11 research outputs found

    Hadwiger Number and the Cartesian Product Of Graphs

    Full text link
    The Hadwiger number mr(G) of a graph G is the largest integer n for which the complete graph K_n on n vertices is a minor of G. Hadwiger conjectured that for every graph G, mr(G) >= chi(G), where chi(G) is the chromatic number of G. In this paper, we study the Hadwiger number of the Cartesian product G [] H of graphs. As the main result of this paper, we prove that mr(G_1 [] G_2) >= h\sqrt{l}(1 - o(1)) for any two graphs G_1 and G_2 with mr(G_1) = h and mr(G_2) = l. We show that the above lower bound is asymptotically best possible. This asymptotically settles a question of Z. Miller (1978). As consequences of our main result, we show the following: 1. Let G be a connected graph. Let the (unique) prime factorization of G be given by G_1 [] G_2 [] ... [] G_k. Then G satisfies Hadwiger's conjecture if k >= 2.log(log(chi(G))) + c', where c' is a constant. This improves the 2.log(chi(G))+3 bound of Chandran and Sivadasan. 2. Let G_1 and G_2 be two graphs such that chi(G_1) >= chi(G_2) >= c.log^{1.5}(chi(G_1)), where c is a constant. Then G_1 [] G_2 satisfies Hadwiger's conjecture. 3. Hadwiger's conjecture is true for G^d (Cartesian product of G taken d times) for every graph G and every d >= 2. This settles a question by Chandran and Sivadasan (They had shown that the Hadiwger's conjecture is true for G^d if d >= 3.)Comment: 10 pages, 2 figures, major update: lower and upper bound proofs have been revised. The bounds are now asymptotically tigh

    Fiedler’s Clustering on m-dimensional Lattice Graphs

    Get PDF
    We consider the partitioning of m-dimensional lattice graphs using Fiedler’s approach [1], that requires the determination of the eigenvector belonging to the second smallest eigenvalue of the Laplacian. We examine the general m-dimensional lattice and, in particular, the special cases: the 1-dimensional path graph PNP_N and the 2-dimensional lattice graph. We determine the size of the clusters and the number of links, which are cut by this partitioning as a function of Fiedler’s threshold α.Peer Reviewe

    Optimal acyclic edge colouring of grid like graphs

    Get PDF
    AbstractWe determine the values of the acyclic chromatic index of a class of graphs referred to as d-dimensional partial tori. These are graphs which can be expressed as the cartesian product of d graphs each of which is an induced path or cycle. This class includes some known classes of graphs like d-dimensional meshes, hypercubes, tori, etc. Our estimates are exact except when the graph is a product of a path and a number of odd cycles, in which case the estimates differ by an additive factor of at most 1. Our results are also constructive and provide an optimal (or almost optimal) acyclic edge colouring in polynomial time

    Factoring cardinal product graphs in polynomial time

    Get PDF
    AbstractIn this paper a polynomial algorithm for the prime factorization of finite, connected nonbipartite graphs with respect to the cardinal product is presented. This algorithm also decomposes finite, connected graphs into their prime factors with respect to the strong product and provides the basis for a new proof of the uniqueness of the prime factorization of finite, connected nonbipartite graphs with respect to the cardinal product. Furthermore, some of the consequences of these results and several open problems are discussed

    Hypergraph Products

    Get PDF
    In this work, new definitions of hypergraph products are presented. The main focus is on the generalization of the commutative standard graph products: the Cartesian, the direct and the strong graph product. We will generalize these well-known graph products to products of hypergraphs and show several properties like associativity, commutativity and distributivity w.r.t. the disjoint union of hypergraphs. Moreover, we show that all defined products of simple (hyper)graphs result in a simple (hyper)graph. We will see, for what kind of product the projections into the factors are (at least weak) homomorphisms and for which products there are similar connections between the hypergraph products as there are for graphs. Last, we give a new and more constructive proof for the uniqueness of prime factorization w.r.t. the Cartesian product than in [Studia Sci. Math. Hungar. 2: 285–290 (1967)] and moreover, a product relation according to such a decomposition. That might help to find efficient algorithms for the decomposition of hypergraphs w.r.t. the Cartesian product

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Proceedings of the 3rd International Workshop on Optimal Networks Topologies IWONT 2010

    Get PDF
    Peer Reviewe
    corecore