15 research outputs found

    Capacitive Sensing for Non-Invasive Breathing and Heart Monitoring in Non-Restrained, Non-Sedated Laboratory Mice

    Get PDF
    Animal testing plays a vital role in biomedical research. Stress reduction is important for improving research results and increasing the welfare and the quality of life of laboratory animals. To estimate stress we believe it is of great importance to develop non-invasive techniques for monitoring physiological signals during the transport of laboratory animals, thereby allowing the gathering of information on the transport conditions, and, eventually, the improvement of these conditions. Here, we study the suitability of commercially available electric potential integrated circuit (EPIC) sensors, using both contact and contactless techniques, for monitoring the heart rate and breathing rate of non-restrained, non-sedated laboratory mice. The design has been tested under different scenarios with the aim of checking the plausibility of performing contactless capture of mouse heart activity (ideally with an electrocardiogram). First experimental results are shown

    Monitoring System for Laboratory Mice Transportation: A Novel Concept for the Measurement of Physiological and Environmental Parameters

    Get PDF
    Laboratory mice are used in biomedical research as “models” for studying human disease. These mice may be subject to significant levels of stress during transportation that can cause alterations that could negatively affect the results of the performed investigation. Here, we present the design and realization of a prototypical transportation container for laboratory mice, which may contribute to improved laboratory animal welfare. This prototype incorporates electric potential integrated circuit (EPIC) sensors, which have been shown to allow the recording of physiological parameters (heart rate and breathing rate) and other sensors for recording environmental parameters during mouse transportation. This allows for the estimation of the stress levels suffered by mice. First experimental results for capturing physiological and environmental parameters are shown and discussed

    Suivi des signes vitaux à l’éveil d’une souris non restreinte

    Get PDF
    Introduction. Le suivi des signes vitaux d’une souris à l’éveil est crucial pour le suivi post-opératoire, tester des médicaments, l’évaluation comportementale et du stress. L’étalon or actuel est la télémétrie qui nécessite une implantation par chirurgie avec les inconvénients qui l’accompagne. Cette étude propose trois méthodes non-invasives différentes pour mesurer le rythme cardiaque et respiratoire de la souris sans induire de stress : le radar modulé en fréquence, la matrice piézoélectrique et les électrodes de surfaces couplées à un piézoélectrique. Les objectifs sont : un faible coût de fabrication, un dispositif autonome ne nécessitant pas l’intervention de l’usager, une transmission des données sans-fil ainsi qu’une mesure robuste des deux signes vitaux. Méthode. Le matériel a été fabriqué à l’aide de Kicad pour les circuits imprimés et Catia V5 pour la modélisation 3D. Le logiciel des trois prototypes a été implémenté en C/C++ dans Psoc Creator de Cypress semiconductor et Visual Studio 2017. La faisabilité de la technique radar est testée sur souris (C57BL/6) anesthésiée par isofluorane dont l’ECG est mesuré à l’aide d’une plateforme de suivi de petit animaux validée (Labeo Technologies). Le radar est ensuite validé sur souris éveillée et restreinte dont l’ECG est mesuré à l’aide d’électrodes sous-cutanées (électrodes implantées). Le système est finalement testé sur souris éveillé dans sa cage, non restreinte. La faisabilité de la matrice piézoélectrique est testée sur souris anesthésiée par isofluorane dont l’ECG est mesuré simultanément à l’aide d’électrodes sous-cutanées (aiguilles ECG). La matrice de piézoélectriques est deposée dans une cage pour 24h et testée sur souris éveillée. Concernant le système d’électrodes de surface couplées à un piézoélectrique, la faisabilité est validée sur souris éveillée restreinte à la surface du dispositif. Finalement, le système est testé sur souris éveillée dans sa cage, non restreinte. Toutes les données fuent analysées avec Matlab2017b. Résultats. Sous anesthésie, l’erreur moyenne est de 4 % et 3 % pour le radar et la matrice piézoélectrique sur le rythme cardiaque. À l’éveil, le radar et les piézoélectriques ont permis d’obtenir des mesures stable du rythme respiratoire, mais un rythme cardiaque incohérent. La méthode d’électrodes de surface s’est avérée la meilleure pour mesurer le rythme cardiaque avec un rapport signal à bruit de 17.3 dB sur le signal ECG. Conclusion. Les électrodes de surface couplées à un piézo-électrique est la méthode la plus appropriée pour mesurer le rythme cardiaque chez une souris éveillé sans induire de stress ou et sans chirurgie, permettant de sauver du temps et de l’argent.----------ABSTRACT Introduction. Monitoring vital signs on awaken mice is crucial for post operation follow-up, drug testing, behavioral monitoring and stress evaluation. Currently, the golden standard method relies on telemetry which requires an implant via surgery. This study proposes three different non-invasive and stress-free techniques for measuring Respiration Rate (RR) and Heart Rate (HR) on awaken mice: Frequency Modulated Continuous Wave (FMCW) Radar, Piezoelectric Matrix and ECG pad matrix coupled with Piezoelectric. Research goals are: low cost device, self sufficient device, wireless data transmission and robust monitoring of vital signs. Methods. The hardware was designed using Kicad for PCB and Catia V5 for 3D modelisation. Software was designed using C/C++ programming in Psoc Creator from Cypress semiconductor and Visual Studio 2017. Radar technique was validated on anesthetized ventilated mouse (C57BL/6) while simultaneously recording ECG with small animal monitoring platform (Labeo technologies). System was then validated on a restrained awake mouse while simultaneously recoding ECG (implanted electrodes). Radar system was finally tested on awake mouse free in the cage. Piezoelectric matrix system was also validated on anesthetized ventilated mouse while simultaneously recording ECG (ECG needles). Piezoelectric system was then tested on awake, non restrained, mouse. Finally, ECG pad matrix was validated by restraining the mice to the device and then tested on awake, non-restrained, mouse. Data were all analysed using Matlab 2017b. Results. Under Anesthesia, mean error of 4% and 3% for FMCW Radar and Piezoelectric on HR calculation were obtained. On awaken mouse, FMCW radar and Piezoelectric Matrix rendered reliable RR but incoherent HR. ECG pad Matrix coupled with piezoelectric rendered the best HR calculation with SNR of 17.3 dB on the ECG signal. Conclusion. ECG pad Matrix coupled with piezoelectric is the most appropriate technique for monitoring the vitals signs with the advantages of reliable data, stress-free and surgery-free

    Electrostatic Sensors – Their Principles and Applications

    Get PDF
    Over the past three decades electrostatic sensors have been proposed, developed and utilised for the continuous monitoring and measurement of a range of industrial processes, mechanical systems and clinical environments. Electrostatic sensors enjoy simplicity in structure, cost-effectiveness and suitability for a wide range of installation conditions. They either provide unique solutions to some measurement challenges or offer more cost-effective options to the more established sensors such as those based on acoustic, capacitive, optical and electromagnetic principles. The established or potential applications of electrostatic sensors appear wide ranging, but the underlining sensing principle and resultant system characteristics are very similar. This paper presents a comprehensive review of the electrostatic sensors and sensing systems that have been developed for the measurement and monitoring of a range of process variables and conditions. These include the flow measurement of pneumatically conveyed solids, measurement of particulate emissions, monitoring of fluidised beds, on-line particle sizing, burner flame monitoring, speed and radial vibration measurement of mechanical systems, and condition monitoring of power transmission belts, mechanical wear, and human activities. The fundamental sensing principles together with the advantages and limitations of electrostatic sensors for a given area of applications are also introduced. The technology readiness level for each area of applications is identified and commented. Trends and future development of electrostatic sensors, their signal conditioning electronics, signal processing methods as well as possible new applications are also discussed

    Capacitive Sensing for Non-Invasive Breathing and Heart Monitoring in Non-Restrained, Non-Sedated Laboratory Mice

    Get PDF
    Animal testing plays a vital role in biomedical research. Stress reduction is important for improving research results and increasing the welfare and the quality of life of laboratory animals. To estimate stress we believe it is of great importance to develop non-invasive techniques for monitoring physiological signals during the transport of laboratory animals, thereby allowing the gathering of information on the transport conditions, and, eventually, the improvement of these conditions. Here, we study the suitability of commercially available electric potential integrated circuit (EPIC) sensors, using both contact and contactless techniques, for monitoring the heart rate and breathing rate of non-restrained, non-sedated laboratory mice. The design has been tested under different scenarios with the aim of checking the plausibility of performing contactless capture of mouse heart activity (ideally with an electrocardiogram). First experimental results are shown

    Life Sciences Program Tasks and Bibliography

    Get PDF
    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1995. Additionally, this inaugural edition of the Task Book includes information for FY 1994 programs. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web pag

    Análisis comportamental de la rata mediante cámaras y sensores térmicos ante estímulos sonoros

    Get PDF
    Este proyecto consiste en la propuesta de un diseño no invasivo que mida algunas variables fisiológicas de ratas, asociándolas a un modelo de observación de su conducta, que monitorizando el inventario de comportamientos exhibidos por el animal (etograma), permita evidenciar y, eventualmente, cuantificar la posible correlación entre ambos. Es bien sabido que las conductas que se manifiestan en un etograma en respuesta a estímulos ambientales concretos (como pueden ser los sonidos), generalmente, se definen como mutuamente excluyentes y objetivas, evitando la inferencia funcional en cuanto a su posible propósito, por lo que se describen como patrones de observación concretos. Este objetivo requiere de una documentación previa sobre las metodologías usadas hoy en día en la investigación animal para el registro de estas variables. Todas estas metodologías se analizaron priorizando aquellas que, bajo la premisa de requerir protocolos no invasivos, se mostraron más eficaces. Para probar el funcionamiento de estas metodologías y su correlación con el modelo conductual se realizaron una serie de pruebas de observación y análisis de la respuesta en el laboratorio en ratas que,sometidas a estímulos auditivos, mostraban diferentes tipos de modificaciones fisiológicas y conductuales que permitieron obtener diferentes resultados. Finalmente, se efectuaron valoraciones y análisis de mejora sobre el modelo propuesto. Del trabajo desarrollado, se puede inferir que diseñar protocolos que permitan correlacionar las medidas obtenidas (con metodología no invasiva de registro de cambios sobre variables fisiológicas) en un modelo animal sobre el que identificar modificaciones conductuales asociadas a respuestas a estímulos externos concretos (como los sonoros) puede conducir a una fructífera colaboración que conllevará, a su vez, el comienzo de una línea de investigación que conecte la Bioelectrónica con la Biología animal para que, en un futuro, puedan aportarse numerosos datos y convertirse, así, en una potente herramienta para el avance en el conocimiento de los efectos de dichos estímulos sobre el bienestar de los sujetos.This project consists of the proposal of a non-invasive design that measures some physiological variables in rats, associating them with an observation model of their behavior, which, by monitoring the inventory of behaviors exhibited by the animal (ethogram), makes it possible to demonstrate and, eventually, quantify the possible correlation between the two, It is well known that the behaviors shown in an ethogram in response to specific environmental stimuli (such as sounds) are generally defined as mutually exclusive and objective, avoiding functional inference as to their possible purpose, and are therefore described as specific observation patterns. This objective requires prior documentation of the methodologies used today in animal research for recording these variables. All these methodologies were analyzed prioritizing those that, under the premise of requiring non-invasive protocols, were shown to be more effective. To test the performance of these methodologies and their correlation with the behavioral model, a series of observation and response analysis tests were carried out in the laboratory on rats that, when subjected to auditory stimuli, showed different types of physiological and behavioral modifications that allowed different results to be obtained. Finally, evaluations and improvement analyses were carried out on the proposed model. From the work carried out, it can be inferred that designing protocols that allow correlating the measurements obtained (with non-invasive methodology for recording changes in physiological variables) in an animal model on which to identify behavioral modifications associated with responses to specific external stimuli (such as sound) can lead to a fruitful collaboration that will, in turn, lead to the start of a fruitful collaboration that will, in turn, lead to the start of a new research project that will lead to a new research project that will, in turn, lead to the start of a new research project that will, in turn, lead to the start of a new research project, This, in turn, will lead to the start of a line of research connecting bioelectronics with animal biology so that, in the future, numerous data can be provided and thus become a powerful tool for progress in the knowledge of the effects of these stimuli on the well-being of the subjects.Universidad de Sevilla. Grado en Ingeniería de las Tecnologías Industriale

    Tagungsband

    Get PDF
    corecore