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Abstract

In this work, new definitions of hypergraph products are presented. The main focus is on the
generalization of the commutative standard graph products: the Cartesian, the direct and the
strong graph product. We will generalize these well-known graph products to products of hy-
pergraphs and show several properties like associativity, commutativity and distributivity w.r.t.
the disjoint union of hypergraphs. Moreover, we show that all defined products of simple (hy-
per)graphs result in a simple (hyper)graph. We will see, for what kind of product the projections
into the factors are (at least weak) homomorphisms and for which products there are similar
connections between the hypergraph products as there are for graphs. Last, we give a new and
more constructive proof for the uniqueness of prime factorization w.r.t. the Cartesian product
than in [Studia Sci. Math. Hungar. 2: 285–290 (1967)] and moreover, a product relation accord-
ing to such a decomposition. That might help to find efficient algorithms for the decomposition
of hypergraphs w.r.t. the Cartesian product.
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Introduction

Within this diploma thesis we are concerned with hypergraph products as a generalization of

graph products.

A (simple) graph G is an object consisting of vertices and edges joining two vertices with each

other, edges are thus two-element subsets of the vertex set. Graph theory occurs in various fields

of science. For instance, social, computational, communication or transport networks can be

described as graphs. They are furthermore an important tool in life science, physics, chemistry

or optimization, to name just a few examples [5].

Many graphs can be constructed from smaller, more simple graphs by operations as unions,

joins or multiplications with respect to a certain product, where many properties of the

constructed graph can be immediately inferred from the constituents the graph is composed

of. The operations we will focus on are the graph multiplications. Of course, there are various

ways to define a product of two given graphs. If we restrict this amount of graph products to

those which satisfy certain algebraic properties, we have in fact only four standard products:

The Cartesian, direct, strong and lexicographic product. These are the only associative simple1

products that depend on the structure of both factors and for which at least one of the projections

into a factor is a weak homomorphism, i.e. an edge is mapped either into an edge or a vertex,

[26, 29].

The standard graph products have been widely investigated. The Cartesian product and besides,

the strong product as well, have been introduced by G. Sabidussi (1960) in [37]. In this

work the author also showed the uniqueness of prime factor decomposition of the Cartesian

product. The direct product has been defined by A.N. Whitehead in 1912 as a product of binary

relations [42]. In 1962, P. M. Weichsel introduced it on graphs as the Kronecker product [41].

The lexicographic product is due to F. Hausdorff (1914) [21], it was defined on graphs as

the composition of graphs by Harary (1959) in [19]. It is the only non-commutative standard

1A graph product is a simple product, if the product of simple graphs is a simple graph, the vertex set of a product

is the Cartesian product of the vertex sets of its factors and adjacency in the product depends on the adjacency

properties of the projections of pairs of vertices into the factors.
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product.

Hypergraph theory was introduced in the 1960s as a generalization of graph theory. Since

then many applications for hypergraphs have been developed, for example in engineering, im-

age processing, molecular biology or chemistry [6]. In a hypergraph more than two vertices

may be linked, so the (hyper-)edges of a hypergraph are (arbitrary) subsets of the vertex set. A

standard reference of this theory is due to C. Berge [3].

As for graphs, hypergraphs might be constructible from smaller hypergraphs, for example as

products. One hypergraph product is given in [4], where the product of two hypergraphs is

defined on the Cartesian product of their vertex sets, and the edges are the Cartesian (set) prod-

ucts of the edges of the factors. This product is the most common hypergraph product, see

[7, 11, 35, 36]. A similar product was introduced by W. Imrich and P.F. Stadler as a product

of neighborhood systems as a generalization of directed graphs in [31], where the authors also

proved that these neighborhood systems have a unique prime factorization under some con-

straints. W. Dörfler and D. A. Waller introduced another hypergraph product 1980 [13], this is

also treated by X. Zhu in 1992 [44]. However, these products are no graph products in the sense

that a product of two (standard) graphs is a graph.

For consistency of hypergraph theory as a generalization of graph theory, one might consider

the standard graph products and ask, how to extend them to hypergraph products, such that they

fulfill certain algebraic properties that are also fulfilled in the case of graph products. Actually,

there is no problem to extend the Cartesian product to hypergraphs. It has been introduced by

W. Imrich in [23] as a product of set systems, i.e. hypergraphs. This hypergraph product is also

considered for example in [7, 8, 11]. Besides, also the lexicographic product has been extended

to hypergraphs by W. Imrich and G. Gaszt in [25] and is furthermore considered for example in

[10, 38].

In this thesis, we will only focus on the commutative graph products and their generalization.

Such hypergraph products are introduced in Chapter 2. We will be concerned with the Cartesian

product of hypergraphs in Section 2.1. Basic properties of this product, some of them are stated

in [23], are explicitly proved in that section. In the case of the direct product it becomes more

difficult to define a suitable hypergraph product. The question is, how to transfer the adjacency

properties of the factors to their product. In [13], the authors defined a product on r-uniform

hypergraphs whose restriction to graphs coincides with the direct graph product. The problem

is to extend this product to arbitrary hypergraphs. That is what we are concerned with in Section
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2.2. We give three new definitions of hypergraph products. Two of them coincide with the

hypergraph product defined in [13] in the class of r-uniform hypergraphs. The third one is

modeled independently and was motivated by [31]. Furthermore, we prove basic properties

of these products and we will see, for what reasons some of those products might fail for our

purpose. Once found a proper definition for a direct product, there should be no problem to

construct a strong product on hypergraphs by taking the union of the edge sets of the Cartesian

and the direct product as the edge set of this product, as this is the case for graphs. This will be

done in Section 2.3. Furthermore, basic properties of the strong product are shown.

In Chapter 3, we focus again on the Cartesian product. To be more precise, we study the prime

factorization of a given hypergraph. In [23], it is shown, that the prime factor decomposition of a

hypergraph is unique in the class of simple connected hypergraphs. Here we give an alternative,

more constructive proof and provide a product relation according to the unique prime factor

decomposition of a simple connected hypergraph.

But first we will start with some basic notions about hypergraphs and the commutative standard

graph products in Chapter 1.
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1 Basics

1.1 Hypergraphs

Within this section we provide a few basic concepts of hypergraph theory, which are needed in

the main part of this thesis. Although we changed some notations, a standard reference for this

theory is due to C. Berge [3].

A (finite) hypergraph H = (V,E ) consists of a finite set V and a family E = {E1, . . . ,Em},

such that:

Ei 6= /0 (1.1)

Ei ⊆V (1.2)

for all i ∈ {1, . . . ,m}. A hypergraph H = (V,E ), E = {E1, . . . ,Em} is called simple if

Ei ⊆ E j implies i = j, (1.3)

and

|Ei| ≥ 2 for all i ∈ {1, . . . ,m}. (1.4)

In other words, there are no multiple edges, no edge of H is contained in any other edge and

each edge consists of at least two vertices.

The elements v1, . . . ,vn of V are called vertices and the sets E1, . . . ,Em are the hyperedges, or

simply edges of the hypergraph. For simplicity, we will refer to the family of edges E (H) of a

hypergraph H as edge set, although it need not to be a usual set.

If there is a risk of confusion we will denote the vertex set and the edge family of a hypergraph

H explicitly by V (H) and E (H), respectively.
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1 Basics

A hypergraph may be drawn as a set of points representing the vertices, an edge E j is repre-

sented by a simple closed curve enclosing its elements if |E j| > 2, for |E j| = 2 by a continuous

curve joining its two elements, and by a loop if |E j| = 1.

Figure 1.1 shows two hypergraphs H and H ′ with vertices V (H) = V (H ′) = {v1, . . . ,v10} and

edges E (H) = {E1,E2,E3,E4,E5,E6,E7} and E (H ′) = {E1,E2,E3,E4,E5}, respectively. The

hypergraph H of the left hand side is not simple, since E6 ⊂ E4 and E7 ⊂ E3.

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10

E1 E2

E3

E4
E6

E5

E7

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10

E1 E2

E3

E4

E5

Figure 1.1: lhs: Hypergraph H. rhs: simple hypergraph H ′.

We say, two vertices u and v are adjacent in a hypergraph H = (V,E ) if there is an edge E ∈ E

such that u,v ∈ E . If for two edges E,F ∈ E holds E ∩F 6= /0, they are said to be incident. A

vertex v and an edge E of H are incident if v ∈ E .

The order of H , denoted by n(H) is the number of vertices, the number of edges will be denoted

by m(H).

The rank of a hypergraph H is r(H) = max j |E j|, the anti-rank is s(H) = min j |E j|. A uniform

hypergraph H is a hypergraph such that r(H) = s(H). A simple uniform hypergraph of rank r

will be called r-uniform.

Walks, Paths, Distances A walk in a hypergraph H = (V,E ) is a sequence

(v0,E1,v1,E2, . . . ,Ek,vk), (1.5)

where E1, . . . ,Ek are distinct edges, v0, . . . ,vk are vertices, such that each vi−1,vi ∈ Ei. A k-cycle

in a hypergraph is a closed walk consisting of k edges. A path is a walk, where the vertices

v0, . . . ,vk are all distinct. Such a path is said to join the vertices v0 and vk, we will denote it by

Pv0vk and we will write (E1,E2, . . . ,Ek) instead of (1.5) if possible. By a path between two edges
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1 Basics

Ei,E j we then mean a path between two vertices vi,v j, such that vi ∈ Ei and v j ∈ E j.

The distance dH(v,v′) of two vertices v0,vk of H is the length of the shortest path joining them,

i.e. the number of edges contained in the path,

dH(v,v′) = min{|E(P)| : P joins v and v′}.

If there is no path joining them, we set dH(v,v′) = ∞.

A hypergraph H = (V,E ) is called connected, if any two vertices are joined by a path, that means

for each two vertices v,v′ of H we have dH(v,v′) < ∞.

Partial Hypergraphs For a hypergraph H = (V,E ) we call H ′ = (W,F ) a partial hypergraph

of H if W ⊆V and F ⊆ E . We then write H ′ ⊆ H . A partial hypergraph H ′ = (W,F ) ⊆ H =

(V,E ) is generated by the edge set F if W =
⋃

E∈F E . It is induced by the vertex set W if

F = (E ∈ E | E ⊆W ). Such an induced partial hypergraph will be denoted by H ′ = 〈W 〉. Note,

that a partial hypergraph of a simple hypergraph is always simple.

Figure 1.2 shows three partial hypergraphs H1, H2 and H3 of the Hypergraph H in Fig-

ure 1.1, with the vertex sets V (H1) = V (H2) = {v1,v2,v3,v4,v6,v7,v8} ⊂ V (H) and V (H3) =

{v1,v2,v3,v4,v6,v7} ⊂ V (H), respectively and with edge sets E (H1) = E (H3) = {E1,E3} ⊂
E (H) and E (H2) = {E1,E3,E6,E7} ⊂ E (H), respectively.

v1

v2v3

v4 v6
v7

v8

E1

E3

H1

v1

v2v3

v4 v6
v7

v8

E1

E3

E6

E7

H2

v1

v2v3

v4 v6
v7

E1

E3

H3

Figure 1.2: Partial hypergraphs H1, H2 and H3 of the non simple hypergraph H of Figure 1.1

H1 is neither an induced partial hypergraph, since E6,E7 ⊂V (H1) but E6,E7 /∈ E (H1) although

they are contained in E (H), nor is it a generated hypergraph, since v8 /∈ E1 ∪E3. While H2 is an

induced and a generated partial hypergraph, H3 is generated but not induced, since E7 /∈ E (H3),

although E7 ⊂V (H3).

By a path between two partial hypergraphs H ′, H ′′ of a hypergraph H is meant a path in H

between two vertices v and w such that v ∈ V (H ′) and w ∈ V (H ′′), respectively. The distance
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1 Basics

dH(H ′,H ′′) between two partial hypergraphs H ′, H ′′ is the length of the shortest path between

two vertices of the respective partial hypergraphs.

A partial hypergraph H ′ ⊆ H is called convex, if all shortest paths in H between two vertices in

H ′ are also contained in H ′.

Homomorphisms For two hypergraphs H1 = (V1,E1) and H2 = (V2,E2) a homomorphism

from H1 into H2 is a mapping ϕ : V1 →V2 such that ϕ(E) = {ϕ(v1), . . . ,ϕ(vr)} is an edge in H2,

whenever E = {v1, . . . ,vr} is an edge in H1. A mapping ϕ : V1 →V2 is a weak homomorphism if

edges are mapped either on edges or on vertices.

A bijective homomorphism ϕ is called an isomorphism if ϕ(E) ∈ E2 if and only if E ∈ E1. We

say, H1 and H2 are isomorphic, in symbols H1
∼= H2 if there exists an isomorphism between

them. In this case the two hypergraphs have the same structure.

If ϕ is the identity, H1 and H2 are said to be the same, H1 = H2, i.e., V (H1) = V (H2) and

E (H1) = E (H2).

1.2 Graph Products

An (undirected) graph is a pair G = (V,E) of vertex set V and a family E consisting of un-

ordered pairs of elements of V , the edges of G. If an edge e of G consists of the same vertices of

G, e = {u,u}, this will be called a loop. Such an edge will be denoted by {u} instead of {u,u}.

A graph can be seen as a special hypergraph, whose edges are restricted to contain at most 2

elements. That is, a graph G is a hypergraph with rank r(G) = 2. Therefore, all definitions of

the latter section may be transfered to graphs as well. A simple graph is then a 2-uniform hy-

pergraph. The class of simple graphs will be denoted by Γ, that of simple graphs with loops by

Γ0. In the following, by a subgraph is meant a partial hypergraph of a graph. More information

about graphs and graph theory can be found for example in [9] and [20].

In this section we give a short overview about the commutative standard graph products, that are

the Cartesian product, the direct product and the strong product. We will restrict our considera-

tions to their definition and a few basic algebraic properties. All assertions stated here, including

their proofs and in addition, more detailed information about product graphs can be found in

[29].

7
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1.2.1 The Cartesian Product

The Cartesian product G = G1�G2 of two graphs G1 = (V1,E1) and G2 = (V2,E2) is defined on

the vertex set V (G) = V1 ×V2 with edge set

E(G) =
{
{(u1,u2),(v1,v2)} | {u1,v1} ∈ E1,u2 = v2, or u1 = v1,{u2,v2} ∈ E2

}
.

The Cartesian product satisfies several algebraic properties such like associativity, commuta-

tivity and distributivity with respect to the disjoint union, it is connected if and only if both

factors are. The one vertex graph K1 is a unit with respect to the Cartesian product, i.e.

G�K1
∼= K1�G ∼= G for any graph G. The Cartesian product G = �

n
i=1Gi of arbitrary many

factors Gi is well defined [28].

G P3

G2P3

2 =

Figure 1.3: Cartesian Product of a graph G and a path P3 on 3 vertices

The mapping pi : V (�n
i=1Gi) → V (Gi) defined by pi(v) = vi for v = (v1,v2, . . . ,vn) is called

projection on the i-th factor of G, and vi is then the i-th coordinate of v. Each of the pi is

a weak homomorphism for all i = i, . . . ,n, since edges are mapped on edges or vertices. The

restriction of pi to the induced subgraph of G whose vertices differ from a vertex w only in the

i-th coordinate is then an isomorphism, since

〈
{v ∈V (G) | p j(v) = w j, for all j 6= i}

〉

is isomorphic to Gi. This induced subgraph is called Gi-layer through w, denoted by Gw
i . Notice,

that Gw
i are convex subgraphs of G, while Gi is no subgraph of G. For u ∈ V (Gw

i ) we have

Gu
i = Gw

i . If u /∈V (Gw
i ), then Gu

i 6= Gw
i , moreover V (Gu

i )∩V (Gw
i ) = /0.

We are now in the position to give an equivalent definition of the Cartesian product in terms of

projections as follows (see [37]).

For G = �
n
i=1Gi, Gi = (Vi,Ei) and I = {1, . . . ,n} we have

8
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(1) V (G) = V1 ×V2 × . . .×Vn

(2) {u,v} ∈ E(G), u,v ∈V (G) iff there is an index j ∈ I, s.t. {p j(u), p j(v)} ∈ E j and pi(u) =

pi(v) for all i 6= j, i ∈ I.

A graph G is called prime with respect to a given product if it cannot be represented as a

product of nontrivial factors. For the Cartesian product this means G is prime if G = G1�G2

implies G1 = K1 or G2 = K1. A set {G1, . . . ,Gn} of graphs is called a prime factorization of G

if G = �
n
i=1Gi, where Gi is prime and Gi 6= K1 for 1 ≤ i ≤ n ([1]).

Proposition 1.1. [29] Every graph G has a prime factor decomposition with respect to the

Cartesian product. The number of prime factors is at most log2 |V (G)|.

Cartesian Product graphs and their prime factor decomposition have been widely investigated,

also from an algorithmic point of view, see [1, 14, 15, 30, 37, 40, 43].

Theorem 1.1. [29] Prime factorization is not unique for the Cartesian product in the class of

non-connected simple graphs.

The next result was first proved by G. Sabidussi in 1960. V.G. Vizing gave an alternative proof

in 1963.

Theorem 1.2. [37, 40] Every connected graph G has a unique prime factor decomposition with

respect to the Cartesian product.

1.2.2 The Direct Product

As the Cartesian product, the direct product of two graphs G = G1 ×G2 is defined on the Carte-

sian product of their vertex sets V (G) = V (G1)×V (G2). A pair of vertices {(u1,u2),(v1,v2)} is

an edge in G if and only if {u1,v1} is an edge in G1 and {u2,v2} is an edge in G2. More formal:

E(G1 ×G2) =
{
{(u1,u2),(v1,v2)} | {u1,v1} ∈ E(G1),{u2,v2} ∈ E(G2)

}
.

While the factors of a connected direct product must be connected, the converse does not hold

in general. As an example see Figure 1.4.

9



1 Basics

Figure 1.4: Direct product of two paths P3×P5. Although the factors are connected, their product consists

of two connected components

As the Cartesian product the direct product satisfies several algebraic properties such like

associativity, commutativity and distributivity. But it has no unit in the class of simple graphs. If

we admit graphs with loops, then the one-vertex graph with a loop is a unit for the direct product

[29].

The projections of a direct product into its factors are not just weak homomorphisms as for the

Cartesian product, they are homomorphisms.

In terms of projections the direct product can be defined as follows:

For G = ×n
i=1Gi, Gi = (Vi,Ei) and I = {1, . . . ,n} we have

(1) V (G) = V1 ×V2 × . . .×Vn

(2) {u,v} ∈ E(G), u,v ∈V (G) iff {pi(u), pi(v)} ∈ Ei for all i ∈ I.

In distinction from the Cartesian product the prime factorization is not only non-unique in the

class of non-connected graphs:

Theorem 1.3. [29] Prime factorization with respect to the direct product is neither unique in

the class of non-connected graphs with loops nor in the class of connected simple graphs.

The next result was proved by R. McKenzie in 1971. In this work the direct product is called

"cardinal product".

Theorem 1.4. [34] Let G be a finite, non bipartite1 connected graph in Γ0. Then G has unique

prime factor decomposition with respect to the direct product in Γ0.

1A graph G is called bipartite if its vertex set can be represented as the union of two disjoint sets V1 and V2, such

that no edge of G joins vertices within V1 and V2, respectively.

10
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1.2.3 The Strong Product

The strong product G = G1 ⊠G2 of two graphs G1 and G2 is defined on the Cartesian product of

the vertex sets of the factors, V (G) = V (G1)×V (G2). two distinct vertices (u1,u2) and (v1,v2)

are adjacent if

{u1,v1} ∈ E(G1) and {u2,v2} ∈ E(G2), or

{u1,v1} ∈ E(G1) and u2 = v2, or

u1 = v1 and {u2,v2} ∈ E(G2).

We observe that

E(G1 ⊠ G2) = E(G1�G2)∪E(G1×G2). (1.6)

The strong product is associative, commutative, distributive w.r.t the disjoint union and has K1

as unit. Hence the strong product G = ⊠
n
i=1Gi of arbitrary many factors Gi is well defined. It is

connected if and only if all of its factors are. The projections of a strong product graph into its

factors are weak homomorphisms [29].

Figure 1.5: Strong product of two paths P3 ×P5. The thick edges are Cartesian edges, the thin ones are

non-Cartesian edges

We can define the strong product, analogously to [37], in terms of the projection as follows:

For G = ⊠
n
i=1Gi, Gi = (Vi,Ei) and I = {1, . . . ,n} we have

(1) V (G) = V1 ×V2 × . . .×Vn

(2) {u,v} ∈ E(G), u,v ∈V (G) iff there is an index set J ⊆ I, s.t. {p j(u), p j(v)} ∈ E j for all

j ∈ J and pi(u) = pi(v) for all i ∈ I \ J.

As for the Cartesian product, each Gw
i -layer

〈
{v ∈V (G) | p j(v) = w j, for all j 6= i}

〉

11



1 Basics

is isomorphic to Gi. But they are not convex in general, contrary to the Cartesian product.

The edges of a strong product G = ⊠
n
i=1Gi that differ in exactly one coordinate are called

Cartesian the others non-Cartesian, see Figure 1.5. In Equation (1.6) the Cartesian edges

correspond to the first term E(G1�G2) on the right hand side and those which are non-Cartesian

to the second term E(G1 ×G2).

The strong product can be considered as a special case of the direct one:

For a graph G ∈ Γ let LG denote the graph in Γ0, which is formed from G by adding a loop to

each vertex of G. On the other hand, for a graph G′ ∈ Γ0 let NG′ denote the graph in Γ which

emerges from G′ by deleting all loops. Then we have for G1,G2 ∈ Γ:

G1 ⊠ G2 = N(LG1 ×LG2) (1.7)

As for the Cartesian product, every graph has a prime factor decomposition with respect to the

strong product. In the class of non-connected graphs, this need not be unique. The following

result was proved by W. Dörfler and W. Imrich in 1970.

Theorem 1.5. [12] Every connected graph G has unique prime factor decomposition with re-

spect to the strong product.

12



2 Hypergraph Products

A first definition of a "direct" product H1 × H2 of two hypergraphs H1 = (V1,E1) and H2 =

(V2,E2) on the vertex set V (H1 ×H2) = V1 ×V2 with edge set E (H1 ×H2) = {E1 ×E2 | E1 ∈
E1,E2 ∈ E2} can be found in [4]. Another definition of a hypergraph product is given by W.

Dörfler and D. A. Waller in [13] and is also considered by X. Zhu in [44]:

For two hypergraphs H1 = (V1,E1) and H2 = (V2,E2) the product H1 ×H2 is the hypergraph

with vertex set V (H1 ×H2) = V1 ×V2 and a subset E = {(x1,y1), . . . ,(xk,yk)} of V (H1 ×H2) is

an edge of H1 ×H2 if and only if {x1, . . . ,xk} ∈ E1 and {y1, . . . ,yk} ∈ E2, where x1, . . . ,xk and

y1, . . . ,yk need not to be distinct.

However, these products do not specialize to graphs. That is, the product of two graphs seen as

2-uniform hypergraphs is not a usual graph, but a 4-uniform hypergraph.

In this chapter we want to introduce hypergraph products, which coincide with the commuta-

tive standard graph products, defined in the previous section. In particular, we are interested in

hypergraph products ⋆ that satisfy the following requirements:

1. V (H1 ⋆H2) = V (H1)×V (H2)

2. The restriction of the product ⋆ on graphs coincides with the corresponding graph product.

3. Associativity.

4. Commutativity.

5. Distributivity with respect to the disjoint union.

6. If H1 and H2 are simple then H1 ⋆H2 is simple.

7. The projections pi : V (H1 ⋆H2)→V (Hi) for i ∈ {1,2} are at least weak homomorphisms.

In the first section we are concerned with the Cartesian product of hypergraphs. It was introduced

by W. Imrich in 1967 as the Cartesian product of set systems as a generalization of the Cartesian

graph product [23].
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In the second section we will introduce three direct products, and we will see, for what reasons

some of them might fail for our purpose.

In the third section we will be concerned with the strong hypergraph product. As we have seen

in Section 1.2.3 the edge set of the strong product of two graphs is the union of the edge sets of

their Cartesian and direct product. There is no reason to change this for hypergraphs.

2.1 The Cartesian Product

Let H1 and H2 be two Hypergraphs. The Cartesian product H = H1�H2 has vertex set V (H) =

V (H1)×V(H2), that is the Cartesian product of the vertex sets of the factors and the edge set

E (H) =
{
{x}×F : x ∈V (H1),F ∈ E (H2)

}

∪
{

E ×{y} : E ∈ E (H1),y ∈V (H2)
}
.

Thus, the set {(x1,y1), . . . ,(xr,yr)}, xi ∈ V (H1), yi ∈ V (H2), i = 1, . . . ,r, is an edge in

E (H1�H2) if and only if either

(i) {x1, . . . ,xr} is an edge in E (H1) and y1 = . . . = yr, or

(ii) {y1, . . . ,yr} is an edge in E (H2) and x1 = . . . = xr.

The Cartesian product of hypergraphs was introduced by W. Imrich [23]. We consider it for sake

of completeness and prove explicitly some basic properties.

Figure 2.1 shows an example of a Cartesian product of two hypergraphs H and E3, where E3

is is the hypergraph which consists of a single edge with three vertices.

H E3
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2 Hypergraph Products

H2E3

Figure 2.1: Hypergraphs H and E3 and their Cartesian product H�E3

Let an edge E in E (H) be denoted by

(i) Eiy if E = Ei ×{y}, where Ei ∈ E (H1) and y ∈V (H2)

(ii) Ex j if E = {x}×E j, where x ∈V (H1) and E j ∈ E (H2)

We define the projection of a Cartesian product H = H1�H2 into one of the factors Hi, i ∈
{1,2} by the mapping pi : V (H)→V (Hi), with pi(v) = vi, where v = (v1,v2)∈V (H). By pi(X)

we denote the set {pi(x) : x ∈ X} for an X ⊆ V (H). The projections of a Cartesian product of

hypergraphs into its factors are weak homomorphisms, as edges are either mapped onto edges

or onto vertices:

p1(Ex j) = x ∈V (H1) and p2(Eiy) = Ei ∈ E (H1)

p1(Ex j) = E j ∈ E (H2) and p2(Eiy) = y ∈V (H2)

Lemma 2.1. The Cartesian Product is associative.

Proof. To proof associativity we need to show that the mapping V ((H1�H2)�H3) →
V (H1�(V2�V3)) defined by ((x,y),z) 7→ (x,(y,z)) with x ∈ V (H1), y ∈ V (H2) and z ∈ V (H3)

is an isomorphism. Clearly, it is bijective.

Let {((x1,y1),z1), . . . ,((xr,yr),zr)} be an edge in (H1�H2)�H3. Then the following cases can

occur:

(i) (x1,y1) = . . . = (xr,yr)∈V (H1�H2), i.e. x1 = . . . = xr ∈V (H1) and y1 = . . . = yr ∈V (H2),

and therefore {z1, . . . ,zr} ∈ E (H3), or
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2 Hypergraph Products

(ii) z1 = . . . = zr ∈V (H3) and therefore {(x1,y1), . . . ,(xr,yr)} ∈ E (H1�H2). Then

(a) x1 = . . . = xr ∈V (H1) and {y1, . . . ,yr} ∈ E (H2), or

(b) y1 = . . . = yr ∈V (H2) and {x1, . . . ,xr} ∈ E (H1).

Altogether we have either

(1) {x1, . . . ,xr} is an edge in H1 and the yi and zi resp. are equal, or

(2) {y1, . . . ,yr} is an edge in H2 and the xi and zi resp. are equal, or

(3) {z1, . . . ,zr} is an edge in H3 and the xi and yi resp. are equal.

But this is equivalent to the following:

(i) x1 = . . . = xr ∈ V (H1) and {(y1,z1), . . . ,(yr,zr)} ∈ E (H2�H3) because of (2) and (3),

respectively, or

(ii) {x1, . . . ,xr} ∈ E (H1) and (y1,z1) = . . . = (yr,zr) ∈V (H2�H3) because of (1).

Therefore, {(x1,(y1,z2)), . . . ,(xr,(yr,zr))} is an edge in H1�(H2�H3). That means the im-

age of a subset F ⊆ V ((H1�H2)�H3) is an edge in H1�(H2�H3) if and only if it is an edge

in(H1�H2)�H3.

Hence, the mapping defined above is an isomorphism, which completes the proof.

Due to the symmetry of the definition we can state

Lemma 2.2. The Cartesian product is commutative.

Notice, that commutativity and associativity is meant in the sense of identifying isomorphic

hypergraphs.

The one vertex hypergraph K1 is a unit with respect to the Cartesian product, i.e., K1�H ∼=
H�K1

∼= H for any hypergraph H . The isomorphism is given by the projection into the factor

H . For two vertex-disjoint hypergraphs H1 and H2 their disjoint union, denoted as H1 + H2 is

defined by V (H1 + H2) = V (H1)∪V (H2) and E (H1 + H2) = E (H1)∪E (H2).

Lemma 2.3. The Cartesian product is left and right distributive together with the disjoint union

as addition.
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2 Hypergraph Products

Proof. Let H1, H2 and H3 be hypergraphs and furthermore, let H2 and H3 be vertex-disjoint.

Then we have for the vertex set of H1�(H2 + H3):

V (H1�(H2 + H3)) = V (H1)× (V (H2)∪V(H3))

= (V (H1)×V (H2))∪ (V (H1)×V(H3))

= V (H1�H2 + H1�H3) (2.1)

and for the edge set:

E (H1�(H2 + H2)) =
{
{x}×F : x ∈V (H1),F ∈ E (H2 + H3)

}

∪
{

E ×{y} : E ∈ E (H1),y ∈V (H2 + H3)
}

=
{
{x}×F : x ∈V (H1),F ∈ E (H2)∪E (H3)

}

∪
{

E ×{y} : E ∈ E (H1),y ∈V (H2)∪V(H3
}

=
{
{x}×F : x ∈V (H1),F ∈ E (H2)

}

∪
{
{x}×F : x ∈V (H1),F ∈ E (H3)

}

∪
{

E ×{y} : E ∈ E (H1),y ∈V (H2)
}

∪
{

E ×{y} : E ∈ E (H1),y ∈V (H3)
}

=
{
{x}×F : x ∈V (H1),F ∈ E (H2)

}

∪
{

E ×{y} : E ∈ E (H1),y ∈V (H2)
}

∪
{
{x}×F : x ∈V (H1),F ∈ E (H3)

}

∪
{

E ×{y} : E ∈ E (H1),y ∈V (H3)
}

=E (H1�H2)∪E (H1�H3)

=E (H1�H2 + H1�H3) (2.2)

Hence

H1�(H2 + H3) = H1�H2 + H1�H3,

From analogous considerations we can infer

(H1 + H2)�H3 = H1�H3 + H2�H3,

for vertex-disjoint H1 and H2.
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Lemma 2.4. The Cartesian product H = �
n
i=1Hi of hypergraphs Hi is connected if and only if

all of its factors Hi are connected.

Proof. Because of associativity and commutativity of the Cartesian product it suffices to show

the assertion for n = 2, therefore let H = H1�H2.

First assume H1 and H2 to be connected. Let v = (x,y) and v′ = (x′,y′) be two arbitrary vertices

in V (H). Consider a path Pxx′ = (E1, . . . ,Er) from x to x′ in H1 and a path Pyy′ = (F1, . . . ,Fs) from

y to y′ in H2. Then (E1y, . . . ,Ery) is a path from (x,y) to (x′,y) in H and (Fx′1, . . . ,Fx′s) is a path

from (x′,y) to (x′,y′) in H . Hence (E1y, . . . ,Ery,Fx′1, . . . ,Fx′s) is a path from v to v′ in H .

W.l.o.g. suppose now H1 is not connected. It is then the disjoint union of two hypergraphs,

H1 = H ′
1 + H ′′

1 . Since the Cartesian product is distributive with respect to the disjoint union, we

have H = H ′
1�H2 + H ′′

1 �H2, that is H is the disjoint union of two hypergraphs, i.e., H is not

connected.

Lemma 2.5. The Cartesian product H = �
n
i=1Hi of hypergraphs Hi is simple if and only if all

of its factors Hi are simple.

Proof. Because of associativity and commutativity of the Cartesian product, it suffices to show

the assertion for n = 2, therefore let H = H1�H2.

First let H1 and H2 be simple and suppose H is not simple. We have to examine several cases:

Suppose H contains at least one loop {(x,y)} = {x}×{y}. Then, it follows, {x} is an edge in

H1, i.e., a loop, or {y} is a loop in H2. Both contradicts the fact, that H1 and H2 are simple. Thus,

|E| ≥ 2 for all E ∈ E (H).

Now, let Ex j ⊆ Ex′ j′ . It follows immediately that x = x′ and E j ⊆ E j′ . Since H2 is simple, we

have j = j′, and therefore it follows (x j) = (x′ j′). By commutativity, the same holds for the case

Eiy ⊆ Ei′y′ .

Now assume Ex j ⊆ Eiy, i.e. ({x}×E j) ⊆ (Ei ×{y}). Then we have E j ⊆ {y} thus E j = {y},

contradicting that H2 is simple. The same argumentation holds for Eiy ⊆ Ex j.

That means, H1�H2 is simple.

Now assume (at least) one of the factors is not simple, w.l.o.g. say H1. Then there are two edges

Ei,E j ∈ E (H1), such that Ei ⊆ E j, i 6= j or there is an Ei ∈ E (H1) with |Ei| = 1, say Ei = {x}. In

the first case we have for any y ∈V (H2), Eiy = Ei×{y} ⊆ E j ×{y}= E jy and (iy) 6= ( jy), hence

H1�H2 is not simple. In the second case, we have |Eiy| = |{(x,y)}| = 1 for any y ∈V (H2) and

H1�H2 would not be simple.
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2 Hypergraph Products

The Cartesian Product of arbitrarily many factors H = �
n
i=1Hi is now well defined. Thus, we

can extend the concept of the projections. For H = �
n
i=1Hi and j ∈ {1, . . . ,n} we define p j :

V (�n
i=1Hi) →V (H j) through p j(v) = v j, for v = (v1, . . . ,vn), the projection into the j-th factor

H j of H . We then call v j the j-th coordinate of v. Clearly, the projections p j, j ∈ {1, . . . ,n},

n ≥ 2 are weak homomorphisms as well.

According to [37] the Cartesian product of hypergraphs can be described in terms of projections

as follows:

For H = �
n
i=1Hi, with Hi = (Vi,Ei) and I = {1, . . . ,n} we have

(1) V (H) = V1 ×V2 × . . .×Vn,

(2) for E ⊆V (H) we have E ∈ E (H) if and only if there is an i ∈ I, s.t.

(i) pi(E) ∈ Ei and

(ii) |p j(E)| = 1 for all j ∈ I \{i}.

Notice, that |pi(E)| = |E| holds.

Let w ∈V (H) be a vertex of H . The partial hypergraph of H induced by all vertices of H which

differ from w exactly in the j-th coordinate is isomorphic to H j, more formal

〈{v ∈V (H) | pk(v) = wk for k 6= j}〉 ∼= H j.

We will call this partial hypergraph the H j-layer through w, denoted as Hw
j . The isomorphism

Hw
j → H j is then the projection p j. For u ∈ V (Hw

j ) we have Hu
j = Hw

j and moreover V (Hu
j )∩

V (Hw
j ) = /0 if and only if u /∈V (Hw

j ).

w

Figure 2.2: Cartesian product H�E3 (cf. Figure 2.1), red Hw-layer
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2 Hypergraph Products

Figure 2.2 shows the Cartesian product of a hypergraph H and the hypergraph E3 consisting

of a single edge with three vertices, see Figure 2.1 and a layer of the hypergraph H through the

vertex w, Hw, highlighted by red edges.

Summary

To conclude this section, we summarize the preceding results. For the Cartesian product holds:

1. The restriction of this product on graphs is the Cartesian graph product.

2. Associativity.

3. Commutativity.

4. Distributivity with respect to the disjoint union.

5. The product of two simple hypergraphs is simple.

6. The projections of a product hypergraph onto its factors are weak homomorphisms.

As an open problem, it remains to examine if this product has a unique prime factorization.

This will be done in Chapter 3.

2.2 The Direct Product

To find suitable direct hypergraph products, we have to claim that they are closed under the

restriction on 2-uniform hypergraphs. The most simple way to ensure this is to define a product

which preserves the rank of one of its factors, and therefore is closed on r-uniform hypergraphs

in general. Besides, it is also possible to define a direct hypergraph product, which does not need

to be r-uniform although its factors are.

In this section we will introduce three different direct products. The direct product ×̌, which

preserves the minimal rank of two factors, the direct product ×̂, which preserves the maximal

rank of two factors and the direct product ×̃, which does not preserve any rank of its factors.

2.2.1 r-Uniformity Preserving Direct Product

Recall, that for two given graphs, G1 and G2, e = {(x1,x2),(y1,y2)} is an edge in G1 ×G2, for

xi,yi ∈V (Gi), i = 1,2, if and only if {x1,y1} is an edge in G1 and {x2,y2} is an edge in G2.
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2 Hypergraph Products

There is no problem to extend this definition to r-uniform hypergraphs:

Let H1 and H2 be two r-uniform hypergraphs. We define their direct product H1 ×H2 by

E (H1 ×H2) :=
{
{(x1,y1), . . . ,(xr,yr)} | {x1, . . . ,xr} ∈ E (H1),{y1, . . . ,yr} ∈ E (H2)

}
. (2.3)

Thus E = {(x1,y1), . . . ,(xr,yr)}, xi ∈V (H1), yi ∈V (H2), i = 1, . . . ,r, is an edge in H1 ×H2 if

and only if

(i) {x1, . . . ,xr} is an edge in H1 and

(ii) {y1, . . . ,yr} is an edge in H2.

Figure 2.3 shows a direct product of two hypergraphs that consists only of a single edge with

three vertices.

E3

E3 × E3

Figure 2.3: Direct product E3 ×E3

Clearly, for r = 2 this is the direct graph product.

This product was introduced by W. Dörfler and D. A. Waller in [13]. However, it is only

defined on r-uniform hypergraphs. A natural question is how to extend this to a product between

two arbitrary, non-uniform hypergraphs.

Minimal Rank Preserving Direct Product

Now we introduce a direct hypergraph product which preserves the the minimal rank of one of

its factors.

Let H1 = (V1,E1) and H2 = (V2,E2) be two hypergraphs. Then their direct product ×̌ is defined

on the Cartesian product of the vertex set, and a subset E = {(x1,y1), . . . ,(xr,yr)} of V1 ×V2 is

an edge in H1×̌H2 if and only if
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(i) {x1, . . . ,xr} is an edge in H1 and {y1, . . . ,yr} is the subset of an edge in H2, or

(ii) {x1, . . . ,xr} is the subset of an edge in H1 and {y1, . . . ,yr} is an edge in H2

More formal, for two hypergraphs H1 = (V1,E1),H2 = (V2,E2), we define their direct product ×̌
by the edge set

E (H1×̌H2) : =
{ ⋃

x∈E

{(x,π(x))} | π : E → F injective, E ∈ E1,F ∈ E2
}

∪
{ ⋃

y∈F

{(π ′(y),y)} | π ′ : F → E injective, E ∈ E1,F ∈ E2
}
.

Let an edge {(x1,y1), . . . ,(xr,yr)} in H = H1×̌H2 be denoted by

(i) Eiπ if {x1, . . . ,xr} = Ei ∈ E1 and {y1, . . . ,yr} ⊆ Fj ∈ E2, where π : Ei → Fj is the injective

mapping defined by π(xk) = yk, for all k ∈ {1, . . . ,r}, and

(ii) Eπ ′ j if {y1, . . . ,yr}= Fj ∈ E2 and {x1, . . . ,xr} ⊆ Ei ∈ E1, where π ′ : Fj → Ei is the injective

mapping defined by π ′(yk) = xk for all k ∈ {1, . . . ,r}.

Notice, if there exists no edge of the form Eiπ , all edges of H are of the form Eπ ′ j and vice versa.

Figure 2.4 shows a direct product ×̌ of a hypergraph H and the hypergraph E3, which consists

only of a single edge with three vertices.

H

H×̌E3

Figure 2.4: Direct product ×̌, H×̌E3

The restriction of the direct product ×̌ to r-uniform hypergraphs is the product defined in

Equation (2.3), hence the restriction of this product to simple graphs coincides with the direct
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graph product.

We have:

r(H1×̌H2) = min{r(H1),r(H2)}

and

s(H1×̌H2) = min{s(H1),s(H2)}

where r(H) and s(H) denote the rank and the anti-rank, respectively of a hypergraph H .

Lemma 2.6. The direct product ×̌ is associative.

Proof. Let H1 = (V1E1),H2 = (V2,E2),H3 = (V3,E3) be given hypergraphs. As for the Carte-

sian product we proof associativity by showing that the mapping ψ : V (H1×̌(H2×̌H3)) →
V ((H1×̌H2)×̌H3) defined by (x,(y,z)) 7→ ((x,y),z), with x ∈V1, y ∈V2 and z ∈V3, is an isomor-

phism. Obviously ψ is bijective, hence, it remains to show the homomorphism property, i.e., we

have to show that E is an edge in H1×̌(H2×̌H3) if and only if ψE is an edge in (H1×̌H2)×̌H3.

Let E = {((x1,y1),z1), . . . ,((xr,yr),zr)} be an edge in (H1×̌H2)×̌H3.

There are two cases which can occur. First, {z1, . . . ,zr} is an edge in H3 and

{(x1,y1), . . . ,(xr,yr)} is thus a subset of an edge in H1×̌H2, hence {x1, . . . ,xr} and {y1 . . . ,yr}
must be subsets of edges in H1 and H2 respectively. But then {(y1,z1), . . . ,(yr,zr)} is an edge in

H2×̌H3, thus ψE = {(x1,(y1,z1)), . . . ,(xr,(yr,zr))} is an edge in H1×̌(H2×̌H3).

Second, {(x1,y1), . . . ,(xr,yr)} is an edge in H1×̌H2 and {z1, . . . ,zr} is a subset of an edge in H3.

Then, {x1, . . . ,xr} is an edge in H1 and {y1 . . . ,yr} is a subset of an edge in H2, or vice versa.

In the first case {(y1,z1), . . . ,(yr,zr)} is a subset of an edge in H2×̌H3, hence, ψE is an edge in

H1×̌(H2×̌H3), and in the second case {(y1,z1), . . . ,(yr,zr)} is an edge in H2×̌H3 and thus ψE

is an edge in H1×̌(H2×̌H3).

This implies that, whenever E is an edge in (H1×̌H2)×̌H3, then ψE is an edge in H1×̌(H2×̌H3).

The converse, i.e., if ψE is an edge in H1×̌(H2×̌H3) then E is an edge in (H1×̌H2)×̌H3, is

shown analogously. Hence, it holds (H1×̌H2)×̌H3
∼= H1×̌(H2×̌H3).

As for the Cartesian product, we have due to the symmetry of its definition:

Lemma 2.7. The direct product ×̌ is commutative

Distributivity with respect to the disjoint union as addition follows by set-theoretic consider-

ations similar to those as in the case of the Cartesian product.
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Lemma 2.8. The direct product ×̌ is left and right distributive with respect to the disjoint union

as addition.

Proof. Let H1 = (V1,E1), H2 = (V2,E2) and H3 = (V3,E3) be hypergraphs and let H2 and H3 be

vertex-disjoint. Then we have

E (H1×̌(H2 + H3)) =
{ ⋃

x∈E

{(x,π(x))} | π : E → F injective, E ∈ E1,F ∈ E2 ∪E3
}

∪
{ ⋃

y∈F

{(π ′(y),y)} | π ′ : F → E injective, E ∈ E1,F ∈ E2 ∪E3
}

=
{ ⋃

x∈E

{(x,π(x))} | π : E → F injective, E ∈ E1,F ∈ E2
}

∪
{ ⋃

x∈E

{(x,π(x))} | π : E → F injective, E ∈ E1,F ∈ E3
}

∪
{ ⋃

y∈F

{(π ′(y),y)} | π ′ : F → E injective, E ∈ E1,F ∈ E2
}

∪
{ ⋃

y∈F

{(π ′(y),y)} | π ′ : F → E injective, E ∈ E1,F ∈ E3
}

=
{ ⋃

x∈E

{(x,π(x))} | π : E → F injective, E ∈ E1,F ∈ E2
}

∪
{ ⋃

y∈F

{(π ′(y),y)} | π ′ : F → E injective, E ∈ E1,F ∈ E2
}

∪
{ ⋃

x∈E

{(x,π(x))} | π : E → F injective, E ∈ E1,F ∈ E3
}

∪
{ ⋃

y∈F

{(π ′(y),y)} | π ′ : F → E injective, E ∈ E1,F ∈ E3
}

=E (H1×̌H2)∪E (H1×̌H3)

=E ((H1×̌H2)+ (H1×̌H3))

With the same arguments as in Equation (2.1) we can conclude V (H1×̌(H2 + H3)) =

V ((H1×̌H2)+ (H1×̌H3)) and hence, it follows H1×̌(H2 + H3) = (H1×̌H2)+ (H1×̌H3).

Analogously we can conclude (H1 +H2)×̌H3 = (H1 +H3)×̌(H2 +H3) for vertex disjoint hyper-

graphs H1 and H2.

Note, that the direct product ×̌ of two connected hypergraphs need not to be connected.

Lemma 2.9. The direct product ×̌, H = ×̌n
i=1Hi, of simple hypergraphs Hi is simple.

Proof. Because of associativity and commutativity of the direct product ×̌, it suffices to prove

the assertion for n = 2. Therefore, let H1 = (V1,E1) and H2 = (V2,E2) be two simple hypergraphs

24



2 Hypergraph Products

and suppose H = H1×̌H2 is not simple. Then several cases can occur.

Suppose first H contains at least one loop {(x,y)}. Then, it follows, {x} is an edge in H1, i.e., a

loop, or {y} is a loop in H2, contradicting the fact, that H1 and H2 are simple. Thus, |E| ≥ 2 for

all E ∈ E (H).

Now,assume there is an edge Ei1π1 contained in an edge Ei2π2 . If there are no edges of the form

Eiπ in H , we consider the hypergraph H2×̌H1.

We have Eisπs =
⋃

x∈Eis
{(x,πs(x))}, where πs : Eis → Fjs is an injective mapping, with Eis ∈ E1

and Fjs ∈ E2, for s = 1,2. It follows

Ei1 =
⋃

x∈Ei1

{x} ⊆
⋃

x∈Ei2

{x} = Ei2

and since H1 is simple we conclude i1 = i2. Furthermore we have

π1(Ei1) =
⋃

x∈Ei1

{π1(x)} ⊆
⋃

x∈Ei2

{π2(x)} ⊆ Fj2 ,

hence π1 is a mapping from Ei1 into Fj2 and since π1(x) = π2(x) must hold for all x ∈ Ei1 = Ei2

we have π1 = π2. Thus, Ei1π1 ⊆ Ei2π2 implies (i1π1) = (i2π2). Analogously we can conclude that

Eπ ′
1 j1 ⊆ Eπ ′

2 j2 implies (π ′
1 j1) = (π ′

2 j2).

Now assume we have Eiπ ⊆ Eπ ′ j with Eiπ =
⋃

x∈Ei
{(x,π(x))}, where π : Ei → Fj′ , and Eπ ′ j =

⋃
y∈Fj

{(π ′(y),y)}, π ′ : Fj → Ei′ , respectively. Remark that π(Ei) ⊆ Fj′ as well as π ′(Fj) ⊆ E j′ .

It follows

Ei =
⋃

x∈Ei

{x} ⊆
⋃

y∈Fj

{π ′(y)} = π ′(Fj) ⊆ Ei′

and since H1 is simple, we conclude i = i′. But then it follows Ei = π ′(Fj), i.e. π ′ :

Fj → Ei is surjective and therefore bijective. Thus we can write Eπ ′ j =
⋃

y∈Fj
{(π ′(y),y)} =

⋃
x∈Ei

{(x,π ′−1(x))} = Eiπ ′−1 . Since π(x) = y if and only if π ′(y) = x for all x ∈ Ei we obtain

π ′−1 = π . Hence Eiπ ⊆ Eπ ′ j with Eiπ =
⋃

x∈Ei
{(x,π(x))} implies (iπ) = (π ′ j).

The fact that Eπ ′ j ⊆ Eiπ implies (iπ) = (π ′ j) as well is shown analogously. Thus, H is sim-

ple.

The direct product ×̌ does not have a unit in the class of simple hypergraphs, since the direct

product has no unit for simple graphs. Also in the class of non simple hypergraphs, there exists

no unit. To be more precise, neither the one vertex hypergraph K1 without edges, nor the one

with a loop, LK1, is a unit for the direct product ×̌:
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Example 2.1. Consider the (hyper)graphs K2 =
(
{a,b},

{
{a,b}

})
, consisting of two vertices

and one single edge containing these vertices and LK1 =
(
{x},

{
{x}

})
, respectively. Then:

V (K2×̌LK1) = {(a,x),(b,x)} = V (K2 ×LK1)

but

E (K2×̌LK1) =
{
{(a,x)},{(b,x)}

}
6=

{
{(a,x),(b,x)}

}
= E (K2 ×LK1),

where ×̌ denotes the direct product ×̌ of hypergraphs, and × denotes the (usual) direct graph

product. Therefore K2×̌LK1 6= K2 ×LK1.

The latter example implies, that the direct product ×̌ does not coincide with the direct graph

product in the class of graphs with loops. Furthermore, it turns out, that the direct product ×̌ has

no unique prime factorization in general, as shown in the following example:

Example 2.2. Let E3 be the hypergraph consisting of three vertices and one edge containing

these vertices. Then we have

K2×̌E3
∼= K2×̌E3.

1 2 3 ×̌
a

b

∼=
2 3

1

×̌
a

b

1a 2a 3a

1b 2b 3b

Figure 2.5: Two different pairs of hypergraphs whose direct product ×̌ is isomorphic

Furthermore, consider the projections of such a product hypergraph into its factors:
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Example 2.3. The direct product ×̌ as in Figure 2.5, H = E3×̌K2, has edge set

E (H)=
{
{(1,a),(2,b)},{(1,a),(3,b)},{(2,a),(1,b)},{(2,a), (3,b)},{(3,a), (1,b)},{(3,a), (2,b)}

}
.

The Factor E3 has edge set E (E3) =
{
{1,2,3}

}
. For the projection pE3 into this factor holds:

pE3({(1,a),(2,b)}) = pE3({(2,a),(1,b)}) = {1,2} /∈ E (E3)

pE3({(1,a),(3,b)}) = pE3({(3,a),(1,b)}) = {1,3} /∈ E (E3)

pE3({(2,a),(3,b)}) = pE3({(3,a),(2,b)}) = {2,3} /∈ E (E3).

In general, we have

p1(Eiπ) = Ei ∈ E1 and p2(Eπ ′ j) = Fj ∈ E2

but

p1(Eπ ′ j) = π ′(Fj)

and this need neither be a vertex nor an edge in H1, as well as

p2(Eiπ) = π(Ei)

and this need neither be a vertex nor an edge in H2, too.

So the projections indeed preserve adjacency, i.e., two vertices in a direct product ×̌ hypergraph

are adjacent, whenever they are adjacent in both of the factors. However, the projections need

not to be (weak) homomorphisms in general.

Thus, we not consider this product further.

Maximal Rank Preserving Direct Product

In the last paragraph we defined a product where the size of two multiplied edges is reduced to

the size of the smaller one. This might be the reason for the non-uniqueness of the prime factor

decomposition as seen in Example 2.2, and that the projections of a product into its factors need

not to be weak homomorphisms.

Now we will define a direct product, such that an edge, we get by multiplying two edges,

preserves the size of the bigger edge of the factors.

For this product most of the basic properties are shown analogously as for the direct product ×̌.

Let H1 = (V1,E1) and H2 = (V2,E2) be two hypergraphs. Then their direct product ×̂ is defined

on the Cartesian product of the vertex set, and a subset E = {(x1,y1), . . . ,(xr,yr)} of V1 ×V2 is

an edge in H1×̂H2 if and only if
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(i) {x1, . . . ,xr} is an edge in H1 and there is an edge F ∈ E2 of H2 such that {y1, . . .yr} is a

family of elements of F , and F ⊆ {y1, . . . ,yr}, or

(ii) {y1, . . . ,yr} is an edge in H2 and there is an edge E ∈ E1 of H1 such that {x1, . . .xr} is a

family of elements of E , and E ⊆ {x1, . . . ,xr}.

More formal, we define the direct product ×̂ of two hypergraphs H1 = (V1,E1) and H2 =

(V2,E2) by the edge set

E (H1×̂H2) : =
{ ⋃

x∈E

{(x,ϕ(x))} | ϕ : E → F surjective, E ∈ E1,F ∈ E2
}

∪
{ ⋃

y∈F

{(ϕ ′(y),y)} : ϕ ′ : F → E surjective, E ∈ E1,F ∈ E2
}
.

Figure 2.6 shows the direct product ×̂ of the hypergraph E3, which consists of one single edge

of size 3 and the K2, consisting of one single edge with two vertices. Another example can be

seen in Figure 2.3 at the beginning of this section.

E3

×̂

K2

=

E3×̂K2

Figure 2.6: Direct product ×̂, E3×̂K2

Let an edge {(x1,y1), . . . ,(xr,yr)} in H = H1×̂H2 be denoted by

(i) Eiϕ if {x1, . . . ,xr} = Ei ∈ E1 and E2 ∋ Fj ⊆ {y1, . . . ,yr} ⊆ Fr
j , where ϕ : Ei → Fj is the

surjective mapping defined by ϕ(xk) = yk for all k ∈ {1, . . . ,r}, and

(ii) Eϕ ′ j if {y1, . . . ,yr} = Fj ∈ E2 and E1 ∋ Ei ⊆ {x1, . . . ,xr} ⊆ Er
i , where ϕ ′ : Fj → Ei is the

surjective mapping defined by ϕ ′(yk) = xk for all k ∈ {1, . . . ,r},

where X r denotes a family of elements of a set X , that contains each element of X with multiplic-

ity r. Notice, if there exists no edge of the form Eiϕ , all edges of H are of the form Eϕ ′ j and vice
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versa. With this notations, for the projections p1 and p2 of a product hypergraph H = H1×̂H2

into its factors H1 and H2, respectively, holds:

p1(Eiϕ) = Ei ∈ E (H1) and p2(Eiϕ) = ϕ(Ei) = Fj ∈ E (H2),

since ϕ : Ei → Fj is surjective, and

p2(Eϕ ′ j) = Fj ∈ E (H2) and p1(Eϕ ′ j) = ϕ ′(Fj) = Ei ∈ E (H1),

since ϕ ′ : Fj → Ei is surjective. Hence, p1 and p2 are homomorphisms.

We can state:

For two hypergraphs H1 = (V1,E1) and H2 = (V2,E2) a subset E ⊆ V1 ×V2 of the Cartesian

product of their vertex sets is an edge in their direct product ×̂, H = H1×̂H2 if and only if

(i) p1(E) is an edge in H1 and

(ii) p2(E) is an edge in H2 and

(iii) |E| = max{|p1(E)|, |p2(E)|}.

If we restrict this product to r-uniform hypergraphs, we get the product defined by Equation

(2.3), i.e,

E (H1×̂H2) :=
{
{(x1,y1), . . . ,(xr,yr)} | {x1, . . . ,xr} ∈ E (H1), {y1, . . . ,yr} ∈ E (H2)

}

for r-uniform hypergraphs H1 and H2. Thus, this product coincides with the direct graph product

in the class of simple graphs.

We have:

r(H1×̂H2) = max{r(H1),r(H2)}

and

s(H1×̂H2) = max{s(H1),s(H2)}

where r(H) and s(H) denote the rank and the anti-rank, respectively of a hypergraph H .

From analogous considerations as for the direct product ×̌, we can state:

Lemma 2.10. The direct product ×̂ is associative, commutative and distributive with respect to

the disjoint union.
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The one vertex hypergraph with a loop, LK1 is a unit for the direct product ×̂ in the class

of hypergraphs with loops. In the class of simple hypergraphs, this product has no unit. The

direct product ×̂ of two connected hypergraphs need not to be connected, since it need not to be

connected in the class of graphs. It remains to show the following property:

Lemma 2.11. The direct product ×̂, H = ×̂n
i=1Hi of simple hypergraphs Hi is simple

Proof. Because of associativity and commutativity of the direct product ×̂, it suffices to prove

the assertion for n = 2. Therefore, let H1 = (V1,E1) and H2 = (V2,E2) be two simple hypergraphs

and suppose H = H1×̂H2 is not simple. Then several cases can occur.

Suppose H contains at least one loop {(x,y)}. Then, it follows, {x} is an edge in H1, i.e., a loop

and {y} is a loop in H2, contradicting the fact, that H1 and H2 are simple. Thus, |E| ≥ 2 for all

E ∈ E (H).

Now assume there is an edge Ei1ϕ1 that is contained in an edge Ei2ϕ2 , where Ei1ϕ1 =

{(x1,y1), . . . ,(xr,yr)}, such that {x1, . . . ,xr} = Ei1 ∈ E1 and ϕ1 : Ei1 → Fj1 through xk 7→ yk,

for all k ∈ {1, . . . ,r} and Ei2ϕ2 = {(x′1,y′1), . . . ,(x′s,y′s)}, s ≥ r such that {x′1, . . . ,x
′
s} = Ei2 ∈ E1

and ϕ2 : Ei2 → Fj2 through x′k 7→ y′k, for all k ∈ {1, . . . ,s}. If there is no edge of the form Eiϕ

contained in H , we consider the hypergraph H2×̂H1. Then it immediately follows

Ei1 = {x1, . . . ,xr} ⊆ {x′1, . . . ,x
′
s} = Ei2 (2.4)

{y1, . . . ,yr} ⊆ {y′1, . . . ,y
′
s} (2.5)

Equation (2.4) implies i1 = i2, since H1 is simple. On the other hand ϕ1(x) = ϕ2(x) must hold

for all x ∈ Ei1 = Ei2 , hence ϕ1 = ϕ2. Thus, we can conclude that Ei1ϕ1 ⊆ Ei2ϕ2 implies (i1ϕ1) =

(i2ϕ2).

The fact that Eϕ ′
1 j1 ⊆ Eϕ ′

2 j2 implies (ϕ ′
1 j1) = (ϕ ′

2 j2) is shown analogously.

Now suppose we have Eiϕ ⊆ Eϕ ′ j, where Eiϕ = {(x1,y1), . . . ,(xr,yr)}, such that {x1, . . . ,xr} =

Ei ∈ E1 and ϕ : Ei → Fm, Fm ∈ E2, through xk 7→ yk, for all k ∈ {1, . . . ,r}, respectively Eϕ ′ j =

{(x′1,y′1), . . . ,(x′s,y′s)}, s ≥ r such that {y′s, . . . ,y
′
s} = Fj ∈ E2 and ϕ ′ : Fj → El , El ∈ E1, through

y′k 7→ x′k, for all k ∈ {1, . . . ,s}. Notice that Fm ⊆ {y1, . . . ,yr} ⊆ Fr
m and El ⊆ {x′1, . . . ,x

′
s} ⊆ Es

l ,

respectively. It follows

Ei = {x1, . . . ,xr} ⊆ {x′1, . . . ,x
′
s} ⊆ Es

l (2.6)

Fm ⊆ {y1, . . . ,yr} ⊆ {y′1, . . . ,y
′
s} = Fj (2.7)

Equation (2.7) implies m = j, since H2 is simple. In particular holds Fm = {y1, . . . ,yr}, hence

yk 6= yk′ , and therefore ϕ(xk) 6= ϕ(x′k) for all k 6= k′ and as xk 6= x′k for all k 6= k′ we can conclude
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that ϕ is injective, thus bijective. We can now define ϕ−1 : Fm = Fj → Ei through ϕ−1(yk) = xk

for all k ∈ {1, . . . ,r} and denote Eiϕ by Eϕ−1 j. On the other hand ϕ ′(y) = ϕ−1(y) must hold for

all y ∈ Fm = Fj, hence ϕ ′ = ϕ−1, and therefore Eiϕ ⊆ Eϕ ′ j implies (iϕ) = (ϕ−1 j) = (ϕ ′ j).

The fact that Eϕ ′ j ⊆ Eiϕ implies (ϕ ′ j) = (iϕ) is shown analogously as well.

Thus H is simple.

As mentioned, the restriction of the direct product ×̂ to simple graphs is the direct graph

product. Moreover, the restriction of this product to graphs coincides with the direct graph

product in general, also in the class of not necessarily simple graphs with loops.

Since this product is associative and commutative, the direct product ×̂ of arbitrary many

factors H = ×̂n
i=1Hi is well defined, and we can state:

E ⊆V (H) is an edge in H if and only if

(1) pi(E) ∈ E (Hi) for all i ∈ {1, . . . ,n} and

(2) |E| = |p j(E)| for a j ∈ {1, . . . ,n}.

Notice, that item (2) implies |E|= max j |p j(E)|.

2.2.2 A Direct Product that does not preserve Rank

For the sake of completeness, we want to introduce a hypergraph product here, whose restriction

on 2-uniform hypergraphs coincides with the direct graph product, but which does not preserve

r-uniformity in general.

For two hypergraphs H1 = (V1,E1) and H2 = (V2,E2), we define their direct product ×̃ by the

edge set

E (H1×̃H2) :=
{
{(x,y)}∪

(
(Ei \{x})× (Fj \{y})

)
| (x,y) ∈V (H) and x ∈ Ei ∈ E1; y ∈ Fj ∈ E2

}

Let an edge E in H = H1×̃H2 be denoted as

E(xy),(i j) if E = {(x,y)}∪ ((Ei \{x})× (Fj \{y})),

where Ei ∈ E (H1) and Fj ∈ E (H2).

The direct product ×̃ is motivated by [31], where the authors introduced the concept of N -

systems. An N -system (X ,N ) consists of a nonempty finite set X and a system N that as-

sociates to each x ∈ X a collection N (x) = {N1(x), . . . ,Nd(x)(x)} of subsets N i(x) of X that

31



2 Hypergraph Products

contain x. The collection N (x) is then called the neighborhood of x. The direct product

(X ,N ) = (X1,N1)× (X2,N2) of two N -systems (X1,N1) and (X2,N2) is defined by

(1) X = X1 ×X2

(2) The neighborhoods N ((x1,x2)) are the sets {N ′×N ′′ | N ′ ∈ N1(x1), N ′′ ∈ N2(x2)}.

A (simple) hypergraph H = (V,E ) can be described as an N -system (V,N ) if we set

N (v) = {E ∈ E | v ∈ E}

for all v ∈V .

Conversely, we can construct a system (V,N o) of "open" neighborhoods by

N
o(v) = {E \{v} | v ∈ E ∈ E }.

We define the product of such systems analogously. The represented hypergraph of a product of

such N o-systems is then the direct product ×̃ of the represented hypergraphs of the factors.

Remark 2.1. In the definition of the direct product ×̃ the following case might occur:

Consider two hypergraphs H1 and H2 such that there are edges Ei ∈ E (H1) and Fj ∈ E (H2),

such that Ei = {x,a} and Fj = {y,b}. For the product H = H1×̃H2 holds:

E (H) ∋ E(xy),(i j) ={(x,y)}∪
(
(Ei \{x})× (Fj \{y})

)

={(a,b)}∪
(
(Ei \{a})× (Fj \{b})

)
= E(ab),(i j) ∈ E (H)

That is, we might get some multiple edges in the product hypergraph. In this case, we will

consider those edges as one single edge.

Conversely, this does not imply that we consider two edges {(x,y)}∪
(
(Ei \ {x})× (Fj \ {y})

)

and {(a,b)} ∪
(
(Ek \ {a})× (Fl \ {b})

)
∈ E (H), with Ei = {x,a}, Ek = {x,a} ∈ E (H1) and

Fj = {y,b}, Fl = {y,b} ∈ E (H2), as one single edge if i 6= k or j 6= l, i.e., in the case that H1 or

H2 are non simple hypergraphs.

Figure 2.7 shows the direct product ×̃ of two hypergraphs, both consisting of a single edge

with three vertices. As this product is horrible to visualize, two hypergraphs H1 and H2 are

depicted, whose union of the edge sets are the edges of the product hypergraph H .
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E3

H = E3×̃E3

H1

H2

Figure 2.7: Direct product ×̃, H = E3×̃E3 with edge set E (H) = E (H1)∪E (H2)

For the projections p1 and p2 of a product hypergraph H = H1×̃H2 into its factors H1 and H2,

respectively, holds:

p1(E(xy),(i j)) = {p1
(
(x,y)

)
}∪ p1

(
(Ei \{x})× (Fj \{y})

)
= {x}∪ (Ei \{x}) = Ei ∈ E (H1),

p2(E(xy),(i j)) = {p2
(
(x,y)

)
}∪ p2

(
(Ei \{x})× (Fj \{y}

)
= {y}∪ (Fj \{y}) = Fj ∈ E (H2).

Thus, they are homomorphisms.

If we restrict the definition of this product to 2-uniform hypergraphs, i.e. simple graphs, we

have: E ⊆ V (G1×̃G2) is an edge in G1×̃G2 iff E = {(x,y)(x′ ,y′)} and {x,x′} is an edge in G1

and {y,y′} is an edge in G2. That is exactly the direct graph product.

For the direct product ×̃ we have:

r(H1×̃H2) = (r(H1)−1)(r(H2)−1)+ 1

and

s(H1×̃H2) = (s(H1)−1)(s(H2)−1)+ 1
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where r(H) and s(H) denote the rank and the anti-rank, respectively of a hypergraph H . Thus

the (anti-)rank of a product might not be the (anti-)rank of one of its factors in general.

Lemma 2.12. The direct product ×̃ is associative.

Proof. Let H1 = (V1,E1),H2 = (V2,E2) and H3 = (V3,E3) be hypergraphs. As before we need

to show that the mapping ψ : V ((H1×̃H2)×̃H3) → V (H1×̃(H2×̃H3)) defined by ((x,y)z) 7→
(x,(y,z)) is an isomorphism. There is nothing to show about bijectivity. It remains to show

that for a subset E ⊆ V ((H1×̃H2)×̃H3), E is an edge in (H1×̃H2)×̃H3, if and only if ψE

is an edge in H1×̃(H2×̃H3). First, we will examine, how an edge in (H1×̃H2)×̃H3 and

H1×̃(H2×̃H3), respectively, look like. Recall that an edge E ′ of H1×̃H2 must be of the form

E ′ = {(x,y)} ∪ ((Di \{x})× (E j \{y})) where x ∈ Di ∈ E1 and y ∈ E j ∈ E2. Thus, we have

E ⊆V ((H1×̃H2)×̃H3) is an edge in (H1×̃H2)×̃H3, iff

E = {(w,z)}∪
[
(E ′ \{w})× (Fk \{z})

]

= {
(
(x,y),z

)
}∪

[[(
{(x,y)}∪ ((Di \{x})× (Fj \{y}))

)
\{(x,y)}

]
×

[
Fk \{z}

]]

= {
(
(x,y),z

)
}∪

[[
(Di \{x})× (E j \{y})

]
×

[
Fk \{z}

]]
, (2.8)

where w = (x,y) ∈V1 ×V2 and z ∈V3, and Di,E j and Fk are edges in E1,E2 and E3, respectively,

such that x ∈ Di, y ∈ E j and z ∈ Fk.

On the other hand we have F ⊆V (H1×̃(H2×̃H3)) is an edge in H1×̃(H2×̃H3), iff

F = {(x,v)}∪
[
(Di \{x})× (F ′ \{v})

]

= {
(
x,(y,z)

)
}∪

[[
Di \{x}

]
×

[(
{(y,z)}∪ ((E j \{y})× (Fk \{z}))

)
\{(y,z)}

]]

= {(x,(y,z))}∪
[[

Di \{x}
]
×

[
(E j \{y})× (Fk \{z})

]]
, (2.9)

where F ′ = {(y,z)} ∪ ((E j \{y})× (Fk \{z})) is an edge in H2×̃H3, v = (y,z) ∈ V2 ×V3 and

Di, E j and Fk are as in Equation (2.8).

We observe, that whenever E ∈ E ((H1×̃H2)×̃H3), then it has the form as in Equation (2.8) and

for its image ψ(E) we have ψ(E) = F ∈ E (H1×̃(H2×̃H3)).

Conversely, an edge F of H1×̃(H2×̃H3) must have the form as in Equation (2.9), and if we set

F := ψ(E), its preimage E is an edge in (H1×̃H2)×̃H3.

Therefore the mapping ψ is an isomorphism and the assertion is true.

Lemma 2.13. The direct product ×̃ is commutative.
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Proof. Let H1 = (V1,E1) and H2 = (V2,E2) be two hypergraphs. We need to show, the mapping

ψ : V (H1×̃H2) → V (H2×̃H1) defined by (x,y) 7→ (y,x) for x ∈ V1, y ∈ V2 is an isomorphism.

For a subset E of V (H1×̃H2) = V1 ×V2, E is an edge in H1 ×H2 if and only if E = {(x,y)}∪
((Ei \{x})× (Fj \{y})), for x ∈ Ei ∈ E1 and y ∈ Fj ∈ E2.

This is equivalent to ψ(E) = {(y,x)}∪ ((Fj \{y})× (Ei \{x})). Hence, E ∈ E (H1×̃H2) if and

only if ψ(E) is an edge in H2×̃H1.

Lemma 2.14. The direct product ×̃ is left and right distributive together with the disjoint union

as addition.

Proof. Let H1, H2 and H3 be hypergraphs and furthermore, let H2 and H3 be vertex-disjoint.

Then we have for the edge set of H1×̃(H2 + H3):

E (H1×̃(H2 + H3)) =
{
{(x,y)}∪

[
(E \{x})× (F \{y})

]
| x ∈ E, E ∈ E1; y ∈ F, F ∈ E2 ∪E3

}

=
{
{(x,y)}∪

[
(E \{x})× (F \{y})

]
| x ∈ E, E ∈ E1; y ∈ F, F ∈ E2

}

∪
{
{(x,y)}∪

[
(E \{x})× (F \{y})

]
| x ∈ E, E ∈ E1; y ∈ F, F ∈ E3

}

=E (H1×̃H2)∪E (H1×̃H3)

=E ((H1×̃H2)+ (H1×̃H3)). (2.10)

With the same arguments as in Equation (2.1) we can conclude V (H1×̃(H2 + H3)) =

V ((H1×̃H2)+ (H1×̃H3)) and hence, it follows

H1×̃(H2 + H3) = (H1×̃H2)+ (H1×̃H3).

Analogously, it is shown

(H1 + H2)×̃H3 = (H1×̃H3)+ (H2×̃H3)

for vertex-disjoint H1 and H2.

Next, we will examine on which conditions the direct product ×̃ is a simple hypergraph.

Lemma 2.15. The direct product ×̃, H = ×̃n
i=1Hi, of simple hypergraphs Hi is simple.
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Proof. Because of associativity and commutativity of the direct product ×̃, it suffices to prove

the assertion for n = 2. Therefore, let H1 = (V1,E1) and H2 = (V2,E2) be two simple hypergraphs

and suppose H = H1×̃H2 is not simple.

Assume first H contains at least one loop {(x,y)}. Then, {(x,y)} = {(x′,y′)}∪
[
(E \ {x′})×

(F \ {y′})
]

holds for an x′ ∈ E ∈ E1 and an y′ ∈ F ∈ E2. It follows x = x′ and y = y′ and

(E \ {x′})× (F \ {y′}) = /0. Hence, E \ {x′} = /0 or F \ {y′} = /0 must hold. We conclude that

E = {x} is an edge in H1, i.e., a loop, or F = {y} is a loop in H2. Both contradicts the fact, that

H1 and H2 are simple. Thus, |E| ≥ 2 for all E ∈ E (H).

Now suppose E(xy),(i j) ⊆ E(x′y′),(i′ j′), i.e.

{(x,y)}∪
[
(Ei \{x})× (Fj \{y})

]
⊆ {(x′,y′)}∪

[
(Ei′ \{x′})× (Fj′ \{y′})

]
(2.11)

Then it immediately follows

(x,y) ∈ {(x′,y′)}∪
[
(Ei′ \{x′})× (Fj′ \{y′})

]
⊆ Ei′ ×Fj′ (2.12)

and hence

x ∈ Ei′ and y ∈ Fj′ . (2.13)

and therefore we have

Ei ×Fj ⊆ Ei′ ×Fj′, (2.14)

thus

Ei ⊆ Ei′ and Fj ⊆ Fj′ (2.15)

and since H1 and H2 are both simple, it follows

i = i′ as well as j = j′ (2.16)

It remains to show that (x,y) = (x′,y′). We will prove this indirect. Assume (x,y) 6= (x′,y′).

Now from (2.11) and (2.16) we have

(Ei \{x})× (Fj \{y})︸ ︷︷ ︸
=:X

⊆ {(x′,y′)}∪
[
(Ei \{x′})× (Fj \{y′})

]
︸ ︷︷ ︸

=:Y

(2.17)
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If we compute the intersection of these two sets we get

A :=
[
(Ei \{x})× (Fj \{y})

]
∩

[
{(x′,y′)}∪

[
(Ei \{x′})× (Fj \{y′})

]]

=
[[

(Ei \{x})× (Fj \{y})
]
∩{(x′,y′)}

]

︸ ︷︷ ︸
=:B

∪
[[

(Ei \{x})× (Fj \{y})
]
∩

[
(Ei \{x′})× (Fj \{y′})

]]

︸ ︷︷ ︸
=:C

(2.18)

For short, it holds

X ∩Y = A = B∪C
(2.17)
= X (2.19)

Now we have to distinguish several cases: First suppose x 6= x′ and y = y′ Then it follows for the

sets B and C in (2.18)

B = /0

C = (Ei \{x,x′})× (Fj \{y}) (2.20)

But Equation (2.19) implies

(Ei \{x})× (Fj \{y}) = (Ei \{x,x′})× (Fj \{y}) (2.21)

and hence in particular

Ei \{x} = Ei \{x,x′} (2.22)

which is a contradiction, so the case x′ 6= x and y = y′ cannot occur. The case x = x′ and y 6= y′

leads analogously to a contradiction.

Now suppose x 6= x′ and y 6= y′. We then have for B and C in (2.18):

B = {(x′,y′)}

C = (Ei \{x,x′})× (Fj \{y,y′}) (2.23)

And again from (2.19)

(Ei \{x})× (Fj \{y}) = {(x′,y′)}∪
[
(Ei \{x,x′})× (Fj \{y,y′})

]
(2.24)

must hold. But this can only be fulfilled if Ei = {x,x′} and Fj = {y,y′}.

Together with Remark 2.1 we can conclude that H is simple.
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The direct product ×̃ of arbitrary many hypergraphs H = ×̃n
i=1Hi is well defined, since it is

associative and commutative. Also the projections of a hypergraph product of arbitrary many

hypergraphs into its factors are homomorphisms. However, the direct product ×̃ does not have

a unit, neither in the class of simple hypergraphs, since the direct graph product has no unit in

the class of simple graphs, nor in the class of non simple hypergraphs.

Example 2.4. Consider the (hyper)graphs K2 =
(
{a,b},

{
{a,b}

})
, consisting of two vertices

and one single edge containing these vertices and LK1 =
(
{x},

{
{x}

})
, respectively. Then:

V (K2×̃LK1) = {(a,x),(b,x)} = V (K2 ×LK1)

but

E (K2×̃LK1) =
{
{(a,x)},{(b,x)}

}
6=

{
{(a,x),(b,x)}

}
= E (K2 ×LK1),

where ×̃ denotes the direct product ×̃ of hypergraphs, and × denotes the (usual) direct graph

product. Thus, K2×̃LK1 6= K2 ×LK1.

Hence, LK1 is not a unit with respect to the direct product ×̃, and the direct product ×̃ does

not coincide with the direct graph product in the class of graphs with loops.

For this reasons we will not consider this product further.

Summary

Three hypergraph products were defined in this section. The direct product ×̌, the direct product

×̂ and the direct product ×̃. For all these products, the following results hold:

1. The restriction of these products on simple graphs is the direct graph product.

2. Associativity.

3. Commutativity.

4. Distributivity with respect to the disjoint union.

5. The product of two simple hypergraphs is simple.

Furthermore, for the direct product ×̂ and the direct product ×̃ holds:

6. The projections of a product hypergraph onto its factors are homomorphisms.
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And in addition, the direct product ×̂ coincides with the direct graph product in the class of non

simple graphs and graphs with loops as well.

Remark 2.2. In the following, we will refer to the direct product ×̂ as direct product, denoted

by ×.

As an open problem, it remains to examine if the direct product has a unique prime factoriza-

tion. But that would go beyond the scope of this thesis.

2.3 The Strong Product

In graph theory, the edge set of a strong product of two graphs is the union of the edge sets of

their Cartesian and direct product. For hypergraphs, we will proceed in the same way.

With the direct products of the last section, there are three possible definitions of a strong hyper-

graph product, whose restrictions to simple graphs result in the strong graph product:

Let the edge set of a strong product H = H1

∗
⊠ H2, ∗ = ∨, ∧, ∼ of two hypergraphs H1,H2 be

E (H1

∗
⊠H2) = E (H1�H2)∪E (H1

∗
×H2),

where E (H1
∗
×H2) corresponds to the respective direct product from Section 2.2.

For the same reasons as in Section 2.2, the respective strong products resulting from the direct

product ×̃ and the direct product ×̌ do not coincide with the strong graph product if we admit

loops. Therefore, we will only consider the strong product which belongs to the direct product,

i.e., the direct product ×̂.

We define the strong product H = H1 ⊠ H2 of two hypergraphs H1 = (V1,E1) and H2 = (V2,E2)

by the edge set

E (H1 ⊠ H2) = E (H1�H2)∪E (H1 ×H2), (2.25)

In other words, a subset E = {(x1,y1), . . . ,(xr,yr)} of the vertex set V (H) = V1 ×V2 is an edge

in H = H1 ⊠ H2 if and only if

(i) {x1, . . . ,xr} is an edge in E (H1) and y1 = . . . = yr, or

(ii) {y1, . . . ,yr} is an edge in E (H2) and x1 = . . . = xr, or

(iii) {x1, . . . ,xr} is an edge in H1 and there is an edge F ∈ E2 of H2 such that {y1, . . .yr} is a

family of elements of F , and F ⊆ {y1, . . . ,yr}, or
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(iv) {y1, . . . ,yr} is an edge in H2 and there is an edge F ∈ E1 of H1 such that {x1, . . .xr} is a

family of elements of E , and E ⊆ {x1, . . . ,xr}.

The projections p1 and p2 of a strong product H = H1 ⊠ H2 of two hypergraphs into its factors

are weak homomorphisms, since edges included in the second term of the right hand side of

Equation (2.25) are mapped into edges, and those included in the first term are mapped into

edges or vertices.

We have for an edge E ∈ E (H):

• E is Cartesian if and only if

|p1(E)| = 1 and p2(E) ∈ E (H2), or

p1(E) ∈ E (H1) and |p2(E)| = 1 and

• E is non-Cartesian if and only if

p1(E) ∈ E (H1), p2(E) ∈ E (H2) and |pi(E)| = |E| for an i ∈ {1,2}.

Let a Cartesian edge E = {(x1,y1), . . . ,(xr,yr)} in H = H1 ⊠ H2 be denoted by

(i) Eiy if E = Ei ×{y}, where {x1, . . . ,xr} = Ei ∈ E (H1) and y1 = . . . = yr = y ∈V (H2), and

(ii) Ex j if E = {x}×E j, where x1 = . . . = xr = x ∈V (H1) and {y1, . . . ,yr} = E j ∈ E (H2)

and a non-Cartesian edge by

(iii) Eiϕ if {x1, . . . ,xr} = Ei ∈ E1 and E2 ∋ Fj ⊆ {y1, . . . ,yr} ⊆ Fr
j , where ϕ : Ei → Fj is the

surjective mapping defined by ϕ(xk) = yk for all k ∈ {1, . . . ,r}, and

(iv) Eϕ ′ j if {y1, . . . ,yr} = Fj ∈ E2 and E1 ∋ Ei ⊆ {x1, . . . ,xr} ⊆ Er
i , where ϕ ′ : Fj → Ei is the

surjective mapping defined by ϕ ′(yk) = xk for all k ∈ {1, . . . ,r}.

If Hi, i ∈ {1,2} is not prime, i.e., Hi = H ′
i ⊠ H ′′

i , then an edge E ∈ E (H) is Cartesian in

(H ′
1 ⊠ H ′′

1 )⊠ H2 iff (i) holds or (ii) is fulfilled and p1(E) is Cartesian in H ′
1 ⊠ H ′′

1 . Similar E is

Cartesian in H1 ⊠ (H ′
2 ⊠ H ′′

2 ) iff (i) is fulfilled and p2(E) is Cartesian in H ′
2 ⊠ H ′′

2 or (ii) holds.

Otherwise, if the respective condition would be fulfilled, but pi(E) is non-Cartesian in H ′
i ⊠H ′′

i ,

then E is non-Cartesian in (H ′
1 ⊠ H ′′

1 )⊠ H2 or H1 ⊠ (H ′
2 ⊠ H ′′

2 ), respectively.

In graph theory, the strong product can be seen as a special case of the direct one. There is no

reason not to claim this for strong hypergraph products.

40



2 Hypergraph Products

Let NH denote the partial hypergraph of H with edges E (NH) = {E ∈ E (H) | |E| ≥ 2}. On

the other hand let LH ′ denote the hypergraph, which arises from H ′ by assigning a loop to each

vertex of H ′. For a hypergraph H = (V,E ) without loops we have E (LH) = E ∪
{
{v} | v ∈V

}
.

Then for the strong and the direct product holds

H1 ⊠ H2 = N(LH1 ×LH2) (2.26)

for hypergraphs H1,H2 without loops.

E3 ⊠ E3

Figure 2.8: Strong product E3 ⊠ E3, red Cartesian edges

Figure 2.8 shows the strong product of the hypergraph E3, which consists of a single edge

with three vertices, multiplied with itself. The Cartesian edges of this product are highlighted

red.

Lemma 2.16. The strong product is associative

Proof. Let H1 = (V1,E1),H2 = (V2,E2) and H3 = (V3,E3) be hypergraphs. Again we have to

show, that the bijective mapping ψ : V ((H1 ⊠ H2) ⊠ H3) → V (H1 ⊠ (H2 ⊠ H3)), defined by

((x,y),z) 7→ (x,(y,z)) is an isomorphism.

In the following, let pHi⊠Hi+1 denote the projection from (H1 ⊠ H2)⊠ H3 into H1 ⊠ H2 for i = 1

and from H1 ⊠ (H2 ⊠H3) into H2 ⊠H3 for i = 2, respectively, whereas p j denotes the projection

into H j for all j ∈ {1,2,3}.

Consider first a Cartesian edge E of (H1 ⊠H2)⊠H3. One observe that for E one of the following

cases must be fulfilled

(i) p1(E) ∈ E1, |p1(E)| = |E| and |p2(E)| = |p3(E)| = 1, or
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(ii) p2(E) ∈ E2, |p2(E)| = |E| and |p1(E)| = |p3(E)| = 1, or

(iii) p3(E) ∈ E3, |p3(E)| = |E| and |p1(E)| = |p2(E)| = 1

But since pi(ψ(E)) = pi(E) for all E ⊆V ((H1 ⊠H2)⊠H3) and all i∈ {1,2,3}, as one can easily

see, this is equivalent to ψ(E) being a Cartesian edge in H1 ⊠ (H2 ⊠ H3).

Now let E be non-Cartesian. Then one of the following must hold:

(i) pH1⊠H2(E) ∈ E (H1 ⊠ H2) and non-Cartesian, |pH1⊠H2(E)| = |E| and |p3(E)| = 1, or

(ii) pH1⊠H2(E) ∈ E (H1 ⊠ H2), p3(E) ∈ E3 and |pH1⊠H2(E)| = |E| or |p3(E)| = |E|.

Then (i) is equivalent to p1(E)∈ E1, p2(E)∈ E2, |pi(E)|= |E| for an i ∈ {1,2} and |p3(E) = 1|.
Condition (ii) is equivalent to the following:

(iia) pi(E) ∈ Ei for i = 1,2,3 and |p j(E)| = |E| for a j ∈ {1,2,3}, or

(iib) p1(E) ∈ E1, |p2(E)| = 1, p3(E) ∈ E3 |p1(E)| = |E| or |p3(E)| = |E|, or

(iic) |p1(E)| = 1, p2(E) ∈ E2, p3(E) ∈ E3 |p2(E)| = |E| or |p3(E)| = |E|.

And again, since pi(ψ(E)) = pi(E) for all E ⊆ V ((H1 ⊠ H2)⊠ H3) and i ∈ {1,2,3}, it follows

(iic) is equivalent to

(i’) |p1(ψ(E)) = 1|, pH2⊠H3(ψ(E)) ∈ E (H2 ⊠ H3) and non-Cartesian and |pH2⊠H3(ψ(E))| =
|ψ(E)|,

whereas conditions (i),(iia) and (iib) are equivalent to

(ii’) p1(ψ(E)) ∈ E1, pH2⊠H3(ψ(E)) ∈ E (H2 ⊠ H3) and |p1(ψ(E))| = |ψ(E)| or

|pH2⊠H3(ψ(E))| = |ψ(E)|.

This is equivalent to ψ(E) being a non-Cartesian edge in H1 ⊠ (H2 ⊠ H3).

Altogether we can state, E is an edge in (H1 ⊠ H2) ⊠ H3 if and only if ψ(E) is an edge in

H1 ⊠ (H2 ⊠ H3). Hence (H1 ⊠ H2)⊠ H3
∼= H1 ⊠ (H2 ⊠ H3).

Because of the symmetry of the definition of the strong product, we can state:

Lemma 2.17. The strong product is commutative.

The strong product has K1 as unit. From distributivity of the Cartesian and the strong product,

respectively, together with the disjoint union we can infer:
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Lemma 2.18. The strong product is left and right distributive together with the disjoint union

as addition.

Proof. Let H1 = (V1,E1), H2 = (V2,E2) and H3 = (V3,E3) be hypergraphs and let H2 and H3 be

vertex-disjoint. Then the following holds

E (H1 ⊠ (H2 + H3)) = E (H1�(H2 + H3))∪E (H1 × (H2 + H3))

= E (H1�H2)∪E (H1�H3)∪E (H1 ×H2)∪E (H1 ×H3)

= E (H1 ⊠ H2)∪E (H1 ⊠ H3) = E (H1 ⊠ H2 + H1 ⊠ H3).

With the same arguments as in Equation (2.1) we can conclude V (H1 ⊠ (H2 + H3)) = V ((H1 ⊠

H2)+ (H1 ⊠ H3)) and hence, it follows H1 ⊠ (H2 + H3) = (H1 ⊠ H2)+ (H1 ⊠ H3).

Analogously we can conclude (H1 + H2)⊠ H3 = (H1 + H3)⊠ (H2 + H3) for vertex disjoint hy-

pergraphs H1 and H2.

Lemma 2.19. The strong product, H = ⊠
n
i=1Hi, of simple hypergraphs Hi is simple.

Proof. Since the strong product is associative and commutative, it suffices to prove the assertion

for n = 2. Therefore, let H1 = (V1,E1) and H2 = (V2,E2) be two simple hypergraphs and consider

their strong product H = H1 ⊠ H2. Due to the fact that the Cartesian product and the direct

product of simple hypergraphs is simple, as shown in Lemma 2.5 and Lemma 2.11, respectively,

it remains to show, that no Cartesian edge is contained in any non-Cartesian edge or vice versa.

We show first, that no Cartesian edge is contained in any non-Cartesian edge if the factors are

simple.

Assume Eiy =
⋃

x∈Ei
{(x,y)} ⊆ E jϕ =

⋃
x∈E j

{(x,ϕ(x))}, where ϕ is a surjective mapping ϕ :

E j → Fk. It immediately follows Ei ⊆ E j, which implies i = j, hence |Eiy|= |E jϕ |, and therefore

we have Eiy = E jϕ and thus Fj = {y}, which implies that H2 is not simple.

Analogously, it is shown that the case Ex j ⊆ Eϕ ′i cannot occur if H1 and H2 are simple.

Now suppose Eiy = {(x1,y), . . . ,(xr,y)} ⊆ Eϕ ′ j = {(ϕ ′(y1),y1), . . . ,(ϕ
′(ys),ys)} for E1 ∋ Ei =

{x1, . . . ,xr} and E2 ∋ Fj = {y1, . . . ,ys}, where ϕ ′ is a surjective mapping ϕ ′ : Fj → Ek. This can

only occur if Fj = {y}, hence H2 would not be simple.

Analogously Ex j ⊆ Eiϕ can only be fulfilled if H1 would not be simple.

Now suppose it holds E ⊆F where E is non-Cartesian and F is a Cartesian edge. Thus |pi(F)|=
1 for an i ∈ {1,2} and therefore |pi(E)| = 1, but pi(E) must be an edge in Hi. Hence, one of the

factors would not be simple.
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Because of associativity and commutativity, the strong product H = ⊠
n
i=1Hi of arbitrary many

factors Hi is well defined. We can define this product in terms of projections as follows:

For H = ⊠
n
i=1Hi, Hi = (Vi,Ei) and I = {1, . . . ,n} we have

(1) V (H) = V1 ×V2 × . . .×Vn

(2) E ∈ E (H), E ⊆V (H) if and only if there is a nonempty index set J ⊆ I, s.t.

(i) p j(E) ∈ E j for all j ∈ J and

(ii) |E| = |pk(E)| for a k ∈ J and

(iii) |pi(E)| = 1 for all i ∈ I \ J.

The vertices of Cartesian edges differ in exactly one coordinate, i.e. |J| = 1, the other edges,

i.e. for which |J| > 1 are non-Cartesian.

The set of Cartesian edges of a strong product H = ⊠
n
i=1Hi generates a partial hypergraph H ′ of

H with V (H ′) = V (H). This partial hypergraph is indeed the Cartesian product of the factors of

H , H ′ = �
n
i=1Hi. We will call such a hypergraph H ′ the Cartesian skeleton of H . Therefore, it

is clear, that the strong product is connected if and only if all of its factors are.

As for the Cartesian product each H j-layer through an arbitrary vertex w of a strong product

H = ⊠
n
i=1Hi is isomorphic to the factor H j,

〈{v ∈V (H) | pk(v) = wk for k 6= j}〉 ∼= H j.

Summary

To conclude this section, we summarize the preceding results. For the strong product holds:

1. The restriction of this product on graphs is the strong graph product.

2. Associativity.

3. Commutativity.

4. Distributivity with respect to the disjoint union.

5. The product of two simple hypergraphs is simple.

6. The projections of a product hypergraph onto its factors are weak homomorphisms.

As an open problem, it remains to examine if this product has a unique prime factorization. But

that would go beyond the scope of this thesis.
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to the Cartesian Product

In this chapter we are concerned with the decomposition, more exactly the prime factor

decomposition of a given hypergraph H with respect to the Cartesian product.

Uniqueness of prime factorization of simple and connected hypergraphs was proved by W.

Imrich in [23]. A factorization algorithm for a small class of hypergraphs, the conformal1

hypergraphs is given by A. Bretto et al. in [8]. They showed that the prime factorization

of a Cartesian product of conformal hypergraphs can be reduced to prime factorization of a

Cartesian product graph, namely its 2-section and then used the factorization algorithm for

Cartesian graph products given in [30]. Here we give an alternative, more constructive proof

for uniqueness of prime factor decomposition of simple connected hypergraphs and provide

a product relation according to the unique prime factorization of a given simple connected

hypergraph. The proof is modeled after the proof of unique prime factor decomposition of a

Cartesian product graph by W. Imrich and J. Žerovnik in [32].

First, we have to introduce some further notations.

A Hypergraph H is called prime with respect to a given product if it cannot be represented as

the product of two nontrivial hypergraphs, i.e. for the Cartesian product, H = H1�H2 implies

H1 = K1 or H2 = K1. By a prime factorization of a hypergraph H is meant a representation of

H as a Cartesian product hypergraph H = �
n
i=1Hi such that the Hi are prime and Hi 6= K1 for all

i ∈ {1, . . . ,n}.

Let H = A�B be a Cartesian product such that A and B are both nontrivial Hypergraphs and

let A = A1�A2 be a nontrivial representation of A. Then we call the product representation

A1�A2�B a refinement of A�B. Every sequence of refinements has to terminate as a product

1A hypergraph H is conformal if, for every E ⊆V (H), E is a maximal clique of [H]2 iff E is a hyperedge of H. The

2-section [H]2 of a hypergraph H is the graph whose vertices are the vertices of H, and where two vertices are

adjacent iff they belong to a same hyperedge.
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H1�H2� . . .�Hn of prime hypergraphs, since every factor of a nontrivial hypergraph product

has fewer vertices than the product itself. Thus we can state the following proposition.

Proposition 3.1. Every hypergraph H has a prime factorization with respect to the Cartesian

product. The number of prime factors is at most log2 |V (H)|.

The latter statement comes from the fact that every nontrivial hypergraph has at least two

vertices.

By Proposition 3.1, every hypergraph H can be represented as a product H = �
n
i=1Hi of prime

factors Hi. If H itself is prime, we have n = 1 and H = H1. Since graphs are a special class

of hypergraphs, prime factorization of non-connected hypergraphs with respect to the Cartesian

product is not unique (see Theorem 1.1).

Remark 3.1. In the following we are concerned with simple connected hypergraphs.

Let H = �
n
i=1Hi be a Cartesian product of hypergraphs Hi. Recall that E = {v1, . . . ,vr} is an

edge in H if and only if there is an j ∈ {1 . . . ,n}, such that p j(E) = {p j(v1), . . . , p j(vr)} ∈ E (H j)

and pi(v1) = . . . = pi(vr) for all i 6= j.

A product coloring on the edge set of H = �
n
i=1Hi is given by the mapping c : E (H)→{1, . . . ,n}

defined by c(E) = j if the vertices of E differ in the j-th coordinate.

An equivalence relation γ on the edge set E (H) of a Cartesian product H = �
n
i=1Hi of (not

neccessairily prime) hypergraphs Hi is a product relation if E and F are in relation γ if and only

if there exists an j ∈ {1, . . . ,n}, such that

|p j(E)| > 1 and |p j(F)| > 1,

for E,F ∈ E (H). It is clear, that |pi(E)| = |pi(F)| = 1 holds for all i 6= j. If the Hi are all

prime, we denote this relation by σ . And in this case we have E and F are in relation σ if

and only if c(E) = c(F). Thus, each equivalence class of σ belongs to a prime factor of H .

Moreover, let Σi, i = 1, . . . ,n be the equivalence classes of σ . Every connected component

of a partial hypergraph generated by the edges of an equivalence class Σi is isomorphic to Hi.

Consider now the connected components of a partial hypergraph generated by the union of

arbitrary equivalence classes of σ ,
⋃

j∈J Σ j, J ⊆ {1, . . . ,n}. Each connected component of this

partial hypergraph is then isomorphic to HJ := � j∈JH j.

Definition 3.1. Let E1, . . . ,Es and F1, . . . ,Fr be edges of a hypergraph H. We say they form an

r× s-grid if
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(i) |Ei ∩Fj| = 1, and

(ii) Ei ∩Ei′ = Fj ∩Fj′ = /0,

for all i, i′ ∈ {1, . . . ,s}, j, j′ ∈ {1, . . . ,r}, with i 6= i′, j 6= j′. If there is an edge D ∈ E (H), such

that

(iii) Ek ∩Fl ∩D 6= /0 and Ek′ ∩Fl′ ∩D 6= /0

holds for k,k′ ∈ {1, . . . ,s} and l, l′ ∈ {1, . . . ,r} with k 6= k′ and l 6= l′, we call D a diagonal of

this r× s-grid.

E1

u11 u21 ur1

E2

u12 u22 ur2

Es

u1s u2s urs

F1 F2 Fk

uk1

uk2

uks

Fr

D

Figure 3.1: r× s-Grid with diagonal D

Note, that for the edges E1, . . . ,Er and F1, . . . ,Fs we have |Ei| = s and |Fj| = r for all i ∈
{1, . . . ,r}, j ∈ {1, . . . ,s}.

Such a grid emerges, whenever two edges of two hypergraphs are multiplied with respect to the

Cartesian product. This leads us to a relation δ , defined as follows.

Definition 3.2. Let H be a connected hypergraph. For E,F ∈ E (H) we say E and F are in

relation δ if one of the following conditions holds:

(i) E ∩F = /0 and E and F are opposite edges of a four-cycle

(ii) E ∩F 6= /0 and there is no (|E|× |F|)-grid without diagonals containing them.
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Remark, that for |E ∩F| > 1 there is no such (|E|× |F|)-grid, hence EδF.

Obviously, the relation δ is reflexive and symmetric. The transitive closure δ ∗, i.e., the smallest

transitive relation containing δ , is then an equivalence relation. Condition (ii) implies, that any

two incident edges E,F with (E,F) /∈ δ span an (|E|×|F|)-grid without diagonals. Let this grid

consist of the edges E,E1, . . . ,Es and F,F1, . . . ,Fr with EδEi and FδFj for all i ∈ {1, . . . ,s} and

j ∈ {1, . . . ,r}, respectively. Suppose now there is another (|E| × |F|)-grid consisting of edges

E,E ′
1, . . . ,E

′
s and F,F ′

1, . . . ,F
′

r .

E

F

Ei

Fj

F ′
l

E ′
k

Figure 3.2: Two edges E and F , with EδF , which span more than one |E|× |F|-grid

There must be a k ∈ {1, . . . ,s} and an l ∈ {1, . . . ,r} such that E ′
k /∈ {E1, . . . ,Es} and F ′

l /∈
{F1, . . . ,Fr}, respectively, see Figure 3.2. Then there exists an Ei ∈ {E1, . . . ,Es} as well as an

Fj ∈ {F1, . . . ,Fr} with |E ′
k ∩Ei| 6= 0 and |F ′

l ∩Fj| 6= 0. Thus, there is a four cycle E ′
kEiFjF

′
l ,

where E ′
k and Fj as well as Ei and F ′

l are opposite edges. Hence E ′
kδFj and EiδF ′

l , and therefore

(E,F) ∈ δ ∗. Thus, if E and F belong to distinct δ ∗-equivalence classes, they span exactly one

(|E|× |F|)-grid. This leads us to the following definition:

Definition 3.3. Let γ be an equivalence relation on the edge set E (H) of a hypergraph H. We

say γ has the grid property if any two adjacent edges E and F of H of distinct γ-equivalence

classes span exactly one diagonal free |E|× |F|-grid.

As seen before, δ ∗ has the grid property. Let γ be an arbitrary equivalence relation on the

edge set of a hypergraph H that contains δ ∗. For any two edges E and F with (E,F) /∈ γ holds
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(E,F) /∈ δ ∗ and therefore, they span exactly one |E|× |F |-grid. Thus, any equivalence relation

γ with δ ∗ ⊆ γ satisfies the grid property.

Another relevant property satisfied by δ ∗ and any equivalence relation γ with δ ⊆ γ is intro-

duced in the next lemma.

Lemma 3.1. Let γ be an equivalence relation on the edge set E (H) of a connected hypergraph

H with equivalence classes Γ1, . . . ,Γk, which satisfies the grid property. Then every vertex of

V (H) is incident to edges of Γi for all i ∈ {1, . . . ,k}.

Proof. Suppose there is an equivalence class Γi of γ such that there are vertices in V (H) which

are not contained in a Γi-edge. As H is connected, there exists a pair of vertices u,v ∈ V (H)

and an edge E ∈ E (H) with {u,v} ⊆ E , such that u belongs to a Γi-edge, say F and there is no

Γi-edge containing v. Then clearly, E is not in Γi, it is in Γk with Γk 6= Γi. But then E and F are

two adjacent edges belonging to different equivalence classes of γ and thus by the grid property

there must be a Γi-edge containing v, which contradicts the assumption.

Lemma 3.2. Let H = �
n
i=1Hi be a Cartesian product of prime hypergraphs Hi and let E,F ∈

E (H). If E and F are in relation δ , they are in relation σ .

Proof. Let the first condition in Definition 3.2 be satisfied, i.e., E ∩F = /0 and there are edges

E ′,F ′ ∈ E (H) such that EE ′FF ′ build a four-cycle. Let E = {x1, . . . ,xr} and F = {y1, . . . ,ys}.

W.l.o.g. assume x1 ∈ E ∩E ′, xr ∈ E ∩F ′, y1 ∈ F ∩E ′, ys ∈ F ∩F ′. Let c(E) = i, c(F) = j,

c(E ′) = i′, c(F ′) = j′.

x1

xr

ysy1

c(F ′) = j′

c(F ) = j

c(E) = i

c(E ′) = i′

Figure 3.3: 4-cycle EE ′FF ′
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Then we have:

pk(x1) = pk(xr) for all k 6= i (3.1)

pk(y1) = pk(ys) for all k 6= j (3.2)

pk(x1) = pk(y1) for all k 6= i′ (3.3)

pk(xr) = pk(ys) for all k 6= j′. (3.4)

It follows from (3.1) and (3.3) that

pk(x1) = pk(ys) for all k 6= i, j′ (3.5)

and from (3.2) and (3.4)

pk(x1) = pk(ys) for all k 6= j, i′. (3.6)

Therefore we have either i = j and i′ = j′ or i = i′ and j′ = j. Assume i 6= j. Then the latter

case must hold and we have pk(xr) = pk(x1) = pk(yi) for all k 6= i, and since xr 6= y1 holds,

pi(xr) 6= pi(y1) = pi(ys) and p j(xr) 6= p j(ys). So xr and ys differ in more than one coordinate,

thus they cannot lie in the same edge F ′, which contradicts the assumption, so i = j must hold,

i.e. c(E) = c(F) hence EσF.

Now let E and F be adjacent edges of a hypergraph H , i.e., |E ∩F| > 0 and suppose, there is

no |E|× |F|-grid without diagonals containing them.

First, consider the case |E ∩F| > 1. There is an i ∈ {1, . . . ,n} such that |pi(E)| > 1 and in

particular, |pi(E
′)| > 1 holds for all E ′ ⊆ E with |E ′| > 1. Since (E ∩F) ⊆ E and |E ∩F|> 1, it

follows |pi(E ∩F)| > 1. But as (E ∩F) ⊆ F we have |pi(F)| > 1 as well and therefore EσF.

Now let |E ∩F| = 1 and suppose E and F are not in relation σ . Let E ∩F = {v}, say E =

{v,x1, . . . ,xr} and c(E) = i as well as F = {v,y1, . . . ,ys} and c(F) = j 6= i. For all xa ∈ E ,

a ∈ {1, . . . ,r}, there exists vertices zab ∈V (H), such that for all b ∈ {1, . . . ,s} hold

pi(zab) = pi(xa) (3.7)

pk(zab) = pk(yb) for all k 6= i. (3.8)

Then we have for the set Fa = {xa,za1, . . . ,zas}:

p j(Fa) = {p j(xa), p j(za1), . . . , p j(zas)} = {p j(v), p j(y1), . . . , p j(ys)} = p j(F) (3.9)
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as well as

pk(za1) = . . . = pk(zas) = pk(yb) = pk(v) = pk(xa) for all k 6= i, j (3.10)

from (3.8) and the fact, that {v,yb} ⊆ F for all b ∈ {1, . . . ,s} and {v,xa} ⊆ E .

Now from (3.7) and (3.10) we gain

pk(za1) = . . . = pk(zas) = pk(xa) for all k 6= i (3.11)

and therefore, from (3.9) and (3.11) it follows that Fa is an edge in H with |Fa|= |F|, for arbitrary

a ∈ {1, . . . ,r}.

On the other hand, for the set Eb = {yb,z1b, . . . ,zrb} holds

pi(Eb) = {pi(yb), pi(z1b), . . . , pi(zrb)} = {pi(v), pi(x1), . . . , pi(xr)} = pi(E), (3.12)

again from (3.7) and the fact that {v,yb} ⊆ F for all b ∈ {1, . . . ,s}. Together with (3.8) it follows

that the Eb for b ∈ {1, . . . ,s} are edges in H .

v x1 xa xr
E

y1

yb

ys

F

z1b zab zrb
Eb

za1

zas

Fa

Figure 3.4: Edges E and F (red edges) with (E,F) /∈ σ and the |E|× |F|-grid they span

Furthermore, if we relabel v as z00, E as E0, F as F0 and the xl as zl0 for l ∈ {1, . . . ,r}, the yl as

z0l for l ∈ {1, . . . ,s} respectively, we have Eb∩Fa = {zab} for all a∈ {0, . . . ,r} and b∈ {0, . . . ,s}
respectively. Obviously, the intersection of more then two edges is empty. That means, whenever

two adjacent edges E and F are not in relation σ , they span such an |E|× |F|-grid with |E|× |F|
vertices.

It remains to show that these grids have no diagonals. Therefore, we need to show that there is
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no D ∈ E (H) such that {zab,za′b′} ⊆ D for all a,a′ ∈ {0, . . . ,r}, b,b′ ∈ {0, . . . ,s} with a 6= a′ and

b 6= b′. For zab,za′b′ we have:

pi(zab)
(3.7)
= pi(za0) 6= pi(za′0)

(3.7)
= pi(za′b′) (3.13)

p j(zab)
(3.8)
= p j(z0b) 6= p j(z0b′)

(3.8)
= p j(za′b′) (3.14)

The inequalities follow from the fact, that {za0,za′0} ⊆ E0 and {z0b,z0b′} ⊆ F0.

That means that zab and za′b′ differ in more than one coordinate, hence, they cannot be contained

in the same edge, which completes the proof.

Lemma 3.2 implies that δ ⊆ σ and since σ is an equivalence relation, even δ ∗ ⊆ σ holds,

thus, σ has the grid property.

In a hypergraph product H = �
n
i=1Hi, the Hk-layers are convex partial hypergraphs, as we will

see next. Even more, we can state:

Lemma 3.3. Let H = �
n
i=1Hi be a Cartesian product of connected hypergraphs Hi. Then each

HJ = � j∈JH j-layer is convex for any index set J ⊆ {1, . . . ,n}.

Proof. It suffices to show that whenever there is a path P between two arbitrary vertices u and

v of the same HJ-layer Hu
J , containing no edges of this layer, then there exists a path Q which

entirely lies in Hu
J such that |Q| < |P|.

Suppose P = (u = u0,E1,u1,E2, . . . ,uk−1,Ek,uk = v). Since u and v belong to the same H j-layer,

pl(u) = pl(v) holds for all l ∈ In \ J. There must be an edge Ei of P such that Ei is contained in

some HJ layer, by assumption different from Hu
J . Otherwise we would have pl(u) = pl(v) for

all l ∈ J, hence pl(u) = pl(v) for all l ∈ In, i.e. u = v.

Let {E j1 , . . . ,E jr} be a subset of edges of P, with j1, j2, . . . , jr ∈ {1, . . . ,k}, j1 < j2 < .. . < jr,

that are in some HJ-layer different from Hu
J , and no edge is the copy of another. To be more

precise, for each ji there is a ki ∈ J with

pki E ji ∈ E (Hki) and pka E ja 6= pkb E jb for a 6= b (3.15)

and jr is maximal. Notice, that a 6= b does not imply ka 6= kb.

By assumption E1 is not contained in any HJ-layer, thus r < k. Without loss of generality, we

can assume that the E ji are not incident. In the following we will denote the vertices u ji by ji. If
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we set j0 := u0, we have

pl( ji−1) = pl( ji −1) for all l ∈ J and all i ∈ {1, . . . ,r} (3.16)

and since ji −1, ji ∈ E ji ,

pl( ji) = pl( ji −1) (3.17)

holds for all l 6= ki, ki ∈ J.

Hu
J

H
j1
J

H
jr

J

u

E1 u1

j1 − 1
j1

Ej1

v1

F1

ji − 1

ji

Eji

vi−1

vi

Fi

jr − 1
jr

Eji

vr−1

vFr

Figure 3.5: Idea of the proof: Path P (black) and Path Q (red) which we got by shifting the edges E ji in

the Hu
J -layer

Furthermore, for each ji, i ∈ {1, . . . ,r}, there exists a vi ∈V (H), such that

pl(vi) = pl(u) for all l ∈ In \ J (3.18)

pl(vi) = pl( ji) for all l ∈ J (3.19)

In particular, Equation (3.18) implies vi ∈V (Hu
J ) for all i ∈ {1, . . . ,r}. It follows

pl(vi−1)
(3.19)
= pl( ji−1)

(3.16),(3.17)
= pl( ji)

(3.19)
= pl(vi) for all l ∈ J \{ki} (3.20)

and by Equation (3.18) we have

pl(vi−1) = pl(vi) for all l ∈ In \ J (3.21)
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hence by Equations (3.20) and (3.21)

pl(vi−1) = pl(vi) for all l 6= ki (3.22)

In other words, each two vertices vi−1,vi lie in the same Hki layer for some ki ∈ J.

Next we show that there are edges Fi ∈ E (Hu
J ) containing both vi−1 and vi. From Equations

(3.16) and (3.19) it follows

pki(vi−1)
(3.19)
= pki( ji−1)

(3.16)
= pki( ji −1) (3.23)

pki(vi)
(3.19)
= pki( ji) (3.24)

Thus we have by Equations (3.23), (3.24) and (3.15)

pki(vi−1), pki(vi) ∈ pki(E ji) (3.25)

Hence by Equations (3.18), (3.22) and (3.25), for each i ∈ {1, . . . ,r} there exists an edge Fi in

Hu
J , such that vi−1, vi ∈ Fi.

Consider now vr. Since there is no more edge E j, j > jr, of P that is contained in any HJ-layer,

jr and v belong to the same ĤJ := �i∈In\JHi-layer, and therefore we have

pl(vr)
(3.19)
= pl( jr) = pl(v) for all l ∈ J (3.26)

and from the definition of vr and the fact that u and v are in the same HJ-layer, it follows

pl(vr)
(3.18)
= pl(v) for all l ∈ In \ J. (3.27)

Therefore, we can conclude vr = v, and we found a path Q = (u = v0,F1,v1, . . . ,vr−1,Fr,vr = v)

from u to v, whose edges entirely lie in Hu
J and for which holds

|Q| = r < k = |P|,

which completes the proof.

This gives rise to the next definition.

Definition 3.4. An equivalence relation γ on the edge set E (H) of a hypergraph H with equiva-

lence classes Γi, i ∈ I, is called convex if for any J ⊆ I every connected component of the partial

hypergraph generated by
⋃

i∈J Γi is convex.
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By Lemma 3.3, the product relation σ is a convex relation. Moreover, any product relation

must be convex and has to satisfy the grid property. On the other hand, we have the following

statement

Theorem 3.1. Let γ be a convex equivalence relation on the edge set E (H) of a connected

Hypergraph H which satisfies the grid property. Then γ induces a factorization of H with respect

to the Cartesian product.

To prove this theorem, we first have to show the validity of the next two lemmas.

Lemma 3.4. Let γ be an equivalence relation on the edge set E (H) of a connected hypergraph H

which satisfies the grid property. Let Γ be an equivalence class of γ . If all connected components

of the partial hypergraph of H generated by Γ are convex, they are isomorphic.

Proof. Let HΓ be the partial hypergraph generated by Γ with connected components C1, . . . ,Cr

and let Γ̂ denote the union of all equivalence classes of γ , distinct from Γ, i.e., Γ̂ =
⋃

Γ′ 6=Γ Γ′.

It suffices to show, that any two components C1,C2 which are connected by a Γ̂-edge are iso-

morphic. We define a mapping ϕ : V (C1) → V (C2), through x 7→ ϕx, whenever x and ϕx are

connected by a Γ̂-edge. From the grid property and Lemma 3.1, it follows that for all x ∈V (C1)

there exists a ϕx ∈V (C2). The grid property ensures that adjacent vertices in C1 have different

images in C2 and edges in C1 map onto edges in C2. By convexity we have, that non adjacent

vertices in C1 have different images in C2 as well, i.e. the mapping ϕ is injective. On the other

hand we can extend ϕ−1 to a mapping ψ : V (C2) →V (C1). Analogously, it follows that for all

y ∈V (C2) there is a ψy in V (C1), hence ϕ−1 = ψ , i.e. ϕ is bijective, and every edge in C2 maps

onto an edge in C1, thus ϕ is an isomorphism between C1 and C2.

Sometimes the transitive closure of δ is already convex. If this is the case, then each path

between two vertices of the same connected component of an equivalence class of δ ∗ must

contain at least one edge of this equivalence class (see Lemma 3.3).

Figure 3.6 shows a hypergraph where δ ∗ is not convex and thus, the mapping ϕ defined in the

proof of Lemma 3.4 is no isomorphism. The connected component C1 of the black equivalence

class is mapped via the red edges onto the connected component C2. Although ϕ preserves

adjacency and non-adjacency, the mapping is not isomorphic, since it is not injective.
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1 2 3 4C1

5 6 7 8C2

9 10 11 12

ϕ(1) =
5 ϕ(

9)
=

5

Figure 3.6: Hypergraph and its equivalence classes (red and black, respectively) of δ ∗, and the connected

components C1 and C2 of the hypergraph generated by the black equivalence class. We have

dH(1,9) = 2, while dC1(1,9) = 3, hence C1 is not convex.

Lemma 3.5. Let γ be an equivalence relation on the edge set E (H) of a connected hypergraph

H satisfying the grid property with only two equivalence classes Γ and Γ̂. Let HΓ and H
Γ̂

be the subgraphs generated by Γ and Γ̂, with connected components C1, . . . ,Cr and Ĉ1, . . . ,Ĉs,

respectively. Then

V (Ci)∩V (Ĉ j) 6= /0 for all i ∈ {1, . . . ,r}, j ∈ {1, . . . ,s}.

In particular,

|V (Ci)∩V (Ĉ j)| = 1

holds if Ci and Ĉ j are convex.

Proof. Suppose there are components Ci, Ĉ j with V (Ci)∩V (Ĉ j) = /0, such that they have min-

imal distance. Let P = (v0,E1,v1,E2, . . . ,Ek,vk) be a shortest path from Ci to Ĉ j, such that

v0 ∈V (Ci) and vk ∈V (Ĉ j). Obviously, the first edge E1 must lie in Γ̂ and the vertex v1 is not in

Ci, otherwise E1 would be in Γ which contradicts the minimality of P. Lemma 3.1 implies, that

v1 must be contained in a Γ-component, say Ck. Since the distance from Ck to Ĉ j is smaller than

|P|, we have V (Ck)∩V (Ĉ j) 6= /0. Let w be a vertex in V (Ck)∩V (Ĉ j) and let P′ be a path from v1

to w in Ck. By repeated application of the grid property we gain a vertex u in V (Ci) connected

to w by a Γ̂-edge. But then u must be in V (Ĉ j) and thus |V (Ci)∩V (Ĉ j)| ≥ 1.

Now assume |V (Ci)∩V (Ĉ j)| ≥ 2. Let u,w ∈ V (Ci)∩V (Ĉ j). By connectivity we have a path

Q from u to w in Ci and a path Q′ from u to w in Ĉ j as well. Therefore either |Q| > |Q′| or
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|Q′| > |Q| or |Q| = |Q′| holds. Hence either Ci or Ĉ j or both are not convex. And therefore the

second proposition holds.

We are now able to prove Theorem 3.1:

Proof of Theorem 3.1. First assume γ has only two equivalence classes Γ and Γ̂ with connected

components C1, . . . ,Cr and Ĉ1, . . . ,Ĉs respectively, of the generated partial hypergraphs. By

Lemma 3.5 we can assign uniquely determined coordinates (i, j) to each vertex of H , whenever

{v} = V (Ci)∩V (Ĉ j), i ∈ {1, . . . ,r}, j ∈ {1, . . . ,s}. On the other hand for all such coordinates

there exists a uniquely determined vertex in V (H), since |V (Ci)∩V(Ĉ j)| = 1.

In the following we will identify each vertex of H with its coordinates. Obviously we

have V (Ci) = {(i,1), . . . ,(i,s)} for all i ∈ {1, . . . ,r} and V (Ĉ j) = {(1, j), . . . ,(r, j)} for all

j ∈ {1, . . . ,s}. Recall that Lemma 3.4 implies that the Ci are isomorphic for all i ∈ {1, . . . ,r}. In

particular C1
∼= Ci holds for all i ∈ {1, . . . ,r}. The isomorphism is given by the mapping

(1, j) 7→ (i, j) for all j ∈ {1, . . . ,s}.

If C1 and Ci are connected by an edge, it is an isomorphism as in the proof of Lemma 3.4.

If they are connected by a path, it is an isomorphism by induction on the length of the path.

Analogously we have Ĉ1
∼= Ĉ j for all j ∈ {1, . . . ,s} given by the isomorphism

(i,1) 7→ (i, j) for all i ∈ {1, . . . ,r}.

A set of vertices {(i1, j1), . . . ,(iq, jq)}, 1 ≤ i1, . . . , iq ≤ r, 1 ≤ j1, . . . , jq ≤ s, is an edge in H if

and only if either

(i) it is in the same Ci, hence i1 = . . . = iq = i and {(1, j1), . . . ,(1, jq)} is an edge in C1, or

(ii) it is in the same Ĉ j, hence j1 = . . . = jq = j and {(i1,1), . . . ,(iq,1)} is an edge in Ĉ1.

That is, H is isomorphic to C1�Ĉ1.

Now define hypergraphs H1 and H2 by setting V (H1) = {i : (i,1) ∈ V (C1)} and V (H2) = { j :

(1, j) ∈V (Ĉ1)}. H1 and H2 are isomorphic to C1 and Ĉ1 by the isomorphic mappings i 7→ (i,1)

and j 7→ (1, j) respectively, thus H = H1�H2.

Assume now γ has arbitrarily many equivalence classes Γi, i = 1, . . . ,n. Let γi be the equivalence

relation with the two equivalence classes Γi and Γ̂i =
⋃n

k=1,k 6=i Γk for arbitrary i ∈ {1, . . . ,n}. As

already shown, we get a factorization of H into two factors Hi�Ĥi where Hi and Ĥi belong to Γi
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and Γ̂i, respectively. We will call the projection, to be more precise, the image of the projection

of a vertex v in Hi�Ĥi into the factor Hi the i-th coordinate of v, denoted by vi.

Now it is clear, that we can assign coordinates to each vertex. If two vertices u,v have the

same i-th coordinate, then, by convexity, there is no Γi-edge on any shortest path between them.

Thus, if u and v have the same coordinates, there is no nontrivial shortest path between them,

hence u = v. Therefore the assignment of coordinates to vertices of a connected hypergraph H

is bijective.

A subset {v1, . . . ,vr} of V (H) is an edge of H if and only if the vk differ in the same coordinate,

say the i-th, for all k ∈ {1, . . . ,r} and {vi
1, . . . ,v

i
r} is an edge in Hi.

Thus we have H = �
n
i=1Hi.

The equivalence relation whose only equivalence class is the whole edge set of a hypergraph

H is trivially convex and satisfies the grid property and is therefore a product relation. And this

relation always exists. By Theorem 3.1 we can conclude that any convex relation on the edge

set of a connected hypergraph that satisfies the grid property is a product relation and induces

a factorization of this hypergraph. The smallest convex relation satisfying the grid-property,

if such a relation exists at all, must therefore induce a prime factorization with respect to the

Cartesian product.

The following lemma is true for graphs, see [32], but it can immediately be transfered to

hypergraphs.

Lemma 3.6. Let γ j, j ∈ J be an arbitrary set of convex relations on the Edge set E (H) of a

hypergraph H containing δ . Then γ =
⋂

j∈J γ j is convex.

It is clear that for arbitrary equivalence relations on the edge set of a hypergraph, which satisfy

the grid-property, their intersection also has the grid-property. Therefore Lemma 3.6 implies that

there is exactly one finest convex equivalence relation on the edge set E (H) of a hypergraph H

satisfying the grid property, namely the intersection of all convex relations on E (H) containing

δ , that is its convex hull, C(δ ). Conversely, any product relation must be convex and contains δ .

Thus we have proved the following theorems.

Theorem 3.2. Every connected hypergraph H has a unique prime factor decomposition with

respect to the Cartesian product.

Theorem 3.3. The relation corresponding to the unique prime factorization of a connected

hypergraph H is the convex hull of δ , i.e. σ = C(δ ).
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4.1 Additional Notes

Only finite hypergraphs and products of finitely many factors are treated in this thesis. It is

possible to extend the definitions of the Cartesian, the direct and the strong product to infinitely

many graphs.

In particular, we have for the Cartesian product:

Let {Hi | i ∈ I} be a set of (finite or infinite) hypergraphs. Then their Cartesian product, �i∈IHi,

is the following hypergraph:

(1) V (�i∈IHi) =×i∈I V (Hi),

(2) for E ⊆×i∈I V (Hi) we have E ∈ E (�i∈IHi) if and only if there is an i ∈ I, s.t.

(i) pi(E) ∈ E (Hi) and

(ii) |p j(E)| = 1 for all j ∈ I \{i}.

While a Cartesian product hypergraph of finitely many connected hypergraphs is connected,

whether they are finite or not, this does not hold for the product of infinitely many hypergraphs.

Since in a product of infinitely many factors there are vertices that differ in infinitely many

coordinates and thus, cannot be connected by a path of finite length, as vertices of the same edge

differ in only one coordinate. An infinite connected hypergraph can have infinitely many prime

factors with respect to the Cartesian product. In this case it cannot be the Cartesian product of

these factors, since the product is not connected, but a connected component of this product.

Therefore it might be useful to define a so called weak Cartesian product.

Let {Hi | i ∈ I} be a family of hypergraphs and let ai ∈ V (Hi) for i ∈ I. The weak Cartesian

product H = �i∈I(Hi,ai) of the rooted hypergraphs (Hi,ai) is defined by

V (H) = {v ∈×
i∈I

V (Hi) | pi(v) 6= ai for at most finitely many i ∈ I}

E (H) = {E ⊆V (H) | p j(E) ∈ E (H j) for exactly one j ∈ I, and |pi(E)| = 1 for i 6= j}.
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We will also write �
a
i∈IHi instead of �i∈I(Hi,ai), with a ∈ V (H), such that pi(a) = ai for all

i ∈ I. The weak Cartesian product of connected hypergraphs is connected. In this case, it is the

connected component of the Cartesian product of the hypergraphs Hi which contains a. One

observes that the weak Cartesian product does not depend on the ai and is the Cartesian product

if I is finite. It is shown in [24] by W. Imrich, that every connected graph has a unique prime

factor decomposition with respect to the weak Cartesian product. In this contribution, the author

also extends the results to set systems, i.e. hypergraphs.

The proof of uniqueness of the prime factorization with respect to the Cartesian product of

hypergraphs in Chapter 3 is modeled after the proof of uniqueness of prime factorization with

respect to the weak Cartesian product of graphs in [32]. Therefore, with small modifications of

the notations in Chapter 3, we can extend Theorem 3.2 to the following statement:

Theorem 4.1. Every connected hypergraph has a unique representation as a weak Cartesian

product.

4.2 Summary

In this diploma thesis we studied hypergraph products as a generalization of the commutative

standard graph products. The Cartesian product, which we were concerned with in Section 2.1

was already defined by W. Imrich in 1967 [23].

In Section 2.2 and Section 2.3 we defined some new hypergraph products. That are the direct

product ×̌, the direct product ×, the direct product ×̃, and the strong product ⊠ . Table 4.1

shows what kind of hypergraph products, treated in this thesis, fulfills which of the following

properties:

1. V (H1 ⋆H2) = V (H1)×V (H2).

2. If H1 and H2 are simple then H1 ⋆H2 is simple.

3. The adjacency properties of a product depends on those of its factors.

4. Associativity.

5. Commutativity.

6. Distributivity with respect to the disjoint union.

7. The projections pi :V (H1 ⋆H2)→V (Hi) for i∈ {1,2} are (at least weak) homomorphisms.
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8. The restriction of the product ⋆ on graphs is the corresponding graph product.

9. The product H1 ⋆H2 is connected whenever the factors H1 and H2 are connected.

10. Unique prime factorization in the class of simple connected hypergraphs (or more special

hypergraph classes).

Properties Cartesian � Direct ×̌ Direct × Direct ×̃ Strong ⊠

1.
√ √ √ √ √

2.
√ √ √ √ √

3.
√ √ √ √ √

4.
√ √ √ √ √

5.
√ √ √ √ √

6.
√ √ √ √ √

7. weak − √ √
weak

8.
√

only for simple graphs
√

only for simple graphs
√

9.
√ − − − √

10.
√

(?)∗ ? ? ?

Table 4.1: Properties of the hypergraph products

*: Prime factorization w.r.t. the direct product ×̌ is not unique in the class of conformal

hypergraphs (cf. Example 2.2).

According to graph products, we will call hypergraph products which satisfy the first three con-

ditions simple hypergraph products.

Uniqueness of the prime factor decomposition of simple connected hypergraphs was first

proved by W. Imrich in [23]. We gave an alternative proof and showed, that the product relation

corresponding to the unique prime factorization is the convex hull of a starting relation δ on the

edge set of a given hypergraph.

4.3 Outlook

To conclude this thesis some open problems will be listed in the following. This listing makes

no claim to be complete.
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Other Products As seen in Section 2.2 of this thesis, there are not fewer than three hyper-

graph products that coincide with the direct graph product at least in the class of graphs without

loops. Also three different definitions of hypergraph products that coincide with the strong graph

product in this graph class may arise, here we considered only one product. Besides, it is shown

for graphs, that there exists 256 simple graph products. Four of them are associative and the

projections of a product into at least one of its factors are weak homomorphisms [26]. Obvi-

ously one question is if there are more hypergraph products than mentioned here, generalizing

the common graph products. Moreover, how many simple hypergraph products do exist at all?

Prime Factorization A product relation σ , that belongs to the unique prime factorization

of a simple connected hypergraph with respect to the Cartesian product, is provided in this

thesis. This could be the basis for developing decomposition algorithms. One might ask in this

context, which complexity of time and space is needed to compute the prime factors of a given

hypergraph.

Also prime factor decomposition with respect to the strong and direct product of hypergraphs

should be considered. At first, it remains to examine if the prime factorization with respect to the

direct product and the strong product, respectively, is unique in special classes of hypergraphs.

In graph theory, direct and strong graph products can be factorized by identifying their Cartesian

skeleton and decompose it into its prime factors, see [16, 22]. The question is if this works for

hypergraphs as well, and if it is easy to identify the Cartesian skeleton in this case.

Partial Hypergraphs of Product Hypergraphs In graph theory also subgraphs of product

graphs are studied. The focus lies on isometric embeddings and retracts of the Cartesian and

strong products, see for example [18, 27, 39]. It is shown, that every graph can be embedded

isometrically into a strong product of paths [29].

Also graphs which can be represented as nontrivial subgraphs (i.e., each projection of this

subgraphs into the factors contains at least two vertices) of Cartesian product graphs are of

interest. Those graphs, for which such a representation is not possible are called S-prime and an

infinite family of such graphs is classified for example in [33].

It is to examine if similar results also hold for hypergraphs.

Directed Hypergraphs In this thesis, only undirected hypergraphs are treated. But also di-

rected hypergraphs are applied in various fields, see [2] for a survey. There are several ways to

generalize the concept of directed graphs to directed hypergraphs. We give here a definition that
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can be found in [17], since most of the others can be seen as a special case of this definition.

A directed hyperedge or hyperarc is an ordered pair, E = (X ,Y ), of (possibly empty) disjoint

subsets of vertices; X is the tail of E while Y is its head. The tail and the head of hyperarc E will

be denoted by T(E) and H(E), respectively. A directed hypergraph is a hypergraph with directed

hyperedges.

One might ask if the results of this thesis can be easily extended to directed hypergraphs.
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