1,708 research outputs found

    SWATShare – A Web-Portal For Hydrology Research And Education Using Soil Water And Assessment Tool

    Full text link
    Many hydrologic modelers around the world use Soil Water Assessment and Tool (SWAT) to simulate hydrologic processes, water quality loadings and testing agricultural management scenarios. Once these tasks are complete including publication of results, the models generally are not published or made available to the public for further use and improvement. Although publication or sharing of models is not required for journal publications, sharing of models may open doors for new collaborations, and avoids duplication of efforts if other researchers are interested in simulating a particular watershed for which a model already exists. For researchers, who are interested in sharing models, there are limited avenues to publishing their models to the wider community. Towards filling this gap, a prototype cyberinfrastructure (CI), called SWATShare, is developed for publishing, sharing and running SWAT models in an interactive GIS-enabled web environment. Users can utilize SWATShare to publish or upload their own models, search and download existing SWAT models developed by others, run simulations including calibration using high performance resources provided by XSEDE and Cloud. In addition to research, SWATShare enables sharing and using of SWAT model outputs that can be used for understanding the hydrology of different watersheds within a classroom setting

    MODELING THE EFFECTS OF HYDROLOGIC SERVICE PAYMENTS ON THE HYDROLOGY OF TROPICAL MONTANE WATERSHEDS IN CENTRAL VERACRUZ, MEXICO.

    Get PDF
    An analysis of the effects of the Land Use Land Cover (LULC) change and its impacts on the hydrological cycle of tropical montane catchments influenced by cloud forest (TMCF) is developed in Central Veracruz, Mexico. This work started with the analysis of data from monitored-micro-catchments with contrasting LULC. Later the suitability of an improved version of the Soil and Water Assessment Tool model for the Tropics (SWAT-T) was evaluated. Finally, potential future land use scenarios, including conservation targeting alternatives were evaluated using a calibrated Seasonal Water Yield model as part of the Integrated Valuation of Ecosystem Services and Tradeoffs framework (InVEST-SWY). High-resolution rainfall and streamflow timeseries suggested no statistical difference in the regulation capacity of high flows in 20 years of natural regeneration, compared to the mature forest. In terms of baseflow sustenance, the mature forest and intermediate age forest better promote this hydrologic service than the other land uses. Shade coffee exhibited a high capacity to modulate peak flows comparable to that of mature forest, and an intermediate capacity to sustain baseflow. Finally, forty years of intense pasture management caused a fivefold greater peak flow response and a lower baseflow compared to mature forest. SWAT-T accurately simulated the observed low fraction of surface runoff. However, it incorrectly predicted the dominance of lateral flow, instead of the deep groundwater flow observed from isotope-based studies. Moreover, SWAT-T underestimated the influence of rainfall interception losses in forests. The temperature-based potential evapotranspiration methods produced the best model fit (KGE = 0.75, NSE = 0.54, PBIAS = 4.6%), but overestimated the PET in land covers with lower rainfall interception. Finally, the model largely overestimates the low flow in managed land covers, while underestimating it in forests. The InVEST-SWY model predicted that forest conservation policy will produce a slight decrease in the annual water yield at catchment scale due to larger evapotranspiration rates observed in forests. However, the model was unable to mimic the effects of forest conservation on dry-season baseflow. InVEST-SWY exhibited a poor performance at interannual scale and needs improvements to incorporate the water storage capacity of the soils

    Enhanced watershed modeling and data analysis with a fully coupled hydrologic model and cloud-based flow analysis

    Get PDF
    2014 Summer.Includes bibliographical references.In today's world of increased water demand in the face of population growth and climate change, there are no simple answers. For this reason many municipalities, water resource engineers, and federal analyses turn to modeling watersheds for a better understanding of the possible outcomes of their water management actions. The physical processes that govern movement and transport of water and constituents are typically highly nonlinear. Therefore, improper characterization of a complex, integrated, processes like surface-subsurface water interaction can substantially impact water management decisions that are made based on existing models. Historically there have been numerous tools and watershed models developed to analyze watersheds or their constituent components of rainfall, run-off, irrigation, nutrients, and stream flow. However, due to the complexity of real watershed systems, many models have specialized at analyzing only a portion of watershed processes like surface flow, subsurface flow, or simply analyzing local monitoring data rather than modeling the system. As a result many models are unable to accurately represent complex systems in which surface and subsurface processes are both important. Two popular watershed models have been used extensively to represent surface processes, SWAT (Arnold et al, 1998), and subsurface processes, MODFLOW (Harbaugh, 2005). The lack of comprehensive watershed simulation has led to a rise in uncertainty for managing water resources in complex surface-subsurface driven watersheds. For this reason, there have been multiple attempts to couple the SWAT and MODFLOW models for a more comprehensive watershed simulation (Perkins and Sophocleous, 1999; Menking, 2003; Galbiati et al., 2006; Kim et al., 2008); however, the previous couplings are typically monthly couplings with spatial restrictions for the two models. Additionally, most of these coupled SWAT-MODFLOW models are unavailable to the general public, unlike the constituent SWAT and MODFLOW models which are available. Furthermore, many of these couplings depend on a forced equal spatial discretization for computational units. This requires that one MODFLOW grid cell is the same size and location of one SWAT hydrologic response unit (HRU). Additionally, many of the previous couplings are based on a loose monthly average coupling which might be insufficient in natural spring and irrigated agricultural driven groundwater systems which can fluctuate on a sub-monthly time scale. The primary goal of this work is to enhance the capacity for modeling watershed processes by fully coupling surface and subsurface hydrologic processes at a daily time step. The specific objectives of this work are 1) to examine and create a general spatial linkage between SWAT and MODFLOW allowing the use of spatially-different existing models for coupling; 2) to examine existing practices and address current weaknesses for coupling of the SWAT and MODFLOW models to develop an integrated modeling system; 3) to demonstrate the capacity of the enhanced model compared to the original SWAT and MODFLOW models on the North Fork of the Sprague River in the Upper Klamath Basin in Oregon. The resulting generalized daily coupling between a spatially dis-similar SWAT and MODFLOW model on the North Fork of the Sprague River has resulted in a slightly more lower representation of monthly stream flow (monthly R2 = 0.66, NS = 0.38) than the original SWAT model (monthly R2 = 0.60, NS = 0.57) with no additional calibration. The Log10 results of stream flow illustrate an even greater improvement between SWAT-MODFLOW correlation (R2) but not the overall simulation (NS) (monthly R2 = 0.74, NS = -0.29) compared to the original SWAT (monthly R2 = 0.63, NS = 0.63) correlation (R2). With an improved water table representation, these SWAT-MODFLOW simulation results illustrate a more in depth representation of overall stream flows on a groundwater influenced tributary of the Sprague River than the original SWAT model. Additionally, with the increased complexity of environmental models there is a need to design and implement tools that are more accessible and computationally scalable; otherwise their use will remain limited to those that developed them. In light of advancements in cloud-computing technology a better implementation of modern desktop software packages would be the use of scalable cloud-based cyberinfrastructure, or cloud-based environmental modeling services. Cloud-based deployment of water data and modeling tools assist in a scalable as well as platform independent analysis; meaning a desktop, laptop, tablet, or smart phone can perform the same analyses. To utilize recent advancements in computer technology, a further focus of this work is to develop and demonstrate a scalable cloud-computing web-tool that facilitates access and analysis of stream flow data. The specific objectives are to 1) unify the various stream flow analysis topics into a single tool; 2) to assist in the access to data and inputs for current flow analysis methods; 3) to examine the scalability benefits of a cloud-based flow analysis tool. Furthermore, the new Comprehensive Flow Analysis tool successfully combined time-series statistics, flood analysis, base-flow separation, drought analysis, duration curve analysis, and load estimation into a single web-based tool. Preliminary and secondary scalability testing has revealed that the CFA analyses are scalable in a cloud-based cyberinfrastructure environment to a request rate that is likely unrealistic for web tools

    Parallelization of the SUFI2 algorithm: a Windows HPC approach.

    Get PDF
    The Soil and Water Assessment Tool (SWAT) has been used for evaluating land use changes on water resources worldwide, and like many models, SWAT requires calibration. However, the execution time of these calibrations can be rather long, reducing the time available for proper analysis. This paper presents a Windows approach for calibrating SWAT using a multinodal cluster computer, composed of six computers with i7 processors (3.2 GHz; 12 cores), 8 GB RAM and 1 TB HDD each. The only requirement for this type of cluster is to have 64-bit processors. Our computers were setup with Windows Server HPC 2012 R2, a network switch 10/100, and regular Ethernet cables. We used the SUFI2 algorithm that comes with SWAT-CUP package to perform calibrations with 100 simulations at node level. Calibration runs were configured as follows: 1-12 (1 process interval), and 12-72 (12 processes interval), resulting in 17 runs. Each run was repeated three times, and results are presented as the mean execution time, in order to minimize any influence of resources fluctuations. Results showed that time of execution was reduced by almost half by using nine processes (15 min) in comparison with the one node control (28 min). We observed a linear decrease of execution time from one to nine processes. With additional processes, execution time increased about 23% and stabilized at 80% of the control. All processing is divided into five steps: distribute files (2.24% of all processing time), organize samples (0.89%), run SWAT (47.59%), collect results (46.51%) and cleanup (0.28%)

    Modeling Riparian Restoration Impacts on the Hydrologic Cycle at the Babacomari Ranch, SE Arizona, USA

    Get PDF
    This paper describes coupling field experiments with surface and groundwater modeling to investigate rangelands of SE Arizona, USA using erosion-control structures to augment shallow and deep aquifer recharge. We collected field data to describe the physical and hydrological properties before and after gabions (caged riprap) were installed in an ephemeral channel. The modular finite-difference flow model is applied to simulate the amount of increase needed to raise groundwater levels. We used the average increase in infiltration measured in the field and projected on site, assuming all infiltration becomes recharge, to estimate how many gabions would be needed to increase recharge in the larger watershed. A watershed model was then applied and calibrated with discharge and 3D terrain measurements, to simulate flow volumes. Findings were coupled to extrapolate simulations and quantify long-term impacts of riparian restoration. Projected scenarios demonstrate how erosion-control structures could impact all components of the annual water budget. Results support the potential of watershed-wide gabion installation to increase total aquifer recharge, with models portraying increased subsurface connectivity and accentuated lateral flow contributions.Walton Family Foundation; Land Change Science (LCS) Program, under the Land Resources Mission Area of the US Geological Survey (USGS); NSF [DBI-0735191, DBI-1265383]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Investigation of climate variability and climate change impacts on corn yield in the Eastern Corn Belt, USA

    Get PDF
    The increasing demand for both food and biofuels requires more corn production at global scale. However, current corn yield is not able to meet bio-ethanol demand without jeopardizing food security or intensifying and expanding corn cultivation. An alternative solution is to utilize cellulose and hemi-cellulose from perennial grasses to fulfill the increasing demand for biofuel energy. A watershed level scenario analysis is often applied to figure out a sustainable way to strike the balance between food and fuel demands, and maintain environment integrity. However, a solid modeling application requires a clear understanding of crop responses under various climate stresses. This is especially important for evaluating future climate impacts. Therefore, correct representation of corn growth and yield projection under various climate conditions (limited or oversupplied water) is essential for quantifying the relative benefits of alternative biofuel crops. The main objective of this study is to improve the evaluation of climate variability and climate change effects on corn growth based on plant-water interaction in the Midwestern US via a modeling approach. Traditional crop modeling methods with the Soil and Water Assessment Tool (SWAT) are improved from many points, including introducing stress parameters under limited or oversupplied water conditions, improving seasonal crop growth simulation from imagery-based LAI information, and integrating CO2 effects on crop growth and crop-water relations. The SWAT model’s ability to represent crop responses under various climate conditions are evaluated at both plot scale, where observed soil moisture data is available and watershed scale, where direct soil moisture evaluation is not feasible. My results indicate that soil moisture evaluation is important in constraining crop water availability and thus better simulates crop responses to climate variability. Over a long term period, drought stress (limited moisture) explains the majority of yield reduction across all return periods at regional scale. Aeration stress (oversupplied water) results in higher yield decline over smaller spatial areas. Future climate change introduces more variability in drought and aeration stress, resulting in yield reduction, which cannot be compensated by positive effects brought by CO2 enhancement on crop growth. Information conveyed from this study can also provide valuable suggestions to local stakeholders for developing better watershed management plans. It helps to accurately identify climate sensitive cropland inside a watershed, which could be potential places for more climate resilient plants, like biofuel crops. This is a sustainable strategy to maintain both food/fuel provision, and mitigate the negative impact of future climate change on cash crops

    Development of tools for water management in the Hatra watershed (Northwestern Iraq) using satellite technologies

    Get PDF
    “All around the world the demand for water is increasing, especially in arid and semi-arid regions, including Iraq which subject to continuous desertification that is worsening, more importantly the Jezira region in northwestern Iraq. Thus, it’s crucial to have a better strategy for water management. One of these strategies is to promote groundwater recharge for restoring the aquifer depletion. The successful groundwater recharge is limited by some potential data such as the annual water budge and precipitation measurements. The atomospheric and hydrological observations are limited by sparse population which tends to be less in arid and semi-arid regions. Therefore, an alternative to the ground measurement of rainfall is needed. Satellite-based measurements limit the restriction of ground station. However, the satellite products have significant uncertainty. Therefore, seven precipitation estimates have tested against rain gauges in Orange County and Los Angeles County, California. In order to establish a water management strategy in Jezira region, annual water budget should be known, which could be measure through observational discharge station. Unfortunately, only few months of discharge was measured manually in the north Jezira, which Hatra subwatershed. Computer model was used to recover the streamflow measurement. The Soil and Water Assessment Tool (SWAT) was great candidate to overcome the problem. The observational data of stream discharge was used to calibrate the model. In conclusion, water management is possible in ungauged arid and semi-arid regions by using remote sensing data and computer modeling”--Abstract, page iv

    J-Block Triassic Well Performance & Reservoir Heterogeneity

    Get PDF
    Imperial Users onl

    Land Use/Cover Change and their Impacts on Streamflow in Kikuletwa Catchment of Pangani River Basin, Tanzania

    Get PDF
    Streamflow perturbation is highly prevalent in Kikuletwa catchment. However, little is known concerning land use/cover change (LULCC) with regard to streamflow perturbation in the catchment. This study aims to detect the historical and predict future LULCC and assess their impacts on streamflow amounts using the Soil and Water Assessment Tool (SWAT) model. Supervised classification of Landsat imagery data for 1985, 2000 and 2015 years was done in ERDAS 14 Imagine software. Future prediction of LULCC was done using Module for Land Use Change Evaluation (MOLUSCE) tool, a QGIS plug-in. An accuracy ranging from 79% to 82% was obtained for all steps. The results revealed that, from 1985 to 2000; 1985 to 2015; 1985 to 2030 and 1985 to 2050 the percentage of area change in cultivated land is +21.1%; +29.2%; +38.2% and +42.7%, respectively; forest is - 2.3%, -3.1%, -3.8% and -5.8%, respectively; and shrubland is -6.3%, -10%, -15.7% and - 16%, respectively. The performance of SWAT model during calibration were 0.74, 0.75, 0.51 and -0.5% for NSE, R2, RSR and PBIAS, respectively. The impacts of LULCC indicated that, between 1985 to 2000; 1985 to 2015; 1985 to 2030 and 1985 to 2050, the percentage increase in average simulated annual flow is 4.7%, 6.8%, 12.6% and 19.3%, respectively. Surface runoff increased from 25.2 mm (baseline) to 34.5 mm (36.9%); 36.2 mm (42.4%); 41.4 mm (64.3%) and 47.6 mm (88.9%), respectively. Base flow decreased marginally from 82.2 mm (baseline) to 79 mm (-3.8%); 77.8 mm (5.4%); 75.4 mm (-8.3%) and 73.9 mm (- 10.1%), respectively. Thus, apart from climate effects, streamflow perturbation in the catchment is also related to disturbances of catchment influences such as LULCC as revealed in this study. The study is useful for land planners and water resources managers and policy makers in managing resources sustainably.&nbsp
    • …
    corecore