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a b s t r a c t

We determine the values of the acyclic chromatic index of a class of graphs referred to as
d-dimensional partial tori. These are graphswhich can be expressed as the cartesian product
of d graphs each of which is an induced path or cycle. This class includes some known
classes of graphs like d-dimensional meshes, hypercubes, tori, etc. Our estimates are exact
except when the graph is a product of a path and a number of odd cycles, in which case
the estimates differ by an additive factor of at most 1. Our results are also constructive and
provide an optimal (or almost optimal) acyclic edge colouring in polynomial time.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

All graphs we consider are simple and finite. Throughout the paper, we use ∆(G) to denote the maximum degree of a
graph G. A colouring of the edges of a graph is proper if no pair of incident edges receives the same colour. A proper colouring
C of the edges of a graph G is acyclic if there is no two-coloured (bichromatic) cycle in G with respect to C. In other words,
the subgraph induced by the union of any two colour classes in C is a forest. The minimum number of colours required to
edge-colour a graph G acyclically is termed the acyclic chromatic index of G and is denoted by a′(G). The notion of acyclic
colouring was introduced by Grünbaum in [6].
Determining a′(G) either theoretically or algorithmically has been a very difficult problem. Even for the highly structured

and simple class of complete graphs, the value of a′(G) is not yet determined. Determining the exact values of a′(G) even for
very special classes of graphs is still open.
It is easy to see that a′(G) ≥ χ ′(G) ≥ ∆(G) for any graph G. Here, χ ′(G) denotes the chromatic index of G (the minimum

number of colours used in any proper edge colouring of G). Using probabilistic arguments, Alon, McDiarmid, and Reed [1]
obtained anupper bound of 64∆(G) on a′(G). Using the same analysis butwithmore careful calculations,Molloy andReed [8]
obtained an improvement of a′(G) ≤ 16∆(G).
Recently, Muthu, Narayanan, and Subramanian [9] obtained a better bound of a′(G) ≤ 4.52∆(G) for graphs G with

girth (the length of the shortest cycle) at least 220. Concerning constructive bounds, Subramanian [16] presents an
O(∆(G) log∆(G)) upper bound which is valid for any graph G.
It follows from the work of Burnštein [5] that a′(G) ≤ ∆(G)+2 for all graphs with∆(G) ≤ 3. It was conjectured by Alon,

Sudakov, and Zaks [2] that always a′(G) ≤ ∆(G) + 2; they also demonstrated the tightness of the conjecture by providing
examples of graphs requiring∆(G)+ 2 colours in any acyclic edge colouring. The conjecture was shown in [2] to be true for
almost every d-regular (d fixed) graph. Recently, Nešetřil and Wormald [13] strengthened the latter result by showing that
a′(G) ≤ d+ 1 for almost every d-regular graph.
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The proofs of the above mentioned bounds are existential in nature and are not constructive. In this work, we look at the
class of those graphs that can be expressed as a finite Cartesian product of graphs each of which is an induced path or cycle.
We show that (see Theorem 3) a′(G) ∈ {∆(G),∆(G) + 1} for each member of this class and also obtain the exact value of
a′(G) for all G except when G is a product of a path and a number of odd cycles. Thus we verify the above conjecture for
these graphs, which we refer to as partial tori. As special cases, this class includes other well-known classes like hypercubes,
d-dimensionalmeshes, etc. All these definitions are given below. Our results are proved by an explicit constructive colouring
scheme, and the colouring can be constructed in polynomial time in the size of the graph (see Theorem 5). Hence our results
are both exact and constructive. There are very few non-trivial graph classes where a′(G) has been determined so closely.

1.1. Definitions and notation

We use Pk to denote a simple path on k vertices. Without loss of generality (w.l.o.g.), we may let V (Pk) = {0, . . . , k− 1}
and E(Pk) = {(i, j) : |i − j| = 1}. Similarly, we use Ck to denote a cycle (0, . . . , k − 1, 0) on k vertices. We use ‘‘paths’’ to
denote the set {P3, P4, . . .} of all paths on 3 or more vertices. Similarly, we use ‘‘cycles’’ to denote the set {C3, C4, . . .} of all
cycles. The standard notation [n] is used to denote the set {1, 2, . . . , n}.
Our definition of the class of partial tori is based on the so-called Cartesian product of graphs defined below.

Definition 1. Given two graphs G1 and G2, the Cartesian product of G1 and G2, denoted by G1�G2, is defined to be the graph
G with V (G) = V (G1) × V (G2) and E(G) contains the edge joining (u1, u2) and (v1, v2) if and only if either u1 = v1 and
(u2, v2) ∈ E(G2) or u2 = v2 and (u1, v1) ∈ E(G1).

Note that � is a binary operation on graphs that is commutative in the sense that G1�G2 and G2�G1 are isomorphic.
Similarly, it is also associative. Hence the graph G0�G1� · · ·�Gd is unambiguously defined for any d. We use Gd to denote
the d-fold Cartesian product of Gwith itself. It was shown by Sabidussi [14] and Vizing [17] (see also [7]) that any connected
graph G can be expressed as a product G = G1� · · ·�Gk of prime factors Gi. Here, a graph is said to be primewith respect to
the� operation if it has at least two vertices and if it is not isomorphic to the product of two non-trivial graphs (those having
at least two vertices). Also, this factorisation (or decomposition) is unique except for a re-ordering of the factors and will be
referred to as the Unique Prime Factorisation (UPF) of the graph. Since a′(G) is a graph invariant, we assume, without loss of
generality, that any Gi is from {K2} ∪ paths ∪ cycles if it is either an induced path or an induced cycle.

Definition 2. A d-dimensional partial torus is a connected graph G whose unique prime factorisation is of the form G =
G1� · · ·�Gd, where Gi ∈ {K2} ∪ paths ∪ cycles for each i ≤ d. We denote the class of such graphs by Pd.

Definition 3. If each prime factor of a graph G ∈ Pd is a K2, then G is the d-dimensional hypercube. This graph is denoted
by K d2 .

Definition 4. If each prime factor of a graph G ∈ Pd is from paths, then G is a d-dimensional mesh. The class of all such
graphs is denoted byMd.

Definition 5. If each prime factor of a graph G ∈ Pd is from cycles, then G is a d-dimensional torus. The class of all such
graphs is denoted by Td.

1.2. Results

The proof of the results mentioned in the abstract is based on the following useful theorem whose proof is given later.

Theorem 1. If G is a simple graph with a′(G) = η, then

1. a′(G�P2) ≤ η + 1, if η ≥ 2.
2. a′(G�Pl) ≤ η + 2, if η ≥ 2 and l ≥ 3.
3. a′(G�Cl) ≤ η + 2, if η > 2 and l ≥ 3.

The first two of the three mentioned results are special cases of the following more general result obtained in [12]. The
third result however is stronger than what follows from the result in [12]. Hence, we provide only the proof of the third
statement. An independent proof of the first two statements also appeared in a preliminary conference version [10] of the
current paper.

Theorem 2 ([12]). If G and H are two connected non-trivial graphs such that max{a′(G), a′(H)} > 1, then

a′(G�H) ≤ a′(G)+ a′(H).

As a corollary, we obtain the following results.
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Theorem 3. The following is true for each d ≥ 1.
– a′(K d2 ) = ∆(K

d
2 )+ 1 = d+ 1 if d ≥ 2; a

′(K2) = 1.
– a′(G) = ∆(G) = 2d for each G ∈Md.
– a′(G) = ∆(G)+ 1 = 2d+ 1 for each G ∈ Td.
– Let G ∈ Pd be any graph. If e (respectively p and c) denote the number of prime factors of G which are K2’s (respectively from

paths and cycles), then
– a′(G) = ∆(G)+ 1 = e+ 2c + 1 if p = 0.
– a′(G) = ∆(G) = e+ 2p+ 2c if either p ≥ 2, or p = 1 and e ≥ 1.
– a′(G) = ∆(G) = 2+ 2c if p = 1, e = 0 and if at least one prime factor of G an even cycle.
– a′(G) ∈ {∆(G) = 2+ 2c,∆(G)+ 1 = 2+ 2c + 1} if p = 1, e = 0 and if all prime factors of G (except the one path) are
odd cycles. There are examples for both values of a′(G).

2. Proofs

The following useful fact about acyclic edge colouring can be easily verified.

Fact 4. If a graph G is regular with∆(G) ≥ 2, then a′(G) ≥ ∆(G)+ 1.

This is because in any proper edge-colouring of Gwith∆(G) colours, each colour is used on an edge incident at every vertex.
Hence, for each pair of distinct colours a and b and for each vertex u, there is a unique cycle in G going through u that is
coloured with a and b.
We first present the proof of Theorem 3.

Proof (Of Theorem 3). Case G = K d2 : Clearly, a
′(K2) = 1 and a′(K 22 ) = a

′(C4) = 3. For d > 2, we start with G = K 22 and

repeatedly and inductively apply Statement (1) of Theorem 1 to deduce that a′(K d2 ) ≤ d+ 1. Combining this with Fact 4, we
get a′(K d2 ) = d+ 1 for d ≥ 2.
Case G ∈ Md: Again, we use induction on d. If d = 1, then G ∈ paths and hence a′(G) = 2 = ∆(G). or d > 1, repeatedly
and inductively apply Statement (2) of Theorem 1 to deduce that a′(G) ≤ 2(d−1)+2 = 2d. Combining this with the trivial
lower bound a′(G) ≥ ∆(G), we get a′(G) = 2d for each G ∈Md and each d ≥ 1.
Case G ∈ Td: We use induction on d. If d = 1, then G ∈ cycles and hence a′(G) = 3 = ∆(G) + 1. For d > 1, repeatedly
and inductively apply Statement (3) of Theorem 1 to deduce that a′(G) ≤ 2(d− 1)+ 1+ 2 = 2d+ 1. Combining this with
Fact 4, we get a′(G) = 2d+ 1 for each G ∈ Td and each d ≥ 1.
Case G ∈ Pd: Let e, p, and c be as defined in the statement of the theorem. If p = 0, then G is the product of edges and cycles,
and hence G is regular and a′(G) ≥ ∆(G) + 1 by Fact 4. Also, we can assume that c > 0. Otherwise, G = K d2 , and this case
has already been established. Again, without loss of generality, we can assume that the first factor G1 of G is from cycles and
a′(G1) = 3. Now, as in the previous cases, we apply induction on d and also repeatedly apply one of the Statements (1) and
(3) of Theorem 1 to deduce that a′(G) ≤ ∆(G)+ 1. This settles the case p = 0.
Now, suppose either p ≥ 2, or p = 1 and e ≥ 1. Order the d prime factors of G so that G = G1� · · ·�Gd and the first p

factors are from paths and the next e factors are copies of K2. By the previously established cases and from Theorem 1, it
follows that

a′(G1� · · ·�Gp+e) = ∆(G1� · · ·�Gp+e) = 2p+ e ≥ 3.

As before, applying (3) of Theorem 1 inductively, it follows that

a′(G) = a′(G1� · · ·�Gp+e+c) ≤ ∆(G) = 2p+ e+ 2c.

Combining this with the trivial lower bound establishes this case also.
Suppose p = 1, e = 0, and at least one prime factor of G is an even cycle. Let G1 = Pk for some k ≥ 3 and G2 = C2l

for some l ≥ 2. We note that it is enough to show that G′ = G2�G1 is acyclically colourable with ∆(G′) colours, where
∆(G′) = 4. Extending this colouring to an optimal colouring of G can be achieved by repeated applications of Statement (3)
of Theorem 1 as before. Hence we focus on showing a′(G′) = 4.
First, colour the cycle G2 = C2l = (0, 1, . . . , 2l− 1, 0) acyclically as follows. For each i, 0 ≤ i ≤ 2l− 2, colour the edge

(i, i + 1) with 1 if i is even and with 2 if i is odd. Colour the edge (2l − 1, 0) with 3. Now, use the same colouring on each
of the k isomorphic copies (numbered with 0, . . . , k − 1) of G2. For each j with 0 ≤ j < k − 1, the jth and (j + 1)th copies
of G2 are joined by edges which constitute a perfect matching between similar vertices in the two copies. These edges are
coloured as follows. For every i and j, the edge joining (i, j) and (i, j + 1) is coloured as follows: If (i + j) is even, the edge
is coloured with 4. Otherwise, it is coloured with the unique colour from {1, 2, 3} which is missing at this vertex i in both
copies. See Fig. 1 for an illustration.
The colouring is such that in each perfect matching joining two adjacent copies of G2, the edges which are part of this

matching are alternately coloured with 4 and a colour from {1, 2, 3}. Note that there can be no bichromatic cycle within
each copy of G2. Hence any bichromatic cycle (if it exists) should use edges of this perfect matching.
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Fig. 1. Colouring of C6�P5 .

Fig. 2. Colouring of P3�C5 .

First, we claim that there can be no (4, c)-coloured cycle for any c ∈ {1, 2, 3}. To see this, note that no two successive
edges of any such cycle can be from the same copy of G2 since there is no edge coloured 4 in any copy of G2. In addition, to
complete a cycle it is necessary that there must be two adjacent copies, say the jth and the (j + 1)th, such that the cycle
passes from the jth to the (j+1)th and back to jth copy using exactly 3 edges. This contradicts the fact that the edges between
adjacent copies are alternately coloured with 4 and a colour from {1, 2, 3}.
In addition, there can be no (c, c ′)-coloured cycle for any c, c ′ ∈ {1, 2, 3}. To see this, we first note that any maximal

(c, c ′)-coloured path in the jth (for any j) copy of G2 is of odd length (= number of edges) and hence the first and last edge
of such a path are coloured the same, say with c. This means the c ′-coloured edges incident at the two end points u and v
connect them to the different, namely the (j − 1)th and (j + 1)th, copies (because of the way these edges are coloured).
Extending this further, we see that any (c, c ′)-coloured maximal path starts at some (u, 0) and ends at some (v, k− 1) and
does not complete to a cycle. This shows that a′(G′) = 4 as desired.
Finally, suppose p = 1, e = 0, and all prime factors of G (except the one path) are odd cycles. In this case, a′(G) can take

both values as the following examples show. If G = P3�C3, then it can be easily verified that a′(G) = 5 = ∆(G)+ 1. Also, if
G = P3�C5, then a′(G) = 4 = ∆(G) as shown by the colouring in Fig. 2. �

We now present the proof of Theorem 1. A restricted class of bijections (defined below) will play an important role in
this proof.

Definition. A bijection σ from a setA to a setB of the same cardinality is a non-fixing bijection, if σ(i) 6= i for each i.

Proof (Of Theorem 1). Throughout this proof, by the term cross edge, we mean an edge in the perfect matching joining two
consecutive copies of G in G�H where H ∈ {K2, paths , cycles }.
Since a′(G) = η, we can edge-colour G acyclically using colours from [η]. Fix one such colouring C0 : E(G)→ [η].
Define C1 to be the colouring defined by C1(e) = σ(C0(e))where σ : [η] → [η] is any bijection which is non-fixing. For

concreteness, define σ(i) = (i mod η)+ 1.



R. Muthu et al. / Discrete Mathematics 310 (2010) 2769–2775 2773

Fig. 3. Colouring of G�Ck; Note: the two colours indicated under Gi represent colours unused in that copy.

The first two statements of Theorem 1 relating to bounds on a′(G�P2) (with η ≥ 2) and on a′(G�Pl) (with η ≥ 2 and
l ≥ 3) follow directly from Theorem 2. See also an independent proof in [10].
Hence we focus only on the third statement relating to a′(G�Ck) (with η > 2 and k ≥ 3). Consider G�Ck, k ≥ 3. Here we

have k isomorphic copies of G numbered G0,G1, . . . ,Gk−2,Gk−1 such that there is a perfect matching between successive
copies Gi and G(i+1) mod k (see Fig. 3). Our colouring is as follows.
For each i, 1 ≤ i ≤ k− 2, colour the edges of Gi with C(i+1) mod 2.
Let α0, α1 be two new colours which are not in [η]. Let D0 be a colouring of G0 defined by D0(e) = τ(C0(e)) where

τ(i) = i+ 1, i < η, τ(η) = α1.
In order to colour Gk−1, define the colouring D1(e) = µ(C0(e)) where µ(i) = i + 2, i < η − 1 and µ(η − 1) =

α(k+1) mod 2, µ(η) = 2.
Now, colour any edge of the form ((u, i), (u, i+ 1)), 0 ≤ i < k− 1 with the new colour αi mod 2. Colour the edges of the

form ((u, k− 1), (u, 0))with the colour 1. Denote this colouring of G�Ck by C.
We claim that C is proper and acyclic. For each i, the colouring C restricted to Gi is proper and acyclic by definition. Also

note that, each edge ((u, i), (u, (i+ 1) mod k)) is coloured with a colour γ (say) which is not used in either of the copies Gi
and Gi+1. Hence C is proper.
Also, in C, any edge e ∈ Gi and its copy e′ ∈ G(i+1) mod k receive different colours (since the colourings on successive

copies of G are based onmutually non-fixing bijections). It can be seen from the proof for the Case G�P2 (see [10]) that there
can be no bichromatic cycle in C restricted to two successive copies of G. Hence any such bichromatic cycle C should pass
through at least 3 consecutive copies of G, again fixing the two colours of C to be those used on two incident cross edges.
Also, it is easy to see that there can be no bichromatic cycle involving only cross edges since any such cycle uses the three
colours {α0, α1, 1}.
Note that each of G1, . . . ,Gk−2 are coloured free of both α0 and α1. Hence any (α0, α1)-bichromatic cycle C should

start from some vertex (u1, 0) in G0, then reach (u1, k − 1) using only cross edges, then go to some vertex (u2, k − 1)
using an edge of Gk−1, then reach (u2, 0) using only cross edges and then some vertex (u3, 0) using a α1-coloured edge of
G0 and continue this until it finally reaches a vertex (uk, 0) (where k is an even number), and then go to (u1, 0) using a
α1-coloured edge of G0. Here the only non-cross edges used in C are either from G0 (and coloured with α1) or from Gk−1
(and coloured with either α0 or α1 depending on the parity of k). From the definitions ofD0 andD1, it follows that for each
edge (u2l+1, k − 1) → (u2l+2, k − 1) from Gk−1 used in C , its isomorphic copy in G1, namely (u2l+1, 0) → (u2l+2, 0), is
coloured with η. This implies the existence of a (α1, η)-coloured bichromatic cycle in G1, and this is a contradiction.
Similarly, any (α0, 1)-coloured bichromatic cycle should only visit vertices in the copies G1,G0,Gk−1,Gk−2

(or G1,G0,Gk−1) depending on whether k is even (or odd). As argued before, this would imply the existence of a (1, η)-
coloured cycle in G1 (or a (1, (η − 1))-coloured cycle in G1) contradicting our definition of C.
Also, if k is even, then any (1, α1)-coloured cycle should only visit vertices in G0 and Gk−1 (which are consecutive) and

hence cannot exist. If k is odd, then such a cycle can only visit vertices in G0,Gk−1 and Gk−2 and its existence would imply
the existence of a (2, α1)-coloured cycle in G0, again a contradiction. This shows that C is acyclic. �

3. Conclusions

There is very little study of algorithmic aspects of acyclic edge colouring. In [3], Alon and Zaks prove that it is NP-complete
to determine if a′(G) ≤ 3 for an arbitrary graph G. They also describe a deterministic polynomial time algorithm which
obtains an acyclic (∆(G) + 2)-edge-colouring for any graph G whose girth g is at least c∆(G)3 for some large absolute
constant c . Skulrattanakulchai [15] presents a linear time algorithm to acyclically edge colour any graph with∆ ≤ 3 using
at most 5 colours. Also, Muthu, Narayanan, and Subramanian [11] present an O(n log∆(G)) time algorithm which obtains
an acyclic edge colouring of any outerplanar graph using∆(G)+ 1 colours.
The proofs of Theorems 1 and 3 are constructive and readily translate to efficient (polynomial-time) algorithms which

find optimal (or almost optimal) acyclic edge colourings of the partial tori. Further, if the input partial tori is given with its
prime factorisation the algorithm computes the colouring in linear time. Formally,

Theorem 5. If G ∈ Pd is a graph (on n vertices and m edges) specified by its Unique Prime Factorisation, then an acyclic edge
colouring of G using ∆(G) or ∆(G)+ 1 colours can be obtained in O(n+ m) time. Also, the colouring is optimal except when G
is a product of a path and a number of odd cycles.
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For the sake of completeness, we present a brief and formal description of these Algorithms in the Appendix. Before
we finish, we need to say a few words about how the input is presented to the algorithm. It is known from the work of
Aurenhammer, Hagauer, and Imrich [4] that the UPF of a connected graph G (on n vertices andm edges) can be obtained in
O(m log n) time. Hence we assume that our connected input G ∈ Pd is given by the list of its prime factors G1, . . . ,Gd. Also,
without loss of generality, we assume that the list is such that

(i) Gi ∈ paths for i ∈ {1, . . . , p};
(ii) Gi = K2 for i ∈ {p+ 1, . . . , p+ e};
(iii) Gi ∈ cycles for i ∈ {p+ e+ 1, . . . , d = p+ c + e} and all even cycles appear before all odd cycles in the order.

Here p, e, c denote respectively the number of prime factors which are from paths , {K2}, and cycles.
If G is isomorphic to the product of a path and a number of odd cycles, the acyclic chromatic index can take either of the

values in {∆(G),∆(G) + 1}. It would be interesting to see if we can classify such graphs for which a′(G) = ∆(G). It would
also be nice to construct an optimal colouring efficiently for such graphs.

Appendix. Algorithms

Algorithm 1 AcycColPCGrid(G1, . . . ,Gd)
1: if d = 1, then output an optimal acyclic edge-colouring of G1 using 2 (1 or 3) colours depending on whether G1 ∈

paths (G1 = K2 or G1 ∈ cycles) and exit.
2: if d = 2 then
3: if both G1 = G2 = K2, then output an optimal colouring of G1�G2 using 3 colours and exit.
4: if either G1 = K2 and G2 ∈ cycles or G1 ∈ paths and G2 is an even cycle, then interchange G1 and G2; Otherwise, let

G1 and G2 remain the same.
5: Let C0 be an optimal acyclic colouring of G1 (on l vertices) defined as follows: For each i, 0 ≤ i < l−1, colour the edge

(i, i+ 1)with i mod 2. Colour the edge (l− 1, 0) (if it exists) with 3.
6: Output the optimal colouring obtained by applying Acycol2fac(G2,G1,C0) and exit.
7: end if
8: if d > 2 then
9: Apply AcycColPCGrid(G1, . . . ,G(d−1)) to get an optimal colouring C0 of G = G1� · · ·�Gd−1.
10: Obtain an optimal colouring of G�Gd by applying Acycol2fac(G,Gd,C0).
11: Output the optimal colouring of G1� · · ·�Gd thus obtained and exit.
12: end if

Algorithm 2 Acycol2fac(G,H,C0)
1: Let H be a path or cycle on k ≥ 2 vertices {0, . . . , k − 1}. Let G0, . . . ,Gk−1 be the k isomorphic copies of G induced
respectively by the sets {(u, i) : u ∈ V (G)} for each i.

2: if G is an even cycle C2l and H = Pk, then colour each of the k isomorphic copies of G by the colouring C0. For every
j (0 ≤ j < k − 1) and i (0 ≤ i ≤ 2l − 1), colour the edge joining (i, j) and (i, j + 1) with 4 if i + j is even and colour it
with the unique colour from {1, 2, 3}which is missing at both copies of i if i+ j is odd and exit.

3: Otherwise, suppose C0 uses colours from [η] = {1, . . . , η} for some η > 0. Let σ , τ , µ be three permutations over
[η + 2] = {1, . . . , η + 2} defined by

4: σ(i) = (i mod η)+ 1 for i ∈ [η] and σ(i) = i for i > η.
5: τ(i) = i+ 1 for i < η, τ(η) = η + 1, τ (η + 1) = 1 and τ(η + 2) = η + 2.
6: µ(i) = i+ 2 for i < η − 1, µ(η − 1) = η + 1+ ((k+ 1) mod 2), µ(η) = 2,

µ(η + 1+ ((k+ 1) mod 2)) = 1 and µ(η + 1+ (k mod 2)) = η + 1+ (k mod 2).
7: Let C1,D0,D1 be three new colourings of G obtained respectively by colouring each edge e of G by the colour
σ(C0(e)), τ (C0(e)), µ(C0(e)).

8: if H = Pk, then colour each copy Gi by the colouring Ci mod 2. Also, for each i < k − 1, colour the edges between Gi and
Gi+1 with the common colour missing from both of them. This missing colour is η + 1+ (i mod 2).

9: if H = Ck, then, for each i, 0 < i < k−1, colour Gi by the colouring C(i+1) mod 2. Also, colour G0 byD0 and colour Gk−1 by
D1. Also, for each 0 ≤ i < k−1, colour the edges betweenGi andGi+1with the common colour, namely η+1+(i mod 2),
missing from both of them. Colour the edges between G0 and Gk−1 with 1.
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