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Abstract

This work aims at providing a novel camera motion estimation pipeline from large col-
lections of unordered omnidirectional images. In oder to keep the pipeline as general
and flexible as possible, cameras are modelled as unit spheres, allowing to incorporate
any central camera type. For each camera an unprojection lookup is generated from
intrinsics, which is called P2S-map (Pixel-to-Sphere-map), mapping pixels to their cor-
responding positions on the unit sphere. Consequently the camera geometry becomes
independent of the underlying projection model. The pipeline also generates P2S-maps
from world map projections with less distortion effects as they are known from cartog-
raphy. Using P2S-maps from camera calibration and world map projection allows to
convert omnidirectional camera images to an appropriate world map projection in oder
to apply standard feature extraction and matching algorithms for data association.
The proposed estimation pipeline combines the flexibility of SfM (Structure from Mo-
tion) - which handles unordered image collections - with the efficiency of PGO (Pose
Graph Optimization), which is used as back-end in graph-based Visual SLAM (Si-
multaneous Localization and Mapping) approaches to optimize camera poses from
large image sequences. SfM uses BA (Bundle Adjustment) to jointly optimize camera
poses (motion) and 3d feature locations (structure), which becomes computationally
expensive for large-scale scenarios. On the contrary PGO solves for camera poses
(motion) from measured transformations between cameras, maintaining optimization
managable. The proposed estimation algorithm combines both worlds. It obtains up-
to-scale transformations between image pairs using two-view constraints, which are
jointly scaled using trifocal constraints. A pose graph is generated from scaled two-
view transformations and solved by PGO to obtain camera motion efficiently even for
large image collections. Obtained results can be used as input data to provide initial
pose estimates for further 3d reconstruction purposes e.g. to build a sparse structure
from feature correspondences in an SfM or SLAM framework with further refinement
via BA.
The pipeline also incorporates fixed extrinsic constraints from multi-camera setups
as well as depth information provided by RGBD sensors. The entire camera motion
estimation pipeline does not need to generate a sparse 3d structure of the captured
environment and thus is called SCME (Structureless Camera Motion Estimation).
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1 Introduction

This chapter explains the different motivation points for this work, describes current
issues of 3d reconstruction in challenging underground environments and gives a brief
overview of novelties, implemented in the proposed camera motion estimation pipeline.

1.1 Motivation

This work is motivated by various reasons. First, there is an increasing demand for 3d
reconstruction of existing facilities, buildings and places in order to accelerate moni-
toring, processing and maintaining tasks in industry using state-of-the-art augmented
and virtual reality technology. Image based 3d reconstruction techniques such as SfM
(Structure from Motion, Section 2.2, page 19) and Visual SLAM (Simultaneous Local-
ization and Mapping, Section 2.1, page 14) have been improved and implemented in
commercial products or made available via freeware as well as open-source repositories.

Second, further improvements of image-based omnidirectional sensor systems al-
low fast and convenient capturing for localization and mapping purposes even under
harsh conditions.

Third, underground environments are still a challenging application field of 3d
reconstruction since reliable localization techniques from aboveground tend to fail
in these areas. They represent an interesting field of research in order to test novel
localization and mapping techniques and hence are suitable to simulate and practice
military cases and disaster scenarios.

Fourth, there is an increasing demand to minimize the time needed for measur-
ing campaigns in industry. Distributed and non-chronological data acquisition allows
faster mapping and reduces downtime, since data acquisition can be performed, when
is doesn’t influence certain processes.

1.1.1 Increasing Interest of Image-Based 3D Reconstruction

During the last decade, image-based localization and 3d reconstruction have become
an increasing impact in computer vision, photogrammetry and robotics to exploit new
applications in the fields of:
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• selfdriving cars [90]

• indoor mapping1 and navigation2

• land surveying3

• agriculture and forestry4 [112]

• real estate56

• construction and civil engineering7

• medicine [271]

• film and entertainment8

• computer games9

• virtual10 and augmented reality [42]

• forensics11

• digital heritage conservation12

• disaster scenarios13

• open pit [145] and underground min-
ing [82]

Within most of these fields robust and reliable software tools have been developed.
They enable users to see certain situations and scenarios from new perspectives and
extend the group of experts contributing their solutions to complex issues, even if they
are not on-site.

1.1.2 Underground Environments as Challenging Scenario

Underground environments still present a challenging scenario, which arouses increas-
ing interest of industry and military14.
Obtained 3d reconstructions from undergound environements such as mines are
used for augmented and virtual reality applications for show cases, provide ground
truth map data for robotics, contribute to digital heritage conservation and improve
construction, maintenance and inspection sevices.

In [81, 169] the authors describe the environmental characteristics of an old ore
mine, which influence different sensors used for navigation and mapping. The here
presented camera motion estimation pipeline uses image data from the same mine.
Underground areas have no access to GNSS (Global Navigation Satellite System),

1https://3dsurvey.si/case-studies/indoor-mapping-of-a-house-with-a-phone-camera
2https://dragonflycv.com
3https://www.pix4d.com/blog/mapping-faroe-islands
4https://tu-dresden.de/bu/umwelt/geo/ipf/photogrammetrie/forschung/forschungsfelder
/forstwesen

5https://www.oddviz.com/work/hotels
6https://rooomy.com/rooomy-virtually-staged-matterport-3d-tours
7https://geo-matching.com/content/photogrammetry-as-a-tool-for-forensic-documenta
tion

8https://www.capturingreality.com/RealityCapture-In-Ghost-In-The-Shell
9https://unity.com/solutions/photogrammetry

10https://kenwang-57215.medium.com/oculus-solution-to-room-scale-vr-37b2ff654dc9
11https://geo-matching.com/content/photogrammetry-as-a-tool-for-forensic-documenta

tion
12http://culturalheritageimaging.org/Technologies/Photogrammetry/
13https://www.pix4d.com/blog/beirut-disaster-response
14https://www.subtchallenge.com/index.html

https://3dsurvey.si/case-studies/indoor-mapping-of-a-house-with-a-phone-camera
https://dragonflycv.com
https://www.pix4d.com/blog/mapping-faroe-islands
https://tu-dresden.de/bu/umwelt/geo/ipf/photogrammetrie/forschung/forschungsfelder/forstwesen
https://tu-dresden.de/bu/umwelt/geo/ipf/photogrammetrie/forschung/forschungsfelder/forstwesen
https://www.oddviz.com/work/hotels
https://rooomy.com/rooomy-virtually-staged-matterport-3d-tours
https://geo-matching.com/content/photogrammetry-as-a-tool-for-forensic-documentation
https://geo-matching.com/content/photogrammetry-as-a-tool-for-forensic-documentation
https://www.capturingreality.com/RealityCapture-In-Ghost-In-The-Shell
https://unity.com/solutions/photogrammetry
https://kenwang-57215.medium.com/oculus-solution-to-room-scale-vr-37b2ff654dc9
https://geo-matching.com/content/photogrammetry-as-a-tool-for-forensic-documentation
https://geo-matching.com/content/photogrammetry-as-a-tool-for-forensic-documentation
http://culturalheritageimaging.org/Technologies/Photogrammetry/
https://www.pix4d.com/blog/beirut-disaster-response
https://www.subtchallenge.com/index.html
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a b

c d

water puddle

mud

steel support
structure

goat

power supply

rails

high-voltage cables uneven terrain

Fig. 1.1: Environmental undergorund characteristics of an old ore mine. a) Water puddles interfere
with infrared radiation and mud influences wheel odometry. b, c) Steel support structures, rails and
power supplies as well as high-voltag cables disturb magnetic field sensors. d) Uneven terrain affects
laser-based scan machting techniques.

which is typically used as external referencing system aboveground. Orientation
estimation based on IMU (Inertial Measurement Unit) may lead to erroneous results
since the magnetic field is locally disturbed by rails, steel supporting structures or
high-voltage cables and other power supply systems as shown in Fig. 1.1. Matching
techniques based on laser scans are affected by uneven terrain and rough surfaces,
which lead to rapid orientation changes of the scanning planes. Mud leads to wheel
slip, which influences odometry and water puddles on the ground interfere with
infrared radiation, limiting the use of range sensors, e.g. LIDAR (Light Detection
and Ranging). Due to darkness, image based sensors require a lighting system since
external illumination isn’t available in all areas. However standard cameras have a
limited FoV (Field of View). Due to the required lighting system, there is only a
reduced viewing distance (ca. 5m). Combining both aspects leads to shortened feature
tracks and hence yield erroneous camera pose estimates. Sometimes even feature loss
might occure within consecutive images.
Finally, it should to be mentioned that sensors must be protected against dust, spray
water and high humidity (up to 95%), which leads to increasing costs.
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Insta360 One R GoPro Max Garmin VIRB 360

Ricoh Theta Z1 Insta360 ONE X2 KANDAO QooCam 8KVUZE XR

Fig. 1.2: Selection of available 360∘ action cameras on market (October 2021), e.g. Insta360 One
R15, GoPro Max 16, Garmin VIRB 360 17, Ricoh Theta Z1 18, Insta360 ONE X2 19, VUZE XR20and
KANDAO QooCam 8K 21.

1.1.3 Improved Mobile Camera Systems for Full
Omnidirectional Imaging

Feature-based image localization is still a promising approach for underground envi-
ronments. During recent years, optics as well as image sensor technology have been im-
proved and raised the level of available image resolution, FoV (Field of View), dynamic
range, image noise reduction and frame rate. Initiated by increasing popularity of VR
(Virtual Reality) content such as 360∘ videos through internet media plattforms and
HMDs (Head Mounted Display), manufacturers started providing cameras with multi-
fisheye lenses to the consumer market, which stitch full omnidirectional (360∘ × 180∘)
images. More on this topic describes Section 5.1, page 75.
This new generation of cameras can be remotely controlled and provide - depending
on the camera model - the following features: video streaming and on-the-fly sticht-
ing, HDR (High Dynamic Range) still image capturing, dynamic exposure adaption,
reduced image noise at low light level and built-in image stabilization, to name only
a few features. They provide an increased optical resolution for videos and sill image
captures up to 7680𝑝𝑖𝑥× 3840𝑝𝑖𝑥 (KANDAO QooCam 8K ), which sometimes outper-
forms the angular resolution of standard directional cameras. These imaging devices

15https://www.insta360.com/de/product/insta360-oner_twin-edition/
16https://gopro.com/de/de/shop/cameras/max/CHDHZ-202-master.html
17https://buy.garmin.com/de-DE/DE/p/562010
18https://theta360.com/en/about/theta/z1.html
19https://www.insta360.com/de/product/insta360-onex2
20https://vuze.camera/camera/vuze-xr-camera
21https://www.kandaovr.com/qoocam-8k/index.html

https://www.insta360.com/de/product/insta360-oner_twin-edition/
https://gopro.com/de/de/shop/cameras/max/CHDHZ-202-master.html
https://buy.garmin.com/de-DE/DE/p/562010
https://theta360.com/en/about/theta/z1.html
https://www.insta360.com/de/product/insta360-onex2
https://vuze.camera/camera/vuze-xr-camera
https://www.kandaovr.com/qoocam-8k/index.html
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are also referred as action cameras since they are especially designed to capture ac-
tion sports like diving, surfing, mountain biking, skiing, parachuting and they even
crossed the boarder to space22. They represent flexible and robust omnidirectional
capturing devices at affordable prices (400€-1600€). A collection of selected cameras
is shown in Fig. 1.2. These cameras meet the requirements to withstand the described
underground conditions and capture full omnidirectional images and videos in order to
improve feature matching and tracking.

1.2 Issues

This section briefly describes issues of image-based data acquisition and 3d recon-
struction in underground environments.

1.2.1 Directional versus Omnidirectional Image Acquisition

a b c

Fig. 1.3: Image acquisition issues in underground environments such as a) motion blur due to fast
camera movement and missing image stabilization, b) over- and underexposure caused by non-adaptive
shutter and d) low dynamic range leads to an overall dark background without visible shades and
causes bright light spots in the foreground.

Standard cameras have a limited FoV and capture the environment from a certain
perspective only. As a consequence in underground, image alignment yields incorrect
transformations or may fail in case of motion blur, under- and overexposure and low
dynamic range as exemplary illustrated in Fig. 1.3. Low dynamic range hampers
feature detection, since the camera is unable to capture extreme brights and darks.
Hence distant areas as well as areas being close to the lighting system cannot be
used for image processing. Moving obstacles like personnel or structureless surfaces
also complicate feature tracking and thus the process of transformation estimation.
However, structureless surfaces are uncommon for underground environments, but
they play an important role for indoor navigation and mapping e.g. in office buildings
with long monotonic white corridors.

Matching images from opposite directions (back and forth camera motions) is

22https://jalopnik.com/spend-over-an-hour-floating-in-space-thanks-to-nasa-1696865
607

https://jalopnik.com/spend-over-an-hour-floating-in-space-thanks-to-nasa-1696865607
https://jalopnik.com/spend-over-an-hour-floating-in-space-thanks-to-nasa-1696865607
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not straightforward and usually fails since features are observed from - more or less -
complete different perspectives. Combining two or more cameras to increase the FoV
in a fixed setup may solve this problem. However this requires sensor synchronization
as well as an external calibration and the need to add fixed camera constraints to the
reconstruction pipelines. Additional implementation effort is required, depending on
the choosen algorithm.

a b

c d

Fig. 1.4: An underground scene with labeled objects is captured by different cameras: a) image from
a forward facing perspective camera (Kinect v2 ), b) image from a backward facing perspective camera
(Kinect v2 ), c) omnidirectional image from fisheye lens (Kodak SP360 4K ), d) full omnidirectional
image from a stichting camera (Ricoh Theta S ). The corresponding FoV of each camera is illustrated
in Fig. 4.4, page 57.

Omnidirectional cameras widen the FoV up to 360∘ × 180∘ and allow feature tracking
over longer image sequences, which is necessary in real-time Visual SLAM. Conse-
quently, feature tracking depends less on camera orientation, which makes image
alignment more robust. Omnidirectional cameras have no real front or back and
thus they even enable feature matching from opposite directions. This circumstance
is especially beneficial for loop closure detection in Visual SLAM or post-processing
applications like SfM, which now are able to match images from different camera posi-
tions regardless their orientation. Fig. 1.4 illustrates the advantage of omnidirectional
cameras over perspective ones observing objects from opposite directions within a
single capture. However omnidirectional image projections - as they are presented in
Fig. 1.4c, d - are affected by strong visible distortions, which interfere with feature
matching.
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Omnidirectional images are also affected by motion blur, over- and underexpo-
sure, insufficient dynamic range, moving obstacles or structureless surfaces. However
these influcences are mostly limited to a certain area of the image and thus are less
disturbing.
In order obtain realistic, detailed 3d reconstructions from underground environments,
surface structures must be captured from different camera views. Fig. 1.5a) illustrates
a recommended scheme23 for capturing surface structures like walls. Using perspective
cameras this leads to a large amount of overlapping images and thus becomes an
exhausting task if performed by humans, especially in narrow sections. Capturing
images in the same direction as the camera moves reduces the number of images, but
leads to incomplete reconstruction models due to occlusion as shown in Fig. 1.5b).
Omnidirectional cameras capture the surrounding environment at each position. They
decrease the number of captured images while increasing the number of perspective
views.

b ca occlusion

Fig. 1.5: Camera Motion for surface reconstruction. a) Recommended: Camera motion is orthogonal
to the viewing direction in order to achieve good image alignment results and to capture all surface
details from different perspectives for photorealistic 3d reconstrution. b) Actual: Camera motion and
view are in the same direction. Surface details are only captured from a limited number of perspectives
coming from the same direction, which leads to occlusions. c) Ideal: Omnidirectional cameras capture
surface details from a wide range of perspectives, in this case independent of the camera motion.

1.2.2 Structure from Motion versus Visual Simultaneous
Localization and Mapping

SfM is an image-based post-processing reconstruction pipeline. In contrast to that,
Visual SLAM processes image data in real-time as it is required in robotics. On the one
hand real-time applications allow the user to follow the reconstruction process in order
to directly see the final result and allow to manually intervent in case of erroneous
reconstruction. As experienced in serveral underground tests the forementioned image
acquisition issues cause feature tracking loss, which disturbs Visual SLAM’s real-time
processing. Visual SLAM implementations provide relocalization capability, which
is used in cases of lost feature tracks. Unfortunately, this seldomly succeeded and
required to move the camera back to the position where feature loss first occured and
to retry capturing from there again. Thus, image acquisition and reconstruction at

23https://www.3dflow.net/technology/documents/photogrammetry-how-to-acquire-pictur
es/

https://www.3dflow.net/technology/documents/photogrammetry-how-to-acquire-pictures/
https://www.3dflow.net/technology/documents/photogrammetry-how-to-acquire-pictures/
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the same time became an overly time-consuming task, unnecessarily prolonging the
expected time needed for measuring campaigns.

On the other hand post-processing gives more flexibility to the entire recon-
struction process, however the final result can be seen only after image acquisition
and reconstruction. It enables image pre-selection and modifications like histogram
adjustment or masking certain areas of individual images as well as combining image
series from different cameras and measuring compaigns. Thus, individual areas can be
captured step-by-step at different times. This allows people to capture images more
individually, precisely and whithout having to hurry, which is less intense compared
to capturing a contineous image stream. In case of strong distortions - as it is typical
for omnidirectional cameras - images can be converted to less distorted projections
(Section 5.4, page 81) for data association and alignment purposes. Furthermore,
images can be matched more robustly using an increased feature detection and
different feature types (Chapter 10, page 161). They also can be matched to a larger
quantity of neighboring images, making data association more robust against feature
loss and thus yielding longer feature tracks for better alignment results.

Taking these mentioned facts into accout, a camera motion estimation pipeline
based on post-processing like SfM is preferred. Until now, either SfM inplementa-
tions nor Visual SLAM ones comprehensively support full omnidirectional images.
Chapter 2, page 12 takes a much closer look at image-based reconstruction techniques
such as SfM (Section 2.2, page 19) and Visual SLAM (Section 2.1, page 14), their
conceptual and mathematical backgrounds, as well as their behavior concerning image
based underground reconstruction (Section 2.3, page 27).

1.3 Contribution

This work aims at providing an image feature-based, yet structureless camera pose
estimation pipeline for unordered collections of full omnidirectional images. The
pipeline is kept as general as possible and models cameras as spheres in order to
incorporate a wide range of central camera types. SfM uses BA to jointly solve for
3d feature positions (structure) and cameras poses (motion), such that optimization
problems quickly grow with the number of images and thus large-scale scenarios
become computationally expensive. On the contrary Visual SLAM uses PGO as
back-end, which solves for camera poses (motion) from a sequence of scaled two-view
transformations, maintaining optimization tasks managable even in large-scale scenar-
ios.

The here presented pipeline is called SCME (Structureless Camera Motion Esti-
mation) and combines the flexibility of SfM to work with unordered images with the
efficiency of PGO, but does not require any 3d reconstruction step. A missing link
between SfM and PGO is that the former obtains up-to-scale two-view transformations
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to verify feature matches for data association, while the latter requires scaled two-view
transformations to solve for camera poses. SCME fills this gap. Like SfM it obtains
up-to-scale two-view transformations between unordered image pairs but uses a
novel technique to jointly scale them via trifocal constraints. The scaled two-view
transformations are then solved by PGO to derive camera poses.

This work also introduces the concept of P2S-maps (Pixel-to-Sphere-map), which is a
lookup that maps each pixel to its corresponding viewing direction as position on the
unit sphere. By using a P2S-map the camera geometry is mapped onto unit sphere
and hence becomes independent of individual projection models used for calibration.
Consequently, SCME does not need to implement serveral camera projection models.
A method is presented to convert between projections based on their P2S-maps only,
e.g. in order to undistort omnidirectional images.

Using the idea of P2S-maps in combination with PGO enables the implementa-
tion of a flexible extrinsic calibration routine that is not restricted to neither a certain
type of central camera nor to the quantity of cameras.

A detailed overview of novelties is given in Tab. 1.1, which lists each step of
the camera motion estimation pipeline with identified current issues and proposed
corresponding solutions.
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Tab. 1.1: Current issues and proposed solutions for the new SCME pipeline

Issue Proposed Solution

heterogeneity of cam-
era/projection models

unit sphere as image domain
• obtain unprojection from calibration, which maps

each pixel onto unit sphere
(Sections 3.2.1 and 3.2.2, pages 35 and 39)

make camera geometry independent of camera model
• save unprojection correspondences between pixel

and unit sphere as lookup in P2S-map
(Section 3.3, page 42)

strong distortions in om-
nidirectional images

convert images to less distortion affected projections
• use world map projections from cartography

(Section 5.2, page 78)
• generate P2S-maps from world map projections

(Section 5.3, page 79)
• develop conversion between P2S-maps

(Section 5.4, page 81)

selection of feature type use multiple feature types jointly to improve robustness
of image alignment (Chapter 10, page 161)

SfM is inefficient for
large scale data sets and
available implementa-
tions poorly support full
omnidirectional images

convert SfM-like problem to be solved by PGO
• obtain up-to-scale transformations between image

pairs from two-view geometry (Chapter 6, page 87)
• use three-view/trifocal geometry to scale derived

two-view transformations (Chapter 7, page 125)
• build and solve pose graph from unordered scaled

two-view transformations (Chapter 8, page 139)

Additional

SfM does not incorporate
depth maps

scale two-view transformations to real world dimension
using depth data (Section 6.7, page 113)

limited extrinsic camera
calibration
(restricted to certain cam-
era types, models or num-
ber of cameras)

obtain camera extrinsics independently of camera model
• use P2S-maps to incorporate different central cam-

era types
use PGO to solve for non-restricted number of camera
and target poses

• develop a 2d-2d and 3d-2d PnP method to obtain
target-camera transformations
(Sections 4.4.1 to 4.4.3, pages 60, 62 and 66)

• build pose graph from derived target-camera trans-
formations and solve for camera and target poses
(Section 4.4.5, page 67)

• refine poses using BA (Section 4.4.6, page 69)
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1.4 Structure of this Work

Chapter 2 describes current image-based 3d reconstruction techniques such as Visual
SLAM, SfM and VO, which are known in robotics, computer vision and photogram-
metry. It further illustrates their relations to each other and explains the underlying
optimization principles like BA, structureless BA and PGO. The proposed SCME
pipeline is brought into this context, which is a combination of SfM and PGO.

Chapter 3 covers imaging related topics like camera types, their classifications
and camera models. It also explaines an equation-free concept to describe the
unprojection of any central projection as lookup, that maps pixels to their correspond-
ing positions onto unit sphere. This lookup is saved as color image and called P2S-map.

Chapter 4 describes a calibration implementation to obtain intrinsics from dif-
ferent camera types and to generate corresponding P2S-maps. It introduces a new
extrinsic calibration concept, that uses P2S-maps to incorporate a wide range of
camera types independently of their underlying calibration model and uses PGO to
solve for camera extrinsics in multi-camera setups.

Chapter 5 shows the generation of P2S-maps from selected world map projec-
tions, which are less affected by distortion. It proposes a new image conversion
concept based on P2S-maps to convert camera images to an appropriate world map
projection for undistortion purpose.

Chapter 6 focuses on point correspondences between two camera images. It ex-
plains different triangulation concepts, compares two-view estimation algorithms and
presents a novel two-view optimization approach.

Chapter 7 concentrates on point correspondences between three camera images
and explains major constraints, which are suitable to recover the translation ratio
between up-to-scale two-view transformations.

Chapter 8 illustrates the integration of pose graph solvers as optimization back-
end to solve for camera poses from a set of unordered scaled two-view transformations.

Chapter 9 describes the proposed structureless camera motion estimation pipeline and
explains the concept of global translation scaling based on derived translation ratios.
It further illustrates how extrinsic camera constraints as well as depth data can be
integrated into the pipeline.

Chapter 10 illustrates obtained SCME results for directional images as well as
for omnidirectional images and compares them to results from SfM and Visual SLAM.
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2 Related Work

4 projection /

movement

3d feature

camera

1

2 3

line of sight

Fig. 2.1: Example case of a SLAM problem illustrating a moving monocular camera, which observes
optical features in the surrounding environment.

The boundaries between Visual SLAM (Simultaneous Localization and Mapping), VO
(Visual Odometry) and SfM (Structure from Motion) have become more diffuse since
novel algorithms combine several ideas and functionalities from a wide spectrum of lo-
calization and mapping techniques, such that even terminology is sometimes mixed up.

There is a rich literature facing the topic of image-based localization and map-
ping techniques. The present discussion cannot describe individual implementations
in detail, which would drastically extend the scope. Instead, each technique is
explained as general as possible at hand of an example in order to clarify differences
and similarities. Fig. 2.1 illustrates a simple example case of a moving monocular
camera capturing optical features in the surrounding environment. Other sensor
configurations - like stereo setups or RGBD cameras - are also possible to be used, but
they belong to special cases and thus are not considered at this point. Having said
previously that this work doesn’t focus on real-time reconstruction techniques, it is
however necessary to show how optimization processes like BA, which is known from
SfM, and PGO, which is used as back-end in Visual SLAM, relate to each other in
order to understand the novelties of the proposed SCME pipeline.

The SLAM problem is split into filtering and smoothing techniques [48] and
can be described by three main probabilistic formulations based on Kalman-filter
(EKF-SLAM [233]), particle-filter (FastSLAM [184], FastSLAM 2.0 [185, 26]) and a
graph (GraphSLAM [252, 253]). Filter-based approaches are classified as online SLAM
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[252] since they only estimate the current state of the camera pose and maybe parts of
the map [83]. Thus they cannot change their past beliefs of the camera trajectory [272].

On the contrary graph-based approaches are classified as full SLAM [252]. Graph-
based algorithms belong to smoothing techniques as they recover the MAP (Maximum
a Posteriori) over all poses in the camera trajcetory and over all observed features
in the environment [48]. They maintain the camera’s trajectory within the state
estimation problem, such that past and present states are simultaneously improved
and do not suffer from inconsistency [129]. These kinds of algorithms apply non-linear
optimization by exploiting the sparsity of the SLAM problem, allowing to solve
large-scale problems [245].

A first graph-based formulation was proposed in [175] representing the state
problem as a set of links between sensor poses and formulating a global optimization
algorithm to obtain a map from such constraints [253]. Due to the comparably high
complexity of solving the error minimization problem using standard techniques,
filter-based approaches were preferred and more in focus of the research community.
Graph-based methods experienced a renaissance as recent insights into the structure
of the SLAM problem as well as advancements in the fields of sparse linear algebra
resulted in efficient approaches to the optimization problem [83]. As a consequence
in the last years the focus has clearly shifted from filter-based approaches towards
graph-based ones [272] as efficient algorithms for solving the underlying optimization
became available [245] (examples presented in Section 8.2, page 140). Nowadays these
algorithms belong to the state-of-the-art techniques with respect to speed and accuracy.

There are different variants to model the SLAM problem in a graphical way
such as Bayesian Belief Networks [198], factor graphs [149], Markov Random Fields
[278] and Bayes trees [129]. For a deeper inside into graph-based SLAM representation
approaches the reader is referred to [48, 83, 49].

Note on Terminology: In most SLAM literature landmarks denote destinct
points in the surrounding environment, which are observed by a moving sensor system.
A landmark can be described as a "recognizable natural or artificial feature [...], that
stands out from its near environment and is often visible from long distances"24.
Image-based algorithms like SfM use destinct points in the images, called image
features. Feature detection algorithms search for interesting points of an image region,
that has certain properties. Consequently image features do not necessarily correspond
to recognizable landmarks in the environment. In order to prevent confusion and to
have a common terminology for SLAM and SfM, landmarks are referred as 3d features
and their observations as image features.
This work follows mostly the SfM terminology from [lourakis2004a, 96, 234,
117], where motion refers to camera poses and structure refers to reconstructed 3d

24https://en.wikipedia.org/wiki/Landmark

https://en.wikipedia.org/wiki/Landmark
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features forming a sparse representation of the captured environment. Furthermore,
structureless refers to a reconstruction process, which does not include a structure
generation based on 3d features.

2.1 Visual Simultaneous Localization and Mapping
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Fig. 2.2: Example case as full Visual SLAM problem illustrated as factor graph.

In most literature SLAM is illustrated by a robot equipped with a laser scanner,
which directly measures the orientation and distance of 3d features in the surrounding
environment. Consequently these 3d features can be recalculated based on their
observations with respect to a known sensor pose.
In monocular Visual SLAM and SfM single cameras capture the projection of 3d
features. As a consequence, depth information is lost and accordingly there is no
metric distance relation between 3d features and cameras anymore. Thus monocular
image-based 3d reconstruction is up-to-scale and requires reference points to adjust the
results to real world dimensions. In contrast to laser scans, at least two camera poses
are needed to reconstruct 3d features via triangulation from feature correspondences.
There is a symbiotic relationship between image registration and triangulation in that
images can only be registered to existing scene structure and scene structure can only
be triangulated from registered images [288].

Visual SLAM’s goal is to compute a consistent estimate of the camera’s motion
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(localization) while reconstructing the surrounding environment (mapping). A factor
graph [149] is one way to express the Visual SLAM problem from Fig. 2.1 as graphical
model, which is shown in Fig. 2.2. Factor graphs are bipartite, consisting of variable
nodes (○, ), factor nodes (�, ) and edges ( , - - -) [131, 49]. Variable nodes
(○, ) represent the unknown states of the cameras poses [𝑅𝑘, t𝑘], 𝑘 = 1, . . . , 4 and
feature locations U𝑖, 𝑖 = 1, . . . , 4. Factor nodes (�, ) represent measurements
such as observed features X̂𝑖

𝑘 (projection of U𝑖 in the 𝑘th camera image) and
relative transformations [𝑅𝑘𝑙, t𝑘𝑙], between the 𝑘th and 𝑙th camera pose. The relative
transformations are obtained from available VO (Visual Odometry), VIO (Visual
Inertial Odometry) or scan matching if a laser-camera setup is used. Edges ( , - -
-) link variable nodes and factor nodes by describing their relations, in this case as
projection function and motion transformation function. Minimizing the sum of these
constraints yields a maximum likelihood map and a corresponding set of camera poses
[252]. In traditional factor graph representation, edges are illustrated as simple lines.
For a better identification of different edge constraints, in this work they are drawn
differently according their underlying function.
Referring to [132], the proposed Visual SLAM example can be expressed as least
squares problem

argmin
𝑅𝑘,𝑙,t𝑘,𝑙,U𝑖

{︃ ∑︁
(𝑘,𝑖)∈ℰ

⃦⃦⃦
X̂𝑖

𝑘 − 𝜋
(︀
U𝑖, [𝑅𝑘, t𝑘]

)︀⏟  ⏞  
projective constraint

⃦⃦⃦2
𝛬𝑖
𝑘

+
∑︁
(𝑘𝑙)∈ℰ

⃦⃦⃦
[𝑅𝑘𝑙, t𝑘,𝑘]− [𝑅𝑇

𝑘𝑅𝑙, 𝑅
𝑇
𝑘 (t𝑘 − t𝑙)]⏟  ⏞  

motion constraint

⃦⃦⃦2
Ω𝑘𝑙

}︃
,

where 𝜋(·, ·) denotes a projection function and ℰ covers all available edges in the graph
corresponding to the adjacency matrix, whose structure is illustrated in Fig. 2.2. 𝛬𝑖

𝑘

and Ω𝑘𝑙 are measuring uncertainties relating to X̂𝑖
𝑘 and [𝑅𝑘𝑙, t𝑘𝑙], respectively. The

presented equation is used as an example for demonstration purpose. Both parts,
projective and motion constraints may vary depending on the used Visual SLAM
implementation.

Fig. 2.3 shows the structure of the corresponding Jacobian. As can be seen, enlarging
Visual SLAM by increasing the number of features U𝑖 and camera poses [𝑅𝑘, t𝑘], the
problem becomes computationally expensive and even intractable to be solved in real
time. In order to overcome this circumstance and to maintain real time capability,
Visual SLAM algorithms split the problem into multiple data processing layers,
incorporating VO, BA (Bundle Adjustment) and PGO (Pose Graph Optimization).
Consequently they have become complex frameworks, each with its individual
processing structure. Nevertheless, they all follow a common scheme, which roughly
separates the data processing into three instances being processed simultaneously.

The Tracking Instance obtaines the camera pose from the current frame of
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Fig. 2.3: Structure of the Jacobian related to full Visual SLAM.

an image sequence with respect to the active map using VO/VIO. It further separates
the derived camera motion data into relevant and redundant information by selecting
keyframes and thus discarding information from intermediate frames. This keyframing
approach is used by various Visual SLAM implementations [160, 136, 190, 243, 27] in
order to reduce data amount. As stated in [240], it is more profitable to increase the
number of features than the number of frames in order to improve the accuracy. The
tracking instance is also responsible for relocalization, which is required if tracking
fails or a mapping session is resumed.

The Mapping Instance builds up a map using provided keyframes. In order
to reduce drift induced by the tracking instance, it applies a local/windowed BA over
a subset of keyframes, which - due to the small size - can be performed in real time. In
case of loop closures the instance corrects the camera trajectory via PGO and updates
the map according to the optimized camera poses. This allows a real time update of
the camera trajectory over very long distances. Full BA jointly optimizes the camera
trajectory and the map, which is done in a post processing step due to the large size
of the optimization problem. Depending on the implementation, this instance also
merges maps from previous sessions.

The Data Assosciation Instance builds up a visual vocabulary and a recog-
nition database based on image featues in order to find suitable image matches for
relocalization, loop closure detection and map fusion.

A detailed overview of state-of-the-art Visual SLAM algorithms is given in [211,
228, 27]. There is a wide range of Visual SLAM implementations, which deal with
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various camera types in mono, stereo and multi-camera configurations, incorporate
RGBD cameras and additional IMU sensors. Some of them are able to handle
omnidirectional/fisheye images but poorly support full 360∘ × 180∘ ones. To the
best of the author’s knowledge, there is only one Visual SLAM algorithm using full
360∘ × 180∘ images (in equirectangular format) as input data [243].

2.1.1 Visual Odometry

ground truth
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Fig. 2.4: Naïve VO approach as graphical representation. a) Feature corresponcences from 1st image
and 2nd one are used to obtain an initial transformation [𝑅12, t12]. This transformation is used to
triangulate U𝑖 from feature correspondences X̂𝑖

1 ↔ X̂𝑖
2. As illustrated, this triangulation is affected

by observation uncertainties. b) PnP (Perspective-n-Point, Section 4.4.1,page 60) obtains the trans-
formation [𝑅23, t23] between 2nd image and 3rd one from 3d-2d correspondences U𝑖 ↔ X̂𝑖

3. c) Feature
corresponcences from 2nd and 3rd image X̂𝑖

2 ↔ X̂𝑖
3 are then triangulated to 3d space to obtain updated

feature locations U𝑖. d) Transformation [𝑅34, t34] between 3rd image and 4th one is obtained from
U𝑖 ↔ X̂𝑖

4 via PnP. This process is repeated for upcoming images. As can be seen from a comparison
with the ground truth motion path, monocular VO is prone to transformation and scale drift. The
presented example is a special case, where all cameras capture the entire feature set. Actually, this
is not the case in many scenarios. Due to occlusion, there are individual feature matches between
camera pairs. Triangulation is required to increase scene coverage by extending the set of triangulated
features in order to register a new image to the existing scene. A more detailed description can be
found in [218].

The name VO was first introduced in [192] and concentrates on the incremental
estimation of camera poses [64] in order to obtain the camera’s trajectory in real-time
from an image sequence rather than to build up a map. It doesn’t keep track of all the
previous history and forgets environmental features once they get out of view [218].
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This behaviour is prone to continuous estimation drift, which cannot be compensated
even if the camera moves in the same area again. Monocular VO is also prone to
scale drift and interesting concepts are made to tackle this problem for road and city
environments [139, 80, 71, 289] using prior knowledge of the captured surrounding
geometry.
Generally speaking, VO is a particular case of SfM [280] and can be used to provide
initial estimates for BA and PGO. Consequently as mentioned in [218] VO is Visual
SLAM before closing the loop. VO also provides much more accurate and reliable
estimates over longer periods of time compared to wheel odometry [107], which is
affected by wheel slippage usually caused by uneven terrain [280]. In order to reduce
drift some VO algorithms perform BA on a subset of images to refine pose estimates
of the trajectory [27, 218].

VO is mostly based on image features, which are matched across subsequent
frames in order to obtain the camera motion. In monocular VO a 3d structure needs
to be triangulated from two adjacent camera images, which is matched to 2d image
features in the third camera image as illustrated in Fig. 2.4. Monocular VO is affected
by a scale ambiguity problem [280], since transformations obtained from image
features are up-to-scale only. In order to maintain a common scale, triangulation
is required to align camera images via PnP (3d-2d pose estimation as describe
in Section 4.4.1,page 60). Consequently this circumstance makes pose estimation
dependent on triangulation uncertainties. In order to obtain a more robust camera
trajectory with less drift, features are tracked over a subset of frames. Long tracks
contain robust features which are used to align the current image. In [126] features are
also separated into close features and distant ones. Distant features are less affected
by small camera translations and hence are suitable to recover rotation, whereas close
features are used to obtain translation. A more comprehensive description of image
alignment techniques used in VO is given in [218, 280].

There are various implementations for different camera types in mono, stereo
[140, 74, 137] and multi-camera setups [64, 227] as well as those incorporating
additional sensors like IMU [107, 193] named VIO, wheel-odometry [178] or laser
scanners [18] via sensor fusion. For more information about current implementations
the reader is referred to [280, 27].

2.1.2 Pose Graph Optimization

A pose graph is a reduced form of a factor graph representing camera motion and
corresponding transformation constraints only. PGO concentrates on solving global
camera poses [𝑅𝑘, t𝑘] from given relative motion constraints [𝑅𝑘𝑙, t𝑘𝑙] with respect to
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Fig. 2.5: Example case as PGO problem illustrated as factor graph.

corresponding uncertainties Ω𝑘𝑙 in least squares sense

argmin
𝑅𝑘,t𝑘

∑︁
(𝑘𝑙)∈ℰ

⃦⃦⃦
[𝑅𝑘𝑙, t𝑘𝑙]− [𝑅𝑇

𝑘𝑅𝑙, 𝑅
𝑇
𝑘 (t𝑘 − t𝑙)]

⃦⃦⃦2
Ω𝑘𝑙

.

It is used as back-end in Visual SLAM to optimize camera poses in case of detected
loop closures to reduce motion drift. The task of constructing the actual pose graph
is delegated to the front-end of the Visual SLAM implementation, which has access to
the available sensor information [245]. Consequently PGO has no information about
measured image features as Fig. 2.5 shows. The number of unknown optimization
parameters thus depends only on the number of cameras but not on the number of
image features as Fig. 2.6 indicates. The size of the problem slowly increases with
the number of unkown camera poses, such that the problem is still solvable even in
large-scale scenarios.

For a more comprehensive description the reader is referred to Chapter 8, page 139,
which focuses in detail on pose graphs and PGO.

2.2 Structure from Motion

SfM (Structure from Motion) is a post-processing and accordingly an offline recon-
struction technique used in photogrammetry to jointly obtain camera poses and 3d
features from unordered image collections. It became popular for reconstructing
large cityscapes and famous buildings from internet photos [234, 235, 4, 2, 106], for
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Fig. 2.6: Structure of the Jacobian related to PGO.
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Fig. 2.7: SfM classification regarding image registration and optimization.

recovering camera motion from street view captures [141], for generating hyperlapse
videos [143] or for image-based localization [120, 146, 247, 45, 111] in urban scenes,
to name only a few applications. For more detailed information about the topic
concerning SfM the reader is referred to [224, 194].

In recent years, various freeware impelementations have been released as closed
source and open source:

• Bundler25 [234, 235]

• Visual SfM26 [276,
274]

• Colmap27 [224, 225]

• OpenMVG28 [188]

• Meshroom29 [88]

• Apero/MicMac30

• Theia SfM31 [251]

• Regard3D32

25https://www.cs.cornell.edu/~snavely/bundler/
26http://ccwu.me/vSfM/
27https://colmap.github.io
28https://github.com/openMVG/openMVG
29https://github.com/alicevision/meshroom
30https://micmac.ensg.eu/index.php/Accueil
31http://theia-SfM.org/
32https://www.regard3d.org

https://www.cs.cornell.edu/~snavely/bundler/
http://ccwu.me/vSfM/
https://colmap.github.io
https://github.com/openMVG/openMVG
https://github.com/alicevision/meshroom
https://micmac.ensg.eu/index.php/Accueil
http://theia-SfM.org/
https://www.regard3d.org
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as well as commercial products:

• Agisoft Metashape33

• 3DFlow Zephyr34

• Reality Capture35

• PIX4Dmapper36

• SUREaerial37

• PhotoModeler38

Commercial products usually provide an entire reconstruction pipeline, including SfM
for camera registration, MVS (Multi-View Stereo) for dense point cloud reconstruction
[70, 68, 69, 225], mesh generation and texturing. Most of them also allow to define
extrinsic camera constraints in order to use multi-camera setups and to integrate laser
scan data into the reconstruction process.
There is also a myriad of cloud-services for computer and smartphone devices, which
are not considered here.

SLAM and accordingly SfM is a chicken-and-egg question [252]. A map is re-
quired to localize the cameras. Camera poses are needed to build a map. To tackle
this problem different SfM approaches have been developed, which are classified in
Fig. 2.7.
In general, SfM is a sequence of serveral techniques relating to feature detection
and matching, two-view estimation, triangulation, pose estimation and non-linear
optimization. It extracts features from given images and uses efficient matching
strategies [236, 170, 102, 223] in order to select image pairs for feature matching.
Derived feature matches between image pairs are geometrically verified and outliers
are removed by determining the up-to-scale transformation using two-view geometry.
However, due to the nature of noisy data ambiguous matches exist and unfortunatley
there is no guarantee for complete outlier removal.

Based on two-view transformations a viewing/scene graph is built, which covers
all derived image and feature relations. This graph is the basis for iterative approaches
such as hierarchical [57, 76, 255] and incremental [234, 4, 275] reconstruction.

Hierarchical SfM approaches are less sensitive to initialization and drift error,
however they are prone to insufficient feature matching such that reconstructed scenes
are less detailed or incomplete [38].

Incremental SfM is the most popular strategy to recover camera poses and
3d feature information from unordered images. The following briefly describes a basic
incremental SfM approach, which may vary depending on the implementation. Based
on known two-view transformations and feature tracks (global feature correspon-

33https://www.agisoft.com
34https://www.3dflow.net/3df-zephyr-photogrammetry-software/
35https://www.capturingreality.com
36https://www.pix4d.com/product/pix4dmapper-photogrammetry-software
37https://www.nframes.com/products/sure-aerial/
38https://www.photomodeler.com

https://www.agisoft.com
https://www.3dflow.net/3df-zephyr-photogrammetry-software/
https://www.capturingreality.com
https://www.pix4d.com/product/pix4dmapper-photogrammetry-software
https://www.nframes.com/products/sure-aerial/
https://www.photomodeler.com
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dences) incremental SfM selects an initial image pair and triangulates feature matches.
Triangulation maps uncertainties from images to 3d space and hence is a topic of its
own (Section 6.2, page 88), being extensively discussed in [101, 96, 238, 166, 134, 157,
277, 37]. The most important findings are the following. Under small parallax angles
triangulation leads to large depth untertainties (as illustrated in Fig. 2.10, page 25)
and those points are usually discarded [156] from the feature set. Triangulation from
noisy or false feature observations must be also validated by cheirality (Section 6.4.1,
page 97), which requires additional computational cost. Triangulation from multiple
views increases accuracy, which is the reason why to build stable feature tracks in
order to triangulate from all available views.

A new camera image is choosen from a next best view selection (e.g. the cam-
era, that sees most triangulated points). This is a critical process, since a single bad
decision leads to a cascade of camera misalignments and faulty triangulations [224].
The new camera is added to the scene based on 3d-2d point correspondences between
triangulated features and image features of the new camera using a PnP algorithm,
like the one presented in Section 4.4.1, page 60. This kind of algorithm obtains the
camera pose with respect to the 3d features, some implementations are also able to
recover camera intrinsics, if these are unknown. The newly registered image may also
increase the scene coverage by extending the set of 3d features through triangulation.
In the same way, all remaining cameras are added to the scene one by one.

Incremental SfM approaches register camera poses and 3d features in successive
steps, which scales poorly as the image collection grows and can suffer from drift [44].
In order to reduce triangulation and pose estimation errors, an incremental/windowed
BA (Section 2.2.1) is performed on the set of most-connected images after each
image registration and feature triangulation. Since incremental SfM only affects the
model locally, there is no need to perform global BA after each step. A global BA is
performed after adding a certain amount of images in order to maintain appropriate
run-times.

Incremental SfM adds new camera images in the same way as VO does, how-
ever it keeps track of matched features during the entire reconstruction process and
does not forget about environmental features once they are out of view. Incremental
SfM methods have been developed for constraint camera arrays [221, 141], for
omnidirectional cameras [183], and for full 360∘ × 180∘ cameras [196], which however
are still poorly supported by available SfM applications.

Global SfM approaches [232, 9, 36, 122, 44, 187, 273, 46, 78] solve for all
camera poses simultaneously using available up-to-scale two-view transformations
from feature matching verification. These approaches obtain global camera rotations
in a first step and perform translation averaging in a second step, which is a more
difficult task, since each two-view transformation is up-to-scale and provides only the
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direction of the translation. Based on results from global SfM approaches, BA can be
performed for final optimization purpose, which is then less time consuming, since it
only needs a few iterations. Up to now, there is no known implementation supporting
full 360∘ × 180∘ cameras. Some implementations use multi-view constraints within
camera triplets, however none of these approaches have proposed a global optimization
that is solely based on multi-view constraints. However this idea paved the way for
structureless BA [119].

2.2.1 Bundle Adjustment
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Fig. 2.8: Example case as BA problem illustrated as factor graph.

BA is a method to find the MAP estimate for both structure and motion by jointly
optimizing 3d features and camera poses [259]. It represents the back-end of most
SfM implementations and solves global as well as local registration tasks, as exemplary
shown in Fig. 2.8. Popular standalone BA solvers like SBA39 (Sparse BA) [172, 173],
MCBA40 (Multicore Bundle Adjustment) [276, 274] and RPBA41 (Robust Parallel Bun-
dle Adjustment) [180] are dedicated to SfM problems by exploiting the sparsity of the
involved matrices in the optimization. Fig. 2.9 illustrates the mentioned sparsity at
hand of the corresponding Jacobian. BA makes use of projective constraints and opti-
mizes [𝑅𝑘, t𝑘] and U𝑖 by minimizing the sum of squared projection errors or squared

39http://users.ics.forth.gr/~lourakis/sba/
40http://grail.cs.washington.edu/projects/mcba/
41https://github.com/helmayer/RPBA

http://users.ics.forth.gr/~lourakis/sba/
http://grail.cs.washington.edu/projects/mcba/
https://github.com/helmayer/RPBA
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Mahalanobis distances (if measuring uncertainties 𝛬𝑖
𝑘 are known)

argmin
𝑅𝑘,t𝑘,U𝑖

∑︁
(𝑘,𝑖)∈ℰ

⃦⃦⃦
X̂𝑖

𝑘 − 𝜋
(︀
U𝑖, [𝑅𝑘, t𝑘]

)︀⃦⃦⃦2
𝛬𝑖
𝑘

using robust LM or Dl [171] optimization. As can be seen, BA needs to optimize the
entire set of 3d feature points U𝑖 in order to refine all camera poses [𝑅𝑘, t𝑘]. In real
world scenarios the number of 3d features is much larger compared to the number of
cameras. As Fig. 2.9 explains, optimization becomes computationally expensive as the
number of camera images and observed features increase. Thus the time complexity
is quadratic related to number of images for most state-of-the-art algorithms [38].
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Fig. 2.9: Structure of the Jacobian related to BA optimization for solving an SfM problem.

In order to maintain computational cost managable and to keep time complexity linear
to the number of images [38], some approaches have been made to solve large-scale
SfM efficiently. They split the SfM problem into smaller, partially overlapping
clusters/subsets, which are solved by parallel BA tasks [103, 104, 286, 16, 249, 39,
248, 291, 287, 55, 38]. However each sub-reconstruction relates to an individual scale.
Consequently merging them is not straightforward and requires a combination of
averaging and scaling techniques.

BA requires initial estimates, which should be sufficiently close to the optimal
solution otherwise it can fall out of the convergence basin [207]. It does not make
use of relative transformations [𝑅𝑘𝑙, t𝑘𝑙] between camera poses, which are obtained
during feature matching verification. These pieces of information are rejected such
that camera poses are not directly connected by transformation constraints during
optimization. Cameras are only linked via triangulated 3d feature points and their
corresponding projections. What seems to be an disadvantage can be justified with
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the fact, that projective constraints maintain scale and also allow BA to solve for
unknown camera intrinsics, which is a tremendous advantage when working with
image collections from internet or from unknown image sensors.

Projective constraints induce a reduction of dimension leading to the problem,
that optimization of observed features is performed in 3d space with respect to
an error distance in 2d space. In case of image noise this leads to triangulation
uncertainties along the LoS (Line of Sight) as illustrated in Fig. 2.10. Points being
observed under small parallax angle exhibit very large depth uncertainty, which is
caused by small translatory camera motion or by large distances between 3d features
and camera centers [218]. Thus large reconstruction uncertainties in 3d do not
necessarily correspond to noticeable projection errors in the image and always depend
on the number of camera views and their distribution.

[𝑅𝑘𝑙, t𝑘𝑙] [𝑅𝑘𝑙, t𝑘𝑙] [𝑅𝑘𝑙, t𝑘𝑙]

line of sight

parallax angle

triangulation
uncertainty

Fig. 2.10: Triangulation uncertainty over increasing parallax angle

To avoid the above problems, novel algorithms prevent triangulation and optimization
under small parallax but also under large parallax, perform inverse depth weighting
to reduce the influence of distant points, build feature tracks for robust triangulation
from multiple views, validate cheirality (Section 6.4.1,page 97) to identify false feature
matches (check if 3d features are in front of the camera) or split the reconstruction
problem into smaller parts to maintain computational cost and runtime managable.
Freely spoken, all these interventions do not change the fact, that a vast amount of
3d features needs to be reconstructed in order to obtain a handful camera poses. 3d
features form a sparse representation of the observed structure, which can be used for
real-time reconstruction monitoring purposes but they do not play an important role
for further dense reconstruction using MVS. Based on known camera poses, image
feature matchings and their corresponding triangulations can be recovered, if required.

2.2.2 Structureless Bundle Adjustment

Structureless BA techniques avoid 3d feature reconstruction in order to reduce the
number of variables involved in the optimization. As illustrated in Fig. 2.11 they elim-
inate 3d features by replacing projective constraints with multi-view ones in order to
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Fig. 2.11: Example case as structureless BA problem illustrated as factor graph.

obtain an MAP estimate of the camera poses. If required, structure is recovered by
triangulating 3d features from optimized camera poses afterwards. There are differ-
ent approaches using epipolar constraints [79, 207, 208], epipolar point transfer [250],
combined epipolar and trifocal constraints [237] and combined epipolar and three-view
constraints [115, 118, 117, 119]. In contrast to using only epipolar (two-view) con-
straints or epipolar point transfer, the use of three-view constraints as well as trifocal
ones maintains a consistent scale even in collinear camera configurations (straight-line
camera motion) [118, 119].
The combination of two-view and three-view/trifocal constraints replaces 3d features
and thus reduces the optimization problem to the number of unknown motion param-
eters. As a consequence the number of constraints in structureless BA is usually much
larger compared to the ones in BA [119], since each 3d feature may be observed by
more than three camera views and hence is represented by a set of constraints between
different cameras observing the same 3d feature. This circumstance can be seen by
comparing the Jacobians from Fig. 2.9 and Fig. 2.12.
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Structureless BA can be expressed as least squares optimization

argmin
𝑅𝑘,𝑙,𝑚,t𝑘,𝑙,𝑚

{︃ ∑︁
(𝑖,𝑘,𝑙)∈ℰ

⃦⃦⃦
𝑔
(︀
X̂𝑖

𝑘, X̂
𝑖
𝑙, [𝑅𝑘, t𝑘], [𝑅𝑙, t𝑙]

)︀⏟  ⏞  
two-view constraint

⃦⃦⃦2
+

∑︁
(𝑖,𝑙,𝑚)∈ℰ

⃦⃦⃦
𝑔
(︀
X̂𝑖

𝑙, X̂
𝑖
𝑚, [𝑅𝑙, t𝑙], [𝑅𝑚, t𝑚]

)︀⏟  ⏞  
two-view constraint

⃦⃦⃦2

+
∑︁

(𝑖,𝑘,𝑙,𝑚)∈ℰ

⃦⃦⃦
ℎ
(︀
X̂𝑖

𝑘, X̂
𝑖
𝑙, X̂

𝑖
𝑚, [𝑅𝑘, t𝑘], [𝑅𝑙, t𝑙], [𝑅𝑚, t𝑚]

)︀⏟  ⏞  
three-view/trifocal constraint

⃦⃦⃦2}︃
,

where 𝑔(·, ·, ·, ·) denotes a two-view constraint between 𝑘th and 𝑙th camera as well as
between 𝑙th and 𝑚th camera, and ℎ(·, ·, ·, ·, ·, ·) denotes a three-view/trifocal constraint
between 𝑘th, 𝑙th and 𝑚th camera.

Besides an implementation for GTSAM named iLBA42 (incremental light Bun-
dle Adjustment) [118, 117, 119], there is no known SfM implementation/application
incorporating structureless BA.

2.3 Corresponding Issues

Visual SLAM is limited to image sequences and novel developments have been made
to reconstruct large-scale scenarios in real-time. They exploit the nature of sequential
overlapping images, which can be registered one by one by using a combination of
key-framing, local and global optimization techniques. Most visual SLAM implemen-
tations incorporate BA for image registration to reduce scale and local motion drift
from VO, whereas PGO performs camera trajectory optimization over longer distances
in case of loop closures to reduce global motion drift. However this strategy cannot be
fully applied to unordered image collections. Incremental SfM is mostly used in that
case and represents a robust registration strategy. It adds new cameras to an existing
scene by using a combination of triangulation, pose estimation and optimization. It
incorporates BA for local and global refinement in order to reduce drift. Thus the
final result depends on each individual camera registration and a single decision can
ruin the entire reconstruction results.

BA quickly becomes computationally expensive as more images are added since
it solves for camera poses and 3d features. On the contrary structureless BA solves for
camera poses only and replaces 3d features with multiview-constraints, which leads to
an increased number of additional constraints. Both optimization techniques require
initial estimates from image registration techniques, which should be in a sufficient
range to the final solution. PGO initializes and optimizes global camera poses using
two-view transformations (motion) between them. As can be seen in Fig. 2.13 PGO

42https://vindelman.net.technion.ac.il/software/

https://vindelman.net.technion.ac.il/software/
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Fig. 2.12: Structure of the Jacobian related to structureless BA optimization for solving an SfM
problem.

solves for the same number of unkown motion parameters as structureless BA does but
is subjected to less constraints compared to BA. Hence is keeps the problem small and
managable in both dimensions, unknowns and constraints, and thus is computationally
more efficient. However PGO requires scaled two-view transformations and cannot be
included into an SfM pipeline straightforwardly.

BA and structureless BA have a more complex problem structure as compared to
PGO. During serveral tests in underground environments, incremental SfM ran into
problems when loop closures over longer distances occured, as depicted in Fig. 2.14.
Incremental SfM starts with an initial image pair and adds new cameras to one of
either ends. Ideally, both ends should coincide in case of a loop closure, which due
to drift in reconstruction never happenes. Incremental SfM uses local BA to reduce
drift after each single image registration and accompanying feature triangulation
leading to locally optimized reconstructions. Hence loop closing constraints produce
comparativeley larger residuals. In order to align both ends of the loop closure BA
tries to optimize the entire reconstruction. Due to complex problem structure, where
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Fig. 2.13: Comparision of Jacobians in BA, structureless BA and PGO to solve for unknown motion
(camera poses). The structure and dimensions of the Jacobian illustrate the size and complexity of
the mathematical problem to be solved.

cameras are linked via 3d features, this is related to higher computational effort. In
order to update camera poses, BA also needs to update corresponding 3d features.
Hence larger parts of the reconstruction are influenced, which are already locally
optimized. During optimization the sum of squared distances can increase under
certain circumstances. BA is usually applied in combination with residual filtering,
which removes constraints relating to large projection errors after a certain amount of
iterations. This can also happen to loop closure constraints if BA is unable to improve
reconstruction within a certain optimization regime. Generally speaking, in some
cases it is computationally beneficial for the algorithm to remove small parts, namely
cameras and 3d features related to large error constraints than trying to adjust the
remaining parts of the reconstruction.

Fig. 2.15 illustrates the same scenario but reconstructed using a VO and PGO.
As can be clearly seen, camera poses are directly linked, which leads to a simple
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incremental structure from motion

3d features
projection
camera pose
loop closure
environment

Fig. 2.14: Incremental SfM reconstructing camera poses and 3d features in a narrow underground
environment. After each image registration and accompanying feature triangulation BA is performed
to reduce drift. However loop closures after long distances might lead to the circumstance, that loop
closing features as well as cameras are rejected through a filtering process, which leads to an incomplete
and drift affected reconstruction.

visual odometry with loop closure detection and pose graph optimization

3d features (visual odometry)

camera pose
loop closure
environment

odometry

Fig. 2.15: VO in combination with loop closure detection and PGO reconstructing a camera trajectory
in a narrow underground environment. Each time a loop closure is detected PGO compensates motion
drift in the camera trajectory.
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problem structure that enables compensating motion drift in case of a loop closure
via PGO. Structure (3d features) can be recalculated from optimized camera poses, if
required.

Considering all mentioned aspects, a camera motion estimation pipeline based
on PGO is on the one hand computationally efficient and on the other hand more
flexible in case of loop closures.

2.4 Proposed Reconstruction Pipeline

Based on presented findings from previous sections a new camera motion estimation
pipeline is proposed that avoids structure (3d feature) estimation and solves for
motion (camera poses) from unordered image collections and hence is called SCME
(Structureless Camera Motion Estimation). Similar to SfM, SCME combines different
image data processing algorithms like feature detection and matching as well as
transformation estimation using two-view and three-view/trifocal geometry. The
pipeline is inspired by global SfM (Section 2.2, page 19) approaches, structureless BA
(Section 2.2.2, page 25) and PGO (Section 2.1.2, page 18).

Structureless BA - as it is presented in Figs. 2.11 and 2.12, pages 26 and 28 -
uses two-view constraints to maintain rotation and translation direction within
a two-view transformation in combination with three-view/trifocal constraints to
maintain translation scale between two-view transformations. At each iteration step
structureless BA uses point correspondences and current pose estimates in order to
obtain residuals from two-view and three-view/trifocal constraints. Each residual
represents an error distance between current camera configuration and an ideal
camera configuration. Since this process is repeated for all iteration steps it leads to a
significant computational cost.

SCME consideres the structureless BA problem from a different perspective. It
uses up-to-scale two-view estimates from image matching and its geometric validation
(Chapter 6), which are the best obtainable pose transformations between image pairs
[218] and hence they are used as reference for optimization similiar to global SfM.
Three-view/trifocal constraints maintain the translation scale between two-view trans-
formations. Consequently these constraints obtain a ratio factor between up-to-scale
two-view transformations. Based on these ratio factors a global two-view translation
scaling is be performed to obtain scaled two-view transformations, to be used a input
data for efficient PGO (Chapter 8).

SCME introduces an intermediate step to obtain scaled two-view transforma-
tions from feature correspondences, neither using an incremental scaling approach nor
triangulating features. As a consequence camera poses are not directly obtained from
feature correspondences but from two-view transformations. Thus results represent
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inital estimates, which may be refined via BA or structureless BA. SCME presents a
fast and reliable pipeline to provide global camera pose estimates, without the need
to reconstruct any single point in 3d. The proposed pipeline is especially designed for
full 360∘ × 180∘ cameras but also incorporates any directional camera, as long as its
calibration can be converted into a P2S-map. Chapter 9 comprehensively explains the
proposed SCME pipeline.
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3 Cameras and Pixel-to-Sphere
Mappings with P2S-Maps

Brief Chapter Overview

This chapter covers intrinsic camera modelling and introduces a novel strategy to store
the obtained camera metric. Section 3.1 gives a brief summary about camera types,
their classification and technical design. Section 3.2 concentrates on camera models
and describes a geometric camera model in Section 3.2.1 and an analytic camera model
in Section 3.2.2. Both are suitable for a wide range of central camera types and are
also able to map pixels onto unit sphere, which paves the way to use a general spherical
camera model, which is described in Section 3.2.3. Instead of saving the derived camera
metric as parameters of a mapping function, Section 3.3 explains the idea of using a
lookup mapping, which stores each pixel’s corresponding position on the unit sphere.
Consequently by using a lookup the camera geometry becomes independent of the
underlying camera calibration model. Section 3.3.1 introduces a color-coding scheme
to save lookup mappings as image file, which is called P2S-map and represents an
equation-free calibration format. Section 3.3.2 explains how to obtain lookup values
for intermediate pixels from a P2S-map using a linear interpolation technique. As a last
point Section 3.3.3 illustrates the conversion of depth map data from RGBD-sensors
in order to be used in conjunction with a P2S-map for back-projection purposes and
scaling of two-view geometries (Section 6.7, page 113).

3.1 Types

This section shortly introduces a classification of different camera types as shown in
Fig. 3.1. Cameras are classified into central and non-central according the way how
light passes through the optical system.

Central cameras (or single effective viewpoint cameras) have a unique point,
where all optical rays intersect. Each ray passes through this viewpoint in one
particular direction. If a camera is calibrated, each pixel’s direction can be recovered
by unprojection the image onto the sphere centered at the single viewpoint. The single
viewpoint constraint is the base for the well-known epipolar geometry (Section 6.3,
page 94) that holds for any central camera system.
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Fig. 3.1: Classification of camera types

Non-central cameras (or non-single effective viewpoint cameras), do not have
a unique intersection point and project scenes into images along a general set of lines.
This type of camera is not considered in this work.

Central directional cameras are the most common type in video and image
applications and produce a limited FoV. They are further classified into dioptric
(light refraction using lenses) and catadioptric, which is a combination of lenses
(dioptric) and mirrors (catoptric: light reflection using curved mirrors).

The majority of cameras are called central directional dioptric cameras
and produce a perspective view. Telecentric lenses produce an orthographic view,
however they are very expensive and play an overall minor role since the are only used
in specific research fields like fluid dynamics [203, 202].

There are also central directional catadioptric cameras such as many kinds
of telescopes and mirror-based telephoto lenses. They are not used in robotics for
mapping or navigation purposes.

Central omnidirectional cameras (omni: meaning all) have a 360∘ FoV in
the horizontal plane. They combine a single projection center with a wide FoV.
They became famous in different areas like surveillance for tracking and espe-
cially in robotics for visual navigation, localization and mapping. Similar to central
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directional cameras, they are also further classified into dioptric and catadioptric.

Central omnidirectional dioptric cameras use a combination of shaped
lenses. Fisheye lenses typically represent this camera type, which can cover a vertical
FoV up to 250∘43. It should be noted, not all fisheye lenses are central. As mentioned
in [279] fisheye lenses do not necessarily have a single projection center but a locus
of projection centers. In many computer vision and robotics literature this locus is
assumed to be very small and approximated as single viewpoint. During the last years
design and manufacturing of fisheye lenses have been improved. Modern fisheye lenses
are nowadays classified as central.

Central Omnidirectional Catadioptric Cameras are a combination of a
perspective camera with a hyperbolic or eliptical mirror or an orthographic camera
with a parabolic mirror [10]. They were widely used in the robotics community,
however manufacturing of these lenses is difficult, due to the fact that lense and mirror
need to be precisely aligned.

Convention

Since the work focuses on central camera systems the term central will not be
mentioned always. The terms dioptric and catadioptric will relate to omnidirec-
tional cameras. Furthermore the indication directional cameras will always mean
dioptric perspective cameras.

Omnidirectional cameras covering an entire sphere (360∘ × 180∘) are referred as
full omnidirectional cameras.

3.2 Models

This section focuses on two popular camera models, which allow to calibrate a wide
range of central dioptric and catadioptric cameras. A third model assumes the camera
as sphere, which is used as general representation of cameras in this work.

3.2.1 Unified Camera Model

The Unified Camera Model (UCM) - as it is presented here - was introduced by Mei
[181] and is a modification of [75, 11]. It covers a wide range of directional and om-
nidirecional camera types such as catadioptric cameras with parabolic, hyperbolic,
ellipsoidal and planar mirros as well as dioptric cameras with fisheye lenses [279, 43,
264].

43https://products.entaniya.co.jp/en/products/hal-250200/fisheyehal250/

https://products.entaniya.co.jp/en/products/hal-250200/fisheyehal250/
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Fig. 3.2: Forward projection of the UCM with encountered main distortion types (barrel, pincushion,
tangential).

A point U = (𝑈, 𝑉,𝑊 )𝑇 is transferred from world frame 𝒲 to X = (𝑋, 𝑌, 𝑍)𝑇 in
camera frame 𝒞 Ñ

𝑋

𝑌

𝑍

é
= 𝑅𝑇

Ñ
𝑈

𝑉

𝑊

é
−𝑅𝑇 t (3.1)

using the extrinsic camera paramaters [𝑅, t] (or simply extrinsics), which denote the
camera pose.
As shown in Fig. 3.2, the intrinsic camera parameters (or simply intrinsics) describe
the transformation of (𝑋, 𝑌, 𝑍)𝑇 from camera frame 𝒞 to (𝑢, 𝑣)𝑇 on pixel plane 𝜋p.
The UCM is a sequence of successive projections. The first one projects (𝑋, 𝑌, 𝑍)𝑇

from camera frame 𝒞 onto the camera’s unit sphere 𝒮

X̂ =

Ö
�̂�

𝑌

𝑍

è
=

(𝑋, 𝑌, 𝑍)𝑇

‖(𝑋, 𝑌, 𝑍)𝑇‖
. (3.2)

Then, the second one projects (�̂�, 𝑌 , 𝑍)𝑇 from unit sphere 𝒮 to (𝑢, 𝑣)𝑇 on the (normal-
ized) image plane 𝜋i by shifting the center of projection from (0, 0, 0)𝑇 to (0, 0,−𝜉)𝑇
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along 𝑍-axis Ç
𝑥

𝑦

å
=

1

𝑍 + 𝜉

Ç
�̂�

𝑌

å
. (3.3)

Sidenote: In some of the rich calibration literature the normalized image plane
is simply referred as image plane ([216, 135]). Furthermore, there exist different
denotations for pixel plane such as sensor plane [216, 135] or image plane [19]. In
order to prevent confusion and to establish a uniform denotation, 𝜋i denotes the
image plane and 𝜋p denotes the pixel plane since it describes point coordinates in
pixel dimension and represents the projection plane of sensors and map projections
(Section 5.2, page 78).

𝜉 represents the parameter that models the distortion. Depending on that value the
projection transits from gnomonic (𝜉 = 0) to stereographic (𝜉 > 0) on the one hand
and on the orther hand the projection enlarges the FoV (−1 < 𝜉 < 0) by shifting the
projection center towards the image plane 𝜋i. This is possible for cameras with a
smaller FoV (<< 180∘). The smaller the FoV, the larger ‖𝜉‖ might become, depending
on the underlying distortion. In some cases, one parameter does not fit distortion
perfectly, that’s why an additional distortion model [23] is added, which is referred as
Plumb Bob or Brown-Conrady model. As schematically drawn in Fig. 3.2, it applies
radial 𝛱r and tangential distortion 𝛱t to the initial (distortion-free) projected image
points (𝑥, 𝑦)𝑇 : Ç

𝑥d

𝑦d

å
= 𝛱r

Ç
𝑥

𝑦

å
+𝛱t (3.4)

with

𝛱r = 1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6

𝛱t =

Ç
2𝑝1𝑥𝑦 + 𝑝2

(︀
𝑟2 + 2𝑥2

)︀
2𝑝2𝑥𝑦 + 𝑝1

(︀
𝑟2 + 2𝑦2

)︀å
𝑟2 = 𝑥2 + 𝑦2 .

Radial distortion (𝑘1, 𝑘2, 𝑘3) depends on the optical characteristics of the lens and is
point-symmetric at the optical center. This type of distortion can be devided into
barrel distortion (𝑘1, 𝑘2, 𝑘3 < 0), which causes and outward shift of the image points
and pincushion distortion (𝑘1, 𝑘2, 𝑘3 > 0) causing an inward shift of the image points.
Tangential distortion (𝑝1, 𝑝2) or Thin Prism Distortion [41, 22] is caused by improper
lens and camera assembly such as imperfect centering and aligning of the lens compo-
nents (e.g optical axis is not orthogonal to the sensor plane).
Finally, the homogeneous transformation from distorted image coordinates (𝑥d, 𝑦d, 1)

𝑇
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on image plane 𝜋i to pixel coordinates (𝑢, 𝑣, 1)𝑇 on pixel plane 𝜋p is given byÑ
𝑢

𝑣

1

é
=

⎡⎣𝑓𝑥 𝛼s 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

⎤⎦Ñ𝑥d

𝑦d

1

é
. (3.5)

Here, 𝑓𝑥 and 𝑓𝑦 denote the focal length (in pixel units) in horizontal (𝑥-direction) and
vertical (𝑦-direction). (𝑐𝑥, 𝑐𝑦)

𝑇 denotes the principal point, which is the intersection
between optical axis and pixel plane 𝜋p. The coefficient 𝛼s encodes the angles between
horizontal and vertical sensor axes and is usually 0.
As can be seen, if 𝜉 = 0 the UCM becomes the pinhole camera model with Plumb Bob
distortion [19].

The Extended UCM [138] is a further development of the UCM. It is not con-
sidered in this work since UCM already achieved satisfying calibration results as
shown in Fig. 4.4, page 57. Accordingly there was no need to additionaly implement
this camera model.

Unprojection

The unprojection function transforms (𝑢, 𝑣)𝑇 from pixel plane 𝜋p to (�̂�, 𝑌 , 𝑍)𝑇 on unit
sphere 𝒮. The transformation from pixel plane 𝜋p to image plane 𝜋i is the inverse of
Eq. (3.5) Ñ

𝑥d

𝑦d

1

é
=

⎡⎣𝑓𝑥 𝛼𝑠 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

⎤⎦−1Ñ
𝑢

𝑣

1

é
. (3.6)

In case of no distortion (𝑥, 𝑦)𝑇 = (𝑥d, 𝑦d)
𝑇 , the analytic solution to unproject (𝑥, 𝑦)𝑇

from image plane 𝜋i to (�̂�, 𝑌 , 𝑍)𝑇 on unit sphere 𝒮 is given byÖ
�̂�

𝑌

𝑍

è
=

𝜉 +
√︀

1 + (1− 𝜉2)(𝑥2 + 𝑦2)

𝑥2 + 𝑦2 + 1

Ñ
𝑥

𝑦

1− 𝜉

é
. (3.7)

Undistortion

The applied Plumb Bob distortion model has no closed-form solution as undistortion
function (𝑥d, 𝑦d)

𝑇 → (𝑥, 𝑦)𝑇 . In [105], the authors describe serveral distortion cor-
rection approaches. The here presented one is an interative solution, based on the
implementation from [146] Ç

𝑥

𝑦

å𝑖+1

=
1

𝛱 𝑖
r

(︃Ç
𝑥d

𝑦d

å
−𝛱 𝑖

t

)︃
, (3.8)
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which is suitable for radial distortions up to two degrees (𝑝1 ̸= 0, 𝑝2 ̸= 0, 𝑝3 = 0).
As Fig. 3.3 shows, the iterative solution from Eq. (3.8) for a radial distortion of three
degrees obtains good undistortion results for points being close to the optical axis,
since radial distortion increases with the distance to the optical center. In order to
undistort the entire point set, a least squares non-linear optimization based on LM
(Levenberg-Marquardt (non-linear solver)) is proposed

argmin
𝑥,𝑦

∑︁⃦⃦(︀
𝑥d, 𝑦d

)︀𝑇 −𝛱r
(︀
𝑥, 𝑦
)︀𝑇 −𝛱t

⃦⃦2 (3.9)

with the corresponding Jacobian:

𝐽 =

ñ
𝜕𝛱r(𝑥,𝑦)𝑇

𝜕𝑥
𝜕𝛱r(𝑥,𝑦)𝑇

𝜕𝑦
𝜕𝛱t
𝜕𝑥

𝜕𝛱t
𝜕𝑦

ô
=

⎡⎢⎢⎢⎣
𝛱r + 𝑥2𝑤 𝑦2𝑤

𝑥2𝑤 𝛱r + 𝑦2𝑤

6𝑝2𝑥+ 2𝑝1𝑦 2𝑝1𝑥+ 2𝑝2𝑦

2𝑝1𝑥+ 2𝑝2𝑦 2𝑝2𝑥+ 6𝑝1𝑦

⎤⎥⎥⎥⎦
𝑤 = 2𝑘1 + 4𝑘2𝑟

2 + 6𝑘3𝑟
4 ,

to further improve undistortion.
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Fig. 3.3: Example of a Plumb Bob undistortion (𝑘1 = 0.2, 𝑘2 = 0.1, 𝑘3 = −0.01, 𝑝1 = −0.03, 𝑝2 = 0.03)
illustrating the solutions after 10 linear iterations and after 7 non-linear LM optimization steps. As
can be seen, the proposed non-linear optimization yields accurate undistortion results, whereas the
iterative method obtains only satisfying results for points beeing closer to the optical axis (𝑥, 𝑦)𝑇 =
(0, 0)𝑇 .

3.2.2 Polynomal Camera Model

The Polynomal Camera Model (PCM) was first published in [182] and further
improved by Scaramuzza in [215, 216, 219, 220]. In contrast to the UCM, which
describes the projection (𝑋, 𝑌, 𝑍)𝑇 from camera frame 𝒞 to (𝑢, 𝑣)𝑇 on pixel plane 𝜋p

as mapping function, the PCM describes the unprojection from (𝑢, 𝑣)𝑇 on pixel plane
𝜋p to a vector (𝑥, 𝑦, 𝑓(𝑥, 𝑦))𝑇 in camera frame 𝒞, that equals the direction of the 3d
point (𝑋, 𝑌, 𝑍)𝑇 . It is a generalized parametric model, which covers different kinds of
omnidirectional dioptric and catadioptric cameras.
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Fig. 3.4: Backward projection of the PCM

Unprojection

The inverse of an affine transformation converts a point from pixel coordinates (𝑢, 𝑣)𝑇

on pixel plane 𝜋p to image coordinates (𝑥, 𝑦)𝑇 on image plane 𝜋i. This transformation
is given in homogeneous formÑ

𝑥

𝑦

1

é
=

⎡⎣𝑐 𝑑 𝑐𝑥
𝑒 1 𝑐𝑦
0 0 1

⎤⎦−1Ñ
𝑢

𝑣

1

é
, (3.10)

where 𝑐, 𝑑, 𝑒, 𝑐𝑥, 𝑐𝑦 denote the affine parameters, incorporating the digitizing process and
small axes misalignments. Similar to the UCM, the principal point (𝑐𝑥, 𝑐𝑦)

𝑇 indicates
the intersection between optical axis and pixel plane 𝜋p. The direction (𝑥, 𝑦, 𝑓(𝑥, 𝑦)𝑇 )

of the 3d point (𝑋, 𝑌, 𝑍) is calculated, with 𝑓(𝑥, 𝑦) being a rotationally symmetric,
non-linear function based on a Taylor polynom of 𝑛 degree:

𝑓(𝑥, 𝑦) = 𝑎0 + 𝑎1𝑟 + 𝑎2𝑟
2 + 𝑎3𝑟

3 + 𝑎4𝑟
4 . . .+ 𝑎𝑛𝑟

𝑛 (3.11)

𝑟 =
√︀
𝑥2 + 𝑦2 .

𝑓(𝑥, 𝑦) models the distortion of dioptric cameras (e.g. fisheye) and approximates the
mirror shape of catadioptric cameras. As mentioned above, (𝑥, 𝑦, 𝑓(𝑥, 𝑦)𝑇 ) is the di-
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rection of (𝑋, 𝑌, 𝑍) such that Ñ
𝑋

𝑌

𝑍

é
= �̃�

Ñ
𝑥

𝑦

𝑓(𝑥, 𝑦)

é
, (3.12)

with �̃� being a positive scaling value (unscaled depth). Normalizing the obtained
direction yields the point on unit sphere

X̂ =

Ö
�̂�

𝑌

𝑍

è
=

(𝑥, 𝑦, 𝑓(𝑥, 𝑦))𝑇

‖(𝑥, 𝑦, 𝑓(𝑥, 𝑦))𝑇‖
. (3.13)

Projection

Projection is based on the inversion of 𝑓(𝑥, 𝑦). As there is no analytic solution for
a polynom of degree 𝑛, the inversion is approximated by another Taylor polynom of
degree 𝑚 (𝑚 > 𝑛).

3.2.3 Spherical Camera Model

(𝑋, 𝑌, 𝑍)𝑇
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𝑅, t
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O

𝜆 𝜆

a b

𝒲 𝒞

Fig. 3.5: Projection geometry on unit sphere: a) in world frame 𝒲, b) in camera frame 𝒞.

The Spherical Camera Model (SCM) considers a central camera as a unit sphere,
where the surface of the sphere presents the image domain. This assumption enables a
full omnidirectional projection since all directions a handled equally: There is no real
front or back, up (zenit) and down (nadir). The SCM does not need prior knowledge
about the underlying physical imaging system and can also work with world map
projections from cartography (Section 5.2, page 78). Furthermore, the location of
a projected point on unit sphere also represents its direction (in contrast to UCM
and PCM, which need an unprojection function in order to obtain the corresponding
direction).

The camera pose [𝑅, t] describes the transformation from camera frame 𝒞 to
world frame 𝒲 . The inverse transformation from 𝒲 to 𝒞 is given by

[︀
𝑅𝑇 ,−𝑅𝑇 t

]︀
. The
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forward projection (or simply projection) maps U ∈ 𝒲 to X̂ ∈ 𝒮 and is described by

X̂ =
X

‖X‖
=

𝑅𝑇 (U− t)

‖𝑅𝑇 (U− t) ‖
. (3.14)

The inverse mapping is called backward projection (or simply back-projection) given
by

U = 𝑅X̂𝜆+ t . (3.15)

The unit sphere 𝒮 is a subspace of the camera frame 𝒞. Since ‖𝑅X̂‖ = 1, 𝜆 represents
the entire depth from the optical camera center [𝑅, t] to the 3d world point U. The
depth value can be re-obtained from the correspondence between image point and 3d
world point. Taking Eq. (6.2) and subtracting t leads to

U− t⏟  ⏞  
b

= 𝑅X̂⏟ ⏞ 
a

𝜆 ,

which can be solved for 𝜆 using the least squares solution 𝜆 = a𝑇b/‖a‖2 (this is
explained in detail in Appendix A.2). This solution leads to the following equation

𝜆 = 𝑅X̂𝑇 (U− t) . (3.16)

3.3 P2S-Maps - Mapping onto Unit Sphere via
Lookup Table
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Fig. 3.6: Polar angle 𝜃 and azimuth angle 𝜑 explained at hand of a unit sphere and its corresponding
perspective projection. Polar angle 𝜃 is around the optical axis (0, 0, 1)𝑇 and azimuth angle 𝜑 lies
between otpical axis (0, 0, 1)𝑇 and (�̂�, 𝑌 , 𝑍)𝑇 .

Both, UCM (Section 3.2.1) and PCM (Section 3.2.2) have a closed-form solution for
pixel to unit sphere mapping, which is mandatory in order to use the generalized
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SCM. However, here UCM is used with an additional Plumb Bob distortion model,
which relates to higher computational effort for undistortion purposes. In order to
reduce this load the unprojection (including undistortion) is performed for all image
pixels and saved as lookup table, similar as recommended in [226]. This needs to be
done only once and can be reused for later processing. The lookup table makes the
mapping between pixel and unit sphere independent of the choosen camera calibration
model as long as it provides an unprojection. This procedure preserves from additional
implementation effort of specific projection functions into basic routines like PnP
or BA. Camera calibration is replaced by a mapping between pixel and spherical
coordinates as a lookup table and is no longer described as geometric (UCM) or
analytic (PCM) mapping function.

Image coordinates on unit sphere may be expressed as either spherical coordi-
nates (𝜃, 𝜑)𝑇 or normalized Cartesian coordinates (�̂�, 𝑌 , 𝑍)𝑇 with the following
conversion between them:

𝜃(�̂�, 𝑌 , 𝑍) = arccot

(︃
𝑍√︀

�̂�2 + 𝑌 2

)︃
· 180/𝜋, 0 ≤ 𝜃 ≤ 360∘

𝜑(�̂�, 𝑌 , 𝑍) = atan2

(︃
𝑌

�̂�

)︃
· 180/𝜋 + 90∘, 0 ≤ 𝜑 ≤ 180∘ ,

as Fig. 3.6 explains. The polar angle 𝜃 is defined between the point (�̂�, 𝑌 , 𝑍)𝑇 and
optical axis (𝑍-axis). 𝜑 denotes the azimuth angle around the optical axis between
𝑋-axis (and 𝑥-axis, respectively) and the orthogonal projection of the line segment
between sphere center O and (�̂�, 𝑌 , 𝑍)𝑇 on 𝑋-𝑌 -plane (and 𝑥-𝑦-plane, respectively)
in counterclockwise direction.
The lookup contains either (𝑢, 𝑣)𝑇 → (𝜃, 𝜑) or (𝑢, 𝑣)𝑇 → (�̂�, 𝑌 , 𝑍)𝑇 mapping corre-
spondences. The first version needs less storage demand, however it may lead to con-
fusion when converting back to Cartesian coordinates, since there exist different angle
conventions. In order to prevent confusion, the lookup saves (𝑢, 𝑣)𝑇 → (�̂�, 𝑌 , 𝑍)𝑇

mappings.

3.3.1 Lookup Table as Color Image

𝑋
𝑌

𝑍

−1

1

𝑌
−1 1

𝑋 −1

1𝑍

Fig. 3.7: Mapping of Cartesian coordiantes to color values. 𝑋 is mapped to red, 𝑌 to green and 𝑍 to
blue channel.
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The proposed idea is to store the lookup as an image since these data type can be
straightfowardly integrated into various applications and nearly all programming
languages provide input/output functionality for most file formats. Each pixel in an
image corresponds to RGB color values, that code the pixel’s position on unit sphere
and thus its direction. A similar approach is used for storing object space normal
maps. However, storing location data as color values leads to precision loss, due to
information limitation of each color channel.

The following describes an estimation of the maximum possible angular resolu-
tion 𝑑𝜃 and 𝑑𝜑 between neighboring points on unit sphere. Supposing 𝜃 and 𝜑 are
stored as red and green color channel in a 48-bit image (3 color channels, 16-bit per
channel). Consequently, the maximum angular resolution is:

𝑑𝜃 = 180∘/216 = 0.00275∘/𝑝𝑖𝑥

𝑑𝜑 = 360∘/216 = 0.0055∘/𝑝𝑖𝑥 .

As can be seen, the polar angle resolution 𝑑𝜃 is twice the one of the azimuth angle 𝑑𝜑.
The blue channel stays empty thus this data allocation needs less storage demand,
but does not use the entire data storage potential.

Supposing a linear mapping between Cartesian coordiantes on unit sphere and
RGB color values

−1 ≤ (�̂�, 𝑌 , 𝑍) ≤ 1 ↔ 0 ≤ 𝑅𝐺𝐵 ≤ 216 − 1

with

𝑅𝐺𝐵 =
(�̂�, 𝑌 , 𝑍) + 1

2
(216 − 1)

as depicted in Fig. 3.7. Each Cartesian dimension of the unit sphere ranges from −1

to 1 and is discretized by 216 color values leading to a spatial Cartesian resolution
𝑑𝑋 = 𝑑𝑌 = 𝑑𝑍 = 2/216 = 1/215. Converting these values back to the corresponding
angular resolutions 𝑑𝜃(�̂�, 𝑌 , 𝑍) and 𝑑𝜑(�̂�, 𝑌 , 𝑍) yields:

𝑑𝜃 =
⃒⃒
𝜃(0, 1, 0)− 𝜃(0, 1, 1/215)

⃒⃒
=
⃒⃒
arccot(0)− 𝑎𝑟𝑐𝑐𝑜𝑡(1/115)

⃒⃒
· 180/𝜋

= 0.001748∘/𝑝𝑖𝑥

𝑑𝜑 =
⃒⃒
𝜑(1, 0, 0)− 𝜑(1, 1/215, 0)

⃒⃒
=
⃒⃒
atan2(0)− 𝑎𝑡𝑎𝑛2(1/115)

⃒⃒
· 180/𝜋

= 0.001748∘/𝑝𝑖𝑥 .

This allows to store higher angular resolutions 𝑑𝜃 and 𝑑𝜑, both at the same
resolution level of 0.001748∘/𝑝𝑖𝑥. An equirectangular image with the size of
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205, 950𝑝𝑖𝑥 × 102, 975𝑝𝑖𝑥 would use the full potential of the provided angular resolu-
tion.

In order to assess this resolution value, it is brought in relation to a real cam-
era. At the moment on market, the PhaseOne XF IQ4 44 is one of the cameras with
the highest image resolution of 14204 × 10652𝑝𝑖𝑥 (151 megapixels with a sensor
size of 53.4𝑚𝑚 × 40𝑚𝑚). Combined with a Schneider Kreuznach 150mm LS f/2.8
IF 45 telelens (one of the longest focal length lenses at this high resolution with 25∘

angle of view) requires a polar resolution 𝑑𝜃 ≈ 0.00176∘/𝑝𝑖𝑥 and an azimuthal one
𝑑𝜑 ≈ 0.0081∘/𝑝𝑖𝑥. These vaules can be still discretized by the resolution spectrum of
the color-coding. The majority of cameras used in robotics and computer vision have a
much lower pixel resolution since image data is aimed to be processed in real-time and
consequently must be kept manageable. An overview of derived angular resolutions
from camera calibration is shown in Fig. 4.5, page 58.
With increasing performance the use of higher resolution cameras will become feasable
in the future, such that the minimum angular resolution boundary needs to be reduced
by extending the 16-bit depth to 32-bit depth of each color channel, which is already
supported by some image file formats. The lookup table as color-coded image is
named P2S-map (Pixel-to-Sphere-map).

Pixels without mapping information are black. They cannot be mapped onto
unit sphere since RGB= (0, 0, 0) leads to (�̂�, 𝑌 , 𝑍) = (−1,−1,−1), which does not
represent a point on unit sphere. Black colored regions indicate masked areas or areas
that are outside the lens’ FoV and hence are not covered by the unprojection function.
Using an image editing programm the user is able to mask certain image areas by
painting them black in the P2S-map.
Fig. 3.8 depicts an example image mapped onto unit sphere via its corresponding
P2S-map compared to traditional mapping on the virtual image plane using intrinsic
camera parameters (here: 𝑓𝑥 = 519.22, 𝑓𝑦 = 479.46, 𝑐𝑥 = 522.29, 𝑐𝑦 = 272.73).
Viewing the P2S-map in an image viewer gives the user direct information about
the camera’s image dimensions, about masked or uncalibrated areas that indicate
unavailable mappings and - if the user is familiar with the color-coding - about the
FoV. This allows a better comparison between different cameras (Fig. 4.5, page 58)
and projections (Fig. 4.4, page 57).

Image Format

The P2S-map is saved as TIFF46 (or short TIF) with 48-bits per pixel (16-bits per
color channel) using a LZW lossless compression.

44https://www.phaseone.com/de-DE/Photography/XF-Camera-System/Camera-Configuration
s/XF-IQ4-150MP-Camera-System

45https://www.phaseone.com/de-DE/Photography/XF-Camera-System/Lenses/Schneider-Kre
uznach-150mm-Blue-Ring

46https://www.itu.int/itudoc/itu-t/com16/tiff-fx/docs/tiff6.pdf

https://www.phaseone.com/de-DE/Photography/XF-Camera-System/Camera-Configurations/XF-IQ4-150MP-Camera-System
https://www.phaseone.com/de-DE/Photography/XF-Camera-System/Camera-Configurations/XF-IQ4-150MP-Camera-System
https://www.phaseone.com/de-DE/Photography/XF-Camera-System/Lenses/Schneider-Kreuznach-150mm-Blue-Ring
https://www.phaseone.com/de-DE/Photography/XF-Camera-System/Lenses/Schneider-Kreuznach-150mm-Blue-Ring
https://www.itu.int/itudoc/itu-t/com16/tiff-fx/docs/tiff6.pdf
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Fig. 3.8: Comparison between a standard pinhole projection and a corresponding sphere mapping
using a P2S-map. The following is shown: a) color image, b) P2S-map as equation-free calibration
format, c) image mapped on the virtual image plane as it is done in pinhole projection and image
mapped onto unit sphere via P2S-map.

3.3.2 Lookup Interpolation

Image processing e.g. feature detection uses subpixel precision. Storing subpixels in a
lookup at different precision levels would lead to a huge data amount, which cannot be
managed efficiently. The proposed method maps subpixels from pixel plane 𝜋p onto
unit sphere 𝒮 by interpolating the lookup values of the surrounding pixels. Assuming
(𝑢, 𝑣)𝑇 to be a subpixel on pixel plane 𝜋p with unknown position (�̂�, 𝑌 , 𝑍)𝑇 on unit
sphere 𝒮 and (𝑢𝑖, 𝑣𝑗)𝑇 , 𝑖, 𝑗 = 1, 2 to be the surrounding pixels with corresponding
mappings (�̂� 𝑖,𝑗, 𝑌 𝑖,𝑗, 𝑍𝑖,𝑗)𝑇 as Fig. 3.9 depicts. Each (𝑢𝑖, 𝑣𝑖)𝑇 lies on a pixel grid and
has three corresponding function values �̂� 𝑖,𝑗, 𝑌 𝑖,𝑗 and �̂� 𝑖,𝑗. The four surrounding pixels
are neighboring points on unit sphere, which means, the unknown mapping must lie
between them. Supposing the geometry between these four points on unit sphere to
be very small such that it can be approximated as plane. Then the relations between
pixel distances equal relations between distances on the unit sphere. This assumption
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Fig. 3.9: Interpolation between lookup values in a P2S-map. Neighboring pixels are mapped onto
unit sphere. Since the surrounded area between them is very small, it can be approximated as plane
allowing a bilinear interpolation method.

allows to use a bilinear interpolation:

𝑋 =
1

(𝑢2 − 𝑢1)(𝑣2 − 𝑣1)

î
𝑢2 − 𝑢 𝑢− 𝑢1

ó ñ�̂�1,1 �̂�2,1

�̂�1,2 �̂�2,2

ôÇ
𝑣2 − 𝑣

𝑣 − 𝑣1

å
𝑌 =

1

(𝑢2 − 𝑢1)(𝑣2 − 𝑣1)

î
𝑢2 − 𝑢 𝑢− 𝑢1

ó ñ𝑌 1,1 𝑌 2,1

𝑌 1,2 𝑌 2,2

ôÇ
𝑣2 − 𝑣

𝑣 − 𝑣1

å
𝑍 =

1

(𝑢2 − 𝑢1)(𝑣2 − 𝑣1)

î
𝑢2 − 𝑢 𝑢− 𝑢1

ó ñ𝑍1,1 𝑍2,1

𝑍1,2 𝑍2,2

ôÇ
𝑣2 − 𝑣

𝑣 − 𝑣1

å
.

Since each direction value of (𝑋, 𝑌, 𝑍) is obtained separately, the interpolated point
does not necessarily lie on the sphere’s surface and must be finally projected onto this
(�̂�, 𝑌 , 𝑍)𝑇 = (𝑋, 𝑌, 𝑍)𝑇/

⃦⃦
(𝑋, 𝑌, 𝑍)𝑇

⃦⃦
.

3.3.3 Depth Data Conversion

This section describes the conversion of image depth information to be directly used
with a P2S-map. Image depth data from RGBD-cameras as well as from stereo
cameras are usually stored as depth map using a 16-bit grayscale image in PNG
file format. Each grayscale intensity relates to a depth value, enabling to store a
depth range from 0𝑚𝑚 to 65, 535𝑚𝑚 with a precision of 1𝑚𝑚. This data format
has become a quasi standard through OpenNI /OpenNI2. It is widely used in ROS47

47http://wiki.ros.org/depth_image_proc

http://wiki.ros.org/depth_image_proc
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Fig. 3.10: Depth data conversion in order to use depth information e.g. from RGBD cameras with
P2S-maps. RGBD cameras usually provide orthograpic depth data 𝜆ortho, whereas a camera sphere
uses perspective depth data 𝜆 (similar to range data from laser scans).

and OpenCV 48 in combination with RGBD-cameras from Kinect, Xtion or RealSense
product families, to name only a few popular ones.

Summarizing Eqs. (3.2) and (3.3), pages 36 and 37 for pinhole cameras (𝜉 = 0)
without distortion leads to the projection functionÑ

𝑥

𝑦

1

é
=

1

𝑍

Ñ
𝑋

𝑌

𝑍

é
and its inversion, the back-projection functionÑ

𝑋

𝑌

𝑍

é
= 𝑍

Ñ
𝑥

𝑦

1

é
. (3.17)

The depth map saves 𝑍 for each pixel directly, which leads to an orthographic depth
representation 𝜆ortho = 𝑍 as shown in Fig. 3.10. Storing orthographic depth information
enables to directly compare depth values (especially in case of unkown intrinsics), since
𝑍-values do not need camera intrinsics to be restored.

The back-projection for a camera sphere is given withÑ
𝑋

𝑌

𝑍

é
= 𝜆

Ö
�̂�

𝑌

𝑍

è
. (3.18)

48https://docs.opencv.org/master/d2/d3a/group__rgbd.html

https://docs.opencv.org/master/d2/d3a/group__rgbd.html
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Here, 𝜆 denotes the perspetive depth, which is also designated as range data as this
term is used for laser scan data. Equalizing Eqs. (3.17) and (3.18) leads to

𝜆ortho

Ñ
𝑥

𝑦

1

é
= 𝜆

Ö
�̂�

𝑌

𝑍

è
. (3.19)

Taking a closer look at the third row of Eq. (3.19) gives the relation between ortho-
graphic depth and perspective one

𝜆 =
𝜆ortho

𝑍
. (3.20)

Knowing this simple conversion allows to apply P2S-map on depth maps in order to
recover 3d information.
Fig. 3.11 depicts a real world example using a depth map to back-project image points
using a standard pinhole camera model and the genralized camera sphere model with
P2S-map.

Brief Chapter Summary

A brief overview concerning camera types and their classifications was given in this
chapter. Existing popular camera models were explained that are suitable for a wide
range of camera types. The chapter introduced the idea to store the unprojection
of each camera model as lookup, which maps image pixels onto unit sphere. Lookup
mappings are further converted to color space in order to store be stored as color image
that is called P2S-map. As a consequence of this lookup approach, the camera geometry
becomes independent of the underlying camera calibration model and enables the usage
of a general spherical camera model in order to process images from different camera
types and projections models in one framework. Furthermore, a linear interpolation
method was explained that allows to obtain mappings for intermediate pixels from a
P2S-map, which is required for feature detection. As a last point the chapter described
the conversion of depth data from e.g. RGBD-cameras to be used in combination with
a P2S-map for back-projection purpose.



3 Cameras and Pixel-to-Sphere Mappings with P2S-Maps 50

Fig. 3.11: Example conversion from orthographic depth to perspective depth. a) Visualization of
color image, depth map and sphere-map (color-coded lookup), where the depth map is presented
using a dynamic gray scaling. b) 3d visualization of the depth map with its corresponding depth
information. The brightness of the pixel is proportional to orthographic depth 𝛿ortho, the brighter the
pixel intensity, the further away. Black denotes missing depth information. c) Back-projection using
the depth map with a pinhole camera model and converted to be used with a camera sphere (sphere
is shifted by (+4, 0, 0)𝑇 , to be placed beside the pinhole camera).
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4 Calibration

Brief Chapter Overview

This chapter covers the topic of camera calibration. Section 4.1 gives an insight of the
proposed processing structure, which is split into target detection, intrinsic calibration
and extrinsic calibration. Section 4.2 describes a developed target detection toolbox
based on availabe algorithms. It is followed by Section 4.3, which summarizes functions
and algorithms from known toolboxes, which are incorporated in the presented intrinsic
calibration toolbox. Intrinsic calibration is based on camera models from Chapter 3,
page 33 and provides P2S-maps as output. Section 4.3.1 shows an example of an in-
trinsic calibration in detail and illustrates an overview concerning calibration results
from different cameras.
Section 4.4 introduces a new extrinsic calibration worklflow for multi-camera systems
based on P2S-maps. It describes the idea of adopting PGO to solve for camera ex-
trinsics, which can be used to integrate multi-camera configurations into the SCME
pipeline. Relative transformations between targets and camers are estimated by 3d-2d
pose estimation as described in Section 4.4.1 or by 2d-2d pose estimation as described
in Section 4.4.2. Section 4.4.3 explains the optimization of the derived transforma-
tion estimates and Section 4.4.4 reveals how to derive corresponding transformation
uncertainties. Based on these information, Section 4.4.5 illustrates the generation of a
pose graph, which is then optimized by a pose graph solver. The obtained extrinsics
are further refined using BA as explained in Section 4.4.6. The chapter ends with
Section 4.4.7 showing extrinsic calibration results from two challenging mutli-camera
setups.

4.1 Overview of Proposed Calibration Pipeline

This chapter introduces a calibration routine consisting of three main parts. Most
of the available calibration toolboxes use one specific camera model [19, 220, 181,
222, 264] and hence are limited to selected camera types. Their main goal is to
intrinsically calibrate monocular camera systems. They also provide target poses from
the calibration process itself, but these information are less important and mostly
used for visualization purposes in order to validate the calibration results. There are
also toolboxes providing an all-in-one solution [19, 161] by combining intrinsic and
extrinsic calibration for multi-camera setups. However, this leads to problems if one
of the included routine fails, making the entire calibration process cumbersome.
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target detection intrinsic calibration extrinsic calibration

c c c c

t t

Fig. 4.1: Overview of the proposed camera calibration pipeline being split into three subroutines.
Target dectection analyzes calibration images, detects checkerboard patterns and saves the rela-
tions between detected pattern points and real world coordinates (𝑢𝑖, 𝑣𝑖)𝑇 ↔ (𝑈 𝑖, 𝑉 𝑖,𝑊 𝑖)𝑇 . Intrinsic
calibration uses these correspondences to obtain intrinsic parameters and to provide a correspond-
ing P2S-map to unproject each image pixel onto unit sphere (𝑢𝑖, 𝑣𝑖)𝑇 → (�̂�𝑖, 𝑌 𝑖, 𝑍𝑖)𝑇 . Extrinsic
calibration obtains each camera pose in a multi-camera setup, where two or more cameras capture a
calibration target at the same time. It requires point correspondences from target dectection and
mapping information from intrinsic calibration.

The proposed processing pipeline splits the calibration routine into three sepa-
rate subroutines: target detection (Section 4.2, page 53), intrinsic calibration
(Section 4.3, page 54) and extrinsic calibration (Section 4.4, page 58) as Fig. 4.1
illustrates.
The following adjustments make the entire calibration process simpler, more flexible
and applicable to various calibration scenarios:

• Target detection uses multiple detection algorithms (which are independent of
the camera type) in order to decrease the number of false/failed detections. The
user able to interfere e.g. to correct false detection or to manually select target
points if required.

• Intrinsic calibration incorporates UCM and PCM covering a wide range of
camera types in order to obtain intrinsic parameters using pattern point cor-
respondences from target detection. Based on these parameters it provides
lookup mappings from pixel to unit sphere (P2S-map).

• Extrinsic calibration obtains extrinsic parameters (rotation and translation) of
each camera and target in a multi-camera setup and is not limitied to a certain
number of cameras. It is based on SCM and thus enables to calibrate setups con-
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sisting of mixed camera types. The subroutine requires pattern point correspon-
dences from target detection as well as P2S-maps from intrinisc calibration
as input data.

The modular structure also allows to replace or adapt certain subroutines if needed
and enables to extend the toolbox’ functionality.

In contrast to [19, 161], the presented pipeline seperates intrinsic from extrinsic
calibration in order to work with different calibration image sets as well as patterns,
which may differ in size (e.g. number of pattern points and grid spacing) and
dimensionality (2d or 3d). Intrinsic calibration requires a set of images at different
viewpoints and distances covering the entire FoV of the camera as Fig. 4.3 d), page 56
shows. Extrinsic calibration is based on overlapping FoVs, requiring the pattern the
be seen in at least two cameras. Depending on the camera setup, this requires to
place target poses further away form the camera center or to use a smaller pattern
compared to intrinsic calibration.

4.2 Target Detection

Checkerboards are mostly used as target pattern since they are straightforward to
manufacture, cheap to employ and their corners can be detected with sup-pixel
accuracy even under strong lens distortion [73], which makes them suitable to be used
with a wide range of omnidirectional cameras.

The traget detection uses geometric knowledge of the pattern and assigns each
detected point of the checkerboard to a real world coordinate (𝑢𝑖, 𝑣𝑖)𝑇 ↔ (𝑈 𝑖, 𝑉 𝑖,𝑊 𝑖)𝑇 ,
𝑖 = 1, . . . , 𝑝. Fig. 4.2 presents the toolbox analyzing a set of calibration images from
a fisheye camera Kodak SP360 4K. The presented traget detection incorporates three
main algorithms, which do not need additional knowledge about the underlying lens
distortion:

• Rufli’s automatic corner finder software49 [213] for blurred and distorted
images, which is used by OcamCalib-toolbox [216, 220].

• Geiger’s corner and checkerboard detection [73] called LIBCDDETECT 50,
which detects multiple checkerboards in a single shot and is suitable for different
camera types.

• Bouguet’s corner finder [19], which is based on Harris Corner Detection and
refines corner estimates from automatic and manual detection.

49https://sites.google.com/site/scarabotix/ocamcalib-toolbox/ocamcalib-toolbox-dow
nload-page

50http://www.cvlibs.net/software/libcbdetect/

https://sites.google.com/site/scarabotix/ocamcalib-toolbox/ocamcalib-toolbox-download-page
https://sites.google.com/site/scarabotix/ocamcalib-toolbox/ocamcalib-toolbox-download-page
http://www.cvlibs.net/software/libcbdetect/
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Furthermore, the toolbox analyzes a set of calibration images using different detection
algorithms in order to reduce the number of incorrect or aborted detections, if one
algorithms fails. The toolbox also allows manual intervention by the user e.g. to select
target points manually.

Fig. 4.2: Checkerboard detection GUI showing the parameter settings panel on the left and a preview
of the detected pattern points in the camera image on the right.

4.3 Intrinsic Calibration

The developed intrinsic calibration toolbox uses UCM (Section 3.2.1, page 35) and
PCM (Section 3.2.2, page 39) and incorporates functions/routines from the following
existing toolboxes:

• Bouguet’s Camera Calibration Toolbox for Matlab [19], which is proba-
bly the most popular calibration software (according to [73]) originally written
in Matlab. It was later implemented in OpenCV 51 with automatic checkerboard
detection. The software provides a complete calibration pipeline including semi-
manual checkerboard detection, intrinsic calibration and extrinsic calibration for
stereo-setups. It is mainly inspired by Heikkilä’s method [105] (describing a whole
calibration process in four steps, including image correction due to distortion),
Zhang’s method [283, 282] (using a planar calibration pattern in order to de-
scribe the relation between world and image coordinates as homography) and
Tsai’s method [260] (describing a stepwise procedure to incrementally solve for
unknown parameters which also cooperates with non-planar calibration patterns).
Bouguet’s toolbox comes with a GUI for better user interaction. It is based on a
pinhole model in conjunction with Plumb Bob / Brown-Conrady-distortion [23],

51https://docs.opencv.org/3.4/d4/d94/tutorial_camera_calibration.html

https://docs.opencv.org/3.4/d4/d94/tutorial_camera_calibration.html
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modelling radial and tangential (Thin-Prism) distortion [41, 22]. In this work
obtained intrinsic parameters are converted to UCM.

• Mei’s Omnidirectional Calibration Toolbox52 [181] introducing UCM as
Section 3.2.1, page 35 describes in detail.

• Scaramuzza’s OCamCalib (Omnidirectional Camera Calibration) for
Matlab53 [220] proposing PCM as Section 3.2.2, page 39 explains. In this work
it is used with an improved non-linear optimization routine54 from [263].

• Li’s Multiple-Camera System Calibration Toolbox for Matlab55 [161],
which is also based on UCM, but uses a different approach to obtain initial pa-
rameters compared to Mei.

Mei’s as well as Scaramuzza’s toolbox are inspired by Bouguet’s work. The presented
toolbox allows to interchange obtained parameters between algorithms from existing
toolboxes in order to make use of each algorithm’s strength. Results from one algo-
rithm can be used as initial estimates in an other one (as long as they share the same
parameters) in order to achieve robust calibration results. The developed toolbox pro-
vides intrinsic camera parameters, target poses, P2S-map with a corresponding mesh,
which is required for projection conversion as described in Fig. 5.5, page 82. Fig. 4.3
depicts detailed information about the calibration results of the Kodak SP360 4K as
an example.

4.3.1 Selected Examples

The proposed calibration toolbox is used to obtain intrinsic parameters from different
cameras. Fig. 4.4 presents an overview of selected cameras, their intrinsic parameters
and the corresponding P2S-maps, indicating the calibrated FoVs.

Comparing calibration results from various cameras is not straightforward. A
P2S-map augments metric information to an image, such that each pixel’s ray
direction can be recovered directly. The distances between neighboring pixels in
polar (𝑑𝜃) and azimuthal (𝑑𝜑) direction are calculated in order to obtain the cameras
angular resolution. This enables a better camera comparison oppertunity, since the
angular resolution is scale invariant and accordingly independent of the real pixel size.
The mean angular resolutions 𝑑𝜃 and 𝑑𝜑 are obtained from P2S-maps and illustrated
in Fig. 4.5. As can be seen, the mean polar resolution 𝑑𝜃 is higher (the smaller the
value, the higher the resolution) than the azimuthal one 𝑑𝜑 for all cameras. This is
caused due to the circumstance that 𝜑 represents the angle around the optical axis
(Fig. 3.6, page 42) and hence always covers 360∘, whereas 𝜃 ranges up to 180∘ and

52https://www.robots.ox.ac.uk/~cmei/Toolbox.html
53https://sites.google.com/site/scarabotix/ocamcalib-toolbox
54https://github.com/urbste/ImprovedOcamCalib
55https://github.com/prclibo/calibration-toolbox

https://www.robots.ox.ac.uk/~cmei/Toolbox.html
https://sites.google.com/site/scarabotix/ocamcalib-toolbox
https://github.com/urbste/ImprovedOcamCalib
https://github.com/prclibo/calibration-toolbox
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Fig. 4.3: Example of the Kodak SP360 4K calibration results. The intrinsic camera calibration
provides an overview of the following information: a) shows the reference calibration image. b)
obtained target poses in relation to the camera center, c) unprojected pattern points on camera
sphere, d) detected pattern points of all calibration images indicating the calibrated FoV, e) detected
(blue) and projected (red) pattern points of the reference calibration image, f) statistical overview of
the projection error, g) projection error in 𝑥- and 𝑦-direction, h) gaussian distribution of the projection
error in 𝑥-direction, i) gaussian distribution of the projection error in 𝑦-direction, j) obtained polar
angle 𝜃 map of the calibrated FoV on image plane, angular resolution decreases towards the image
boarder, due to increasing image distortion k) polar angle 𝜃 map on unit sphere, l) P2S-map and m)
P2S-map on unit sphere.

depends on the camera’s horizontal and vertical FoV. The mean polar resolution 𝑑𝜃

ranges from 0.09∘/𝑝𝑖𝑥 (Ricoh Theta S ) to 0.015∘/𝑝𝑖𝑥 (Fuji X-T2 + Samyang 8mm)
and the mean azimuthal resolution 𝑑𝜑 ranges from 0.12∘/𝑝𝑖𝑥 (Ricoh Theta S ) to
0.02∘/𝑝𝑖𝑥 (Fuji X-T2 + Samyang 8mm).
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Kinect V2

Kodak SP360 4K

Baumer VLG-12C.I with Ricoh 4.2mm

Ricoh Theta S

Intel RealSense R200

Fuji X-T2 with Samyang 8mm

Fig. 4.4: Intrinsic camera calibration results of selected cameras using UCM. Ricoh Theta S is a
stitching camera based on internal calibration and deals as reference for a full omnidirectional camera.
The 1st column depicts the cameras and the 2nd one shows corresponding calibration images. The 3rd

column illustrates the resulting unprojections as P2S-map and their pixel dimensions (width×height).
The 4th column visualizes each camera’s calibrated FoV. The corresponding intrinsic parameters for
UCM are listed in the 5th column.

Note on Image Noise Representation

In literature image noise as well as uncertainties are usually expressed as pixel devi-
ation. Comparing distance measures in pixel units is only suitable for cameras with
similiar specifications e.g. pixel size, sensor resolution and FoV. Especially pixel size
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Fig. 4.5: Overview over the mean polar resolution 𝑑𝜃 and mean azimuthal resolution 𝑑𝜑 obtained
from camera calibration.

information is not always given. Pixel units do not represent metric information, since
a pixel’s real world dimension depends on the pixel size and may vary from sensor to
sensor.
Describing image noise as deviation in polar and azimuthal direction allows to define
a metric distance, which is independent of the choosen camera system. Evaluation re-
sults in angular dimensions can be applied to every camera by back-converting angular
distances to pixel units using the inverse of the camera’s (mean) angular resolutions,
and thus allowing to compare different camera types.
In this work the described image noise representation as angular distances in polar and
azimuthal direction is used for evalution purposes.

4.4 Extrinsic Calibration

This work introduces an extrinsic multi-camera calibration, that is not restricted to
stereo setups as it is the case for most calibration toolboxes [19, 35, 222], being known
to the author. It is based on SCM and enables to calibrate different camera types even
in a mixed setup as already shown in [34, 258]. It uses pose estimation techniques
(Sections 4.4.1 and 4.4.2, pages 60 and 62) in conjunction with pose optimization
(Section 4.4.3, page 66) to determine the relative transformations between targets
and cameras as well as its corresponsing transformation uncertainties (Section 4.4.4,
page 67) in order to describe the calibration scenario as pose graph (Section 4.4.5,
page 67). This pose graph is solved by a pose graph solver (Section 4.4.5, page 67)
obtaining camera and target poses, which may be refined in an additional BA step
(Section 4.4.6, page 69).
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The proposed routine is inspired by Li’s multi-camera calibration toolbox [161]
describing the extrinsic camera scenario as pose graph, where nodes represent cameras
as well as targets and edges respresent the relative transformations between them.
One camera node is assigned to be the reference frame and represents the root for an
extracted spanning-tree. The remaining nodes are transferred into the gobal reference
frame by traversing the spanning-tree in order to calculate initial camera and target
poses. Li’s toolbox is based on UCM and uses a BA-like optimization routine to refine
camera and target poses by minimizing the projection error of the pattern points.
Also to be mentioned as side note, Li’s calibration process uses a SURF pattern
instead of a checkerboard, which is matched across all images. This approach makes
the calibration process more convenient, since only a part of the calbration pattern
must be captured. However tests showed, that feature detection as well as feature
matching failed under strong distortions.
This work adopts Li’s idea to reformulate the extrinsic calibration scenario as pose
graph but uses an external pose graph solver (Chapter 8, page 139) to initialize pose
estimates and to perfom PGO in order to obtain optimized camera and target poses.
Additional refinement is achieved through BA based on SCM, which is adopted from
the described methods in [161, 167].

The multi-camera setup consists of rigidly connected and synchronized cameras
to capture a calibration pattern, which is moved around the camera system. This also
requires that each camera’s FoV partly overlaps with at least one from another camera.

The proposed extrinsic calibration method is best described by means of an ex-
ample as Fig. 4.6 illustrates. [𝑅c

𝑘, t
c
𝑘] denotes the 𝑘th unknown camera pose and

[𝑅t
𝑙 , t

t
𝑙 ] denotes the 𝑙th unknown target pose. [𝑅𝑘𝑙, t𝑘𝑙] indicates the obtained relative

transformation from target pose [𝑅t
𝑙 , t

t
𝑙 ] to camera pose [𝑅c

𝑘, t
c
𝑘]. The presented exam-

ple consists of four cameras (𝑘 = 1, . . . , 4), that are connected via four target poses
(𝑙 = 1, . . . , 4), which outlines a minimum case. More target poses are recommended as
Fig. 4.6 implies.

The target pattern consists of 𝑝 calibration points U𝑖, 𝑖 = 1, . . . , 𝑝 in real world
dimensions. Their corresponding image projections (𝑢𝑖

𝑘𝑙, 𝑣
𝑖
𝑘𝑙)

𝑇 are obtained by target
detection (Section 4.2, page 53). Here, (𝑢𝑖

𝑘𝑙, 𝑣
𝑖
𝑘𝑙)

𝑇 denotes the projection of U𝑖 from
the 𝑙th target pose into the 𝑘th camera, which is further mapped onto unit sphere
using a P2S-map from intrinsic camera calibration (Section 4.3, page 54) to obtain
X̂𝑖

𝑘𝑙. The proposed extrinsic calibration uses U𝑖 ↔ X̂𝑖
𝑘𝑙 as input data.

For each target 𝑙 that is captured by camera 𝑘 a pose estimation (either from
3d-2d or 2d-2d correspondences) is processed in order to obtain an initial relative
transformation [𝑅𝑘𝑙, t𝑘𝑙].



4 Calibration 60

𝑅c
1, t

c
1

𝑅c
2, t

c
2

𝑅c
3, t

c
3

𝑅c
4, t

c
4

𝑅t
1, t

t
1 𝑅t

2, t
t
2

𝑅t
3, t

t
3𝑅t

4, t
t
4

𝑅11, t1,1 𝑅12, t12

𝑅41, t41 𝑅22, t22

𝑅23, t23𝑅44, t44
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Fig. 4.6: Extrinsic camera calibration example with a sensor setup consisting of four partly overlapping
cameras connected by four calibration target poses to solve the extrinsic calibration as pose graph.
Additional target poses are recommended to improve calibration results. In this example they are
greyed out, since they are not mandatory to explain the basic concepts of the proposed method.

4.4.1 3D-2D Pose Estimation

𝑈

𝑉

𝑊

U𝑖

X̂𝑖

O

𝑅, t

𝑌

𝑍

𝑋

Fig. 4.7: Pose estimation from known 3d objects.

This section describes a pose estimation approach to obtain the relative transforma-
tion [𝑅𝑘𝑙, t𝑘𝑙] between 𝑘th camera and 𝑙th target. PnP algorithms using 3d-2d feature
correspondences play an important role in a SfM (Section 2.2, page 19) and VO (Sec-
tion 2.1.1, page 17) pipeline to register a camera image to a known 3d structure. It
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is also used in calibration scenarios to obtain relative pose estimates from 3d targets.
To the best of the author’s knowledge this topic hasn’t been explained for spherical
cameras in detail by literature so far and as part of the extrinisc calibration pipeline
it is describe in the following.
For the sake of better readability the indication 𝑖, 𝑗 is omitted, thus describing the
proposed pose estimation method for a general case.
Given a set of correspondences U𝑖 ↔ X̂𝑖, 𝑖 = 1, . . . , 𝑝 between known 3d points U𝑖 and
their projections on unit sphere X̂𝑖 such that

X̂𝑖 ×
(︀
𝑅U𝑖 + t

)︀
= 0 , (4.1)

as mentioned in [147] and illustrated in Fig. 4.7. This relation is brought into a DLT-
form

𝐵𝑖x = 0 (4.2)

with

𝐵𝑖 =
î (︀

[X̂𝑖]× ⊗U𝑖
)︀𝑇

[X̂𝑖]×
ó
∈ R3×12 (4.3)

and x containing the unknown transformation elements

x =
(︀
𝑟11, 𝑟12, 𝑟13, 𝑟21, 𝑟22, 𝑟23, 𝑟31, 𝑟32, 𝑟33, 𝑡1, 𝑡2, 𝑡3

)︀𝑇 ∈ R12×1 . (4.4)

The third row of 𝐵𝑖 is linearly dependent [196] such that rank(𝐵𝑖) = 2. This means
at least six point correspondences are needed in order to solve the linear system of
equations for x, which is achieved by stacking all available point correspondences

𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐵1

(1,:)

𝐵1
(2,:)

...

𝐵𝑝
(1,:)

𝐵𝑝
(2,:)

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R2𝑝×12 . (4.5)

Applying an SVD to 𝐵 with
𝐵 = 𝑈𝛴𝑉 𝑇 (4.6)

obtains the right unitary matrix 𝑉 ∈ R12×12. The last column 𝑉 (:,12) corresponds to
the smallest singular value in 𝛴 ∈ R12×12, which represents the solution x = 𝑉 (:,12).
Before applying the SVD, normalizing each row of 𝐵 leads to a more stable numerical
solution. �̃� and t̃ are extracted from x such that:

�̃� =

⎡⎣𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

⎤⎦ (4.7) t̃ =

Ñ
𝑡1
𝑡2
𝑡3

é
. (4.8)
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The elements of �̃� are obtained in least squares sense without considering rotation
matrix properties. Forcing �̃� to be orthogonal using an SVD

�̃� = 𝑈 �̃�𝛴�̃�𝑉
𝑇
�̃�

(4.9)

obtains 𝑈 �̃� ∈ R3×3 and 𝑉 �̃� ∈ R3×3 forming an orthogonal rotation matrix

𝑅 = 𝑈 �̃�𝑉
𝑇
�̃�
, (4.10)

subjecting ‖𝑅‖F = 1. However, this requires a rescaling of the translation

t =
t̃

diag(𝛴�̃�)
(4.11)

using the three singular values 𝜎1, 𝜎2, 𝜎3 embedded in the diagonal matrix 𝛴�̃� ∈ R3×3.

Resolve Ambiguity from 3D-2D Pose Estimation

Since x is the solution based on collinearity, its sign is arbitrary yielding two solutions
[𝑅, t] and [−𝑅,−t]. Validating cheirality (Section 6.4.1, page 97) by obtaining the
viewing direction of the first correspondence pair U1 ↔ X̂1 as recommended in [196]
resolves the correct transformation solution:

[𝑅, t] =

®
[𝑅, t], if X̂1 ∙

(︀
𝑅U1 + t

)︀
> 0

[−𝑅,−t], otherwise .

However, tests turned out in case of noisy data it is recommended to check the viewing
direction of each point correspondence U𝑖 ↔ X̂𝑖. The correct transformation is then
chosen according the quantity of positive and negative directions.

4.4.2 2D-2D Pose Estimation

The following proposes a newly developed pose estimation method from 2d-2d
correspondences as it is used for pose estimation from planar targets. As already noted
in the previous section the indication 𝑘, 𝑙 is omitted in order to describe a general
case. Planar checkerboards are convenient for manufacturing and hence are widely
used for camera calibration. Given a set of correspondences U𝑖 ↔ X̂𝑖, 𝑖 = 1, . . . , 𝑝

between known points from a planar pattern U𝑖 and their corresponding projections
on camera sphere X̂𝑖 = (�̂� 𝑖, 𝑌 𝑖, 𝑍𝑖)𝑇 as Fig. 4.8 illustrates.

Planar objects - also referred as degenerate structure - cause a rank-deficiency
when using the pose estimation method from Section 4.4.1, page 60. The following
proposes a reliable method to obtain pose estimates from planar objects. Planar
objects are always observed under 𝐹𝑜𝑉 < 180∘ (in both, horizontal and vertical
direction), which equals the projection of a directional camera. This allows the usage
of state-of-the-art PnP-algorithms, which are developed for calibrated perspective
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Fig. 4.8: Pose estimation from known planar objects.

cameras. Image points on unit sphere are projected onto an image plane 𝜋i placed at
𝑍 = 1 Ñ

𝑥𝑖

𝑦𝑖

1

é
=

1

𝑍𝑖

Ö
�̂� 𝑖

𝑌 𝑖

𝑍𝑖

è
to be used as input for the EPnP-algorithm56 presented in [186, 158]. This algorithm
has proved to be a reliable rotation estimator, which requires at least three point
correspondences. Rotation estimation is scale invariant and thus less prone to image
noise in contrast to translation estimation, which is noticably disturbed, due to the
projection onto image plane 𝜋i. In order to overcome this circumstance translation is
estimated in a separate step by taking advantage of the collinearity between X̂𝑖 and
U𝑖 from Eq. (4.1), page 61

X̂𝑖 ×
(︀
𝑅U𝑖 + t

)︀
= 0 . (4.12)

Substituting Ů
𝑖
= 𝑅U𝑖 simplifies the collinearity constraint:

X̂𝑖 ×
(︀
Ů

𝑖
+ t
)︀
= 0 (4.13)

[X̂𝑖]×t+ X̂𝑖 × Ů
𝑖
= 0 (4.14)

56https://github.com/cvlab-epfl/EPnP

https://github.com/cvlab-epfl/EPnP
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to be brought into a DLT-form 𝐵𝑖x = 0 withî
[X̂𝑖]× X̂𝑖 × Ů

𝑖
ó

⏟  ⏞  
𝐵𝑖

Ç
t

1

å
⏟  ⏞  

x

= 0 . (4.15)

This is similar to the 3d-2d PnP principle already explained in Section 4.4.1, page 60,
however in this case t is the only unknown. 𝐵𝑖 is also rank-deficienct with rank(𝐵𝑖) = 2,
which leads to a reduced number of matrix rows

𝐵𝑖 =

[︃
0 −X̂𝑖

(3) X̂𝑖
(2) X̂𝑖

(2)Ů
𝑖

(3) − X̂𝑖
(3)Ů

𝑖

(2)

X̂𝑖
(3) 0 −X̂𝑖

(1) X̂𝑖
(3)Ů

𝑖

(1) − X̂𝑖
(1)Ů

𝑖

(3)

]︃
∈ R2×4 . (4.16)

All point correspondences - at least two are necessary to solve the system of linear
equations - are stacked into 𝐵

𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −X̂1
(3) X̂1

(2) X̂1
(2)Ů

1

(3) − X̂1
(3)Ů

1

(2)

X̂1
(3) 0 −X̂1

(1) X̂1
(3)Ů

1

(1) − X̂1
(1)Ů

1

(3)

...
...

...
...

0 −X̂𝑝
(3) X̂𝑝

(2) X̂𝑝
(2)Ů

𝑝

(3) − X̂𝑝
(3)Ů

𝑝

(2)

X̂𝑝
(3) 0 −X̂𝑝

(1) X̂𝑝
(3)Ů

𝑝

(1) − X̂𝑝
(1)Ů

𝑝

(3)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ∈ R2𝑝×4 (4.17)

to be decomposed 𝐵 = 𝑈𝛴𝑉 𝑇 using an SVD. Again, normalizing each row of 𝐵 before
applying an SVD leads to more stable numberical solution. The last column 𝑉 (:,4) of
the right unitary matrix 𝑉 ∈ R4×4 corresponds to the smalles singular value in the
diagonal matrix 𝛴 ∈ R4×4 and represents the solution for x = 𝑉 (:,4). In order to
extract t = x(1:3), a normalization is required such that

t =
x(1:3)

x(4)

(4.18)

as originally stated in Eq. (4.15). By doing so the sign of t is not arbitrary and hence
correctly obtained for the input rotation 𝑅. However, there exists a rotation ambiguty
that also influcences the sign of the translation as explained in the following.

Resolve Ambiguity from 3D-2D Pose Estimation

Ambiguity is caused by the projection onto image plane 𝜋i, which is independent of
the sign of X̂𝑖. This means a point on the opposite hemisphere yields the same image
coordinates Ñ

𝑥𝑖

𝑦𝑖

1

é
=

1

−𝑍𝑖

Ö
−�̂� 𝑖

−𝑌 𝑖

−𝑍𝑖

è
,
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Fig. 4.9: Pose estimation from planar objects leads to two solutions caused by the projection onto
image plane 𝜋i. Thus point X̂𝑖 and its counterpart −X̂𝑖 yield the same projection (𝑥𝑖, 𝑦𝑖)𝑇 .

as Fig. 4.9 illustrates. The EPnP-algorithm uses the relations (𝑥𝑖, 𝑦𝑖)𝑇 ↔ (𝑈 𝑖, 𝑉 𝑖,𝑊 𝑖)𝑇

as input correspondences in order to obtain the rotation and hence has no direct rela-
tion to the real image coordinates on unit sphere (�̂� 𝑖, 𝑌 𝑖, 𝑍𝑖)𝑇 . There are two possible
solutions [𝑅1, t] and [𝑅2,−t], where 𝑅1 is directly obtained via EPnP. [𝑅2,−t] repre-
sents the counterpart that correspondes to −X̂𝑖 with

𝑅2 = 𝑅1

⎡⎣−1 0 0

0 −1 0

0 0 1

⎤⎦ , (4.19)

which is flipped along 𝑈 - and 𝑉 -direction. The correct transformation is choosen by
validating cheirality (Section 6.4.1, page 97). Tests turned out that the projection
error is a more reliable criterion under image noise than the viewing direction as it is
used in Section 4.4.1, page 60 for cheirality validation. Furthermore it is recommended
to compare the projection errors af all point correspondences instead of taking only
the first point pair or an arbitrary choosen one. The sum of squared projection errors
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corresponding to [𝑅1, t] is given by

𝜖1 =

𝑝∑︁
𝑖=1

⃦⃦
X̂𝑖 − Ŷ𝑖

⃦⃦2 (4.20)

with

Ŷ𝑖 =
𝑅1U

𝑖 + t⃦⃦
𝑅1U𝑖 + t

⃦⃦ . (4.21)

Analogous 𝜖2 relating to [𝑅1,−t] is simply obtained by

𝜖2 =

𝑝∑︁
𝑖=1

⃦⃦
X̂𝑖 + Ŷ𝑖

⃦⃦2 (4.22)

and does not need a recalculation of Ŷ𝑖. Finally, the correct transformation is resolved
by:

[𝑅, t] =

®
[𝑅1, t], if 𝜖1 < 𝜖2

[𝑅2,−t], otherwise .

4.4.3 Pose Optimization

Pose optimization is based on minimizing the Euclidean distance between measured
X̂𝑖

𝑘𝑙 and projected target points Y𝑖
𝑘𝑙 as recommended in [147]. It is suitable for 3d-

2d as well as for 2d-2d point correspondences and refines inital pose estimates from
Sections 4.4.1 and 4.4.2, pages 60 and 62. Target points U𝑖 are transferred from target
𝑙 (which is the world frame 𝒲 in this case) into camera frame 𝒞𝑘

Y𝑖
𝑘𝑙 = 𝑅𝑘𝑙U

𝑖 + t𝑘𝑙

and then projected onto the camera sphere 𝒮𝑘

Ŷ𝑖
𝑘𝑙 =

Y𝑖
𝑘𝑙

‖Y𝑖
𝑘𝑙‖

.

The optimization function is given by

argmin
𝑅𝑘𝑙,t𝑘𝑙

𝑝∑︁
𝑖=1

⃦⃦⃦⃦
X̂𝑖

𝑘𝑙 −
𝑅𝑘𝑙U

𝑖 + t𝑘𝑙
‖𝑅𝑘𝑙U𝑖 + t𝑘𝑙‖

⃦⃦⃦⃦2
(4.23)

and non-linear refined using LM. The following partial derivatives:
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Ŷ𝑖

𝑘𝑙

)︀𝑇
‖Y𝑖

𝑘𝑙‖
𝜕Y𝑖

𝑘𝑙

𝜕𝑅𝑘𝑙

=
(︀
U𝑖 ⊗ 𝑘

)︀𝑇 𝜕Y𝑖
𝑘𝑙

𝜕t𝑘𝑙
= 1



4 Calibration 67

form the corresponding Jacobian matrix
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4.4.4 Uncertainty Estimation

Based on the assumption from Appendix A.7, page 180, the covariance can be approx-
imated by

𝑆𝑘𝑙 = (𝐽𝑇
𝑘𝑙𝐽𝑘𝑙)

−1 1

𝑝− 1

𝑝∑︁
𝑖=1

⃦⃦⃦
X̂𝑖

𝑘𝑙 − Ŷ𝑖
𝑘𝑙

⃦⃦⃦2
. (4.25)

The calculation of (𝐽𝑇
𝑘𝑙𝐽𝑘𝑙)

−1 is not defined if 𝐽𝑘𝑙 is rank-deficient, which requires
to calculate the pseudo-inverse. 𝐽𝑘𝑙 becomes rank-deficient if the three dimensional
rotation is overparameterized as it is the case for a rotation matrix (nine parameters)
or a quaternion (four parameters) representation. In order to prevent this circumstance
it is recommended to use a rotation representation such as Euler angles or Rodrigues
vector. Later the covariance matrix can be transferred into rotation matrix or
quaternion representation as proposed in [17]. For extrinsic calibration only diagonal
values of 𝑆𝑘𝑙 were used.

The information matrix Ω𝑘𝑙 = 𝑆−1
𝑘𝑙 is the inverse of the covariance matrix [133,

128]. It is another representation describing the uncertainties, where larger values
correspond to higher confidence. The information matrix as uncertainty representation
is often used by pose graph solvers as Section 8.1, page 139 explains.

4.4.5 Pose Graph Representation

The proposed extrinsic calibration routine uses PGO (Chapter 8, page 139) in order
to obtain camera [𝑅c

𝑘, t
c
𝑘], 𝑘 = 1, . . . ,𝑚 and target poses [𝑅t

𝑙 , t
t
𝑙 ], 𝑙 = 1, . . . , 𝑛, which

both represent graph nodes. The relative transformation [𝑅𝑘𝑙, t𝑘𝑙] links the 𝑙th target
node to the 𝑘th camera node and denotes an edge in ℰ .

In a frist step the algorithm selects a subset of target nodes, which connects all
camera nodes. Each target node connects two camera nodes as illustrated in
Fig. 4.10a. In case of multiple solutions the algorithm chooses the target node with
the smallest cumulative projection error in both camera nodes. In a second step
(Fig. 4.10b), nodes are renumbered such that node numbers alternate between cameras
and targets in ascending order. This is necessary since most pose graph solvers require
a sequence (trajectory) of input data and hence need an ordered structure with an
ascending node order. In a third step, the remaining target nodes are added to the
pose graph (Fig. 4.10c) and are renumbered. They add additional links between
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Fig. 4.10: Pose graph extraction from given relative transformations (99K). a) Finding a subset of
target nodes (•), which connects all camera nodes (•). b) Renumbering camera and target nodes and
inverting certain relative transformations to form a directed sub-pose graph (→) with ascending node
order (1− 7). c) Remaining target nodes are renumbered (8− 16) and added to the pose graph (→).

camera nodes. The pose graph solver is only able to perform optimization if either
multiple target nodes link between camera nodes or a loop closure exists between
the first and the last camera (as shown in Fig. 4.6, page 60, considering the four
highlighted cameras only).
Renumbering is saved as list in order to restore the original node indication. A pose
graph solver (Section 8.2, page 140) solves for the unknown camera and target nodes.
The solver usually aligns the global coordinate system with the first camera node
([𝑅c

1, t
c
1] = [𝐼|0]).
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4.4.6 Bundle Adjustment

BA further improves extrinsics from PGO. It compensates alignment errors, which
may be caused by erroneous uncertainty estimates from relative pose optimization
(Section 4.4.3, page 66). Extrinsic optimization is achieved by minimizing the sum of
squared projection errors

argmin
�̃�

c
𝑘,t̃

c
𝑘�̃�

t
𝑙 ,t̃

t
𝑙

∑︁
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𝑖=1

⃦⃦⃦
X̂𝑖

𝑘𝑙 − Ŷ𝑖
𝑘𝑙

⃦⃦⃦2
, (4.26)

which leads to a sparse BA problem that is solved by LM. Rotation optimization is
performed by using a Rodrigues vector representation. The projection function follows
an adopted transformation sequence from Section 4.4.3, page 66 with:
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]︀
denotes the inverse of the camera pose, making

jacobian calculation simpler. For the sake of better readability the Jacobian 𝐽 is split
into camera Jacobian 𝐽c and target Jacobian 𝐽 t:
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which are formed by the following derivatives:
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using chain rule. Stacking all 𝐽c
𝑘𝑙 and 𝐽 t

𝑘𝑙 in 𝐽 using the proposed scheme such that

𝐽 =
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(4.27)

yields a sparse Jacobian, whose non-zero elements depend on the visibility between
cameras and targets. Zeros rows are rejected from the Jacobian structure, as shown at
hand of the example case illustrated in Fig. 4.11c. The corresponding covariance matrix
is calculated following the way as described in Section 4.4.4, page 67. Uncertainties
of both, camera and target poses are extracted from diagonal entries of the derived
covariance matrix.
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Fig. 4.11: BA to refine extrinsic camera calibration. a) Recap of the calibration scenario consisting
of four partly overlapping cameras connected by four calibration target poses, where each target is
observed by two cameras. b) Visibility map indicating the set ℰ of available target-camera constraints.
c) Corresponding sparse structure of the Jacobian used in BA.

4.4.7 Selected Examples

This section presents two challenging camera setups that are extrinsically calibrated
with the proposed pipeline.



4 Calibration 71

1
1

2

2

3

3

4

4
ca. 15 cm

b

c d e

a

Fig. 4.12: Extrinsic calibration of a camera setup consisting of four Kodak SP360 4K cameras. The
following is shown: a) final camera setup with corresponding FoVs, b) sample camera images, c)
a graph view visualizes the connections between cameras and targets ( ) and highlights the sub-
pose graph ( ), which connects the four cameras nodes (•, C1-C4) using three target nodes (•),
d) optimized pose graph with all target nodes (top view), e) camera and target alignment from
BA-refinement (top view).

Four Camera Setup

A camera setup was built, which consists of four Kodak SP360 4K cameras. This
action camera model is equipped with an ultra-fisheye lens covering a FoV up to 220∘

(depending on the camera’s capture mode) as shown in Fig. 4.4, page 57. In [258], the
author calibrates a slimmed version of this camera setup (three cameras only) with Li’s
toolbox [161], which however yield unsatisfying results.
The system was designed to capture a full omnidirectional view (360∘ × 180∘) and to
recover depth information from overlapping FoVs. Even objects being close the camera
setup are captured by up to three cameras as illustrated in Fig. 4.12a, which enables
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improved depth reconstruction. This setup is suitable to be used in narrow environ-
ments, e.g. for visual shaft inspection.
Each of the four cameras is intrinsically calibrated with the proposed calibration tool-
box from Section 4.3, page 54. The obtained extrinsic results are graphically illustrated
in Fig. 4.12e.

Eight Camera Setup

The eight camera setup represents the final prototype, which was developed during the
iDeepMon project to be used as an optical scanning device for vertical shaft inspection
purposes. The system consists of eight PCO edge 5.557 cameras in conjunction with a
Voigtländer Nokton 10.5𝑚𝑚 𝐹0.9558 mounted in an elliptical shaped arrangement in
order to cover a monoscopic 360∘ horizontal FoV.

The system was intrinsically and extrinsically calibrated by i3main - Institut
für raumbezogene Informations- und Messtechnik, University of Applied Science59

using a separate calibration room as well as the software tools Triptop v6.2.0 60,
Agisoft PhotoScan v1.4.3 and Jag3D v20180714 61. The provided data are used
as reference calibration, which is shown in Fig. 4.13f, g. As can be seen both
calibration do not coincide. Especially cameras on the lefthand side show clear
alignment differences. The reference calibration was accomplished by an external
contractor using specialized equipment and laboratory space during several hours
of calibration. Whereas the presented calibration was performed during a shaft
inspection test on site, which restricted the image aquisition process in time and
space. Images were taken within a short time span of a few minutes only, resulting
in an insufficient number of calibration images on the lefthand side. As Fig. 4.13b,
c clearly show, there is only one target pose that connects two neighboring cameras.
This circumstance possibly causes the deviation to the reference calibration. It can
be expected that more calibration images would yield better extrinsic results similiar
to the ones from the reference calibration. However in order to verify this state-
ment an additional calibration needs to be done under proper conditions in future work.

The presented extrinsic calibration routine obtained promising extrinsic results.
Compared to a specialized calibration, it is a convenient method to calibrate the
system on site within a shorter time frame and using one software toolbox only.
On site calibration is especially necessary if the camera system is modified during
operation process.

57https://www.pco.de/fileadmin/user_upload/pco-product_sheets/pco.edge_55_data_sheet
.pdf

58https://www.voigtlaender.de/objektive/mft/105-mm-f-095-nokton/
59https://www.hs-mainz.de/forschung/forschung-transfer/institute-amtliche-pruefste

lle/i3mainz/
60https://www.gom.com/en/products/3d-scanning/tritop
61https://github.com/applied-geodesy/jag3d
62image curtesy DMT

https://www.pco.de/fileadmin/user_upload/pco-product_sheets/pco.edge_55_data_sheet.pdf
https://www.pco.de/fileadmin/user_upload/pco-product_sheets/pco.edge_55_data_sheet.pdf
https://www.voigtlaender.de/objektive/mft/105-mm-f-095-nokton/
https://www.hs-mainz.de/forschung/forschung-transfer/institute-amtliche-pruefstelle/i3mainz/
https://www.hs-mainz.de/forschung/forschung-transfer/institute-amtliche-pruefstelle/i3mainz/
https://www.gom.com/en/products/3d-scanning/tritop
https://github.com/applied-geodesy/jag3d
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Fig. 4.13: Extrinsic calibration of an eight camera system used in the iDeepMon project. The following
is shown: a) final shaft scanning prototype consisting of eight cameras62, b) a graph view visualizes
the connections between cameras and targets ( ) and highlights the sub-pose graph ( ), which
connects the eight camera nodes (•, C1-C8) using seven target nodes (•), c) optimized pose graph
with all target nodes, d) camera and target alignment from BA-refinement, e) camera extrinsics with
corresponding images, f, g) obtained camera extrinsics ( ) overlayed with reference calibration ( ).

Additional calibration examples are presented in Appendix A.1, page 170.

Brief Chapter Summary

The chapter explained the proposed calibration pipeline consisting of target detec-
tion, intrinsic and extrinsic calibration. Target detection is a compilation of existing
checkerboard detection algorithms, which do not requiere any prior knowledge about
image distortion. Intrinsic calibration is based on popular calibration toolboxes inte-
grating UCM as well as PCM and provides P2S-maps as calibration output. Extrinsic
calibration incorporates P2S-maps to work with all types of central camera systems.
PnP techniques dedicated to spherical cameras were explained to obtain target-camera
transformation estimates from 3d-2d and 2d-2d point correspondences. Based on these
estimates PGO solves for extrinsics, which can be further refined via BA. This workflow
represents as flexible extrinsic calibration routine for multi-camera setups with over-
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lapping FoVs, that is not limited to a certain number of cameras and achieves similar
results compared to exsting implementations.



75

5 Full Omnidirectional Image
Projections

Brief Chapter Overview

The generation as well as the conversion of full omnidirectional projections are in fo-
cus of this chapter. The generation is considered from two perspectives, namely the
generation of source data in a standard projection format with large distortion and the
generation of target projections with reduced distortion effects, which are suitable for
further image processing. Section 5.1 describes the generation of an omnidirectional
projection from overlapping input images using stitching techniques, which are imple-
mented in modern 360∘ action cameras. Section 5.2 shows a selection of different world
map projections with reduced image distortion effects as they are used in cartography.
Section 5.3 explains the idea of generating custom P2S-maps from world map projec-
tions using a geographic library. It is followed by Section 5.4 giving insight into the
conversion between image projections based on their corresponding P2S-maps using
an interpolation scheme with weighted lookup values as comprehensively explained in
Section 5.4.1. The conversion process is kept as general as possible and does not need
any additional knowledge about the underlying projection functions. It can be ap-
plied to any projection described by a corresponding P2S-map and is used to convert
stitched full omnidirectional images to a suitable world map projection in order to
reduce distortion effects. Since this conversion depends on both projection geometries,
the obtained conversion lookup between both projections can be saved for further image
conversion as Section 5.4.2 describes. The chapter ends with Section 5.4.3 presenting
an application example of the proposed conversion workflow.

5.1 Panoramic Image Stitching

Since full omnidirectional stitching cameras play an important role for underground
image acquisition as already clarified in Section 1.1.3, page 4, this section describes
the workflow how these cameras work. A stitched omnidirectional image that covers
a 360∘ × 180∘ FoV represents an ideal central camera due to the circumstance, that
the coverage of an entire sphere is technically impossible with one lens only. Image
stichting (sometime also referred as image mosaicing) is a common technique to
generate panoramas up to gigapixel size [144] from a collection of single overlapping
(mostly directional) images. This is achieved by rotating a camera around the nodal
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Fig. 5.1: Mapping between unit sphere and equirectangular image format.

point (optical camera center) using a tripod thus the captured images share a common
viewpoint. They are combined using the following steps, which [77, 197] describe in
detail.

Image registration obtains the transformation between overlapping images.
There are different strategies like direct-based methods (using all available image
information e.g. optical flow) or feature-based methods (using destinct or salient
features). The latter ones are more robust against illumination variations and moving
objects.

Warping maps each image onto a common manifold (surface) to align the in-
put images. For flat mosaics a simple homography is used. Cylinderical or spherical
surfaces are used for omnidirectional image composition, where each pixel’s viewing
direction of the composite image is mapped into the input images to obtain color
information.

Blending is the most important step that reduces visible artifacts in order to
generate seamless masaics. It compensates geometric and photometric errors, which
lead to discontinuities between the images in the overlapping region. They are caused
by registration inaccuracies and other factors like illumination variation, exposure
difference or color imbalance. There are also different blending strategies such as
transition smoothing, (a pixel in the transition region is replaced with a weighted
average of the contributing images), optimal seam finding (finds an optimal seam in
the overlapping region that produces least visible discrepancies) and hybrid blending
(a combination of both forementioned strategies).

State-of-the-art stichting algorithms can even handle camera rotation and trans-
lation movements [281], which is suitable for handheld device like smartphones. This
allows to capture panoramic images without the need of additional equipment like a
tripot. However, camera translation leads to multiple viewpoints, which cause motion
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parallax resulting into ghosting effects.

This motion parallax effect is especially desired to obtain omnidirectional stereoscopic
images and videos (also known as stereoscopic 360∘-videos or VR-videos). They
became popular with increasing availability of improved VR-devices such as HMDs
and provide a 3DoF (rotation around a fixed viewpoint) experience to the user. Images
are captured at different viewpoints, which is achieved by mounting the camera on
a rotating arm or by using overlapping synchronized cameras, which are distributed
around a sphere in order to capture dynamic scenes. These camera setups are typical
examples for non-central camera types. A stereoscopic panorama can then be created
by stitching specific stripes from the input views [199, 204], however this may lead to
distortion effects. In [89], the authors give a deep insight into different omnidirectional
stereoscopic image acquisition techniques.

Fig. 5.1 depicts the equirectangular projection, which is widely used for full
omnidirectional image and video data and has become a quasi standard. Cameras
providing an equirectangular image are assumed to be calibrated, since each pixel’s
direction is known from the image specification as illustrated in Fig. 5.1. Stichting
algorithms are aimed at compensating warping distortions, but even if a monoscopic
or stereoscopic omnidirectional image looks appropriate to the user, it does not mean
to be geometrically correct. This circumstance may cause camera alignment problems
in image registration processes.

The equirectangular image format has strong distortions at the top and bot-
tom, which is unsuitable for feature detection. Furthermore, this type of projection
leads to increasing redundant pixel values towards the poles, which themselves become
a horizontal line in the projection. In [65, 53] the authors focus on VR streaming and
propose novel omnidirectional image representations based on cube map and rhombic
dodecahedron map. The resulting projection maps are further split into tiles, which
are rearranged in order to compose an image without black borders. However, none
of these proposals have become a standard in industry yet. This work picks up the
mentioned idea and converts equirectangular images to projections with less distortion
effects (Section 5.4, page 81) as they are known in the field of carthography.

The Ricoh Theta S 63 is an omnidirectional action camera, which is used for un-
derground capturing tests. The camera is spray water resistant and consists of two
fisheye cameras with a small overlapping region. Both optical centers are very close to
each other (< 1𝑐𝑚 [5]). This allows to warp both fisheye images onto a common unit
sphere without causing noticable distortions [179]. Blending is only applied to the
small overlapping area as shown in Fig. 5.2. The internal camera software stitches still

63https://theta360.com/en/about/theta/s.html

https://theta360.com/en/about/theta/s.html
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images, wheras a camera-specific computer software64 or smartphone application65

processes video data.

stitched equirectangular imageraw image

stichting region

Ricoh Theta S

Fig. 5.2: Example illustration of an omnidirectional image stitching from fisheye cameras. Ricoh
Theta S is shown with highlighted stitching regions in the raw image and corresponding stitched
equirectangular image. The optical centers of both fisheye lenses are very close to each other, allowing
to map both images onto a common unit sphere without causing strong distortions. Each fisheye lens
provides a FoV > 180∘, leading to a small stitching region (stripe).

5.2 World Map Projections

Map projections or world map projections describe the representation of the earth’s sur-
face on a flat map. The inverse of a map projection is an unprojection from pixel plane
𝜋p (map projection) to unit sphere 𝒮 (earth’s surface), similar to the unprojection from
UCM (Section 3.2.1, page 35) and PCM (Section 3.2.2, page 39). The majority of map
projections are designed to keep most distortions away from land. They project oceans
or sparsely populated regions (e.g. arctic or antarctica) to stronger distorted map ares.
Since these map projections make use of the earth’s topography (distribution of water
and land), they only work well under specific orientation. Fig. 5.3 depicts a selection
of popular map projection from cartography. The Tissot’s indicatrix illustrates the
corresponding local distortions. Briefly explained, the Tissot’s indicatrix characterizes
local distortions by mapping a small circle from the unit sphere’s surface to the map
projection resulting in an ellipse. The size of the ellipse indicates areal distortions.
Length and orientation of the semi-minor axes define angular distortions.

The idea is to convert a specific camera projection to an appropriate world map projec-
tion that equally distributes distortions, regardless of the image orientation. Making
image representation independent of the specific camera projection and view orienta-
tion allows to compare/match images from different camera sources.

64https://theta360.com/de/about/application/pc.html
65https://theta360.com/de/about/application/basic.html

https://theta360.com/de/about/application/pc.html
https://theta360.com/de/about/application/basic.html
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equirectangular imago (autagraph) cubic gnomonic (cube map)

waterman-butterfly tetrahedral lee icosahedral

Fig. 5.3: Overview of selected world map projections with Tissot’s indicatrix (•) visualizing the dis-
tortion distribution at specified locations. The equirectangular projection is one of the most widely
known map projections in cartography and is also established as standard format for 360∘ images and
videos. Having a closer look at the Tissot’s indicatrix shows a strongly increasing distortion towards
north and south pole. Imago and tetrahedral lee projections try to keep strong distortion away
from land, which are less noticeable. The cube map projection has less destorted ares and distortion
differences of waterman-butterfly and icosahedral projection are only noticable at higher zoom
level leading to a more homogeneous distortion distribution.

5.3 World Map Projection Generator for P2S-Maps

There exist world map generation and conversion tools like NASA’s gprojector 66,
a Java-based program called Map-Projections67 or a Photoshop plugin Flexify 2 68.
NASA’s gprojector and Map-Projections are tested by the author. Each uses an
equirectangular image as input. The user chooses from a list of target projections and
adjusts rotation parameters of the sphere in order to obtain the desired projection
view. However, these programs do not provide batch conversion for a serie of camera
images.

In order to overcome this limitation, the basic idea was to use an equirectangu-
lar P2S-map as input image, to convert it into a desired target projection and
to save the resulting image, which represents the desired P2S-map. The actual
image conversion as batch processing would be performed using the workflow from
Section 5.4, page 81. This strategy would allow to use forementioned map projection
converters to generator new P2S-maps without prior knowledge about the world map
projection itself. Unfortunately, until now the tested programs aren’t able to output

66https://www.giss.nasa.gov/tools/gprojector/
67https://github.com/jkunimune15/Map-Projections
68http://www.flamingpear.com/flexify-output-modes.html

https://www.giss.nasa.gov/tools/gprojector/
https://github.com/jkunimune15/Map-Projections
http://www.flamingpear.com/flexify-output-modes.html
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48-bit images (which is required to maintain the angular resolution as described in
Section 3.3.1, page 43), such that this idea is postponed for future work.

Fig. 5.4: Map projection generator GUI with parameter settings panel on the left and the correspond-
ing world projection map with Tissot’s indicatrices on the right.

In order to overcome the mentioned problem a custom map projection generator is
developed. The generator is inspired by an online projection explorer 69, which is
based on the d3-geo70 library for JavaScript. Fig. 5.4 shows the generator’s GUI in
a webbrowser. The user selects a target world map projection from a drop-down
list, specifies the image dimensions of the P2S-map and is able to change projection
parameters in order to adjust the projection to the user’s needs. The generator
obtains the unprojection of the resulting world map projection by exploiting the
library’s functionality. For each pixel in the world map projection the library returns
the corresponding spherical coordinates, which are collected, converted and saved as
P2S-map.

69https://bl.ocks.org/d3indepth/f7ece0ab9a3df06a8cecd2c0e33e54ef
70https://github.com/d3/d3-geo

https://bl.ocks.org/d3indepth/f7ece0ab9a3df06a8cecd2c0e33e54ef
https://github.com/d3/d3-geo
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5.4 Conversion between Projections based on
P2S-Maps

P2S-maps contain the unprojection mappings from pixel plane 𝜋p to unit sphere 𝒮
as lookup instead of an analytic or geometric function. This circumstance prevents a
direct conversion that maps pixels from projection A (𝜋p

𝐴 ) to projection B (𝜋p
𝐵 )

since both P2S-maps describe the mapping in the same direction. P2S-map B maps
pixels from pixel plane 𝜋p

𝐵 onto unit sphere 𝒮, however the mapping from unit sphere
𝒮 to pixel plane 𝜋p

𝐴 is unknown. A simple inversion of P2S-map A obtains mappings
from unit sphere 𝒮 to pixel plane 𝜋p

𝐴 but would enforce lookup value interpolation
(analogous to Section 3.3.2, page 46), which is not straightforward in this direction,
due to the fact that neighboring points on unit sphere do not necessarily correspond
to the same neighboring points on pixel plane 𝜋p

𝐴 as illustrated in Fig. 5.5. Instead of
an interpolation, the inverse mapping could be generated from the known projection
function A and could be also stored as lookup. However, this approach requires
knowledge about the underlying model of projection A and also depends on the
required angular resolution of P2S-map B.

The proposed conversion workflow is aimed to be as simple and general as pos-
sible in order to work with a wide range of P2S-maps from world map projections
Section 5.2, page 78 and intrinsic camera calibrations Section 4.3, page 54. Additional
information such as underlying projection and unprojection functions are not required.

5.4.1 Proposed Workflow

The follwing five step workflow is illustrated in Fig. 5.5 and describes the conversion
from pojection A to projection B using their corresponding P2S-maps only.

Step 1

Each of the 𝑛 pixels in projection A (𝜋p
𝐴) is mapped to a vertex on unit sphere 𝒮

(𝑢𝑗
A, 𝑣

𝑗
A)

𝑇 → X̂𝑗
A, 𝑗 = 1, . . . , 𝑛 via corresponding P2S-map A.

Step 2

A triangle mesh is generated by connecting three neighboring vertices, which form a
face. Since all vertices have the same distance to the center of the sphere, meshing
guarantees to connect each vertex to the closest neighbor on the sphere surface. This
step is especially mandatory when working with world map projections as they need
cutting edges for unwrapping, e.g. equirectangular projection has one cutting edge near
the date line. This circumstance leads to the forementioned problem, that neighboring
vertices do not necessarily correspond to neighboring pixels, especially along cutting
edges. The meshing process recovers the lost neighbor relations. Fig. 5.5 clarifies this
probelm, X̂𝑘

A, X̂𝑙
A and X̂𝑚

A are neighboring points on unit sphere and form a triangle.
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3.

2.

1.
5.

4.

d𝑖,𝑘

d𝑖,𝑙

d𝑖,𝑚

X̂𝑙
A

X̂𝑘
A X̂𝑚

A

X̂𝑖
B

projection A projection B

(polyhedral waterman) (cubic gnomonic)

(︀
𝑢𝑘

A, 𝑣
𝑘
A

)︀ (︀
𝑢𝑙

A, 𝑣
𝑙
A

)︀
(𝑢𝑚

A , 𝑣
𝑚
A )

(𝑢𝑖
B, 𝑣

𝑖
B)

𝒮

𝜋p
𝐴 𝜋p

𝐵

Fig. 5.5: Conversion from projection A to projection B in five steps.

On the contrary their correspondences (𝑢𝑘
A, 𝑣

𝑘
A)

𝑇 , (𝑢𝑙
A, 𝑣

𝑙
A)

𝑇 and (𝑢𝑚
A , 𝑣

𝑚
A )𝑇 in projection

A are located further apart. A direct interpolation between these pixel positions would
lead to false results.

Step 3

Analogous to step 1, each of the 𝑚 pixels in projection B (𝜋p
𝐵) is mapped to a vertex

on unit sphere 𝒮 (𝑢𝑖
B, 𝑣

𝑖
B)

𝑇 → X̂𝑖
B, 𝑖 = 1, . . . ,𝑚 via corresponding P2S-map B.

Step 4

For each vertex X̂𝑖
B the intersecting triangle face △

(︀
X̂𝑘

A, X̂
𝑙
A, X̂

𝑚
A

)︀
is obtained.

Step 5

Color value calculation is based on inverse distance weighting. The Euclidean distances
dR3(·, ·) between X̂𝑖

B and X̂𝑘
A, X̂

𝑙
A, X̂

𝑚
A are calculated:

d𝑖,𝑘 =
⃦⃦
X̂𝑖

B − X̂𝑘
A

⃦⃦
d𝑖,𝑙 =

⃦⃦
X̂𝑖

B − X̂𝑙
A

⃦⃦
d𝑖,𝑚 =

⃦⃦
X̂𝑖

B − X̂𝑚
A

⃦⃦
,
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to further obtain the normalized weighting factors:

𝑤𝑘 =
1

d𝑖,𝑘

1
d𝑖,𝑘 + 1

d𝑖,𝑙 +
1

d𝑖,𝑚

𝑤𝑙 =
1

d𝑖,𝑙

1
d𝑖,𝑘 + 1

d𝑖,𝑙 +
1

d𝑖,𝑚

𝑤𝑚 =
1

d𝑖,𝑚

1
d𝑖,𝑘 + 1

d𝑖,𝑙 +
1

d𝑖,𝑚

,

subjecting 𝑤𝑘 + 𝑤𝑙 + 𝑤𝑚 = 1. Finally, the color values for each pixel (𝑢𝑖
B, 𝑣

𝑖
B)

𝑇 in
projection B are obtained with

𝑅𝐺𝐵(𝑢𝑖
B, 𝑣

𝑖
B) = 𝑅𝐺𝐵(𝑢𝑘

A, 𝑣
𝑘
A)𝑤

𝑘 +𝑅𝐺𝐵(𝑢𝑙
A, 𝑣

𝑙
A)𝑤

𝑙 +𝑅𝐺𝐵(𝑢𝑚
A , 𝑣

𝑚
A )𝑤𝑚 .

Fig. 5.6 depicts a compilation of a scene in different world map projections. The original
image is captured in equirectangular format and converted to other projections using
the proposed five step workflow.

imago (autagraph)

icosahedral

polyhedral waterman (waterman-butterfly)

dodecahedral

cubic gnomonic (cube map)

equirectangular

tetrahedral

tetrahedral lee

Fig. 5.6: Conversion of an equirectangular image from a Ricoh Theta S camera to different world map
projections using corresponding P2S-maps.
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5.4.2 Data Storage Format

Conversion from projection A to projection B is based on the lookup of pixel positions
with additional interpolation using weighting factors. Each pixel (𝑢𝑖

B, 𝑣
𝑖
B) in projection

B is assigned to three pixel positions (𝑢𝑘
A, 𝑣

𝑘
A), (𝑢

𝑙
A, 𝑣

𝑙
A), (𝑢

𝑚
A , 𝑣

𝑚
A ) in projection A

with corresponding weighting factors 𝑤𝑘, 𝑤𝑙, 𝑤𝑚. These lookup and interpolation
values depend on geometry between both projections and hence must be obtained
only once. However, in this case there are more lookup data correspondences as in

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Weighting Factor Lookup Map 1

Image Int. Map weihting Map1 weihting Map2 weihting Map3

x-Pixel Map1 x-Pixel Map2 x-Pixel Map3 y-Pixel Map1 y-Pixel Map2 y-Pixel Map3

200 400 600 800 1000 1200 1400 1600
x-Pixel Lookup Map 2

Image Int. Map weihting Map1 weihting Map2 weihting Map3

x-Pixel Map1 x-Pixel Map2 x-Pixel Map3 y-Pixel Map1 y-Pixel Map2 y-Pixel Map3

100 200 300 400 500 600 700 800 900 1000
y-Pixel Lookup Map 1

Image Int. Map weihting Map1 weihting Map2 weihting Map3

x-Pixel Map1 x-Pixel Map2 x-Pixel Map3 y-Pixel Map1 y-Pixel Map2 y-Pixel Map3

[left] Sphere Map A <-> [right] Sphere Map A mapped to B

Image Int. Map weihting Map1 weihting Map2 weihting Map3

x-Pixel Map1 x-Pixel Map2 x-Pixel Map3 y-Pixel Map1 y-Pixel Map2 y-Pixel Map3

a b

c d

Fig. 5.7: Projection conversion GUI with an example conversion of a waterman-butterfly projection
(A) to a cube map projection (B) showing the following: a) P2S-maps of source projection A and
target projection B, b) the 𝑢𝑘

A-pixel lookup map where corresponding pixels between both projections
have the same color, c) corresponding map of weighting factor 𝑤𝑘, d) 𝑣𝑘A-pixel lookup map.

contrast to P2S-map. In order to store lookup data efficently, the HDF571 file format
is chosen, its content can be visualized with the free Panoply72 viewer. Each of the
six lookup and three interpolation values is stored as matrix in shape of P2S-map B.
Fig. 5.7 illustrates a P2S-map conversion example with additional information from
the conversion toolbox.

Based on the generated mesh from Step 2 (Section 5.4.1) and the known cor-
respondences between pixels and mesh vertices an UV-map is generated. Mesh and
and corresponding UV-map are additionally stored in a PLY file format. An image
projection can then be handled as texture, which is mapped onto the unit sphere
geometry in a 3d viewer as shown in Fig. 5.8.

71https://www.hdfgroup.org
72https://www.giss.nasa.gov/tools/panoply/download/

https://www.hdfgroup.org
https://www.giss.nasa.gov/tools/panoply/download/
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b

c d e

f

a

g

Fig. 5.8: Image projection as texture file mapped on a unit sphere mesh. The following is shown:
a) waterman-butterfly projection as image texture file, b) image projection from the inside view of
the sphere (same direction as image was captured), c) image projection mapped onto unit sphere
geometry viewed from outside (opposite direction as image was captured), d-g) outside view of image
projection with overlayed mesh at different zoom levels.

5.4.3 Real World Example

Within the iDeepMon73 project an early protoype was built, that consist of a Ricoh
Theta S (full omnidirectional stitching camera) and a lighting system to be mounted
at the bottom of a cage for mineshaft inspection purposes as published in [15]. The
proposed P2S-map conversion was successfully applied to the equirectangular camera
images in order to extract seven overlapping directional pinhole cameras as shown in
Fig. 5.9. This step was necessary, since the used SfM-pipeline wasn’t able to handle
full omnidirectional images.

Brief Chapter Summary

This chapter considered the generation of omnidirectional images from two perspec-
tives. The first one describes the generation of omnidirectional source data from
overlapping camera images using stitching techniques in a standard projection for-
mat (equirectangular). The second one describes the generation of suitable target
projections with less distortion effects and their corresponding P2S-maps using a geo-

73https://www.ideepmon.eu/project/

https://www.ideepmon.eu/project/
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raw image (perspective view)
dense point cloud reconstruction textured mesh reconstruction

early prototypeshaft scanningraw image (equirectangular view)

Ricoh Theta S

Illumination

Battery Pack

Fig. 5.9: Early iDeepMon prototype of a mine shaft scanning device based on image data (1st row).
A Ricoh Theta S camera captures full omnidirectional images in equirectangular format, which are
converted to seven overlapping directional pinhole camera images (2nd row). The 3rd row shows a raw
footage and the corresponding dense point cloud reconstruction as well as the textured 3d model at
the same location.

graphic library. The chapter explained a workflow that converts a source projection to
a target projection based on their corresponding P2S-maps only. Finally, the proposed
workflow was successfully applied to a real world example.
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6 Relations between Two Camera
Spheres

Brief Chapter Overview

This chapter comprehensively explaines the relation of point correspondences between
two camera spheres. Section 6.1 describes the projection geometry on unit sphere
and Section 6.2 explains how to recover 3d information from point correspondences
using a DLT triangulation method in Section 6.2.1 and a novel closed-form midpoint
triangulation method in Section 6.2.2. Section 6.3 derives the epipolar geometry for
spherical cameras, followed by Section 6.4 that concentrates on the transformation
recovery from essential matrix. It explaines cheirality in Section 6.4.1 and describes a
standard procedure in Section 6.4.2 as well as two novel procedures in Sections 6.4.3
and 6.4.4 to resolve ambiguities from essential matrix decomposition. Essential matrix
estimation algorithms are presented and compared in Section 6.5, where Section 6.5.1
describes the evaluation strategy, Section 6.5.2 refers to the error metric, Section 6.5.3
evaluates the obtained estimation results and Section 6.5.4 gives final remarks.

Section 6.6 is concerned with the optimization of derived two-view transforma-
tions. Section 6.6.1 presents known epipolar-based distance functions, whereas
Section 6.6.2 introduces novel projection-based distance functions, which are all
evaluated in Section 6.6.3. Going on with Section 6.7 that concentrates on two-view
transformation scaling using available depth data. Section 6.7.1 proposes a method
to obtain translation scale estimates and Section 6.7.2 explains translation scale opti-
mization. Estimated and optimized translation scales are compared in Section 6.7.3.
Finally Section 6.8 details the identification of degenerate motion and degenerate
structure using homography. Section 6.8.1 describes homography applied to camera
spheres. Section 6.8.2 explains the estimation of a homography matrix from point
correspondences and Section 6.8.3 introduces a homography optimization approach.
The relation between pure rotation and homography is examined in Section 6.8.4 and
Section 6.8.5 combines homography and epipolar constraints to identify degenerate
motion and degenerate structure.
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U

𝜆

𝑅, t

X

X̂

𝜆

O

O

𝒲 𝒞

a b

X̂

Fig. 6.1: Projection geometry on unit sphere: a) in world frame 𝒲, b) in camera frame 𝒞.

6.1 Forward and Backward Projection

The camera pose [𝑅, t] describes the transformation from camera frame 𝒞 to world
frame 𝒲 . The inverse transformation from 𝒲 to 𝒞 is given by

[︀
𝑅𝑇 ,−𝑅𝑇 t

]︀
. The

forward projection (or simply projection) maps U ∈ 𝒲 to X̂ ∈ 𝒮 and is described by

X̂ =
X

‖X‖
=

𝑅𝑇 (U− t)

‖𝑅𝑇 (U− t) ‖
. (6.1)

The inverse mapping is called backward projection (or simply back-projection) given
by

U = 𝑅X̂𝜆+ t . (6.2)

The unit sphere 𝒮 is a subspace of the camera frame 𝒞. Since ‖𝑅X̂‖ = 1, 𝜆 represents
the entire length from the optical camera center [𝑅, t] to the 3d world point U. Depth
values can be re-obtained from a correspondence between image point and 3d world
point. Taking Eq. (6.2) and subtracting t leads to

U− t⏟  ⏞  
b

= 𝑅X̂⏟ ⏞ 
a

𝜆 ,

which can be solved for 𝜆 using the least squares solution 𝜆 = a𝑇b/‖a‖2 (as explained
in Appendix A.2, page 174), which leads to the following equation

𝜆 = 𝑅X̂𝑇 (U− t) . (6.3)

6.2 Triangulation

Triangulation recovers the position of a 3d point from its given projection in two or
more cameras. It represents a core element in stereo vision, SfM (Section 2.2, page 19),
VO (Section 2.1.1, page 17) and accordingly Visual SLAM (Section 2.1, page 14). This
section revisites a linear least squares triangulation method based on DLT [101, 96],
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which is widely used in computer vision and robotics. It also describes a new approach,
which is called alternative midpoint method [156, 157] obtaining depth information
directly in a closed-form solution.

6.2.1 Linear Least Squares Method

U

X̂1 X̂2

O

𝑅1, t1 𝑅2, t2

𝒮1 𝒮2

𝒲 line of sight

Fig. 6.2: The linear least squares triangulation method is based on collinearity between X̂1 and U as
well as between X̂2 and U .

The linear least squares triangulation method finds a 3d point that is closest to the
intersection of two or more LoSs [93] from corresponding camera projections.
The following explains this method applied to image points on unit sphere. A point
U ∈ 𝒲 is observed by two or more cameras 𝑛 ≥ 2 and their corresponding image
projections X̂𝑖 ∈ 𝒮 𝑖, 𝑖 = 1, . . . , 𝑛 on unit sphere as illustrated in Fig. 6.2. The linear
least squares triangulation method is based on the collinearity between X̂𝑖 and U.
Taking the back-projection function Eq. (6.2) on page 88, subtracting t𝑖 and cross-
multiplying 𝑅𝑖X̂𝑖 in order to eleminate 𝜆𝑖 yields:

𝑅𝑖X̂𝑖 ×
(︀
U− t𝑖

)︀
= 𝑅𝑖X̂𝑖 ×𝑅𝑖X̂𝑖⏟  ⏞  

a×a=0

𝜆𝑖

𝑅𝑖X̂𝑖 ×
(︀
U− t𝑖

)︀
= 0 . (6.4)

Substituting 𝑅𝑖X̂𝑖 = X̊𝑖 simplifies the equation to

X̊𝑖 ×
(︀
U− t𝑖

)︀
= 0 .



6 Relations between Two Camera Spheres 90

Excluding U and rewriting the resulting equation in a matrix form 𝐵x = 0 yields:

X̊𝑖 ×U− X̊𝑖 × t𝑖⏟  ⏞  
−a×b=b×a

= 0

X̊𝑖 ×U⏟  ⏞  
a×b=[a]×b

+t𝑖 × X̊𝑖 = 0

[X̊𝑖]×U+ t𝑖 × X̊𝑖 = 0î
[X̊𝑖]× t𝑖 × X̊𝑖

óÇ U

1

å
= 0

𝐵

Ç
U

1

å
= 0

𝐵x = 0

with

𝐵 =

⎡⎢⎣ 0 −X̊𝑖(3) X̊𝑖(2) t𝑖(2)X̊𝑖(3) − t𝑖(3)X̊𝑖(2)

X̊𝑖(3) 0 −X̊𝑖(1) t𝑖(3)X̊𝑖(1) − t𝑖(1)X̊𝑖(3)

−X̊𝑖(2) X̊𝑖(1) 0 t𝑖(1)X̊𝑖(2) − t𝑖(2)X̊𝑖(1)

⎤⎥⎦
in order to solve the problem via DLT by finding a non-zero solution for x that min-
imizes ‖𝐵x‖ subjecting ‖x‖ = 1 [101, 96]. The number of rows in 𝐵 can be reduced
since only the first two ones are linearly independent. A detailed proof of 𝐵’s rank
deficiency is described in Appendix A.3, page 175. Eliminating the linearly dependent
third row reduces 𝐵 to

𝐵 =

ñ
0 −X̊𝑖(3) X̊𝑖(2) t𝑖(2)X̊𝑖(3) − t𝑖(3)X̊𝑖(2)

X̊𝑖(3) 0 −X̊𝑖(1) t𝑖(3)X̊𝑖(1) − t𝑖(1)X̊𝑖(3)

ô
.

All corresponding image projections 𝑛 are stacked into 𝐵 forming a linear system with

𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 −X̊1(3) X̊1(2) t1(2)X̊1(3) − t1(3)X̊1(2)

X̊1(3) 0 −X̊1(1) t1(3)X̊1(1) − t1(1)X̊1(3)

...
...

...
...

0 −X̊𝑛(3) X̊𝑛(2) t𝑛(2)X̊𝑛(3) − t𝑛(3)X̊𝑛(2)

X̊𝑛(3) 0 −X̊𝑛(1) t𝑛(3)X̊𝑛(1) − t𝑛(1)X̊𝑛(3)

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R2𝑛×4.

Applying an SVD to 𝐵 with
𝐵 = 𝑈𝛴𝑉 𝑇

obtains 𝑈 ∈ R2𝑛×4 and 𝑉 ∈ R4×4, whose colums contain the left and right orthogonal
vectors, as well as the diagonal matrix 𝛴 ∈ R4×4 containing the four singular values
𝜎1 . . . 𝜎4. As result, 𝑉 (:,4) is the column vector which corresponds to the smallest
singular value 𝜎4 in 𝛴. Hence 𝑉 (:,4) is the solution on null space of 𝐵 in least squares
sense and the first three elements devided by the last one of the solution vector represent
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the triangulated point

U =
𝑉 (1:3,4)

𝑉 (4,4)

.

In order to achieve a more stable numeric solution74 [96] being less prone to noise, it
is recommended to normalize each row of 𝐵 in advance such that

𝐵(𝑗,:) =
𝐵(𝑗,:)

‖𝐵(𝑗,:)‖
, 𝑗 = 1, . . . , 2𝑛

before applying SVD. The main advantages of the linear least squares triangulation
method are the ease of implementation and the simplicity of triangulation if more pro-
jections are availabe by simply adding these observations to 𝐵. Since its introduction
it has become the standard triangulation method most times in combination with pose
recovery from essential matrix decomposition as described in Section 6.4.2, page 98.

6.2.2 Alternative Midpoint Method

U

X̂𝑘 X̂𝑙

O

𝜆𝑘 𝜆𝑙

𝑅𝑘, t𝑘 𝑅𝑙, t𝑙

𝒮𝑘 𝒮 𝑙

𝒲

Fig. 6.3: The alternative midpoint method obtains the depth information 𝜆𝑘 and 𝜆𝑙 separately from
each other. They are applied to the corresponding image points X̂𝑘 and X̂𝑙 in order to obtain U,
which is the midpoint between both back-projections.

This section describes a simplified triangulation approach, whose derivation - to the
best of the author’s knowledge - hasn’t been published in the here presented form. In
contrast to the linear least squares triangulation method, this one obtains the depth
values 𝜆𝑘, 𝜆𝑙 directly in order to determine the triangulated point by back-projecting
the corresponding image points X̂𝑘 ∈ 𝒮𝑘, X̂𝑙 ∈ 𝒮 𝑙 as shown in Fig. 6.3. Due to the
presence of image noise as well as inaccuracies in camera alignment, the LoS are
skewed and do not intersect. Consequently both back-projections do not coincide at
U ∈ 𝒲 , such that averaging obtains a midpoint solution, giving the method its name
as it was originally introduced in [13, 14, 101]. It is nowadays also known as classic
midpoint method, which obtains both depth values jointly by minimizing the squared
distances between the LoS. The method has been further extended, allowing to obtain
a midpoint solution from multiple views [241, 277, 37].

74https://stackoverflow.com/questions/2276445/triangulation-direct-linear-transform

https://stackoverflow.com/questions/2276445/triangulation-direct-linear-transform
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The here presented version decouples the least squares optimization by obtain-
ing each depth value separately. Suprisingly the same idea was discovered in [157]
by developing an improved triangulation from two-view relations for directional
pinhole cameras, which is named alternative midpoint method. The here pre-
sented alternative midpoint method presents a closed-form solution and neither
minimize algebraic errors as the linear least squares method does nor minimize geo-
metric errors based on image projection distances or angular projection distances [157].

Taking the back-projection function from Eq. (6.2) on page 88 for camera 𝑘

and 𝑙 such that:

U = 𝑅𝑘X̂𝑘𝜆𝑘 + t𝑘

U = 𝑅𝑙X̂𝑙𝜆𝑙 + t𝑙 ,

and combining both yields:

𝑅𝑘X̂𝑘𝜆𝑘 + t𝑘 −𝑅𝑙X̂𝑙𝜆𝑙 − t𝑙 = 0

t𝑘 − t𝑙 +𝑅𝑘X̂𝑘𝜆𝑘 −𝑅𝑙X̂𝑙𝜆𝑙 = 0 . (6.5)

Cross-multiplying 𝑅𝑙X̂𝑙 eliminates 𝜆𝑙 in Eq. (6.5):

𝑅𝑙X̂𝑙 ×
(︀
t𝑘 − t𝑙

)︀
+ 𝜆𝑘

(︀
𝑅𝑙X̂𝑙 ×𝑅𝑘X̂𝑘⏟  ⏞  

a×b=−(b×a)

)︀
− 𝜆𝑙

(︀
𝑅𝑙X̂𝑙 ×𝑅𝑙X̂𝑙⏟  ⏞  

a×a=0

)︀
= 0

𝑅𝑙X̂𝑙 ×
(︀
t𝑘 − t𝑙

)︀⏟  ⏞  
b

− 𝜆𝑘

(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙⏟  ⏞  

a

)︀
= 0 . (6.6)

Analogous cross-multiplying 𝑅𝑘X̂𝑘 removes 𝜆𝑘 in Eq. (6.5) such that:

𝑅𝑘X̂𝑘 ×
(︀
t𝑘 − t𝑙

)︀
+ 𝜆𝑘

(︀
𝑅𝑘X̂𝑘 ×𝑅𝑘X̂𝑘⏟  ⏞  

a×a=0

)︀
− 𝜆𝑙

(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀
= 0

𝑅𝑘X̂𝑘 ×
(︀
t𝑘 − t𝑙

)︀⏟  ⏞  
b

− 𝜆𝑙

(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙⏟  ⏞  

a

)︀
= 0 . (6.7)

An alternative derivation approach for Eqs. (6.6) and (6.7) is given in Appendix A.4,
page 177. Both Eqs. (6.6) and (6.7) can be simplified to a linear least squares scaling
problem b− 𝜆a = 0 with the corresponding solution 𝜆 = a𝑇b/‖a‖2. This leads to the
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following solutions:

𝜆𝑘 =

(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀𝑇 (︀
𝑅𝑙X̂𝑙 ×

(︀
t𝑘 − t𝑙

)︀)︀⃦⃦
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

⃦⃦2 (6.8)

𝜆𝑙 =

(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀𝑇 (︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀)︀⃦⃦
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

⃦⃦2 , (6.9)

which are similiar to the ones as presented in [156, 157], where the authors describe
the solution as relative pose between both cameras instead of absolute poses.

U

𝜆𝑘 𝜆𝑙

𝑅𝑘X̂𝑘

𝑅𝑙X̂𝑙

t𝑘−t𝑙

𝑅𝑘X̂𝑘×(t𝑘−t𝑙)

𝑅𝑙X̂𝑙×(t𝑘−t𝑙)

𝑅𝑘X̂𝑘×𝑅𝑙X̂𝑙

O

𝑅𝑘, t𝑘 𝑅𝑙, t𝑙

𝑅𝑘X̂𝑘×𝑅𝑙X̂𝑙

𝒲

Fig. 6.4: Geometric explanation of the alternative midpoint method showing that 𝜆𝑘 is the relations
between 𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙 ↔ 𝑅𝑙X̂𝑙 ×

(︀
t𝑘 − t𝑙

)︀
and 𝜆𝑙 is the relations between 𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙 ↔ 𝑅𝑘X̂𝑘 ×(︀

t𝑘 − t𝑙
)︀
.

Fig. 6.4 shows the geometric explanation of the described equations. Having a closer
look clarifies that 𝑅𝑘X̂𝑘 × 𝑅𝑙X̂𝑙 and 𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀
as well as 𝑅𝑘X̂𝑘 × 𝑅𝑙X̂𝑙 and

𝑅𝑙X̂𝑙×
(︀
t𝑘−t𝑙

)︀
are collinear, which Eqs. (6.6) and (6.7) also describe. These collinearity

constraints further simplify Eq. (6.8) to

𝜆𝑘 =

⃦⃦
𝑅𝑙X̂𝑙 ×

(︀
t𝑘 − t𝑙

)︀⃦⃦⃦⃦
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

⃦⃦ , (6.10)

and analogous Eq. (6.9) to

𝜆𝑙 =

⃦⃦
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀⃦⃦⃦⃦
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

⃦⃦ (6.11)

achieving similiar results as in [157]. Appendix A.5 page 178 gives detailed information
about the simplification process. The derived depth values 𝜆𝑘 and 𝜆𝑙 are used in
combination with Eq. (6.2), page 88 for back-projection to obtain U𝑘 and U𝑙. Using
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real world data requires to average the individual solutions to derive the midpoint

U =
U𝑘 +U𝑙

2
.

In [157] the authors obtain the midpoint solution by applying an inverse depth weight-
ing. Fortunately, this part of the triangualtion process is not considered here, sinces
the here presented SCME pipeline does not need any triangulated 3d information and
only relies on derived depth values.

Special cases

U2

𝑅𝑘X̂𝑘 𝑅𝑙X̂𝑙

t𝑘−t𝑙

O

𝑅𝑘, t𝑘 𝑅𝑙, t𝑙

𝑅𝑘X̂𝑘 𝑅𝑙X̂𝑙

t𝑘−t𝑙𝑅𝑘, t𝑘 𝑅𝑙, t𝑙

U1 U3

𝑅𝑙X̂𝑙 ×𝑅𝑘X̂𝑘=0

𝑅𝑙X̂𝑙 × (t𝑘−t𝑙) = 0

𝑅𝑘X̂𝑘 × (t𝑘−t𝑙) = 0𝑅𝑙X̂𝑙 ×𝑅𝑘X̂𝑘=0

𝑅𝑘X̂𝑘 × (t𝑘−t𝑙) ̸= 0

𝑅𝑙X̂𝑙 × (t𝑘−t𝑙) ̸= 0

Line of Sight
Baseline

a

b

Fig. 6.5: Special cases of the alternative midpoint method where depth estimation fails. a) LoS are
parallel such that 𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙 = 0. In that case U lies at infinity. b) LoS and baseline t𝑘 − t𝑙 are
collinear, if U lies on t𝑘 − t𝑙. The drawing shows three examplary cases where depth estimation fails
due to the location of U1, U2, U3.

This section shortly discusses the limitations of the alternative midpoint method, where
depth estimation fails. By means of the reduced solutions, obvious restrictions are
clearly visible, namely 𝑅𝑘X̂𝑘 × 𝑅𝑙X̂𝑙 ̸= 0 (LoS mustn’t be parallel, which is only the
case if U lies at infinitiy), t𝑘 − t𝑙 ̸= 0 (relative camera transformation must not stem
from pure rotation) as well as 𝑅𝑘X̂𝑘×

(︀
t𝑘− t𝑙

)︀
̸= 0 and 𝑅𝑙X̂𝑙×

(︀
t𝑘− t𝑙

)︀
̸= 0 (LoS and

baseline t𝑘 − t𝑙 mustn’t be parallel, which is the case if U and t𝑘 − t𝑙 are collinear).
The introduced cases are visualized in Fig. 6.5 and hold in theory. Due to the nature
of real world data, these cases potentially will never occur.

6.3 Epipolar Geometry

The basic idea of the epipolar geometry goes back to von Sanden’s work about
photogrammetry [266], where he described a matrix similar to the essential matrix.
Kruppa proved that a minimum number of five points solves the orientation problem.
It is a landmark paper in computer vision and that’s why this work recently was not
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O

𝑅𝑘, t𝑘 𝑅𝑙, t𝑙

X̂𝑘 X̂𝑙

t𝑘−t𝑙

U

𝜆𝑘 𝜆𝑙

𝒲

𝒮𝑘 𝒮 𝑙

𝜋𝑒

Fig. 6.6: Graphical representation of the epipolar geometry, which is based on the coplanarity between
X̂𝑘, X̂𝑙 and the baseline t𝑘 − t𝑙, since all three elements lie on the epipolar plane 𝜋e.

only translated into english but also the terminology was adaped to the computer
vision jargon [72]. Longuet-Higgins introduced the essential matrix concept to the
computer vision community [168], which was further investigated in [261, 110, 269,
108, 97]. In some literature the epipolar geometry is also mentioned as bilinear
function or as bilinear constraint [176, 177]. The following explains the derivation of
the essential matrix equation for image coordinates on a unit sphere.

Starting with Eq. (6.5), page 92

t𝑙 − t𝑘 = 𝑅𝑘X̂𝑘𝜆𝑘 −𝑅𝑙X̂𝑙𝜆𝑙

and cross-multiplying 𝑅𝑘X̂𝑘 from the right eliminates 𝜆𝑘:

𝑅𝑘X̂𝑘 ×
(︀
t𝑙 − t𝑘

)︀
=
(︀
𝑅𝑘X̂𝑘 ×𝑅𝑘X̂𝑘⏟  ⏞  

a×a=0

)︀
𝜆𝑘 −

(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀
𝜆𝑙

𝑅𝑘X̂𝑘 ×
(︀
t𝑙 − t𝑘

)︀
= −

(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀
𝜆𝑙 .

Scalar-multiplying 𝑅𝑙X̂𝑙 eliminates 𝜆𝑙:

𝑅𝑙X̂𝑙 ∙
(︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑙 − t𝑘

)︀⏟  ⏞  
a×b=−b×a

)︀
= −𝑅𝑙X̂𝑙 ∙

(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀⏟  ⏞  
a∙(b×a)=0

𝜆𝑙

(︀
𝑅𝑙X̂𝑙

)︀𝑇 (︀(︀
t𝑘 − t𝑙

)︀
×𝑅𝑘X̂𝑘

)︀
= 0 . (6.12)

Eq. (6.12) expresses the coplanarity between baseline t𝑘 − t𝑙, 𝑅𝑙X̂𝑙 and 𝑅𝑘X̂𝑘, which
form the epipolar plane 𝜋e as illustrated in Fig. 6.6. Transferring Eq. (6.12) into
camera frame 𝒞𝑙, camera 𝑙 becomes the center of origin [𝐼,0] and camera 𝑘 is expressed
as relative transformation [𝑅, t] =

[︀
𝑅𝑇

𝑙 𝑅𝑘, 𝑅
𝑇
𝑙 (t𝑘 − t𝑙)

]︀
such that:

X̂𝑇
𝑙

(︀
t×𝑅X̂𝑘

)︀
= 0

X̂𝑇
𝑙

(︀
[t]×𝑅X̂𝑘

)︀
= 0 .
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Substituting [t]×𝑅 = 𝐸 yields the well-known epipolar geometry in essential matrix
form for spherical cameras [256, 196, 195]

X̂𝑇
𝑙 𝐸X̂𝑘 = 0 . (6.13)

Due to its simple structure, the epipolar geometry in essential matrix form is a key
element to recover a transformation from feature correspondences between two camera
images. Hence it is often referred as a synonym for two-view geometry. In general
the two-view geometry describes all available geometric relations between feature cor-
respondences in two different camera views of the same 3d scene. Accordingly the
two-view geometry is not limited to an epipolar constraint and can be also described
by closed-form projection constraints as Section 6.6, page 107 shows.

6.4 Transformation Recovery from Essential Matrix

The relative transformation from camera 𝑘 to camera 𝑙 is covered by the essential matrix
𝐸. Since Eq. (6.13), page 96 uses coplanarity constraints without considering the
orientation of the LoS, the decomposition of 𝐸 into 𝑅 and t generally has four solutions
[96, 196] as shown in Fig. 6.7. Decomposing 𝐸 = 𝑈𝛴𝑉 𝑇 via SVD straightforwardly

a b

c d
O

𝑅2, t

𝜆2
𝑘 > 0 𝜆2

𝑙 > 0

O
𝑅2,−t

−𝜆2
𝑙 < 0 −𝜆2

𝑘 < 0

O
𝑅1, t

𝜆1
𝑘 > 0 𝜆1

𝑙 < 0

O
𝑅1,−t

−𝜆1
𝑘 < 0−𝜆1

𝑙 > 0

X1

−X1

X2

−X2

X̂𝑘

X̂𝑙 X̂𝑘

X̂𝑙

X̂𝑙

X̂𝑘

X̂𝑘

X̂𝑙

𝒞𝑙

Fig. 6.7: Four solutions of an essential matrix decomposition showing that c is the geometrically
correct solution with two positive depth values 𝜆𝑘 > 0 and 𝜆𝑙 > 0 satisfying cheirality.
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obtains 𝑅1 = 𝑈𝑊𝑈𝑇 , 𝑅2 = 𝑈𝑊 𝑇𝑈𝑇 and t± 𝑈 (:,3) with

𝑊 =

⎡⎣0 −1 0

1 0 0

0 0 1

⎤⎦ .

Since the sign of t is arbitrary, the sign of 𝐸 is also arbitrary:

𝐸 = [t]×𝑅1

−𝐸 = [−t]×𝑅1

−𝐸 = [t]×𝑅2

𝐸 = [−t]×𝑅2

and does not violate the epipolar constraint:

X̂𝑇
𝑙

(︀
−𝐸
)︀
X̂𝑘 = 0

−
(︀
X̂𝑇

𝑙 𝐸X̂𝑘

)︀
= 0

X̂𝑇
𝑙 𝐸X̂𝑘 = 0 .

The forementioned decomposition does not always ensure the rotation to represent the
correct geometric explanation. In [268] the authors state that the signs of 𝑅1 as well
as 𝑅2 and accordingly the sign of 𝑊 [24] are also arbitrary leading to eight possible
solutions [165]. In order to halve the number of solutions the signs of 𝑅1 and 𝑅2 can
be determined by verifying the determinant

𝑅𝑖 =

®
−𝑅𝑖, if 𝑑𝑒𝑡(𝑅𝑖) = −1

𝑅𝑖, otherwise .
𝑖 = 1, 2

𝐸 has only five degrees of freedom, whereas 𝑅𝑖 and t have three degrees of freedom
each. This leads to a scale ambiguity of t, subjecting ‖t‖ = 1 [96].

The following sections describe the definition of cheirality and explain three
procedures resolving ambiguity from essential matrix decomposition. The standard
procedure (Section 6.4.2) is a review and compilation of known geometric properties
and simplification possibilities. The simplified procedure (Section 6.4.3) and especially
the improved procedure (Section 6.4.4) - as they were presented in this work - haven’t
been discovered in literature by the author so far. They describe novel approaches
reducing calculation effort to resolve ambiguity.

6.4.1 Cheirality

Image points satifsying X̂𝑇
𝑙 𝐸X̂𝑘 = 0 do not necessarily correspond to any real geom-

etry [270]. Cheirality defines a 3d point to be visible when it is located in front of
the camera [96] and accordingly has a positive depth [98, 100] and positive viewing
direction [155]. These constraints can be applied to omnidirectional cameras [270] as
well, which additionally use projection as a cheirality constraint.
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Projecting a 3d point onto the image plane of a directional camera does not allow to
distinguished whether the 3d point originates from the front or the back, since the
projection from both directions leads to the same position on image. Omnidirectional
cameras have no real front or back, a projection from the back (opposite direction)
yields an image point on the opposite site of the unit sphere. Thus an additional
cheirality validation is not needed and thus reduces computational cost. Directional
cameras in conjunction with P2S-maps have the advantage to use projection as cheiral-
ity constraint, too.

6.4.2 Standard Procedure

Going on with finding the correct solution for 𝑅 and t, the standard procedure uses
the linear least squares triangulation method from Section 6.2.1, page 89 to obtain
X1, X2 for the possible solutions [𝑅1, t] , [𝑅2, t]. The corresponding depth values can
be optained using Eq. (6.3), page 88 and applying [𝑅𝑙, t𝑙] = [𝐼,0], [𝑅𝑘, t𝑘] = [𝑅𝑖, t],
U = X𝑖 yields:

𝜆𝑖
𝑘 =

(︀
𝑅𝑖X̂𝑘

)︀𝑇 (︀
X𝑖 − t

)︀
𝜆𝑖
𝑙 = X̂𝑇

𝑙 X𝑖, 𝑖 = 1, 2 .

The geometrically correct combination satisfies 𝜆𝑘 > 0 and 𝜆𝑙 > 0 as exemplary illus-
trated in Fig. 6.7. The calculation effort is reduced since X1(𝑅1, t) = −X1(𝑅1,−t)

and X2(𝑅2, t) = −X2(𝑅2,−t) [165] as shown in Tab. 6.1. At least two points (X1,X2)

Tab. 6.1: Possible transformation combinations and their corresponding relations

Combination Triangulated Point Depth

𝑅1, t X1 𝜆1
𝑘, 𝜆

1
𝑙

𝑅1,−t −X1 −𝜆1
𝑘,−𝜆1

𝑙

𝑅2, t X2 𝜆2
𝑘, 𝜆

2
𝑙

𝑅2,−t −X2 −𝜆2
𝑘,−𝜆2

𝑙

need to be triangulated in order to obtain the four depth values (𝜆1
𝑘, 𝜆

1
𝑙 , 𝜆

2
𝑘, 𝜆

2
𝑙 ), which

are used to validate cheirality such that:

[𝑅, t] =

®
[𝑅𝑖, t] , if 𝜆𝑖

𝑘 > 0 and 𝜆𝑖
𝑙 > 0

[𝑅𝑖,−t] , if 𝜆𝑖
𝑘 < 0 and 𝜆𝑖

𝑙 < 0 .
𝑖 = 1, 2

The standard procedure cannot identify pure rotation, which is also referred as degen-
erate motion or degeneracy [269], since the decomposition of 𝐸 always obtains t ̸= 0.
The addtional criterion [269, 24, 285] to be validated is:

[𝑅, t] =

®
[𝑅,0] , if

⃦⃦
𝑅X̂𝑘 × X̂𝑙

⃦⃦
= 0

[𝑅, t] , elsewhere.
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This means, if the LoS from camera 𝑘 is transferred to camera 𝑙 and both LoS overlay
such that

⃦⃦
𝑅X̂𝑘 × X̂𝑙

⃦⃦
= 0, then the transformation stems from a pure rotation.

Finally, the standard procedure needs seven calculation steps
(X1,X2, 𝜆

1
𝑘, 𝜆

1
𝑙 , 𝜆

2
𝑘, 𝜆

2
𝑙 , ‖𝑅X̂𝑘 × X̂𝑙‖) in order to resolve the ambiguity from essential

matrix decomposition.

6.4.3 Simplified Procedure

The here presented simplified procedure is based on the derived equations of the
alternative midpoint method from Section 6.2.2, page 91, which optains the depth
values directly. Taking Eqs. (6.8) and (6.9), page 93 and applying [𝑅𝑙, t𝑙] = [𝐼,0],
[𝑅𝑘, t𝑘] = [𝑅𝑖, t] leads to:

𝜆𝑖
𝑘 =

(︀
𝑅𝑖X̂𝑘 × X̂𝑙

)︀𝑇 (︀
X̂𝑙 × t

)︀⃦⃦
𝑅𝑖X̂𝑘 × X̂𝑙

⃦⃦2
𝜆𝑖
𝑙 =

(︀
𝑅𝑖X̂𝑘 × X̂𝑙

)︀𝑇 (︀
𝑅𝑖X̂𝑘 × t

)︀⃦⃦
𝑅𝑖X̂𝑘 × X̂𝑙

⃦⃦2 .

Since
⃦⃦
𝑅𝑖X̂𝑘 × X̂𝑙

⃦⃦
> 0 (except in case of pure rotation), it doesn’t affect the sign of 𝜆

and removing the term leads to a calculation of approximate depth values as expressed
by:

�̃�𝑖
𝑘 =
(︀
𝑅𝑖X̂𝑘 × X̂𝑙

)︀𝑇 (︀
X̂𝑙 × t

)︀
(6.14)

�̃�𝑖
𝑙 =
(︀
𝑅𝑖X̂𝑘 × X̂𝑙

)︀𝑇 (︀
𝑅𝑖X̂𝑘 × t

)︀
𝑖, 𝑗 = 1, 2 . (6.15)

This leads to a decreased computational effort and prevents the division by zero in case
of pure rotation 𝑅𝑖X̂𝑘×X̂𝑙 = 0 such that both approximate depth values become zero.
Furthermore, the cheirality constraint can be still applied, since it validates the sign of
the depth value rather than the length itself. On the basis of Eqs. (6.14) and (6.15) it
is comprehensible that �̃�𝑖

𝑘(𝑅𝑖, t) = −�̃�𝑖
𝑘(𝑅𝑖,−t) and �̃�𝑖

𝑙(𝑅𝑖, t) = −�̃�𝑖
𝑙(𝑅𝑖,−t) reducing

the depth calculation to four values (𝜆1
𝑘, 𝜆

1
𝑙 , 𝜆

2
𝑘, 𝜆

2
𝑙 ) in order to perform the cheirality

test:

[𝑅, t] =

⎧⎪⎨⎪⎩
[𝑅𝑖, t] , if �̃�𝑖

𝑘 > 0 and �̃�𝑖
𝑙 > 0

[𝑅𝑖,−t] , if �̃�𝑖
𝑘 < 0 and �̃�𝑖

𝑙 < 0

[𝑅𝑖,0] , if �̃�𝑖
𝑘 = 0 and �̃�𝑖

𝑙 = 0 .

𝑖 = 1, 2

The simplified procedure resolves the ambiguity from essential matrix decomposition
within four calculation steps (�̃�1

𝑘, �̃�
1
𝑙 , �̃�

2
𝑘, �̃�

2
𝑙 ) including the detection of pure rotation.

6.4.4 Improved Procedure

This approach is different compared to the previous ones specifying a transformation
which is validated by means of the obtained depth values. The improved procedure
assumes the depth value in the first camera to be positive and seeks for the transforma-
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tion that obtains a positive depth value in the second camera. Starting with Eq. (6.5),
page 92 and applying [𝑅𝑙, t𝑙] = [𝐼,0], [𝑅𝑘, t𝑘] = [𝑅, t] yields

0 = t+𝑅X̂𝑘𝜆𝑘 − X̂𝑙𝜆𝑙 .

Cross-multiplying t such that

0 =
(︀
t×𝑅X̂𝑘

)︀
𝜆𝑘⏟  ⏞  

b

−
(︀
t× X̂𝑙⏟  ⏞  

a

)︀
𝜆𝑙

and solving for 𝜆𝑙 with in linear least squares sense 𝜆𝑙 = a𝑇b/‖a‖2 results to

𝜆𝑙 =

(︀
t× X̂𝑙

)︀𝑇 (︀
t×𝑅X̂𝑘

)︀⃦⃦
t× X̂𝑙

⃦⃦2 𝜆𝑘 , (6.16)

which describes the relation between 𝜆𝑙 and 𝜆𝑘. Assuming 𝜆𝑘 > 0 and
⃦⃦
t × X̂𝑙

⃦⃦2
>

0 as long as t ̸= 0 (which is prevented due to the nature of the essential matrix
decomposition) and t×X̂𝑙 ̸= 0 (which belongs to a special case as described in Fig. 6.5b
on page 94). Eq. (6.16) can be reduced to obtain approximate depth values

�̃�𝑖
𝑙 =

(︀
t× X̂𝑙

)︀𝑇 (︀
t×𝑅𝑖X̂𝑘

)︀
.

Since t is included in both terms, its sign has no influence on the sign of �̃�𝑖
𝑙, which now

depends on 𝑅𝑖 only. Calculating �̃�1
𝑙 allows to find the correct rotation:

𝑅 =

®
𝑅1, if �̃�1

𝑙 > 0

𝑅2, otherwise.

Using Eq. (6.14)
�̃�𝑘 =

(︀
𝑅X̂𝑘 × X̂𝑙

)︀𝑇 (︀
X̂𝑙 × t

)︀
resolves the correct translation even in case of degenerate motion:

t =

⎧⎪⎨⎪⎩
t, if �̃�𝑘 > 0

−t, if �̃�𝑘 < 0

0, if �̃�𝑘 = 0 .

The improved procedure needs two calculation steps only (�̃�1
𝑙 , �̃�𝑘) to find the correct

transformation from essential matrix decomposition even for degenerate motion and
outperforms both forementioned procedures concerning calculation effort. This comes
particularly to bear if each point of a correspondence set is supposed to be validated
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for outlier detection.

6.5 Two-View Estimation

This section presents and evaluates algorithms obtaining the relative transformation
between two cameras based on corresponding image features. Longuet-Higgins
developed an algorithm [168] that obtains the essential matrix from 8 point correspon-
dences, which is sometimes referred as classic 8-point algorithm. Philip published the
first 6-point non-iterative solver and showed that if 6 or more point correspondences
are available the pose estimation problem can be solved from a linear formulation and
hence yields an unique solution [200]. The relative pose problem for calibrated cameras
needs at least 5 corresponding points to be solved resulting up to 10 distinct solutions
[62, 61]. Nister developed the first non-linear 5-point algorithm that guaranteed to
provide at most 10 solutions [191, 72] by formulating the pose estimation problem as a
system of polynomal equations. Li and Hartley improved Nister’s version in terms of
numerical stability and processing time [163]. Further improvements were taken, e.g.
Stewénius, Engels, and Nistér use Gröbner bases to solve the polynomal system [239] or
Kukelova, Bujnak, and Pajdla make use of a polynomial eigenvalue method to recover
the essential matrix solutions [150]. Li developed a non-linear 6-point algorithm that
uses a hidden-variable technique [162]. On the contrary Fathian, Ramirez-Paredes,
Doucette, Curtis, and Gans decouple translation and rotation estimation and do
not solve the epipolar constraint embodied in an essential matrix [60, 59]. In their
solution, a 5-point quaternion estimation technique obtains the rotation in a first
step, translation as well as depth values are recovered simultaneously in an additional
second step [58] via DLT. An overview of the evaluated pose estimation algorithms
are given in Tab. 6.2. The mentioned Stewenius/Engels algorithm is an alternative to
the Stewenius algorithm using a non-Gröbner base solver [239].

All considered algorithms have been developed for directional cameras and are
now applied to spherical image coordinates as they are used for omnidirectional
cameras.

6.5.1 Evaluation Strategy

Evaluation tests are performed under varying point configurations (structures) and
motion conditions. The determined 6 cases are shown in Fig. 6.8 simulating directional
and omnidirectional two-view camera configurations for full motion (case a, b) and
degenerate (rotation-only) motion (case d, e). Furthermore, case c evaluates the

1https://www2.cs.duke.edu/courses/fall15/compsci527/notes/longuet-higgins.pdf
2https://github.com/SergioRAgostinho/five_point_algorithm
3https://mathworks.com/matlabcentral/fileexchange/67580-essential-matrix-estimati
on

4http://users.cecs.anu.edu.au/%7Ehartley/Software/5pt-6pt-Li-Hartley.zip
5https://sites.google.com/view/kavehfathian/code/quest-5-point

https://www2.cs.duke.edu/courses/fall15/compsci527/notes/longuet-higgins.pdf
https://github.com/SergioRAgostinho/five_point_algorithm
https://mathworks.com/matlabcentral/fileexchange/67580-essential-matrix-estimation
https://mathworks.com/matlabcentral/fileexchange/67580-essential-matrix-estimation
http://users.cecs.anu.edu.au/%7Ehartley/Software/5pt-6pt-Li-Hartley.zip
https://sites.google.com/view/kavehfathian/code/quest-5-point
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Tab. 6.2: Overview of selected solvers for two-view estimation

Method Points Solutions

8-point classic1 [168] 8 1

5-point Nister2 [191] 5 ≤ 10

5-point Stewenius3 [239] 5 ≤ 10

5-point Stewenius/Engels3 [239] 5 ≤ 10

5-point Kukelova3 [150] 5 ≤ 10

5-point Li4 [163] 5 ≤ 10

6-point Li4 [162] 6 ≤ 10

QuEst5 [60] 5 20

𝑅,t 𝑅,t 𝑅,t

𝑅 𝑅 𝑅

case a case b case c
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directional view
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(planar)
directional view

Fig. 6.8: Possible combination combinations of two-view cases conerning structure (3d or planar) and
motion (full or degenerate)

algorithms’ behaviour under a degenerate planar point configuration, since a plane
can be only observed by a hemisphere, this case belongs to a directional view case.
Usually homography is used in that case since it solves planar structure problems
but does not work for arbitrary point configurations. The homography estimation
spherical camera coordinates requires at least five planar point correspondences
(Section 6.8.2,page 120), which cannot be ensured for all configurations under real
world conditions such that homography is left out as reliable estimation technique
in this evaluation. Case f focuses on degenerate motion combined with degenerate
structure, which also belongs to a directional view case and suprisingly is seldomly
mentioned in literature, where either degeneracy in struture or in motion is considered.
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In each case a-f camera poses and structure points are generated randomly.
The structure points are then projected onto each camera’s sphere to obtain ground
truth image coordinates, which are disturbed by Gaussian image noise 𝒩 (0, 𝜎2

𝜃,𝜑) with
𝜎𝜃,𝜑 = 0∘, . . . , 1∘, where 𝜎𝜃 denotes be the noise standard deviation in polar direction
and 𝜎𝜑 denotes the noise standard deviation in azimuthal direction. The simulated
image noise represents calibration and feature detection inaccuracies. Both, polar and
azimuthal noise belong to the same noise level during simulation.
The relative rotation between both cameras is randomly sampled as a unit quaternion
by normalizing a normal distributed four element vector. The random translation
sampling is based on a normal distributed three element vector. 5000 iterations per
noise level and per case are performed to achieve a statistical meaningful quantity to
be evaluated. In each iteration, 8 structure points are sampled, where 5-point and
6-point algorithms use a subset. Even if an algorithm is able to work with more points,
it is fed with the least point quantity in order to evaluate the algorithm’s initial design
performance.

Most of the solvers provide multiple essential matrix solutions to the relative
orientation problem, except the linear classic 8-point algorithm as summarized in
Tab. 6.2. This evaluation process uses the improved procedure from Section 6.4.4,
page 99 for essential matrix decomposition. The number of positive depth values
functions as coarse decision criterion for multiple essential matrix solutions. In terms
of noisy data, essential matrix decomposition may also lead to ambiguous solutions
since only a small quantity of 5 to 8 points are used. In that case all equal solutions per
essential matrix are kept. The relative pose - from all preselected solutions - yielding
the largest quantity of positive depth values from cheiralty validation will be selected.
Even at this point it is possibile that multiple solutions share the same quantity of
positive depth values. The relative pose yielding the least sum of squared geodesic
distances (Eq. (6.20), page 108) will be selected, which is the second criterion for finer
decision selection. At this point it should be also mentioned that the condition was
rejected, which postulates that the correct essential matrix decomposition does not
violate cheirality in any point correspondence. With increasing image noise, the pose
estimation becomes more prone to error (independently of the chosen algorithm) such
that some point correspondences may violate cheirality.

6.5.2 Error Metric

The error distance between ground truth 𝑅true and estimated rotation 𝑅est is defined
as angle

𝛼𝑅 = cos−1

Ñ
trace

Ä(︀
𝑅true

)︀𝑇
𝑅est
ä
− 1

2

é
, (6.17)



6 Relations between Two Camera Spheres 104

where the trace function returns the sum of the entries on the main diagonal of the
matrix. All pose estimation algorithms obtain translation up-to-scale making an Eu-
clidean distance improper for evaluation purposes. Instead, the angle between the
directions of the ground truth translation ttrue and estimated one test is a convenient
error definition [285] such that

𝛼t = cos−1

(︃ (︀
ttrue

)︀𝑇
test

‖ttrue‖ ‖test‖

)︃
. (6.18)

𝛼t is not obtained for degenerate motion cases d-f, since the ground truth is a null-
vector. Sometimes a base vector is choosen as main translation direction. However,
in this work there is no main direction, since random translation sampling covers all
directions of a sphere equally and is not limited to a certain camera movement.

6.5.3 Evaluation of Estimation Algorithms

Case a, b

In case a as shown in Fig. 6.9, QuEst achieves the best estimation results concerning
rotation and translation accuracy, followed by the classic 8-point algorithm and Li’s
non-linear 6-point algorithm, both beeing significantly less accurate. In case b, the
8-point algorithm performs best, followed by Li’s non-linear 6-point algorithm, which
obtains slightly similar results. Noticeably, QuEst isn’t able to estimate the correct
pose under noise-free condition. The same behaviour can be seen for all other 5-point
algorithms (Nister, Stewenius, Stewenius/Engels, Kukelova, Li) in case a, b. Even
if there is no perturbation, the algorithms are not able to obtain correct transforma-
tion estimates. Obviously, the 8-point algorithm achives overall good rotation and
translation estimation results concerning directional and omnidirecitonal views. This
is an opposite behaviour compared to other results in literature for directional cameras,
where the classic 8-point algorithm performs worse [206, 60]. These circumstance led
to the conclusion, that linear methods are highly sensitive to noise [268]. Pagani and
Stricker [196] relate this to the fact that for directional cameras, it is recommended to
normalize the points on image plane in a condition step to improve the stability of the
results [96]. In this condition step, image points are transformed such that the mean
is at origin and their average norm (their mean distance from origin) is

√
2. This step

is not required using P2S-maps, where all image points are already spread around the
center of a unit sphere. This might be a possible explanation for the improved classic
8-point algorithm’s performance for directional and omnidirectional cameras in this
work.

Case c

This special case c cannot be solved by any validated algorithm under noise-free con-
dition. In contrast to the previous cases, there is no obvious algorithm, that performs
best. Concerning rotation estimation, the classic 8-point algorithm and Li’s non-linear
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Fig. 6.9: Results from essential matrix estimation

6-point algorithm achieve less discrepancies, which are still unacceptable. Having a
look at the translation estimation shows, that QuEst has less deviation, but has the
worst performance for rotation estimation. A possible explanation for that behaviour
might be the fact, that QuEst decouples rotation from translation estimation. Nei-
ther rotation estimation, nor translation estimation were satisfyingly obtained by any
choosen algorithms. As mentioned in [59, 191], linear algorithms (6 and more points) do
not work with point configurations on planes and in [201] the authors give an overview
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of further degenerate structures such as cylinders. On the contrary, referring to [201]
the 5-point Nister algorithm is unaffected by planar degeneracy for directional cam-
eras. Fig. 6.9 shows a different behaviour, where none of the 5-point variants is able
to estimate a correct transformation in a noiseless scenario. In general, neither linear,
nor non-linear algorithms are able to handle planar structures.

Case d-f

All algorithms are able to estimate rotation from degenerate motion under noise-free
condition. In case d QuEst achieves the best estimation results followed by the classic
8-point and Li’s non-linear 6-point algorithm. The remaining 5-point algorithms (Nis-
ter, Stewenius, Stewenius/Engels, Kukelova, Li) obtain similar results, but significantly
less accuarate compared to the other ones. Having a look at case e shows, that both
algorithms - the classic 8-point and Li’s non-linear 6-point algorithm - achieve nearly
identical results. Again, the 5-point algorithms perform worse compared to the mentio-
nen ones and QuEst has the poorest performance. Case f, which covers degeneracy in
motion and in structure together, can be estimated by each of the validated algorithms.
Li’s non-linear 6-point algorithm achieves slightly better results compared to the clas-
sic 8-point algorithm, followed by the group of 5-point algorithms and completed by
QuEst, which again has the worst performance. The classic 8-point algorithm achieves
satisfying rotation estimates for spherical image coordinates, which is in contrast to
directional cameras using image plane coordinates [269].

6.5.4 Concluding Remarks

The evaluation concerning essential matrix estimation under different predefined
cases showed that the 5-point algorithms from Nister, Stewenius, Stewenius/Engels,
Kukelova and Li achieve similar, but non-satisfying results. This leads to the conclu-
sion that they are not able to work with spherical image coordinates under full motion
scenarios as presented in case a-c. They are also less accurate under degenerate
motion case d-f. None of the investigated eight algorithms is able to provide sufficient
estimates for case c, which is solved by homography only (Section 6.8.1,page 119).
Using image coordinates on unit sphere improves the pose estimation of the classic
8-point algorithm significantly compared to previous results in literature for directional
cameras.
Li’s non-linear 6-point algorithm is also suitable to work with spherical image point
representation. QuEst shows anomalies. On the one hand this algorithm has the best
performance in case a, d, but fails in case b, e, f (case c is not considered since all
algorithms show poor performances). This is an interesting behaviour, because case a,
d cover omnidirectional scenarios, for which this algorithm wasn’t originally developed.

By means of the results presented in Fig. 6.9, the classic 8-point algorithm
achieves overall satisfying results. Compared to Li’s non-linear 6-point algorithm,
which provides up to 5 essental matrix solutions, the classic 8-point algorithm
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obtains one solution only, reducing the computational effort to resolve the correct
transformation. A 6-point RANSAC needs less iteration steps compared to an 8-point
RANSAC [218]. However for Li’s non-linear 6-point algorithm the computational
effort is 4 to 5 times higher per itertion in order to resolve the correct transformation.
This consideration is a theoretical approach and does not include the actual runtime
of each algorithm as it is assumed they are in equal magnitudes. [269] point out that
linear algorithms are faster. This statement holds in theory, but also depends on the
implementation itself and as shown in [60], where Li’s 5 point algorithm is slightly
faster than the classic 8-point algorithm.
Considering all mentioned aspects, the classic 8-point algorithm is preferred.

Noticed but not considered for evalutation

Kneip, Siegwart, and Pollefeys [142] describe an alternative 5-point approach that
finds an exact global rotation independently of the translation and does not suffer
under ambiguities due to essential matrix decomposition. Referring to the mentioned
publication, it is more robust against noise and yields better rotation accuracy com-
pared to Stewenius’ 5-point algorithm using directional cameras. Unfortunately there
is no global solution for the translation (in case of full motion) which is recovered from
2-point correspondences, and hence does not obtain an optimized solution in case of
noisy data. Further developments of global orientation estimates without RANSAC
are published in [20, 285]. These mentioned novel approaches are possible candidates
to be evaluated for robust two-view geometry estimation of omnidirectional cameras
in future work.

6.6 Two-View Optimization

This section addresses the optimization of transformation estimates from the previous
Section 6.5. Suitable error distances are described and their accuracies are compared
under increasing image noise, similiar to Section 6.5.3. This following sections shortly
describe known epipolar-based distances for directional and omnidirectional cameras
from literature and also introduce two new projection-based distance approaches.

6.6.1 Epipolar-Based Error Distances

Given a set of point correspondences X̂𝑖
𝑘 ↔ X̂𝑖

𝑙, 𝑖 = 1, . . . , 𝑝 and an initial transforma-
tion [𝑅, t̂] from two-view estimates, a non-linear least squares optimization

argmin
𝑅,t̂

𝑝∑︁
𝑖=1

⃦⃦
𝜖𝑖
⃦⃦2

,

using LM and subjecting ‖t̂‖ = 1. For optimization purpose the rotation is expressed
as Rodrigues vector.
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Epipolar Distance

The epipolar distance from Eq. (6.12), page 95 is given by

𝜖𝑖epi =
(︀
X̂𝑖

𝑙

)︀𝑇 (︀
t̂×𝑅X̂𝑖

𝑘

)︀
. (6.19)

Geodesic Distance

The geodesic distance is an angular error between the epipolar plane and the corre-
sponding point on unit sphere

𝜖𝑖geo = sin−1
(︁(︀

X̂𝑖
𝑙

)︀𝑇 (︀
t̂×𝑅X̂𝑖

𝑘

)︀)︁
. (6.20)

as referred to [196, 195], which is based on the findings of [67, 66]. As can be seen
for small error values the geodesic distance equals the epipolar distance. This is also
confirmed by simulation data, where both distances yield the same results concerning
transformation optimization. Since the geodesic distance needs more computational
effort compared to the epipolar distance, it is not considered in this evaluation.

Sampsons Distance

In case of directional cameras the Sampson distance is the recommended error distance
for epipolar geometry expressed in fundamental matrix form [96] as well as in essential
matrix form [206]. As mentioned in [96], the Sampson error provides a first order
approximation of the distance from an image point to its corresponding epipolar line
(great circle in case of omnidirectional cameras). Interestingly, this is in contrast to
[91], where the authors state that the Sampson error is the exact geometric distance
from an image point to the first order approximation of the epipolar line (great circle).
Either way, as reported in [196] the Sampson distance is not suitable for spherical
image points and leads to worse results. Unfortunately an implementation of the
Sampson distance for spherical image coordinates isn’t presented. The author of this
work couldn’t find any publication that applies the Samspson distance to spherical
image coordinates. In case of directional cameras, the Sampson distance lies on an
image plane, whereas in case of omnidirectional cameras, it is measured on unit sphere,
such that the error formulation would become

𝜖𝑖sam =

(︁(︀
X̂𝑖

𝑙

)︀𝑇 (︀
t̂×𝑅X̂𝑖

𝑘

)︀)︁2
⃦⃦
t̂×𝑅X̂𝑖

𝑘

⃦⃦2
+
⃦⃦
𝑅𝑇 [t̂]𝑇×X̂

𝑖
𝑙

⃦⃦2 . (6.21)

Perpendicular Distance

The perpendicular distance

𝜖𝑖per =

(︀
X̂𝑖

𝑙

)︀𝑇 (︀
t̂×𝑅X̂𝑖

𝑘

)︀
‖t̂×𝑅X̂𝑖

𝑘‖
(6.22)
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is used in [196] for non-linear optimization and achieves good convergence properties
concerning spherical camera coordinates.

6.6.2 Projection-Based Error Distances

𝜖pro𝑙

𝑂𝑅, t̂

�̃�𝑙

�̃�𝑘

X̂𝑘

X̂𝑙

𝜖pro𝑘

𝑂𝑅, t̂

𝑅X̂𝑘‖X̂𝑙×t̂‖ X̂𝑙‖𝑅X̂𝑘×t̂‖
𝜖cir

t̂‖𝑅X̂𝑘×X̂𝑙‖

a b

𝒞𝑙 𝒞𝑙 line of sight

Fig. 6.10: Two-View optimization using a) projection error distance and b) circumferential error
distance.

As can be seen, all forementioned distances are variations of the epipolar geometry
and thus they are referred as epipolar-based distances. At this point two additional
error distances are introduced as shown in Fig. 6.10, which rely on the derived closed-
form projection constraints from Section 6.2.2, page 91, and haven’t been presented in
literature so far. They are referred as projection-based distances.

Projection Distance

Based on direct depth factor calculation from Eqs. (6.10) and (6.11), page 93 with:

�̃�
𝑖

𝑘 =
‖X̂𝑖

𝑙 × t̂‖
‖𝑅X̂𝑖

𝑘 × X̂𝑖
𝑙‖

(6.23) �̃�
𝑖

𝑙 =
‖𝑅X̂𝑖

𝑘 × t̂‖
‖𝑅X̂𝑖

𝑘 × X̂𝑖
𝑙‖

, (6.24)

the projection distance is given by

𝜖𝑖pro =
⃦⃦
𝜖𝑖pro𝑘

⃦⃦
+
⃦⃦
𝜖𝑖pro𝑙

⃦⃦
(6.25)

consisting of two parts. The first one

𝜖𝑖pro𝑘 = X̂𝑖
𝑘 −

𝑅𝑇
(︀
X̂𝑖

𝑙�̃�
𝑖

𝑙 − t̂
)︀⃦⃦

𝑅𝑇
(︀
X̂𝑖

𝑙�̃�
𝑖

𝑙 − t̂
)︀⃦⃦ (6.26)

represents the distance between the 𝑖th image point X̂𝑖
𝑘 and its corresponding projection

from X̂𝑖
𝑙. The second one

𝜖𝑖pro𝑙 = X̂𝑖
𝑙 −

𝑅X̂𝑖
𝑘�̃�

𝑖

𝑘 + t⃦⃦̂
𝑅X̂𝑖

𝑘�̃�
𝑖

𝑘 + t̂
⃦⃦ (6.27)
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represents the distance between the 𝑖th image point X̂𝑖
𝑙 and its corresponding projection

from X̂𝑖
𝑘.

Circumferential Distance

The circumferential error is based on Eq. (6.5), page 92

0 = t̂+𝑅X̂𝑖
𝑘�̃�

𝑖

𝑘 − X̂𝑖
𝑙�̃�

𝑖

𝑙 .

Applying Eqs. (6.23) and (6.24) and multiplying ‖𝑅X̂𝑖
𝑘×X̂𝑖

𝑙‖ yields the circumferential
distance

𝜖𝑖cir = t̂‖𝑅X̂𝑖
𝑘 × X̂𝑖

𝑙‖+𝑅X̂𝑖
𝑘‖X̂𝑙 × t̂‖ − X̂𝑖

𝑙‖𝑅X̂𝑖
𝑘 × t̂‖ . (6.28)

6.6.3 Comparison between Error Distances

Based on the findings from Section 6.5, page 101 non-linear optimization uses
transformation estimates provided by the classic 8-point algorithm. The following
evaluation considers all motion and structure cases as presented in Fig. 6.8, page 102.
The simulation also uses the parameter settings for image noise 𝒩 (0, 𝜎2

𝜃,𝜑) with
𝜎𝜃,𝜑 = 0∘, . . . , 1∘ and performs 1000 iterations per noise level and per case, where
at each single iteration 1000 point correspondences are sampled. The results of this
simulation are shown in Fig. 6.11 for full motion and in Fig. 6.12 for degenerate
motion.
As can be seen in case a, the circumferential distance achieves the best optimization
results concerning rotation and translation. In contrast to other distances it yields
a low translation direction error under increasing image noise. In case b the
circumferential distance obtaines slightly worse (but sill satifiying) rotation results
compared to epipolar-based distances, but provides significantly better translation
results. In case c all optimization distances improve initial transformation estimates
but still yield unsatisfying results, even under noiseless condition.
For all full motion cases depth values are recalculated (using Eqs. (6.8) and (6.9),
page 93) from optimized transformations in order to validate cheirality (3rd row). As
can be clearly seen the circumferential distance maintains cheirality best. It obtains
optimized transformations by enforcing positive depth values. The projection distance
also consists of a cheirality constraint, however with increasing image noise it cannot
enforce positive depth values for all point correspondences. This circumstance can be
explained with the sampling distribution of points on unit sphere, where some points
are located close to the epipoles. These points quickly tend to change the sign of
the corresponding depth values due to noise influcence [157]. The proposed direct
depth calculation uses a least squares approximation based on collinear constraints.
Consequently small image deviations might lead to negative depth estimates even if
the projection cheirality constraint isn’t violated.
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Fig. 6.11: Comparison of different cost functions for two-view transformation optimization (full mo-
tion).

Having a look at degenerate motion cases shows in case d that all distances
yield similiar satisfying results concerning rotation. Case e, f are dominated by
epipolar-based distances yielding continuous low rotation errors over increasing image
noise in case e and slowly increasing rotation errors in case f.

All epipolar-based distances achieve similiar optimization results concerning full
and degenerate motion cases. The use of the epipolar distance is preferred, due to its
simplicity and decreased computational cost compared to prependicular distance and
Sampson distance.

Based on the obtained results an optimization strategy is chosen that uses the
circumferential distance to optimize transformation estimates in a first step, which
are refined by a simple epipolar distance in a second step. The relation between both
constraints is explained in Appendix A.6, page 179. The combination of projection
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Fig. 6.12: Comparison of different cost functions for two-view transformation optimization (degenerate
motion).

and epipolar constraints yields satisfying rotation and translation results in full motion
cases and satisfying rotation results in degenerate motion cases as Fig. 6.13 shows.
Using this proposed optimization scheme allows to further improve transformation
results from circumferential distance except for case c, which however is not in scope
of this work since degenerate structure relates to special field of interest.
The same can be said for case d-f, which are rotation-only transformations and do
not represent a basis for 3d reconstruction. However it is still necessary to see how
accurate transformations can be estimated under degeneracy in order to detect those
cases.

Fig. 6.14 concentrates on case a, b and illustrates the rotation error Δ𝛾,𝛽,𝛼 in Euler
angles and the direction error as relative translation error Δ𝑋,𝑌,𝑍 . For simulation
purposes camera transformations are equally sampled over all rotation angles (𝛾, 𝛽, 𝛼)
and translation directions (𝑋, 𝑌, 𝑍). The rotation standard derivation is denoted by
𝜎𝛾,𝛽,𝛼 and the standard deviation concerning relative translation is denoted by 𝜎𝑋,𝑌,𝑍 .

In case a the mean rotation error increases to Δ̄𝛾,𝛽,𝛼 ≈ 0.06∘ at 𝜎𝜃,𝜑 = 1∘,
where the upper bound reaches Δ̄𝛾,𝛽,𝛼 + 𝜎𝛾,𝛽,𝛼 ≈ 0.14∘. At the same time the mean
relative translation error reaches Δ̄𝑋,𝑌,𝑍 ≈ 0.24% at 𝜎𝜃,𝜑 = 1∘ with an upper bound
of Δ̄𝑋,𝑌,𝑍 + 𝜎𝑋,𝑌,𝑍 ≈ 0.43%. This leads to the clear conclusion that transformation
estimation based on omnidirectional distributed image features is less influenced by
image noise and yields small relative transformation errors.
Optimization results in case b yield larger transformation errors such that mean
rotation error is Δ̄𝛾,𝛽,𝛼 ≈ 0.24∘ at 𝜎𝜃,𝜑 = 1∘ with a corresponding upper bound
Δ̄𝛾,𝛽,𝛼 + 𝜎𝛾,𝛽,𝛼 ≈ 0.78∘. The mean relative translation error reaches Δ̄𝑋,𝑌,𝑍 ≈ 5% at
𝜎𝜃,𝜑 = 1∘, where the upper bound is Δ̄𝑋,𝑌,𝑍 + 𝜎𝑋,𝑌,𝑍 ≈ 21%. The relative translation
error is more than a magnitude larger in the directional view case compared to the
omnidirectional one. Hence it can be said that translation estimation in directional
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Fig. 6.13: Optimization results using a combination of circumferential and epipolar error distance in
a two step refinement.

view cases is strongly influenced by image noise.

6.7 Two-View Translation Scaling

The relative pose between two cameras from optimized two-view geometry consists of
an up-to-scale translation ‖t̂‖ = 1. The aim of this section is to use available depth
data, e.g. from range sensors to correctly scale the translation’s magnitude to real-
world dimension without additionally influcencing the translation’s direction through
depth inaccuracies. There are different methods to obtain a scaled real-world transfor-
mation between a pair of combined color and depth data such as ICP or PnP.
ICP is a 3d-3d alignment and requires depth data in both images. This restriction
prevents the combination of RGB- and RGBD-cameras. PnP performs a 3d-2d align-
ment (Section 4.4.1,page 60) and requires depth information for all feature points in
at least one of the two cameras. This is not always the case, since some image features
are located outside the depth range or outside the FoV of the depth sensor. In most
RGBD-cameras the depth sensor covers a smaller FoV than the color sensor does as
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Fig. 6.14: Optimization results from proposed two step refinement showing mean rotation error Δ̄𝛾,𝛽,𝛼

and mean relative translation error Δ̄𝑋,𝑌,𝑍 over increasing image noise 𝜎𝜃,𝜑.

can be seen at hand of the calibration example from Appendix A.1, page 170. Hence,
only a subset of all available feature correspondences can be used for PnP alignment.
This circumstance may cause drift, if feature correspondences with depth values are
not equally distributed over the entire image.
Some methods also classify features according their depth values to split rotation from
translation estimation. Features at short distance are better for translation estimation,
wheras features that are farther away achieve a better and more robust rotation esti-
mation [126]. In order to overcome these mentioned problems, 2d-2d image alignment
via two-view geometry is recommended [218]. Available depth data are only used to
scale the translation magnitude.
The following describes a least squares estimation approach of the real-world transla-
tion scale factor and its non-linear optimization.

6.7.1 Linear Least Squares Estimation

The here presented approach is based on findings from Section 6.2.2, page 91 that
directly obtain depth values from feature correspondences of a two-view transformation.
The real-world translation scale factor is estimated by minimizing the sum of Euclidean
distances between given depth values and recalculated ones as comprehensively shown
in the following.
Assuming two cameras 𝑘 and 𝑙 with known exerior relative transformation [𝑅𝑙, t𝑙] =

[𝐼,0], [𝑅𝑘, t𝑘] = [𝑅, t] and a set of point correspondences X̂𝑘 ↔ X̂𝑙. Considering the
circumstance that a point pair has only one corresponding depth value in either camera
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Fig. 6.15: Basic principle of the two-view real-world translation scale estimation

𝑘 or camera 𝑙. X̂
′𝑖
𝑘 ↔ X̂

′𝑖
𝑙 denotes a point pair subset corresponding to 𝑚 given depth

values 𝛿𝑖𝑘 in camera 𝑘 and analogous X̂𝑗
𝑘 ↔ X̂

′′𝑗
𝑙 is a point pair subset corresponding

to 𝑛 given depth values 𝛿𝑗𝑙 in camera 𝑙. Supposing noise free data and a real-world
scale translation t, such that 𝜆

′𝑖
𝑘 = 𝛿𝑖𝑘 and 𝜆

′′𝑗
𝑙 = 𝛿𝑗𝑙 . Applying mentioned constraints

to Eqs. (6.6) and (6.7), page 92 yields:

X̂
′𝑖
𝑙 × t = 𝛿𝑖𝑘

(︀
𝑅X̂

′𝑖
𝑘 × X̂

′𝑖
𝑙

)︀
, 𝑖 = 1, . . . ,𝑚

𝑅X̂
′′𝑗
𝑘 × t = 𝛿𝑗𝑙

(︀
𝑅X̂

′′𝑗
𝑘 × X̂

′′𝑗
𝑙

)︀
, 𝑗 = 1, . . . , 𝑛 .

Substituting t = 𝑠t̂, with 𝑠 being an unknown real-world scale factor and t̂ being the
normalized translation from two-view geometry leads to:

𝑠
(︀
X̂

′𝑖
𝑙 × t̂

)︀⏟  ⏞  
a𝑖
𝑘

= 𝛿𝑖𝑘
(︀
𝑅X̂

′𝑖
𝑘 × X̂

′𝑖
𝑙

)︀⏟  ⏞  
b𝑖
𝑘

𝑠
(︀
𝑅X̂

′′𝑗
𝑘 × t̂

)︀⏟  ⏞  
a𝑗
𝑙

= 𝛿𝑗𝑙
(︀
𝑅X̂

′′𝑗
𝑘 × X̂

′′𝑗
𝑙

)︀⏟  ⏞  
b𝑗
𝑙

.

Stacking all elements of a𝑖
𝑘, a

𝑗
𝑙 and b𝑖

𝑘,b
𝑗
𝑙 such that:

a =
(︀
(a1

𝑘)
𝑇 , . . . , (a𝑚

𝑘 )
𝑇 , (a1

𝑙 )
𝑇 , . . . , (a𝑛

𝑙 )
𝑇
)︀𝑇 ∈ R3(𝑚+𝑛)×1

b =
(︀
(b1

𝑘)
𝑇 , . . . , (b𝑚

𝑘 )
𝑇 , (b1

𝑙 )
𝑇 , . . . , (b𝑛

𝑙 )
𝑇
)︀𝑇 ∈ R3(𝑚+𝑛)×1 ,
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allows straightforwardly to obtain 𝑠 using least-squares approximation

𝑠init = (a𝑇b)/‖a‖2 . (6.29)

Fig. 7.4 highlights the basic idea behind the proposed scaling estimation approach and
shows that scaling 𝛿𝑖𝑘 = �̃�

′𝑖
𝑘 𝑠 and / or 𝛿𝑗𝑙 = �̃�

′′𝑗
𝑙 𝑠 also scales t = 𝑠t̂.

Appendix A.9, page 182 describes an approach to obtain the real-world scale
factor’s uncertainty from given linear estimation.

6.7.2 Non-Linear Least Squares Optimization

Real-world translation scale factor optimization is based on projection constraints. It
is a common method that uses depth values in order to back-project corresponding
image points from camera sphere 𝒮 𝑙 onto camera sphere 𝒮𝑘 and vice versa. In this
scenario X̂

′𝑖
𝑘 denotes a measured image point on camera sphere 𝒮𝑘 and Ŷ𝑖

𝑘 represents
its corresponding back-projection from camera sphere 𝒮 𝑙 such that

Ŷ𝑖
𝑘 =

Y𝑖
𝑘

‖Y𝑖
𝑘‖

=
𝛿𝑖𝑙𝑅

𝑇 X̂
′𝑖
𝑙 − 𝑠𝑅𝑇 t̂

‖𝛿𝑖𝑙𝑅𝑇 X̂
′𝑖
𝑙 − 𝑠𝑅𝑇 t̂‖

, 𝑖 = 1, . . . ,𝑚 . (6.30)

Analogous X̂
′𝑗
𝑙 denotes a measured image point on camera sphere 𝒮 𝑙 and Ŷ𝑗

𝑙 represents
its corresponding back-projection from camera sphere 𝒮𝑘

Ŷ𝑗
𝑙 =

Y𝑗
𝑙

‖Y𝑗
𝑙 ‖

=
𝛿𝑗𝑘𝑅X̂

′′𝑗
𝑘 + 𝑠t̂

‖𝛿𝑗𝑘𝑅X̂
′′𝑗
𝑘 + 𝑠t̂‖

, 𝑗 = 1, . . . , 𝑛 . (6.31)

Stacking all measurements into X̂ and their corresponding back-projections into Ŷ

such that:

X̂ =
(︀
X̂

′1
𝑘 , . . . , X̂

′𝑚
𝑘 , X̂

′′1
𝑙 , . . . , X̂

′′𝑛
𝑙

)︀𝑇 ∈ R3(𝑚+𝑛)×1

Ŷ =
(︀
Ŷ1

𝑘, . . . , Ŷ
𝑚
𝑘 , Ŷ

1
𝑙 , . . . , Ŷ

𝑛
𝑙

)︀𝑇 ∈ R3(𝑚+𝑛)×1 .

The real-world translation scale factor is determined by minimizing the sum of squared
Euclidean distances between measured image points X̂ and their corresponding pro-
jections Ŷ

𝑠opt = min
𝑠
‖X̂− Ŷ‖2 , (6.32)

which is solved by LM.
Appendix A.10, page 183 describes an approach to obtain the scaling factor’s uncer-
tainty from given non-linear optimization.
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6.7.3 Comparison between Initial and Optimized Scaling Factor

Assuming 𝑠true to be the ground truth scaling factor as well as 𝑠init being the initial
scaling factor from Eq. (6.29) and 𝑠opt beeing the optimized scaling factor obtained via
Eq. (6.32). The relative scaling error

Δ𝑠 =

⃒⃒⃒⃒
𝑠init/opt − 𝑠true

𝑠true

⃒⃒⃒⃒
(6.33)

is calculated for the omnidirectional view case a as well as for the directional view case
b. This section analyzes the influence of different noise sources on translation scaling
such as image noise 𝒩 (0, 𝜎2

𝜃,𝜑) with 𝜎𝜃,𝜑 = 0∘, . . . , 1∘, rotation noise 𝒩 (0, 𝜎2
𝛾,𝛽,𝛼) with

𝜎𝛾,𝛽,𝛼 = 0∘, . . . , 1∘, relative translation noise 𝒩 (0, 𝜎2
𝑋,𝑌,𝑍) with 𝜎𝑋,𝑌,𝑍 = 0%, . . . , 10%

and relative depth noise 𝒩 (0, 𝜎2
𝛿) with 𝜎𝛿 = 0%, . . . , 1%.

At every noise level, 15000 samples with 100 point correspondences each are
randomly generated. The results are shown in Fig. 6.16. Image noise 𝜎𝜃,𝜑 simulates
calibration and feature detection inaccuracies, rotation noise 𝜎𝛾,𝛽,𝛼 as well as trans-
lation noise 𝜎𝑋,𝑌,𝑍 cover erroneous two-view estimates and depth noise 𝜎𝛿 represents
measuring uncertainties of range sensors. Each noise source is evaluated separately,
the remaining ones are set to zero. An evaluation of all noise sources at once would
lead to extensive computational effort and an overall evaluation is not straightforward.
Hence the conclusion is made from the separate evaluations.
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Fig. 6.16: Overview of the mean relative translation scaling error Δ̄𝑠 caused by image noise 𝜎𝜃,𝜑,
rotation noise 𝜎𝛾,𝛽,𝛼, translation noise 𝜎𝑋,𝑌,𝑍 and depth noise 𝜎𝛿 for omnidirectional view (1st row,
case a) and directional view (2nd row, case b).
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Non-linear optimization via projection constraints descreases the relative mean scaling
error Δ̄𝑠 in case of image noise at 𝜎𝜃,𝜑 = 1∘ from Δ̄𝑠 ≈ 0.8% to Δ̄𝑠 ≈ 0.4% for both,
omnidirectional and directional view cases. Δ̄𝑠 also decreases under rotation noise
from Δ̄𝑠 ≈ 1.4% to Δ̄𝑠 ≈ 0.6% at 𝜎𝛾,𝛽,𝛼 = 1∘ for omnidirectional view case and
from Δ̄𝑠 ≈ 3.8% to Δ̄𝑠 ≈ 2.1% for directional view case. Interestingly the proposed
optimization slighly increases Δ̄𝑠 in case of translation noise from Δ̄𝑠 ≈ 0.36% to
Δ̄𝑠 ≈ 0.46% at 𝜎𝑋,𝑌,𝑍 = 10% for omnidirectional view case. In constrast to that, Δ̄𝑠

negligibly decreases from Δ̄𝑠 ≈ 0.81% to Δ̄𝑠 ≈ 0.80% at 𝜎𝑋,𝑌,𝑍 = 10% for directional
view case. Considering Δ̄𝑠 in relation to depth noise clearly shows a decrease from
Δ̄𝑠 ≈ 0.16% to Δ̄𝑠 ≈ 0.06% at 𝜎𝛿 = 1% for both, omnidirectional and directional view.
As a result for both view cases, rotation noise turns out to have the strongest influence
on the real-world scale factor calculation, approximately an order of magnitude
larger than the remaining noises. Non-linear optimization is recommended, since Δ̄𝑠

decreases in case of rotation noise, which compensates the Δ̄𝑠 increase in case of depth
noise. Translation noise influence is small and doesn’t show significant differences
between initial and optimized real-world scale factors. Image noise leads to small
intial mean relative scale errors, that can be further halfed by non-linear optimization.

Real World Example

The proposed translation scaling is a flexible method to adjust relative translation to
real world scale and needs at least one depth value in one of the two images. Fig. 6.17
shows feature matches and their corresponding projection in the 3d scene.

Fig. 6.17: Real world example using the proposed two-view scaling. Solid lines ( ) denote back-
projections, dashed lines (- - -) denote their corresponding projections onto the other sphere. a)
Feature matches with highlighted depth values ○. b) Front view of the reconstructed 3d scene with
both camera spheres. c) Top view of the 3d scene showing that scaling influences the distance between
both spheres but not the direction.
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6.8 Homography to Identify Degeneracies

Identifying degenerate motion is an important part in every reconstruction pipeline
since this kind of motion doesn’t provide any 3d information. Furthermore, degenerate
structure can only be described by homography and leads to erroneous transfor-
mations when solved via epipolar or projection constraints. Some Visual SLAM
implementations [189, 190, 27] are able to handle degenerate structures and recover
the transformation from a homography matrix. However the proposed SCME pipeline
does not incorporate degenerate structure.

Degenerate motion can be identified when resolving the ambiguity from essen-
tial matrix decomposition as explained in Sections 6.4.2 to 6.4.4. The improved
procedure (Section 6.4.4) needs two calculation steps only, however pure rotation in
case of noisy data leads to the circumstance that �̃�𝑘 ≈ 0 and requires a threshold.
Since �̃�𝑘 is an approximate depth value, it is up-to-scale and makes thresholding
cumbersome. Obtaining the scaled depth value 𝜆𝑘 = �̃�𝑘/

⃦⃦
𝑅X̂𝑘 × X̂𝑙

⃦⃦
leads to the

problem that ‖𝑅X̂𝑘 × X̂𝑙

⃦⃦
→ 0 in case of pure rotation and thus generates a large 𝜆𝑘.

Consequently large depth values would indicate a pure rotation. However a full motion
using distant features also generates large depth values. Hence, depth thresholding
would limit the usage of distant feature points.

In [24, 285] the authors propose ‖𝑅X̂𝑘 × X̂𝑙

⃦⃦
= 0 as decision criterion to iden-

tify pure rotation, which is also used for the standard procedure (Section 6.4.2).
However this pure rotation constraint is only valid under the assumption that the
recovered rotation from essential matrix decomposition yields sufficent accuracy. As
illustrated in Fig. 6.9, page 105, under increasing image noise the extracted rotation
for degnerate motion becomes less accurate (case d-f) and leads to similiar rotation
errors as for full motion (case a, b). Thus a decision based on the pure rotation
constraint cannot be made under increased image noise. The essential matrix is able
to describe the relation of point correspondences under pure rotation, however the
extracted rotation matrix does not necessarly yield satifying accuracy to describe a
valid transformation between the point correspondences.

Degenerate motion doesn’t deliver 3d motion information and degenerate struc-
ture is not fully described by introduced two-view relations from Section 6.6. Hence
both types of degeneracies must be identified and rejected from the set of valid image
pairs.

6.8.1 Homography for Spherical Cameras

The following describes the homography geometry applied to camera spheres in camera
frame 𝒞𝑙. Assuming a 3d point U on a plane 𝜋h. The homography matrix 𝐻 describes
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Fig. 6.18: Graphical representation of the homography geometry

the relation between the corresponding projections such that

𝜆𝑙X̂𝑙 = 𝜆𝑘𝐻X̂𝑘 (6.34)

with 𝜆𝑙/𝜆𝑘 = �̃� leading to

�̃�X̂𝑙 = 𝐻X̂𝑘 . (6.35)

Eliminating �̃� by cross-multiplying X̂𝑙 yields

0 = X̂𝑙 ×𝐻X̂𝑘 (6.36)

As Fig. 6.18 illustrates, homography applied to spherical coordinates maps X̂𝑘 to a
point �̃�X̂𝑙 on the LoS between X and X̂𝑙. Since the sign of 𝜆 is arbitrary, normalizing
𝜆X̂𝑙/‖𝜆X̂𝑙‖ could lead to a projection −X̂𝑙 onto the opposite hemisphere.
According to [217] the essential matrix can be decomposed

𝐻 = 𝑅 + t̃n𝑇 , (6.37)

where n denotes the plane’s normal vector and t̃ denotes the up-to-scale translation
vector. However in this work a decomposition of the homography matrix is not required
as shown in the following.

6.8.2 Homography Estimation

The homography matrix is estimated using a DLT and a set of at least five (𝑝 ≥ 5)

point correspondences X𝑖
𝑘 ↔ X𝑖

𝑙, 𝑖 = 1, . . . , 𝑝. Based on Eq. (6.36) the homography
constraint can be rearranged into the form 𝐵x = 0 with

x =
Ä
ℎ11 ℎ12 ℎ13 ℎ21 ℎ22 ℎ23 ℎ31 ℎ32 ℎ33

ä𝑇
∈ R1×9 (6.38)
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containing all matrix elements

𝐻 =

⎡⎣ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

⎤⎦ ∈ R3×3 (6.39)

and

b𝑖
1 =
Ä
X𝑖

𝑘(1)X
𝑖
𝑙(1) X𝑖

𝑘(2)X
𝑖
𝑙(1) X𝑖

𝑘(3)X
𝑖
𝑙(1)

ä
∈ R1×3

b𝑖
2 =
Ä
X𝑖

𝑘(1)X
𝑖
𝑙(2) X𝑖

𝑘(2)X
𝑖
𝑙(2) X𝑖

𝑘(3)X
𝑖
𝑙(2)

ä
∈ R1×3

b𝑖
3 =
Ä
X𝑖

𝑘(1)X
𝑖
𝑙(3) X𝑖

𝑘(2)X
𝑖
𝑙(3) X𝑖

𝑘(3)X
𝑖
𝑙(3)

ä
∈ R1×3

forming

𝐵𝑖 =

⎡⎣01×3 −b𝑖
3 b𝑖

2

b𝑖
3 01×3 −b𝑖

1

−b𝑖
2 b𝑖

1 01×3

⎤⎦ .

Since rank(𝐵) = 2 [164, 50] it can be reduced such that

𝐵𝑖 =

ñ
01×3 −b𝑖

3 b𝑖
2

b𝑖
3 01×3 −b𝑖

1

ô
.

Stacking all available point correspondences into 𝐵 leads to

𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎣
01×3 −b1

3 b1
2

b1
3 01×3 −b1

1

...
...

...

01×3 −b𝑝
3 b𝑝

2

b𝑝
3 01×3 −b𝑝

1

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R2𝑝×9 .

Applying an SVD to 𝐵 with
𝐵 = 𝑈𝛴𝑉 𝑇

obtains the right unitary matrix 𝑉 ∈ R9×9. The last column 𝑉 (:,9) corresponds to the
smallest singular value in 𝛴 ∈ R9×9, which represents the solution x = 𝑉 (:,9). Before
applying the SVD, normalizing each row of 𝐵 leads to a more stable numerical solution.
Rearranging the elements of x provides 𝐻.

6.8.3 Homography Optimization

Homography optimization is based on Eq. (6.35)

�̃�X̂𝑙 = 𝐻X̂𝑘 ,
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which is solved for 𝜆 in least squares sense (Appendix A.2,page 174) such that

�̃� = X̂𝑇
𝑙

(︀
𝐻X̂𝑘

)︀
. (6.40)

Applying Eq. (6.40) to Eq. (6.35) yields the cost function

argmin
𝐻

𝑝∑︁
𝑖=1

⃦⃦⃦⃦
⃦X̂𝑙 −

𝐻X̂𝑘

X̂𝑇
𝑙

(︀
𝐻X̂𝑘

)︀ ⃦⃦⃦⃦⃦
2

.

subjecting ‖𝐻‖F = 1 for non-linear optimization using LM.

6.8.4 Homography and Pure Rotation

Assuming a point on a plane 𝜋h at infinity such that 𝜆𝑘, 𝜆𝑙 → ∞ and thus �̃� = 1. As
a result for spherical camera coordinates Eq. (6.35) becomes

X̂𝑙 = 𝐻X̂𝑘 ,

which is similar to X̂𝑙 = 𝑅X̂𝑘. Hence the homography for points on a plane 𝜋h at
infinity describes a pure rotation and consequently point correspondences from pure
camera rotation relate to homography. The latter circumstance is especially used for
image stichting.
Generally speaking, 𝐻 describes the transformation caused by pure rotation or a mov-
ing camera capturing a planar structure [96, 224]. Estimating and optimizing 𝐻 solves
for the transformation from degenerate structure (point on plane 𝜋h) and from de-
generate motion (pure rotation). As a consequence, in [224] the authors destinguish
between homography from pure rotation and from planar structure in order to reject
pure rotation only.

6.8.5 Homography in Epipolar Geometry

The classic 8-point algorithm is able to obtain an essential matrix 𝐸 that mathe-
matically solves the epipolar geometry under degeneracies. Referring to Section 6.5,
page 101 the decomposition of 𝐸 delivers unsatisfying two-view transformation results
for degenerate structure (case c) and degenerate motion (case d-f).

The classic 8-point algorithm uses a set of eight point correspondences to obtain the
essential matrix 𝐸. Using the same point set and following Section 6.8.2 delivers
a homography matrix 𝐻. In case of degenerate motion/structure (X̂𝑙)

𝑇𝐸X̂𝑘 = 0

and ‖X̂𝑙 × 𝐻X̂𝑘‖ ≈ 0, whereas in case of full motion/structure (X̂𝑙)
𝑇𝐸X̂𝑘 = 0 and

‖X̂𝑙 ×𝐻X̂𝑘‖ > 0. As can be seen the homography error might be a useful indicator.
Hower it is not straightforward to find a threshold that distinguishes between ‖ · ‖ ≈ 0

and ‖ · ‖ > 0.
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The following shows a new strategy by comparing two epipolar error distances
in order identify degenerate cases. This startegy can be used in conjunction with
essential matrix estimation in a RANSAC framework.
Essential matrix 𝐸 and homography matrix 𝐻 are able to transform point correspon-
dences under structure and motion degeneracies such that:

0 = X̂𝑇
𝑙 𝐸X̂𝑘 (6.41)

�̃�X̂𝑙 = 𝐻X̂𝑘 . (6.42)

Rearranging Eq. (6.42) leads to

X̂𝑙 =
1

�̃�
𝐻X̂𝑘 (6.43)

and entering Eq. (6.43) into Eq. (6.41) yields:

0 =
1

�̃�

(︀
𝐻X̂𝑘

)︀𝑇
𝐸X̂𝑘

0 =
1

�̃�

(︀
𝐻X̂𝑘

)︀𝑇
𝐸X̂𝑘

0 =
1

�̃�
X̂𝑇

𝑘𝐻
𝑇𝐸X̂𝑘 . (6.44)

Eq. (6.44) combines essential matrix 𝐸 with homography matrix 𝐻 and is only valid
in degenerate cases. Applying 𝐸 = [t]×𝑅 to Eq. (6.41) and to Eq. (6.44) leads to:

𝜖𝐸 =
(︀
X̂𝑙

)︀𝑇 (︀
[t]×𝑅X̂𝑘

)︀
(6.45)

𝜖𝐻 =
1

�̃�

(︀
X̂𝑘

)︀𝑇
𝐻𝑇
(︀
[t]×𝑅X̂𝑘

)︀
(6.46)

with |�̃�| = 1/‖𝐻X̂𝑘‖, where 𝜖𝐸 denotes the epipolar error based on 𝐸 and 𝜖𝐻 denotes
the epipolar error based on 𝐸 and 𝐻.

In case of degeneracy the essential matrix decomposition into 𝑅 and t becomes
erroneous, which leads to larger epipolar errors |(X̂𝑙)

𝑇
(︀
[t]×𝑅X̂𝑘

)︀
| ≥ 0. Furthermore,

𝐻 is obtained such that ‖X̂𝑙×𝐻X̂𝑘‖ = 0 leading to the fact that 𝜖𝐻 = 𝜖𝐸. Considering
�̃�X̂𝑙 = 𝐻X̂𝑘 from Eq. (6.42) shows that since ‖𝐻X̂𝑘‖ ≥ 1 and ‖X̂𝑙‖ = 1 consequently
�̃� ≤ 1. If �̃� is brought to the left side of Eq. (6.46), the error becomes 𝜖𝐻 = �̃�𝜖𝐻 and
thus 𝜖𝐻 ≤ 𝜖𝐸.
The epipolar errors are calculated for the entire point set 𝑝:

𝜖𝐸 =

𝑝∑︁
𝑖=1

⃦⃦(︀
X̂𝑖

𝑙

)︀𝑇 (︀
[t]×𝑅X̂𝑖

𝑘

)︀⃦⃦
(6.47)

𝜖𝐻 =

𝑝∑︁
𝑖=1

⃦⃦(︀
X̂𝑖

𝑘

)︀𝑇
𝐻𝑇
(︀
[t]×𝑅X̂𝑖

𝑘

)︀⃦⃦
. (6.48)
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Comparing both errors indicates a degeneracy if 𝜖𝐻 ≤ 𝜖𝐸.

The described procedure can be also integrated into the optimization process of
two-view transformations in order to verify the optimized results. This step is required
if filtering rejects feature correspondences from the point set during optimization in or-
der to ensure that the remaining correspondences still belong to full motion/structure.
In that case it is recommended to additionally optimize 𝐻 as Section 6.8.3 describes
before calculating the epipolar errors.

Brief Chapter Summary

This chapter extensively described the geometric relations of point correspondences
between two camera spheres. A closed-from triangulation approach was introduced,
which is called alternative midpoint method. Different two-view estimation algorithms
were presented and compared under varying camera motion and scene structure, where
the classic 8-point algorithm obtained best results. Furthermore, a novel procedure was
developed to resolve transformation ambiguities from essential matrix decomposition
withing two calculation steps only. For two-view optimization popular epipolar-based
distanced function were presented and novel projection-based ones were introduced.
A combination of projection and epipolar constraints obtained sufficient optimization
results. Additionally, up-to-scale two-view transformations were scaled using available
depth data and a procedure was explained to detect degenerate motion and degenerate
structure using homography.
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7 Relations between Three Camera
Spheres

Brief Chapter Overview

This chapter comprehensively examines the relation of point correspondences between
three camera spheres. Section 7.1 describes in detail the derivation of the three-view
constraint applied to camera spheres. Section 7.2 introduces a novel crossing epipolar
planes geometry and Section 7.3 reformulates the trifocal geometry for spherical cam-
eras. The relations between three-view, crossing epipolar planes and trifocal geometry
are clarified in Section 7.4. Section 7.5 concentrates on the recovery of the translation
ratio from up-to-scale two-view transformations. Section 7.5.1 describes a structureless
approach to determine the translation ratio from three-view, crossing epipolar planes
and trifocal constraints, whereas Section 7.5.2 presents a structure-based approach
using triangulation. Finally Section 7.5.3 compares derived translation ratios from
discussed approaches.

7.1 Three View Geometry

U

O

𝜆𝑙

𝑅𝑘, t𝑘

𝑅𝑙, t𝑙

𝑅𝑚, t𝑚

t𝑘−t𝑙 t𝑚−t𝑙
𝛾𝑘 𝛾𝑚

𝛿𝑘 𝛿𝑚

𝑅𝑘X̂𝑘

𝑅𝑙X̂𝑙

𝑅𝑚X̂𝑚

𝒮 𝑙

𝒮𝑘 𝒮𝑚

𝒲
line of sight

Fig. 7.1: Three-view geometry derivation

Indelman first mentioned the three-view geometry in [115] and used this constraint as
a basic element in his structureless BA approach [116], which is referred as incremental
light bundle adjustment [118, 117, 119]. The original three-view constraint derivation
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is explained in [115]. This work explains a different derivation approach based on
simple geometric relations as shown in the following. Furthermore, this new approach
also explains the constraint’s geometric meaning.

The three-view relation can be best described by two adjoining triangles de-
fined by vertices △(t𝑙, t𝑘,U) and △(t𝑚, t𝑙,U) with a touching edge 𝜆𝑙 as shown in
Fig. 7.1. This derivation is based on the law of sines, which reveals the relation for
△(t𝑙, t𝑘,U)

𝜆𝑙

sin 𝛾𝑘

=

⃦⃦
t𝑘 − t𝑙

⃦⃦
sin 𝛿𝑘

(7.1)

and for △(t𝑚, t𝑙,U)

𝜆𝑙

sin 𝛾𝑚

=

⃦⃦
t𝑚 − t𝑙

⃦⃦
sin 𝛿𝑚

. (7.2)

The sine-terms are substituted with:

| sin 𝛿𝑘| =
⃦⃦
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

⃦⃦⃦⃦
𝑅𝑘X̂𝑘

⃦⃦ ⃦⃦
𝑅𝑙X̂𝑙

⃦⃦ =
⃦⃦
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

⃦⃦
(7.3)

| sin 𝛿𝑚|=
⃦⃦
𝑅𝑙X̂𝑙 ×𝑅𝑚X̂𝑚

⃦⃦⃦⃦
𝑅𝑙X̂𝑙

⃦⃦ ⃦⃦
𝑅𝑚X̂𝑚

⃦⃦ =
⃦⃦
𝑅𝑙X̂𝑙 ×𝑅𝑚X̂𝑚

⃦⃦
(7.4)

| sin 𝛾𝑘| =
⃦⃦
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀⃦⃦⃦⃦
𝑅𝑘X̂𝑘

⃦⃦ ⃦⃦
t𝑘 − t𝑙

⃦⃦ =

⃦⃦
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀⃦⃦⃦⃦
t𝑘 − t𝑙

⃦⃦ (7.5)

| sin 𝛾𝑚|=
⃦⃦
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀⃦⃦⃦⃦
𝑅𝑚X̂𝑚

⃦⃦ ⃦⃦
t𝑘 − t𝑙

⃦⃦ =

⃦⃦
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀⃦⃦⃦⃦
t𝑚 − t𝑙

⃦⃦ . (7.6)

Applying Eqs. (7.3) and (7.5) to Eq. (7.1) yields

𝜆𝑙=

⃦⃦
t𝑘 − t𝑙‖⃦⃦

𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙‖

⃦⃦
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀
‖⃦⃦

t𝑘 − t𝑙‖
=

⃦⃦
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀
‖⃦⃦

𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙‖
(7.7)

and analogous applying Eqs. (7.4) and (7.6) to Eq. (7.2) leads to

𝜆𝑙=

⃦⃦
t𝑚 − t𝑙

⃦⃦⃦⃦
𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙

⃦⃦ ⃦⃦𝑅𝑚X̂𝑚 ×
(︀
t𝑚 − t𝑙

)︀⃦⃦⃦⃦
t𝑚 − t𝑙

⃦⃦ =

⃦⃦
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀⃦⃦⃦⃦
𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙

⃦⃦ , (7.8)

which are similiar to Eqs. (6.10) and (6.11), page 93. Substituting 𝜆𝑙 in Eq. (7.7) with
Eq. (7.8) yields⃦⃦

𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙

⃦⃦ ⃦⃦
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀⃦⃦⏟  ⏞  
‖a‖ ‖b‖=a∙b 1

cos𝜙

=
⃦⃦
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

⃦⃦ ⃦⃦
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀⃦⃦⏟  ⏞  
‖c‖ ‖d‖=c∙d 1

cos𝜙

,

(7.9)
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which can be further transformed such that(︀
𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙

)︀
∙
(︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀)︀ 1

cos𝜙
=(︀

𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀
∙
(︀
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀)︀ 1

cos𝜙
.

(7.10)

Both sides in Eq. (7.10) contain the angle 𝜙. Due to the fact that 𝑅𝑘X̂𝑘×
(︀
t𝑘−t𝑙

)︀
and

𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙 as well as 𝑅𝑚X̂𝑚 ×
(︀
t𝑚 − t𝑙

)︀
and 𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙 are parallel (as already

discussed in Section 6.2.2, page 91, where collinearity was proved, the following vector
combinations confine the angle 𝜙:

𝐼. 𝜙=∠
(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙 ,𝑅𝑚X̂𝑚×𝑅𝑙X̂𝑙

)︀
𝐼𝐼. 𝜙=∠

(︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀
,𝑅𝑚X̂𝑚×𝑅𝑙X̂𝑙

)︀
𝐼𝐼𝐼. 𝜙=∠

(︀
𝑅𝑚X̂𝑚×

(︀
t𝑚 − t𝑙

)︀
,𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀
𝐼𝑉. 𝜙=∠

(︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀
,𝑅𝑚X̂𝑚×

(︀
t𝑚 − t𝑙

)︀)︀
.

The relations 𝐼. − 𝐼𝑉. are also visualized in Fig. 7.2. Multiplying cos𝜙 to both sides

𝑅𝑘X̂𝑘 𝑅𝑚X̂𝑚

𝑅𝑙X̂𝑙

t𝑘−t𝑙 t𝑚−t𝑙

𝑅𝑘X̂𝑘×𝑅𝑙X̂𝑙 −𝑅𝑚X̂𝑚×𝑅𝑙X̂𝑙

𝑅𝑘X̂𝑘×(t𝑘−t𝑙) −𝑅𝑚X̂𝑚×(t𝑚−t𝑙)

𝜙

𝜆𝑙

𝑅𝑘, t𝑘

𝑅𝑙, t𝑙

𝑅𝑚, t𝑚

O

𝒮 𝑙

𝒮𝑘 𝒮𝑚

𝒲 line of sight

Fig. 7.2: Geometric relations of the three-view geometry

in Eq. (7.10) eliminates 𝜙 and subtracting the righthand site leads to the three-view
relation

0 =
(︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀)︀
∙
(︀
𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙

)︀
−
(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀
∙
(︀
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀)︀
.

(7.11)

As shown by the derived equation Eq. (7.11) the three-view geometry is able to scale
two adjoining triangles △(t𝑙, t𝑘,U) and △(t𝑚, t𝑙,U), such that the touching edge be-
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comes the same lenght in both triangles. Generally speaking, the three-view constraint
connects two epipolar constraints by bringing the translations

(︀
t𝑘 − t𝑙

)︀
↔
(︀
t𝑚 − t𝑙

)︀
into a correct scale as stated in [117], where however no explanation is given in a
geometrical context.

In some older literature [256, 176, 177, 96] the term three-view is used to de-
scribe the trifocal geometry due to the fact, that Indelman’s discovery wasn’t
published at that time. And even later publications may mix up these terms, since
Indelman’s three-view geometry is well-known in the field of robotics but not in
computer vision.

Appendix A.12, page 184 describes two alternative derivation approaches to ob-
tain the three-view constraint.

7.2 Crossing Epipolar Planes Geometry

O

𝑅𝑘, t𝑘

𝑅𝑙, t𝑙

𝑅𝑚, t𝑚

t𝑘−t𝑙 t𝑚−t𝑙

𝑅𝑘X̂𝑘

𝑅𝑙X̂𝑙

𝑅𝑚X̂𝑚

−𝑅𝑙X̂𝑙

−𝑅𝑚X̂𝑚×(t𝑚−t𝑙)𝑅𝑘X̂𝑘×(t𝑘−t𝑙)

l𝑘 l𝑚

𝑅𝑘X̂𝑘×𝑅𝑙X̂𝑙 −𝑅𝑚X̂𝑚×𝑅𝑙X̂𝑙

𝒮 𝑙

𝒮𝑘 𝒮𝑚

𝜋𝑙𝑚
𝑒 𝜋𝑙𝑘

𝑒

𝒲

𝜆
′
𝑅𝑙X̂𝑙

line of sight

Fig. 7.3: Illustration of the crossing epipolar planes geometry

The idea of crossing epipolar planes is inspired by the epipolar point transfer function
[96] for directional cameras, which transfers point correspondences between two known
cameras into a third camera. This method represents an alternative to the naïve
method consisting of triangulation and projection, where point pairs are triangulated
first and then projected into the third camera. As a results, this method depends on
triangulation uncertainties, which are projected into the third camera.

The following describes the derivation of the epipolar point transfer function for
omnidirectional cameras using spherical coordinates in a first step. Based on these
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findings the crossing epipolar planes constraint is developed in a second step.

Considering a given point correspondence X̂𝑘 ↔ X̂𝑚 as well as the cameras’
exterior orientations [𝑅𝑘, t𝑘] , [𝑅𝑙, t𝑙] and [𝑅𝑚, t𝑚] in order to establish two epipolar
geometries between cameras 𝑘 ↔ 𝑙 and 𝑙 ↔ 𝑚 as illustrated in Fig. 7.3. X̂𝑙 denotes
the unknown corresponding point on camera sphere 𝒮 𝑙. 𝜋e

𝑙𝑘 and 𝜋e
𝑙𝑚 represent

the epipolar planes with their corresponding normal vectors 𝑅𝑘X̂𝑘 × (t𝑘 − t𝑙) and
𝑅𝑚X̂𝑚 × (t𝑚 − t𝑙), respectively. The unkown LoS formed by 𝑅𝑙X̂𝑙 is the intersection
line of both epipolar planes and the line’s intersection point with the camera sphere 𝒮 𝑙

obtains the location of X̂𝑙. This calculation leads to two solutions, which are validated
by cheirality using depth criterion.
This relationship can be also explained in a different way. The LoSs 𝑅𝑘X̂𝑘 and 𝑅𝑚X̂𝑚

have corresponding projections l𝑘 and l𝑚 on camera sphere 𝒮 𝑙, which are called great
circles [257, 256] (similar to epipolar lines for directional cameras). Since the unknown
point must lie on both great circles, the intersections between them are the solutions
for the location of 𝒮 𝑙, comparable to the intersection of epipolar lines for directional
cameras [229, 40, 96].

For the sake of completeness the derivation of the epipolar point transfer is de-
scribed by means of the intersection of epipolar planes as this has so far not been
explained in detail in the literature. Starting with the epipolar geometry from
Eq. (6.12), page 95 for the relation between cameras 𝑙 ↔ 𝑘 and 𝑙 ↔ 𝑚:

0 = 𝑅𝑙X̂𝑙 ∙
(︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀)︀
(7.12)

0 = 𝑅𝑙X̂𝑙 ∙
(︀
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀)︀
. (7.13)

Each epipolar equation yields a scalar value allowing to multiply 𝑅𝑚X̂𝑚×
(︀
t𝑚− t𝑙

)︀
to

Eq. (7.12) and 𝑅𝑚X̂𝑚 ×
(︀
t𝑚 − t𝑙

)︀
to Eq. (7.13) from the right:

0 =
(︀
𝑅𝑙X̂𝑙 ∙

(︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀)︀)︀(︀
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀)︀
(7.14)

0 =
(︀
𝑅𝑙X̂𝑙 ∙

(︀
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀)︀)︀(︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀)︀
. (7.15)

Equalizing Eqs. (7.14) and (7.15) as well as bringing both terms to the right site yields

0 =
(︀
𝑅𝑙X̂𝑙⏟  ⏞  

a

∙
(︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀⏟  ⏞  
b

)︀)︀(︀
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀⏟  ⏞  
c

)︀
−
(︀
𝑅𝑙X̂𝑙⏟  ⏞  

a

∙
(︀
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀⏟  ⏞  
c

)︀)︀(︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀⏟  ⏞  
b

)︀
, (7.16)

which is simplified considering (a ∙ b)c− (a ∙ c)b = a× (b× c) such that

0 = 𝑅𝑙X̂𝑙 ×
(︁(︀

𝑅𝑘X̂𝑘 ×
(︀
t𝑘 − t𝑙

)︀)︀
×
(︀
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀)︀)︁
. (7.17)
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Solving Eq. (7.17) for X̂𝑙 obtains the up-to-scale (𝜆′) solution

𝜆
′
𝑅𝑙X̂𝑙 =

(︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀)︀
×
(︀
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀)︀
, (7.18)

as shown in Fig. 7.3. The solution of Eq. (7.18) equals the one for directional cameras
presented in [96]. Normalizing 𝜆

′
𝑅𝑙X̂𝑙 projects the solution onto camera sphere 𝒮 𝑙 and

multiplying 𝑅𝑇
𝑙 determines X̂𝑙. Since the sign of 𝜆′ is arbitrary, the sign of X̂𝑙 is also

arbitrary, yielding two solutions X̂𝑙 and −X̂𝑙. Obtaining the sign of the depth value
corresponding to X̂𝑙 via (Appendix A.11, page 184) resolves this ambiguity.
On the one hand the epipolar transfer equation obtains 𝜆

′
𝑅𝑙X̂𝑙 directly. On the

other hand it is independent of ‖t𝑘 − t𝑙‖ and ‖t𝑚 − t𝑙‖, due to the circumstance
that Eq. (7.17) finds a solution for an intersection line, which only depends on the
directions t𝑘 − t𝑙 and t𝑚 − t𝑙. Thus the epipolar point transfer function is unable to
determine the relative translation scale between two epipolar geometries.

Having a closer look at Fig. 7.3 reveals additonal solutions, which form a vec-
tor that is collinear with 𝑅𝑙X̂𝑙:

𝐼. 𝜆
′
𝑅𝑙X̂𝑙 =

(︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀)︀
×
(︀
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀)︀
𝐼𝐼. 𝜆

′′
𝑅𝑙X̂𝑙 =

(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀
×
(︀
𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙

)︀
𝐼𝐼𝐼. 𝜆

′′′
𝑅𝑙X̂𝑙 =

(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀
×
(︀
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀)︀
𝐼𝑉. 𝜆

′′′
𝑅𝑙X̂𝑙 =

(︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀)︀
×
(︀
𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙

)︀
.

As can be seen 𝐼𝐼𝐼. and 𝐼𝑉. yield the same solution 𝜆
′′′
𝑅𝑙X̂𝑙. Both relations are

equalized and rearranged such that

0 =
(︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀)︀
×
(︀
𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙

)︀
−
(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀
×
(︀
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀)︀
.

(7.19)

In contrast to the derived epipolar point transfer function this new constraint is able
to determine the relative translation scale between two epipolar geometries. To the
best of the author’s knowledge, the determined constraint hasn’t been published in
literature before. In this work it is referred to as crossing epipolar planes.

Limitations

As shown in Fig. 7.3, Eq. (7.19) is only valid if
(︀
𝑅𝑘X̂𝑘×

(︀
t𝑘−t𝑙

)︀)︀
×
(︀
𝑅𝑚X̂𝑚×

(︀
t𝑚−t𝑙

)︀)︀
̸=

0, (the normal vectors of the epipolar planes must not be parallel), such that both
epipolar planes intersect in a line, which is given as long as 𝑅𝑙X̂𝑙∙

(︀
𝑅𝑘X̂𝑘×

(︀
t𝑘−t𝑙

)︀)︀
̸= 0

and consequently 𝑅𝑘X̂𝑘 ∙
(︀
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀)︀
̸= 0. This means a point X̂𝑘 on camera

sphere 𝒮𝑘 must not be coplanar with the epipolar plane 𝜋𝑚 formed by the point’s
correspondence on camera sphere 𝒮 𝑙 and 𝒮𝑚 and vice versa. A further limitation is
straight camera motion such that

(︀
t𝑘 − t𝑙

)︀
×
(︀
t𝑚 − t𝑙

)︀
= 0.
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7.3 Trifocal Geometry

The trifocal geometry describes the relation of corresponding line and point features
between three camera views [205, 124]. It was originally introduced as trilinearity
or trilinear equations (or functions, norms, relations) by [231, 229, 230] and [94, 99]
showed that these constraints stem from a common tensor, the so called trifocal tensor.
In [96] the authors give a detailed overview concerning the derivation of the trifocal
geometry, its properties and application fields including camera calibration, point
transfer and motion estimation for directional cameras. In [176, 177] the authors show
another derivation approach by developing the trifocal constraints from a multi-view
matrix.

Referring to [257, 256] for omnidirectional cameras, the trifocal constraint for
point correspondences is given by

03×3 = [X𝑘]×
(︀ 3∑︁
𝑖=1

X̂𝑙(𝑖)T(:,:,𝑖)

)︀
[X𝑚]×

where the trifocal tensor T(:,:,𝑖) = 𝑅𝑚𝑙(:,𝑖)t
𝑇
𝑘𝑙 − t𝑚𝑙𝑅

𝑇
𝑘𝑙(:,𝑖). [𝑅𝑘𝑙, t𝑘𝑙] denotes the camera

pose [𝑅𝑙, t𝑙] transferred into camera frame 𝒞𝑘 and similarly
[︀
𝑅𝑚𝑙, t𝑚𝑙

]︀
denotes the

camera pose [𝑅𝑙, t𝑙] transferred into camera frame 𝒞𝑚 such that:

𝑅𝑘𝑙 = 𝑅𝑇
𝑘𝑅𝑙 (7.20)

𝑅𝑚𝑙 = 𝑅𝑇
𝑚𝑅𝑙 (7.21)

t𝑘𝑙 = 𝑅𝑇
𝑘

(︀
t𝑙 − t𝑘

)︀
(7.22)

t𝑚𝑙 = 𝑅𝑇
𝑚

(︀
t𝑙 − t𝑚

)︀
. (7.23)

T(:,:,𝑖) ∈ R3×3×3 indicates the 𝑖th tensor slice. Referring to [176, 177] the trifcal tensor
notation can be brought to matrix notation

03×3 = [X̂𝑘]×
[︀
t𝑘𝑙X̂

𝑇
𝑙 𝑅

𝑇
𝑚𝑙 −𝑅𝑘𝑙X̂𝑙t

𝑇
𝑚𝑙

]︀
[X̂𝑚]× . (7.24)

Entering Eqs. (7.20) to (7.23) into Eq. (7.24) and rearranging yields:

03×3 = [X̂𝑘]×
[︀
𝑅𝑇

𝑘

(︀
t𝑙 − t𝑘

)︀
X̂𝑇

𝑙

(︀
𝑅𝑇

𝑚𝑅𝑙

)︀𝑇 −𝑅𝑇
𝑘𝑅𝑙X̂𝑙

(︀
𝑅𝑇

𝑚

(︀
t𝑙 − t𝑚

)︀)︀𝑇 ]︀
[X̂𝑚]×

03×3 = [X̂𝑘]×
[︀
𝑅𝑇

𝑘

(︀
t𝑙 − t𝑘

)︀
X̂𝑇

𝑙 𝑅
𝑇
𝑙 𝑅𝑚 −𝑅𝑇

𝑘𝑅𝑙X̂𝑙

(︀
t𝑙 − t𝑚

)︀𝑇
𝑅𝑚

]︀
[X̂𝑚]×

03×3 = [X̂𝑘]×𝑅
𝑇
𝑘

[︀(︀
t𝑙 − t𝑘

)︀
X̂𝑇

𝑙 𝑅
𝑇
𝑙 −𝑅𝑙X̂𝑙

(︀
t𝑙 − t𝑚

)︀𝑇 ]︀
𝑅𝑚[X̂𝑚]×

03×3 = [𝑅𝑘X̂𝑘]×
[︀(︀
t𝑙 − t𝑘

)︀(︀
𝑅𝑙X̂𝑙

)︀𝑇 −𝑅𝑙X̂𝑙

(︀
t𝑙 − t𝑚

)︀𝑇 ]︀
[𝑅𝑚X̂𝑚]×

03×3 = [𝑅𝑘X̂𝑘]×
[︀(︀
t𝑙 − t𝑘

)︀⏟  ⏞  
[a]×b=a×b

(︀
𝑅𝑙X̂𝑙

)︀𝑇 ]︀
[𝑅𝑚X̂𝑚]×⏟  ⏞  

a𝑇 [b]×=([b]𝑇×a)𝑇=(a×b)𝑇

− [𝑅𝑘X̂𝑘]×
[︀
𝑅𝑙X̂𝑙⏟  ⏞  

[a]×b=a×b

(︀
t𝑙 − t𝑚

)︀𝑇 ]︀
[𝑅𝑚X̂𝑚]×⏟  ⏞  

a𝑇 [b]×=([b]𝑇×a)𝑇=(a×b)𝑇

03×3 =
(︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑙 − t𝑘

)︀)︀(︀
𝑅𝑙X̂𝑙 ×𝑅𝑚X̂𝑚

)︀𝑇 −
(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀(︀(︀
t𝑙 − t𝑚

)︀
×𝑅𝑚X̂𝑚

)︀𝑇
03×3 =

(︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀)︀(︀
𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙

)︀𝑇 −
(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀(︀
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀)︀𝑇
(7.25)
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Eq. (7.25) represents the trifocal constraint for omnidirectional cameras in matrix
notation.

7.4 Relation between Trifocal, Three-View and
Crossing Epipolar Planes

This section explains the relations between trifocal constraint, three-view constraint
and the crossing epipolar planes constraint. For the sake of convenience the following
terms are substituted:

d𝑘 = 𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

d𝑚 = 𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙

g𝑘 = 𝑅𝑘X̂𝑘 ×
(︀
t𝑘 − t𝑙

)︀
g𝑚 = 𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀
and applied to Eqs. (7.11), (7.19) and (7.25), pages 127, 130 and 131 yield the following
relations:

three-view: 0 = g𝑇
𝑘d𝑚 −d𝑇

𝑘 g𝑚

crossing epipolar planes: 0 = [g𝑘]×d𝑚−[d𝑘]×g𝑚

trifocal: 03×3 = g𝑘d
𝑇
𝑚 −d𝑘g

𝑇
𝑚 .

Defining the trifocal constraint g𝑘d
𝑇
𝑚 − d𝑘g

𝑇
𝑚 = 𝐴 and solving it leads to:

g𝑘d
𝑇
𝑚 − d𝑘g

𝑇
𝑚 =

⎡⎣d𝑚(1)g𝑘(1) − d𝑘(1)g𝑚(1) d𝑚(2)g𝑘(1) − d𝑘(1)g𝑚(2) d𝑚(3)g𝑘(1) − d𝑘(1)g𝑚(3)

d𝑚(1)g𝑘(2) − d𝑘(2)g𝑚(1) d𝑚(2)g𝑘(2) − d𝑘(2)g𝑚(2) d𝑚(3)g𝑘(2) − d𝑘(2)g𝑚(3)

d𝑚(1)g𝑘(3) − d𝑘(3)g𝑚(1) d𝑚(2)g𝑘(3) − d𝑘(3)g𝑚(2) d𝑚(3)g𝑘(3) − d𝑘(3)g𝑚(3)

⎤⎦
∧
=

⎡⎣𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎤⎦ ∈ R3×3 . (7.26)

Solving the three-view constraint g𝑇
𝑘d𝑚 − d𝑇

𝑘 g𝑚 and substituting the result with ele-
ments from 𝐴 yields:

g𝑇
𝑘d𝑚 − d𝑇

𝑘 g𝑚 =d𝑚(1)g𝑘(1) − d𝑘(1)g𝑚(1)+

d𝑚(2)g𝑘(2) − d𝑘(2)g𝑚(2)+

d𝑚(3)g𝑘(3) − d𝑘(3)g𝑚(3)

∧
=𝑎11 + 𝑎22 + 𝑎33 . (7.27)
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Doing the same with the crossing epipolar planes leads to:

[g𝑘]×d𝑚 − [d𝑘]×g𝑚 =

Ñ
d𝑚(3)g𝑘(2) − d𝑘(2)g𝑚(3) − (d𝑚(2)g𝑘(3) − d𝑘(3)g𝑚(2))

d𝑚(1)g𝑘(3) − d𝑘(3)g𝑚(1) − (d𝑚(3)g𝑘(1) − d𝑘(1)g𝑚(3))

d𝑚(2)g𝑘(1) − d𝑘(1)g𝑚(2) − (d𝑚(1)g𝑘(2) − d𝑘(2)g𝑚(1))

é
∧
=

Ñ
𝑎23 − 𝑎32
𝑎31 − 𝑎13
𝑎12 − 𝑎21

é
. (7.28)

It is shown that the solution elements from three-view and crossing epipolar planes
are combinations of the trifocal solution elements. Since 𝐴

∧
= 03×3, the trifocal con-

straint from Eq. (7.26) also satisfies both, the three-view geometry from Eq. (7.27)
and the crossing epipolar planes from Eq. (7.28). If the trifocal constraint is used as a
cost function for optimization purposes, it also satisfies the forementioned constraints.
The relation between three-view and trifocal constraint was published in [56], how-
ever the remaining elements in 𝐴 aren’t analyzed and [118, 119] showed the relation
between both constraints from the perspective of a common derivation approach. Ap-
pendix A.13, page 185 shows the relation between trifocal constraint and alternative
midpoint method, which however is not discussed at this point.
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7.5 Translation Ratio between Up-To-Scale
Two-View Transformations

The aforementioned constraints from Sections 7.1 to 7.3 describe the relation of point
correspondences between three camera spheres 𝑘, 𝑙,𝑚 and maintain the relation be-
tween both translations t𝑘 − t𝑙 and t𝑚 − t𝑙. Hence they can be used to determine the
translation ratio between a pair of up-to-scale two-view transformations as shown in
the following.

7.5.1 Structureless Determination Approaches

Crossing epipolar planes, three-view and trifocal constraints describe a direct relation
between the translation terms and do not require any 3d structure for scaling purposes.
Supposing a point correspondence X̂𝑘 ↔ X̂𝑙 ↔ X̂𝑚 between three cameras with given
exterior orientations [𝑅𝑘, t𝑘] , [𝑅𝑙, t𝑙] , [𝑅𝑚, t𝑚], which are transferred into camera frame
𝒞𝑙 such that camera 𝑙 becomes the new center of origin [𝐼,0]. Camera 𝑘 and camera
𝑚 are expressed as relative transformations:

𝑅𝑙𝑘 = 𝑅𝑇
𝑙 𝑅𝑘

𝑅𝑙𝑚 = 𝑅𝑇
𝑙 𝑅𝑚

t𝑙𝑘 = 𝑅𝑇
𝑙

(︀
t𝑘 − t𝑙

)︀
t𝑙𝑚 = 𝑅𝑇

𝑙

(︀
t𝑚 − t𝑙

)︀
.

Assuming t𝑙𝑘 = 𝑠𝑙𝑘t̂𝑙𝑘 and t𝑙𝑚 = 𝑠𝑙𝑚t̂𝑙𝑚 with 𝑠𝑙𝑘, 𝑠𝑙𝑚 being the corresponding trans-
lation scale factors as introduced in Section 6.7, page 113. [𝑅𝑙𝑘, t̂𝑙𝑘] represents the
relative up-to-scale transformation between cameras 𝑙 ↔ 𝑘 and [𝑅𝑙𝑚, t̂𝑙𝑚] represents
the relative up-to-scale transformation between cameras 𝑙 ↔ 𝑚, both are obtained via
two-view estimation/optimization. Similiar to the previous section the following terms
are substituted:

d𝑘 = 𝑅𝑙𝑘X̂𝑘 × X̂𝑙

d𝑚 = 𝑅𝑙𝑚X̂𝑚 × X̂𝑙

g̃𝑘 = 𝑅𝑙𝑘X̂𝑘 × t̂𝑙𝑘

g̃𝑚 = 𝑅𝑙𝑚X̂𝑚 × t̂𝑙𝑚

in order to derive a simplified expression for the proposed constraints:

three-view: 0 = 𝑠𝑙𝑘g̃
𝑇
𝑘d𝑚 −𝑠𝑙𝑚d

𝑇
𝑘 g̃𝑚 (7.29)

crossing epipolar planes: 0 = 𝑠𝑙𝑘[g̃𝑘]×d𝑚 −𝑠𝑙𝑚[d𝑘]×g̃𝑚 (7.30)

trifocal: 03×3 = 𝑠𝑙𝑘g̃𝑘d
𝑇
𝑚 −𝑠𝑙𝑚d𝑘g̃

𝑇
𝑚 . (7.31)
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The translation ratio between a pair of two-view transformations is defined by 𝑟𝑘𝑙𝑚 =

𝑠𝑙𝑘/𝑠𝑙𝑚 yielding:

three-view: d𝑇
𝑘 g̃𝑚⏟  ⏞  
b

= 𝑟𝑘𝑙𝑚 g̃𝑇
𝑘d𝑚⏟  ⏞  
a

(7.32)

crossing epipolar planes: [d𝑘]×g̃𝑚⏟  ⏞  
b

= 𝑟𝑘𝑙𝑚 [g̃𝑘]×d𝑚⏟  ⏞  
a

(7.33)

trifocal: d𝑘g̃
𝑇
𝑚⏟  ⏞  

b

= 𝑟𝑘𝑙𝑚 g̃𝑘d
𝑇
𝑚⏟  ⏞  

a

. (7.34)

The column vectors a and b collect the elements of the two terms formed by g̃𝑘, d𝑚

and d𝑘, g̃𝑚. Following Appendix A.2, page 174 the translation ratio is optained via

𝑟𝑘𝑙𝑚 =
(︀
a𝑇b

)︀
/‖a‖2 (7.35)

in least squares sense. Supposing a set of given point correspondences X̂𝑖
𝑘 ↔ X̂𝑖

𝑙 ↔ X̂𝑖
𝑚,

𝑖 = 1, . . . , 𝑝, the resulting a𝑖, b𝑖 can be simply stacked together:

a =
(︀
a𝑇
1 , . . . , a

𝑇
𝑝

)︀𝑇 (7.36)

b =
(︀
b𝑇
1 , . . . ,b

𝑇
𝑝

)︀𝑇
. (7.37)

to obtain an optimized solution for 𝑟𝑘𝑙𝑚 over all point correspondences.

Similiar to Appendix A.9, page 182 the derived ratio factor’s uncertainty as
standard deviation is approximated such that

𝜎𝑟𝑘𝑙𝑚 =
‖b− 𝑟𝑘𝑙𝑚a‖√

𝑝− 1‖a‖
. (7.38)

7.5.2 Structure-Based Determination Approaches

The proposed naïve approach is inspired by [218] and obtains the translation ratio fac-
tor between triangulated points from two different camera pairs as shown in Fig. 7.4.
Thus this approach generates 3d structures for scaling purpose. X𝑙𝑘 denotes the trian-
gulated point from X̂𝑘 ↔ X̂𝑙 and X𝑙𝑚 denotes the triangulated point from X̂𝑙 ↔ X̂𝑚.
Both points represent the same observation, however they do not coincide since they
stem from up-to-scale translations and need to be brought into correct relation such
that

𝑟𝑘𝑙𝑚 =
𝑠𝑙𝑘
𝑠𝑙𝑚

=
‖X𝑙𝑘‖
‖X𝑙𝑚‖

. (7.39)

As can be seen the relation between the triangulated points ‖X𝑙𝑘‖/‖X𝑙𝑚‖ equals the
one between the translation scales 𝑠𝑙𝑘/𝑠𝑙𝑚. Since X𝑙𝑘 and X𝑙𝑚 are in the same camera
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O𝑅𝑙𝑘, 𝑠𝑙𝑘t̂𝑙𝑘 𝑠𝑙𝑘

X𝑙𝑘

X̂𝑘
X̂𝑙

𝑠𝑙𝑚

X̂𝑚

X𝑙𝑚

𝑅𝑙𝑚, 𝑠𝑙𝑚t̂𝑙𝑚

𝒞𝑙

Fig. 7.4: Naïve triangulation approach to determine the translation ratio. The triangulated points
X𝑙𝑘 and X𝑙𝑚 represent the same observed 3d point. Since both triangulation are based on up-to-scale
transformations, X𝑙𝑘 and X𝑙𝑚 do not coincide. As can be seen, the triangulated points are in the
same relation as the baselines scales are ‖X𝑙𝑘‖/‖X𝑙𝑚‖ = 𝑠𝑙𝑘/𝑠𝑙𝑚. As a consequence, scaling the
triangulated points such that they coincide also scales the baselines to a correct relation.

frame 𝒞𝑙, Eq. (7.35) can be used to obtain the least squares solution for 𝑟𝑘𝑙𝑚 with:

a =
(︀
(X1

𝑙𝑘)
𝑇 , . . . , (X𝑝

𝑙𝑘)
𝑇
)︀𝑇 (7.40)

b =
(︀
(X1

𝑙𝑚)
𝑇 , . . . , (X𝑝

𝑙𝑚)
𝑇
)︀𝑇

, (7.41)

in case of multiple triangulated point correspondences X𝑖
𝑙𝑘 ↔ X𝑖

𝑙𝑚, 𝑖 = 1, . . . , 𝑝. The
approach depends on the accuray of the underlying triangulation method. In this
work it incorporates the linear least squares method (Section 6.2.1, page 89) and the
alternative midpoint method (Section 6.2.2, page 91).

7.5.3 Comparison between Proposed Approaches

The approaches from Sections 7.5.1 and 7.5.2 are used to obtain an estimated trans-
lation ratio 𝑟est from a pair of up-to-scale two-view transformations [𝑅𝑙𝑘, t̂𝑙𝑘], [𝑅𝑙𝑘, t̂𝑙𝑚]

and a set of given point correspondences X̂𝑖
𝑘 ↔ X̂𝑖

𝑙 ↔ X̂𝑖
𝑚, 𝑖 = 1, . . . , 𝑝 under varying

perturbations for the omnidirectional view case a as well as for the directional view
case b.
Similiar to Section 6.7.3, page 117 this section analyzes the influence of different
noise sources on translation ratio determination such as image noise 𝒩 (0, 𝜎2

𝜃,𝜑) with
𝜎𝜃,𝜑 = 0∘, . . . , 1∘, rotation noise 𝒩 (0, 𝜎2

𝛾,𝛽,𝛼) with 𝜎𝛾,𝛽,𝛼 = 0∘, . . . , 1∘ and relative trans-
lation noise 𝒩 (0, 𝜎2

𝑋,𝑌,𝑍) with 𝜎𝑋,𝑌,𝑍 = 0%, . . . , 10%.
The relative ratio error Δ𝑟 is obtained via

Δ𝑟 =

⃒⃒⃒⃒
𝑟est − 𝑟true

𝑟true

⃒⃒⃒⃒
, (7.42)

where 𝑟true = ‖t𝑙𝑘‖/‖t𝑙𝑚‖ denotes the ground truth.
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trifocal three-view crossing epipolar planes

alternative midpoint linear least squares

Fig. 7.5: Overview of the mean relative translation scaling error Δ̄𝑟 caused by image noise 𝜎𝜃,𝜑,
rotation noise 𝜎𝛾,𝛽,𝛼 and translation noise 𝜎𝑋,𝑌,𝑍 for omnidirectional view (1st row, case a) and
directional view (2nd row, case b).

As Fig. 7.5 shows, structured-based approaches (linear least squares methods,
alternative midpoint method) are more prone to noise. Especially the linear least
squares triangulation method yields large estimation errors even in case of low image
and rotation noise. Suprisingly the alternative midpoint method is less influenced
by relative translation noise and achieves satisfying results. The trifocal constraint
obtains the best results over all noise sources and view cases. The three-view
constraint yields similiar results for image and rotation noise, but is less accurate
under translation noise. Crossing epipolar planes has the worst performance of all
structureless approaches. Image and rotation noise stronger influence the ratio factor
calculation - up to a magnitude larger errors - compared to the relative translation
noise.

Considering all mentioned aspects the trifocal constraint is preferred to obtain
the translation ratio between up-to-scale two-view transformations.
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Brief Chapter Summary

This chapter explained three constraints describing the relation of point correpson-
dences between three camera spheres. The three-view geometry was derived for spheri-
cal camera and a novel crossing epipolar planes geometry was developed. Additionally
the trifocal geometry was reformulated Furthermore, the relation between them was
explained. A method was presented to recover the translation ratio between up-to-scale
two-view transformations based on mentioned geometry constraints and compared with
a triangulaiton approach. The different geometrical constraints were evaluated, where
the trifocal constraint obtained best results. Based on the findings of this chapter the
translation ratio between up-to-scale two-view transformations can be recovered to be
used for global scaling.
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8 Pose Graphs

Brief Chapter Overview

This chapters gives a general explanation to PGO in Section 8.1 representing the back-
end of the proposed SCME pipeline. Section 8.2 introduces state-of-the-art standalone
solvers for PGO, which are used in this work. An overview of additional solvers is given
in Section 8.2.1 and Section 8.2.2 addresses the topic of false loop closure detection.
Section 8.3 explains a workflow to extract a trajectory from an unordered set of relative
transformations e.g. from scaled two-view transformations. Section 8.3.1 applies the
proposed extraction workflow to polygon models in order to test the pipeline intergra-
tion and to generate synthetic pose graph data. Finally, in Section 8.3.2 standalone
solvers are applied to synthetic pose graph data for evaluation purpose.

8.1 Optimization Principle

This section describes the basic optimization principle of PGO and follows the de-
scription from [28, 25, 33, 32]. Pose graphs represent a special form of a factor graph
(Section 2.1, page 14) dedicated to pose estimation, such that features are not explicitly
modelled and thus are not part of the optimization problem. PGO estimates a set of 𝑛
poses {[𝑅1, t1], . . . , [𝑅𝑛, t𝑛]} from pairwise relative transformation measurements. This
problem can be visualized as a directed graph, in which nodes correspond to camera
poses [𝑅𝑘, t𝑘] (and [𝑅𝑙, t𝑙], respectively), while edges correspond to relative transfor-
mation measurements [𝑅𝑘,𝑙, t𝑘,𝑙] between the 𝑘th and 𝑙th node, and belong to a set of
available node pairs (𝑘, 𝑙) ∈ ℰ .
The pose graph solver estimates [𝑅𝑘, t𝑘] and [𝑅𝑙, t𝑙] in order to minimize the cost func-
tions dSO(3)(·, ·) and dR3(·, ·) with respect to the available measurements [𝑅𝑘𝑙, t𝑘𝑙] by
solving the least squares optimization problem

argmin
𝑅𝑘,𝑙,t𝑘,𝑙

∑︁
(𝑘,𝑙)∈ℰ

dSO(3)
(︀
𝑅𝑘𝑙, 𝑅

𝑇
𝑘𝑅𝑙

)︀2
+ dR3

(︀
t𝑘𝑙, 𝑅

𝑇
𝑘 (t𝑙 − t𝑘)

)︀2
. (8.1)

Here, dSO(3)(·, ·) denotes a distance metric between two rotations. This example uses
the angular distance yielding

dSO(3)
(︀
𝑅𝑘𝑙, 𝑅

𝑇
𝑘𝑅𝑙

)︀
=
⃦⃦
Log

(︀
𝑅𝑇

𝑘𝑙𝑅
𝑇
𝑘𝑅𝑙

)︀⃦⃦
Ωrot

𝑘𝑙

, (8.2)
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where Log(·) stands for the logarithm map, which - generally speaking - converts the
rotation matrix to a vector (e.g. Euler angles, axis angles, Rodrigues vector or quater-
nion). Furthermore, dR3(·, ·) denotes the simple Euclidean distance between two vec-
tors:

dR3

(︀
t𝑘𝑙, 𝑅

𝑇
𝑘 (t𝑙 − t𝑘)

)︀
=
⃦⃦
t𝑘𝑙 −𝑅𝑇

𝑘 (t𝑙 − t𝑘)
⃦⃦
Ωtrans

𝑘𝑙

= ‖t𝑙 − t𝑘 −𝑅𝑘t𝑘𝑙‖Ωtrans
𝑘𝑙

. (8.3)

Each relative transformation is affected by noise causing measuring uncertainties, which
are described by the rotation information matrix Ωrot

𝑘𝑙 and by the translation informa-
tion matrix Ωtrans

𝑘𝑙 . Applying Eqs. (8.2) and (8.3) to Eq. (8.1) yields

argmin
𝑅𝑘,𝑙,t𝑘,𝑙

∑︁
(𝑘,𝑙)∈ℰ

⃦⃦
Log

(︀
𝑅𝑇

𝑘𝑙𝑅
𝑇
𝑘𝑅𝑙

)︀⃦⃦2
Ωrot

𝑘𝑙

+ ‖t𝑙 − t𝑘 −𝑅𝑘t𝑘𝑙‖2Ωtrans
𝑘𝑙

(8.4)

and developing the Mahalanobis norms leads to

argmin
𝑅𝑘,𝑙,t𝑘,𝑙

∑︁
(𝑘,𝑙)∈ℰ

Log
(︀
𝑅𝑇

𝑘𝑙𝑅
𝑇
𝑘𝑅𝑙

)︀
Ωrot

𝑘𝑙 Log
(︀
𝑅𝑇

𝑘𝑙𝑅
𝑇
𝑘𝑅𝑙

)︀
+ (t𝑙 − t𝑘 −𝑅𝑘t𝑘𝑙) Ω

trans
𝑘𝑙 (t𝑙 − t𝑘 −𝑅𝑘t𝑘𝑙) . (8.5)

Depending on the chosen solver implementation, the cost functions may vary. In [31]
the authors employ the chordal distance [95] dSO(3) = ‖𝑅𝑙 −𝑅𝑘𝑅𝑘,𝑙‖F as rotation cost
function. A very good overview of existing cost function strategies gives [7].

8.2 Solvers

The following described solvers are used for PGO in this work. The g2o file format acts
as interface between proposed front-end and standalone graph solvers acting as back-
end. These solvers concentrate on computation time reduction, memory consumption
[242] and improved robustness to solve large scale problems efficiently. In [86] the
authors give an additional overview of current solvers and corresponding cost function
implementations.

GTSAM

GTSAM75 (Georgia Tech Smoothing and Mapping) is an open-source C++ library [47]
and offers SLAM, VO, SfM and BA functionality [121]. The library uses factor graphs
and Bayesian Belief Networks to model non-linear least square problems, rather than
using sparse linear algebra. It provides LM, GN, Dl and iSAM/iSAM2 optimizers [125].
GTSAM’s fundamental principles are best described in [49].

75https://gtsam.org

https://gtsam.org
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iSAM2

iSAM (incremental Scanning and Mapping) is an optimizer for GTSAM introduced
in [127]. It is based on sparse matrix factorization [48, 132] and in contrast to batch
processing iSAM performs fast incremental updates each time when new measurements
become available. iSAM only executes calculations for entries that are actually affected
by the new measurements. The successor iSAM2 [130, 131] operates incrementally as
well but uses an efficient Bayes tree structure [129], which leads to improved efficiency
and accuracy. This algorithm is part of the GTSAM library.

g2o

g2o76 is an open-source C++ framework and is introduced in [151]. It uses a graph
structure to optimize non-linear graph-based error functions in a batch process and is
able to provide solutions to serveral SLAM and BA problems. The framework uses
popular solvers like LM, GN or Dl to solve PGO [125]. The framework can be easily
extended by embedding new error functions and solvers.

Ceres

Ceres77 [3] is an open-source C++ library provided by Google. It is used to solve large
non-linear problems in least-squares sense using e.g. LM or Dl implementation [125].
It is popular for solving large-squale BA problems (e.g. it is implemented in Colmap,
Theia SfM and Open MVG) but also performs PGO. Since Ceres doesn’t provide pose
graph initialization capability, it is used in conjunction with MASAT.

SLAM++

SLAM++7879 is a C++ package providing an efficient implementation of incremental
non-linear least squares solvers [114]. The algorithm maintains a sparse and scalable
state representation for large scale problems and performs matrix block operations,
which lead to fast matrix manipulation and arithmetic operations. Combined with
the use of parallel computing units, SLAM++ achieves higher speed performances
compared to other SLAM implementations. The algorithm provides fast mean and
covariance updates for the estimates. Instead of re-linearizing the entire graph at
each optimization step, the algorithm selectively updates the factor contributions and
recomputes the factorization only for some changed regions. SLAM++ also performs
BA by using an incremental Dl solver instead of LM [113].

Note: In order to prevent confusion, there is an object-based SLAM algorithm, which

76https://github.com/RainerKuemmerle/g2o
77http://ceres-solver.org
78https://sourceforge.net/p/slam-plus-plus/wiki/Home/
79http://lukas-polok.cz/proj_slam++.htm

https://github.com/RainerKuemmerle/g2o
http://ceres-solver.org
https://sourceforge.net/p/slam-plus-plus/wiki/Home/
http://lukas-polok.cz/proj_slam++.htm
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is also called SLAM++ [214]. Both algorithms were developed at the same time,
named independently and accidently presented at the same conference (ICRA2013).

MatLab

A first pose graph solver for MatLab is presented in [265]. Since version R2019b,
MatLab provides an own 3d pose graph solver, which is used for the extrinsic calibration
pipeline in this work (see Section 4.4.5, page 67). However, the here presented PGO
problems are magnitudes larger (in both sizes, number of nodes and edges). The
MatLab implementation is less effective in terms of computational time compared to
standalone solvers.

Masat

MASAT80 (Multi-Ancestor Spatial Approximation Tree) is a pose graph initialization
algorithm written in C++ [92]. It deals as a pre-processing step before running the
actual pose graph solver, since non-linear optimization may diverge or converge into
a local minimum if the initial estimates are too far from the ground truth [32]. A
more detailed insight into pose graph initialization is given in [31, 33]. In contrast
to complex initialization techniques (also known as bootstrappers) such as LAGO81

(Linear Approximation for Graph Optimization, restricted to 2d scenarios only) [29,
30], TORO82 (Tree-based netwORk Optimizer) [87, 85, 84] or Cauchy M-estimator
[109], the algorithm is built up on low complexity to be computationally efficient.
MASAT traverses the pose graph and approximates each node’s location based on its
already positioned neighbors. This simply approach obtaines better initial estimates
compared to a standard pose graph solver as Fig. 8.1 illustrates at hand of synthetic
data from Section 8.3.1, page 147. In this work MASAT is used as pre-processor for
PGO since initial estimates are much closer to the ground truth and hence reduce the
number of optimization steps in the pose graph solver.

8.2.1 Additional Graph Solvers

This section briefly lists additional software providing graph solvers, which were dis-
covered during research. They are not used as backend in this work, but for the sake
of a more complete overview they are mentioned here.

• AprilSAM83 decides between incremental and batch updates and uses a new
dynamic variable reordering algorithm [267] to achieve improved performance.

• Kimera-RPGO84 (Robust Pose Graph Optimization) is part of the open-source
C++ library Kimera (Open-Source Library for Real-Time Metric-Semantic Lo-

80https://github.com/karoly-hars/MASAT_IG_for_SLAM
81https://github.com/rrg-polito/lago
82https://github.com/OpenSLAM-org/openslam_toro
83https://github.com/xipengwang/AprilSAM
84https://github.com/MIT-SPARK/Kimera-RPGO

https://github.com/karoly-hars/MASAT_IG_for_SLAM
https://github.com/rrg-polito/lago
https://github.com/OpenSLAM-org/openslam_toro
https://github.com/xipengwang/AprilSAM
https://github.com/MIT-SPARK/Kimera-RPGO
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Fig. 8.1: Comparison of pose graph initialization between GTSAM, MASAT and ground truth using
differrent synthetic data sets (Helix, Mario, Teapot, Sphere). Initialization results from iSAM2 and
SLAM++ look similiar to GTSAM and hence are not illustrated here.

calization and Mapping). It uses GTSAM as back-end [211] and modern tech-
niques for outlier rejection.

• COP-SLAM85 (Closed-form Online Pose-chain) is a highly efficient closed-form
solver approach, which optimizes pose-chains (specific type of extremely sparse
pose-graphs) in real time [52].

• miniSAM is a flexible, general and lightweight factor graph optimization frame-
work, that aims at providing a full Python API (Application Programming Inter-
face) and CUDA (Compute Unified Device Architecture) supported sparse linear
solvers [51].

• MRPT86 (Mobile Robot Programming Toolkit) is a collection of C++ libraries
providing a wide range of functionality to the computer vision and robotics com-
munity as it also provides PGO.

• SE-Sync87 is a certifiably correct algorithm obtaining unknown poses given noisy
measurements of relative transformations [209, 210]. It uses a combination of
low-rank factorization and fast local search method (referred as Riemannian

85https://github.com/OpenSLAM-org/openslam_copslam
86https://www.mrpt.org
87https://github.com/david-m-rosen/SE-Sync

https://github.com/OpenSLAM-org/openslam_copslam
https://www.mrpt.org
https://github.com/david-m-rosen/SE-Sync
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truncated-Newton trust-region method [125, 254]) to solve for poses efficiently
and is capable to certify the correctness of the solutions that it recovers. SE-Sync
belongs to the class of algorithms that give up the ability to solve every instance
of a problem, meaning that it is capable of efficiently solve a generally intractable
problem within a restricted operational regime. The algorithm reduces the pose
estimation and optimization problem to a rotational one by analytically eliminat-
ing the translational variables [21, 254].

• Cartan-Sync8889 is a pose optimization framework [21] similar to SE-Sync. It
uses an SDP (Semidefinite Program) relaxation, which jointly obtains rotations
and translations.

8.2.2 False Loop Closure Detection

PGO is based on least-squares optimization (see Section 8.1, page 139), which means
the solver keeps the topology of the graph fixed. Hence optimization is not robust
against outliers like false loop closures [244], which leads to defective solutions or op-
timization failures. The front-end constructs the pose graph’s topology from available
sensor data and the back-end has to rely on the correctness of the graph structure.
Due to perceptual aliasing in the underlying data association [1], there is no guarantee
to provide a pose graph, that is free of outliers. Thus false loop closure constraints
might be inserted into the pose graph.
Robust graph optimizer change parts of the graph’s topological structure during the
optimization process in order to reject false loop closures [245]. The following popular
algorithms implement false loop closure detection techniques into exsting graph solver
frameworks.

• Switchable Constraints90 is a technique that adds switch variables (being mod-
elled as normally distributed Gaussian variables) in conjunction with a switch
function to each loop closure constraint [244, 245]. This changes the pose graph
topology, which is now subject to the optimization, by enabling or disabling edge
constraints. Switchable Constraints is implemented in VERTIGO91 (Versatile Ex-
tensions for RobusT Inference using Graph Optimization), which is an extension
library for g2o and GTSAM.

• RRR92 (Realizing, Reversing, and Recovering) is a loop closure verfication al-
gorithm presented in [152, 153]. It robustly obtains wrong data associations by
checking the consistency between loop closures and trajectory estimates [246].
Loop closure constraints are clustered according their appearance. The algorithm
then finds the maximum set of clustered edges, which is mutually consistent with

88https://bitbucket.org/jesusbriales/cartan-sync/src/master/
89https://gitlab.com/jbriales/cartan-sync
90https://nikosuenderhauf.github.io/projects/switchableConstraints/
91https://github.com/haidai/vertigo
92https://github.com/ylatif/rrr

https://bitbucket.org/jesusbriales/cartan-sync/src/master/
https://gitlab.com/jbriales/cartan-sync
https://nikosuenderhauf.github.io/projects/switchableConstraints/
https://github.com/haidai/vertigo
https://github.com/ylatif/rrr
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each other and rejects false loop closure edges from the graph [1]. The technique
is based on repeatedly solving a graph that contains subsets of the loop closure
links. An implementation of RRR is published for the g2o framework.

• Dynamic Covariance Scaling generalizes the Switchable Constraints method
by deriving an analytical solution for the weighting factor calculations [1]. This
technique leads to a significantly faster convergence and reduces the computa-
tional overhead. Dynamic Covariance Scaling is implemented in the g2o frame-
work.

The presented techniques allow pose graph solvers to robustly optimize a given pose
graph structure, which contains false data associations within a certain margin. In
[154] the authors give a detailed overview concerning the mentioned implementations
and compare them under varying false loop closure conditions. Implementations of
Switchable Constraints and RRR are only availabe for older versions of GTSAM and
g2o, respectively. Dynamic Covariance Scaling has become a part of g2o and can be
activated using the flag ’-robustKernel’,’DCS’.

8.3 Pose Graph Generation
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Fig. 8.2: Pose graph generation from non-sequential edge order. Edges are clustered to obtain con-
nected nodes. The cluster with the largest quantity of nodes retains. A spanning tree technique
extracts a subgraph, connecting all nodes by a subset of edges. These subset nodes are renumbered
to form a squential edge order which represents a trajectory. Finally, all unused edges (grey) from
subgraph extraction are also renumbered and added to the end of the trajectory to represent loop
closures.

The advantage of SfM over VO and visual SLAM is to work with a non-sequential
collection of images. In contrast to that, a graph solver optimizes a trajectory, which
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is built up from successive sensor data. Consequently, most of the available solvers
require sequential input data, even if they are used in post-processing. They are aimed
at processing data in real-time in order to update the pose graph each time a new egde
constraint is added. This edge constraint contains either the relative transformation
between a new node and an existing one or between two existing nodes.
In the first case, the solver initializes a new node to the graph by using the relative
transformation that links to an existing node, which does not need to be the direct
predecessor, but must exist in the current graph. This circumstance also allows to
split the trajectory into branches as Fig. 8.2b depicts. Trajectory branching isn’t
common in visual SLAM since data usually stems from one sensor setup. However in
the proposed SCME pipeline, trajectory branching is a central role as presented in the
following.
In the second case, the solver adds the relative transformation as link between two exist-
ing nodes, that haven’t been directly connected before. This link closes a loop between
both nodes and hence it is called loop closure. With the help of loop closures the solver
optimizes all nodes within the loop. The larger the loop, the more nodes are optimized.

In order to use a pose graph solver with unordered edge constraints, they must
be converted into a pseudo sequence in order to extract a trajectory. A pose graph
is a directed graph, since each edge constraint contains the transformation from
one node to another node, which however can be easily switched by inverting the
relative transformation. The idea is similiar to the extrinsic calibration problem
from Section 4.4.5, page 67, which however belongs to a special case since only
relative transformations between targets and cameras are given. That circumstance al-
lows to apply a certain scheme to extract the pose graph, which cannot be applied here.

The following four step workflow describes the conversion from unordered edges
to a sequential series as Fig. 8.2 illustrates.

Step 1: Clustering

This step finds connected graph nodes and groups them into clusters. The largest
cluster of connected edges is retained and remainig edges are removed.

Step 2: Trajectory Extraction

The retained edges are used to extract a subgraph using a spanning tree technique. This
subgraph consists of a minimum quantity of edges, that starts from an arbitrary chosen
node and connects all other nodes, but contains no cycle/loop closure. It represents a
virtual sensor trajectory, which may split into serverals branches.

Step 3: Node Renumbering

Node numbers in the trajectory edge order are mixed up and as a consequence they
need to be renumbered into an ascending edge order to form an ongoing sequence. The
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node renumbering is saved in an additional list to recover the original node indication.

Step 4: Loop Closure Addition

The remaining edges act as loop closures and their corresponding nodes are also
renumbered according the list. They are added to the end of the trajectory edges, in
order to guarantee that loop closures won’t be listed before corresponding nodes are
initialized by the graph solver.

The described workflow allows to convert an unordered collection of relative
transformations into a sequential structure that can be processed by pose graph
solvers.

8.3.1 Generation of Synthetic Pose Graph Data

The forementioned workflow is proved by creating synthetic pose graph data. The
idea is inspired by [33, 32] providing synthetic sample data93 without ground truth
data for testing purposes. In this work the proposed test pipline uses 3d meshes from
availabe polygon models as basic data, which are similiar to pose graphs. Mesh data
also consist of nodes (vertices) containing translatory information and edges simply
linking between nodes. Random generated rotations are added to the nodes since vertex
information from meshes do not contain rotation. Each edge is augmented with the
relative transformation between the corresponding nodes. Furthermore, Gaussian noise
(𝜎𝛾,𝛽,𝛼 = 5%, 𝜎𝑋,𝑌,𝑍 = 10%, given as relative values) is added to these transformations
in order to simulate measuring uncertainties. The corresponding covariance matrices -
describing the transformation uncertainties - are obtained from given perturbations of
the state variables.
As a result of this, edges represent the desired collection of unordered transformations
based on the underlying mesh topology. Their corresponding nodes deal as ground
truth pose data for evaluation. Following the four step workflow description from the
previous section, a pose graph is generated from a 3d mesh as shown in Fig. 8.3.
Further pose graph generation examples can be found in Appendix A.14, page 187. An
overview of each pose graph’s topological properties summarizes Tab. 8.1.

8.3.2 Optimization of Synthetic Pose Graph Data

The generated pose graphs are optimized using g2o, GTSAM, iSAM2, Ceres and
SLAM++ in order to verify the graph generation pipeline as well as to proof the graph
solver integration. The solver settings can be found in Appendix A.15, page 189. After
optimization, the pose graphs are compared with known ground truth data. In [262,
284] the authors present distance metrics regarding trajectory comparison between an

93https://lucacarlone.mit.edu/datasets/
94https://www.models-resource.com/nintendo_64/superMario/model/685/

https://lucacarlone.mit.edu/datasets/
https://www.models-resource.com/nintendo_64/superMario/model/685/
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a

d e

b c

Fig. 8.3: Pose graph extraction from the mesh of the polygon model Mario94. The following is shown
in: a) original mesh (textures omitted), b) subgraph indicating the trajectory’s pathway from start
to end with branching, illustrate loop closures. c) final pose graph, d trajectory’s pathway in 3d
model, e) loop closure edges in 3d model.

Tab. 8.1: Properties of generated pose graphs

Model Vertices Trajectory Edges Loop Closure Edges

Mario 440 419 875

Shark 411 410 707

Teapot 732 731 1417

Helix 1620 1619 3201

Sphere 482 481 959

estimated odometry from VO/VIO and ground truth data. Following their recommen-
dation, ICP95 is used to obtain an initial transformation [𝑅, t] between estimated graph
nodes [𝑅est

𝑖 , test
𝑖 ] and corresponding ground truth nodes [𝑅true

𝑖 , ttrue
𝑖 ], which is further

non-linear refined in least squares sense

argmin
𝑅,t

𝑛∑︁
𝑖=1

⃦⃦
ttrue
𝑖 −𝑅test

𝑖 − t
⃦⃦2

. (8.6)

95https://github.com/poisonfox/ICP



8 Pose Graphs 149

The derived transformation is used to obtain the rotation error Δ𝑖
𝑅 (as already used in

Eq. (6.17), page 103) and the translation error Δ𝑖
t such that:

Δ𝑖
𝑅 = cos−1

Ç
trace

(︀
(𝑅true

𝑖 )𝑇𝑅𝑅est
𝑖

)︀
− 1

2

å
(8.7)

Δ𝑖
t = ‖ttrue

𝑖 −𝑅test
𝑖 − t‖ . (8.8)

An additional error Δ𝑙 is introduced, describing the difference between ground truth
trajetory length 𝑙true and estimated one 𝑙est with

Δ𝑙 = |𝑙true − 𝑙est| . (8.9)

The ATE (Absolute Trajectory Error) [284]), is the RMSE (Root Mean Square Er-
ror), quantifying the entire estimated trajectory concerning rotation and translation
accuracy:

Δ*
𝑅 =

Å
1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
Δ𝑖

𝑅

⃦⃦2ã 1
2

(8.10)

Δ*
t =

Å
1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
Δ𝑖

t

⃦⃦2ã 1
2

. (8.11)

An overview of obtained Δ*
𝑅, Δ*

t and Δ𝑙 results for each solver and each model is
given in Tab. 8.2. Fig. 8.4 graphically illustrates each solver’s solution compared to
ground truth data for the selected model Shark. Appendix A.16, page 190 contains
further visualized PGO results of the remaining models. As can be seen in Fig. 8.4

g2o GTSAM iSAM2

Ceres SLAM++

ground truth solver solution

Fig. 8.4: Visualization of PGO results from pose graph Shark. This example is best suitable to
hightlight salient points for a visual accuracy comparison. Plots on the right visualize Δ𝑖

𝑅 and Δ𝑖
t,

which are sorted in ascending order to better compare minima and maxima values between the solvers.
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Tab. 8.2: Pose graph solver optimization results for synthetic test data

Mario (𝑙ref = 228.10𝑚) Shark (𝑙ref = 74.12𝑚) Teapot (𝑙ref = 222.54𝑚) Helix (𝑙ref = 5292.29𝑚) Sphere (𝑙ref = 85.06𝑚)

Solver Δ*
𝑅 [∘] Δ*

t [𝑚] Δ𝑙 [𝑚] Δ*
𝑅 [∘] Δ*

t [𝑚] Δ𝑙 [𝑚] Δ*
𝑅 [∘] Δ*

t [𝑚] Δ𝑙 [𝑚] Δ*
𝑅 [∘] Δ*

t [𝑚] Δ𝑙 [𝑚] Δ*
𝑅 [∘] Δ*

t [𝑚] Δ𝑙 [𝑚]

g2o 4.717 0.055 0.829 6.485 0.032 0.197 6.652 0.063 0.318 6.353 1.909 37.897 4.576 0.022 0.167

GTSAM 5.022 0.071 0.238 6.393 0.034 0.264 6.918 0.075 0.665 5.643 2.130 38.853 4.530 0.021 0.118

iSAM2 5.019 0.070 0.234 6.392 0.033 0.263 6.907 0.075 0.664 5.642 2.131 38.843 4.529 0.021 0.119

Ceres 4.811 0.045 0.424 6.204 0.023 0.443 5.159 0.072 1.999 6.030 1.202 24.454 4.645 0.019 0.535

SLAM++ 5.214 0.043 0.163 13.771 0.027 0.324 8.440 0.094 0.812 4.582 1.697 13.213 5.767 0.020 0.620

the solvers obtain different optimization results, which are noticable at certain points.
However each solver’s accuracy concerning Δ*

𝑅, Δ*
t and Δ𝑙 varies from model to model.

There is no solver that cleary outperforms the other ones. Ceres in conjunction with
MASAT provides overall satisfying results, followed by g2o. Accuracy results from
GTSAM and iSAM2 are very close and do not distinguish noticeably. iSAM2 is mainly
developed for faster processing in an online framework like visual SLAM. However this
advantage plays a secondary role in the here proposed offline reconstruction pipeline.
SLAM++ provide mixed accuracy results. It produces significant larger rotational
errors except for the Helix pose graph. It can be supposed that SLAM++ provides
better results concerning rotation for larger and densely connected pose graphs.
Furthermore, the presented results strongly depend on solver settings as well as
alignment between optimized pose graphs and ground truth.

This analysis is mainly done to proof the proposed trajectory extraction work-
low as well as to test the integration of standalone solvers by verifying optimization
results.

Brief Chapter Summary

SCME incorporates PGO as back-end. Standalone solvers for PGO usually work in
a Visual SLAM framework and thus require sequential pairwise transformation con-
straints from a camera trajectoy as input data. In contrast to that, the proposed
SCME pipeline is designed to process unordered image collections and provides non-
sequential pairwise transformations from scaled two-view transformations. A workflow
was presented that extracts a camera trajectory from a set of given unordered transfor-
mation constraints. The workflow was applied to synthetic data from polygon models.
Extracted pose graphs were solved via standalone PGO solvers to test the trajectory
extraction workflow as well as the solver integration into the SCME pipeline.
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9 Structureless Camera Motion
Estimation

Brief Chapter Overview

This chapter explaines the proposed SCME (Structureless Camera Motion Estima-
tion) pipeline and Section 9.1 introduces the pipeline’s main elements, which include
serveral findings from chapter Chapter 3 to chapter Chapter 8. Section 9.2 explains
a novel approach to obtain global translation scale factors from up-to-scale two-view
transformations using translation ratios from Chapter 7. This scaling approach is the
last missing element that is required to incorporate PGO as global camera pose solver.
Furthermore, the proposed scaling approach also integrates depth data from RGBD
cameras as Section 9.3 comprehensively describes and extrinsic camera constraints,
which is described in Section 9.4.

9.1 SCME Pipeline

SCME is a processing pipeline that combines existing ideas and novel insights to
provide a general, modular and flexible camera motion estimation approach. It
supports a wide range of central perspective and central omnidirectional projections
via P2S-maps (general), incorporates different feature types and pose graph solvers
(modular) and is not restricted to specific multi-camera configurations with overlap-
ping FoVs or to certain camera combinations (flexible).

SCME is in the spirit of global SfM (Section 2.2, page 19) and solves for global
camera poses utilizing up-to-scale two-view transformations from feature matching
as Fig. 9.1 illustrates. Unlike extising approaches, SCME is non-incremental and
separates global two-view translation scaling from global rotation estimation. Conse-
quently translation scaling becomes independent of global rotation estimates and this
circumstance enables SCME to solve for all global translation scales simultaneously
without using any triangulation. This process is the core element of SCME that is split
into two parts. The first one determines translation ratio factors from available pairs
of up-to-scale two-view transformations and their point correspondences (Section 7.5,
page 134). The second one obtaines all global two-view translation scale factors using
derived translation ratio factors (Section 9.2, page 155).
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bundle adjustment pose graph optimization

𝑅1, t1

𝑅2, t2

𝑅4, t4

U1

U2 U3 U4

𝑅3, t3

𝑅1, t1

𝑅2, t2

𝑅4, t4

𝑅3, t3

𝑅12, t̃12

𝑅23, t̃23

𝑅34, t̃34

𝑅14, t̃14

Fig. 9.1: Simple illustration of the main idea behind SCME that replaces the 3d structure U1, U2,
U3, U4 in BA with globally scaled two-view transformations [𝑅12, t̃12], [𝑅23, t̃23], [𝑅34, t̃34], [𝑅14, t̃14]
to solve for global camera poses using PGO.

Furthermore, SCME incorporates state-of-the-art solvers for PGO that obtain global
camera poses based on provided globally scaled two-view transformations. As a
consequence the proposed pipeline is an intermediate calculation step, since the
optimization does not include the actual measured image points. This circumstance
is comparable to Visual SLAM, where PGO optimizes camera poses in case of loop
closures but global BA is still required for further optimization in post-processing.
SCME also provides camera motion estimates that are close to the final solution and
may deal as initial guess for further optimization using structureless BA. In order to
use BA for optimization, 3d points need to be triangulated from global camera pose
estimates and known image point correspondences.

Fig. 9.2 gives an overview of the presented pipeline that uses P2S-maps to in-
corporate a wide range of central projections from intrinsic camera calibration
and from stitched full omnidirectional images, e.g. in standard equirectangular
format. The pipeline provides projection conversion that allows to convert images
from the source projection to a target projection with less distortion effects to improve
feature matching. Feature matching and transformation optimization provide
up-to-scale two-view transformations [𝑅𝑘𝑙, t̂𝑘𝑙], [𝑅𝑙𝑚, t̂𝑙𝑚], [𝑅𝑚𝑘, t̂𝑚𝑘] and point corre-
spondences X̂𝑘 ↔ X̂𝑙, X̂𝑙 ↔ X̂𝑚, X̂𝑚 ↔ X̂𝑘 from matched image pairs 𝑘 ↔ 𝑙, 𝑙 ↔ 𝑚,
𝑚 ↔ 𝑘. Ratio factor determination is a novel method determining translation
ratio factors 𝑟𝑘𝑙𝑚, 𝑟𝑙𝑘𝑚, 𝑟𝑘𝑚𝑙 between adjoining two-view transformations and point
correspondences as introduced in Section 7.5, page 134. They describe the relation
of translation magnitudes between adjoining two-view transformations in global as
well as in real-world scale. Scale factor determination uses these translation ratio
factors to calculate the global translation scale factors �̃�𝑘𝑙, �̃�𝑙𝑚, �̃�𝑚𝑘. The derived
results globally scale two-view transformations which then PGO uses to solve for
global camera poses [𝑅𝑘, t𝑘], [𝑅𝑙, t𝑙], [𝑅𝑚, t𝑚]. Furthermore, SCME allows to integrate
optional constraints such as depth values from RGBD cameras and extrinsics from
multi-camera calibration to obtain real-world scale. Depth data - e.g. from the 𝑙th

camera - is used to obtain the real-world scale factors 𝑠𝑙𝑘, 𝑠𝑙𝑚 directly as introduced in
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Section 6.7, page 113, which then can be integrated into the scale factor calculation
process. Extrinsic calibration - e.g. between the 𝑘th and 𝑚th camera - provides the
normalized two-view transformation [𝑅𝑚𝑘, t̂𝑚𝑘] and the corresponding real-world scale
factor 𝑠𝑚𝑘. The latter one can be also integrated into the scale factor calculation.
The up-to-scale two-view transformation [𝑅𝑚𝑘, t̂𝑚𝑘] is already optimized. Thus it is
used to verify point correspondences X̂𝑚 ↔ X̂𝑘 from feature matching and is part of
the ratio factor determination process.

For a better understanding the following describes the translation scaling for a
general case and at hand of the shown example in Fig. 9.1, which is taken from
Chapter 2. This example does not use all available two-view transformations between
unknown global camera poses in order to show how global translation scale factors
can be derived from sparse image matching.
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intrinsic camera calibration full omnidirectional images

projection conversion

scale factor determination

optional constraints

depth

extrinsic calibration

two-view transformations

feature matching and transformation optimization

point correspondences

ratio factor determination

pose graph optimization
camera poses

Fig. 9.2: Overview of the proposed SCME pipeline. Depth constraints from RGBD cameras as well
as extrinsic calibration constrains from multi-camera rigs are optional and can be used to achieve
real-world scaling.
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9.2 Determination of Two-View Translation Scale
Factors

As described in Section 6.7, page 113 the two-view translation t𝑘𝑙 between the 𝑘th and
𝑙th camera is a combination of an normalized translation ‖t̂𝑘𝑙‖ = 1 and a real-world
scale factor 𝑠𝑘𝑙 with

t𝑘𝑙 = 𝑠𝑘𝑙t̂𝑘𝑙 . (9.1)

Since a monocular image-based reconstruction is always up to a certain scale, the
obtained global scale factor �̃�𝑘𝑙 is also up to a certain scale such that

𝑠𝑘𝑙 = 𝜏 �̃�𝑘𝑙 . (9.2)

𝜏 represents an aligning factor that adjusts the entire reconstruction to real-world di-
mensions. This is comparable to SfM where known reference points are used for scaling
purpose. In this work 𝜏 can be obtained from known relative real-world constraints as
shown in Sections 9.3 and 9.4. Applying Eq. (9.2) to Eq. (9.1) yields

t𝑘𝑙 = 𝜏 �̃�t̂𝑘𝑙 . (9.3)

Section 7.5, page 134 introduces the translation ratio factor 𝑟, whose relations are
summarized:

𝑟𝑘𝑙𝑚 =
‖t𝑘𝑙‖
‖t𝑙𝑚‖

=
𝑠𝑘𝑙‖t̂𝑘𝑙‖
𝑠𝑙𝑚‖t̂𝑙𝑚‖

=
𝜏 �̃�𝑘𝑙‖t̂𝑘𝑙‖
𝜏 �̃�𝑙𝑚‖t̂𝑙𝑚‖

with ‖t̂𝑘‖=‖t̂𝑙‖ = 1 such that

𝑟𝑘𝑙𝑚 =
‖t𝑘𝑙‖
‖t𝑙𝑚‖

=
𝑠𝑘𝑙
𝑠𝑙𝑚

=
�̃�𝑘𝑙
�̃�𝑙𝑚

(9.4)

and finally yields

0 = 𝑟𝑘𝑙𝑚�̃�𝑙𝑚 − �̃�𝑘𝑙 . (9.5)

The scale factors are independent of the two-view transformation direction, thus
�̃�𝑘𝑙 = �̃�𝑙𝑘 and �̃�𝑙𝑚 = �̃�𝑚𝑙. Furthermore, 𝑟𝑘𝑙𝑚, 𝑟𝑙𝑘𝑚, 𝑟𝑘𝑚𝑙 describe the three transla-
tion ratio factors within a camera triplet 𝑘, 𝑙, 𝑚 as Fig. 9.3 clarifies.

𝑘

𝑙

𝑚

𝑟𝑘𝑙𝑚

𝑘

𝑙

𝑚 𝑘

𝑙

𝑚

𝑟𝑙𝑘𝑚

𝑘

𝑙

𝑚

𝑟𝑘𝑚𝑙

Fig. 9.3: The camera triplet 𝑘, 𝑙, 𝑚 consists of three tranlsation ratio factors 𝑟𝑘𝑙𝑚, 𝑟𝑙𝑘𝑚, 𝑟𝑘𝑚𝑙.
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The proposed translation scaling method requires at least one translation ratio factor
from each available camera triplet and thus is suitable for sparse image matching.

𝑅12,t̂12 𝑅23,t̂23 𝑅34,t̂34 𝑅14,t̂14

𝑟123 𝑟234 𝑟341

𝑟214

Fig. 9.4: The translation ratio factors 𝑟214, 𝑟123, 𝑟143, 𝑟234 are obtained from given two-view trans-
formations [𝑅12, t̂12], [𝑅23, t̂23], [𝑅34, t̂34], [𝑅14, t̂14] and image point correspondences X̂1 ↔ X̂2,
X̂2 ↔ X̂3, X̂3 ↔ X̂4, X̂1 ↔ X̂4, which are obtained trough feature matching. As 3d points do not
play any role in the entire SCME pipeline they are indicated here to better visualize the image point
correspondences and the relation between up-to-scale two-view transformations.

Fig. 9.4 illustrates the set of translation ratio factors 𝑟214, 𝑟123, 𝑟143, 𝑟234 which are
obtained from available up-to-scale two-view transformations [𝑅12, t̂12], [𝑅23, t̂23],
[𝑅34, t̂34], [𝑅14, t̂14] and point correspondences X̂1 ↔ X̂2, X̂2 ↔ X̂3, X̂3 ↔ X̂4,
X̂1 ↔ X̂4 as explained in Section 7.5, page 134. Considering Eq. (9.5), the derived
translation ratio factors and unknown global scale factors form a system of linear equa-
tions:

𝑟214�̃�14 − �̃�12 = 0

𝑟123�̃�23 − �̃�12 = 0

𝑟143�̃�34 − �̃�14 = 0

𝑟234�̃�34 − �̃�23 = 0 ,

which is solved using a DLT that finds the solution for 𝐵x = 0 in least squares sense
subjecting ‖x‖ = 1. Rearranging the equations leads to⎡⎢⎢⎢⎣

−1 𝑟214 0 0

−1 0 𝑟123 0

0 −1 0 𝑟143
0 0 −1 𝑟234

⎤⎥⎥⎥⎦
⏟  ⏞  

𝐵

á
�̃�12
�̃�14
�̃�23
�̃�34

ë
⏟  ⏞  

x

= 0 . (9.6)
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Applying an SVD to 𝐵 with 𝐵 = 𝑈𝛴𝑉 𝑇 determines 𝑉 . The column 𝑉 (:,min) corre-
sponds to the smallest singular value 𝜎min in 𝛴 and represents the solution x = 𝑉 (:,min).
The derived global scale factor solutions are used as initial estimates for a non-linear
LM optimization, which is presented here in a general expression

argmin
�̃�𝑘𝑙,�̃�𝑙𝑚

∑︁
(𝑘,𝑙,𝑚∈ℰ)

Å
�̃�𝑘𝑙
�̃�𝑙𝑚

− 𝑟𝑘𝑙𝑚

ã2
(9.7)

with

𝐽𝑘𝑙𝑚 =

ï
𝜕

𝜕�̃�𝑘𝑙

𝜕

𝜕�̃�𝑙𝑚

ò
=

ï
1

�̃�𝑙𝑚
− �̃�𝑘𝑙
(�̃�𝑙𝑚)2

ò
(9.8)

considering �̃�𝑘𝑙 = �̃�𝑙𝑘 and �̃�𝑙𝑚 = �̃�𝑚𝑙. That expression applied to the described example
yields

argmin
�̃�12,�̃�14,�̃�23,�̃�34

‖𝜖‖2

with

𝜖 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̃�12
�̃�14

− 𝑟214

�̃�12
�̃�23

− 𝑟123

�̃�14
�̃�34

− 𝑟143

�̃�23
�̃�34

− 𝑟234

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and the corresponding Jacobian

𝐽 =
𝜕𝜖

𝜕x
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

�̃�14
− �̃�12
(�̃�14)2

0 0

1

�̃�23
0 − �̃�12

(�̃�23)2
0

0
1

�̃�34
0 − �̃�14

(�̃�34)2

0 0
1

�̃�34
− �̃�23
(�̃�34)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using translation ratio uncertainties 𝜎𝑟𝑘𝑙𝑚 from Section 7.5.1, page 134 leads to the
minimization of the sum of squared Mahalanobis distances

argmin
�̃�𝑘𝑙,�̃�𝑙𝑚

∑︁
(𝑘,𝑙,𝑚∈ℰ)

Å
�̃�𝑘𝑙
�̃�𝑙𝑚

− 𝑟𝑘𝑙𝑚

ã
1

𝜎2
𝑟𝑘𝑙𝑚

Å
�̃�𝑘𝑙
�̃�𝑙𝑚

− 𝑟𝑘𝑙𝑚

ã
. (9.9)
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The obtained results globally scale the given two-view transformations that are now
suitable to be solved via PGO for global camera poses as Chapter 8 explains.

9.3 Integration of Depth Data

‖t̂‖12 = 1

‖t̂‖14 = 1

‖t̂‖23 = 1

‖t̂‖34 = 1

‖t̃‖12

‖t̃‖14

‖t̃‖23

‖t̃‖34

‖t‖12

‖t‖14

‖t‖23

‖t‖34

translations

𝑠12

𝑠23

𝑠34

𝑠14

𝜏

real world scale
translations

globally up-to-scale

(normalized)

locally up-to-scale
translations

Fig. 9.5: Illustration of different two-view translation scale levels. Normalized translation scale factors
are provided by feature matching. Globally scaled translations are obtain from translation ratio fac-
tors. Real-world scaled translations are derived by including depth information from RGBD cameras
or by including extrinsic camera constraints.

The results from the previous section do not match real-world scale. The following
shows how depth data - e.g. from an RGBD camera - can be integrated into the scale
factor calculation process straightforwardly. This example assumes the 2nd camera
to be an RGBD camera. The provided depth data is used to obtain the real-world

𝑅12, 𝑠12t̂12 𝑅23, 𝑠23t̂23 𝑅34,t̂34 𝑅14,t̂14

Fig. 9.6: Available two-view transformation from feature matching are up-to-scale. Since camera 2
provides depth information the two-view transformations [𝑅12, t̂12], [𝑅23, t̂23] are real-world scaled by
𝑠12, 𝑠23.

scale factors 𝑠12, 𝑠23 using the proposed two-view translation scaling approach from
Section 6.7, page 113.

Following the workflow from the previous section inital ratio factors 𝑟214, 𝑟123, 𝑟143, 𝑟234
and global scale factor estimates �̃�12, �̃�14, �̃�23, �̃�34 are obtained. The aligning factor
𝜏 is calculated from the correspondence set between global scale factors �̃�12, �̃�23 and
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real-world scale factors 𝑠12, 𝑠23 such that

𝜏 =
a𝑇b

‖a‖2

with a = (�̃�12, �̃�23)
𝑇 and b = (𝑠12, 𝑠23)

𝑇 . The remaining real-world scale factors 𝑠14 =

𝜏 �̃�14 and 𝑠34 = 𝜏 �̃�34 are simply calculated. They are further non-linear optimized using
Eq. (9.7). Since 𝑠12, 𝑠23 are already optimized in real-world scale, they require to remain
unchanged during LM optimization. This is achieved by zeroing the corresponding
column entries in the Jacobian such that

𝐽 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 − �̃�12

(�̃�14)2
0 0

0 0 0 0

0
1

�̃�34
0 − 𝑠14

(𝑠34)2

0 0 0 − 𝑠23
(𝑠34)2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

This procedure is inspired by sparse BA [172, 173], where certain parameters can be
excluded from optimization, e.g. to only optimize motion or structure.

9.4 Integration of Extrinsic Camera Constraints

Assuming the 1st and the 2nd camera to be fixed in a stereo setup. Extrinsic camera
calibration (Section 4.4, page 58) provides the transformation [𝑅12, t12] between both
cameras, which can be decomposed into a normalized transformation [𝑅12, t̂12] and a
corresponding real-world translation scale factor 𝑠12. Thus the real-world translation
scale factor 𝑠12 can be intergrated into the translation scale factor calculation
process as described in the previous section.

The transformation [𝑅12, t̂12] verifies feature matches X̂1 ↔ X̂2 and is used for
the translation ratio factor determination process. As can be seen, depth
information as well as extrinsic camera constraints in various combinations can be
straightforwardly integrated into the translation scaling process.

Brief Chapter Summary

This chapter presented the complete SCME pipeline and comprehensively explained
a novel, non-incremental approach that globally scales up-to-scale two-view transfor-
mations to be used with PGO. Unlike existing approaches, this new approach is in-
dependent of global rotation estimates or triangulated 3d points. Translation ratio
factors are obtained between adjoining up-to-scale two-view transformations and their
point correspondences. Based on these ratio factors, global translation scale factors
are estimated and further optimized. Depth data from RGBD cameras as well as ex-
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trinsic camera constraints can be simply integrated to achieve real-world scaling. The
proposed modular pipeline has a simple structure and provides a general and flexi-
ble camera motion estimation approach, which incorporates a wide range of central
directional and omnidirectional projections.
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10 Camera Motion Estimation
Results

SCME incorporates different image feature types such as SIFT (Scale Invariant Feature
Transform) [174], SURF (Speeded Up Robust Features) [12], BRISK (Binary Robust
Invariant Scalable Keypoints) [159], ORB (Oriented FAST and Rotated BRIEF) [212]
and KAZE (Japanese word for Wind) [6]. This work utilizes RootSIFT [8] as a robust
variant of SIFT.
Unlike many other SfM, VO or Visual SLAM implementations, SCME uses these
mentioned feature types jointly as proposed in [63] and in any combination. This
allows to make use of different feature types at the same time without selection a
preferred/suitable one in advance. It is an elegant way to combine the feature’s
strenghts as well as to reduce their weaknesses.

The SCME pipeline is tested with image data from an underground mapping
compaign of an old ore mine using a mobile robot, which is equipped with a Kinect
V2, Kodak SP 360 4K and a Ricoh Theta S camera. The corresponding calibrations
are shown in Section 4.3.1, page 55. The scanned region is approx. 65𝑚 long
amd consists of narrow cross sections, a flat underground, external illumination and
provides a loop closure to test SCME in a less challenging environment for the first time.

Image acquisition is taken during different measuring runs for each camera,
thus obtained trajectories from camera motion cannot be directly compared between
mentioned cameras.

10.1 Directional Camera Images

Kinect V2 RGB

SCME uses RGB data from the Kinect V2 camera consisting of 734 images and data
association relies on BRISK, ORB and SIFT features. The estimated camera motion
is compared to results from standard SfM implementations like Metashape, Colmap
and Visual SfM as Fig. 10.1 illustrates. Metashape’s trajectory is set as reference
and the remaining ones are transformed via ICP (Iterative Closest Point) with scaling
capabilities. The SfM implementations obtain similar results and are also able to
manage the loop closure. SCME also obtaines a closed model, but the trajectory shape
differs noticeably from the SfM solutions.
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SCME

Metashape

Visual SfM

Colmap

a b c

d
SIFT

BRISK ORB

Fig. 10.1: SCME results from directional RGB images. The following is shown: a) camera motion
(trajectory) obtained from Metashape, Colmap, Visual SfM and SCME, b) top view of camera motion
results, c) camera calibration as P2S-map with an example image, d) point correspondences between
two images from geometric verified BRISK, ORB and SIFT feature matches.

Kinect V2 RGBD

SCME

ORBSlam2

a b c

d

Fig. 10.2: SCME results from directional RGBD images. The following is shown: a) camera motion
(trajectory) obtained from ORBSlam2 and SCME, b) top view of camera motion results, c) top view
of resulting point cloud from point cloud fusion via Open3D, which is obtained from SCME pose
estimates and corresponding RGBD data without further pose optimization, d) selected insight views
of the point cloud.

The forementioned RGB image set is used in combination with depth data. SCME
utilizes this depth data to scale two-view transformations but do not use them for image
alignment. Thus up-to-scale two-view transformations are used from the previous test
and the additional depth data are used to calculate the real-world translation scale
factors directly. ORBSlam2 96 [190] is a popular Visual SLAM algorithm and obtains
96https://github.com/raulmur/ORB_SLAM2

https://github.com/raulmur/ORB_SLAM2
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a reference trajectory as shown in Fig. 10.2. As can be seen both trajectories are
nearly identicial, which shows that SCME obtaines comparable results for the RGBD
data. Thus it can be stated that SCME calculates up-to-scale two-view transformations
correctly from RGB images and also determines global scale factors correctly from
depth data. In order to show SCME’s accuracy concerning pose estimates, Open3D97

[290] fuses RGBD data based on their corresponding camera poses to build an entire
point cloud model of the scanned underground section. Fig. 10.2c, d) show sample
views from the resulting points cloud indicating accurate results.

10.2 Omnidirectional Camera Images

Ricoh Theta S

Metashape

SCME

SIFT SURF

BRISK KAZE

ORB

a c db

e f

Fig. 10.3: SCME results from full omnirectional RGB images. The following is shown: a) camera
motion (trajectory) obtained from Metashape and SCME, b) top view of camera motion results, where
(O) highlights the break in the Metashape model leading to an open loop, c) open loop trajectory
in Metashape, d) SCME’s trajectory imported to Metashape, e) point correspondences between two
images from geometrically verified ORB, BRISK, KAZE, SURF and SIFT feature matches, f) cube
map as P2S-map with an example image.

97http://www.open3d.org

http://www.open3d.org
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This camera provides stitched full omnidirectional images in equirectangular format,
which are converted to a cube map projection. Equirectangular and cube map
P2S-maps are generated via the map projection generator from Section 5.3, page 79
and images are converted using the projection conversion workflow as proposed in
Section 5.4, page 81. A total of 1473 images are captured. Data association is based
on all available feature types namely ORB, BRISK, KAZE, SURF and SIFT. Fig. 10.3
illustrates the results of the obtained camera poses between Metashape and SCME.
As can be seen both achieve comparable results, however Metashape’s trajectory is
non-closed. The open loop trajectory is in contrast to Metashape’s behavior in case of
directional images. SfM in case of directional images can balance alignment inaccura-
cies by moving the camera center or by adjusting intrinsics, e.g slightly change focal
length. In case of omnidirectional images this process becomes more difficult. Omnidi-
rectional images in equirectangular format have a predefined intriniscs comparable to
P2S-maps. Thus all intrinsic parameters remain unchanged since the geometry is fixed.
Furthermore, omnidirectional images observe features from all directions and con-
sequently there is no clear decision where the camera should move during optimization.

In contrast to Metashape SCME is able to reconstruct a closed camera trajec-
tory and yields more confident results.

Kodak SP360 4k

BRISK ORB

SCME Kodak SP360 4K

SCME Kinect V2

SCME Ricoh Theta S

ba c

SIFTd

Fig. 10.4: SCME results from omnirectional (fisheye) RGB images. The following is shown: a) camera
motion (trajectory) obtained from SCME, b) top view of camera motion results obtained from SCME
using Kodak SP360 4K, Kinect V2 and Ricoh Theta S. Please note, camera trajectories are from
different runs. Due to the norrow environment the shape of the trajectories is similar, which is used
to align the data for a visual comparison. c) camera calibration as P2S-map with an example image,
d) point correspondences between two images from geometric verified SIFT, BRISK and ORB feature
matches.

The Kodak SP360 4k is a fisheye camera that is intrinsically calibrated using the
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described routine from Section 4.3, page 54. It provides 1033 images and relies on a
feature combination consisting of BRISK, ORB and SIFT. SCME uses the original
images with strong distortion effects. This camera is used to show SCME’s compati-
bility and it is not used with any other SfM or or Visual SLAM implementation. The
motion estimation results are illustrated in Fig. 10.4, which show promising results
concerning the reconstructed camera trajectory and the ability to close loops.

SCME is tested with image data from different cameras. It obtaines camera
poses from omnidirectional (fishey) and from full omnidirectional images and yield
better results than Metashape does. It successfully obtaines camera poses from RGBD
data and achieves similar results to ORBSlam2. In case of directional RGB images
SCME’s estimated camera trajectory shows significant differences, but still provides
a closed model. SCME uses the same up-to-scale two-view transformation for RGB
and RGBD data, this leads to the conclusion, that global translation scale factor
determination provides slightly different relations, which might be caused by noise.
Thus erroneous ratio factors should be removed from optimization.
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11 Conclusion

SCME is a novel non-incremental gobal approach to obtain camera poses from up-to-
scale two-view transformations for spherical cameras. Compared to other approaches
SCME’s processing steps are kept simple. SCME builds up on existing processing
tasks (feature matching and geometric verification) from SfM and incorporates avail-
able pose graph solvers. Thus the integration of the proposed workflow can be done
straightforwardly.

11.1 Summary

SCME represent an entire pipeline with various novelties and findings, which are
summarized in the follwoing.

P2S-maps are an equation-free representation of the projection geometry. SCME
uses P2S-maps to incorporate any central directional and central omnidirectional
projection from cameras and world maps. P2S-maps are color-coded lookups, which
store mappings from pixels to corresponding positions onto unit sphere. It is a central
element of this proposed work and paves the way for a general SCM (Spherical Camera
Model). P2S-maps also enable to interpolate mappings for intermediate pixels and
they can be used to convert image data between projections. A routine is presented
to convert images between projections based on their P2S-maps. As a consequence,
this rountine does not need any prior knowledge of the underlying projections.

Intrinsic camera calibration incorporates UCM (Unified Camera Model) as well
as PCM (Polynomal Camera Model) and generates P2S-maps from intrinsic camera
parameters. It utilizes different target detection and calibration algorithms to improve
the calibration process. The intrisic calibration routine is tested with different cameras.

Extrinsic camera calibration utilizes P2S-maps to incorporate a wide range
of central directional and omnidirectional camera types. It uses PGO as back-end to
solve for a non-restricted number of camera and target poses from relative target-
camera transformations. PnP based on spherical coordinates is used to obtain relative
target-camera transformations from 3d-2d and 2d-2d point correspondences. Finally,
BA uses the results from PGO for further refinement. The extrinsic calibration is tested
at hand of an RGBD camera, a four fisheye camera setup, a stereo setup consisting of
persepective cameras and an eight camera setup also consisting of perspective cameras.
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World map projections are used as target projections for undistortion pur-
poses. A target world map projection and its corresponding P2S-map are obtained
from a geograhic library. Camera images are then converted to the target projection
based on their corresponding P2S-maps. This represents a felxible and general method
for image undistortion.

Two camera relations are extensively described in this work. The alternative
midpoint method is presented, which directly obtaines depth values from point
correspondences. Based on these findings an improved procedure is developed, which
straightforwardly resolves ambiguity from essential matrix deocomposition within two
calculation steps only. Different two-view estimation algorithms are compared, where
the classic 8-point algorithms achieves best results. Two-view optimization is based
on a derived circumferential distance in combination with a simple epipolar distance.
Furthermore, the identificaiton of degeneracies is explained based on homography for
spherical cameras. Additionally the calculation of two-view translation scale factors
from depth data is described.

Three camera relations are comprehensively described. During this topic,
the three-view geometry is derived, a new crossing epipolar planes geometry is
developed and the trifocal geometry is reformulated. The relations between these
three geometries are shown, which are also able to obtain translation ratio factors
between up-to-scale two-view transformations. This is another central element of this
work, which allows to develop a global and structureless pose estimation algorithm.
As an evaluation result the trifocal geometry achieves the best translation ratio factor
estimates.

Global translation scaling uses translation ratio factors to obtain translation
scale factors that correspond to up-to-scale two-view transformations. This is a novel
approach which is non-incremental and doesn’t require any triangulation. Instead
it solves for all translation scale factors at once. As a consequence translation scale
estimation becomes independent of global rotation estimation.

PGO is used as back-end in many Visual SLAM implementations to efficiently
solve for camera poses from scaled two-view transformations, thus solvers require
a sequence of scaled transformations. This work presents a strategy to extract a
sequence of transformations from an unordered set of scaled two-view transformations.
PGO is then used to solve for camera poses.

SCME results from different camera types show promising perspectives. SCME is
able to obtain camera poses from RGBD data sets comparable to ORBSlam2. It also
obtaines pose estimates from provided omnidirectional as well as from directional RGB
images. As mentioned several times in this work, SCME is an estimation approach
that tries to find ininital poses for further optimization. It is not aimed at replacing
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BA or structureless BA. Taking this into account shows that SCME provides reliable
pose estimaes.

11.2 Outlook and Future Work

As always with new algorithms, more tests need to be done under varying conditions
to better evaluate results and to see strengths and weaknesses of this approach.
Furthermore, this allows to improve certain routines and to obtain thresholds to set
upper and lower bounds in the optimization regime.

As stated in Chapter 9 SCME obtaines camera poses from scaled two-view
transformations using PGO, which does not take any measured features into ac-
count. Scaled two-view transformations are an intermediate result from two-view
optimization and translation scaling. Thus the entire estimation represents an
intermediate calculation step. Further improvements can be achieved by directly using
structureless BA or by using BA if feature points are triangulated. Unfortunately
up-to-now there is no ready-to-use implementation neither for BA nor structureless BA
based on SCM. An implementation using the Ceres library might be a possible solution.

The determination of translation ratio factors und translation scaling factors
could be implemented into existing incremental SfM pipelines to be used in conjunc-
tion with calibrated cameras. In doing so this would integrate a global SfM approach
into existing incremental SfM implementations. As already explained incremental
SfM obtaines up-to-scale two-view transformations to geometrically verify point
correspondences. These transformtions can be simply used to determine translation
ratio factors and consequently translation scale factors. Using PGO provides camera
pose estimates and thus would reduce computational cost and the risk to fail due to
SfM’s incremental reconstruction approach.

SCME might be also integrated into monocular VO to scale two-view transfor-
mations between sequential frames. Translation scale factor determination is based
on translation ratio factors that can be obtained during data association between
consecutive frames. Hence translation scaling is a sparse linear problem that keeps
manageable even in large-scale scenarios and would allow for real-time translation
scaling.
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Appendices
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A.1 Additional Extrinsic Calibration Results

This section presents additional extrinsic camera results, which are obtained using the
proposed pipeline from Section 4.4, page 58.

Stereo Camera Setup

a

b c d

Fig. A.1.1: Extrinsic calibration of a camera setup consisting of two Baumer cameras. The following is
shown: a) stereo camera setup with a 7𝑐𝑚 baseline [258], b) a graph view visualizes the connections
between cameras and targets ( ) and highlights the sub-pose graph ( ), which connects the two
camera nodes (•, C1 and C2) using one target node (•), c) optimized pose graph with all target
nodes, d) camera and target alignment from BA-refinement.

This classic stereo setup consists of two Baumer VLG-12C.I cameras, each equipped
with a Ricoh FL-HC0416X-VG 4.2mm f/1.6 lens. This setup was used on a mobile
robotic platform in order to generate virtual 3d models from underground mines [82].
Fig. A.1.1a illustrates the stereo setup consisting of a 7𝑐𝑚 baseline (along 𝑋-axis)
and b-d illustrate the extrinsic calibration results. Bouguet’s Camera Calibration
Toolbox for Matlab [19] (explained in Section 4.3, page 54) is used to provide a
reference calibration. The derived extrinsic results for the 2nd camera from the proposed
extrinsic calibration workflow and the reference calibration (simply named Bouguet) are
listed in Tab. A.1.1. As can be seen, both calibration routines obtain similar rotation
parameters. Bouguet’s calibration routine derives a smaller baseline (𝑡𝑥 = 6.835𝑐𝑚),
whereas the proposed routine obtains a larger baseline (𝑡𝑥 = 7.166𝑐𝑚). Interestingly
Bouguet’s routine additionally derives an offset 𝑡𝑧 = 0.727𝑐𝑚, which is a magnitude
larger compared to the proposed routines with 𝑡𝑧 = 0.075𝑐𝑚. Usually, the offset along
𝑍-axis should be negligibly small. As a consequence, the proposed calibration routine
obtains better translation estimates in viewing direction (𝑍-axis).
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Tab. A.1.1: Comparison of extrinsic calibration results for the Baumer stereo setup. Extrinsics are
listed for the 2nd camera with respect to the 1st one. Rotation is represented in Euler angles (roll,
pitch, yaw) for better comparison.

Extrinsics Bouguet Proposed

𝛾 −0.002∘ ± 0.009∘ −0.002∘ ± 0.022∘

𝛽 −0.008∘ ± 0.009∘ −0.008∘ ± 0.028∘

𝛼 −0.005∘ ± 0.009∘ −0.005∘ ± 0.019∘

𝑡𝑥 6.835𝑐𝑚± 0.246𝑐𝑚 7.166𝑐𝑚± 0.023𝑐𝑚

𝑡𝑦 0.085𝑐𝑚± 0.233𝑐𝑚 0.023𝑐𝑚± 0.020𝑐𝑚

𝑡𝑧 0.727𝑐𝑚± 0.251𝑐𝑚 0.075𝑐𝑚± 0.055𝑐𝑚
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RGBD Camera Setup

RGB Camera IR Camera

RGB Camera IR Camera

a

b

c d e

Fig. A.1.2: Extrinsic calibration of a Kinect v2 camera consisting of a color camera and an infrared
one. The following is shown: a) setup with indicated cameras [258], b) sample calibration images
from both cameras, c) a graph view visualizes the connections between cameras and targets ( ) and
highlights the sub-pose graph ( ), which connects the two camera nodes (•, C1 and C2) using one
target node (•), d) optimized pose graph with all target nodes, e) camera and target alignment from
BA-refinement.

The Kinect v2 is an RGBD-camera consisting of a color camera and an infrared
one as illustrated in Fig. A.1.2a. It also represents a stereo camera system but
in contrast to the Baumer setup it consists of two different different sensors. The
reference calibration parameters are taken from [123], which are provided without
uncertainties. The derived extrinsic results for the 2nd camera from the proposed
extrinsic calibration workflow and the reference calibration (simply named Reference)
are listed in Tab. A.1.2.

Both calibrations yield similar results with negligible small rotation differences.
The most noticable discrepancy is given for the translation 𝑡𝑧 in viewing direction with
≈ 0.7𝑐𝑚. However these results do not allow to draw direct conclusions concerining
the question which one performs better, since each calibration uses its own image
data set. Finally it can be said, the proposed calibration workflow delivers satisfying
results for the tested RGBD-camera.
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Tab. A.1.2: Comparison of extrinsic calibration results for the Kinect v2 camera. Extrinsics are listed
for the 2nd camera (infrared) with respect to the 1st one (color). Rotation is represented in Euler
angles (roll, pitch, yaw) for better comparison.

Extrinsics Reference Proposed

𝛾 −0.379∘ −0.437∘ ± 0.048∘

𝛽 −0.060∘ −0.716∘ ± 0.053∘

𝛼 −0.410∘ −0.096∘ ± 0.044∘

𝑡𝑥 −6.015𝑐𝑚 −6.135𝑐𝑚± 0.018𝑐𝑚

𝑡𝑦 0.221𝑐𝑚 0.334𝑐𝑚± 0.013𝑐𝑚

𝑡𝑧 2.714𝑐𝑚 1.972𝑐𝑚± 0.029𝑐𝑚
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A.2 Linear Least Squares Scaling

Assuming a linear scaling between two vectors a and b with a scaling factor 𝜆 such
that Ö

a(1)

...

a(𝑚)

è
𝜆 =

Ö
b(1)

...

b(𝑚)

è
.

The optimization in least scares sense is defined as

min
𝑚∑︁
𝑖=1

⃦⃦
a(𝑖)𝜆− b(𝑖)

⃦⃦2
,

which turns into the following equation:(︀
a(1)𝜆− b(1)

)︀2
+ · · ·+

(︀
a(𝑚)𝜆− b(𝑚)

)︀2
= 0

𝜆2
Ä
a2
(1) + · · ·+ a2

(𝑚)

ä
− 2𝜆

(︀
a(1)b(1) + · · ·+ a(𝑚)b(𝑚)

)︀
+ b2

(1) + · · ·+ b2
(𝑚) = 0 .

Obtaining the derivative function 𝜕 with respect to 𝜆 and setting it to zero leads to a
least squares approximation of 𝜆:

𝜕

𝜕𝜆
= 0 = 2𝜆

Ä
a2
(1) + · · ·+ a2

(𝑚)

ä
− 2

(︀
a(1)b(1) + · · ·+ a(𝑚)b(𝑚)

)︀
𝜆 =

a(1)b(1) + · · ·+ a(𝑚)b(𝑚)

a2
(1) + · · ·+ a2

(𝑚)

𝜆 =
a ∙ b
‖a‖2

=
a𝑇b

‖a‖2
(A.1)

Speaking in a geometric context this presents the orthogonal projection of b onto a.
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A.3 Proof Rank Deficiency

This section proofs 𝐵’s rank deficiency described in Section 6.2.1, page 89 by showing
that the third row is linearly dependent. Let’s revisit:

𝐵 =
î
[X̊𝑖]× t𝑖 × X̊𝑖

ó
∈ R3×4

𝐵 =

⎡⎢⎣ 0 −X̊𝑖(3) X̊𝑖(2) t𝑖(2)X̊𝑖(3) − t𝑖(3)X̊𝑖(2)

X̊𝑖(3) 0 −X̊𝑖(1) t𝑖(3)X̊𝑖(1) − t𝑖(1)X̊𝑖(3)

−X̊𝑖(2) X̊𝑖(1) 0 t𝑖(1)X̊𝑖(2) − t𝑖(2)X̊𝑖(1)

⎤⎥⎦ .

For the sake of convenience let
t̊𝑖 = t𝑖 × X̊𝑖 (A.2)

such that

𝐵 =

⎡⎢⎣ 0 −X̊𝑖(3) X̊𝑖(2) t̊𝑖(1)
X̊𝑖(3) 0 −X̊𝑖(1) t̊𝑖(2)

−X̊𝑖(2) X̊𝑖(1) 0 t̊𝑖(3)

⎤⎥⎦ .

Rewriting the third row of 𝐵 as linear combination of the previous ones:

𝜆1𝐵
𝑇
(1,:) + 𝜆2𝐵

𝑇
(2,:) = 𝐵𝑇

(3,:)

𝜆1

á
0

−X̊𝑖(3)

X̊𝑖(2)

t̊𝑖(1)

ë
+ 𝜆2

á
X̊𝑖(3)

0

−X̊𝑖(1)

t̊𝑖(2)

ë
=

á
−X̊𝑖(2)

X̊𝑖(1)

0

t̊𝑖(3)

ë
0+𝜆2X̊𝑖(3) =−X̊𝑖(2) (A.3)

−𝜆1X̊𝑖(3)+ 0 = X̊𝑖(1) (A.4)

𝜆1X̊𝑖(2)−𝜆2X̊𝑖(1) = 0 (A.5)

𝜆1̊t𝑖(1)+ 𝜆2̊t𝑖(2) = t̊𝑖(3) . (A.6)

Obviously, solving Eq. (A.4) for 𝜆1 yields

𝜆1 = −
X̊𝑖(1)

X̊𝑖(3)

(A.7)

and similarily solving Eq. (A.3) for 𝜆2 gives

𝜆2 = −
X̊𝑖(2)

X̊𝑖(3)

. (A.8)
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Applying Eq. (A.7) and Eq. (A.8) to Eq. (A.5) shows that:

−
X̊𝑖(1)

X̊𝑖(3)

X̊𝑖(2) +
X̊𝑖(2)

X̊𝑖(3)

X̊𝑖(1) = 0

0 = 0 .

Applying Eq. (A.7) and Eq. (A.8) to Eq. (A.6) yields

−
X̊𝑖(1)

X̊𝑖(3)

t̊𝑖(1) −
X̊𝑖(2)

X̊𝑖(3)

t̊𝑖(2) = t̊𝑖(3) .

Going on by substracting t̊𝑖(3) from the right-hand side and multiplying −X̊𝑖(3) results
to

X̊𝑖(1)̊t𝑖(1) + X̊𝑖(2)̊t𝑖(2) + X̊𝑖(3)̊t𝑖(3) = 0 .

Transforming the previous equation into vector mutliplication form leads to

X̊𝑇
𝑖 t̊𝑖 = X̊𝑖 ∙ t̊𝑖 = 0 .

Finally, re-entering Eq. (A.2) in order to replace t̊𝑖 confirms that:

X̊𝑖 ∙
(︀
t𝑖 × X̊𝑖

)︀⏟  ⏞  
a∙(b×a)=0

= 0

0 = 0 .
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A.4 Alternative Derivation Midpoint Method

This alternative approach derives Eqs. (6.6) and (6.7), page 92. It combines the
back-projection function Eq. (6.2) on page 88 and the parallelism constraint given
by Eq. (6.4) on page 89.
Assuming Eq. (6.2) to be camera 𝑘

U = 𝑅𝑘X̂𝑘𝜆𝑘 + t𝑘 (A.9)

and Eq. (6.4) to be camera 𝑙

𝑅𝑙X̂𝑙 ×
(︀
U− t𝑙

)︀
= 0 . (A.10)

Applying Eq. (A.9) to Eq. (A.10) results to the following equation:

𝑅𝑙X̂𝑙 ×
(︀
𝑅𝑘X̂𝑘𝜆𝑘 + t𝑘 − t𝑙

)︀
= 0

𝑅𝑙X̂𝑙 ×
(︀
t𝑘 − t𝑙

)︀
+ 𝜆𝑘

(︀
𝑅𝑙X̂𝑙 ×𝑅𝑘X̂𝑘⏟  ⏞  

a×b=−(b×a)

)︀
= 0

𝑅𝑙X̂𝑙 ×
(︀
t𝑘 − t𝑙

)︀
− 𝜆𝑘

(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀
= 0 ,

which is the same as Eq. (6.6) on page 92. Switching 𝑘 and 𝑙 produces the same result
as described in Eq. (6.7) on page 92, namely:

𝑅𝑘X̂𝑘 ×
(︀
𝑅𝑙X̂𝑙𝜆𝑙 + t𝑙 − t𝑘

)︀
= 0

𝑅𝑘X̂𝑘 ×
(︀
t𝑙 − t𝑘

)︀⏟  ⏞  
−(a×b)=a×−b

+ 𝜆𝑙

(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀
= 0

−
(︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀)︀
+ 𝜆𝑙

(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀
= 0

𝑅𝑘X̂𝑘 ×
(︀
t𝑘 − t𝑙

)︀
− 𝜆𝑙

(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀
= 0 .
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A.5 Simplification of Depth Calculation

This section contains the simplification of the depth calculation mentioned in Sec-
tion 6.2.2, page 91 by considering the collinearity between 𝑅𝑘X̂𝑘 × 𝑅𝑙X̂𝑙 and 𝑅𝑘X̂𝑘 ×(︀
t𝑘−t𝑙

)︀
as well as between 𝑅𝑘X̂𝑘×𝑅𝑙X̂𝑙 and 𝑅𝑙X̂𝑙×

(︀
t𝑘−t𝑙

)︀
. Taking these constraints

into account reduces Eq. (6.8) on page 93 to:

𝜆𝑘 =

a·b=‖a‖ ‖b‖⏞  ⏟  
a⏞  ⏟  (︀

𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀
·

b⏞  ⏟  (︀
𝑅𝑙X̂𝑙 ×

(︀
t𝑘 − t𝑙

)︀)︀⃦⃦
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

⃦⃦2⏟  ⏞  
‖a‖2

𝜆𝑘 =

⃦⃦
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

⃦⃦ ⃦⃦
𝑅𝑙X̂𝑙 ×

(︀
t𝑘 − t𝑙

)︀⃦⃦⃦⃦
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

⃦⃦2
𝜆𝑘 =

⃦⃦
𝑅𝑙X̂𝑙 ×

(︀
t𝑘 − t𝑙

)︀⃦⃦⃦⃦
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

⃦⃦ ,

and similarily Eq. (6.9) on page 93 to:

𝜆𝑙 =

a·b=‖a‖ ‖b‖⏞  ⏟  
a⏞  ⏟  (︀

𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀
·

b⏞  ⏟  (︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀)︀⃦⃦
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

⃦⃦2⏟  ⏞  
‖a‖2

𝜆𝑙 =

⃦⃦
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

⃦⃦ ⃦⃦
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀⃦⃦⃦⃦
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

⃦⃦2
𝜆𝑙 =

⃦⃦
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀⃦⃦⃦⃦
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

⃦⃦ .
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A.6 Relation between Epipolar and Circumferential

Constraint

This section describes the relation between circumferential constraint and epipolar
constraint. In Section 6.6.2, page 109 the circumferential distance is introduced, which
is based on on Eq. (6.5), page 92

0 = t+ 𝜆𝑘𝑅X̂𝑘 − 𝜆𝑙X̂𝑙 .

Applying the simplified depth factor calculation from Eqs. (6.10) and (6.11), page 93
with:

𝜆𝑖
𝑘 =

‖X̂𝑙 × t‖
‖𝑅X̂𝑘 × X̂𝑙‖

𝜆𝑙 =
‖𝑅X̂𝑘 × t‖
‖𝑅X̂𝑘 × X̂𝑙‖

and multiplying ‖𝑅X̂𝑘 × X̂𝑙‖ from the right yields the proposed circumferential con-
straint

0 = ‖𝑅X̂𝑘 × X̂𝑙‖t+ ‖X̂𝑙 × t‖𝑅X̂𝑘 − ‖𝑅X̂𝑘 × t‖X̂𝑙 .

Scalar multiplying
(︀
t × 𝑅X̂𝑘

)︀
from the right yields the epipolar geometry from Sec-

tion 6.3, page 94:

0 = ‖𝑅X̂𝑘 × X̂𝑙‖ t ∙
(︀
t×𝑅X̂𝑘

)︀⏟  ⏞  
a∙(a×b)=0

+ ‖X̂𝑙 × t‖𝑅X̂𝑘 ∙
(︀
t×𝑅X̂𝑘

)︀⏟  ⏞  
a∙(b×a)=0

− ‖𝑅X̂𝑘 × t‖X̂𝑙 ∙
(︀
t×𝑅X̂𝑘

)︀
0 = −‖𝑅X̂𝑘 × t‖X̂𝑙 ∙

(︀
t×𝑅X̂𝑘

)︀
0 = X̂𝑙 ∙

(︀
t×𝑅X̂𝑘

)︀
0 = X̂𝑇

𝑙

(︀
t[×]𝑅X̂𝑘

)︀
.

As shown the epipolar constraint can be also developed from the circumferential con-
straint.
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A.7 Covariance Estimation

This section describes the estimation of the covariance matrix 𝑆 from corresponding
optimized parameters as it is used in this work. Assuming a set of measurements 𝑥𝑖

and 𝑦𝑖, 𝑖 = 1, . . . , 𝑝 and a mapping function 𝑓(·) with the parameters 𝛼 and 𝛽 such
that 𝜖𝑖 = d

(︀
𝑦𝑖, 𝑓(𝑥𝑖, 𝛼, 𝛽)

)︀
. Here, d(·, ·) denotes a distance function with 𝜖𝑖 denoting

the 𝑖th residual. Both parameters 𝛼 and 𝛽 are optimized by minimizing the sum of
squared distances

argmin
𝛼,𝛽

𝑝∑︁
𝑖=1

d
(︀
𝑦𝑖, 𝑓(𝑥𝑖, 𝛼, 𝛽)

)︀2
.

The uncertainties of 𝛼 and 𝛽 are embedded in the covariance matrix

𝑆 =

ñ
𝜎2
𝛼 𝜎2

𝛼𝛽

𝜎2
𝛼𝛽 𝜎2

𝛽

ô
, (A.11)

which is determined by

𝑆 = 𝐻−1𝜎2

with 𝐻 denoting the Hessian matrix of the distance function d(·, ·). 𝐻 ≈ 𝐽𝑇𝐽 is
an approximation, if either the second derivatives of the residuals 𝜖𝑖 are small or the
residuals 𝜖𝑖 themselves are small such that

𝑆 =
[︀
𝐽𝑇𝐽

]︀−1
𝜎2 . (A.12)

𝐽 denotes the Jacobian of the residuals 𝜖𝑖 with respect to 𝛼 and 𝛽

𝐽 =

⎡⎢⎢⎣
𝜕𝜖1

𝜕𝛼
𝜕𝜖1

𝜕𝛽
...

...
𝜕𝜖𝑝

𝜕𝛼
𝜕𝜖𝑝

𝜕𝛽

⎤⎥⎥⎦
and

𝜎2 =
1

𝑝− 1

𝑝∑︁
𝑖=1

(︀
𝜖𝑖
)︀2 (A.13)

denotes the sample variance of the residuals.
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A.8 Uncertainty Estimation from Epipolar Geometry

The following describes the covariance estimation for the epipolar constraint from
Eq. (6.19), page 108

𝜖𝑖 =
(︀
X̂𝑖

𝑙

)︀𝑇 (︀
t×𝑅X̂𝑖

𝑘

)︀
,

which is used to optimize 𝑅 and t from a set of point correspondences X̂𝑖
𝑘 ↔ X̂𝑖

𝑙,
𝑖 = 1, . . . , 𝑝 by minimizing the sum of squared epipolar distances

argmin
𝑅,t

𝑚∑︁
𝑖=1

(︀
𝜖𝑖
)︀2

.

The corresponding Jacobian 𝐽 is defined

𝐽 =

⎡⎢⎣
𝜕𝜖1

𝜕𝑅
𝜕𝜖1

𝜕t
...

...
𝜕𝜖𝑝

𝜕𝑅
𝜕𝜖𝑝

𝜕t

⎤⎥⎦
with

𝜕𝜖𝑖

𝜕𝑅
=
(︀
X̂𝑖

𝑘 ⊗ (X̂𝑖
𝑙 × t)

)︀𝑇
𝜕𝜖𝑖

𝜕t
=
(︀
𝑅X̂𝑖

𝑘 × X̂𝑖
𝑙

)︀𝑇
Referring to Appendix A.7, page 180 the covariance 𝑆 can be approximated such that

𝑆 =
[︀
𝐽𝑇𝐽

]︀−1 1

𝑝− 1

𝑝∑︁
𝑖=1

(︀
𝜖𝑖
)︀2

. (A.14)

[︀
𝐽𝑇𝐽

]︀−1 becomes rank-deficient if the three dimensional rotation is overparameterized
as it is the case for a rotation matrix (nine parameters) or a quaternion (four param-
eters) representation. In order to prevent this circumstance it is recommended to use
a rotation representation such as Euler angles or Rodrigues vector. Later the covari-
ance matrix can be transferred into rotation matrix or quaternion representation as
proposed in [17].
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A.9 Two-View Scaling Factor Estimation:

Uncertainty Estimation

This section explains the uncertainty estimation for the linear two-view translation
scaling from Section 6.7.1, page 114 and is based on the covariance approximation from
Appendix A.7, page 180. Error propagation and uncertainty estimation are developed
as exemplary described in [54]. The cost function represents the simple distances 𝛿−�̃�𝑠

between given depth information

𝛿 =
(︀
𝛿1𝑘, . . . , 𝛿

𝑚
𝑘 , 𝛿

1
𝑙 , . . . , 𝛿

𝑛
𝑙

)︀𝑇 ∈ R(𝑚+𝑛)×1

and recalculated ones

�̃� =
(︀
�̃�

′1
𝑘 , . . . , �̃�

′𝑚
𝑘 , �̃�

′′1
𝑙 , . . . , �̃�

′′𝑛
𝑙

)︀𝑇 ∈ R(𝑚+𝑛)×1

with:

�̃�
′𝑖
𝑘 =

(︀
X̂

′𝑖
𝑙 × t̂

)︀𝑇 (︀
𝑅X̂

′𝑖
𝑘 × X̂

′𝑖
𝑙

)︀⃦⃦
𝑅X̂

′𝑖
𝑘 × X̂

′𝑖
𝑙

⃦⃦2 , 𝑖 = 1, . . . ,𝑚

�̃�
′′𝑗
𝑙 =

(︀
𝑅X̂

′′𝑗
𝑘 × t̂

)︀𝑇 (︀
𝑅X̂

′′𝑗
𝑘 × X̂

′′𝑗
𝑙

)︀⃦⃦
𝑅X̂

′′𝑗
𝑘 × X̂

′′𝑗
𝑙

⃦⃦2 , 𝑗 = 1, . . . , 𝑛

from Eqs. (6.6) and (6.7), page 92. Describing the error function as linear least squares
formulation yields

𝑠init = min
𝑠
‖𝛿 − �̃�𝑠‖2 .

The solution for the scaling factor’s variance is given by

𝜎2
𝑠init

= (𝐽𝑇𝐽)−1𝜎2
𝜖

with 𝐽 denoting the Jacobian 𝐽
∧
= −�̃�. Since �̃�

𝑇
�̃� = ‖�̃�‖2 yields a scalar value, it

simplifies the solution

𝜎2
𝑠init

=
1

‖�̃�‖2
𝜎2
𝜖 .

𝜎2
𝜖 denotes the sample variance

𝜎2
𝜖 =

1

𝑚+ 𝑛− 1
‖𝛿 − �̃�𝑠‖2 ,
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which is an approximator for the unknown noise variance. The scaling factor’s standard
deviation is finally obtained by

𝜎𝑠init =
‖𝛿 − �̃�𝑠init‖√
𝑚+ 𝑛− 1‖�̃�‖

. (A.15)

A.10 Two-View Scaling Factor Optimization:

Uncertainty Estimation

This section explains the uncertainty estimation for the non-linear two-view translation
scaling from Section 6.7.2, page 116 and is based on the covariance approximation from
Appendix A.7, page 180. Error propagation and uncertainty estimation are similar to
Appendix A.9, however the Jacobians are more complex with:

𝜕Ŷ𝑖
𝑘

𝜕Y𝑖
𝑘

=
𝐼 − Ŷ𝑖

𝑘

(︀
Ŷ𝑖

𝑘

)︀𝑇
‖Y𝑖

𝑘‖

𝜕Ŷ𝑗
𝑙

𝜕Y𝑗
𝑙

=
𝐼 − Ŷ𝑗

𝑙

(︀
Ŷ𝑗

𝑙

)︀𝑇
‖Y𝑗

𝑙 ‖

𝜕Y𝑖
𝑘

𝜕𝑠
= −𝑅𝑇 t̂

𝜕Y𝑗
𝑙

𝜕𝑠
= t̂ .

𝐽 𝑖
𝑘 =

𝜕Ŷ𝑖
𝑘

𝜕Y𝑖
𝑘

𝜕Y𝑖
𝑘

𝜕𝑠
= −

𝐼 − 𝛿𝑖𝑙𝑅
𝑇 X̂

′𝑖
𝑙 −𝑠𝑅𝑇 t̂

‖𝛿𝑖𝑙𝑅𝑇 X̂
′𝑖
𝑙 −𝑠𝑅𝑇 t̂‖

Å
𝛿𝑖𝑙𝑅

𝑇 X̂
′𝑖
𝑙 −𝑠𝑅𝑇 t̂

‖𝛿𝑖𝑙𝑅𝑇 X̂
′𝑖
𝑙 −𝑠𝑅𝑇 t̂‖

ã𝑇

‖𝛿𝑖𝑙𝑅𝑇 X̂
′𝑖
𝑙 − 𝑠𝑅𝑇 t̂‖

𝑅𝑇 t̂

𝐽 𝑗
𝑙 =

𝜕Ŷ𝑗
𝑙

𝜕Y𝑗
𝑙

𝜕Y𝑗
𝑙

𝜕𝑠
=

𝐼 − 𝛿𝑗𝑘𝑅X̂
′′𝑗
𝑘 +𝑠t̂

‖𝛿𝑗𝑘𝑅X̂
′′𝑗
𝑘 +𝑠t̂‖

Å
𝛿𝑗𝑘𝑅X̂

′′𝑗
𝑘 +𝑠t̂

‖𝛿𝑗𝑘𝑅X̂
′′𝑗
𝑘 +𝑠t̂‖

ã𝑇
‖𝛿𝑗𝑘𝑅X̂

′′𝑗
𝑘 + 𝑠t̂‖

t̂

The Jacobians 𝐽𝑘
𝑖 and 𝐽 𝑗

𝑙 are further stacked to form J with

J =
(︀
𝐽1
𝑘, . . . , 𝐽

𝑚
𝑘 , 𝐽

1
𝑙 , . . . , 𝐽

𝑛
𝑙

)︀𝑇 ∈ R3(𝑚+𝑛)×1 ,

that is used to calculate the scaling factor’s variance

𝜎2
𝑠opt

=
(︀
J𝑇J

)︀−1 1

𝑚+ 𝑛− 1
‖X̂− Ŷ‖2 .

Since 𝐽𝑇𝐽 = ‖𝐽‖2, the solution is further simplified in order to obtain the standard
deviation of the optimized scaling factor

𝜎𝑠opt =
‖X̂− Ŷ‖√

𝑚+ 𝑛− 1‖J‖
. (A.16)
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A.11 Depth from Adjoining Two-View Geometries

Given a point correspondence between cameras X̂𝑘 ↔ X̂𝑙 and X̂𝑙 ↔ X̂𝑚 with known
camera extrinsics 𝑅𝑘X̂𝑘, 𝑅𝑙X̂𝑙 and 𝑅𝑚X̂𝑚. This method obtains the depth 𝜆𝑙 between
𝑘 ↔ 𝑙 and 𝑚 ↔ 𝑙 as a least-squares solution.
Taking Eq. (6.7), page 92 and deriving the relation for 𝑘 ↔ 𝑙 and 𝑚 ↔ 𝑙 leads to:

𝜆𝑙

(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀
= 𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀
𝜆𝑙

(︀
𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙

)︀
= 𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀
.

Solving the problem for 𝜆𝑙 leads to the least-squares solution 𝜆𝑙 = a𝑇b/‖a‖2 with:

a =

ñ
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙

ô
b =

ñ
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀ô .

similiar to the presented one in [177].

A.12 Alternative Three-View Derivation

The following shows a second and third derivation approach to obtain the three-view
constraint as presented in Section 7.1, page 125.

A.12.1 Second Derivation Approach

This derivation is based on Eq. (6.7), page 92 applied to cameras 𝑘 ↔ 𝑙 and 𝑚 ↔ 𝑙:

𝑅𝑘X̂𝑘 ×
(︀
t𝑘 − t𝑙

)︀
= 𝜆𝑙

(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀
(A.17)

𝑅𝑚X̂𝑚 ×
(︀
t𝑚 − t𝑙

)︀
= 𝜆𝑙

(︀
𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙

)︀
. (A.18)

Scalar-multiplying 𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙 to Eq. (A.17) and 𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙 to Eq. (A.18) from
the left yields:(︀

𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙

)︀
∙
(︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀)︀
= 𝜆𝑙

(︀
𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙

)︀
∙
(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀
∙
(︀
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀)︀
= 𝜆𝑙

(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀
∙
(︀
𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙

)︀⏟  ⏞  
a∙b=b∙a

,

which can be equalized to obtain the three-view constraint

0 =
(︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀)︀
∙
(︀
𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙

)︀
−
(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀
∙
(︀
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀)︀
.
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A.12.2 Third Derivation Approach

This derivation uses the least-square depth approximation from Eq. (6.11), page 93
between cameras 𝑘 ↔ 𝑙 and 𝑚 ↔ 𝑙:

𝜆𝑙 =

⃦⃦
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀⃦⃦⃦⃦
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

⃦⃦ (A.19)

𝜆𝑙 =

⃦⃦
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀⃦⃦⃦⃦
𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙

⃦⃦ . (A.20)

Equalizing Eqs. (A.19) and (A.20) yields Eq. (7.9), page 126⃦⃦
𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙

⃦⃦ ⃦⃦
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀⃦⃦
=
⃦⃦
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

⃦⃦ ⃦⃦
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀⃦⃦
,

which is further transformed as Section 7.1, page 125 describes.

A.13 Relation between Trifocal Geometry and

Alternative Midpoint Method

Suppose 𝐴 to be the trifocal constraint from Eq. (7.25), page 131 such that:

𝐴 =
(︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀)︀(︀
𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙

)︀𝑇 −
(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀(︀
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀)︀𝑇
∧
= g𝑘d

𝑇
𝑚 − d𝑘g

𝑇
𝑚 .

The depth functions from Eq. (6.7), page 92 between cameras 𝑘 ↔ 𝑙 and 𝑚 ↔ 𝑙 are
given with:

𝜆𝑙 =

(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀𝑇 (︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀)︀(︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀𝑇 (︀
𝑅𝑘X̂𝑘 ×𝑅𝑙X̂𝑙

)︀ ∧
=
d𝑇
𝑘 g𝑘

d𝑇
𝑘d𝑘

(A.21)

𝜆𝑙 =

(︀
𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙

)︀𝑇 (︀
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀)︀(︀
𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙

)︀𝑇 (︀
𝑅𝑚X̂𝑚 ×𝑅𝑙X̂𝑙

)︀ ∧
=
d𝑇
𝑚g𝑚

d𝑇
𝑚d𝑚

, (A.22)

as well as the collinear constraint from Eq. (6.7), page 92 applied to both mentioned
camera pairs:

0 =
(︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀)︀
𝜆𝑙 −

(︀
𝑅𝑘X̂𝑘 ×

(︀
t𝑘 − t𝑙

)︀)︀ ∧
=d𝑘𝜆𝑙 − g𝑘 (A.23)

0 =
(︀
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀)︀
𝜆𝑙 −

(︀
𝑅𝑚X̂𝑚 ×

(︀
t𝑚 − t𝑙

)︀)︀ ∧
=d𝑚𝜆𝑙 − g𝑚 . (A.24)
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Entering Eq. (A.21) in Eq. (A.24) yields:

d𝑚 d𝑇
𝑘 g𝑘⏟  ⏞  

a𝑇b=b𝑇 a

−g𝑚d
𝑇
𝑘d𝑘 = 0

(︀
d𝑚g

𝑇
𝑘 − g𝑚d

𝑇
𝑘

)︀
d𝑘 = 0(︀

g𝑘d
𝑇
𝑚 − d𝑘g

𝑇
𝑚⏟  ⏞  

∧
=𝐴

)︀𝑇
d𝑘 = 0

𝐴𝑇d𝑘 = 0 . (A.25)

Applying Eq. (A.22) to Eq. (A.23) leads to:

d𝑘 d𝑇
𝑚g𝑚⏟  ⏞  

a𝑇b=b𝑇 a

−g𝑘d
𝑇
𝑚d𝑚 = 0

(︀
d𝑘g

𝑇
𝑚 − g𝑘d

𝑇
𝑚⏟  ⏞  

∧
=−𝐴

)︀
d𝑚 = 0

𝐴d𝑚 = 0 . (A.26)

Eqs. (A.25) and (A.26) show the direct connection between derived relations from the
alternative midpoint method (Section 6.2.2, page 91) and the trifocal geometry (Sec-
tion 7.3, page 131). Consequently, if the trifocal constraint is satisfied, the alternative
midpoint triangulation is also satisfied.
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A.14 Additional Pose Graph Generation Examples

a

d e

b c

Fig. A.14.3: Pose graph extraction from the mesh of the polygon model Shark98. The following is
shown in: a) original mesh, b) subgraph indicating the trajectory’s pathway from start to end with
branching, illustrate loop closures. c) final pose graph, d trajectory’s pathway in 3d model, e) loop
closure edges in 3d model.

a

d e

b c

Fig. A.14.4: Pose graph extraction from the mesh of the polygon model Helix 99. The following is
shown in: a) original mesh, b) subgraph indicating the trajectory’s pathway from start to end with
branching, illustrate loop closures. c) final pose graph, d trajectory’s pathway in 3d model, e) loop
closure edges in 3d model.

98https://people.sc.fsu.edu/~jburkardt/data/ply/shark.ply
99https://people.sc.fsu.edu/~jburkardt/data/ply/helix.ply

https://people.sc.fsu.edu/~jburkardt/data/ply/shark.ply
https://people.sc.fsu.edu/~jburkardt/data/ply/helix.ply
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a

d e

b c

Fig. A.14.5: Pose graph extraction from the mesh of the polygon model Teapot100. The following is
shown in: a) original mesh, b) subgraph indicating the trajectory’s pathway from start to end with
branching, illustrate loop closures. c) final pose graph, d trajectory’s pathway in 3d model, e) loop
closure edges in 3d model. Some parts of the Teapot model are rejected, due to unconnected vertices.

a

d e

b c

Fig. A.14.6: Pose graph extraction from the mesh of the polygon model Sphere101. The following is
shown in: a) original mesh, b) subgraph indicating the trajectory’s pathway from start to end with
branching, illustrate loop closures. c) final pose graph, d trajectory’s pathway in 3d model, e) loop
closure edges in 3d model.

100https://people.sc.fsu.edu/~jburkardt/data/ply/teapot.ply
101https://people.sc.fsu.edu/~jburkardt/data/ply/sphere.ply

https://people.sc.fsu.edu/~jburkardt/data/ply/teapot.ply
https://people.sc.fsu.edu/~jburkardt/data/ply/sphere.ply
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A.15 Pose Graph Solver Settings

Tab. A.15.3: Pose graph solver settings

Solver Settings

g2o ’-v’,’-i’,2000,’-update’,1,’-robustKernel’,’Cauchy’,

’-solver’,’dl_var’

GTSAM ’LevenbergMarquardt’,’optimizeSafely’,’Verbosity’,

’ERROR’,’MaxIterations’,1000,’VerbosityDL’,’SILENT’

iSAM2 ’ISAM2’,’iter’,1000,’Factorization’,’CHOLESKY’,

’RelinearizeSkip’,1,’RelinearizeThreshold’,0.01,

’CacheLinearizedFactors’,1,’EnableDetailedResults’,1,

’EnableRelinearization’,1,’EvaluateNonlinearError’,1,

’EnablePartialRelinearizationCheck’,1,

SLAM++ ’-mfnsi’,100,’-mnsi’,50,’-po’,’-fL’,’-us’
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A.16 Additional Pose Graph Optimization Examples

g2o GTSAM iSAM2

Ceres SLAM++

ground truth solver solution

Fig. A.16.7: Pose Graph Optimization: Helix

g2o GTSAM iSAM2

SLAM++Ceres

ground truth solver solution

Fig. A.16.8: Pose Graph Optimization: Sphere
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g2o GTSAM iSAM2

Ceres SLAM++

ground truth solver solution

Fig. A.16.9: Pose Graph Optimization: Mario

g2o GTSAM iSAM2

Ceres SLAM++

ground truth solver solution

Fig. A.16.10: Pose Graph Optimization: Teapot
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