3,585 research outputs found

    Real-Time Multi-Fisheye Camera Self-Localization and Egomotion Estimation in Complex Indoor Environments

    Get PDF
    In this work a real-time capable multi-fisheye camera self-localization and egomotion estimation framework is developed. The thesis covers all aspects ranging from omnidirectional camera calibration to the development of a complete multi-fisheye camera SLAM system based on a generic multi-camera bundle adjustment method

    3D object reconstruction using computer vision : reconstruction and characterization applications for external human anatomical structures

    Get PDF
    Tese de doutoramento. Engenharia Informática. Faculdade de Engenharia. Universidade do Porto. 201

    Extraction of Unfoliaged Trees from Terrestrial Image Sequences

    Get PDF
    This thesis presents a generative statistical approach for the fully automatic three-dimensional (3D) extraction and reconstruction of unfoliaged deciduous trees from wide-baseline image sequences. Tree models improve the realism of 3D Geoinformation systems (GIS) by adding a natural touch. Unfoliaged trees are, however, difficult to reconstruct from images due to partially weak contrast, background clutter, occlusions, and particularly the possibly varying order of branches in images from different viewpoints. The proposed approach combines generative modeling by L-systems and statistical maximum a posteriori (MAP) estimation for the extraction of the 3D branching structure of trees. Background estimation is conducted by means of mathematical (gray scale) morphology as basis for generative modeling. A Gaussian likelihood function based on intensity differences is employed to evaluate the hypotheses. A mechanism has been devised to control the sampling sequence of multiple parameters in the Markov Chain considering their characteristics and the performance in the previous step. A tree is classified into three typical branching types after the extraction of the first level of branches and more specific Production Rules of L-systems are used accordingly. Generic prior distributions for parameters are refined based on already extracted branches in a Bayesian framework and integrated into the MAP estimation. By these means most of the branching structure besides tiny twigs can be reconstructed. Results are presented in the form of VRML (Virtual Reality Modeling Language) models demonstrating the potential of the approach as well as its current shortcomings.Diese Dissertationsschrift stellt einen generativen statistischen Ansatz für die vollautomatische drei-dimensionale (3D) Extraktion und Rekonstruktion unbelaubter Laubbäume aus Bildsequenzen mit großer Basis vor. Modelle für Bäume verbessern den Realismus von 3D Geoinformationssystemen (GIS), indem sie Letzteren eine natürliche Note geben. Wegen z.T. schwachem Kontrast, Störobjekten im Hintergrund, Verdeckungen und insbesondere der möglicherweise unterschiedlichen Ordnung der Äste in Bildern von verschiedenen Blickpunkten sind unbelaubte Bäume aber schwierig zu rekonstruieren. Der vorliegende Ansatz kombiniert generative Modellierung mittels L-Systemen und statistische Maximum A Posteriori (MAP) Schätzung für die Extraktion der 3D Verzweigungsstruktur von Bäumen. Hintergrund-Schätzung wird auf Grundlage von mathematischer (Grauwert) Morphologie als Basis für die generative Modellierung durchgeführt. Für die Bewertung der Hypothesen wird eine Gaußsche Likelihood-Funktion basierend auf Intensitätsunterschieden benutzt. Es wurde ein Mechanismus entworfen, der die Reihenfolge der Verwendung mehrerer Parameter für die Markoff-Kette basierend auf deren Charakteristik und Performance im letzten Schritt kontrolliert. Ein Baum wird nach der Extraktion der ersten Stufe von Ästen in drei typische Verzweigungstypen klassifiziert und es werden entsprechend Produktionsregeln von spezifischen L-Systemen verwendet. Basierend auf bereits extrahierten Ästen werden generische Prior-Verteilungen für die Parameter in einem Bayes’schen Rahmen verfeinert und in die MAP Schätzung integriert. Damit kann ein großer Teil der Verzweigungsstruktur außer kleinen Ästen extrahiert werden. Die Ergebnisse werden als VRML (Virtual Reality Modeling Language) Modelle dargestellt. Sie zeigen das Potenzial aber auch die noch vorhandenen Defizite des Ansatzes

    A distributed optimization framework for localization and formation control: applications to vision-based measurements

    Full text link
    Multiagent systems have been a major area of research for the last 15 years. This interest has been motivated by tasks that can be executed more rapidly in a collaborative manner or that are nearly impossible to carry out otherwise. To be effective, the agents need to have the notion of a common goal shared by the entire network (for instance, a desired formation) and individual control laws to realize the goal. The common goal is typically centralized, in the sense that it involves the state of all the agents at the same time. On the other hand, it is often desirable to have individual control laws that are distributed, in the sense that the desired action of an agent depends only on the measurements and states available at the node and at a small number of neighbors. This is an attractive quality because it implies an overall system that is modular and intrinsically more robust to communication delays and node failures

    From light rays to 3D models

    Get PDF

    Structureless Camera Motion Estimation of Unordered Omnidirectional Images

    Get PDF
    This work aims at providing a novel camera motion estimation pipeline from large collections of unordered omnidirectional images. In oder to keep the pipeline as general and flexible as possible, cameras are modelled as unit spheres, allowing to incorporate any central camera type. For each camera an unprojection lookup is generated from intrinsics, which is called P2S-map (Pixel-to-Sphere-map), mapping pixels to their corresponding positions on the unit sphere. Consequently the camera geometry becomes independent of the underlying projection model. The pipeline also generates P2S-maps from world map projections with less distortion effects as they are known from cartography. Using P2S-maps from camera calibration and world map projection allows to convert omnidirectional camera images to an appropriate world map projection in oder to apply standard feature extraction and matching algorithms for data association. The proposed estimation pipeline combines the flexibility of SfM (Structure from Motion) - which handles unordered image collections - with the efficiency of PGO (Pose Graph Optimization), which is used as back-end in graph-based Visual SLAM (Simultaneous Localization and Mapping) approaches to optimize camera poses from large image sequences. SfM uses BA (Bundle Adjustment) to jointly optimize camera poses (motion) and 3d feature locations (structure), which becomes computationally expensive for large-scale scenarios. On the contrary PGO solves for camera poses (motion) from measured transformations between cameras, maintaining optimization managable. The proposed estimation algorithm combines both worlds. It obtains up-to-scale transformations between image pairs using two-view constraints, which are jointly scaled using trifocal constraints. A pose graph is generated from scaled two-view transformations and solved by PGO to obtain camera motion efficiently even for large image collections. Obtained results can be used as input data to provide initial pose estimates for further 3d reconstruction purposes e.g. to build a sparse structure from feature correspondences in an SfM or SLAM framework with further refinement via BA. The pipeline also incorporates fixed extrinsic constraints from multi-camera setups as well as depth information provided by RGBD sensors. The entire camera motion estimation pipeline does not need to generate a sparse 3d structure of the captured environment and thus is called SCME (Structureless Camera Motion Estimation).:1 Introduction 1.1 Motivation 1.1.1 Increasing Interest of Image-Based 3D Reconstruction 1.1.2 Underground Environments as Challenging Scenario 1.1.3 Improved Mobile Camera Systems for Full Omnidirectional Imaging 1.2 Issues 1.2.1 Directional versus Omnidirectional Image Acquisition 1.2.2 Structure from Motion versus Visual Simultaneous Localization and Mapping 1.3 Contribution 1.4 Structure of this Work 2 Related Work 2.1 Visual Simultaneous Localization and Mapping 2.1.1 Visual Odometry 2.1.2 Pose Graph Optimization 2.2 Structure from Motion 2.2.1 Bundle Adjustment 2.2.2 Structureless Bundle Adjustment 2.3 Corresponding Issues 2.4 Proposed Reconstruction Pipeline 3 Cameras and Pixel-to-Sphere Mappings with P2S-Maps 3.1 Types 3.2 Models 3.2.1 Unified Camera Model 3.2.2 Polynomal Camera Model 3.2.3 Spherical Camera Model 3.3 P2S-Maps - Mapping onto Unit Sphere via Lookup Table 3.3.1 Lookup Table as Color Image 3.3.2 Lookup Interpolation 3.3.3 Depth Data Conversion 4 Calibration 4.1 Overview of Proposed Calibration Pipeline 4.2 Target Detection 4.3 Intrinsic Calibration 4.3.1 Selected Examples 4.4 Extrinsic Calibration 4.4.1 3D-2D Pose Estimation 4.4.2 2D-2D Pose Estimation 4.4.3 Pose Optimization 4.4.4 Uncertainty Estimation 4.4.5 PoseGraph Representation 4.4.6 Bundle Adjustment 4.4.7 Selected Examples 5 Full Omnidirectional Image Projections 5.1 Panoramic Image Stitching 5.2 World Map Projections 5.3 World Map Projection Generator for P2S-Maps 5.4 Conversion between Projections based on P2S-Maps 5.4.1 Proposed Workflow 5.4.2 Data Storage Format 5.4.3 Real World Example 6 Relations between Two Camera Spheres 6.1 Forward and Backward Projection 6.2 Triangulation 6.2.1 Linear Least Squares Method 6.2.2 Alternative Midpoint Method 6.3 Epipolar Geometry 6.4 Transformation Recovery from Essential Matrix 6.4.1 Cheirality 6.4.2 Standard Procedure 6.4.3 Simplified Procedure 6.4.4 Improved Procedure 6.5 Two-View Estimation 6.5.1 Evaluation Strategy 6.5.2 Error Metric 6.5.3 Evaluation of Estimation Algorithms 6.5.4 Concluding Remarks 6.6 Two-View Optimization 6.6.1 Epipolar-Based Error Distances 6.6.2 Projection-Based Error Distances 6.6.3 Comparison between Error Distances 6.7 Two-View Translation Scaling 6.7.1 Linear Least Squares Estimation 6.7.2 Non-Linear Least Squares Optimization 6.7.3 Comparison between Initial and Optimized Scaling Factor 6.8 Homography to Identify Degeneracies 6.8.1 Homography for Spherical Cameras 6.8.2 Homography Estimation 6.8.3 Homography Optimization 6.8.4 Homography and Pure Rotation 6.8.5 Homography in Epipolar Geometry 7 Relations between Three Camera Spheres 7.1 Three View Geometry 7.2 Crossing Epipolar Planes Geometry 7.3 Trifocal Geometry 7.4 Relation between Trifocal, Three-View and Crossing Epipolar Planes 7.5 Translation Ratio between Up-To-Scale Two-View Transformations 7.5.1 Structureless Determination Approaches 7.5.2 Structure-Based Determination Approaches 7.5.3 Comparison between Proposed Approaches 8 Pose Graphs 8.1 Optimization Principle 8.2 Solvers 8.2.1 Additional Graph Solvers 8.2.2 False Loop Closure Detection 8.3 Pose Graph Generation 8.3.1 Generation of Synthetic Pose Graph Data 8.3.2 Optimization of Synthetic Pose Graph Data 9 Structureless Camera Motion Estimation 9.1 SCME Pipeline 9.2 Determination of Two-View Translation Scale Factors 9.3 Integration of Depth Data 9.4 Integration of Extrinsic Camera Constraints 10 Camera Motion Estimation Results 10.1 Directional Camera Images 10.2 Omnidirectional Camera Images 11 Conclusion 11.1 Summary 11.2 Outlook and Future Work Appendices A.1 Additional Extrinsic Calibration Results A.2 Linear Least Squares Scaling A.3 Proof Rank Deficiency A.4 Alternative Derivation Midpoint Method A.5 Simplification of Depth Calculation A.6 Relation between Epipolar and Circumferential Constraint A.7 Covariance Estimation A.8 Uncertainty Estimation from Epipolar Geometry A.9 Two-View Scaling Factor Estimation: Uncertainty Estimation A.10 Two-View Scaling Factor Optimization: Uncertainty Estimation A.11 Depth from Adjoining Two-View Geometries A.12 Alternative Three-View Derivation A.12.1 Second Derivation Approach A.12.2 Third Derivation Approach A.13 Relation between Trifocal Geometry and Alternative Midpoint Method A.14 Additional Pose Graph Generation Examples A.15 Pose Graph Solver Settings A.16 Additional Pose Graph Optimization Examples Bibliograph

    Human Pose Estimation with Implicit Shape Models

    Get PDF
    This work presents a new approach for estimating 3D human poses based on monocular camera information only. For this, the Implicit Shape Model is augmented by new voting strategies that allow to localize 2D anatomical landmarks in the image. The actual 3D pose estimation is then formulated as a Particle Swarm Optimization (PSO) where projected 3D pose hypotheses are compared with the generated landmark vote distributions
    • …
    corecore