrary has been presented. Alfred Iannarelli [2], a criminologist, photographed and examined

over 10,000 ears and demonstrated that they could be used for accurate human recognition. Ear,

as a biometric was first used by Alphonse Bertillon [26]. He used ear height, shape and degree

of adherence of the lobe and prominence and inclination of antitragus as some of the anthropo-

metric measurement’s to identify a person. However, it was Alfred Iannarelli [2], who developed

a practical recognition system based only on ear. Iannarelli’s classification scheme was based on

gender, race, anthropometric measurements, shape, size, and position of the ear for recognition.

After several years, in 1998, Burge and Burger automated the ear recognition system using Voronoi

diagrams [27]. A typical 2D ear recognition system can be seen in Figure 1.7.

The common stages during both enrollment and authentication are image acquisition, detec-
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Figure 1.7: Ear biometric system

tion, segmentation, enhancement and feature extraction. The review of various feature extraction

methods in the literature suggests two major approaches [28]: geometrical approach and global

approach. Geometrical approach consists of methods based on vornoi diagrams [27], geometrical

parameters method [29], etc., and global approach consists of methods based on force field trans-

formation [30], PCA [31], etc. Apart from using only 2D images, a multimodal technique based

on 2D and 3D ears have been researched [32] [33]. Also, based on video frames, a 3D ear model

was built using structure from motion(SFM) and shape from shading(SFS) techniques [34].

Even though there is no commercial ear recognition system, the ear has a good scope of be-

coming a reliable biometric because of it’s advantages like:

• Except the part of lobule, other structures in the external ear do not change much during

human life.

• Change in facial expressions, occlusions due to beard, and the presence of glasses does not

easily affect the performance of the ear recognition system.

• Twins who have identical faces, have different ears.

• Ear can be imaged from a distance without human cooperation.
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• Ear can be captured easily using an ordinary camera or it can be extracted from existing face

profile images, which makes the system cost low.

Besides these advantages, it does have some challenging problems like occlusion due to hair,

variations due to pose , lighting conditions, etc.

1.5 Problem statement

In most biometric identification systems, the input biometric data has to be compared against

that of every identity in the database in order to determine the identity of the input. A major

problem with this approach is the impact on response time which can increase significantly with

the size of the database. In certain applications such as real time monitoring, this delay may

not be acceptable. For rapid identity retrieval, the database can be divided into subsets using two

methods. The first method is classification, where the entire database is divided into a small number

of classes based on features extracted from the biometric trait. During authentication, the query

is assigned with one (or more) of these classes and the matching is done against only these subset

of images. Note that the classes need not be mutually exclusive. The second method is indexing,

where every entry in the database is assigned an index code based on which a small subset of

images in the database with similar index values as the query image are retrieved and matched.

The contribution of this thesis is in designing novel indexing technique for iris and classification

technique for ear.

1.6 Thesis structure

In chapter 2, indexing iris images using burrow wheeler transform is discussed and experimen-

tal on the CASIA version 3 iris database are reported. In chapter 3, classification of ear images

is discussed and experimental results on MAGNA database are reported. Finally, in chapter 4

contributions of this thesis are discussed along with the future work.
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Chapter 2

Indexing iris images

2.1 Introduction

Biometric identification is the process of associating an identity to the input biometric data by

comparing it against the enrolled identities in a database [5]. In many systems, this comparison

is undertaken in an exhaustive manner, i.e., the input data of an individual is compared against all

enrolled data in order to determine the identity of the individual. The false positive identification

rate as well as the matching time can increase with the size of database [35]. So, a procedure that

reduces the search space is necessary in order to increase the efficiency of the system.

In this chapter, we concern ourselves with the problem of iris recognition. Due to its rich tex-

ture and the observed statistical independence of the iris codes of different eyes (the iris code is

the feature template extracted from the iris), the iris is considered to be a very reliable biometric

modality for identification [14]. Thus, iris identification has been shown to be very effective in

large databases. However, the processing and matching of non-ideal irides can be computation-

ally expensive and, therefore, methods to speed up the identification process are necessary [36].

The search space of an identification operation can be reduced by rapidly choosing a subset of iris

images from the database before matching. This can be accomplished using two methods: classifi-

cation and indexing. In a classification scheme, the database is partitioned into a certain number of

classes based on the physical and structural properties of the iris. During identification, the input

image is assigned to one of the classes and is subsequently compared against those irides in the

database which are in the same class. Existing classification schemes are mainly based on color
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[37] or texture [38, 39, 40] details of the iris. The main limitation of the classification approach

is the potentially uneven distribution of the identities across the classes and the effect of noise in

determining the correct class.

In the indexing approach, each iris is assigned with an index value. However, the index values

of two iris images of the same individual may not be the same because the process of data acquisi-

tion and processing is subject to noise. Therefore, indexing systems retrieve those identities whose

indices are similar to the index value of the input data. The input image is matched only against

the retrieved identities thereby reducing the identification time and, potentially, the identification

error rate. Indexing of iris images is often based on iris codes [41, 42] or key features such as

SIFT [43]. Hao et al. [41] proposed a fast search algorithm for a large fuzzy database that stores

iris codes. Mehrotra et al. [43] used SIFT key points to obtain indices of the hash table during

indexing and retrieved a list of iris images from the hash table by casting votes. Work on indexing

of iris images by Mukherjee et al. [42] used both iris codes and features extracted from the iris

texture and demonstrated that about 80% of the input images could be correctly identified with a

low penetration rate of 8%.

In this work, we present a new method for indexing iris images based on the context clustering

property of the Burrows-Wheeler Transform (BWT). The next section provides a brief description

of the BWT. Section 2.3 then describes the general procedure for indexing iris images. Results are

presented in 2.4. Section 2.5 concludes the chapter.

2.2 The BWT and Iris Indexing

The Burrows-Wheeler Transform (BWT) [44] performs a permutation of the characters in a

sequence, such that characters in lexically similar contexts are in proximity. Given an input text

string T = t1, t2....tm over some finite alphabet Σ = α1, α2....α|Σ|, the forward BWT is done in

three steps:

1. Form m permutations of T by cyclic rotations of the characters in T . The permutations form

a m× u matrix M
′ , with each row in M

′ representing one permutation of T ;

2. Sort the rows of M ′ lexicographically to form another matrix M . M includes T as one of its
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rows;

3. Record L, the last column of the sorted permutation matrix M , and id, the row number for

the row in M that corresponds to the original sequence T .

As an example, suppose T=mississippi. Let F and L denote the array of first and last characters

in M respectively (see Table. 2.1). Then, F=iiiimppssss and L=pssmipissii. The output of the

transformation will be the pair: (L, id)=(pssmipissii, 5). Generally, the effect is that the contexts

that are similar in the input sequence T are brought closer together in the output sequence L.

(Notice how all the rows that started with the same context, i.e., same starting symbols, are grouped

together in L, e.g. the rows that start with issi, ssi, etc.). This similarity in nearby contexts is the

key to improved compression performance in BWT-based compression systems [44, 45]. The

BWT is reversible. It is quite striking that given only the (L, id) pair, the original sequence can be

recovered exactly. Adjeroh et al. presented a detailed treatment of the BWT in the recent book [45],

including its performance, connection with suffix trees and suffix arrays, and various applications.

In this work, our focus is on studying the potential of the sorted contexts of the BWT in indexing

iris images.

2.2.1 BWT Context Partitions

With the suffix sorting stage of the BWT, suffixes that are similar in the original sequence will

be placed together in the sorted matrix of rotations of the BWT. Thus the BWT output symbols

in the same region of the output array L are likely to have similar following suffixes, that is,

similar forward contexts in the original sequence. Therefore, the output stream can be partitioned

into different segments based on the similarity in the symbol contexts. For example, consider the

sequence T=mississippi used in Table 2.1, with L=pssmipissii. For order-1 context partitions, all

the symbols in the L array with the same starting symbol in the corresponding rows in the F array

will be in the same context. Thus, the first four symbols (p,s,s,m) in L will be in the same context

partition - the i-partition. This context clustering (or partitioning)property of the BWT can be

exploited this in indexing iris images.

Consider the iris image after preprocessing to remove the effect of, say, illumination and noise

in the image. Suppose we can locate patches in the iris image that are similar in their textural
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Table 2.1: BWT forward transformation for T = mississippi. M ′ is the matrix of cyclic rotations.
M is the matrix after sorting. * shows the row in M corresponding to the original sequence.

M
′

M (F ) (L)

mississippi imississipp i p

ississippim ippimississ i s

ssissippimi issippimiss i s

sissippimis ississippim i m

issippimiss mississippi m i*

ssippimissi pimississip p p

sippimissis ppimississi p i

ippimississ sippimissis s s

ppimississi sissippimis s s

pimississip ssippimissi s i

imississipp ssissippimi s i

characteristics and that occur a certain number of times in the iris [42, 46]. We speculate that

the geometric relation between the positions of occurrence of the patches in the iris image along

with the specific pattern within these patches can form the basis for constructing an effective index

for the iris images. The key challenge is to develop a fast method for determining such repeated

patches and for locating the positions of occurrence of such patches on the iris image. This can be

viewed as a pattern matching problem, which is a major application of the BWT [45]. In this work,

we use the BWT as the basis for identifying the repeated patches and their positions of occurrence

in the iris image.

2.3 Proposed Approach

The iris exhibits a very rich texture due to the numerous anatomical entities on its stroma. The

texture in an iris is believed to be relatively stable (a claim that has been challenged in the recent

literature) and have been observed to vary in its intricate detail from one eye to another [47]. This

facilitates the design of an identification system based on this texture. Apart from recognition, the
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iris texture can also be used for indexing. In this section, we design an indexing scheme based on

the distribution of the patterns formed because of the texture.

A classical iris recognition system has an image acquisition module, an iris localization or

segmentation module, a normalization module, an encoding module and a matching module. The

acquisition module obtains an image of the iris in the near-infrared (NIR) spectrum. During seg-

mentation, the iris is localized and isolated from the sclera, pupil, eyelids and eyelashes. In the

normalization module, the segmented iris is unwrapped and converted from the cartesian domain

into a doubly dimensionless (polar-like) domain resulting in a rectangular entity that is subjected

to subsequent processing. Normalization is performed using Daugman’s rubber sheet model [47].

Fig. 2.1(a) shows an example of a normalized iris image.

(a)

(b)

(c)

Figure 2.1: (a) Example of a normalized iris image. (b) Normalized iris image after filtering. (c)
Normalized binary iris image

In the proposed algorithm, the normalized gray scale iris image is first converted to a binary
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image. Next, a certain horizontal n-bit pattern is chosen and the locations of these patterns are

found in the iris image. Then, the normalized iris image is divided into vertical segments and,

based on the maximum occurrence of the n-bit pattern among these segments, the iris image is

assigned an index value based on the segment number.

2.3.1 Pre-Processing

In cases where thresholded images are used, changes in illumination can have a significant

impact on the results. Thus, a pre-processing technique is used to mitigate this problem.

Illumination variation

The iris patterns are relatively sensitive to illumination variations, especially when dealing

with binary images. To overcome this limitation, we adapt the color ratio model [48] to generate

illumination-invariant versions of the iris images.

Assume that the illumination variation in a scene is such that the illumination is locally constant

for a given spatial position in the image. Then, the average intensity value over a small region

should not change much within the region. Thus, the ratio of a pixel value in a region to the mean

intensity value over the region or window (for instance, using a small window of size W ) should

be close to one.

Let h(x, y) be a window of size WxW around the pixel I(x, y). The color ratio1 is defined as

follows:

R(x, y) =
I(x, y)

µ(h(x, y))
, (2.1)

where µ(h(x, y)) is the mean pixel intensity in the window.

However, when there is a definite boundary (or edge variations), the ratio will move away from

1. Thus, essentially, the ratio encodes the boundary variations (or edge variations) in the image.

Because such boundaries are invariant to illumination changes, we expect a robust result against

potential illumination variations in the iris image. Fig. 2.1(b) shows the normalized iris image of

Fig. 2.1(a) after filtering using the color ratio model.

1Although the term “color” is used for historical purposes, the measure in this work is used on grayscale images
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Conversion to binary image

To convert the gray scale image to binary image the cumulative distribution function of the

normalized iris image is calculated. Based on the cumulative distribution function, a threshold is

determined and values of pixels greater than this threshold are considered as ‘1’ and those less than

this threshold are considered as ‘0’.

Consider a discrete gray scale image J(x) and let ti be the number of occurrences of gray level

i. The probability of occurrence of a pixel of level i in the image is given by

px(i) = p(J(x) = i) =
ti
t

0 ≤ i < L, (2.2)

where L is the total number of gray levels in the image and t is the total number of pixels in

the image. Here, px(i) represents the normalized histogram of pixel value i.

The cumulative distribution function corresponding to px is given by

Fx(i) =
i∑

j=0

px(j). (2.3)

Now consider, the value of i where Fx(i) is 1
2
. The values of pixels above i are considered as

‘0’ and below i are considered as ‘1’. The result of this procedure on the example iris image of

Fig. 2.1(b) is shown in Fig. 2.1(c).

2.3.2 Pattern Finding

After obtaining the binary image, we identify a horizontal n-bit binary pattern which is con-

sistent among all the images. This can be done by choosing the pattern with the least value of

coefficient of variation. The coefficient of variation (CV) for a particular n-bit pattern is simply

the ratio of the mean and standard deviation of the number of occurrences of that pattern across

all the training images. The coefficient of variation for each of the 2n patterns has to be calculated

using the same training images and then a pattern (say Pi) with the least CV has to be chosen.

Thus, the key problem is to count the number of occurrence of each n-bit horizontal pattern in

the normalized binary image and to locate the positions of each occurrence. This is essentially a

problem of pattern matching, which is performed using the BWT.
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First, the 2D binary image is converted into a 1D sequence by simply concatenating the rows,

from the first row to the last. Each row is terminated using a special character, such that the search

for patterns will not report patterns that span two different rows. Then, the 1D sequences from the

individual iris images in the database are further concatenated to form one long sequence, T . A

special end of file marker is used to indicate the end of each iris image. The BWT is then applied

to T , the database sequence, producing the L array, and an index id as the output. Pattern matching

is then performed on the database via the BWT output pair (L, id). Notice that since the size of

each iris image is known, and the rows are of fixed length, a position in T uniquely determines the

corresponding image and the (x, y) position in that image.

Consider an n-bit binary pattern, P . To search for P in T (via L), we use an auxiliary mapping

array, W defined as follows:

∀i : 1 ≤ i ≤ n, T [i] = L[W i[id]]

where W 1[x] = x, W i+1[x] = W [W i[x]], and id is the position in F of the first character of the

text.

W provides a one-to-one mapping between the BWT F and L arrays, viz., F [i] = L[W [i]].

Using the earlier example with mississippi, we will have W = [5, 7, 10, 11, 4, 1, 6, 2, 3, 8, 9].

Construction of W is performed in linear time with respect to the length of T .

The sorted list of suffixes of T are available from M , the sorted matrix of rotations. If a pattern

appears in the database T , it must appear at the start of one or more rows in M . Given that the

rows in M are sorted, all occurrences of such a pattern will be located next to each other in M . In

practice, we access M via F , the array of first characters. F in turn is accessed from L (the BWT

output) via the mapping array W . Then, the search is performed using a modified binary search

algorithm [49, 45], using L, W , and id. The procedure below shows the comparison function used

by the modified binary search algorithm, where i denotes the row in the rotation matrix M being

compared to the pattern. Let s be the string representation of the row. The function will return 0 if

P is a prefix of s, < 0 if P < s, and > 0 if P > s

Using the above, each valid n-bit pattern is searched in T (the database).For each pattern, the

occurrence counts and the locations of the pattern in T , where each occurred are reported. Using
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Algorithm 1. String comparison function for Binary Search

BINARY-SEARCH-STRCMP(P,W,L, i)

1 m← LENGTH(P ); j ← 1; i← W [i];

2 while m > 0 and L[i] = P [j] do

3 i← W [i]; m← m− 1; j ← j + 1;

4 end while

5 if m = 0 then return 0;

6 else return P [j]− L[i];

7 end if

the least coefficient of variation in their occurrence counts over all the images in the database, the

stable patterns are determined. In this work, two patterns with the least values for CV are selected

as the basis of our index and denoted P1 and P2. Fig. 2.2 shows the positions of occurences of

pattern P1 in the sample binary image used in the running example.

Figure 2.2: Positions of pattern P1 on the normalized binary image.

2.3.3 Indexing

The indexing scheme has two stages: i) Training and ii) Testing.

i) Training is an offline process, in which every training image, x, in the database is assigned a

particular index Ix.

ii) Testing is an online process, in which the probe image, y, is assigned a particular index Iy.

The probe image is then matched only with those set of images in the database with Iy as their

index value, along with those with indices similar to Iy.

In this work, the indexing scheme is based on the count of occurrence of the n-bit binary

patterns (say P1) in the normalized binary iris image (x). Thus, during training, all the positions

where P1 occurred in image x are identified. The image is divided into K segments along the
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vertical (i.e., radial) direction. The iris image is then assigned an index with segment number

Ix, where the segment Ix has the maximum number of occurrences for pattern P1. The division

of the iris image into segments in the radial direction compensates for the affine transformations

due to changes in viewing angle. During testing, a procedure similar to that used for training

is followed. However, in this case instead of assigning a single index corresponding to a single

segment number Ix, the image is assigned four indices which correspond to the top 4 segments

with maximum counts of occurrence of pattern P1. Now, the test image (probe) is compared only

against those images in the database that have these 4 indices as their index, starting with the first

index. Fig. 2.3 shows the basic indexing scheme described above.

Figure 2.3: The proposed indexing scheme. The vertical regions correspond to the segments num-
bered 1 to K.

2.4 Results

The CASIA version 3 iris image database was used in the experimental evaluation of the iris

indexing technique proposed here. The images in this database were segmented and normalized

using the algorithms proposed by Shah and Ross [50]. In this work, the left normalized iris images

are used which contain images of resolution 360 x 64 pixels pertaining to 249 subjects. In some

cases, the normalized images of a subject were not successfully generated by the algorithm. Only

those users with at least two normalized sample images per eye were considered in this work (a

total of 189 users). The images for each subject were equally divided into training and test sets if

the number of images for that subject was even. The training set had an extra image from a subject
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if the number of images for that subject was odd.

Experiments are conducted using 4-bit and 8-bit binary patterns. The two patterns P1, P2 with

the least values of coefficient of variation are chosen (P1 has the overall least value) as per our

discussion in section 2.3.2. We studied the performance of various window sizes in the color-ratio

model, viz., W=3, 5, 7 and for different number of segments, viz., K= 4, 6, 8, 10,1 2. The hit

rate (Rh) and penetration rate (Rp) for different combinations of W and K were noted to study

the performance of the technique. In order to find the optimal trade-off between hit rate(Rh) and

penetration rate (Rp), we defined a new variable γ, which combines both the hit rate and penetration

rate:

γ =
√
(Rh) ∗ (1−Rp). (2.4)

Experiment 1: The performance of the indexing scheme for 4-bit patterns P1 and P2 can be

seen in tables 2.2 and 2.3, respectively. For pattern P1, the best value of γ = 90.90% occurred at a

hit rate of 99.83% and a penetration rate of 17.23% with W=3 and K=10. For pattern P2, the best

value of γ = 84.52% occurred at a hit rate of 99.50% and a penetration rate of 28.19% with W=3

and K=8.

Table 2.2: Performance of the proposed indexing scheme for a 4-bit pattern (P1)

W=3 W=5 W=7

Rh Rp Rh Rp Rh Rp

K=4 100 23.51 100 26.24 100 48.96

K=6 100 21.77 100 36.44 100 57.82

K=8 99.83 21.83 100 39.18 100 59.56

K=10 99.83 17.23 100 26.80 100 33.62

K=12 99.17 18.61 100.0 28.52 100.0 42.16

Experiment 2: Similar experiments were conducted for 8-bit patterns with varying W and K.

The performance of the indexing scheme with varying window sizes W and for different values of

K for patterns P1 and P2 can be seen in tables 2.4 and 2.5, respectively. For pattern P1, the best

value of γ = 89.30% occurred at a a hit rate of 98.5% and a penetration rate of 19.03% with W=3

and K=10. For pattern P2, the best value of γ = 89.09% occurred at a hit rate of 96.68% and a
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Table 2.3: Performance of the proposed indexing scheme for a 4-bit pattern (P2)

W=3 W=5 W=7

Rh Rp Rh Rp Rh Rp

K=4 100 29.38 100 39.58 100 48.44

K=6 99.50 28.19 100 48.39 100 51.50

K=8 100 32.30 100 55.26 100 55.84

K=10 99.66 39.55 100 56.84 100 59.26

K=12 99.83 38.82 100.0 58.44 100.0 59.31

penetration rate of 17.90% with W=3 and K=10.

Experiment 3: In order to test the robustness of the algorithm, noise was added to the binary

images by randomly inverting 50% of the bits for the images in the test set and repeating the

aforementioned experiments. The performance of the indexing scheme with varying window sizes

W and number of segments K for patterns P1 and P2 are shown in tables 2.6,2.7,2.8 and 2.9.

Table 2.4: Performance of the proposed indexing scheme for an 8-bit pattern (P1)

W=3 W=5 W=7

Rh Rp Rh Rp Rh Rp

K=4 100 23.26 100 23.96 100 25.43

K=6 99.66 20.99 99.50 24.77 99.83 25.65

K=8 99 19.54 99.33 23.34 97.68 24.05

K=10 98.50 19.03 96.19 21.88 95.19 22.89

K=12 96.52 19.66 95.69 20.04 93.54 23.62

From the above experiments, we observe that the hit rates and penetration rates using 4-bit and

8-bit patterns are affected when the binary images are very noisy. Currently, we are looking at

ways to impart noise resilience to the index patterns.

2.4.1 Experiments on IrisCodes

Similar experiments were conducted for 4-bit pattern with varying W on IrisCodes. Before

discussing the performance of the proposed indexing scheme on IrisCodes, a brief summary on

how the IrisCodes are generated is discussed below.
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Table 2.5: Performance of the proposed indexing scheme for an 8-bit pattern (P2)

W=3 W=5 W=7

Rh Rp Rh Rp Rh Rp

K=4 100 24.28 100 57.73 100 59.65

K=6 99 22.49 100 47.16 100 55.95

K=8 98.01 21.17 99.83 40 100 48.54

K=10 96.68 17.90 100 38.79 100 45.28

K=12 100 18.52 100 31.36 100 33.84

Table 2.6: Noisy test data: Performance of the proposed indexing scheme for a 4-bit pattern (P1)

W=3 W=5 W=7

Rh Rp Rh Rp Rh Rp

K=4 100 32.01 100 43.08 100 42.56

K=6 99 27.13 88.24 38.19 85.76 41.40

K=8 97.51 29.20 75.99 36.32 77.64 34.03

K=10 89.23 26.66 65.39 30.41 69.70 29.71

K=12 88.74 25.29 61.09 27.87 58.60 29.13

IrisCode Generation:

To match two normalized irides, it is desired to obtain numerical features from each normal-

ized iris image to facilitate the comparison. The process of extracting numerical feature set from

a normalized iris image is known as iris encoding. The encoding mechanism employed in our

experiments uses quadrature 2D Gabor wavelets to extract the local phasor information of the iris

structure. This is performed by convolving 2D Gabor filter with an normalized iris image. Let the

2D Gabor wavelet over image domain (x, y) be given as

h{Re,Im} = sgn{Re,Im}

∫
ρ

∫
ϕ

I(ρ, ϕ)e−iω(θ0−ϕ).e−(r0−ρ)2/α2

e−(θ0−ϕ)2/β2

ρdρdϕ (2.5)

The result obtained through convolution with Gabor wavelet is complex, which consists of

both real and imaginary parts. These components were separated and phase quantization was

performed. Each phasor response is then encoded using two bits of information based on the

quadrant of the complex plane in which it lies. The resulting 2 bit code is referred to as IrisCode.
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Table 2.7: Noisy test data: Performance of the proposed indexing scheme for a 4-bit pattern (P2)

W=3 W=5 W=7

Rh Rp Rh Rp Rh Rp

K=4 100 34.99 100 44.24 100 55.23

K=6 92.54 28.51 99 48.36 99..66 55.33

K=8 77.15 23.51 96.19 51.92 99.50 55.25

K=10 70.19 19.37 97.68 54.4 99.17 56.36

K=12 61.09 16.48 97.68 56.45 99.17 56.54

Table 2.8: Noisy test data: Performance of the proposed indexing scheme for an 8-bit pattern (P1)

W=3 W=5 W=7

Rh Rp Rh Rp Rh Rp

K=4 100 27.59 100 23.28 100 24.93

K=6 98.34 24.16 99.33 22.38 100 22.62

K=8 96.19 21.28 98.67 21.20 98.67 19.40

K=10 92.21 20.70 96.68 19.09 97.35 17.35

K=12 85.43 19.80 93.70 17.11 96.02 16.81

Table 2.9: Noisy test data: Performance of the proposed indexing scheme for an 8-bit pattern (P2)

W=3 W=5 W=7

Rh Rp Rh Rp Rh Rp

K=4 100 27.56 100 35.02 100 41.36

K=6 98.50 20.12 93.70 30.25 90.23 35.26

K=8 96.68 21.13 85.59 28.24 79.47 32.29

K=10 95.19 18.42 84.27 23.78 71.35 27.81

K=12 93.04 16.26 79.13 22.63 70.69 24.23

Two such IrisCodes are compared using hamming distance which is an important factor in iris

matching. Hamming distance computes the number of corresponding bits that are different across

the iris codes. It is expected that the hamming distance between two iris codes of same iris will be

less than the hamming distance between two iris codes of different irides. It is empirically proven

that Hamming Distance of 0.3 (70% overlap) is sufficient to claim the identity of an individual.
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Performance of proposed indexing scheme on IrisCodes:

The IrisCodes are generated from normalized images. The size of each of the IrisCode is 720

× 64 pixels, as each pixel is represented by two bits. The performance of the proposed indexing

scheme with different values of K for pattern P1 can be seen in table 2.10.

Table 2.10: Performance of the proposed indexing scheme for a 4-bit pattern (P1) on IrisCodes

Rh Rp

K=8 99.66 75.36

K=12 99.17 64.99

K=16 98.01 51.08

K=20 98.01 38.28

K=24 96.52 37.34

For pattern P1, the best value of γ = 77.6% occurred at a a hit rate of 98.01% and a penetration

rate of 38.28% with K=20. This suggests that the proposed indexing scheme performs better on

binary pattern than IrisCodes.

2.5 Conclusion

In this chapter the problem of iris indexing had been addressed. The proposed algorithm is a

fast searching technique that uses Burrows-Wheeler Transform to perform iris indexing. Compared

to the previous work by Mukherjee et al. [42] (with hit rate = 80% and penetration rate = 8%, with

γ=85.79%), this method showed significant improvement in performance with a 99.83% hit rate at

a 17.23% penetration rate, with γ=90.90%. Further work is required to reduce the penetration rate,

for instance, by using an alternate searching mechanism which combines different index patterns

(P1, P2) of the same length. Future work would involve designing appropriate data structures to

organize the indices generated for the iris images. This can potentially lead to an efficient retrieval

strategy for very large databases.
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Chapter 3

Classification of ear images

3.1 Introduction

As stated earlier, the problem of automatic identification involves comparing a query image, q,

with the gallery entries, P = {p1, p2, p3, ....pn}, in order to determine its identity. As the number

of entries n in the database increases the number of comparisons increase and this has a significant

impact on the system efficiency. A classification scheme partitions the given database into multiple

classes resulting in a corresponding reduction in the number of comparisons in order to boost real-

time performance. For example, suppose that there are N classes, 6N number of enrolled images

and a classification scheme which divides these images equally among these N classes. Whenever

a query image comes in, the same classification scheme assigns a class to the query image and

the query is compared only against those images in the database that have the same class. In

this example, any query is likely to be searched only among 6 images instead of 6N images, thus

reducing the time complexity. An illustration of this classification scheme is shown in Figure 3.1.

Ear is an emerging biometric which has rich and stable structure and which can potentially

be implemented reliably and cost efficiently. Currently, there are no commercially available ear

recognition systems. However, there is a lot of potential for using ear in conjunction with the face

for authentication or classification purposes. Ear in classification mode can be used to reduce the

search space. Apart, in the classification mode, the ear can also be used as a soft biometric to

classify side profile facial images. Furthermore, an ear classification system with classes defined

by visual words can be even used in criminology for human identification.
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Figure 3.1: A typical classification scheme.

3.2 History of ear classification

Iannarelli was the pioneer in developing a human ear identification system. He developed

this system as an alternative to fingerprint identification [2]. The ear identification system was

primarily designed to identify a the newborn infant and to identify a child or an adult who cannot

be identified by other means. The photograph of the ear was taken at the time of the birth and then

after nine months. The photograph along with certain information were used to fill a standard ear

identification card of 8′′x8′′ as shown in Figure 3.2. Some of the information on the card was used

to file the card systematically for quick access during identification.

Figure 3.2: Ear identification card (front view) used by Iannarelli (Image taken from [2]).
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The card consists of eight sections, which were filled with applicable information. The sections

of the card are:

1. The identification number, ear photograph and personal history section.

2. First and second ear classification section

3. History of individual

4. Front and right profile images

5. Remarks

6. Criminal history

7. Finger print classification

8. Rolled right thumb impression

The ear identification card contained two levels of classification . The first level of classification

was based on sex, race and anthropometric measurements of the ear (see Figure 3.3). Based on

sex, one of the two classes, M for Male or F for Female, were assigned. Based on race, one of

the four classes W for White, B for Black, A for Asian, O for Other were assigned. Later, the

anthropometric measurements between certain points on human ear were taken manually.

Figure 3.3: Level-1 classification.

The second level of classification was based on shape, size, position and peculiarities of the

ear. Based on shape, ear was classified into one of round, oval, triangular or rectangular classes as

shown in Figure 3.4; Based on size, ear was classified as being small, large or medium.

Based on position, ear was classified into one of three categories, normal, high or low set. If

the position of the eyebrow and position of the helix are at the same level, the ear was classified as



Ravindra B. Gadde Chapter 3. Classification of ear images 28

Figure 3.4: Ear classification scheme based on shape used by Iannarelli (Image taken from [2])

normal set. If the upper helix rim is above the eyebrow level, it was classified as high set. If the

upper helix rim is below the eyebrow level, it was classified as low set as shown in Figure 3.5.

Figure 3.5: Classification based on position (a)normal set, (b)high set, (c)low set) used by
Iannarelli

Apart from the above classification methods, the ear was further characterized using freckles,

moles, scars and various distinctive distortions on the ear and it’s principal components. The first

and second levels of classification were used for filing the card effectively for a quick access while
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the anthropometric measurements along with the first, second level classifications and peculiarities

were used for identification purposes.

3.2.1 Limitations of Iannarelli system

In Iannarelli’s identification system the photographs were collected in a constrained way from

a constant distance. So, every image was registered in terms of scale and orientation. Added to

this is the fact that, the first and second levels of classification were based on human observations.

However, in automated systems the ear images may not be collected in a constrained manner and

one needs to automate the process of classification without any human intervention. To the best of

our knowledge, to date there is no such method which automates the classification scheme. In this

chapter, a new automatic classification scheme based on shape is proposed and evaluated.

3.3 Proposed approach

The structure of ear is not quite random as iris, but it has a definite shape and structure just like

the face does. Helix and lobule define the shape of the ear while antihelix, triangular fossa, scapha,

concha, incisura, tragus and antitragus define its structure. Even though shape and structure can be

used for designing a classification scheme, the shape-based classification scheme is expected to be

more efficient than structure based scheme because of the following reasons.

• The perceived structure of the ear is easily affected by variations in pose. The effect is

maximized, when the structure is completely occluded. Whereas in the case of shape, given

two different profile images of a person (e.g., different poses), the shape of one profile can

be used to mathematically model the shape of other profile image.

• The shape of the ear can be visually estimated by a human, even from a certain distance.

This enables us to use the shape-based classification scheme even in criminology.

Considering the advantages of shape-based classification scheme over structure-based scheme,

the focus of this chapter is mainly on automating shape-based classification similar to the one

proposed by Iannarelli. In the remaining sections, an automated classification scheme is proposed

and evaluated.
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3.3.1 Overview of ear classification system

The block diagram of a typical shape-based automatic ear classification system is shown in

Figure 3.6. It consists of five components:

1. Image acquisition: As the ear is part of a face, no separate system is required to acquire

ear images. The side profiles of the face images are sufficient for building a classification

system.

2. Ear detection: After acquiring the profile images, ear detection algorithm is used to locate

the ear.

3. Ear segmentation/localization: After detection, ear is segmented from other parts such as

hair, skin, ear rings, etc.

4. Shape parameter estimation: The segmented ear is modeled using parameters which defines

it’s shape.

5. Classification: Using the shape parameters, ear is assigned to one of the pre-defined classes.

Figure 3.6: Block diagram of the classification scheme.

Generally, ear detection and segmentation are combined and treated as a single component.

But, in this work, the two components are separated in order to prune the search space of the

ear in the image. The entire system is operated in two different modes (i) Enrollment mode,

(ii) Identification mode. During enrollment, the ear is assigned to a particular class and stored.

During identification, the input ear is assigned to a particular class and compared against the images

in the corresponding class. The important aspect to be considered while designing each component

of an ear classification system is that, it should be invariant to rotation, translation, and scale.
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3.4 Ear detection

The first step in an ear classification system is ear detection. A typical ear detection algo-

rithm locates the position of the ear in an image and represents it as a rectangular box. Based on

the level of human intervention, ear detection methods in 2D images can be classified into two

categories: (i) semi automatic (ii) automatic. Semi-automated methods require user to manually

anotate landmarks within an image. Use of semi-automated methods is likely to result in better

performance but they may not be useful if the goal is to build an automated system. However, Yan

and Bowyer [51] and Alvarez et al.

[4] employed semi-automatic detection methods in their recognition systems. Their main aim was

to evaluate the performance of ear identification based on a set of defined features rather than ear

detection.

The first completely automated system was developed by Burge and Burger [52] using de-

formable contours. The existing techniques for ear detection can be broadly categorized into 4

types: contour-based, feature-based, template-based and learning-based. Techniques proposed by

Burge and Burger [52], Ansari and Gupta [53], Attarchi et al. [54], etc. extract contour of the ear

for ear detection/localization, which can be considered as contour-based ear detection techniques.

Most of the contour-based techniques work well on images that have good lighting condition, but

they may fail when encountering poor lighting conditions.

Some techniques use features like skin color [55], features from force field transformation [30],

features from ray transformation [56], etc. to detect ear. These techniques rely on specific image

features to detect ear and can be considered as feature-based ear detection techniques.

In template-based techniques, a pre-defined template is used to find a match in the given image.

Sana et al. [57], Abdel-Mottaleb and Zhou [58], Prakash et al. [59], Yuizono et al. [60], etc.

considered template-based approach to segment the ear. In real time operations, their predefined

template may not handle variations in pose, size and shape of the ear itself.

Learning-based techniques use training data to learn a strong classifier which can distinguish

ear images from other images. Islam et al. [61] and Abaza et al. [62] used boosting techniques

to train a strong classifier with Haar-like features. Learning-based schemes are computationally

expensive during training but efficient during testing.
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Each method listed above has a drawback either in the form of computational cost or in

terms of performance due to variations that occur when operated in an unconstrained environ-

ment. When designing a real time ear detection algorithm, one needs to consider all variations

including pose, lighting and occlusion. This can possibly be achieved by adapting learning-based

schemes. Learning-based schemes has the ability to handle noise and objects with large variations.

The training data contains both positive (object) and negative (non-object) samples which helps in

training measurement models that are robust to background noise.

Considering the advantages of learning-based schemes, ear detection is performed using learning-

based scheme. The scheme proposed by Islam et al. [61] uses the classical Viol-Jones AdaBoost

algorithm [63], which may take quite a long time to train the classifier for ear detection. In order

to avoid long training times, Abaza et al. [62] adapted the Forward Feature Selection (FFS) algo-

rithm proposed by Wu et al. [3], which reduces the training times significantly. Ear detection in

our experiments is achieved by training the classifier using FFS, similar to Abaza et al. [62].

3.4.1 AdaBoost

Conventional methods uses features like shape, size, structure or keypoints to detect an object

within the image. Instead of explicitly extracting features, Viola and Jones [63] used a set of pre-

defined features to define an object. The features used were based on simple Haar like filters which

can easily be computed using integral image. Figure 3.7 shows the type of rectangular filters used

for detection. The value of a two-rectangle feature is the difference between the sum of the pixels

within two rectangular regions. The regions have the same size and shape and are horizontally or

vertically adjacent.

A three-rectangle filter computes the sum within two outside rectangles subtracted from the

sum in a center rectangle. Finally a four-rectangle filter computes the difference between diagonal

pairs of rectangles. For a given 24x24 window, around 45,396 features can be calculated using

two, three and four rectangular filters. Because of the high computational complexity, not all the

features are used to represent an object. An object can be represented with only a small number

of features which are combined to an efficient classifier. In order to pick the best features to

form a strong classifier, AdaBoost is used. Adaboost performs both selection of features (i.e., the
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Figure 3.7: Figure showing simple Haar features. A)Two rectangular B)Three rectangular C)Four
rectangular features .

filters) and training of classifier simultaneously. For a given set of N training samples (xi, yi)

containing both positive and negative samples and simple rectangular filters hj , a final classifier

H is built using AdaBoost algorithm which is summarized in Algorithm 2. For every iteration ‘t’,

among all the available simple features, a feature (which acts as a weak classifier) with the smallest

weighted error with respect to Dt is chosen. After choosing the weak classifier, Dt is updated. This

procedure is repeated T number of times and the final classifier is formed.

The final strong classifier is a combination of T weak classifiers which distinguishes positive

samples (ear) from negative samples (non-ear). Testing is done by scanning this final classifier

across the image at multiple scales and locations. Scaling is achieved by scaling the filters, rather

than scaling the image (Scaling of features by a factor of 1.25 times is equivalent to scaling down

of image by a factor of 0.8). The detector is scanned across each location by shifting the window

by a displacement δ. At the end, all the detected regions are post-processed in order to remove

repetitive detections.

In real time, not all the combination of T classifiers are required to reject a negative sample.

Sometimes, even a combination of few simple features are enough for this purpose. By taking

advantage of this, Viola-Jones proposed a cascade approach which significantly reduces the com-

putation time and increases the efficiency of the classifier during testing.
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Algorithm 2.AdaBoost

Input: A set of training samples (xi, yi), xi ∈ χ, yi ∈ {−1, 1}, i = 1, ...., N and hj, j = 1, ....,M

Output: A strong classifier H(x), which is a combination of simple classifiers hj

1 Initialize weights(Di
1 = 1/N ) for each training sample. Di

1 = 1/N , ∀i ;

2 for t = 1 to T do

3 Find a classifier ht with the lowest error, εt ;

4 Compute voting strength αt of ht using εt;

5 Update weights of the samples, Di
t, which are calculated from εt;

6 Normalize weights;

7 end for

Output:

H(x) =

{
1 if

∑T
t=1 αtht(x) ≥ 1/2

∑T
t=1 αt;

0 otherwise

3.4.2 Cascade of classifiers

In the cascade approach, a series of boosted classifiers, similar to a degenerate decision tree,

were constructed which accepts almost all positives and rejects many negatives. In a cascade, the

classifier at each stage is trained by AdaBoost in such a way that simple classifiers, with less num-

ber of features, are used in the early stages to reject the majority of sub-windows before subjecting

them to complex classifiers having more number of features. Rejecting most of the negative sam-

ples in the early stages reduces the number of computations and increases the performance of the

system. The thresholds are set such that each stage yields higher detection rates and, hence, con-

siderable false positive rates (i.e., a non-ear entity is incorrectly classified as an ear). Generally, the

threshold in each stage is adjusted to detect 100% of the objects with a false positive rate of 50%.

This will ensure that all the positive samples are detected, while rejecting most of the negative

samples in initial stages. A typical cascade configuration can be seen in Figure 3.8.

The cascade approach helps in reducing the time during testing. However, the time taken to

train the strong classifier H , is still quite long. A typical implementation of Viola-Jones AdaBoost

algorithm may take a few days to completely build a cascade of strong classifiers. In order to avoid
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Figure 3.8: Figure showing cascade of classifiers.

the long training times, Wu et al. [3] proposed a Forward Feature selection (FFS) algorithm.

3.4.3 Forward Feature Selection

In the Viola-Jones approach, AdaBoost picks the rectangular filters with the smallest weighted

error with respect to the weight distribution Dt. In every iteration t the boosting process adds a

rectangular filter to the final classifier. After T iterations, the final classifier is formed from the

combination of selected rectangular filters. In this process, Dt is updated at every iteration, which

in turn requires that the weak classifiers are re-trained at every round, as indicated in Figure 3.9(a).

For an object detection application to be robust, the number of training samples and the number

of features to be used are in the order of thousands. Re-training of a large number of rectangular

features takes more time and this is the most time consuming component in the algorithm. In order

to avoid re-training, Wu et al. [3] proposed a greedy feature selection method based on Forward

Feature Selection (FFS). The key intuition in FFS is precomputing, where the results of previously

trained weak classifiers are stored and re-used. This restricts the training of the weak classifiers to

only once. This intuition can be clearly seen in Figure 3.9. The time consuming component, which
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is the training of all weak classifiers, is moved out of the loop in FFS.

For a given N training samples (xi, yi) containing both positive and negative samples, and

simple rectangular filters hj , a final classifier H is built using Forward Feature Selection algorithm

which is summarized in Algorithm 3. In FFS, there is no distribution Dt maintained for each

training sample and each sample is treated equally in every iteration. Instead, FFS maintains a

storage table V which stores classification results of each weak classifier (Line 2 of Algorithm 3).

The storage table V is updated only once and contains binary values (0 for correct classification

and 1 for miss classification). Using V , v in Line 6 is updated after every iteration. v, which

contains value ranging from 0 to t, acts similar to Dt in the AdaBoost and helps in determining the

best weak classifier hk in Line 5. FFS acts as a faster version of AdaBoost when values in V are

initialized with original response of weak classifiers hj(x) rather than the binary values.

Figure 3.9: Comparison of Naive Adaboost feature selection with Forward Feature selection ((b)
taken from [3]).

After training, the final strong classifier is tested on input images similar to what is done in

AdaBoost. Use of FFS decreases the training time from days to hours without compromising

accuracy.
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Algorithm 3. Forward Feature Selection

Input: A set of training samples (xi, yi), xi ∈ χ, yi ∈ {−1, 1}, i = 1, ...., N and hj, j = 1, ....,M

Output: A strong classifier H(x), which is a combination of simple classifiers hj

1 ∀ hi(x), find a threshold which has least error on the training dataset

2 Form a table Vji such that Vji = hj(xi), 1 ≤ i ≤ N, 1 ≤ j ≤M

3 Initialize S ← ϕ, v ← 01×N where S holds the best weak classifier at each iteration

and v holds the weights of all samples

4 for t = 1 to T do

5 Find a classifier hk which when added to S gives least error εk
6 Add hk to S i.e., S = S ∪ hk and update v using Vji i.e., v = v + Vk, where Vk

is kth row of V ;

7 end for

Output: H(x) = sgn(
∑

h∈S h(x)− θ). Adjust θ to meet the learning goals

3.5 Ear segmentation

After finding the ear location in an image, the next task is to segment the ears from other

regions in the detected widow. Along with the ear, a typical detected window contains hair, skin,

occlusions due to ear rings, etc. An ear segmentation algorithm should separate ear region from the

other unnecessary regions in the detected window. This can be done by extracting the edges of the

ear and identifying the outer edges which enclose the ear. The outer edges of the ear correspond

to the edges of helix and lobule. So in order to segment the ear, it is sufficient to have helix and

lobule edges (together termed as helix edge from now on).

The canny edge detector is perhaps the most widely used edge detector in the literature. It is

based mainly on the local gradient and has a tunable scale parameter. Further, if the goal is to detect

object boundaries in order to perform object segmentation or detection, then all other detected

edges except those pertaining to object boundaries should be considered to be false detects. In

case of ear segmentation, except for the helix edges all other edges are irrelevant. Using a canny-

based edge detector or other edge detectors may lead to detection of unnecessary edges like hair,

inner structure of the ear from the ear image. Also, when working on operational data which have

lighting variations, these algorithms may fail to detect edges properly.
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To overcome these problems, a learning-based edge detection algorithm is used. In this work,

a supervised learning algorithm referred as Boosted Edge Learning (BEL) proposed by Dollar et

al. [64] has been used. Similar to the AdaBoost, it is a learning based algorithm which in fact

enables us to train a classifier for a specific task. The output of BEL is a probability image with

pixel values suggesting the chance of it being the desired edge.

3.5.1 Boosted Edge Learning

Boosted Edge Learning uses an extended version of Probabilistic Boosting Tree (PBT) [65].

Inputs to BEL are original images and images labeled with desired edges to be detected. Using

the label information, BEL creates training samples (both positive and negative) of window width

‘W’ and also calculates features like Haar responses, gradients, Difference of Gaussian (DoG),

Difference of offset Gaussian (DooG) at multi scales for these samples. PBT takes these training

samples and features as input and builds a tree with classifiers as nodes. PBT is similar to Ad-

aBoost as far as a cascade framework is concerned except that at each node instead of rejecting the

negative samples completely it assigns a probability value to each sample. Also, PBT works more

effectively with large data and more number of features than AdaBoost.

Training PBT is similar to training a decision tree, except for the difference that at each node a

boosted classifier is used to split the training data as shown in Figure 3.10. In the figure, positive

samples are represented with blue dots and negative samples with red dots. The first level of the

tree divides the whole set into two parts. The right part of the tree mostly contains positive samples

and the left part consists of a combination of both. Instead of rejecting the negative samples (i.e.,

the left part) at each node, the tree expands on the nodes where positive and negative samples

are mixed. Algorithm 4 discusses the steps involved in training a PBT with N training samples

(xi, yi) and M simple features hj where each sample is assigned an equal weight. The algorithm

recursively learns a tree. At each node in the tree, a strong classifier is learned using boosting

algorithms like AdaBoost. The training samples are divided in to two new sets SR and SL. Based

on the probability values q(+1 | xi) and q(−1 | xi), the sample is assigned to either SR or SL. The

weights of the samples are modified such that the misclassified samples (i.e., positives in SL and

negatives in SR) get high values. The left sub tree and right sub tree are again trained recursively
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until the tree reaches a maximum depth (or) until a certain condition is satisfied (line 3 in Algorithm

4).

Figure 3.10: Figure showing the working of PBT.

During testing, BEL converts the input image into overlapped sub-windows ‘W’. For each

sub-window, PBT calculates the posterior probability p̃(y | x) recursively and the sub-window is

assigned with that value. Because of it’s advantage to train a tree for a specific task, BEL is used

to train the classifier for detecting helix edges of the ear.



Ravindra B. Gadde Chapter 3. Classification of ear images 40

Algorithm 4. Probabilistic boosting tree

Input: A set of training samples (xi, yi), xi ∈ χ, yi ∈ {−1, 1}, i = 1, ...., N and hj, j = 1, ....,M

Output: A tree with strong classifier at each node

1 Initialize, wi = 1/N , ∀i
2 Compute the empirical distribution at a node, q̂(y) =

∑
i wiδ(yi = y)

3 if θ ≤ q̂(y) ≤ 1− θ

4 Train a strong classifier at that node

5 Split data into two sets SR and SL based on q(+1 | xi)(probability of xi being positive)

and q(−1 | xi)(probability of xi being negative)

6 Modify weights wi to q(+1 | xi) ∗ wi in SR and q(−1 | xi) ∗ wi in SL

7 Train SR and SL recursively by calling step 2

8 else

7 Stop

Output : Trained tree with strong classifiers

Testing

1 if present node has no children

2 p̃(y | x) = q̂(y)

3 Stop

4 else

5 p̃(y | x) = q(+1 | x)p̃R(y | x) + q(−1 | x)p̃L(y | x)
To calculate pR and pL go to step 1 recursively

3.5.2 Contour extraction and segmentation

After training the BEL with helix edge labels, the obtained detector is used to find the helix

edges. During testing, BEL outputs a probability image and pixels with high values are considered

to be helix edges. After obtaining the probability image, the output is smoothed with Gaussian

filter which helps in connecting the helix edges seamlessly. Next, a hard threshold is applied to

the smoothed image and the longest connecting path is chosen. The longest connecting path is

considered as an estimate of helix edge.

The estimated helix edge is used to segment the ear after following some post processing steps,

which are listed below:
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1. The estimated helix edge represents the entire helix and, therefore, is not a thinned contour.

So in order to obtain the contour, the estimated helix edge is thinned using morphological

operations proposed in Gonzales and Woods [66].

2. The thinned image may contain some parasitic edges (noise). In order to remove these

edges, the image is converted to a graph with pixels denoting edges and pixel values denoting

vertices.

3. Sometimes due to false edges the contour contains some spurs. Such spurs and parasitic

edges are removed by considering the longest connected path in the graph.

4. The ends of the longest connected path are considered to be the ends of the helix and the

shortest connected path between these two ends is calculated, and this is considered to be

the helix contour.

5. Finally, the shortest connected path is smoothed and the ends of the shortest path are con-

nected by a straight line. The area enclosed by the shortest path is considered to be the

ear.

The post processing steps can be visually seen in the Figure 3.11.

Figure 3.11: Post processing steps used for segmenting the ear.

The contour of the segmented ear looks more like an ovoid and the parameters for this ovoid

are estimated using the technique proposed by Alvarez et al. [4].
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3.6 Estimation of shape of the ear using an ovoid model

3.6.1 Ovoid model

Generally the shape of an ear can be defined as being an oval or an ovoid. In geometry, an oval

or ovoid is any curve resembling an egg. Strictly speaking, ovoid is a special case of ellipse and

every ovoid is an ellipse. Alvarez et al. [4] were the first, to design an ovoid model to represent

ears. In Alvarez et al.ś model, ovoid was obtained by deforming the ellipse in the vertical direction.

The parametric model for an ellipse with a as major axis and b as minor axis is given by

(
x(t)

y(t)

)
=

(
x0 + acost

y0 + bsint

)
(3.1)

By adding an ellipse deformation factor γ in the vertical direction, an ovoid is formed. The

parametric equation for this ovoid is given by(
x(t)

y(t)

)
=

(
x0 + acost

y0 + b(1 + γcost)sint

)
(3.2)

The parameter γ induces distortion along the vertical axis of the ellipse, thereby helping the

model to better estimate the complex contour of the ear. The effect of γ and a/b on the model

is depicted in Figure 3.12. One can observe that as the value of γ increases the elongation of the

ovoid increases, and the parameter a/b controls the size of the ovoid.

In order to incorporate rotation into the model, a parameter α is introduced into equation 3.2

and the final equations are denoted as:(
x(t)

y(t)

)
=

(
x0 + acosαcost+ sinαb(1 + γcost)sint

y0 − asinαcost+ cosαb(1 + γcost)sint

)
(3.3)

The parametric model thus obtained has six parameters in it and is advantageous over other models

for the following reasons:

• It has just one more additional parameter than ellipse to estimate.

• It has been demonstrated to fit most of the human ears quite well [4].

• The parameters (a/b and γ) can be used as scale, translation and rotation invariant parame-

ters.
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Figure 3.12: Effect of γ and a/b on ovoid.

• Finally, based on the parameters (a, b, γ and α) two ears can be registered for further com-

parison.

Considering these advantages, the parameters of this model are estimated using the properties of

the segmented ear region.
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3.6.2 Parameter estimation of the ovoid

The final model in equation (3.3) has six parameters (a, b, γ, α, x0, y0) and these parameters

can be estimated using the properties of the segmented ear. Alvarez et al. [4] estimated the initial

parameters of an ovoid by following these sequence of steps :

1. Initially, first order moments m00 (area), m10 (x-coordinate of the centroid), m01 (y-coordinate

of the centroid) of the segmented ear are calculated.

2. Using first order moments, second order moments denoted by m20,m02,m11 are calculated.

A matrix M2 is formed using these second order moments .

M2 =

(
m20 m11

m11 m02

)
(3.4)

3. Next, eigenvector vmax = (xmax, ymax) corresponding to the maximum eigen value of matrix

M2 is calculated. α is then calculated as

tan(α) = ymax/xmax (3.5)

4. All the contour points of the segmented ear are projected on to a straight line that passes

through the centroid in the direction of vmax. On this straight line, the maximum and min-

imum projected points (pmax and pmin) from the centroid are calculated. Using pmax and

pmin the center and semiaxis of the deformed ellipse are found using

(x0, y0) = (pmax + pmin)/2 (3.6)

a = ||pmax − pmin||/2 (3.7)

5. The remaining two parameters b and γ are calculated as

b = m00/(πa) (3.8)

γ = 3 ∗ (2A− πab)/(4ab) (3.9)

Here A is the area of the semiplane generated by the straight line that passes through the

center and with direction vmax as normal vector.
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The parameters obtained using this procedure may not fit the contour of the ear precisely. This

can be seen in the Figure 3.13, where the estimated contour is represented in blue. So a gradient

descent algorithm was used to improve these parameters. In order to increase the accuracy of the

estimated parameters, a modified gradient descent algorithm is proposed and adapted.

Figure 3.13: Figure showing segmented ear and it’s contour estimated using Alvarez et al.
model [4].

3.6.3 Gradient Descent Algorithm

Gradient decent is a general machine learning algorithm that can be used to minimize any

arbitrary function. For instance, consider an arbitrary function denoted by J(θ0, θ1) where θ0,θ1

denotes the parameters of the function. The goal is to minimize this function which can be defined

as min
θ0,θ1

J(θ0, θ1) .The following steps can be followed to achieve the goal:

1. Initialize θ0, θ1 to arbitary values.

2. Update or change θ0, θ1 to reduce J(θ0, θ1) until local minimum is reached.

The procedure followed by the gradient descent algorithm to achieve the desired goals as out-

lined above, is briefly explained by the following steps.
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1. Initialize θ0, θ1 with some arbitrary values (say θ0 = 0, θ1 = 0)

2. Repeat until convergence

{

θj := θj − β ∂
∂θj

J(θ0, θ1) (for j=0 and j=1)

}

Here β denotes the learning rate of the gradient decent algorithm, which controls the step size

adopted to update θj . ∂
∂θj

J(θ0, θ1) denotes the gradient (equivalent to slope of the tangent in one

dimension).

Learning rate β is a critical parameter in the gradient descent algorithm. If β is too small, the

algorithm can be slow and if it is too large, the solution can overshoot the minimum and thus may

fail to converge (or may even diverge in certain cases). The above algorithm can be generalized to

minimize a function with more than two parameters, for instance J(θ0, θ1, θ2..θn).

An ovoid represented with six parameters a, b, γ, α, x0 and y0 can be minimized using the

gradient descent algorithm. The function to be minimized is the distance between the estimated

ovoid and the contour points of the segmented ear, which is formulated as J(a, b, γ, α, x0, y0) =∑N
i=0 dist(Ovoid, (xi, yi)), where N denotes the number of contour points. Initial parameters

a, b, γ, α, x0 and y0 are obtained by following the steps described in Section 3.6.2. Later, gra-

dient descent algorithm is applied on the initial parameters to obtain the parameters at the local

minimum. One of the problems with the gradient descent algorithm is that in some cases the pa-

rameters get stuck in a local minima and the estimated parameters are far from the global minimum.

To avoid this, a small value, which is proportional to the difference of estimated parameters to the

predicted parameters is added to the parameters and the gradient descent algorithm is resumed

with the modified parameters as the initial parameters. This step helps in perturbing the parame-

ters stuck at a local minimum and pushes them towards the global minimum. This technique does

not unduly add overall consumption time since the initial parameters estimated using Alvarez et

al.ś equations are already close to the solution. Also, adding a small noise to the parameters that

are already at the global minimum will have little impact on the estimated final parameters. The

modified gradient descent algorithm is shown in Algorithm 5.
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Algorithm 5. Modified Gradient descent algorithm

Input: Initial parameters a0, b0, γ0, α0, x00, y00

Output: Final parameters ai, bi, γi, αi, x0i, y0i

1 Initialize a0, b0, γ0, α0, x00, y00, i = 0

2 Update ai, bi, γi, αi, x0i, y0i to reduce J(ai, bi, γi, αi, x0i, y0i) until local minimum is

reached

3 for i = 1 to N

4 if γi−1 > 1

5 γi = 0.99

6 Go to step 2

7 else if ai−1 > height of the detected ear region

8 ai = 2 ∗ ai−1− height of the detected ear region

9 Go to step 2

10 else if bi−1 > width of the detected ear region

11 bi = 2 ∗ bi−1− width of the detected ear region

12 Go to step 2

13 else

14 Stop

Figure 3.14(a) shows the output of the gradient descent algorithm on a segmented ear, where

parameters are initially stuck at a local minimum. Figure 3.14(b) shows the output of the modified

gradient descent algorithm. The modified gradient descent algorithm outperforms the traditional

gradient descent algorithm in this case.

3.7 Classification

As discussed in Section 3.6.1, among the six ovoid parameters, a/b and γ are the scale, trans-

lation and rotation invariant parameters which can be used for designing a classification scheme.

From Figure 3.12, one can observe that for lower values of γ (≤ 0.2), where the elongation is

less, the shape tends to be more of an a rectangle (for higher values of a/b) or circular (for lower

values of a/b). On the other hand, for mid values of γ (0.3 ≤ γ ≤ 0.6) the ovoid tends to be more
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Figure 3.14: Figure showing the efficiency of the modified gradient descent algorithm. (a) Gradient
descent algorithm converged at local minimum. (b) Parameters at global minimum achieved by
modified gradient descent algorithm.

like oval and for higher values of γ (γ ≥ 0.7) the shape looks like a triangle. By observing these

values viz., a/b, γ, an ear classification scheme was designed as depicted in the flowchart shown

in Figure 3.15.

3.8 Experimental Evaluation

This section presents the details regarding the database used, experiments performed and re-

sults observed.

3.8.1 Databases Used

WVU Database:

The WVU (West Virginia University) ear database consists of 460 video sequences of 402 dif-

ferent subjects. Each video begins at the left profile (0 degrees) of the subject, and takes about 2

minutes to end at the right profile (180 degrees) [62]. Of the 402 subjects, this database contains 42

subjects with earrings, 38 subjects with partially occluded ears, and 2 subjects with fully occluded

ears. From these, a total of 120 subjects with 10 subjects having earrings, 10 subjects having par-

tially occluded ears, 10 subjects with eyeglasses and 90 subjects with no constraints were selected

for training purposes. To capture the pose variations, 10 images which vary from left side profile
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Figure 3.15: Figure showing the proposed ear classification scheme.

to front profile with incremental deviation were extracted from the video sequence. The extracted

images are of resolution 480×640. Figure 3.16 shows a few samples from the WVU database.

UND ear database:

The UND (University of Notre Dame) databases contain several collections for various modal-

ities. Among them, collection E, collection F, collection G and collection J2 are the available

databases for the ear modality. Collection E contains right profile images of 114 distinct subjects
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Figure 3.16: Sample images of a single user in WVU database.

with different illuminations. Hence, this database is used for training purposes. The size of each

image is 1200×1600, 24-bit RGB. At least three images of each user were taken under different

levels of illumination. Figure 3.17 shows sample images in the collection E data set.

MAGNA database:

The MAGNA database contains 3D and 2D facial images. These images are captured under

low lighting conditions with few illumination variations. A total of eight cameras (Geometrix

device) were used to capture five profile images from left to right, and the remaining three were

used for obtaining stereo views. Stereo views and the profile images are combined together to

create a 3D representation from the eight 2D images. Along with this, a Cyberware 3D scanner

was used to obtain an accurate representation of the x, y, and z coordinate geometry and a 24-bit

RGB color image texture map for each subject. A total of 3,115 subjects with both 3D and 2D

images are present in the database. Due to the large size of the database, the experiments were
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Figure 3.17: Sample images in UND database.

performed only on the left side profile images. The resolution of each image is 1200×1600 pixels.

Of the 3,115 left images in this database, 164 images had fully occluded ears, 986 had partially

occluded ears and 1963 images had no occlusion. Figure 3.18 shows sample images from this

dataset.

3.8.2 Ear detection

Training:

The FFS technique discussed in section 3.4.3 is used for detecting ears. In order to train

the classifier, 1200 images from WVU database and 300 images from UND database are taken

and the ear region is manually segmented from each image. A total of 1500 ear segments are

obtained from the two databases. Each ear segment is converted to gray scale and bilateral mirror

images are obtained and finally a positive sample database with 3000 images is formed. To further

increase the size of the database, these 3000 images are modified by minor translation, rotation and
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Figure 3.18: Sample images of a single user in Magna database.

contrast stretching and the modified images are added to the positive database. A total of 10,000

ear samples from the positive database are used for training. For the negative samples, non-ear

images are considered. Finally, a set of 10,000 ear examples and 10,000 initial non-ear examples

of size 24×18 are considered for training. Two, three and four rectangular features are used for

training. 20,000 features sampled uniformly from the entire set of rectangular features are used.

A maximum of 50 nodes are allowed in the cascade configuration. A target of 99% detection rate

and 50% positive rate is set for each node. After training, the final detector consists of 19 nodes

which include a total of 2332 features.

Testing (top-down process):

In order to detect an ear in an input image, the image is scanned using the classifier generated

by the cascaded Adaboost system. The input image is divided in to sub-images of size 24x18

overlapped with a shift of one pixel and scanned. Further, the features are scaled up by 1.25 times

(which is same as down sampling the image by 0.8) and scanned again. At the end, all the detected

regions are post-processed in order to remove repeated detections. This procedure can be viewed

as a top-down process, as each image is scaled down sequentially by 0.8 and re-scanned.

Results (top-down process):

The classifier is tested on the MAGNA database. Of the 3115 images, 1963 images with no

ear occlusions were considered for testing. To increase the efficiency of the system, the image is
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scaled down to 120X160 pixels and the detection algorithm is applied in the testing mode. If there

is no ear detected in the image, the image is scaled up 5 times and the process is repeated. This

method reduces the time complexity, as well as increases the efficiency. To measure the efficiency

of the detection algorithm, two rates were used.

I) False Detection rate : It is the ratio of the number of non-ears detected to the total number of

images.

II) False Reject Rate : It is the ratio of the number of non-detected ears to the total number of

images.

On the MAGNA database, the system yields a False Detection Rate of 8.5%(168 of 1963) and a

False Reject Rate of 9.2%. So the total error of the system is 17.7%. Figure 3.19 shows correctly

detected images, while Figure 3.20 shows images for which the ear detector failed to detect ears.

Figure 3.21 shows images where non-ear objects are falsely detected.

Figure 3.19: Figure showing images with detected ears.

Figure 3.20: Figure showing images with false rejects.

Testing(bottom-up process):

The top-down process when applied on images with high resolutions may lead to more number

of false detections at the end. Also, it has been observed that on MAGNA database, detection rate

at high resolution is less than that at low resolution. For example, in Figure 3.22, at 1200x1900

image resolution (i.e., at 1:1 scale) along with the true ear a false ear is also detected but as the
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Figure 3.21: Figure showing images with false detections.

image is scaled down to 1:10, only the ear region is detected. In order to take advantage of this, a

bottom-up scaling procedure is proposed.

Figure 3.22: Images showing detection performance at various scales

In bottom-up scaling procedure, initially the input image is re-scaled to the lowest resolution

and the image is scanned by the classifier. During scanning the image is further re-scaled by a

factor 0.8 and scanned. If there are no detected regions at this scale, the image is again re-scaled

to a resolution slightly higher than the previous resolution and the image is re-scanned by the

classifier. This procedure is repeated until a single detected region is found in the image (or) for

a certain number of iterations. There are some advantages in following such a bottom-up scaling

procedure:

• As the classifier is scanned on a relatively lower number of combinations of sub-images, the

number of false detects decreases

• Because of fewer number of sub-images, the total time taken to detect an ear in an image

reduces significantly.
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Results(bottom-up process): This technique is tested on MAGNA database. Of the 3115 im-

ages, 1963 images with no occlusions were considered for testing. As we have prior knowledge

that the database contains only one ear region in each image, the classifier is modified to detect

only one patch per image (i.e., patch with highest area). To increase the efficiency of the system,

the image is first scaled down to 108×144 (9:100 of the original image) pixels and the detection

algorithm is applied in the testing mode. If there is no ear detected at this scale, the image is scaled

up to 10:100 and the process is repeated. This method is sequentially repeated with scales 11:100,

12:100, 15:100, 18:100, 20:100 and 22:100 of the original size until an object (region) is found.

For 1963 images in MAGNA database with no occlusion, at a scale of 9:100, 1302 images

contain one detected region each. Of these 1302 regions, 20 are False Detects and the remaining

1282 are ear regions. The failed images, which are considered as False Rejects at this particular

scale, are scaled up to 10:100 of the original size and tested with the same classifier and number

of False Detects and False Rejects are noted. This process is repeated for different scales and the

number of False Rejects and False Detects at each scale can be seen in Table 3.1

Table 3.1: Number of ear detects and rejects at each scale

Total Images Scale

Number of

detected

regions

False Detects

Remaining

images (False

Rejects)

1963 9:100 1302 20 661

661 10:100 158 4 503

503 11:100 70 1 433

433 12:100 46 1 387

387 15:100 31 4 356

356 18:100 19 1 337

337 20:100 21 5 316

316 22:100 14 4 302

This procedure can be repeated with more number of scales, but doing so will increase the

detection time. Comparing this results with the previous one, where detection is performed at only

two scales i.e., at scale 10:100 and 50:100, the false detection rate is decreased from 8.5 % (168 of
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1963) to 2 % (40 of 1963) and false reject rate increased from 9.2 % (182 of 1963) to 15 % (302

of 1963). Though the total error of the detection system remains nearly same ( 17 %) the present

approach is more efficient because of less false detection rate. Figure 3.23, shows that at scales

9:100, 11:100 and 12:100 no region is detected. But, at scale 15:100 the ear is detected.

Figure 3.23: Images showing detection performance in bottom-up scaling approach

3.8.3 Ear segmentation

Training:

The entire ear structure is surrounded by the helix and in order to segment the ear, the correct

estimate of helix edges are enough. As discussed in section 3.5.1, one of the strengths of the BEL

algorithm is that it can learn an edge detector tuned for a specific domain. Ear images along with

helix labels are used to train the BEL classifier. For training the classifier, 100 images from the

MAGNA database are used. The helix edges are manually labeled by first applying Difference

of Gaussians (DoG) filter and by removing unnecessary edges as shown in Figure 3.24. At each

point of the label, a patch size of ‘W’ is considered by the BEL algorithm and used for training. In

order to capture the structure of the ear around the helix a patch size of W= 30 is chosen. As the

maximum allowed depth for a tree increases, the positive samples will be well separated from the

negative samples. At the same time, as depth increases the speed of the final detector decreases.

So, an optimum value of depth 20 is set. Also, the number of weak classifiers in each AdaBoost

node is set to 240.

Testing:
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Figure 3.24: Training images for BEL (ear image along with the labeled helix edge)

In order to detect the helix edges in an ear, the trained classifier is used to scan each and every

pixel by considering a window of size 30×30 around the pixel. The pixel is assigned a value in the

range of [0-255] based on the probability of it being the edge pixel on the helix. At the end, the

values of the pixels which belong to the helix edges are assigned with high value. A hard threshold

is used to remove the spurious edges, and the longest connected path is chosen as helix.

After extracting helix edges, the contour of the helix is extracted by following the steps in

Section 3.5.2 and the segmented ear is obtained.

Results:

The segmentation algorithm is tested on MAGNA database. Of the 3115 images, 1963 images

with no ear occlusions are considered for testing. In order to reduce the search space for helix

edges, ears are automatically detected first and then helix edges are extracted. To calculate the

error for this algorithm independently (i.e., without relying on the output of the ear detection

module preceding it), the ears which are not detected properly are manually cropped. To measure

the efficiency of the algorithm, three segmentation measures were used.

1. The segmentation is said to be perfect segmentation, if the segmented region contains only

the ear.

2. The segmentation is said to be an over segmentation, if the segmented region contains some

false regions along with the ear. These kind of segmentations occur because of false detects

of the helix edges by the BEL algorithm.

3. The segmentation is said to be an under segmentation, if the segmented part does not rep-

resent the ear at all. These kind of segmentations occur because of false rejects of the helix

edges by BEL algorithm or during the post processing step used for segmentation.
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Figure 3.25 shows examples for each of these outputs. On the MAGNA database, the segmentation

algorithm yields a perfect segmentation rate of 66.33% (1302 of 1963), an over segmentation of

12.38% (243 of 1963) and an under segmentation of 21.29% (418 of 1963). Most of the segmen-

tation errors are due to the presence of complex helix edges, variations in lighting conditions and

minor occlusions due to hair.

Figure 3.25: Figure showing different types of segmentation outputs.

3.8.4 Classification results

After segmenting the ear, the modified gradient descent algorithm (discussed in section 3.6.3)

is used to estimate the parameters (a/b, γ). The error occurred due to incorrect estimation of

parameters by modified gradient descent algorithm is termed as gradient descent error. This error

is measured manually by visually observing the output of each image. The modified gradient

descent algorithm is applied on perfect and over segmented ears and an error of 1% (15 out of

1546) is reported. Examples for cases where gradient descent failed can be seen in Figure 3.26.

Using parameters a/b and γ, ears are classified in to one of four classes (i) Round, (ii) Rectan-
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Figure 3.26: Figure showing cases where gradient error occurred.

gle, (iii) Oval, (iv) Triangle, based on the flowchart described in Figure 3.15. These automatically

classified ears are compared with the ground truths which have been manually established. Here,

in order to study the performance of the classification component independently, only perfect and

over segmented ears are used. Table 3.2 shows the number of ears in each class, whose ground

truth is established manually. Ground truth is formed based on the opinion of two human operators.

The opinions are combined using a voting scheme. Conflicts are once again manually corrected.

Table 3.2: Ground truth established by manual classification of ear images

Ground Truth

Perfectly

segmented

images

Perfect and

Over

segmented

images

Round 27 33

Rectangle 112 144

Oval 877 1042

Triangle 286 326

Table 3.3 shows the confusion matrix of the automated classification scheme on perfectly seg-
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mented images. A classification rate of 91.5% is achieved for this experiment.

Table 3.3: Confusion matrix for perfectly segmented images

Predicted class

Round Rectangle Oval Triangle Total

Ground truth
Round 18 0 9 0 27

Rectangle 0 72 40 0 112

Oval 7 9 837 24 877

Triangle 0 0 21 265 286

Total 25 81 907 289 1302

Table 3.4 shows the results of the classification scheme on both perfect and over segmented

images. A classification rate of 83.5% is achieved for this experiment.

Table 3.4: Confusion matrix for perfect + over segmented images

Predicted class

Round Rectangle Oval Triangle Total

Ground truth
Round 20 0 12 1 33

Rectangle 0 74 57 13 144

Oval 11 16 893 122 1042

Triangle 0 0 23 303 326

Total 31 90 985 439 1545

Manual classification is sometimes prone to biasing and errors. In some cases, the automated

classification output can often supply new perspectives and potential corrections to the manually

established ground truth. In this sense, the comparison of automated classification with manual

classification can produce important lessons regarding not only how humans perceive the shape of

the ear, but also for revising some of the human labels. To understand potential human classifica-

tion errors, those images with no error in the segmentation, and whose estimated γ values are not

in the range of 0.2 to 0.3 (boundary for rectangle and oval) and 0.6 to 0.7 (boundary for oval and

triangle), are considered. The automated classification scheme for such ears is supposed to predict

the class correctly (i.e., with high confidence). An ear is said to be misclassified by the human, if

the class label assigned by the human does not coincide with the class assigned by the automated



Ravindra B. Gadde Chapter 3. Classification of ear images 61

classification scheme with high confidence. Such an error is termed as human classification er-

ror. For example, consider the case in Figure 3.27(a). Because of the complexity of the lobule,

it is highly probable that a human may be confused when annotating the class and would end up

labeling it as an oval. However, the automated scheme would label this as a triangle with high

confidence. Same is the case with Figure 3.27(b) and (c), where a human labeled the ears as oval

while the automated scheme labeled them as rectangle with high confidence. 101 such images are

corrected (ground truth correction) and the performance is re-evaluated.

Figure 3.27: Figure showing examples of cases where a human failed to assign the correct class.

Table 3.5 shows the number of ears in each class after correcting for human errors.

Table 3.6 shows the results of the classification scheme on perfectly segmented images after

correcting for human errors. A classification rate of 97.9% is achieved for this experiment.

Table 3.7 shows the results of the classification scheme on perfect and over segmented images

after correcting for human errors. A classification rate of 88.9% is achieved for this experiment.
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Table 3.5: Ground truth after correcting for human errors.

Ground Truth

Perfectly

segmented

images

Perfect and

Over

segmented

images

Round 26 32

Rectangle 91 123

Oval 909 1073

Triangle 276 317

Table 3.6: Confusion matrix for perfectly segmented images after correcting human errors

Predicted class

Round Rectangle Oval Triangle Total

Ground truth
Round 24 0 2 0 26

Rectangle 0 80 10 1 91

Oval 1 1 895 12 909

Triangle 0 0 0 276 276

Total 25 81 907 289 1302

Table 3.7: Confusion matrix for perfect and over segmented images combined after correcting for
human errors.

Predicted class

Round Rectangle Oval Triangle Total

Ground truth
Round 26 0 5 1 32

Rectangle 0 82 27 14 123

Oval 5 8 951 109 1073

Triangle 0 0 2 315 317

Total 31 90 985 439 1545

3.9 Conclusion and future work

An ear classification scheme based on shape has been proposed and evaluated. The ability of

learning-based algorithms to learn under a wide variety of conditions has been explored for ear de-
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tection and segmentation. However, it should be noted that the BEL based segmentation algorithm

performs poorly. Considering only perfectly segmented images as being successful outputs, the

error for the segmentation algorithm is 23%. Also, when considering the classification result on

perfectly segmented images, the error is 2%. Figure 3.28 shows the error rates for each component

in the classification system. As the ear classification system is a sequential system, the error at

one stage will be propagated to the subsequent stages. Because of the proposed bottom-up ear

detection approach, although the total error remains constant, the False Detection Rate is reduced.

Using such methods helps in reducing the propagated error, since the number of false detects is

reduced.

Figure 3.28: Figure showing errors of individual modules.

As discussed in the previous section, the classification rate for perfect and over segmented

images is 88.93%. When considering under segmented images as being failed outputs, the clas-

sification rate is 70%. This implies that if ear segmentation, shape analysis and classification are

considered together as a single unit, the total error would be 30%. Thus, future work will include

reducing the error in each stage independently. Since this is the first time automated ear classifica-

tion is being addressed, this work attempts to highlight a new direction of research that would be

helpful for classifying side profile face images in the future.
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Chapter 4

Conclusion and Future Work

In this thesis, an indexing scheme for iris and a classification scheme for ear has been proposed

and evaluated. The iris indexing scheme is based on the Burrows Wheelers Transform (BWT)

and the ear classification scheme is based on parameterizing the different shapes of the ear, viz.,

rectangular, oval, round and triangular.

4.1 Iris Indexing

The proposed iris indexing technique was tested on CASIA version 3.0 database. Results indi-

cate that the proposed scheme had a significant improvement (with γ = 90.90%) over the previously

reported work by Mukherjee et.al [42] (with γ = 85.79%). Further work is required to reduce the

penetration rate, for instance, by using an alternate searching mechanism which combines different

index patterns (P1, P2) of the same length.

Further investigation has to be carried out to design appropriate data structures to organize the

indices generated for the iris images. This could result in a potentially efficient retrieval strategy

for very large databases. It should be noted that, in this work, only binary patterns of the iris image

were considered for designing an indexing scheme. Further progress could be carried out to design

a scheme which could also use non-binary patterns.
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4.2 Ear Classification

The proposed ear classification scheme was tested on the MAGNA database. A classification

rate of 98% was successfully achieved on perfectly segmented images using the parameters a/b and

γ. These parameters are believed to represent many of the most commonly represented ear shapes

like rectangular, oval, round and triangle. Ears with more complex shapes, however, require the

inclusion of a shape representation that could accomodate more parameters.

The classification scheme designed in this thesis uses only the shape of the ear. An alternate

approach could be to use the structure of the ear. Future work could involve designing a classi-

fication scheme using structure of the ear. Further, the shape and structure of the ear when used

together could result in improved performance. It should also be noted that, in the present work,

experiments are only conducted on profile images. The performance of the shape-based classifica-

tion scheme on the off-axis facial images could be studied and a new system that can accommodate

pose variations could be designed.

The sequential design of the system as discussed in section 3.9, results in propagation of error

from one stage to another resulting in a gradual decrease in the system performance. Future work,

involving design of automated metrics that could reject erroneous samples in the initial stages

itself, could be a good addition to this work. It has been observed that, compared to the other

stages in the classification system, the errors in the detection stage and segmentation stage are

relatively high. Alternate detection and segmentation techniques could be researched to enhance

the performance of the designed ear classification system.
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Appendix A

Sample ear images

A.1 Classification based on quality

As discussed in the section 3.8.1, the left profile images in MAGNA database are divided in

to three types : Ears with no occlusion, Ears with partial occlusions and Ears with full occlusions.

Few examples of each category are shown in Figures A.1-A.3

Figure A.1: Sample images showing images with no ear occlusions.
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Figure A.2: Sample images showing images with partial ear occlusions.

Figure A.3: Sample images showing images with fully occluded ears.

A.2 Classification based on shape

As discussed in section 3.8.4, ears in the MAGNA database can be divided in to four types:

Round, Rectangle, Oval, Triangle. Ground truth for MAGNA database is established by a human

and Figures A.4-A.7 show sample images for each category.
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Figure A.4: Sample images showing round shape ears.

Figure A.5: Sample images showing rectangle shape ears.
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Figure A.6: Sample images showing oval shape ears.

Figure A.7: Sample images showing triangle shape ears.
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