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ABSTRACT 

Ruoyu, Wang.  Ph.D., Purdue University, May 2016. Investigation of Climate Variability 

and Climate Change Impacts on Corn Yield in the Eastern Corn Belt, USA. 

Major Professors: Keith Cherkauer, Laura Bowling.  

 

The increasing demand for both food and biofuels requires more corn production at global 

scale. However, current corn yield is not able to meet bio-ethanol demand without 

jeopardizing food security or intensifying and expanding corn cultivation. An alternative 

solution is to utilize cellulose and hemi-cellulose from perennial grasses to fulfill the 

increasing demand for biofuel energy. A watershed level scenario analysis is often applied 

to figure out a sustainable way to strike the balance between food and fuel demands, and 

maintain environment integrity. However, a solid modeling application requires a clear 

understanding of crop responses under various climate stresses. This is especially 

important for evaluating future climate impacts. Therefore, correct representation of corn 

growth and yield projection under various climate conditions (limited or oversupplied 

water) is essential for quantifying the relative benefits of alternative biofuel crops. 

The main objective of this study is to improve the evaluation of climate variability and 

climate change effects on corn growth based on plant-water interaction in the Midwestern 

US via a modeling approach. Traditional crop modeling methods with the Soil and Water 

Assessment Tool (SWAT) are improved from many points, including introducing stress 
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parameters under limited or oversupplied water conditions, improving seasonal crop 

growth simulation from imagery-based LAI information, and integrating CO2 effects on 

crop growth and crop-water relations. The SWAT model’s ability to represent crop 

responses under various climate conditions are evaluated at both plot scale, where observed 

soil moisture data is available and watershed scale, where direct soil moisture evaluation 

is not feasible.  

My results indicate that soil moisture evaluation is important in constraining crop water 

availability and thus better simulates crop responses to climate variability. Over a long term 

period, drought stress (limited moisture) explains the majority of yield reduction across all 

return periods at regional scale. Aeration stress (oversupplied water) results in higher yield 

decline over smaller spatial areas. Future climate change introduces more variability in 

drought and aeration stress, resulting in yield reduction, which cannot be compensated by 

positive effects brought by CO2 enhancement on crop growth.  

Information conveyed from this study can also provide valuable suggestions to local 

stakeholders for developing better watershed management plans. It helps to accurately 

identify climate sensitive cropland inside a watershed, which could be potential places for 

more climate resilient plants, like biofuel crops. This is a sustainable strategy to maintain 

both food/fuel provision, and mitigate the negative impact of future climate change on cash 

crops 
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CHAPTER 1. INTRODUCTION 

1.1 Research Background 

The global population reached seven billion in 2011, and is projected to increase to nine 

billion by 2050 (Cohen, 2003). Global agriculture is faced with challenges due to the 

growing population: more food is needed to feed people and livestock (Sinha et al., 1988), 

and more fuel is needed to meet the potential ethanol demand from bio-energy markets 

(William and Kucharik, 2011. Corn is traditionally considered as a food or animal feed 

crop, but ethanol is also obtained by fermenting maize grain in first-generation biofuel 

production (Hill et al., 2006). At the global scale, the major portion of agricultural products, 

like corn is provided by a few high-yield cropping systems from a relatively small area of 

arable land (Cassman and Wood, 2005). The Midwestern Region of the United States is 

one of the world’s largest and most productive cropping systems. Also known as the U.S. 

Corn Belt, this region occupies around 12% of the US continental area, and supplies around 

40% of the world’s corn (Connor et al., 2011). Therefore, any yield reduction in the US 

Corn Belt would seriously affect both national and global corn supplies.

In 2014, 38.8% of the US corn crop was used to feed livestock, 30.5% was used for ethanol, 

12.9% was exported, and the remaining 17.8% was used for food and beverage production 

(Capehart et al., 2014). However, current corn yield is still not able to meet ethanol demand 

targets without jeopardizing food security (Davis et al., 2012) or intensifying and 
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expanding corn cultivation (Zhuang et al., 2013). Since both of them will likely have 

significant agricultural and environmental implications, utilizing the cellulose and hemi-

cellulose from perennial grasses as an alternative biofuel feedstock has been recommended 

by the Advance Energy Initiative (AEI) of the US Government. 

Compared to corn, biofuel crops, like switchgrass and Miscanthus may require less 

management and financial inputs, such as tillage, fertilization, and herbicide/ pesticide 

application, which has the potential to reduce non-point source pollution from cropland. 

Secondly, some biofuel crops have higher land and water use efficiencies than traditional 

crops (VanLoocke et al., 2012; Heaton, et al., 2008). If perennial grasses can be processed 

efficiently, there is the potential that less land and water will be needed for perennial 

grasses to match ethanol demands than corn. Lastly, biofuel crops have higher biomass 

productivity due to their high adaptability to different soils and climates than grain crops, 

following the initial establishment period (Heaton, et al., 2004; Dohleman and Long, 2009). 

Therefore, replacing grain crops with biofuel crops in areas where grain yield is relatively 

low or has strong yield variability might be a sustainable strategy to maintain both food/fuel 

provision and environmental integrity, especially to mitigate the negative impact of future 

climate change on grain yield. To realize this sustainable strategy, it is essential to 

understand the responses of corn crops under various climate conditions, and apply this 

information to the watershed scale scenario analysis to quantify the trade-offs in food and 

fuel production, and provide scientific based suggestions to watershed managers.  

Agriculture is a climate-sensitive system. Although the climate in the US Corn Belt is 

generally suitable for crop growth, variation in temperature, precipitation and extreme 
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events such as flooding or drought can seriously affect production, often negatively.  

Climate variability affects soil moisture dynamics, which are directly related to crop 

growth. Soil moisture has a complicated relationship with crop development. Over shorter 

spatial and temporal scales, either limited or oversupplied soil moisture is harmful for crop 

growth. Based on historical records, cooler and wetter conditions are favorable for corn 

production in the grain fill period, while warmer and drier conditions in spring months are 

beneficial for early season crop growth (Lobell and Asner, 2003; Mishra and Cherkauer, 

2010). 

Due to the increasing trend in greenhouse gas (GHG) emissions, the world is faced with 

the challenge of climate change, especially in the agricultural sector. Average US 

temperatures are expected to increase by 2°C to 6°C by 2100, depending on the level of 

future GHG emissions, and the projections from various climate models (USGCRP, 2009). 

Projections show that future patterns of precipitation and storm events will vary temporally 

and spatially (Meehl et al, 2007). The Midwest USA is projected to face an increase in 

temperature of 3°C to 6°C, by the end of 21 century, accompanied by a shift in seasonal 

rainfall distribution towards wetter springs (Christensen, 2007) and lower summertime soil 

moisture (Cherkauer and Sinha, 2010).  

Projected seasonal changes in precipitation and temperature in the Midwest are likely to 

lead to sub-optimal conditions for crop growth (Pryor, 2013). Increased annual temperature 

is generally considered to benefit crop production in the Midwest, due to the longer 

growing season (Wuebbles and Hayhoe, 2004). However, the increased summer 

temperature and decreased moisture during the grain fill period may seriously affect final 
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yield (Lobell and Asner, 2003). If soil is too wet in the spring, planting date is adversely 

affected. Later planting affects final yield by reducing grain filling time (Arjal et al., 1978), 

and increasing the risk of exposure of cold temperatures late in the season before grain 

maturation (Nielsen et al., 2002). Planting crops in cold and wet soil will reduce oxygen 

transport rates, adversely affect root metabolism and retard root development, causing plant 

wilting after soil submersion (Glinski and Stepniewski, 1983).  

To quantify the impact of climate variability and future climate change on crop growth, 

modeling is widely employed in many studies (Semenov and Porter, 1995; Srticevic et al., 

2011; Matthew et al., 2015). As a mathematical representation and simplification of natural 

processes, properly validated crop simulation models consider the environmental impacts 

of climate on crop growth processes (Southworth et al., 2000). However, many current 

modeling studies either lack the algorithms to represent crop responses under adverse 

climate conditions, for example, crop responses to excess water conditions (Ines et al., 

2001; Rosenzweig et al., 2002), or neglect to evaluate simulated soil moisture conditions 

at all (Liu et al., 2015; Niyogi et al., 2015; Ummenhofer et al., 2015). Further, it is not 

simple to accurately estimate the impact of water stress on seasonal growth at the regional 

scale. The best currently available datasets, for example, the National Agricultural 

Statistics Service (NASS) Crop Progress and Condition data, are too coarse in spatial 

resolution (state or sub-state level for crop progress, county level for yield) to detect events 

that are infrequent at large spatial scale, but that may be frequent at small scales (i.e. the 

low spot in the field), so it is difficult to isolate the biophysical effect of water stress in a 

way that can be quantified. Therefore, correct representation of crop growth and yield 
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projection under various climate conditions (limited or oversupplied water) is essential for 

crop modeling for analysis of future climate impacts (Rotter et al., 2011) and the relative 

benefits of alternative crops. 

The future increases in CO2 should be considered in crop modeling studies as well. This is 

because CO2 stimulates photosynthetic rates directly as the substrate of photosynthesis 

(Oliver et al., 2009), and reduces the stomatal conductance, which improves the drought 

tolerance of some plants by delaying a response to water limitation stresses (Long et al., 

2004). Therefore, the negative effect of precipitation and temperature change could be 

mitigated by increasing concentrations of CO2 in the atmosphere.  

 Considering current deficiencies in model representations of physical processes and 

analysis of biophysical impacts, it is essential to improve the evaluation of climate 

variability and climate change effects on corn growth based on plant-water interaction in 

the Midwestern US. The research in this dissertation will investigate the important role of 

moisture related indices (oversupplied or limited water) in seasonal crop growth and annual 

yield, and evaluate their effects at plot and regional scales. The modeling process will be 

improved to better reflect crop responses to climate variability via moisture related 

bioclimatic indices, with extension to future periods with more adverse climate conditions 

and an increasing trend of CO2.  
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1.2 Research Hypothesis and Objectives 

The main goal of this study is to assess the impact of climate variability and climate change 

on maize growth, yield and hydrologic response in the Eastern Corn Belt via a modeling 

approach. The current practice of applying crop growth models to explore climate impacts 

on crop yield without evaluation of regional hydrology is problematic. Without water 

balance constraints at the regional to watershed scale, neither soil moisture nor crop 

responses to deficit/excess water may be well reproduced by the model. Therefore, in this 

research, the projections of crop yield response to climate variability are enhanced through 

improvements in ecohydrologic modeling to constrain simultaneous prediction of seasonal 

crop growth, annual yield and streamflow. Further, the hydrological and biophysical effects 

of future climate change also consider the impact of CO2 enhancement combined with 

precipitation and temperature change, which has rarely been considered in previous 

modeling studies.  

Four main hypotheses will be tested in this research: 

Hypothesis 1:  Annual crop yield variability is regulated by moisture-related (oversupplied 

or limited water) bioclimatic stresses. Those stresses have significant effects on crop yield 

at specific growing periods.  

Hypothesis 2: Crop response to oversupplied or limited water varies with spatial scale. 

Drought stress results in regional yield declines, while aeration stress results in higher yield 

decline over smaller spatial areas, but is not detectable at large special scales.  Drought 

stress explains the majority of yield reduction across all return periods.  
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Hypothesis 3: Multi-variable calibration of streamflow, the seasonal crop growth curve 

(LAI development), and annual yield within an ecohydrologic model can improve 

simulation performance in the face of climate variability, and reduce uncertainty in 

moisture prediction.   

Hypothesis 4: Future climate change will have negative impacts on rainfed corn yield, and 

introduce more interanuual variability in the Eastern Corn Belt because of increased spring 

wetness and decreased summer rainfall. CO2 enhancement cannot compensate for yield 

reduction due to changes in rainfall and temperature. 

Hypothesis 1, 3, and 4 were addressed using an ecohydrologic model, the Soil-Water-

Assessment Tool (SWAT) (Arnold et al., 1998) at both plot scale across Midwest, USA 

(Hypothesis 1) and watershed scale (Hypothesis 3 and 4). Hypothesis 2 was addressed 

using both remote sensing technology and modeling with the help of multiple years’ 

Landsat TM5 images in St. Joseph River watershed, Eastern Corn Belt.  The specific 

objectives of this research were to: 

1. Conduct multi-step calibration at the plot scale where observed soil moisture data is 

available. Calibrate crop yield based on biophysical parameters and the simulated soil 

moisture via the modeled crop stress functions (bioclimatic variables). 

 Improve model to include aeration stress computation algorithm and drought stress 

parameters 

 Use a multi-step calibration including management timing, soil moisture, 

biophysical and stress parameters. 
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2. Examine the relationship between crop yield and climate variability in the historical 

period.  

 Identify relationships between observed crop yields and simulated climate stress 

variability at different crop physiological stages via regression analysis.  

 Investigate yield reduction due to individual stresses over a longer historical period 

via frequency analysis.  

3. Evaluate variability in corn growth conditions and phenology both spatially and 

temporally. 

 Evaluate bioclimatic stress effect on seasonal corn leaf growth via comparison of 

individual measurements of NDVI with long term “normal curve”. 

 Identify the spatial pattern of risky pixels in both dry year and wet years.  

4. Conduct a multi-variable calibration at the watershed scale to constrain streamflow, 

seasonal leaf area development and annual yield simultaneously.   

 Identify areas with climate sensitivity, defined as areas that always have lower crop 

yield and higher interannual variability.  

 Examine the possible spatial differences when different calibration strategies are 

applied.   

5. Explore the biophysical and hydrological effects of future climate change including 

trends in CO2 at watershed scale.  
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 Improve model to take dynamic CO2 concentration as input. 

 Evaluate future corn yield and bioclimate stress variation considering both CO2 and 

precipitation and temperature change.  

 Investigate streamflow response to future climate change and enhanced CO2 via 

flow frequency analysis.  

 

1.3 Dissertation Organization 

This dissertation is organized into six chapters. First is the introduction (this chapter) which 

includes general background information, research needs, research objectives and the 

hypotheses tested in this dissertation Chapters 2-5 are presented in the format of journal 

manuscripts, which provide detailed information related to the main objectives. Chapter 2 

tests hypothesis 1 and 2 to parameterize and improve SWAT model in corn responses at 

various climate conditions at plot scale in Midwest USA, and explore historical variability 

(moisture related) on crop yield via modeling method. Chapter 3 tests hypothesis 2 to detect 

corn response to climate stress using remote sensing technology, and analyze spatial and 

temporal variability of corn NDVI in the St. Joseph River watershed. Chapter 4 tests 

hypothesis 1 and 3 to use multi-objective calibration strategy to regulate model 

performance in surface water, seasonal LAI development and annual yield simultaneously, 

where moisture calibration is not feasible at basin scale. Chapter 5 tests hypothesis 2 and 

4 to investigate biophysical and hydrological effects of future climate change including 

trends in CO2. Chapter 6 provides a summary and conclusion for the whole dissertation,  
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including main findings for this study and recommendations for future research. This 

research work has generated four research papers: 

Wang, R, Bowling LC, Cherkauer KA. 2016. Estimation of the Effects of climate 

variability on Crop yield in the Midwest USA. Agricultural and Forest Meteorology, 216: 

141–156. 

Wang R, Cherkauer KA, Bowling LC. 2016. Corn response to climate stress detected with 

satellite-based NDVI time series (Submitted to Remote Sensing) 

Wang R, Bowling LC and Cherkauer KA. 20XX. Improved simulation of annual crop 

sensitivity to climate variability in the Eastern Corn Belt. (In internal revision) 

Wang R, Bowling LC, Cherkauer KA, Raj C, Her Y, Chaubey I. 2016. Biophysical and 

hydrological effects of future climate change including trends in CO2, in the St. Joseph 

River watershed, Eastern Corn Belt. (Submitted to Agricultural Water Management).  
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CHAPTER 2. ESTIMATION OF THE EFFECTS OF CLIMATE VARIABILITY ON 

CROP YIELD IN THE MIDWEST USA 

2.1 Abstract 

Crop yield is strongly affected by climate variability. When applying ecohydrologic 

models to study climate impacts on crop yield, especially interannual yield responses to 

climate stresses, the model simulation of plant available soil moisture must be constrained 

in order to reproduce plant production variation via moisture related bio-climate variables.  

In this study, the Soil and Water Assessment Tool (SWAT) is used to investigate the 

relationship between climate variability and crop yield at four sites (Boone, Woodbury, 

Madison, and Mason) in the Midwestern USA. The model was first calibrated for soil 

moisture at the plot scale.  The calibrated model was then used to extend the observational 

records between 1991 and 2010 to better capture the effect of climate variability on crop 

yield over a longer period (1941-2010).  We also explored the relative yield reduction due 

to individual stresses. Our results indicated that annual observed yield from 1991 to 2010 

is correlated with drought stress intensity in the early and middle reproductive stage at most 

sites. The early and middle reproductive periods were thought more critical than other 

stages, because severe drought stress in those periods is substantially correlated with low 

observed yields. No significant relationship between crop yield and aeration stress was  
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found at any of the four sites, due to their different impacts under different spatial scales, 

as well as low frequency of events in the historical record. Long-term simulation of yield 

reduction indicates that drought stress was the dominant factor affecting yield in the 

historical period when compared with aeration stress both at short and long return periods 

(high/low probability of exceedance). For a 70 year period, the total yield reduction due to 

drought stress is 8.1%, 17.5%, 15.2% and 9.7% respectively for Boone, Woodbury, 

Madison and Mason. 

 

2.2 Introduction 

Crop yield is of great concern all over the world. The Food and Agriculture Organization 

of the United Nations (FAO) has predicted that “although the growth of food demands are 

expected to slow to 1.2 percent a year over the period 2015 to 2030, by 2030, an extra 

billion tons of cereals will still be needed each year” (FAO, 2002). The increasing food 

demands have to be matched by a corresponding increase of food supply. An unbalanced 

supply-demand relation can lead to tight food markets and rising food prices. To release 

the pressure in food supply, increased exploitation of arable land, crop productivity growth 

and increases in cropping intensity are often employed (Rosegrant et al., 2012). 

Productivity growth is the most critical component of agricultural supply increases. 

However, there are many factors that can affect crop yields negatively. Annual crop yields 

are strongly controlled by specific hybrids and specific growing conditions, including 

weather and nutrient availability. Further, at different growth stages, the magnitude of 

influence could be different for each factor.    
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Among all of the factors, soil moisture could have the most complicated relationship with 

crop development. We can subcategorize the impact of this factor into two parts. One is 

water deficiency, and the other is excess water stress. Both of them will negatively affect 

plant growth and threaten crop yields. Limited soil moisture results in a decrease of plant 

water uptake. Drought will also cause plant tissue dehydration and in turn reduce shoot and 

root growth, membrane integrity and decrease crop production. Drought-induced crop 

yield reduction is well documented by many researchers. In the 1930s in the southern Great 

Plains of the US, drought caused as much as a 50% reduction in corn and wheat yields 

(Warrick, 1984). The 1988 Midwest US drought led to a 30% reduction in US corn 

production and cost three billion dollars in direct relief payments to farmers (Rosenzweig 

and Hillel, 1988). The recent 2012 drought affected at least 60% of farms in the US, and 

caused the lowest national yield value since 1995, 123.4 bu/acre (Crutchfield, 2012) 

Limited water supply (drought) is not the only factor affecting crop growth.  If soil water 

is oversupplied, oxygen transport rates in the soil are reduced, adversely affecting root 

metabolism and retarding root development. In such cases, a paradoxical phenomenon may 

occur where the plant wilts not due to lack of water but due to a lack of oxygen. The relative 

proportion of water to air plays an important role in plant health. The optimum moisture 

content for healthy growth recommended by Kirkham and Powers (1972) is 25% of total 

soil pore space for both water and air content. Boyer (1982) found that 41% of crop losses 

in the United States are caused by drought, while excess water causes crop losses of 16% 

on average. In the United States, 25% of the soils are threatened by drought, and 16% are 

too wet, both resulting in a limit to crop production (Boyer, 1982). 
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Historically, much of the Midwestern U.S. has been faced with excess water. Due to 

previous glacial activities, dense till restricts water infiltration, which means much of this 

area maintains a high water table and is very poorly drained (Thompson and Bell, 1998; 

Muenich, 2011). Under such conditions, organic matter is easily accumulated, resulting in 

some of the most fertile lands in the world (Blann et al., 2009), but also requiring drainage 

to make the region workable. Without drainage improvements, this region is subject to 

delayed planting, denitrification, manganese toxicity, poor root development, depressed 

nodule activity in legumes, and serious root diseases (Ohio Agronomy Guide, 14th Edition). 

These soils can be the most or least productive ones, depending on how they are managed. 

Therefore, in the Midwestern U.S., croplands in poorly drained condition are likely to be 

drained using subsurface tile lines to release excess water problems and guarantee the 

healthy growth of crops (Naz et al., 2009). 

Understanding the role of soil moisture in crop yield variation will bring great benefits to 

a range of users in the Midwestern U.S., including farmers and crop marketing agencies. 

Many studies have investigated the close relationship between soil moisture or moisture 

related bioclimatic indices and plant yields (Torell et al., 2011; Singh et al., 1998). 

Bioclimatic or agro-meteorological indices are preferred over meteorological metrics by 

land managers, because of their clearer association with crop phenology and management 

practices (Matthews et al., 2008). Bioclimatic indices used in previous research to explore 

drought effects include annual maximum soil moisture deficit (Brown, 2013), Soil 

Moisture Percentile (SMP) (Mishra and Cherkauer, 2010), and the Evapotranspiration 

Deficit Index (ETDI) (Narasimham and Srinivasan, 2005). When soil water is oversupplied, 
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the soil aeration capacity (SAC) (Viesser, 1977) and the Least Limiting Water Range 

(LLWR) (Benjamin et al., 2003) metrics are often employed to evaluate crop yield response. 

All of these indices have been found to be good indicators of crop yield under dry or wet 

conditions, respectively. 

To explore the response of crop growth to climate variability and estimate crop yield under 

various climate conditions, crop growth modeling is often employed. A good model should 

be able to capture soil moisture dynamics under various climate conditions. The response 

of crops to both oversupplied and limited moisture conditions must also be clearly reflected. 

Thus the close relationship between crop production and moisture related bioclimatic 

variables (Physical-Physiological index) should be addressed by the model for serious 

analysis of future climate impacts. Although there are many crop modeling studies and 

most of the models used have water balance modules, only a few of them evaluate model 

performance for both soil moisture and yield prediction (Saseendran et al., 2004; Mkhabela 

and Bullock, 2012). Furthermore, not all models consider crop response under excess water 

conditions. For example, Hybrid-Maize (Yang et al., 2004), AquaCrop (Steduto et al., 2009) 

and Cropsyst (Stockle, et al., 1994) only consider yield reduction under drought stress, 

which limits use in areas that suffer from excess water problems, such as fields with limited 

drainage in the Midwest U.S. 

The main objective of this paper is to study the role of climate variability on crop yield at 

four sites across the Midwestern U.S. with extended data sets of climate observation and 

crop yield. The Soil and Water Assessment Tool (SWAT) is used in this study because of 

its robustness in water quantity simulation and the availability of modules to represent plant 



20 

 

2
0
 

response in both dry and wet soil conditions. SWAT’s ability to capture daily soil moisture 

was first tested at four Natural Resources Conservation Service (NRCS) - Soil Climate 

Analysis Network (SCAN) sites. The model’s ability to represent historical corn 

production using observed climate (1991-2010) was then evaluated at the same sites. The 

response of simulated crop yields to the timing and duration of different bio-climate 

extremes (related to drought and aeration stress) was explored. Finally, yield reduction due 

to individual stresses for a longer historical period (1941-2010) was investigated through 

frequency analysis. 

 

2.3 Methods 

2.3.1 SWAT model overview and modification 

The Soil and Water Assessment Tool (SWAT) was developed by USDA-ARS and is 

widely used to assess the impact of climate variability on hydrologic process and crop 

production. The Hydrologic Response Unit (HRU) is the basic spatial unit required for 

simulation. It is a lumped land area, possessing unique combinations of land use, soil and 

slope within a subbasin. The hydrologic cycle is simulated based on a water balance 

equation of soil water content, including evapotranspiration, surface runoff, infiltration, 

percolation, shallow and deep aquifer flow (Arnold et al., 1998). A detailed description of 

SWAT hydrological simulation can be found in Neithsch et al., (2009).  

Plant growth is also simulated at the HRU level. The growth cycle of each plant is regulated 

by specific attributes in the SWAT plant database, as well as the timing of operations in 
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the management files. Growing Degree Days are often used to define crop growth period 

and schedule management operations, but SWAT makes use of a variant, the heat unit or 

PHU. Crop planting date is decided by the fraction (frPHU0) of annual total PHU0 (heat unit 

accumulation above 0 ºC). The plant begins to accumulate PHU (heat unit accumulation 

above the plant specific base temperature Tbase) after planting until it reaches PHUmat (heat 

unit accumulation to maturity), which is also defined by crop type and cultivar. The value 

of frPHU is the ratio of current PHU to PHUmat and is used to decide the timing of other 

management operations, such as fertilizer/pesticide application (< 1.00), and harvest 

(>1.00). The crop has reached maturity when frPHU=1.00.  

Under optimal conditions (no growth stress), daily biomass accumulation (Δbio; kg/ha) is 

regulated by leaf area index (LAI) development, light interception (kl), photosynthetically 

active radiation (Hday; MJ m-2), and radiation-use efficiency (RUE; 10-1 g/MJ).  

0.5 (1 exp( ))day lbio H k LAI RUE              (2.1) 

For annual crops, LAI accumulates each day following an optimal leaf area development 

curve, with similar shape, but different parameters for different plants. LAI increases from 

the planting date until it reaches the maximum LAI value and is then stable until the 

senescence point (DLAI) is attained. LAI drops from this point until the crop reaches 

maturity.   

Actual daily growth varies from the optimal growth rate due to an accumulation of stresses, 

which include water deficit or excess, nutrient limitation, extreme temperature, pests, and 

diseases. The total actual biomass accumulation over the growing season is calculated as: 
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    (2.2) 

where bio is the total plant biomass on a given day (kg ha-1), and Δbioi is the increase in 

total plant biomass on day i (kg/ha). The terms wstrs, astrs, tstrs, nstrs and pstrs represent 

drought, aeration, temperature, nitrogen and phosphorus stress, respectively and are the 

five growth constraints considered by SWAT. d is the number of days from planting to the 

simulation day. In our case, auto fertilization is applied to avoid any nutrient limitation. 

Therefore, stress from nutrient limitation is not considered in this research.  

SWAT considers daily water stresses either under oversupplied or limited conditions 

(aeration and drought stress).  Aeration stress (astrs) is related to a function (satco) of 

porosity, field capacity and soil water content in the soil profile. 

           (2.3) 

where θ is the soil water content in the soil profile (mm water), θfc is field capacity for the 

entire soil profile (mm water), and η is the soil water content at saturation (mm water). The 

variable satco is the fraction of saturation over field capacity in the soil profile and is used 

to define aeration (excess water) stress based on a function from the APEX model (Steglich 

and Williams, 2008): 

       (2.4) 
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Plotting astrs versus satco, an S-shaped curve can be attained. The S-shaped curve is used 

to describe the behavior of many processes (aeration stress, potential harvest index, P plant 

use-soil P concentration) in the APEX model. The variables b1 and b2 control the shape of 

the S-curve and therefore the degree to which the plant experiences stress due to an 

increasing excess of soil water. 

The original SWAT aeration algorithm calculates astrs based on the water content for the 

entire soil profile. This could be suitable if the plants’ root system is in or close to maturity 

status, but will not reflect conditions leading to aeration stress earlier in the growing season 

when plant roots are shallow.  We modified the original aeration stress calculation 

algorithm so that it considers root depth. The modified algorithm only considers aeration 

stress in the root related soil layers instead of the whole soil profile (Figure 2.1).  

 

Figure 2.1 Aeration stress algorithm modifications 
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Drought stress is defined as a comparison between actual and potential plant transpiration: 

       (2.5) 

where wstrs is the drought stress for a given day, Et is the maximum plant transpiration on 

a given day (mm water), wactualup is the actual amount of transpiration on a given day or 

total plant water uptake for the day (mm water), strsw is the ratio of actual to maximum 

transpiration. 

Compared with eq. (2.3), strsw has a similar pattern with satco, which are both physical 

parameters, showing the ratio of an actual to a potential condition. Aeration and drought 

stresses are physiological parameters, which are transformed from physical parameters, 

like satco and strsw. The transformation method is quite subjective and mostly based on 

expertise and experience (Kozak et al., 2006). Therefore, like aeration stress, a new 

equation to calculate drought stress is introduced, which is shown in eq. (2.6). The S-curve 

method is used to adjust yield which is over/under sensitive in some places to the original 

drought stress.  

         (2.6) 

Daily biomass is controlled by stresses and keeps accumulating until the accumulated heat 

units reach PHUmat., then biomass keeps constant until harvest. Annual yield is then 

separated from total above-ground biomass (bioag) via multiplying the harvest index (HI). 

HI is a function of the optimal harvest index (HIopt) and frPHU. If heat units do not 

accumulate to PHUmat, HI is less than HIopt. Therefore, early harvesting results in less yield 

1 1
actuallup

t

w
wstrs strsw

E
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exp( 1 2* )
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from accumulated aboveground biomass. Otherwise, HI is close to HIopt , which means that 

above ground biomass transfers to crop yield at an optimal rate.  Water deficiency also 

affects the value of HI during the active growing season (0.5<frPHU<DLAI), with the actual 

harvest index for each crop, HIact, calculated as  

    (2.7) 

where HImin is the harvest index for the plant in drought condition and represents the 

minimum harvest index allowed for the plant, and γwu is the ratio of actual to potential 

evapotranspiration for the active growing season. 

In sum, the complicated process of crop growth is mathematically simplified by SWAT 

considering potential accumulation (heat unit based) of biomass and growth stresses. 

Annual crop yield is then calculated from the total biomass and harvest index.  

 

2.3.2 Study area and data 

Four soil moisture monitoring sites established by the NRCS-SCAN across the Midwest 

USA (Figure 2.2) were used in this study: Boone, IA (42o1’N, 93o44’W), Woodbury, IA 

(42o26’N, 95o46’W), Madison, OH (39o57’N, 83o26’W) and Mason, IL (40o19’N, 

89o54’W).  All provide 5-6 years of continuous daily soil moisture data at multiple depths.  

This offers a valuable chance to evaluate model performance in soil moisture prediction. 

Current land use/cover information is based on site pictures on the NRCS website, which 

( )
exp[6.13 0.883 ]

wu
act min min

wu wu

HI HI HI HI
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resulted in all sites being classified as range grass using default SWAT parameters. Soil, 

crop and weather data used in this study are summarized in Table 2.1.  

Table 2.1 Data used in this study 

Data Source Unit Description Data Process 

Soil 

moisture 

content 

NRCS-

SCAN 
Percentage 

Layer specific daily 

data (5, 10, 20, 50, 

100 cm) 

Bias-correction 

to avoid 

observed data 

over porosity 

Site specific 

soil 

physical 

properties 

NRCS-

SCAN, 

pedon 

report.  

g/cm3,  

percentage 

Number of layers, 

bulk density, field 

capacity, permanent 

wilting point, 

porosity 

NA 

County 

level crop 

yield  

NASS 

quick stats 

2.0 

Bu/acre Annual corn yield  

Best-fit least 

square 

regression 

method to 

remove trend  

State level 

crop 

progress 

NASS 

quick stats 

2.0 

weeks 

Weekly update of 

farmer activities and 

crop phenological 

stages, like 

emergence, silking, 

dough, dented, and 

physiologic 

maturation at state 

level 

NA 

Weather 

NRCS-

SCAN, 

NOAA 

mm, 0C 
Daily precipitation 

and temperature  

NOAA stations 

within 30km  

used to generate 

precipitation 

when SCAN has 

missing data 

using inverse 

distance 

weighting 

method 
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Figure 2.2 Geographic location of the four NRCS-SCAN plots across the Midwest 

USA 

 

2.4 Model implementation 

2.4.1 Crop yield calibration steps 

Simulation of crop yield is dependent on both biophysical processes and the simulated soil 

moisture via the stress functions (bioclimatic variables). Model implementation therefore 

followed a multistep procedure as illustrated in Figure 2.3.  The statistical metrics 

mentioned in Figure 2.3 will be addressed in section 2.4.3. 
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Figure 2.3 Crop yield calibration strategy 

 

2.4.2 Simulated crop yield upscaling 

Due to the spatial scale difference of observed (detrended county level yield from the 

National Agriculture Statistic Service (NASS)) and simulated yields (SWAT single HRU 

scale), these two datasets cannot be compared directly. The scale discrepancy will affect 

inter-annual variations, because data averaged to coarse scales are less variable than data 

for small plots, which introduces a bias in the yield calibration (Maltais-Landry and Lobell, 
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2012). Therefore, in this study, an approach to upscale simulated yield from HRU to county 

was developed, considering the effect of arable soil varieties on yield across the county. 

First, arable soils from the NRCS SSURGO (Soil Survey Geographic Database) in each 

county were classified into different groups based on the two properties (NRCS curve 

number and saturated hydraulic conductivity) that most influence SWAT simulated 

hydrology (Figure 2.4).  Secondly, the model was run for various soil groups without 

calibration to provide yield values based on the default parameter set. Then, the model was 

run at the SCAN site in each county using the default and calibrated parameter sets. The 

yield difference between the SCAN site simulations with the two parameter sets was treated 

as bias. This bias was employed to adjust the simulated yield values for the other arable 

soil groups based on the assumption that calibration would have similar influence on all 

soil groups. The proportion of each arable soil (Figure 2.4) in each county is also 

considered when upscaling the crop yield simulated for the individual HRUs representing 

SCAN sites to the whole county, as follows: 

       (2.8) 

where 𝑌𝑐𝑜𝑢𝑛𝑡𝑦
𝑐𝑎𝑙𝑖  is the county level crop yield after upscaling; 𝑁 is the number of arable soil 

groups simulated in the county; 𝑌𝑛
𝑑𝑒𝑓

is the annual simulated crop yield for soil n, using the 

default parameter set; 𝑌𝑝𝑙𝑜𝑡
𝑐𝑎𝑙𝑖 is the simulated yield at plot scale using calibrated parameters; 

𝑌𝑝𝑙𝑜𝑡
𝑑𝑒𝑓

 is the simulated yield at plot scale using default parameters; 𝐴𝑛 is area of soil n in 

each county; and 𝐴𝑎𝑟𝑎𝑏𝑙𝑒 is the total area of arable soil in each county. 

1

( )
N

cali cali def def n
county plot plot n
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Figure 2.4 Typical arable soil types and their weight factors in the four study counties 

 

2.4.3 Model performance evaluation 

To evaluate the deviation of the soil moisture content and crop yield simulations, statistics 

of mean bias error (MBE), Wilmott’s index of agreement (d), and the normalized root mean 

square error (N-RMSE) were calculated. MBE measures the average tendency of the 

simulated data to differ from their observed counterparts (Gupta et al., 1999). The d-

statistic (Willmott, 1982) reflects the degree to which the simulated variation estimates the 

measured variation (Han et al., 2010), which has a value between 0 and 1, where higher 

values of d indicate better model performance. Since it overcomes the insensitivity to 
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additive and proportional differences between observed and simulated data, the d-statistic 

is more appropriate to evaluate soil water content when compared with the correlation 

coefficient (Legates and McCage, 1999). As recommended by Legates and McCage (1999), 

a complete assessment of model performance should also include at least one error index 

for diagnostic purposes. Therefore, N-RMSE (Loague and Green, 1991) is employed in 

this study, which is the root mean square error (RMSE) divided by the average observed 

soil moisture or crop yield. RMSE indicates error in the units of the constituent of interest, 

while N-RMSE includes a normalization factor, making the resulting statistic comparable 

across constituents.  A value of N-RMSE smaller than 10% indicates that the model is an 

excellent predictor, between 10 and 20% is a good predictor and between 20 and 30% is a 

fair predictor (Bannayan and Hoogenboom, 2009). These three metrics were be used to 

evaluate model performance both in soil moisture and annual crop yield.  

 

2.4.4 Soil moisture content calibration 

Observed soil water content during the winter period (Nov to Feb) is often missing from 

SCAN datasets, presumably due to soil freezing. Moisture data in the winter period is less 

related to crop yield in the Midwestern US, since corn has either been harvested or has not 

been planted. Therefore, our soil moisture calibration is just based on observed data from 

March 1st to Oct. 31th for each year. This captures soil moisture prior to planting, which is 

more important to crop growth than variations in soil moisture through the winter. 
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Measured soil moisture contents were compared with daily simulated values for different 

layers. A 10-year spin-up period was used to minimize the impact of uncertain initial 

moisture conditions.  Site-specific soil physical properties used to parameterize moisture 

are summarized in Table 2.2. Hydrologic parameters that were manually adjusted to 

calibrate soil moisture are listed in Table 2.3. 

Table 2.2 Soil water content parameterization 

Parameters Physical Meaning 
Boone, 

IA 

Woodbury, 

IA 

Madison, 

OH 

Mason, 

IL 

Por_i Porosity of soil layer i** 
0.365-

0.529 

0.453- 

0.478 

0.284-

0.479 

0.310-

0.374 

FC_i 
Field capacity of soil 

layer i** 

0.290-

0.470 

0.320- 

0.350 

0.220-

0.380 

0.090-

0.310 

PWP_i 
Permanent wilting point 

of soil layer i** 

0.130-

0.270 

0.150- 

0.210 

0.100-

0.200 

0.040-

0.170 

DEPIMP_B

SN (mm) 

Depth to impervious 

layer for modeling 

perched water table 

1200 NA NA NA 

sol_zmx (m) Maximum rooting depth 0.46 2 2 2 

**i indicates different soil layers. For Boone, IA, i=1, 2…6; For Woodbury, IA, i=1, 

2...5; For Madison, OH, i=1, 2…7; For Mason, IL, i=1, 2…6.  
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Table 2.3 Hydrologic parameter calibration 

Parameters Physical Meaning 
Boone, 

IA 

Woodbury, 

IA 

Madison, 

OH 

Mason, 

IL 

ESCO: 

Soil evaporation 

compensation 

coefficient 

0.979 0.97 0.5 0.966 

EPCO 

Plant transpiration 

compensation 

coefficient 

0.02 0.2 0.6 0.99 

CN2 Runoff curve number 59 59 81 58 

Ksat_i(mm/hr) 

Saturated hydraulic 

conductivity of soil 

layer i** 

0.09-0.19 0.10-0.19 0.01-0.20 0.11-4.64 

GW_REVAP 

Groundwater re-

evaporation 

coefficient 

0.02 0.2 0.02 0.02 

βw 

Water use 

distribution 

parameter 

10 10 9 10 

**i indicates different soil layers. For Boone, IA, i=1, 2…6; For Woodbury, IA, i=1, 

2...5; For Madison, OH, i=1, 2…7; For Mason, IL, i=1, 2…6.  

 

2.4.5 Management timing parameterization 

SWAT calculates heat unit accumulation at a daily scale, and uses those values to control 

when important management decisions are made. Frequently, an exact date for planting 

and harvest is assigned in SWAT, but heat unit accumulation can also be used to vary 

planting time from year to year.  This method is more consistent with actual practice and 

was used for these simulations. The accumulation of heat units also helps to define different 

phenology stages, or at least the approximate timing of their occurrence.  We used this 

relationship to compare simulated plant growth stages to those provided in the USDA-

NASS database, and to calibrate the crop growth model within SWAT to improve the 
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simulation of corn yields.  Default and calibrated parameters are shown in Table 2.4, while 

the calibration process is described below.  

Table 2.4 Parameters adjusted for management time and potential growth curve 

 Original Values  Adjusted Values 

 frPHU0 PHUmat frPHUhar DLAI frPHU0 PHUmat frPHUhar DLAI 

Iowa 0.15 1451 1.2 0.7 0.11 1652 1.1 0.75 

Ohio 0.15 1512 1.2 0.7 0.15 1712 1.1 0.75 

Illinois 0.15 1536 1.2 0.7 0.15 1700 1.15 0.75 

 

2.4.5.1 Planting 

Planting time determines when the simulated crop begins to accumulate biomass. Incorrect 

planting time will directly affect the timing of other management stages, and finally cause 

incorrect simulation of annual total biomass and yield. For the two sites in Iowa, Boone 

and Woodbury, the default crop model settings resulted in planting dates consistently later 

than the mean planting date from 20 years of NASS data (Figure 2.5). This was adjusted 

by changing the value of frPHU0 to start crop growth more in line with USDA NASS 

observations. The simulations reflect corn planting time very well after proper 

parameterization for all 20 years. For Mason and Madison, the default settings are good 

enough, so there is no change of frPHU0 in these two counties. 

 

2.4.5.2 Maturity 

In SWAT, maturity date is controlled by total heat unit accumulation from the date of 

planting. Compared with the NASS data, the default maturity date was too early (Figure 
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2.5(2a-2d)). Therefore, PHUmat was adjusted. In the Midwestern U.S., the average mid-

season commercial corn hybrid requires 130 days or 2700 growing degree days (GDD) 

from planting to maturity (Neild and Newman, 1990). GDD is another daily heat unit 

calculation method similar to PHU, and conversion between them is straight-forward. To 

do this, GDD and PHU were accumulated from the observed planting date for each year, 

and the PHU for the day that GDD reaches 2700 is obtained. Figure 2.5(2a-2d) reflects the 

simulated maturity date before and after parameterization, indicating that 2700 GDD 

(around 1652 to 1712 PHU in all sites) accumulation from the planting date results in a 

simulated maturity time that compares well to observed data. 

 

2.4.5.3 Harvest 

Similar to planting date, PHU fraction is adjusted for harvest (frPHUhar) to better reflect 

observed harvest date. For some cold years, heat units do not accumulate to the required 

harvest amount and the crop is terminated on the 352nd day of the year. Harvest date before 

and after parameterization is also shown in Figure 2.5(3a-3d). 

 

2.4.5.4 Senescence 

Senescence is not a management timing, however, like other management practices it 

relates to crop biomass accumulation. When corn reaches some fraction of PHUmat, LAI 

begins to decrease. This fraction is used as an adjustable parameter (DLAI) to control the 
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beginning of senescence. Usually, senescence happens at around the end of the grain filling 

period (Nielsen, 1998), but no clear criteria for the timing of natural senescence is defined. 

Current literature provides the timing of senescence in some specific years. For example, 

Dohleman et al. (2009) recorded the corn planting, senescence and maturity timing (Day 

of year) in Champaign, IL (40.033N, 88.233W). With this information and the recorded 

daily temperature data from the nearest NOAA station, the heat unit between planting and 

senescence were calculated.  The senescence point relative to the PHU for maturity was 

0.786 and 0.759 in 2007 and 2008, respectively. Similarly, Yang et al., (2003) recorded the 

planting, emergence and maturity date of corn in Manchester, IA (42.47N, 91.45W). They 

found that LAI decreases 85-90 days after emergence.  Thus, DLAI in this area was 

calculated as 0.751 for 2002. Since our study plots are close to these sites, DLAI was set 

to 0.75 (around the end of denting stage for a 2700 GDD corn).  
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Figure 2.5 Management timing for the four study counties.The gray shaded zone 

reflects the date range for each management practice recorded by NASS State Crop 

Progress Data, with top and bottom defined by the begin and end dates. Blue squares 

indicate the 50% date of NASS data. Black circles indicate the default management 

date from SWAT. White circles indicate the calibrated date. 1a) to 1d) reflect the corn 

planting date for four counties; 2a) to 2d) reflect maturity date; 3a) to 3d) reflect 

harvest date. 

 

2.4.6 Annual yield amount/variation calibration 

For crop yield calibration, HIopt, HImin, RUE, b1, b2,c1 and c2 were chosen to adjust the 

annual yield. RUE, HIopt and HImin are often considered the most sensitive parameters 

affecting mean annual crop yield in SWAT crop growth studies (Anderson et al., 2009; 

Nair et al., 2011; Sun and Ren, 2012).  The S-curve transformation parameters for aeration 
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stress (b1, b2), and drought stress (c1, c2) were used to modify the yield sensitivity to 

environmental stresses in this study. Thus, variation of yield is regulated by four S-curve 

transformation parameters. The parameters b1 and c1 control the position of the curve, with 

smaller b1 or c1 values increasing the initial slope of the S-curve which in turn increases 

the sensitivity of crops to small levels of aeration or drought stress.  Large values of b1 or 

c1 decrease the initial slope so that yields are not substantially affected until higher levels 

of aeration or drought stress.  The difference (b1-b2) or (c1-c2) controls how closely the 

S-curve passes through the 1-1 point on both relationships.  For use of the equation, we 

calculate b2 or c2 from the value of b1 or c1 to keep the tail of the curve within 0-3% of a 

final value of aeration or drought stress of 1.  

For aeration stress, S-curves used by three previous models (Steglich and Williams, 2008; 

Neitsch et al., 2009; Du et al., 2005) are shown in Figure 2.6, which are all above the 1:1 

line, indicating that aeration stress grows rapidly for relatively low fraction of saturation,  

but stays stable in a high stress status, when relative saturation (satco) keeps increasing.  

For drought stress, a 1:1 line is shown as the SWAT default setting, which means no s-

curve transformation; drought stress equals 1-AET/PET, and stress responds to AET/PET 

linearly.  Suggested calibration ranges for the aeration and drought stress scaling functions 

are displayed as gray shaded zones. Any curve in the shaded zone could be chosen by end 

users as a possible one to transform the physical parameter (satco or 1-AET/PET) to 

physiological parameter (aeration or drought stress).  
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Figure 2.6 Suggested calibration range for aeration/drought stress scaling function 

 

The calibration range was selected based on the area under any possible s-curve. Actually, 

this area also reflects the mean stress value, supposing satco or 1-AET/PET is evenly 

distributed between 0 and 1. Take drought stress for example, the area under the 1:1 line is 

0.5, indicating that the mean stress value is 0.5. The suggested calibration range constrains 

the mean stress between 0.35 and 0.65 (15% deviation from the 1:1 line). Similar to drought 

stress, considering the response of aeration stress to different percent saturation, any curve 

with mean aeration stress between 0.5 and 0.85 is suggested for calibration, which covers 

all three previous models and stays above the 1:1 line. 

A 20-year period (1991-2010) is used for crop yield calibration and validation. Crop yield 

calibration is executed in years (6-7 years) which have observed soil moisture data at the 

SCAN sites and moisture calibration is described in Section 2.4.4. The remaining years 

(13-14 years) in this period are used for crop yield validation. Parameters employed for 

crop yield calibration are summarized in Table 2.5.   
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Table 2.5 Parameters used for yield calibration for the four sites 

 HIopt RUE HImin b1 b1-b2 c1 c1-c2 

Boone, IA 0.504 36.18 0.262 0.485 -9.098 0.8858 -3.6977 

Woodbury, IA 0.493 33.07 0.328 3.916 -3.326 -1.879 -4.201 

Mason, IL 0.473 34.91 0.171 3.093 -3.402 -0.024 -8.925 

Madision , OH 0.508 33.94 0.306 -1.365 -7.416 -2.188 -8.626 

 

All sites were assumed to be undrained when calibrating crop yield with the exception of 

Boone, IA. Figure 2.7 shows that the bottom layers (below 46 cm) of the edge-of-field 

SCAN site in Boone, IA are almost saturated, indicating a very serious continuous aeration 

stress for crops. Tile drainage is widely applied in Midwest when soil is poorly drained 

(Singh et al., 2006; Schilling and Helmers, 2008). Therefore, when modeling crop yield in 

Boone, IA, it was assumed that all fields are tile drained. 
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Figure 2.7 Calibrated vs. observed volumetric soil moisture content (average daily 

value for 6 years) in Boone, IA. (a) 0-20 cm, (b) 46-58 cm, (c) 94-119 cm 
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2.4.7 Weekly biomass accumulation validation 

Reasonable annual yield can also be achieved by adjusting harvest index even if the 

biomass accumulation is incorrect (equifinality in crop yield calibration). Under such 

situations, the model either consistently over or underestimates daily biomass 

accumulation, or incorrectly reflects crop responses under oversupplied/limited water 

conditions. Therefore, to overcome the potential for equifinality, the final biomass at 

maturity and the seasonal biomass curve are evaluated to ensure an appropriate model 

representation in daily biomass as well. However, due to the scarcity of field collected 

biomass data, it is difficult to calibrate daily biomass accumulation curves in the study plots.  

Singer et al. (2011) evaluated radiation use efficiency near Ames, Boone County, IA, which 

provides a total of 16 consecutive weekly biomass samples in maize for year 2005. Since 

SWAT simulates biomass at a daily scale, it is reasonable to compare our simulation results 

with their observed data.  

 

2.4.8 The relationship between crop yield and climate variability 

When the model is not only able to capture the annual yield amount and variation, but also 

a reasonable daily biomass accumulation rate, it can be considered as a valuable tool to 

explore how climate variability affects annual crop yield. We extend model application to 

a longer period (1941-2010) to investigate climate stress to crop yield. 
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To better explore the role of climate variability (limited/excess water) on annual crop yield, 

the whole crop growing season is divided into six stages based on corn phenology (Table 

2.6). Each period includes 2-3 phenological stages, which are controlled by GDD. The 

beginning and ending GDD values are defined by Neild and Newman (1990). For all six 

stages, the total amount and intensity of aeration stress (astrs) and drought stress (wstrs) 

were calculated from the SWAT simulation as indices to represent climate variability. 

Stress intensity is calculated from total stress amount divided by days with stress (days 

with non-zero stress).  Stress indices were also calculated for the entire vegetative stage 

(first three phenological periods), entire reproductive stage (last three phenological periods) 

and entire crop growing period (all six phenological periods). Both Pearson and Kendaull-

Tau correlation coefficients were used to quantify the relationship between detrended 

observed crop yields and simulated climate variability for all nine periods in four counties. 

Table 2.6 Growing degree day requirements for different phenological stages of 2700 

GDD corn 

Phase Stage GDD (F) 

Vegetative 

Planting V2 V4 0-345 

V6 V8 V10 345-740 

V12 V14 V16 740-1135 

Reproductive 

Silking Blister 1135-1660 

Dough Denting 1660-2190 

Dented Physiological maturity 2190-2700 

 

To explore yield reduction due to individual stresses, the model was first run 70 years 

without crop stress using weather data from 1941 to 2010. The original SWAT source code 

has been modified to remove all stresses, so biomass accumulated in each day as reflected 
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in eq (2.2) is always the potential biomass. Simulated yield in this run is considered to be 

potential yield. Then only one stress (either drought or aeration stress) at a time is 

considered in the model simulation. This method allows us to compare yield reduction by 

the individual stresses to potential yield. All simulated crop yields are upscaled to county 

level based on the methods described in section 2.4.2. Then, simulated relative yield 

reduction is calculated as: 

Relative yield reduction = (Potential yield –Yield by only one stress)/ Potential yield (2.9) 

Similarly, relative yield reduction for county level observed data is also generated. First, a 

linear regression was applied to 70 years of NASS observed yield (Figure 2.8). Then the 

regression line is shifted upward until it intersects with the highest observed yield. The 

shifted line is considered the observed potential yield. Relative yield reduction for the 

observed data is calculated through the observed potential yield and NASS observed data.  

 

Figure 2.8 Observed potential yield calculation 
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For all 70 years, the non-exceedance probabilities are calculated using the Weibull 

formulation.  Both simulated and observed yield reduction associated with the respective 

non-exceedance probabilities are then plotted in Figure 2.13. Similar to flood frequency 

analysis, the non-exceedance probabilities can be converted to a return period by inverting 

the values.  

 

2.5 Results 

2.5.1 Model performance in soil moisture prediction 

Model performance at Boone, IA is shown in Figure 2.7 as a representative of the soil 

moisture calibration process for all SCAN sites.  In order to better illustrate the overall 

model performance, only annual average daily values for the 5-6 year period are shown.  

Statistics for model performance for all four sites are summarized in Table 2.7. The model 

captures the interannual soil moisture variation and annual average amount very well in 

most years for most soil layers. At the Boone, Woodbury and Madison sites, simulation 

results are good for soil moisture, with d-statistics greater than 0.8 and MBE values less 

than 10%. A larger mean bias was found in Mason, IL when compared with the other three 

sites. The model also underestimates soil moisture in summer and fall in Mason.  The 

relatively poor performance in this site is due to sandy soils and missing site precipitation. 

A high sand content at this site results in poor soil capacity to hold water. Therefore, the 

absolute value of soil moisture is much lower than the other three. Although the absolute 

difference is small, a large relative difference may occur. The SCAN site at Mason, IL only 
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has one year’s site recorded precipitation, so the inverse distance method is used to generate 

site precipitation from another station.  Unfortunately the nearest NOAA weather station 

is still 14.3 km away (Havana, IL), so the precipitation records are not as accurate as those 

from other sites resulting in the poorest performance for this site.  

The soil in Boone, IA is poorly drained and there is no subsurface drainage at the field edge 

where the site is located, so the bottom layers are saturated.  The model is able to reflect 

this after proper calibration. Poor d-statistic values in the bottom two soil layers at Boone 

are caused by variation of simulated and observed moisture around the saturated value. 

Under saturated conditions, the model generates relatively constant moisture, while the 

observed data fluctuates around this constant value due to instrument noise. The effect of 

noise could be covered if observed data itself varies. Therefore, the variance of simulated 

soil moisture is lower than observed data measured by soil sensors.  

 

2.5.2 Model performance in crop yield/biomass prediction 

The model captured annual average yield well. Mean bias error is less than 10% (Figure 

2.9 and Table 2.8). Normalized root mean square error (N-RMSE) is less than 15%, 

indicating a good fit and accuracy in predicting yield (Tubiello et al., 2002; Maltais-Landry 

and Lobell, 2012).  In addition, the model is able to capture the interannual variation of 

crop yield in Woodbury, Madison and Mason. For example, in Woodbury, IA, the d-

statistic for both calibration and validation periods are higher than 0.8, and the simulation 
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predicts both higher (years 1999, 2008, 2009) and lower yields (1993, 2000, 2006) 

correctly.  

Table 2.7 Model performance in predicting soil moisture at the four SCAN sites 

  Mass Balance Error (%) d statistic N-RMSE (%) 

Boone, IA 2002-2008 2002-2008 2002-2008 

Layer1 -0.53 0.92 12.11 

Layer3 1.24 0.27 1.40 

Layer6 2.11 0.47 2.82 

Woodbury, IA 2004-2009 2004-2009 2004-2009 

Layer1 -4.74 0.82 21.49 

Layer2 -2.25 0.87 14.16 

Layer3 -0.29 0.79 14.60 

Layer5 3.43 0.89 7.64 

Madison, OH 1998-2003 1998-2003 1998-2003 

Layer1 -8.83 0.84 19.94 

Layer3 -3.85 0.82 10.40 

Layer6 0.25 0.88 6.42 

Mason, IL 1998-2002 1998-2002 1998-2002 

Layer1 -14.42 0.77 24.52 

Layer2 -4.77 0.64 14.33 

Layer5 0.93 0.50 7.85 
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Figure 2.9 Model performance in yield a) calibration and b) validation for: 1) Boone, 

IA, 2) Woodbury, IA, 3) Mason, IL 4) Madison, OH. Solid line indicates the simulated 

yield after following the crop yield calibration strategy (Figure 2.3). Dash line 

indicates simulated corn yields, if moisture calibration was skipped (hydrologic 

parameter adjustment in Figure 2.3). 

 

Table 2.8 Model performance in predicting corn yield in the four SCAN counties 

 Calibration Period Validation Period 

 N-RMSE(%) MBE(%) d N-RMSE(%) MBE(%) d 

Boone, IA 11.99 -3.81 0.09 12.07 -1.21 0.66 

Woodbury, IA 8.74 -5.82 0.92 7.64 -2.04 0.84 

Madison, OH 12.40 7.14 0.77 9.86 -4.41 0.76 

Mason, IL 6.26 -1.61 0.78 13.94 -4.80 0.75 
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Although for some specific years and plots, the model has trouble, SWAT still does a good 

job at predicting the annual yield amount and variation in the study area. Compared to 

previous yield modeling studies (Heng et al., 2009; Mkhabela and Bullock, 2012; Sun and 

Ren, 2013), the model overall performance is satisfactory. We also compare model 

performances with and without moisture calibration in Figure 2.9. We found that model 

performance in corn yield estimation is poor for all four sites if soil moisture evaluation is 

skipped. For Woodbury and Mason, the model has trouble capturing the interanuual 

variability in crop yield, while for Boone and Madison, the model either underestimates or 

overestimates crop yield. This indicates the importance of evaluating soil moisture in crop 

yield predictions.    

To check the performance of simulated daily biomass accumulation, model output from 

Boone, IA was compared with Singer’s observed data (Figure 2.10). They match very well, 

indicating a good model performance in simulating daily biomass accumulation at Boone, 

IA in 2005. Since daily biomass accumulation data is very limited, there is not enough 

available data to evaluate daily biomass simulation in other sites at other years.  
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Figure 2.10 Model performance in daily biomass accumulation in 2005 at Boone, IA. 

 

2.5.3 Role of climate variability on crop yield 

The relationship between the climate variability indices and annual crop yield are 

summarized in Tables 2.9 and 2.10. Yield versus drought/aeration stress for specific growth 

stages are plotted in Figure. 2.11 and 2.12. Statistically significant correlations between 

yield and drought stress intensity were found in early reproductive (silking to blister) and 

middle reproductive (dough, denting) periods. Person’s r is -0.38, -0.54 and -0.41 for 

silking and blister stage at Woodbury, IA, Mason, IL and Madison, OH, respectively. For 

Madison, OH, significant correlation (r=-0.48 and -0.43, respectively) between drought 

stress intensity and corn yield was also observed in the V12-V16 and dough -denting 

periods. Corn yield in both Woodbury and Madison is significantly correlated with drought 

stress intensity during the reproductive period (r=-0.37 and -0.55, respectively) Results 
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indicate that crops  are more sensitive to drought stress from V12 to denting stage than 

during other phenology stages, especially compared to the early vegetative period. Drought 

stress intensity in those stages could serve as a good indicator for crop yield.  

Table 2.9 Correlation coefficient (Pearson’s r) between corn yield and drought stress 

intensity for different growth stages 

 Boone, IA Woodbury, IA Mason, IL Madison, OH 

Planting , V4 0.25 0.33 -0.06 -0.11 

V6, V8, V10 0.32 -0.29 -0.03 -0.28 

V12, V14, V16 0.15 -0.28 -0.26 -0.48** 

Silking, Blister 0.11 -0.38** -0.54** -0.41** 

Dough, Denting -0.03 -0.28 -0.19 -0.43** 

Dented, Maturity 0.18 -0.02 0.01 -0.19 

Vegetative stage 0.19 0.07 0.06 -0.32 

Reproductive stage 0.22 -0.37** -0.22 -0.55** 

Whole growing period 0.20 -0.23 -0.15 -0.35 

** means significant correlation with p<0.05 

 

 

Table 2.10 Correlation coefficient (Pearson’s r) between corn yield and aeration stress 

intensity for different growth stages 

 Boone, IA Woodbury, IA Mason, IL Madison, OH 

Planting , V4 0.04 0.13 -0.29 0.19 

V6, V8, V10 0.22 0.21 0.38 0.30 

V12, V14, V16 0.08 0.17 0.39 -0.25 

Silking, Blister 0.15 -0.06 -0.09 0.03 

Dough, Denting 0.23 -0.03 -0.35 0.31 

Dented, Maturity -0.71** 0.18 0.02 -0.07 

Vegetative stage 0.23 0.38 0.27 0.26 

Reproductive stage -0.72** 0.02 -0.22 0.21 

Whole growing period -0.72** 0.27 -0.02 0.34 

** means significant correlation with p<0.05 
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Reproductive organs are formed in the late vegetative period (V12 – V16). Any drought 

stress in this period will negatively affect ear formation and tassel emergence. Pollination 

and fertilization happen in the early reproductive period (silking and blister). Success 

during this stage of development is critical to the final harvest in fall. In contrast, 

environmental stress occurring in this period can easily abort kernels and in turn reduce 

crop yield. Kernel abortion in dough and denting stage is not as common as at blister stage, 

but stress can still continue to reduce kernel weight and finally results in yield reduction 

(Nielsen, 2008). Therefore, our representation of drought stress is consistent with real 

conditions.  

 

Figure 2.11 Relationship of corn yields with drought stress intensity in silking-blister 

period at a) Boone, IA;  b) Woodbury, IA; c) Madison, OH; d) Mason, IL. 
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Compared to drought stress, no clear relationship was detected between aeration stress and 

yield.  The significant relationship (r=-0.72) in the reproductive period at Boone, IA is 

caused by one outlier (Figure 2.12a). Although yield reduction due to increasing of aeration 

stress is expected, the county-level statistics do not show this. The impact of aeration stress 

on yield may be more easily found at plot scale, but is masked by other fields when yield 

information is at the county level. More detailed explanation on aeration stress impacts on 

yield are addressed in the discussion section.  

 

Figure 2.12 Relationship of corn yields with aeration stress intensity in reproductive 

period at a) Boone, IA; b) Woodbury, IA; c) Madison, OH; d) Mason, IL. 
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2.5.4 Long term crop yield reduction due to climate stress 

Figure 2.13 reflects the relative crop yield reduction due to individual stresses (either 

drought or aeration stress) based on 70 years data. The relative yield reduction based on 

observed data is also shown in the same figure, which is higher than the simulated yield 

reduction by either individual stress. Under natural conditions yield reduction is caused by 

the interaction of many factors including water availability but also nutrient deficiency, 

temperature, disease, pest infestation and weed problems, so it is not surprising that the 

relative yield reduction based on observed data is the highest among the three.  

 

Figure 2.13 Relative crop yield reduction due to drought stress or aeration stress. 

Relative yield reduction is calculated by eq. (2.9), which is shown on the y-axis. 

Recurrence probability which is represented as “return period” associated with the 

amount of yield reduction is shown in the x-axis. Red diamonds and blue dots 

represent the relative yield reduction caused by drought and aeration stress. Black 

triangles are relative yield reduction of observed data.    
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In all four sites, yield reduction caused by drought stress is much higher than aeration stress, 

especially for long return periods. For a 100 year return period, the relative yield reduction 

caused by drought stress ranges from 30% to 50%, however the biggest yield reduction 

caused by aeration stress is still less than 30%. Compared to the relative yield reduction 

due to drought stress, aeration stress causes relatively stable yield reductions, ranging from 

0 to 20% in all return periods. The yield reduction in Boone, IA caused by aeration stress 

is always close to zero, due to the simulation of subsurface drainage conditions at this site.  

Under natural conditions, the yield reduction is most likely higher than zero for long return 

periods.  Generally speaking, compared to aeration stress, drought stress is still the 

dominant factor impairing crop yield in the historical period.  

 

2.6 Discussion 

Although overall the model successfully reflects the annual yield amount and interannual 

variability in crop yield, there are still some sites and years for which the model did not 

capture yield very well. For instance, in Madison, OH, the model underestimates corn yield 

by around 2 t/ha in 1993, 1994 and 2005, but for the year 2010, higher yields are predicted 

by the model (Figure 2.9-4b). A similar situation happens in Boone, IA where SWAT 

estimates of yield are higher in 2010 than 2004, while detrended NASS observed data 

indicates the reverse.  

Madison, OH experienced a severe drought in 2005.  In addition to the drought stress 

parameters c1 and c2, HImin is also used to adjust yield. Therefore, yield reduction by 
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drought is considered by the model twice, which may lead to underestimation of corn yield. 

For 1993 and 1994 in Mason, IL, even when all stresses are turned off, the model potential 

yield is 6.3 and 8.3 t/ha, which is still below the detrended NASS yield. Therefore, yield 

underestimation in these two years is not caused by inappropriate stress functions. Though 

adjusting growth parameters may increase yields in 1993 and 1994, this would lead to bias 

in the simulated mean yield amount.  

Warm daily minimum temperatures between silking and denting in 2010 might be 

responsible for the low yield observed in Boone, IA (Elmore, 2010). Since heat stress in 

SWAT is a function of daily mean temperature, such an impact cannot be clearly reflected 

in the simulation, which overestimates yield. 

Besides those specific reasons mentioned above, yield inconsistency can be attributed to 

two other aspects: 1) missing site precipitation data and 2) upscaling from field to county 

level for yield comparisons. The most extreme over/underestimation years occurred during 

the yield validation period, when site recorded meteorological data was not available. Since 

crop yield is first modelled at the plot scale, any site missing direct local climate 

observations has increased uncertainty in the final simulation result. The nearest NOAA 

weather station is 14.3 km and 8.7 km away from the SCAN plots in Mason, IL and 

Madison, OH respectively. For Mason, IL, even in the calibration period, only one year’s 

site climate record is available, which also explains why model performance in this site is 

relatively poorer than Woodbury and Madison. For yield comparison purposes, plot 

simulated yield was upscaled to county level considering soil varieties across the county. 

In the upscaling method, the same calibration offset (𝑌𝑝𝑙𝑜𝑡
𝑐𝑎𝑙𝑖 - 𝑌𝑝𝑙𝑜𝑡

𝑑𝑒𝑓
) was added for different 
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soils across the county. However, due to the differences in soil properties, the calibration 

influence for different soils may diverge from each other. Due to the lack of data, it is hard 

to refute or prove this assumption.  

Model performance at Boone, IA is the poorest among all four sites (Table 2.8). First, the 

model has trouble capturing the yield trend in the calibration period. Secondly, it 

overestimates yield in the validation period, by as much as 3 t/ha in 1993 (Figure 2.9). 

There are a couple of possible explanations for this difference. 1) SWAT is unable to handle 

extreme flooding situations well. Flooding is different from aeration stress because it may 

kill plants instead of reducing biomass. Other effects caused by flooding, such as leafy 

tassel (crazy top), ear rot and premature kernel sprouting are not considered in SWAT. The 

year 1993 is recorded as having experienced extreme flooding in Boone, IA (Iowa flood 

recovery coordination team, 1994). In addition, SWAT cannot represent the effects of 

flooding caused by neighboring streams (Srinivasan et al., 2010).  

In addition, the model may poorly represent the soil moisture of the drained field. The soil 

used in plot simulation is not arable without the installation of subsurface drainage due to 

the saturation of the deeper monitored soil layers. Although tile drainage was introduced 

into the simulation to more accurately reflect soil conditions experienced by crops, no 

observational data was available to evaluate the simulated condition. Inappropriate tile 

drainage parameters will affect the sensitivity of the crop to aeration. For this application 

we used typical values for subsurface drainage (Ddrain=1200 mm, Tdrain=52 hr, 

Gdrain=25 hr) as recommended by Du et al., (2005). Additionally, tile drainage can affect 
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soil properties, though not significantly (Jia et al., 2008), introducing additional uncertainty 

into our simulations for the site.   

Compared to drought stress intensity, no significant relationships were found between 

simulated aeration stress and observed crop yield at any evaluated phenology stage. Since 

aeration stress is more localized within the field rather than at the county scale, when 

investigating the relationship between aeration stress and yield, it is more likely to be 

identified when tested against field collected yield data, which was not available for this 

analysis. Additionally, if the soil is too wet for planting in the spring, farmers may delay 

planting, replant, change to faster maturing hybrids, or switch fields from corn to soybeans 

that need fewer days to mature. For example, Dohleman and Long (2009) found that in 

2008, the corn planting date was delayed until June 18th compared to May 11th, 2007 in 

Urbana, IL due to very wet soil, and farmers changed hybrid from PI CV 34H35 to Dekalb 

61-69. No significant difference was found in final corn biomass production (18.4 vs. 19.2 

t/ha).  Such hybrid change is not considered in the model simulations. In the simulations 

presented here, planting date is assigned by heat unit, so simulated planting date only 

considers temperature but not soil moisture. Therefore, the model may underestimate 

simulated yield under wet conditions and the aeration stress function alone may be 

insufficient to capture the impact of wet conditions on corn production. 

Finally, although it has been established that the sensitivity of yield to stress is different for 

different growth stages, the same drought/aeration stress transformation algorithm is used. 

In other words, instead of using the same stress transformation function for all stages, it is 

better to use a steeper s-curve in critical/susceptible periods to intensify stress, while using 
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a mild transformation in other stages. In this study, yield calibration does not consider 

susceptibility. Furthermore, “crop death” is not considered in the simulation process. “Crop 

death” never happens, even under extreme stress (flooding year 1993 in Boone, IA). Plants 

can always recover until the date of harvest.   

 

2.7 Summary and conclusions 

In this study, the SWAT model was used to explore the relationship between climate 

variability and crop yield at four sites in the Midwestern USA. Soil moisture was first 

calibrated at plot scale. The calibrated model was used to extend the observational records 

between 1991 and 2010 to better capture the effect of climate variability on crop yields.  

The relative yield reduction in a longer period (1941-2010) due to individual stresses was 

also explored.   

After appropriate parameter calibration, SWAT is capable of reproducing observed soil 

water content at different depths in all study sites, even when the site is faced with a serious 

excess water problem (Boone, IA). Mason, IL has the poorest model performance, which 

is due to the missing of site precipitation. Overall, absolute values of mass balance error 

(MBE) are less than 10%, d-statistics are greater than 0.6, N-RMSE<25%, for most soil 

layers at most sites, indicating a decent model performance in soil moisture estimation.  

Before calibrating crop yield in the study area, the fraction of heat units was adjusted to 

ensure that the timing of important management practices (planting and harvest) and 

maturity dates are consistent with NASS crop progress data. After this management timing 



60 

 

6
0
 

parameterization, the crop growth period is more reasonable, especially for maturity date, 

which was too early before adjustment for all four sites. This step is also the prerequisite 

to clearly define important phenology stages in the study area. Drought and aeration stress 

parameters (b1, b2, c1, c2) accompanied with other traditional biophysical parameters 

(HIopt, RUE, HImin) were used to adjust site crop yield, which was then upscaled to county 

level. The model did a good job capturing the average crop yield for all study areas. Annual 

yield variation is also successfully reflected in Woodbury, IA, Mason, IL, and Madison, 

OH. The difference in simulated yield before and after soil moisture calibration highlights 

the importance of considering both hydrological parameters and crop growth parameters 

in the yield calibration process. 

Based on this work, we can conclude the following:  

1. Annual yield is inversely correlated with drought stress intensity in the early and middle 

reproductive stage in most sites (Woodbury, Mason and Madison), indicating that early 

and middle reproductive periods are more critical than other stages. Reproductive organs 

are formed in the late vegetative stage, while pollination and fertilization happen in the 

reproductive period, making the crop more susceptible in those stages.  

2. There is no significant relationship between crop yield and aeration stress at any of the 

four sites. This might be due to the different impact of aeration stress with respect to spatial 

scales, as well as the low frequency of events in the historical record. The impact of aeration 

stress on crop yield reduction may be more easily found at plot scale, and may be mitigated 

by delayed planting, replanting or replacement of hybrid.  
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3. Observed yield reductions vary between about 20% for 2 year return periods to 50-80% 

for 100 year return periods. The relative yield reduction of observed data is caused by the 

interaction of nutrient deficiency, moisture and temperature conditions, diseases, pest and 

weed problems, which should be higher than any individual stress. Analysis of long term 

simulated yield reduction indicates that drought stress is the dominant factor affecting yield 

in the historical period when compared with aeration stress both at short and long return 

periods (high/low probability of exceedance). For a 70 year return period, total yield 

reduction due to drought stress is 8.1%, 17.5%, 15.2% and 9.7%, respectively, for Boone, 

Woodbury, Madison and Mason.  
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CHAPTER 3. CORN RESPONSES TO CLIMATE STRESS DETECTED WITH 

SATELLITE-BASED NDVI TIME SERIES 

3.1 Abstract 

Corn growth conditions and yield are closely dependent on climate variability. Leaf growth, 

measured as the leaf area index, can be used to identify changes in crop growth in response 

to climate stress. This research was conducted to capture patterns of spatial and temporal 

corn leaf growth under climate stress for the St. Joseph River watershed, in northeastern 

Indiana. Leaf growth is represented by the Normalized Difference Vegetative Index (NDVI) 

retrieved from multiple years (2000-2010) of Landsat 5 TM images. By comparing NDVI 

values for individual image dates with the derived normal curve, the response of crop 

growth to environmental factors is quantified as NDVI residuals. Regression analysis 

revealed a significant relationship between yield and NDVI residual during the pre-silking 

period, indicating that NDVI residuals reflect crop stress in the early growing period that 

impacts yield. Both the mean NDVI residuals and the percentage of image pixels where 

corn was under stress (risky pixel rate) are significantly correlated with water stress. Dry 

weather is prone to hamper potential crop growth, with stress affecting most of the 

observed corn pixels in the area. Oversupply of rainfall at the end of the growing season 

was not found to have a measurable effect on crop growth, while above normal 

precipitation earlier in the growing season reduces the risk of yield loss at the watershed  
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scale. The spatial extent of stress is much lower when precipitation is above normal than 

under dry conditions, masking the impact of small areas of yield loss at the watershed scale 

 

3.2 Introduction 

Crop yield in the US Corn Belt is strongly affected by climate variability, primarily through 

the influence of climate on water availability as soil moisture. The summer warming trend 

from 1891 to 1936 adversely affected crop yields, while a cooling trend accompanied by 

increased summer rainfall decreased variability in yield and accounted for a 20% increase 

in yield from 1936 to 1972 (Thompson, 1988). Crop yields during the period of 1980–2007 

were strongly correlated with the occurrence of meteorological drought and maximum 

daily temperature during the grain filling and reproductive growth period (Llano et al., 

2012; Mishra and Cherkauer, 2010). Soil moisture that is either higher or lower than normal 

conditions can cause crop water stresses, which are harmful for crop growth over shorter 

spatial and temporal scales. 

Despite clear evidence that soil moisture conditions cause billions of dollars of crop loss 

per year, the impact of water stress on crop growth is difficult to quantify.  In part this is 

because the extreme events that cause yield loss are by definition infrequent in nature.  

Field-scale studies designed to investigate the impact of water stress must use artificial 

manipulation of moisture conditions (Kang et al., 1998; Saseendran et al., 2015) or they 

will far exceed the typical lifetime of a research grant. The available regional datasets are 

too coarse in spatial resolution. For example, the USDA National Agricultural Statistics 
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Service’s (NASS) Crop Progress and Condition data is compiled at the state or sub-state 

level. Such datasets can capture the effects of region-wide environmental impacts such as 

drought, but events that are frequent at small scales (i.e. flooding in the field low spot) are 

particularly hard to detect due to the coarse nature of the datasets. 

Corn phenology, the timing of corn growth and development each year, is weather and 

hybrid specific. For the same corn hybrid under similar management practices, growth 

conditions are strongly related with climate variability. When the hydroclimate is suitable, 

corn develops well and has higher yield potential, but when faced with biophysical stresses 

related to climate extremes many aspects of crop development can be affected. 

Observations related to the spatial variability in crop development can give insights into 

crop response to hydroclimate factors because of the spatial variability in soil water 

conditions, reducing the need for multi-year studies.  

Analyzing corn phenology using remotely sensed satellite image provides an opportunity 

to investigate the linkage between the spatial variability in crop development and water 

stresses. Satellite data are increasingly used to monitor agricultural fields (Liu et al., 2012; 

Bhattarai et al., 2015) and can provide a powerful tool to record phenological trends and 

detect the effect of climate variability. Compared to hand-held optical sensors, satellite 

images offer a valuable perspective at the field-scale instead of individual plants, revealing 

regional crop conditions that are difficult to detect from limited ground measurements. On 

the other hand, compared to coarse state level crop statistical reports, remote sensing 

imagery reveals substantially more about the spatial variability of corn development within 

a region. An additional benefit of satellite imagery is that data can be collected and 
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processed in a repeatable and non-biased method. Additionally, spatial information, such 

as soil moisture from satellite images, can also be merged into crop modeling studies for 

improving regional crop yield forecasts (Ines et al., 2013; De Wit et al., 2007).  

Interest in studying crop phenology using satellite data has been growing in recent research 

(You et al., 2013). Crops exhibit different features as they develop, many of these features 

are distinguishable from remote sensing imagery. For example, the area of green leaves 

associated with a plant strongly absorbs wavelengths of visible (red) light while reflecting 

near-infrared wavelengths (Knipling, 1970). The ratio of absorption to reflectance also 

varies from the early growing season through to maturity and senescence. Such changes in 

spectral properties are the theoretical basis for relating reflected radiation from satellite 

images to crop growth (Nguy-Robertson, et al., 2012). Vegetation indices are more widely 

used than direct light reflectance in remote sensing algorithms for monitoring crop 

characteristics (Hatfield and Prueger, 2010; Huang et al., 2012) because of their simplicity 

and the ease of data processing. A vegetation index is an indicator that describes a visible 

characteristic, for example, the greenness of a plant, which is correlated with the health of 

the vegetation. One widely used vegetation index is the Normalized Difference Vegetative 

Index (NDVI), which has been related to nitrogen status and chlorophyll content at micro 

scale and biomass, leaf area and grain yield at macro scale (Shanahan et al., 2003; Ma et 

al., 1996; Solari et al., 2008; Shnahan et al., 2001).  

NDVI generated from remote sensing can be used to estimate crop growth under various 

climate conditions, which in turn can be used to improve and evaluate crop models (Fang 

et al., 2011; Casa et al., 2012). Constructing time series of vegetation indices, such as NDVI, 



71 

 

7
1
 

from satellite imagery can also help in the development of region specific phenologies for 

multiple crop types while limiting the necessity of intensive field monitoring. By merging 

NDVI values for the same region over multiple years, researchers can also establish 

“normal” growing conditions in a region for a specific time of year. Then by studying 

significant deviations from this “normal” phenological curve within any year, changes to 

crop phenology due to climate stresses can be quantified.    

The overarching goal of this study is to evaluate variability in corn growth conditions and 

phenology both spatially and temporally in the St. Joseph River watershed, which is located 

in the Eastern Corn Belt, USA using an 11-year time series of Landsat 5 TM imagery. Corn 

growth conditions were identified using NDVI values from multiple years of satellite 

images, and linked with climate stresses and county level yield observations. By 

quantifying the variability in corn growth response in the presence of water stress, the 

phenologies extracted from the satellite data can be used to evaluate the ability of current 

generation crop growth models to represent plant responses to the more frequent 

occurrence of weather extremes under projections of climate change in the Corn Belt. 

3.3 Method 

3.3.1 Study Area 

The St. Joseph River watershed (Figure 3.1) with a drainage area of 2821 km2 is located in 

northeastern Indiana, northwestern Ohio and southeastern Michigan. This watershed spans 

portions of eight counties. Agricultural land, including row crops and pasture occupy 67% 

of the basin area. Rainfed agriculture is predominant in the region, and just 5% of the 
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cropland in the eight county area is irrigated (USDA-NASS, 2012).  Three NOAA weather 

stations recording daily air temperature and precipitation are located in Steuben, IN, 

Williams, OH and DeKalb, IN. The watershed is fully contained in a single Landsat 5 scene 

(path 21, row 31).   

 

Figure 3.1 Subset from the July 6th, 2008 Landsat TM5 image showing the St. Joseph 

River Watershed 
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3.3.2 Data 

3.3.2.1 Land cover and crop progress data 

The Cropland Data Layer (CDL) product is a raster-formatted, geo-referenced, crop-

specific, land cover map produced by the USDA National Agricultural Statistics Service 

(NASS).  The purpose of the CDL program is to use satellite imagery to provide acreage 

estimates of major crop commodities for each state (Boryan et al., 2011). The resolution 

for CDL products is 30 m, so the area of each pixel is 900 m2. The CDL is available for 

Indiana beginning from 1999, and for Ohio and Michigan from 2006 and 2007, respectively. 

The CDL products are used to identify corn pixels in the St. Joseph River watershed for 

each year of analysis.  These are in turn used to extract the spectral signature (NDVI) for 

corn only, which is the focus of this study.  

USDA/NASS releases basic phenological information for corn in weekly Crop Progress 

and Condition Reports at the state or agricultural statistic district level (USDA-NASS, 

2010). The latter is a sub-state region comprised of multiple counties. These reports show 

the percent of crop fields (by area) that have reached or completed a specific phenological 

stage (planted, emerged, silking, dough, dent, mature and harvested) each week during the 

growing season. The weekly progress reports were used to identify the range and median 

in growing season length in the Northwest District of Indiana using the dates for corn 

planting and harvesting each year.  Ohio and Michigan do not report district level crop 

progress data, so information from those states were not used for defining the growing 

season.  



74 

 

7
4
 

3.3.2.2 Remote Sensing observations 

Eleven years of Landsat-5 Thematic Mapper (TM) images (Path 21, Row 31) were 

downloaded from the USGS EarthExplorer (http://earthexplorer.usgs.gov/, latest access 

date is 2015-5-17) for the duration of the CDL data in the St. Joseph River watershed 

(2000-2010). The resolution of the Landsat 5 TM image pixel is 30 m by 30m.The Landsat 

satellite collects images for the same location every 16 days, so there are approximately 10 

images spanning the corn growing season each year. Only images with cloud coverage less 

than 60% were kept for analysis.  Table 3.1 lists the 63 Landsat 5 TM images used for this 

analysis with their acquisition dates and cloud coverage.  

 

3.3.3 Data Processing 

The NDVI is developed from two important wave bands: the red and near infrared, and has 

been widely used for agricultural mapping and yield monitoring (Bolton and Friedl, 2013; 

Rasmussen, 1992; Mkhabela et al., 2011; Johnson 2014; Chipanshi et al., 2015).  The 

NDVI is calculated as:  

 𝑁𝐷𝑉𝐼 =
(𝑅𝑁𝐼𝑅 − 𝑅𝑟𝑒𝑑)

(𝑅𝑁𝐼𝑅 + 𝑅𝑟𝑒𝑑)⁄  (3.1) 

Where Rnir is the reflectance in the near infrared spectrum, and Rred is the reflectance in the 

red band spectrum. Values of NDVI range from 1.0 to -1.0 (Crippen, 1990). Barren land, 

sand or snow usually present very low NDVI values (for example, less than 0.1). Sparse 

vegetation such as shrubs and grassland or senescing crops may result in moderate NDVI 
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values (approximately 0.2 to 0.5). High NDVI values (approximately 0.6 to 0.9) correspond 

to dense vegetation such as that found in temperate and tropical forests or crops at their 

peak growth stage.  Since the NDVI shows a close relation to canopy chlorophyll content, 

it can also be used to estimate Leaf Area Index (LAI) (Broge and Leblanc, 2001; Gitelson 

et al., 2003), which is an important vegetation biophysical characteristic. 
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Table 3.1 Selected Landsat TM5 images during the growing season, path 21, row 31 

Year Date 

Day 

of 

year 

Cloud 

Coverage 

(%) Year Date 

Day 

of 

Year 

Cloud 

Coverage 

(%) 

2000 

27-Apr* 118 0 

2005 

Apr-9* 99 0 

13-May 134 0 27-May 147 23 

29-May 150 0 30-Jul 211 19 

14-Jun 166 30 18-Oct 291 0 

30-Jun 182 10 

2006 

Apr-28* 118 0 

2-Sep 246 20 15-Jun 166 7 

18-Sep 262 0 1-Jul 182 21 

20-Oct 294 0 17-Jul 198 0 

2001 

30-Apr* 120 0 2-Aug 214 1 

17-Jun 168 0 5-Oct 278 12 

4-Aug 216 0 

2007 

Apr-15* 105 0 

20-Aug 232 10 May-1* 121 49 

5-Sep 248 0 18-Jun 169 4 

7-Oct 280 10 20-Jul 201 0 

2002 

May-3* 123 0 22-Sep 265 0 

20-Jun 171 0 

2008 

May-3* 124 22 

6-Jul 187 0 20-Jun 172 37 

22-Jul 203 30 6-Jul 188 2 

7-Aug 219 0 23-Aug 236 10 

8-Sep 251 0 24-Sep 268 0 

24-Sep 267 0 10-Oct 284 0 

2003 

6-May 126 30 

2009 

Apr-4* 94 13 

22-May 142 0 

May-

22* 142 17 

23-Jun 174 0 23-Jun 174 3 

25-Jul 206 3 9-Jul 190 7 

11-Sep 254 0 11-Sep 254 5 

27-Sep 270 14 

2010 

9-May 129 13 

13-Oct 286 0 10-Jun 161 0 

2004 

   Jun-26 177 23 

8-May 129 60 29-Aug 241 3 

25-Jun 177 22 Sep-14 257 0 

13-Sep 257 4 30-Sep 273 10 

* Image date is earlier than the NASS recorded date for 50% of planting completed. 
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NDVI values also change during the plant growing cycle. During development from 

planting to physiological maturity, corn experiences several growth stages. These stages 

are separated into two groups: vegetative and reproductive periods. The vegetative period 

covers the timing from planting to the stage when the entire tassel is visible (the visible 

tassel or VT period) and leaves are fully developed. The reproductive period starts from 

the silking stage and ends at physiological maturity. For a single plant, the growth rate is 

slow at the beginning of the vegetative period, but increases when new leaves appear. It 

reaches the maximum canopy coverage in the early reproductive period. Corn NDVI values 

roughly follow the same trend, where the peak NDVI value is often observed during the 

silking period. Natural senescence usually begins at the end of the denting period; NDVI 

values decrease from the beginning of natural senescence to maturity.   

 

3.3.3.1 NDVI calculation for corn pixels 

The first step for computing NDVI values for corn pixels is to remove non-clear land pixels 

for all Landsat TM5 images. The object-based cloud and cloud shadow detection software 

Fmask (Zhu and Woodcork, 2012) was utilized to identify cloud, shadow and unobstructed 

land surface pixels. Digital Number values from the visible and near-infrared bands in the 

raw Landsat 5 TM imagery are first converted to Top of Atmosphere (TOA) reflectance, 

while the thermal band is converted to Brightness Temperature (BT) using the Landsat 

Ecosystem Disturbance Adaptive Processing System (LEDAPS; Masek et al., 2006). The 

TOA reflectance and BT (in degrees Celsius) are used as Fmask input. Decision rules based 

on cloud and cloud shadow physical properties (brightness and temperature) are then used 
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to extract a potential cloud/shadow layer. Cloud potential layers are improved by 

eliminating edge cells.  Then the base and top height of clouds are computed and used to 

calculate projected shadows. Shadow detection is refined via a shape similarity comparison, 

where geometric relationships are used to match the potential cloud shadow with the cloud. 

Clearly visible land pixels are identified by Fmask as those with data that are not covered 

by cloud, cloud shadow or snow. Pixels used for the analysis are further screened to make 

sure that they are clearly visible for every Landsat image for a specific year by merging the 

Fmask products for all TM images in each year. As corn is not grown consistently on the 

same fields on a year-to-year basis (as defined by local crop rotation practices), the pixels 

selected for analysis did vary between years. 

The final outputs of Fmask are clear land pixels for all TM5 images in each year. Quick 

Atmospheric Correction (QUAC) from Exelis ENVI was used to remove the effects of the 

atmosphere on the reflectance values of all clear land pixels. QUAC determines 

atmospheric correction parameters using an in-scene approach without ancillary 

information, requiring only specification of sensor band locations and their radiometric 

calibration (Bernstein et al., 2005). The final product for NDVI calculation after running 

QUAC was reflectance from all clear land surface pixels.  

NDVI for all land pixels was calculated based on the atmospherically corrected reflectance 

of band 3 (red, 630-690 nm) and band 4 (near infrared, 760-900 nm). Pixels identified as 

corn in each CDL data layer from 2000 to 2010 are used to extract the corn NDVI values 

for pixels within 15 km of the St. Joseph River watershed.  The purpose of extending the 

selection area to include areas outside the watershed is to enlarge the sample size for corn 
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pixels. It is assumed that growing conditions within the 15 km buffer are similar to the ones 

inside the watershed boundary. 

Three additional filters are applied to further refine the selection of corn pixels identified 

by the CDL data, to minimize the potential for mixed pixels and registration errors that can 

introduce noise into the data. The first filter improves the identification of pure corn pixels 

by removing any pixel that had more than one non-corn neighbor.  These are assumed to 

be edge-of-field pixels with a greater likelihood of being mixed. The second filter checks 

for a minimum amount of change in NDVI between planting and silking when NDVI 

should peak., Here the median NDVI value for all corn pixels was calculated for all images 

for a year, and the image with the peak median NDVI (near silking stage) and minimum 

NDVI (near planting) were identified. The difference between median NDVI for those two 

images was set as a threshold.  Any pixel with maximum NDVI range less than that 

threshold over all images in the year was excluded. The final filter checks that NDVI 

increased monotonically from planting date to peak NDVI stage, then decreased 

monotonically from peak stage to maturity stage. Due to the limited availability of images 

each year, the maximum NDVI value calculated from the Landsat images may not always 

be the peak NDVI for that year. It is possible to have a non-monotonic change for valid 

pixels if the peak growth period is missed due to the lack of available imagery. Therefore, 

the monotonic check is applied for images between the latest planting date and earliest 

silking date, and images between the latest silking date and earliest maturity date, where 

these dates have been extracted from the USDA NASS Crop Progress Reports (Table 3.2).  
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Since 2004 had only three available images, the third filter was not applied. Figure 2 

illustrates the impacts on NDVI after each of these filters. 

 

Figure 3.2 Boxplot for corn NDVI values in 2003: (a) original data for all corn pixels 

within the region,  (b) after applying the first filter: edge-of-field pixels are removed, 

(c) after applying filter 2: pixels without sufficient seasonal variation are removed, 

and (d) after applying filter 3: between images from May-22 and Jun-23. Pixels with 

decreasing NDVI values between the two dates were removed. The third filter was 

also applied between images from Jul-25 and Sep-11. Pixels with increasing NDVI 

values between two dates were removed. 
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Table 3.2 NASS corn progress dates for the St. Joseph River Basin 

Crop  

Status 
Year 

Day of Year 

Status Begin 

Day of 

Year Status 

End 

50% 

progress 

status 

Planted 

2000 107 156 127 

2001 105 147 124 

2002 111 167 145 

2003 110 159 122 

2004 109 151 119 

2005 100 142 122 

2006 106 155 123 

2007 112 147 130 

2008 118 167 130 

2009 123 165 143 

2010 106 155 126 

Silked 

2000 184 219 200 

2001 196 217 201 

2002 195 223 206 

2003 194 229 207 

2004 179 221 192 

2005 191 219 199 

2006 190 218 199 

2007 189 217 197 

2008 195 230 205 

2009 193 228 208 

2010 183 218 199 

Matured 

2000 240 282 263 

2001 238 287 263 

2002 244 286 268 

2003 250 285 273 

2004 242 291 262 

2005 233 289 263 

2006 239 288 267 

2007 245 287 263 

2008 251 300 265 

2009 256 312 286 

2010 239 281 262 
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3.3.3.2 Normal curve generalization and NDVI residual calculation 

Since corn phenology is more correlated with air temperature (or heat units) than Julian 

days since planting, development varies from year to year with respect to date (Abendroth 

et al. 2011).  Therefore, the extracted NDVI data are associated with the Potential Heat 

Units (PHU) and Growing Degree Days (GDD) accumulated from the planting date to the 

date of image acquisition. PHU and GDD are both used as measures of the growth and 

development of plants based on daily average temperature. PHU is calculated based on 

degrees Centigrade, while GDD is based on degrees Fahrenheit. Development does not 

occur unless the daily average temperature is above a base temperature (lower limit). 

PHU/GDD start to accumulate from the planting date to the date of physical maturity for 

the plant as long as temperature is above the lower limit. The lower limit for corn is set as 

8 ˚C (Kiniry et al., 1995). The GDD method also has an upper limit, which is set to 86 

˚F/30 ˚C (Nield and Newman, 1990), representing temperature above which the crop is too 

stressed to continue development towards maturity. Such a limit does not exist with the 

PHU.  

A generalized corn NDVI growth curve is obtained using a robust version of LOESS 

(locally-weighted scatter plot smoothing; Cleveland, 1979) applied to median NDVI values 

from all 11 years’ images plotted versus PHU and GDD.  Due to data scarcity (3-7 images 

per year) and the timing difference of images, it is hard to describe the corn NDVI 

dynamics for specific growth periods using just one year’s data. Therefore, all years of data 

are combined to create a general, regional corn growth curve. In this way, missing 

information for a specific period in one year can be compensated by other years. The 
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generalized NDVI curve via local regression method reflects the corn growth dynamics 

under “normal conditions” for 11 years. The differences between measured NDVI and the 

derived normal curve, the residual or “discrepancy score” (Sakamoto et al., 2011), can be 

treated as an index to reflect the influence of biophysical stresses on crop growth. If the 

residual has a negative value, corn development is below normal so can be assumed to have 

experienced more growth stress than in a normal year. The Sakamoto et al. (2011) 

“discrepancy score” was computed based on a rescaled shaped model from 7 years of 

continuous daily MODIS data and smoothed for each year. Therefore, their “discrepancy 

score” differs for each year, which is different from our image based residuals. By 

comparing the median NDVI for a specific image and the normal curve, we can roughly 

estimate basin level corn growth condition in a specific day. Interannual corn growth 

analysis can be conducted by averaging NDVI residuals based on satellite imagery.  To 

obtain the spatial growth variability, the departure rate can also be computed based on 

NDVI and the normal curve for each individual pixel.  

 

3.3.3.3 Growth stress metrics 

Actual crop growth is affected by various stresses occurring during the growing season, 

including those from extreme temperatures, oversupplied or limited water, insufficient 

nutrients, pest infestations, and weed competition.  Actual growth is therefore always less 

than or equal to the potential growth even under optimal conditions.  
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In this research, only crop growth stresses from extremes of temperature and water, based 

on the approach used in the Soil and Water Assessment Tool (SWAT) were calculated 

(Neitsch et al., 2009).  

Daily temperature stress (ts) is calculated as: 

𝑡𝑠 = 1                      𝑇𝑎𝑣 > 2 ∗ 𝑇𝑜𝑝𝑡 − 𝑇𝑏𝑎𝑠𝑒   𝑜𝑟   𝑇𝑎𝑣 ≤ 𝑇𝑏𝑎𝑠𝑒   (3.2) 

𝑡𝑠 = 1 − exp [
−0.1054∗(𝑇𝑜𝑝𝑡−𝑇𝑎𝑣)2

(𝑇𝑎𝑣−𝑇𝑏𝑎𝑠𝑒)2
]           𝑇𝑏𝑎𝑠𝑒 < 𝑇𝑎𝑣 < 𝑇𝑜𝑝𝑡   (3.3) 

𝑡𝑠 = 1 − exp [
−0.1054∗(𝑇𝑜𝑝𝑡−𝑇𝑎𝑣)2

(2∗𝑇𝑜𝑝𝑡−𝑇𝑎𝑣−𝑇𝑏𝑎𝑠𝑒)2]           𝑇𝑜𝑝𝑡 < 𝑇𝑎𝑣 < 2 ∗ 𝑇𝑜𝑝𝑡 − 𝑇𝑏𝑎𝑠𝑒 (3.4) 

Where Tav is the mean air temperature for day (oC), Tbase is the plant’s base or minimum 

temperature for growth (oC) (defined as 8 oC for corn), and Topt is the plant’s optimal 

temperature for growth (oC) (defined as 25 oC for corn).  

Accumulated temperature stresses normalized by the number of days or heat units are used 

to quantify the cumulative effect of temperature on crop growth. 

𝑡𝑠𝑎𝑐𝑐_𝑑𝑎𝑦 =
∑ 𝑡𝑠𝑛

𝑖

𝑛−𝑖
         (3.5) 

𝑡𝑠𝑎𝑐𝑐_𝑃𝐻𝑈 =
∑ 𝑡𝑠𝑛

𝑖

∑ 𝑃𝐻𝑈𝑛
𝑖=1

         (3.6) 

𝑡𝑠𝑎𝑐𝑐_𝐺𝐷𝐷 =
∑ 𝑡𝑠𝑛

𝑖

∑ 𝐺𝐷𝐷𝑛
𝑖=1

         (3.7) 

Where tsacc_day is the accumulated temperature stress normalized by the number of days 

from planting date i to image collection date n; ts is daily temperature stress; tsacc_PHU is the 
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accumulated temperature stress normalized by PHU; PHU is the accumulated heat units 

from day i to day n;  tsacc_GDD  is the accumulated temperature stress normalized by GDD; 

GDD  is the accumulated growing degree days from day i to day n. 

Water stress (ws) is computed based on the difference between average accumulated 

rainfall from long term historical data and accumulated rainfall for each year, as follows: 

𝑤𝑠 = ∑ 𝑝𝑖
𝑛
𝑖=1 − ∑ 𝑝�̅�

𝑛
𝑖=1         (3.8) 

where pi represents daily precipitation for a single year and 𝑝�̅�  is the daily normal 

precipitation for a 20 year period (1991-2010). ws is calculated by comparing the 

accumulation of precipitation from the average curve (∑ 𝑝)̅̅ ̅𝑛
𝑖=1  with that for the current year 

(∑ 𝑝𝑛
𝑖=1 ) relative to the planting date i for the year of interest, and can be calculated to any 

day n in that year. If ws is a negative value, it means the accumulated rainfall amount is 

below the average condition, so corn at that time may have suffered more from drought.  

On the other hand, if ws is a positive value, it indicates a wetter than average condition.  As 

shown in Figure 3.3, the cumulative rainfall curve for year 2002 is below the long term 

average curve, which results in negative ws values in this dry year. Positive ws values are 

found for the year 2003, indicating it was wetter than average. Year 2006 is normal year, 

because the accumulation of precipitation in 2006 is close to the long term average.  
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Figure 3.3 Cumulative rainfall comparison between long term average (1991-2010) 

and specific years. 

 

3.4 Results 

3.4.1 Normalized Difference Vegetative Index with Time 

Figure 3.4(a) illustrates the median growing season corn NDVI values for 11 years of 

images (2000-2010), and the 95% prediction interval of corn NDVI for each image. The 

median value of corn NDVI follows the expected phenology of the corn canopy. In the 

early growing period, as corn plants emerge, vegetation coverage per unit area is small, 

and the median NDVI value is low (0-0.2). As plants develop, the NDVI value grows 

rapidly (0.3-0.6) capturing the increase in leaf area as the growing plant spreads to cover 

the soil between the rows in the fields.  The NDVI value is proportional to the canopy 

coverage during this stage. Corn NDVI reaches a peak value (0.7-0.8) at the end of July or 

early August, at the stage when all leaves are fully developed. As plants enter the end of 
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the reproductive stages and natural senescence occurs, NDVI decreases significantly. The 

95% prediction interval highlights the 97.5 and 2.5 percentiles of NDVI values for 

available corn pixels in the St. Joseph watershed. This range is often small at the beginning 

of the growing season following planting, when the majority of fields are mostly bare and 

during the peak NDVI period when most fields have complete canopy closure. The range 

is much larger during the late vegetative growth stages and senescence, reflecting the large 

spatial variability during these periods of rapid change. 

 

Figure 3.4 (a) Median Normalized Difference Vegetative Index (NDVI) and (b) 

Coefficient of Variation (CV) from NDVI values in St. Joseph River watershed for 11 

years. 

 

Figure 3.4(b) shows the Coefficient of Variation (CV) of corn NDVI with time. Minimum 

CVs for each year are found in the middle of the growing season associated with the peak 
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NDVI value. This period appears to be the most uniform stage, when the corn canopy is 

fully developed and spatial differences due to different planting dates are less pronounced. 

Peak CVs are often encountered either at the early or late growing season. In the early 

growing season when corn is just emerging, soil reflectance dominates the NDVI 

measurement, causing a very low mean NDVI value (e.g. Year 2000, 2003 and 2010), and 

therefore a higher CV. Secondly, due to different planting dates, NDVI values show greater 

variance in late June (around 30-40 days after planting), leading to higher CV values (Year 

2001, 2008 and 2009). In the late growing season, as senescence occurs, the reflectance 

contains a wide range of green and non-green color intensities, also causing high CV values. 

Table 3.3 lists the date of the maximum NDVI variation for each year. Those dates are 

always found during either the leaf development stage or senescence period. This spatial 

variability in NDVI is illustrated in Figure 3.5 for De Kalb County in the year 2003. The 

spatial distribution pattern on June 23rd and September 27th appears more heterogeneous 

than on July 25th, when canopy coverage and leaf overlap were well-developed. 

Table 3.3 Date of maximum NDVI variation (range of the 95% prediction interval) 

for each year 

Date Days after planting 95% interval Median NDVI CV 

17-Sep-2000 133 0.4050 0.4938 0.2207 

16-Jun-2001 43 0.4565 0.2833 0.3868 

05-Jul-2002 41 0.3561 0.4934 0.1875 

26-Sep-2003 147 0.4677 0.5117 0.2605 

12-Sep-2004 136 0.5128 0.4591 0.2974 

17-Oct-2005 168 0.1535 0.2387 0.1937 

30-Jun-2006 58 0.3870 0.5906 0.1728 

21-Sep-2007 134 0.4343 0.4588 0.2368 

19-Jun-2008 40 0.5690 0.2665 0.5225 

22-Jun-2009 30 0.5841 0.2253 0.6017 

28-Aug-2010 114 0.5783 0.4930 0.3415 
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Figure 3.5 Spatial distribution of NDVI as observed from Landsat 5 TM imagery for 

De Kalb County, IN on the following dates in 2003: (a) May 22nd, NDVI mean=0.19, 

CV=0.16; (b) Jul 25th, NDVI mean=0.83, CV=0.02; (c) Sep 27th, NDVI mean=0.54, 

CV=0.20.   

 

3.4.2 Normal growth condition 

The generalized corn NDVI growth curve obtained from all 11 years’ images is shown in 

Figure 3.6. Since different planting dates each year may affect the starting point of the 

NDVI curve, the NASS recorded planting date (50th percentile value) is used as the starting 

point for each year’s analysis. In addition, different lengths of the growing season (number 

of days vary from 122 days in 2002 to 151 days in 2003 based on the 50th percentile of 
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NASS crop progress records) may make it difficult to identify NDVI values for a specific 

growing period defined by Julian days. Therefore, NDVI dynamics are also regressed 

against PHU and GDD accumulated from the planting date (Figure 3.6). Two outliers (see 

Figure 3.6) were removed when generating the normal growth curve. The first is from 2005 

imagery, and is removed because it associated with an extremely high PHU and GDD 

suggesting that it was collected well after crop maturity. The second one is from 2007 

imagery, and yields extremely high NDVI values at the very end of the growing season, 

suggesting the NDVI value at this time does not correctly represent the corn growth 

condition.  

The departure of image median NDVI values from the normal curve (NDVI residual) are 

calculated and plotted versus Julian days, PHU and GDD, respectively (Figure 3.7). For 

year 2002, most NDVI residuals are negative, indicating increased stress levels relative to 

the long-term average for almost the entire growing season, which can be attributed to the 

drought that occurred that year. For years 2008 and 2010, corn NDVI deviations are 

negative for the second half of the growing season, suggesting increased stress on crop 

growth in the later parts of the growing season. Years 2004, 2007 and 2009 all have positive 

residuals during the peak NDVI stage, indicating corn growth is above normal.  Residuals 

for the other years are small so NDVI values are close to the normal curve, indicating an 

average growth year. Corn response to year to year variability is reflected in these 

departures from the normal curve. Therefore, positive NDVI residuals do not necessarily 

mean the corn is not in any way stressed, but that its growth is above the normal condition 

based on the multiple year record.    
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Figure 3.6 Generation of normal NDVI curve based on 11 years data versus: (a) days 

after planting, (b) PHU, and (c) GDD. The normal curve is generated by smoothing 

NDVI using robust loess method, with a span of 40%. 
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Figure 3.7 Eleven year median NDVI values minus normal NDVI for the same: (a) 

number of days after planting, (b) PHU, and (c) GDD. 

 

The rank of the annual discrepancy score (average of the residual calculated for each image 

over a growing season) is summarized in Table 3.4. High rankings indicate positive 

residuals, meaning that the crop experienced higher NDVI than normal conditions, while 

low rankings indicate that crop experienced lower NDVI than normal conditions. Although 

there is some variation in ranks based on whether Julian days or heat units are used, the 
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relative positions in the rankings are quite consistent. For example, 2002 and 2008 are 

always the lowest ranked years, while 2009 and 2003 are more highly ranked regardless of 

the independent variable. The annual yield for 2002 and 2008 was 6.65 and 8.03 t/ha, which 

are around 1.5-3.0 t/ha lower than year 2003 and 2009 (9.51 and 9.48 t/ha respectively), 

confirming that corn in 2002 and 2008 may have experienced more growth stress, which 

negatively affected yield.  

 

Table 3.4 Rank of NDVI residual for each set of annual images. Rank 1 = best NDVIs, 

while Rank 11 = worst NDVIs. 

 Days PHU GDD Growing 

Season 

Rainfall 

amount 

(mm) 

Growing 

Season Mean 

Temperature 

(0C) 

Year Rank 
Discrep. 

Score 
Rank 

Discrep. 

Score 
Rank 

Discrep. 

Score 

2000 4 0.0171 6 0.0090 6 0.0041 482 19.6 

2001 6 -0.0019 4 0.0275 3 0.0301 460 19.9 

2002 11 -0.1086 11 -0.0797 11 -0.0667 390 20.2 

2003 3 0.0391 3 0.0407 2 0.0317 634 19.7 

2004 5 0.0100 7 0.0054 7 0.0034 445 19.9 

2005 8 -0.0183 5 0.0225 5 0.0262 287 21.6 

2006 9 -0.0399 9 0.0011 8 0.0026 384 20.8 

2007 2 0.1069 2 0.0480 4 0.0282 378 20.8 

2008 10 -0.0743 10 -0.0563 10 -0.0573 394 19.8 

2009 1 0.1134 1 0.0542 1 0.0450 490 18.0 

2010 7 -0.0028 8 0.0029 9 0.0008 358 19.7 

 

3.4.3 Yield-NDVI residual relationship 

Biophysical stress at different crop growth stages produces different magnitudes of 

influence on final yields (Kebede et al., 2014; Ge et al., 2012).  Therefore, the relationship 

between NDVI residuals averaged over various growth stages and county level corn yields 
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was investigated. Growth stages selected for analysis include:  1) The pre-silking period, 

where average NDVI residuals are calculated based on all available images from planting 

to the earliest silking date recorded by NASS data (Table 3.2). Average NDVI residuals 

during this period should reflect the corn growth condition during the corn vegetative 

period. Stress in this period reduces stem and leaf cell expansion resulting in lower plant 

height and less leaf area (Yang, 2009).  2) The pre-maturity period, where NDVI residuals 

are calculated based on available images from planting to the earliest maturity date 

recorded by NASS data. This period contains both the corn vegetative stage and the most 

important reproductive stages (silking, blister and dough) of the corn plant life cycle. Stress 

in the early and middle reproductive stages can abort kernels, reduce kernel weight, and 

increase lodging, and in turn impair final yield (Nielsen, 2008). 3) The silking period, 

where the NDVI residual are calculated for the image with the highest NDVI value for 

each year.  This image is typically found in the silking period, when the canopy is fully 

developed. Early season stresses affect leaf area development, leading to differences in 

maximum NDVI values for each year. The NDVI residual for this image is caused by 

accumulated stresses during the vegetative period, which could also affect final yield. 4) 

The whole growing period where average NDVI residuals are calculated based on all 

available images.  This is the same as the annual discrepancy score introduced previously.  

The relationship between these four NDVI residuals, calculated from the three different 

generalized growth curves, and annual yield are summarized in Table 3.5. No significant 

relationship was found (for significance level, alpha = 0.05) for any period if Julian day is 

used to generate the normal curve.  When PHU and GDD are used to generate the normal 
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growth curve, a significant relationship exists between NDVI residual and corn yield for 

the pre-silking, pre-maturity and entire growth periods. For the pre-silking period, a 

significant relationship (p<0.01) was detected between average NDVI residuals based on 

GDD and annual corn yield (Fig. 3.8). Average NDVI in the pre-maturity stage (p<0.05) 

and for the whole growing season (p<0.05) were also statistically significant predictors of 

annual yield. No significant relationship was found between the residual of the maximum 

NDVI image and annual crop yield, for any of the three normal growth curves. The 

relationship between annual basin level corn yield and NDVI residuals at different growing 

stages (GDD based) are also shown in Fig. 3.8. 

Table 3.5 Pearson correlation coefficient, r, between grain yield and average NDVI 

residuals for different growth stages 

 Day PHU GDD 

Mean NDVI departure for pre-

silking period images 
0.067  0.71*  0.76**  

Mean NDVI departure for pre-

maturity period images 
0.16  0.58  0.62*  

Mean NDVI departure for all 

images in the growing period 
0.50  0.68*  0.69*  

Departure for Highest NDVI 

point for each year 
0.28  0.36  0.36  

*means significant correlated when p<0.05, ** means significant correlated when p<0.01 

 

The correlation analysis summarized in Table 3.5 indicates that the NDVI residual derived 

from Landsat images reflects crop stress in the pre-silking period that in turn impacts final 

yield. This result is consistent with other studies that have found that NDVI from the 

middle to late vegetative period is significantly correlated with biomass and final yield 

(Martin et al., 2007; Teal et al., 2006).  Therefore, it may be possible to predict corn grain 
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yield in-season for this study area, by comparing pre-silking period NDVIs to long-term 

normal growth curves.  

 

Figure 3.8 The relationship between basin level corn yield and (a) mean NDVI 

residual for pre-silking period images; (b) mean NDVI residual for pre-maturity 

period images; (c) mean NDVI residual for all images in the growing period; (d) 

residual of the highest NDVI image for each year. Residuals are calculated based on 

GDD. 

 

3.4.4 Stress-NDVI residual relationship 

As stated in section 3.3, annual corn yield is significantly related to the annual, pre-silking 

and pre-maturity NDVI discrepancy scores. The relationship between NDVI discrepancy 

and precipitation and temperature stress metrics are investigated in this section.  The NDVI 

residuals calculated for all images in the 11-year period in section 3.2 are grouped into pre-
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silking period, pre-maturity period and whole growing period. However, the residuals in 

those periods are not averaged as they were for the yield-residual relation, but rather 

regressed with normalized stress indices (ws and tsacc) on the date of image acquisition. 

The relationship between NDVI residuals and water stress (ws) is shown in Figure 3.9. 

Large negative values of water stress (ws) represent dry conditions; positive ws represent 

wet conditions.  There are no strong correlations found in the data (Figure 3.9), but it 

appears that points can be grouped into several clusters. Image averages in Cluster A have 

both negative NDVI residual and water stress, which indicates that the weather is dry and 

crop growth is below normal. Cluster C has both positive NDVI residuals and water stress, 

so precipitation and crop growth are both above normal. Images in Cluster B represent 

normal weather and crop conditions.  Compared to Cluster B both cluster A and C have 

relatively larger absolute values (0.2-0.4) in NDVI residuals, indicating larger growth 

discrepancies (could be either under or above normal condition). When corn growth is way 

above or below normal, it is usually associated with extreme climate conditions. Images in 

cluster B do not have a clear relationship between water stress and NDVI residuals. Since 

crop growth can be affected by many environmental factors, for example, soil types and 

slopes, temperature, disease and pests, leaf growth in this cluster may not respond to water 

stress exclusively, but is influenced by other environmental factors. Figure 3.9(c) also has 

a fourth cluster, named Cluster D, that contains images collected from the end of the 

growing season (after middle September) in 2003.  Images in this cluster have very large 

positive ws values, but an unclear relationship between ws and NDVI residuals. This 

indicates that an oversupply of rainfall at the end of the growing season did not have a 
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substantial effect on crop development. NDVI residuals at that time are more strongly 

related to the natural senescence process than water stress.  

 

The relationship between NDVI residuals and normalized temperature stress indices (tsacc) 

are summarized in Table 3.6.  No statistically significant relationship (p<0.05) was found 

between temperature stress and NDVI residuals at any period based on either time units or 

heat units. This might be caused by the temperature stress calculation method. Compared 

to average daily temperature, daily maximum temperature is more associated with crop 

growth (Mishra and Cherkauer, 2010). Leaf development is significantly affected by 

temperature when it is associated with water limitation. A more mechanistic analysis is 

needed to evaluate interactions between temperature, precipitation and other factors as they 

determine evapotranspiration, which is more closely related to NDVI (Srivastava et al., 

1997) 

 



99 

 

9
9
 

 

Figure 3.9 Relationship between ws value and median image NDVI residuals at (a) 

Pre-silking period; (b) Pre-maturity period; (c) whole growing period. 
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Table 3.6 Pearson correlation coefficient, r, between stress indices and NDVI 

residuals for different growth stages 

  Day PHU GDD 

NDVI departure for pre-silking period images vs. 

Normalized accumulated temperature stresses 
-0.36 0.32 0.42 

NDVI departure  for pre-maturity period images vs. 

Normalized accumulated temperature stresses 
-0.18 0.32 0.35 

NDVI departure for all images  in growing period vs. 

Normalized accumulated temperature stresses 
0.07 0.27 0.27 

 

3.4.5 Risky pixel rate – stress relationship 

In section 3.3 and 3.4, the relationship between image median NDVI residual and crop 

yield and climate metrics was investigated. Since NDVI residual was computed based on 

the image median NDVI value, the analysis neglected the spatial variability in crop stress. 

In this section, more emphasis is put on individual pixels under stress. Any corn pixel with 

NDVI less than the normal growth curve (Figure 3.6) is considered to be under stress. The 

percentage of pixels under stress (risky pixel rate) for each image is computed, and related 

to water stress (Figure 3.10). 
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Figure 3.10 Relationship between water stress and risky pixel rate based on a) days, 

b) PHU, c) GDD. Red cross indicates the outlier at the very end of the growing season 

(Oct. 13th) in wet year 2003. 

Statistically significant relationships (p<0.05) are detected between water stress and risky 

pixel rates, no matter which method was used to produce the normal growth curve. 

Therefore, the number of pixels experiencing growth limitations is strongly correlated with 

water stress.  Based on Figure 3.10, images with risky pixel rates over 0.8 (80% of cells 

are under stress) have negative ws values, indicating drought condition is affecting crop 
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growth for most cells. Almost all images with low risky pixel rate (less than 0.2) are 

associated with positive ws values, so above average rainfall reduced the threat of yield 

loss (less area experienced yield reduction). This difference in area affected under wet and 

dry stress is illustrated by comparing two images from the pre-silking stage for a dry year 

(2002) and a wet year (2003) (Figure 3.11), which clearly reflects the different impacts of 

rainfall on risky cell rates. If rainfall is limited, then most cells are under stress (Figure 

3.11(a)). However, if rainfall is above average, only a small portion of cells are under stress 

(Figure 3.11(b)).  This reflects the collection of runoff and ponding in depressional areas 

that may experience catastrophic yield loss, as opposed to the depressed growth over 

widespread areas in the case of water limitations.  

 

Figure 3.11 Spatial distribution of corn pixels identified as being under stress and 

experiencing no stress (using the GDD based normal curve) in De Kalb county: (a) 

2002 dry year, and (b) 2003 wet year. 



103 

 

1
0
3
 

For wet years, although fewer cells are affected by stress (risky pixel rate < 0.2), the 

potential yield loss in those cells with high stress rates could be huge. This is investigated 

using NDVI residuals that can represent potential yield, and ws, for risky cells (negative 

NDVI residuals) only when the risky pixel rate is less than 0.2, and ws>0 (Figure 3.12). 

Though there is no clear relationship between ws and the NDVI residuals, in Figure 

3.12(a), we found that very large ws values (ws > 200 mm, both found in 2003) are 

always associated with large negative NDVI residuals, indicating potential yield loss in 

those cells. The overall yield in 2003 for the study area was the 3rd highest in the 11 year 

period (2000-2010), which means that yield losses in those few cells where water stress 

was high are compensated by increased yield in other cells that benefitted from sufficient 

rainfall.    
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Figure 3.12 Relationship between ws value and NDVI residual based on (a) number 

of days after planting, (b) PHU, (c) GDD for risky cells when risky pixel rate is below 

0.2. 

 

3.5 Discussion 

The information obtained from this study can be applied to three outcomes: 1) quantifying 

plant growth and environmental stress time series, which can be used to validate and 
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constrain crop growth models, 2) improving early in-season yield prediction, and 3) 

identifying areas, which have the potential risk to obtain lower yields.  

NDVI time series can provide important information for crop modeling studies by 

providing an additional, sub-annual time series for evaluating models. NDVI residuals can 

serve as the observed data to evaluate simulated leaf development responses to climate 

stresses.  In most dynamic crop models, biomass and final yield are a function of the daily 

predicted LAI. Understanding the LAI progression under stress and non-stress conditions 

is helpful to better estimate not only the annual yield but also interannual yield variation. 

Since LAI can be estimated from NDVI via various approaches (Cohen et al., 2003; Nguy-

Roberson et al., 2012), it is possible to adjust model predicted LAI based on NDVI from 

Landsat images and evaluate the accuracy of crop model performance in crop growth at 

different stages and under various climate stress conditions. This evaluation is especially 

important when exploring future climate change impacts. Crop modeling must be able to 

correctly reflect seasonal crop growth responses under various climate conditions (limited 

or oversupplied water). Validating crop growth model via information from this study can 

improve the reliability of model predictions under more frequent extreme weather in the 

future. 

Results in Section 3.4.3 reflect a significant relationship between pre-silking stage NDVI 

residual and corn yield in the St. Joseph River Watershed. This indicates corn yield 

potential could be predicted in season without attaining whole life-cycle corn growth 

information. Although the residual-yield relationship may differ for different areas, this 

methodology could be applied to other regions in order to obtain their specific normal 
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growth curves. The corn industry can benefit from in-season yield prediction by producing 

better forecasts of corn prices. Since crop yield is linked with NDVI residual, which is 

spatially explicit when derived from satellite images, yield prediction could be conducted 

at the pixel level.  

The advantage of a remote sensing method is the identification of crop developmental 

stages within 30 meter Landsat imagery, which can provide detailed patterns of spatial and 

temporal crop phenology variations. Local scale information about corn development 

stages can also be obtained. As an objective procedure, it holds potential to avoid reduce 

reliance on subjective, cost and labor intensive field observations.  Since the spatial pattern 

of corn NDVI can be attained by analyzing satellite images, it is easier to accurately target 

areas which are suffering from stress (Figure 3.11). Therefore, proper crop management 

could be applied in the right place, improving cost and time efficiency.  

This research could be further improved in two aspects: 

1) The vegetation index, NDVI, used in this research has a potential to saturate when 

the leaf area index is high, thus limiting its ability to quantify LAI late in the growing 

season. This is one potential reason that no significant relationship is found between peak 

NDVI (high leaf area index) and crop yield. Applying other indices, such as EVI2 and 

MTVI2 (Liu et al., 2012) could overcome the saturation problem, and should be evaluated 

in future studies. Since our future focus is to improve crop growth model responses to 

climate stresses, and since most crop models apply LAI to represent seasonal growth, we 

still use NDVI in this study because of its well-established relationship with LAI.  
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2) Although detailed spatial information could be attained due to the fine resolution 

of Landsat images (30 m), the temporal coverage (16 days) is too infrequent to capture the 

rapid changes in biophysical processes during the early growth stages. Therefore, we have 

to overlay multiple years data to describe of the whole corn growth cycle in this study. 

Applying a fused MODIS/Landsat approach (Gao et al., 2006) could be an appropriate way 

to extend the temporal coverage for current mid-resolution images.  Though new errors 

and uncertainties may still be introduced by such a fused approach due to differences in 

spatial and spectral band resolution, for example. 

3.6 Conclusion 

This research uses an 11 year time series of Landsat TM5 images to explore the spatial and 

temporal variability of corn growth in the St. Joseph River Watershed, in Indiana, Michigan 

and Ohio. Images during the corn growth period were first processed to remove 

cloud/shadow/snow pixels.  Atmospheric correction was then applied to exclude the effect 

of atmosphere on the reflectance values. CDL data was used to extract all corn pixels in 

the study area. An 11 year time series of spatially-varying corn NDVI values was finally 

attained. The observed corn NDVI reaches its peak value (>0.7) around the silking period, 

as identified using the NASS Crop Progress Data.  Spatial variability in NDVI was also at 

its minimum (CV < 0.1) at this time when the canopy is fully developed. The NDVI shows 

greater variation (CV > 0.2) during the leaf development and senescence periods.  

A normal corn growth curve was established for the region using the median values of the 

11 year corn NDVI time series reflecting the whole life cycle of regional corn growth. 

NDVI residuals were calculated for individual image dates relative to the normal growth 
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curve and used to calculate pre-silking, pre-maturity and growing season discrepancy 

scores.  Overall, the growth curve constructed using GDD on the image acquisition dates 

appeared to be the most robust. 

The growing season average discrepancy was able to clearly identify years with above 

average and below average crop development. Regression analysis (Figure 3.8) indicates 

that grain yield is most significantly related to the pre-silking period NDVI residuals 

(p<0.01). Therefore, local stake holders can estimate in season corn yield even when only 

early images are available, and identify stress risk in early stages. Water stress is closely 

associated with NDVI residuals. At the scale of the entire image, dry weather (negative ws) 

tends to result in crop growth below normal conditions (negative NDVI residuals), while 

plenty of rainfall reduces the risk of yield loss (positive yield loss). At this scale, no impact 

from excess water stress was detected.  However, since corn pixels in this study are of very 

fine spatial resolution (30m), it is possible to identify individual pixels which have risks of 

yield loss due to stresses. The risky pixel rate is significantly correlated with water stress, 

as more corn pixels are under stress when precipitation is way below the long-term average 

curve.  The spatial pattern of risky pixels is different between dry and wet years. Limited 

rainfall was found to affect most corn pixels, while the spatial extent of stress is much more 

limited when rainfall is plentiful or oversupplied. This difference in spatial extent is 

explains in part why yield limitation due to wet conditions is not detected for larger spatial 

scales. 

This study lays a framework for using mid-resolution imagery to derive crop phenology 

and quantify corn responses to climate stresses. The methods derived from this study could 
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be applied to other areas for future research, especially climate sensitive areas, where crop 

growth is more easily affected by climate variability. Using remote sensing technology, 

corn responses to different climate stress (limited or oversupplied rainfall) were detected. 

Information conveyed from this research is recommended for crop modeling studies to 

quantify model performance under various climate conditions. A better parameterization 

to represent seasonal growth and annual yield under climate stresses is critical, especially 

to assess the impact of future climate change, where more extreme precipitation and 

drought are expected. 
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CHAPTER 4. IMPROVED SIMULATION OF ANNUAL CROP SENSITIVITY TO 

CLIMATE VARIABILITY IN THE EASTERN CORN BELT 

4.1 Abstract 

The representation of soil moisture is important when applying modeling methods to the 

study of climate variability and change on crop yields. When direct comparison is 

impossible due to scarcity of observed soil moisture datasets (a common problem), 

modelers could evaluate soil moisture indirectly via examining model performance in 

annual crop yield and seasonal growth information, because accurate prediction of seasonal 

development and annual yield reflects both ET and moisture required for vegetative growth. 

In this study, a multi-variable calibration strategy was employed in Soil and Water 

Assessment Tool (SWAT) simulation to regulate streamflow and crop growth 

simultaneously in St. Joseph River watershed, Eastern Corn Belt. Model representations of 

seasonal crop growth are evaluated by comparing satellite imagery-based time series LAI 

with SWAT output. Compared to streamflow only calibration strategy, the multi-variable 

calibration substantially improves crop seasonal growth and interannual crop yield 

variability, without hampering model performance in streamflow. Though soil moisture is 

not well represented by either methods, multi-variable calibration reduces the uncertainty 

in moisture prediction. Model performance in identifying climate sensitive cropland (CSC) 

is also compared between two different calibration approaches. Streamflow only 

calibration fails to identify CSC area in the study region due to simulated mean yield is too 
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high relative to actual yield. Multi-variable calibration strategy identified 146.79 km2 CSC 

area with high possibility (>20%) to meet low yield threshold (6.43 ton/ha), occupying 

5.14% of the basin area. 

4.2 Introduction 

Soil moisture dynamics, which serve as a source of long-term memory of past precipitation 

events (Entekhabi et al., 1996), are affected by climate variability.  Soil moisture storage 

evolves on timescales of weeks to months, reflecting wetness/dryness longer than the 

atmosphere, and providing water for plants to grow (Koster and Suarez, 2001). Corn 

growth has a complicated relationship to soil moisture, both when limited and oversupplied, 

it introduces stress to corn development (Mishra and Cherkauer, 2010; Ren et al., 2014).  

Over shorter spatial and temporal scales, both limited and oversupplied soil moisture can 

be harmful for crop growth. To reflect crop responses to climate variability, 

ecohydrological modeling is often employed (Adejuwon, 2005; Steduto et al., 2009; Tao 

et al., 2009). When using modeling methods to evaluate crop sensitivities to climate 

variability that results in oversupplied or limited water, soil moisture needs to be well 

represented. If not, the interannual yield variability may not be well captured by the model 

(Wang et al., 2016). When extending model implementation under more extreme, future 

climate conditions, the model may have trouble accurately capturing crop responses under 

such circumstance. 

Crop growth interacts with the surface water budget mainly through evapotranspiration. In 

a model application, incorrect prediction of daily crop growth, reflected for example by 

leaf growth, may affect predicted ET, and in turn affect the predicted water budget, leading 
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to incorrect representation of streamflow and soil moisture. Simulated streamflow is often 

regulated by comparing to observed data, provided by wide spread stations with well-

established instrumentation. However, evaluating soil moisture at the watershed level is 

not straightforward due to data scarcity, for example, insufficient monitoring locations 

(Reichle et al., 2004; Draper and Reichle, 2015), or scale issues, for example, point 

observations are difficult to extend to the watershed level (Chen et al., 2014; Su and Ryu, 

2015). Calibration of complex hydrologic models that contain multiple state variables 

through comparison to only one observed variable can result in “pseudo-optimal” solutions. 

(Rajib and Merwade, 2015).  This is because the calibrated variable is usually associated 

with multiple processes, and in turn associated with many parameters controlling those 

process. When trying to adjust numerous parameters with limited observations, a good 

agreement between observed and simulated variable may attained by totally different 

parameter sets, which is known as “Equifinality” (Beven, 2006). A common example of 

“Equifinality” in hydrological modeling is similar streamflow simulations with very 

different simulated soil moisture states (Rajib and Merwade, 2015; Silverstro et al., 2015). 

Parameter set which fails to capture the soil moisture states is thought as “pseudo-optimal”. 

Though it has good agreement in streamflow, it does not correctly reflect hydrological 

processes including runoff generation, infiltration, or evaptranspiration. Then, calibration 

based on a single output variable or limited observation becomes an ill-posed inverse 

(Jakeman and Hornberger, 1993). 

An indirect way to evaluate soil moisture storage is to compare observed and modeled crop 

yield (Srinivasan, et al., 2010). The idea is that crop yield reflects both ET and moisture 
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required for vegetative growth. Therefore, it could be used as an alternative method to 

evaluate the spatial variability in available soil moisture, instead of direct comparison with 

site recorded data. However, reasonable predictions of annual yield can be achieved by 

simply adjusting the parameter that controls the ratio of above ground biomass to final 

yield, which has no impact on simulated soil moisture Therefore, unreasonable biomass 

accumulation may result in a reasonable yield through the choice of an inappropriate 

parameter set. Such a model may consistently over or under estimate biomass, or 

incorrectly reflect crop responses under various climate conditions (Cavero et al., 2000). 

Under such situations, the soil moisture associated with vegetative growth could be 

incorrect.  

To overcome the possible equifinality on annual yield simulation and improve surface 

water budget estimation, seasonal crop growth information can be included in the model 

calibration. Satellite remote sensing is a potential source for crop seasonal growth 

information at regional scales. Many previous studies have suggested merging crop model 

output with satellite imagery to derive seasonal crop growth information (Sakamoto et al., 

2011, Kotera et al., 2014). The most widely derived seasonal growth information used in 

modeling is leaf area index. For example, Zhang and Wegehenkel (2006) integrated 

MODIS LAI data into a simple grid-based soil water balance model, resulting in good 

agreement of soil moisture with in-situ measurements. For another example, Boegh et al. 

(2004) adjusted LAI simulated by the Daisy/MIKE SHE model based on remotely sensed 

LAI from the Landsat TM and SPOT satellites, which improved the prediction of crop 

yield and evapotranspiration. Therefore, it is possible to capture regional crop growth 



119 

 

1
1
9
 

dynamics by extracting LAI time series from multi-year remote sensing images, and 

integrating this information into crop modeling studies.   

A model that represents crop responses to climate variability well can help to identify areas 

that have low yield or high interannual yield variability. Those areas are more sensitive to 

climate than other cropland in the same region. Since future climate change is predicted to 

introduce more growth stresses for crops in Midwest USA due to hotter summers and 

wetter springs (Christensen et al., 2007; Cherkauer and Sinha, 2010), these sensitive 

croplands may not continue to be suitable to for large-scale corn production due to the 

potential of yield loss under extreme climate condition or constant lower yield relative to 

other croplands. For example, these climate sensitive croplands (CSC) could be replaced 

by other less climate sensitive plants, such as cellulose biofuel crops to meet an increasing 

demand for biofuels. Some biofuel crops have higher land and water use efficiencies than 

traditional crops (VanLoocke et al., 2012; Heaton, et al., 2008), so that less land and water 

is needed for perennial grasses to match ethanol demands than corn. Secondly, compared 

to cash crops, cellulose biofuel crops may require less management and financial inputs, 

such as tillage, fertilization, and herbicide/ pesticide application (Hill et al., 2006), which 

has the potential to reduce non-point source pollution from management practices in 

cropland. Lastly, biofuel crops have higher biomass productivity due to their high 

adaptability to different soils and climates than corn, following the initial establishment 

period (Heaton, et al., 2004; Dohleman and Long, 2009). Therefore, clearly identifying 

CSC areas, and replacing corn with biofuel crops in those areas might be a sustainable 
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management practice to strike a balance between both food/fuel provision and 

environmental integrity, without jeopardizing food security.  

Since the correct representation of crop growth under limited or oversupplied water 

conditions could improve surface water budget simulation and identification of CSC areas, 

it is worth constraining both crop growth and streamflow while doing hydrological 

modeling at the watershed scale. In this study, we evaluate a calibration approach to 

constrain both water and crop growth in order to represent water-plant relations under 

various climate conditions using the Soil and Water Assessment Tool (SWAT) (Arnold, et 

al., 1998). The main objective is to improve the simulation of annual crop sensitivity to 

climate variability by simultaneously constraining model performance in multiple 

variables (streamflow, seasonal crop development, and interannual crop yield) in the St. 

Joseph River watershed in the Eastern Corn Belt.  

This objective is realized by an improved parameterization in regional leaf area growth 

from satellite images and a multi-variable calibration strategy to regulate both water and 

crop growth. Soil moisture is evaluated by comparing observed data from point locations 

with simulated HRU values. We will also examine the effect of different calibration 

strategies (streamflow calibration vs. multi-variable calibration) on representation of 

seasonal soil moisture. Finally, the spatial distribution of mean annual yield and inter-

annual yield variability across the study area is investigated to locate climate sensitive 

cropland (CSC), which could be considered as areas to be replaced by other crops less 

sensitive to climate variability.   
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4.3 Method 

4.3.1 Study area 

The St. Joseph River Watershed (Figure 4.1) is located in the Eastern Corn Belt, draining 

2,821 km2 across northeastern Indiana, northwestern Ohio and southeastern Michigan. 

Agricultural land including row crop and pasture land, occupies 67% of the watershed 

area, and is the largest land use/cover type based on the USDA National Agricultural 

Statistics Service (NASS) Cropland Data Layer (CDL) for 2010. Other land use types in 

this watershed are forest (13.0%), urban areas (12.5%) and wetland (9.3%). There are 

seven precipitation gauges and three temperature gauges operated by National Oceanic 

and atmospheric Administration-National Climate Data Center (NOAA-NCDC) and 

National Soil Erosion Research Lab (NSERL) in this area that record daily precipitation, 

maximum and minimum air temperature from 1990. The watershed has three U.S. 

Geological Survey (USGS) streamflow measurement stations with long-term daily 

streamflow records. The National Soil Erosion Research Lab (NSERL) installed thirteen 

Stevens Hydra Probe II soil sensors in the Cedar Creek watershed, which is a tributary of 

the St. Joseph River.  Each location records volumetric soil moisture data at multiple 

depths (51 mm, 203 mm, 406 mm and 610 mm) with beginning date varied from June, 

2005 to Aug, 2013.    
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Figure 4.1. Geographic location of St. Joseph River watershed and the distribution of 

observational stations used for the model simulation. 
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4.3.2 Data Processing 

4.3.2.1 Soil moisture data preprocessing  

To evaluate model performance in capturing soil moisture sensitivity to climate variability, 

multiple years of observed data are needed. Therefore, we chose four soil moisture sensors 

(AS2, BLG, AD and CME), which recorded at least four years continuous data. Sensor 

locations are shown in Figure 4.1. SWAT simulates soil moisture based on each soil layer 

defined in the SSURGO soil database, assuming soil moisture is evenly distributed inside 

each layer. The model begins to simulate saturated flow when the water content of a soil 

layer is over the field capacity for the layer. Saturated flow can percolate to an underlying 

layer or become lateral flow as long as soil temperature is above 0 °C. Since simulated soil 

moisture is homogeneous for each layer, if one layer, as defined in the model set-up has 

two sensors installed so that two measurements are provided when only one simulated 

value is available for comparison, we use the layer average (both sensor position and layer 

depth) observed data for analysis. SWAT also adds a 10 mm surface soil layer to the first 

layer from SSURGO database, which interacts with surface runoff. This topmost 10 mm 

soil has exactly the same properties like the first layer soil from SSURGO. However, since 

the depth is usually much less than the depth of SSURGO first layer, it could be neglected 

when computing layers based soil moisture.  Take the first layer of AS2 (Figure 4.2) for 

example, layer average observed SM is computed based on Eq. (4.1). 

    (4.1) 

Where SMsensor1_obs is the soil moisture data recorded by the sensor at 51 mm depth, 

SMsensor2_obs is the soil moisture data recorded by sensor at 203 mm; d1 is the depth from 

_ 1_ 2_( * 1 * 2) / ( 1 2)layer obs sensor obs sensor obsSM SM d SM d d d  
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soil surface to the middle position of two soil sensors (denoted by dash line), which is 127 

mm in this case, d2 is the depth from the middle position of the two soil sensors to the 

bottom depth of the first layer, which is 103 mm; and d1+d2 is the depth for the first layer, 

230 mm. Since 230 mm is much greater than 10 mm, simulated soil moisture from topmost 

layer can be neglected when computing SMlayer_obs 

  

Figure 4.2 NSERL soil moisture sensor position (denoted by ‘x’) and soil layer depth 

information from SSURGO database (each identified layer is given a unique color). 
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4.3.2.2 Regional Leaf Area development curve  

Regional corn leaf area development information was retrieved from 11 years (2000-2010) 

Landsat TM imagery (path 21, row 31) in the study area. All images during the corn 

growing season have been processed to remove cloud, snow and shadow pixels and were 

atmospheric corrected. Eleven years of CDL data was used to identify corn pixels in the 

study area. Several other edge and seasonality filters were also employed to further refine 

the selection of corn only pixels, rather than pixels that include grass waterways, for 

example. All 11 years data were merged based on potential heat units (PHU) to visualize a 

typical annual NDVI cycle based on multiple years of data. Detailed information on how 

corn NDVI was obtained can be found in Chapter 3.  

Since the SWAT model computes leaf area growth based on leaf area index (LAI), NDVI 

values were converted to LAI based on a published empirical equation (Wiegand et al., 

1990) for the Midwestern USA.  

        (4.2) 

SWAT simulates corn LAI dynamics in this way: Corn LAI increases rapidly in the early 

growing season, and then stays stable at its peak value before natural senescence. LAI 

drops from natural senescence point until physiological maturity. Parameters controlling 

the growth curve are listed in Table 4.1.  The parameters frPHU1, frPHU2, frLAI1 and frLAI2 

control the LAI rising limb, LAImx controls the peak LAI value, DLAI and PHUmat control 

the senescence time and the slope of falling limb.  By comparing the NDVI derived LAI 

with default SWAT potential LAI curve (Figure 4.3), we found the general development 

0.1270*exp(4.1260* )LAI NDVI
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shape is correct, but inconsistences still exists between them. Peak LAI was overestimated, 

natural senescence arrives too early in the year. Therefore, the default LAI growth curve 

needs to be adjusted to better represent local conditions. The adjusted potential LAI growth 

curve (Figure 4.3), is more regionally specific, and consistent with observed data obtained 

from Landsat images. Updated SWAT parameters are shown in Table 4.1.  

  

Figure 4.3 The default SWAT potential LAI development curve and NDVI derived 

LAI from Landsat images (see Chapter 3 for details). The default curve is adjusted to 

better represent NDVI derived LAI. 

 

Table 4.1 Regional NDVI derived LAI versus default LAI development parameters 

 frPHU,1 frLAI,1 frPHU,2 frLAI,2 LAImx PHUmat DLAI 

Regional 

Parameters 0.121 0.083 0.364 0.938 4.8 1650 0.68 

Default 

Parameters 0.150 0.050 0.500 0.950 6.0 1400 0.70 
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4.3.3 Multi-variable calibration 

Model implementation and initial parameters were based on research from Her and 

Chaubey (2015). They divided St. Joseph River watershed into 39 subbasins, each with an 

area of 5,000 ha as the stream initiation threshold area. Subbasins were then further divided 

into 498 hydrologic response units (HRUs) with threshold area proportions of 5% and 10% 

for land cover and soils, respectively. The initial calibration provided by Her and Chaubey 

(2015) focused on daily streamflow at multiple gauging stations (USGS 04180500 at St. 

Joseph River, USGS 04180000 at Cedar Creek, USGS 04178000 at Middle St. Joseph 

River), without consideration of interannual crop yield variation and seasonal crop growth 

dynamics. We will refer to this as the streamflow-only calibration. For the streamflow-only 

calibration, 34 parameters were chosen based on prior knowledge of the SWAT model. 

Most of these are hydrological parameters, for example, Alpha_b (baseflow recession 

factor), ESCO (Soil evaporation compensation factor), OV_n (Manning’s n for overland 

flow), and CH_NII (Manning’s n for the main channel). A few of their selected parameters 

are related to both hydrology and water quality, such as RSDIN (Initial residue cover), and 

USLE_K (USLE K factor). In order to better investigate the synergies between crop growth 

and the water cycle, biophysical and crop stress parameters (Chapter 2) were added to the 

calibration, and seasonal LAI (derived from NDVI in Chapter 3 via Eq. 4.2) and detrended 

annual yield were included in the objective functions. Detrending used the best fit least 

squares regression method of Goldblum (2009) to remove crop yield trends caused by 

improvements in genetics and management over time.  
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A multi-algorithm, genetically adaptive multi-variable (AMALGAM) method was 

employed for model calibration (Vrugt and Robinson, 2007). Model parameters were auto 

calibrated by AMALGAM to ensure the capturing of streamflow, seasonal crop growth 

and interannual crop yield from 2000 to 2010, simultaneously. Model performance was 

further validated from 1995 to 2000. Daily streamflow at the watershed outlet (USGS 

04180500) was used as measured discharge. Nash-Sutcliffe (1970) efficiency was used to 

evaluate daily streamflow performance. Seasonal crop growth information is attained from 

an eleven-year (2000-2010) time series of watershed median LAI from Landsat images, 

which is used to evaluate model performance in seasonal crop growth. Annual corn yield 

at the watershed scale was aggregated from the USDA National Agriculture Statistic 

Service (NASS) county level crop yield (Srinivasan et al., 2010) based on a weighted 

average to reflect interannual crop yield variability. The d-statistic (Willmott, 1982) , which 

reflects the degree to which the simulated variation represents the measured variation was 

employed as an indicator of model performance in seasonal LAI growth and inter annual 

crop yield.   

4.3.4 Yield adjustment 

Since the soil survey is conducted at the county level and over the course of many years, 

the same soil type may be assigned a different soil series name in adjacent counties, 

which means the mapping of physical properties to what is really the same soil across the 

political boundary can result in artificial differences. This boundary or edge-matching 

issue (Luo et al., 2012) can cause trouble when simulating crop yields at fine spatial 
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scales.  Soil property information (Figure 4.4) highlights a strong difference between 

counties within the St Joseph River watershed.  

 

Figure 4.4 Soil properties of corn HRUs in St. Joseph River watershed. a) soil 

saturated conductivity; b) bulk density; c) porosity; d) clay content; e) silt content; 

and f) sand content.  All experience significant differences across county boundaries. 

 

If the inconsistent soil properties are used by the model, simulated yield may also have 

“boundary issues”. To overcome this inconsistency, we adjusted HRU (bias-corrected) 

simulated yield based on county level crop yield using Eq. 4.3:  

_ , _ , _ , _ ,( )adj HRU i sim HRU i obs county i sim county iY Y Y Y         (4.3) 
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Ysim_HRU,i is the ith largest simulated annual corn yield at HRU level in 20 years period, 

ton/ha; Yobs_county,i is the ith largest county annual yield provided by NASS, unit converted 

from bu/acre to ton/ha using a moisture content of 15.5% (Srivansan, et al., 2010), Ysim_county, 

i is the ith largest county level simulated yield based on the average of Ysim_HRU,i inside each 

county, ton/ha; Yadj_HRU,i is the HRU level yield after adjustment, ton/ha. Ysim_HRU,i is shifted 

up or down based on the difference between observed and simulated county yield, making 

Yadj_HRU,i more realistic, solving the inconsistency in yield distribution across counties.  

Eq. 4.3 is only used to bias-correct yield inconsistency for the multi-variable calibration. 

If applied to the streamflow-only calibration, the major simulation bias in mean yield 

between the two calibration strategies will be lost, therefore, yield for the streamflow-only 

calibration was adjusted relative to the bias correction for the multi-variable calibration 

simulation using Eq. 4.4: 

_ _ _ _( )so mv mv so

adj HRU adj HRU sim HRU sim HRUY Y Y Y          (4.4)  

Ymv sim_HRU and Yso
sim_HRU indicates simulated yield for multi-variable calibration and 

streamflow-only calibration strategy before any bias-correction. Ymv adj_HRU is the bias-

corrected yield value for multi-variable calibration after applying Eq.4.3. Yso adj_HRU is the 

adjusted yield for streamflow only calibration.  
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4.4 Results and Discussions 

4.4.1 Model performance in calibration/validation  

Model performance in representing streamflow after multi-variable calibration (streamflow, 

LAI progression and crop yield) is shown in Figure 4.5, both log (Figure 4.5(a)) and linear 

(Figure 4.5(b)) scales are used to visualize model performance under low and high flow 

conditions, respectively.  The model did a good job capturing both low and high flow 

conditions, with a daily Nash-Sutcliffe coefficient (NSC) of 0.82. The d-statistic for LAI 

is 0.83, and for crop yield is 0.76. After calibration, model performance was validated 

between 1995 through 1999. Daily Nash-Sutcliffe coefficient of streamflow was 0.86, and 

the d-statistic for annual crop yield was 0.64. Due to the data scarcity in LAI, we do not 

have another separate period to validate LAI. Our model performance in daily streamflow 

was similar to that of Her and Chaubey (2015), with NSCs of 0.82 and 0.86 for the 

calibration and validation periods, respectively. Figure 4.6 depicts model performance in 

seasonal LAI growth and interannual yield variability after calibration. Model 

representation of seasonal growth and annual yield is improved substantially. Simulated 

LAI was decreased and is more reasonable when compared with Landsat based LAI 

observations. Mean crop yield was also decreased and while inter annual increased when 

compared with simulations from the streamflow only calibration. Therefore, both seasonal 

crop growth and interannual yield variability was well captured via multi-variable 

calibration. Most parameters were the same as those used by Her and Chaubey (2015), but 

parameters that differ from their study, mostly biophysical and stress parameters, are 

summarized in Table 4.2. 
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Figure 4.5 Model performance in daily streamflow for the St. Joseph River near Fort 

Wayne,IN (USGS 04180500) during the a) calibration period with log scale, b) 

validation period with log scale, c) calibration period with linear scale; d) validation 

period with linear scale. 
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Figure 4.6 Model performance in simulation of watershed average annual yield a) 

2000-2010; b) 1995-1999; and c) corn leaf area index (LAI), 2000-2010. 

 

Table 4.2 Parameter calibration values for streamflow, seasonal LAI and annual corn 

yield for parameters that differed from those used by Her and Chaubey (2015) 

Parameter Description Calibrated Range 

CN Curve number (SF)a -0.245 [-0.25, 0.25] 

b1 Aeration stress S-shape transformation parameter 1b 8.1664 [-2.9, 8.7] 

b1-b2 Aeration stress S-shape transformation parameter 2 -3.0662 [-9.21, -2.18] 

c1 Drought stress S-shape transformation parameter 1 1.835 [-0.4, 8.0] 

c1-c2 Drought stress S-shape transformation parameter 2 -3.8133 [-9.21, -2.18] 

RUE Radiation-use efficiency ((kg/ha)/(MJ/m2)) 32.00 [32.00, 41.00] 

BLAI Maximum potential leaf area index 4.00 [4.00, 6.00] 

HIopt Harvest Index for optimal growing conditions 0.4823 [0.45, 0.55] 

HImin 

Harvest Index under highly stressed growing 

conditions 0.2901 [0.10, 0.35] 
a Scale factor (SF) proportionally increases or decreases values of parameters 
b Detailed information about stress parameters can be found in Wang et al., 2016.  
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4.4.2 Parameter sensitivity to streamflow, LAI and interannual yield  

In this section, we evaluate parameter sensitivity to calibration with all three objectives 

(streamflow, annual yield and seasonal LAI). The purpose for this analysis is to identify 

the relative importance of biophysical parameters in controlling model performance in both 

crop growth and water.  Here we explore the variability of the parameter range in the last 

generation of the AMALGAM optimization routine, as the distribution of parameters in 

the last generation is indicative of model sensitivity to those parameters. A narrow range 

of final parameter values means that parameter is closely distributed in its parameter space, 

and that the model is sensitive to the parameter with respect to the objective function. A 

wide range in parameter values indicates that the model is less sensitive to the selected 

parameter, and therefore the variance of the final objective function is not highly dependent 

on the value of that parameter. The variability is quantified using the inverse of the 

coefficient of variation (CV) of the parameter values to represent the parameter sensitivity. 

This method allows for the direct comparison between parameter variations even when 

parameters have very different ranges and units.  

Figure 4.7 ranks the sensitivity of the nine parameters used in multi-variable calibration. 

The model experiences higher sensitivity to the biophysical parameters BLAI, HIopt, c1-c2, 

and RUE than to the other parameters. These parameters are critical in regulating seasonal 

crop growth (c1-c2, BLAI, RUE) and annual yield (HIopt), so it is not surprising that they 

have higher ranks. CN is the least sensitive parameter in the multi-variable calibration, 

indicating crop growth is not sensitive to CN. Although CN is the fifth sensitive parameter 

for the streamflow only calibration (other four are Alpha_b, ESCO, OV_N and CH_NII), 
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all other hydrological parameters were adopted from the streamflow only calibration of 

Her and Chaubey (2015), and used as fixed values for our calibration.  It was assumed that 

changing CN alone in the multi-variable calibration would significantly affect streamflow 

performance, however, it has been shown that it did not.   

 

Figure 4.7 Sensitivity of parameters to streamflow, seasonal LAI and interannual 

yield 

 

4.4.3 Evaluation of soil moisture  

To evaluate model performance in simulating soil moisture when different calibration 

strategies are applied, we re-run the model using all parameter sets from the last generation 

for both the Multi-variable and Streamflow only calibrations. Instead of comparing model 

performance for one parameter set from each strategy, we compared two populations, 
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which is helpful to explore the uncertainty in soil moisture performance brought by 

“equally good” (in streamflow, or in streamflow, LAI and yield) parameters. 

Figure 4.8 depicts the moisture prediction from the two groups of parameter sets versus 

observed data for all three layers for site BLG. Generally speaking, both calibration 

strategies are able to capture the seasonal pattern of soil moisture during the growing 

season in the first and second layers. Multi-variable calibration improves model 

performance at some periods, for example, the drying trend in summers 2008 and 2010 are 

well captured when compared with the streamflow only calibration.  However, for other 

periods, the underestimation of soil water for multi-variable calibration is worse than for 

the streamflow only calibration.  

Tables 4.3 and 4.4 list the bias and uncertainty range of simulated volumetric soil moisture 

based on the two populations of parameter sets. Bias is computed as the difference between 

the population mean simulated soil moisture and the observed data recorded by soil sensors. 

The uncertainty range is taken from the 90% prediction interval from all simulated results.  

From Table 4.3, it seems that both parameter sets under estimate soil moisture in most of 

the sites, the bias ranges from -0.14 to -0.06, as a volumetric water content.  For soil 

moisture, this bias is huge. Negative values mean more underestimation for the multi-

variable calibration strategy, so overall the multi-variable calibration did not decrease bias 

in soil moisture prediction. The multi-variable calibration does reduce the uncertainty in 

soil moisture for all layers when compared to the streamflow only calibration, as shown in 

Table 4.4.  This indicates that adding biophysical parameters to calibration and regulating 
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both water and crop growth can reduce the uncertainty in soil moisture prediction, though 

in this case it results in a less accurate prediction.  

Neither of the two calibration strategies were able to capture observed soil moisture in the 

winter months and early spring. This mismatch is probably due to two reasons: 1) the 

installed TDR sensors are only sensitive to liquid water, so do not measure frozen soil 

moisture accurately, and 2) there is more missing meteorological information from the 

local weather stations during the winter. Note the nearest precipitation station is 12 km 

away from the soil moisture sensor, which could introduce errors in soil moisture 

prediction, especially in early spring, which is usually the rainfall season in this region.  

 

Table 4.3 Bias of simulated soil moisture versus observed data during corn growing 

season for different sites. 

Layer 

Multi 

Variable 

calibration 

Streamflow 

only 

calibration Change 

Multi 

variable 

calibration 

Streamflow 

only 

calibration Change 

 AS2 BLG 

1 -0.124 -0.115 -0.009 0.008 0.015 -0.007 

2 -0.105 -0.076 -0.029 -0.035 0.002 -0.037 

3 -0.090 -0.074 -0.016 -0.025 -0.009 -0.016 

 AD CME 

1 -0.102 -0.094 -0.007 -0.106 -0.099 -0.007 

2 -0.141 -0.104 -0.037 -0.111 -0.060 -0.051 
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Table 4.4 Range of uncertainty in soil moisture prediction during corn growing 

season for different sites based on the final set of parameters for each calibration. 

Layer 

Multi-

objective 

calibration 

Streamflow 

calibration 

Uncertainty 

Pct. 

Difference 

Multi-

objective 

calibration 

Streamflow 

calibration 

Uncertainty 

Pct. 

Difference 

 AS2 BLG 

1 0.001 0.007 -87.7 0.001 0.007 -86.5 

2 0.003 0.012 -70.8 0.005 0.013 -64.3 

3 0.005 0.011 -48.6 0.007 0.016 -54.9 

 AD CME 

1 0.001 0.007 -85.9 0.001 0.007 -83.1 

2 0.003 0.012 -72.6 0.008 0.020 -60.1 

 

Figure 4.8(c) shows that the model has the worst performance in the lowest soil layer (430-

760 mm) at this location. Both parameter sets underestimate moisture systematically. We 

attribute this inconsistency to the lack of pedon information specific to where the soil 

sensor is installed. The field capacity and permanent wilting point are important parameters 

to control soil water content variation. However, SWAT computes permanent wilting point 

using the reported clay content for the soil series from the SSURGO soil database. 

SSURGO typically includes ranges of values based on field measurements from 

representative samples that might be far removed from the mapped location. Further, all 

soil information used for simulation comes from the SSURGO soil unit where the sensor 

is located, which ignores possible heterogeneity in such unit, using an area property to 

represent a point. Therefore, the discrepancy in soil moisture prediction can occur when 

SSURGO information does not match with local pedon information. 
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Figure 4.8 Evaluation of soil moisture in site BLG at (a) First layer (0-230 mm); (b) 

Second layer (230-430 mm); (c) Third layer (430-760 mm) 

 

4.4.4 Spatial distribution of corn yield  

Figure 4.9 indicates the annual mean corn yield distribution and annual yield variance 

across the St. Joseph River watershed. The spatial maps of the two variables highlight 

different spatial patterns. The annual yield variance is evenly distributed across the 

watershed. No matter what calibration strategy is applied, the simulated mean yield shows 

a strong spatial distribution pattern: low yield is always associated with southwestern, 

while higher yield area is found in the Eastern part of the watershed. The state and county 
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boundaries can be clearly seen in Figure 4.9, which is consistent with the soil property 

distribution patterns seen in Figure 4.4. It seems that Ohio always has higher simulated 

yield than Indiana. However, a t-test on the difference in NASS county yield between 

Williams, OH and De Kalb, IN, found no statistically significant difference in mean yield. 

Therefore, although the basin average simulated yield from Figure 4.5 is reasonable, the 

spatial distribution of corn yield is problematic.  

 

Figure 4.9 The spatial distribution of annual mean yield by a) streamflow only 

calibration; b)multi-variable calibration; and the spatial distribution of interannual 

yield variation by c) only flow calibration. d) multi-variable calibration in the St. 

Joseph River watershed. 
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We therefore bias corrected HRU level corn yields using Eq. 4.3 and 4.4 to resolve the 

“boundary issue” (Figure 4.10). Abrupt yield differences were only found in the very 

northern part after bias-correction. It seems Hillsdale, MI has relatively lower yield than 

other counties in this region. This is consistent with the NASS observed yield data, 

indicating Hillsdale, MI, is the lowest yielding county in St. Joseph River watershed. The 

20 year (1991-2010) mean yield is 117 bu/acre, which is significantly lower than De Kalb, 

IN, where yield is 128 bu/acre and Williams, OH where it is 131 bu/acre.  

 

Figure 4.10 The spatial distribution of adjusted annual mean yield after removing the 

effect of soil inconsistencies, for a) streamflow only calibration; b) multi-variable 

calibration; and the spatial distribution of interannual yield variation by c) 

streamflow only calibration. d) multi-variable calibration  
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After solving the abrupt yield inconsistency among counties, it is possible to locate specific 

areas that are sensitive to climate. We define climate sensitive cropland (CSC) based on 

frequency analysis. First, a fixed low threshold for crop yield was set. We defined this 

threshold as 80% of the 20 year average NASS harvest yield data at the basin scale, which 

is 6.43 ton/ha. Then the probability of HRU level yield lower than this threshold was 

computed based on a 20 year simulation. This method requires the computation of non-

exceedance probability associated with long term simulated yield. Then the probability of 

yield lower than 6.43 ton/ha was identified. Some area may have low or zero probability, 

which indicates relative constant and higher yield. Areas with high probability indicates 

always lower yield or frequent yield variation.   

Figure 4.11 indicates the spatial distribution of CSC in the St. Joseph River watershed as 

estimated from simulations using each of the two calibration strategies. We found a totally 

different spatial distribution pattern for two calibration strategies. For streamflow only 

calibration, most of the area crops have a 0 probability to reach the low yield threshold 

(6.43 ton/ha), indicating a reliably high yield for all years in the simulation. Only a limited 

area in the vicinity of Hillsdale, MI had a non-zero probability, still only reaching a 1 in 10 

chance of experiencing yields lower than our threshold (< 10%). For the simulations using 

the multi-variable calibration parameters, a substantial portion of the watershed is at risk 

to experience yield below the threshold. Most HRUs in the vicinity of Hillsdale, MI are 

predicted to have between a 1 in 10 and 3 in 10 probability of having yield lower than 6.43 

ton/ha in any given year. Parts of the DeKalb, IN are also have a high probability of crop 
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yields failing to meet the threshold, resulting from increased interannual variance, which 

is consistent with Figure 4.10 (d). 

 

Figure 4.11 The probability distribution of HRU with yield lower than threshold (6.43 

ton/ha) based on a) streamflow calibration. b) multi-variable calibration. 

 

Figure 4.12 indicates the yield variation and mean annual yield relationship for all corn 

HRUs after bias-correction based on different calibration strategies. Generally speaking, 

the multi-variable calibration strategy reduced the mean yield amount for all HRUs, to an 

average yield more consistent with observed NASS yield data (Figure 4.5). Visually, it is 

hard to identify any difference in interannual yield variability between the two calibration 

methods. However, a t-test indicates a significant difference in interannual yield variability. 

After bias-correcting the yield, the multi-variable calibration strategy experienced a higher 
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degree of interannual yield variability when compared to the simulation using streamflow 

only calibration parameters.  

 

Figure 4.12 Mean annual yield and interannual yield variability for all corn HRUs in 

St. Joseph River watershed, based on different calibration strategy after bias-

correction. 

 

Areas with different probability to meet low yield threshold were summarized in Table 4.5. 

For simulations using streamflow only calibration parameters, 30.88 km2 of the crop 

growing region is identified to have risk to reach low yield threshold (6.43 ton/ha), and the 

possibility is quite low (<10%), which is mainly due to its higher yield all over the 

watershed. More areas are expected to have low yield risk, which is identified by multi-

variable calibration strategy. There are 146.79 km2 area has higher possibility (>20%) to 

meet the low yield threshold (6.43 ton/ha), which is thought as CSC area.  Those areas 

occupied 5.14% of the total basin area, which are recommended as potential places to plant 

more climate resistant crops to avoid yield loss.  
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Table 4.5 Watershed area with a non-zero probability of failing to meet the low yield 

threshold (6.43 ton/ha) in any given year. 

 Probability to not meet threshold yield 

 <10% 10-20% 20-30% 

Multi-var. Cali 141 km2 335 km2 147 km2 

Stream. Only Cali. 31 km2 0 km2 0 km2 

 

4.5 Conclusions 

In this research, SWAT was used to examine the simulation of annual crop sensitivity to 

climate variability by integrating crop seasonal growth information from satellite images 

in current model settings. Two model calibration strategies (streamflow only calibration vs. 

multi-variable calibration using streamflow and crop yield) were evaluated for their ability 

in reflecting climate variability in both crop growth and soil water. Simulated results were 

evaluated to identify the risk of crop yields falling below a defined minimum yield 

threshold (6.43 ton/ha) and areas where the probability of falling below the threshold 

exceeded 20% were identified as regions of Climate Sensitive Cropland (CSC).  

Based on this work, we can conclude the following: 

1. Compared to the streamflow only calibration, the multi-variable calibration strategy is 

able to capture seasonal crop growth development, and thus reduce the equifinality in 

final yield estimation due to incorrect parameter set. Simulation of annual yield 

variance is improved by multi-variable calibration, which correctly reflects the climate 

effects on final yield. Model performance in streamflow is reduced marginally (from a 

NSC of 0.820 to 0.817), but is still satisfactory.  
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2. By comparing in-situ sensor recorded soil moisture with simulation results, the SWAT 

model did capture the moisture seasonal pattern to some extent at several sites. 

However, both calibration strategies resulted in substantial bias, possibly due to the 

lack of in-situ soil physical properties. The multi-variable calibration strategy does not 

improved model performance in moisture prediction, but it reduces the uncertainty 

range in soil water 

3. Before yield adjustment, the spatial distribution of simulated yield shows abrupt yield 

changes at state boundaries caused by the inconsistency of soil property representations 

among counties. However, interannual yield variability does not indicate such pattern.  

CSC identification cannot be conducted without the adjustment of HRU level yield.  

4. The multi-variable calibration strategy increases the yield variability and reduces the 

mean yield at HRU level when compared with streamflow only calibration strategy. 

This improves the yield simulation relative to USDA NASSS county level yield reports.  

5. No areas are identified as CSC area in the streamflow only calibration simulations as 

the mean yield is too high relative to actual yield.  Areas of CSC are found in the 

simulations using the milti-variable calibration parameters both for areas with low 

overall mean (Hillsdale county in Michigan), and for regions with higher interannual 

variability (Dekalb County in Indiana). Total CSC area with high possibility (>20%) 

to meet low yield threshold is 146.79 km2, occupying 5.14% of the basin area which is 

identified by multi-objective calibration strategy.  
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Results from this analysis could provide valuable suggestions for better watershed 

management. For example, areas with low or zero probability to meet low yield threshold 

(the middle eastern part of the basin) should be always used for corn growth, because of 

their constant and productive performance. Identified CSC area with high probability to 

meet low yield threshold could be considered as potential places for more climate resistant 

crops to avoid yield loss. 

There are still some limitation in this study, which could be improved with future work.  

1) When executing multi-variable calibration in the St. Joseph River watershed, we 

fail to include more hydrological parameters in calibration strategy, only Curve 

Number is considered. Since all other hydrological parameters are fixed, it is hard 

to regulate the subsurface processes. Although model performance in surface water 

(streamflow) is satisfactory by only calibrating Curve Number and crop growth 

parameters, model performance in moisture is not improved.  

2) Another problem in this study is the inconsistency of soil properties across counties. 

Though bias-correction in crop yield could solve the problem, it is still worth 

checking yield representation via more uniform soil datasets, for example 

gSSURGO (USDA-NRCS, 2014), or by developing SSURGO soil inputs based on 

landscape position (Muenich, 2011) or taxonomy properties (Luo, et al., 2012) 

rather than soil classification 

3)  Finally, we have not considered the uncertainty implicit in using empirical 

equations to derive LAI from NDVI time series. The LAI used in this study is not 

direct ground observations. As there is no physical relationship between NDVI and 
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LAI, empirical equations or statistical models are often employed based on 

regressions between field measured LAI and NDVI. Then the empirical model is 

used to predict or derive LAI from the NDVI values when field measurements are 

not available. For example, the coefficient of determination (R2) for the relationship 

used for this paper (Eq. 4.2) is 0.78, indicating that the model fits 78% of data well. 

Models for deriving LAI from NDVI may also vary spatially (e.g., Fortin et al., 

2013; Walthall et al., 2004; Wiegand et al., 1990), introducing more uncertainty in 

to LAI estimates. Finally, NDVI has the potential to saturate when the LAI is high, 

thus limiting its ability to quantify LAI later in the growing season (Chapter 3). 
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CHAPTER 5. BIOPHYSICAL AND HYDROLOGICAL EFFECTS OF FUTURE 

CLIMATE CHANGE INCLUDING TRENDS IN CO2, IN THE ST. JOSEPH 

RIVER WATERSHED, EASTERN CORN BELT  

5.1 Abstract 

Future climate change has the potential to significantly impact crop growth, both directly 

due to CO2 enhancement and indirectly, through temperature and moisture impacts. This 

work investigates the biophysical and hydrological effects of future climate change, 

including trends in CO2, in the St. Joseph River watershed, Eastern Corn Belt. In this study, 

the Soil and Water Assessment Tool (SWAT) was first modified to take dynamic CO2 

concentration as input. A regional crop leaf development curve from Landsat TM imagery 

was also used to adjust model performance in corn leaf area development for the historical 

period. A multi-variable calibration strategy was employed to ensure the capturing of 

streamflow, seasonal crop growth and interannual crop yield simultaneously. The model 

was then driven by future climate change and CO2 data from three Global Circulation 

Models (GFDL-CM2.1.1, NCAR-PCM1.3, UKMO-HADCM3.1), under three Special 

Report on Emissions Scenarios (SRES) Emission Scenarios (b1, a1b, a2) to investigate 

crop and streamflow response in two future periods: the near future (2021-2050) and the 

far future (2061-2090). The St. Joseph River watershed is expected to experience more 

winter and spring precipitation, but slightly decreasing summer precipitation. Due to 

increasing temperature and decreasing summer moisture, more drought stress is predicted.   
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Both annual total aeration and drought stress are projected to be more variable in both 

future periods. Although future CO2 enhancement will benefit the crop growth and final 

yield by improving radiation use efficiency (RUE) and reducing drought stresses, corn 

yield is still expected to decrease by 6% in the near future period, and 16% in the far future 

period due to the combined effect of both climate change and CO2 enhancement. 

Streamflow redistribution is also predicted in future. Stream discharge is projected to 

increase for the whole flow range in the near future period. For the far future period, high 

flows are expected to increase, while low flows are expected to decrease, indicating more 

hydrologic drought and flood events in the St. Joseph River watershed. 

 

5.2 Introduction 

Agricultural production is critically dependent on climate conditions. Temperature, 

precipitation and extreme events such as flooding or drought can seriously affect 

production, with risks often being higher for smaller farmers and some types of crops 

(Kling et al., 2003). The US Corn Belt is one of the biggest and most productive agricultural 

systems globally, with corn production occupying more than 20% of global maize areas.  

Any yield reduction due to climate variability and climate change may lead to a tighter 

food market and intensify food crisis (McMichael, 2009). 

Many previous studies have investigated historical climate in the US Corn Belt and how it 

influences regional crop yield. In this area, mean temperatures have increased overall from 

1900 to 2010 by approximately 0.059°C per decade.  A rapid mean temperature shift 
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occurred in 1950 and 1979, which is similar to the temporal pattern of the global trend 

(Pryor et al., 2012). Current mean annual temperature for this region (1981-2010) varies 

from 3.3 °C in northern Minnesota to 15.6 °C in Missouri.  Annual precipitation generally 

decreased from the late 1800’s through the mid 1930’s, followed by a general increasing 

trend until to the present (Groisman and Easterling, 1994; Andresen, 2012). The increase 

in the number of heavy precipitation events and number of wet days are two main reasons 

leading to the increase in precipitation from the 1930’s (Kunkel et al., 2003; Grover and 

Soursounis, 2002). 

Increased annual temperature is generally considered to benefit crop production in the 

Midwest, due to the longer growing season. Warmer winter temperatures will also reduce 

the frost season. A longer frost-free season generally implies increased agricultural 

productivity and the possibility for multiple plantings (Wuebbles and Hayhoe, 2004).  

However, the increased summer temperature may be detrimental to some crops. For 

example, Thompson (1988) found that the summer warming trend from 1891 to 1936 

adversely affected crop yields, while the cooling trend accompanied by increased summer 

rainfall decreased variability in yield and accounted for a 20% increase in yield from 1936 

to 1972. Increased weather variability since 1973 caused both higher and lower yields than 

previous periods. Mishra and Cherkauer (2010) also found that corn and soybean yields in 

the Midwest are significantly inversely correlated with drought indices and maximum daily 

air temperature in the grain filling and reproductive growth period.  

For the grain fill period, cooler and wetter conditions are favorable for corn and soybean 

production (Lobell and Asner, 2003). However, this is not the case for spring months. If 



156 

 

1
5
6
 

soil is too wet in the spring, planting date is delayed. Later planting means grain ripening 

takes place as days become shorter in fall thus reducing grain filling time, and reducing 

crop yield (Arjal et al., 1978). Delayed planting also increases the risk of exposure to lethal 

cold temperatures late in the season before grain maturation (Nielsen et al., 2002). Planting 

crops in cold and wet soil is not good either. Oxygen transport rates in such soil are reduced, 

adversely affecting root metabolism and retarding root development. In some cases, a 

paradoxical phenomenon of the plant wilting may happen after soil submersion (Glinski 

and Stepniewski, 1983).  

Historical climate information indicated that “cooler and wetter” condition in summer 

months and “warmer and drier” condition in spring months are optimal for crop growth in 

this area. However, projected seasonal changes in precipitation and temperature in this 

region are likely to lead to sub-optimal conditions for crop growth. Average US 

temperatures are expected to increase by 2 °C to 6 °C by 2100, depending on the level of 

future GHG emissions, and the results from various climate models (USGCRP, 2009). 

Patterns of precipitation and storm events, including both rain and snowfall will change. 

However, some of these changes are less certain than the changes associated with 

temperature. Projections show that future precipitation and storm changes will vary 

temporally and spatially (Meehl et al, 2007). Due to the enhancement of GHG 

concentrations, the Midwest USA is projected to face an increased in temperatures of 3-

6 °C by the end of this century (Wuebbles and Hayhoe, 2004), a shift in the seasonal rainfall 

distribution to wetter springs (Christensen, 2007), and an increased frequency of intense 
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precipitation events and lower summertime soil moisture levels (Cherkauer and Sinha, 

2010). 

Many studies have investigated crop responses to possible future climate change in this 

region. Sinha and Cherkauer (2010) found that the duration of soil frost will decrease late 

in the century (2070-2099) accompanied by earlier occurrences of last spring frost and later 

first autumn frost.  Southworth et al. (2000) indicate that crops in the northern part of the 

Midwest will have increased yields under climate change, because of the earlier planting 

date, but in some locations increased spring moisture will still delay planting despite 

warmer temperatures (Dohleman and Long, 2009; Rogovska and Richard, 2011). An 

increase in average temperatures also implies more frequent and intense extreme heat 

events, which may negatively affect crop yield (Goldblum, 2009).  Possible decreases in 

summer rainfall during the critical growing periods or longer drought periods will also 

result in lower summer soil moisture (Mishra et al., 2010), and crop yield reduction 

(Wuebbles and Hayhoe, 2004). Increased heavy precipitation and flooding also has 

negative impacts on crop yield; Rosenzweig et al (2002) predicted 6% corn yield losses 

due to excessive precipitation and related events by 2030 in the Midwest.  

Changes to precipitation and temperature are not the only factors impacting future crop 

yields, instead enhanced CO2 levels in the atmosphere also affect crop growth. In 2013, 

CO2 accounted for about 82% of all U.S. greenhouse gas emissions from human activities 

(USEPA, 2013).  Since CO2 is the substrate of photosynthesis, increased concentration 

stimulates photosynthetic rates directly.  Crop production usually responds positively to 

the increased atmospheric CO2 concentration, which is termed a “CO2 fertilization effect” 



158 

 

1
5
8
 

(Oliver et al., 2009). Increased CO2 concentration reduces the stomatal conductance, which 

leads to an improved plant-water productivity. As a result, transpiration loss is reduced, 

and higher soil water content is maintained during the growing season (less drought stress), 

which improves the drought tolerance by delaying the onset of water stress, and finally 

enhances the biomass production (Long et al., 2004). 

Reduced transpiration also has a negative effect on corn growth, mainly due to the resulting 

increase in tissue temperature. Transpiration is reduced because of the decrease of stomatal 

conductance as a result of CO2 concentration enhancement, which reduces the cooling via 

transpiration, and consequently increases canopy and leaf temperature (Wall et al., 2001). 

If leaf temperature is over 37 °C, the activity of phosphoenolpyruvate (PEP) is negatively 

affected (Rathnam, 1978) and thus photosynthesis decreases. Increased tissue temperature 

may have other microclimatic effects within the canopy such as decreasing humidity, 

which increases the leaf-to-air vapor pressure gradient. As a result, this may lead to a 

feedback that increases one of the driving forces for transpiration, negating the CO2 effect 

and leading to increased water use at the canopy scale (Wullschleger and Norby, 2001).   

Further, lower transpiration alone will not typically benefit a crop when soil moisture is 

available. Leakey et al. (2006) found that the productivity and yield of maize were not 

affected by the open-air elevation of CO2 concentrations (550 ppm) in the absence of 

drought in Illinois, USA, although stomatal conductance was reduced by 34% and soil 

moisture was increased by 31% when compared with corn under ambient CO2 

concentrations (370 ppm).   
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In summary, crop growth and yield is influenced by precipitation pattern, growing season 

temperature, and CO2 concentration. All of these factors directly impact crop water use, 

either through water availability, atmospheric demand or water productivity, resulting in 

feedbacks to the field water balance.  As a result, their combined effects and relative 

importance are difficult to separate and varies from case to case. Therefore, the main 

objective of this study is to quantify the biophysical and hydrologic response to future 

precipitation change, temperature increase and CO2 enhancement in an agricultural 

watershed.  

The Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) was employed in the 

St. Joseph River watershed, Eastern Corn Belt. SWAT was modified to take a time series 

of dynamic CO2 concentration as input. A regional crop leaf development curve from 

Landsat TM imagery was used to adjust model performance in corn leaf area development 

for the historical period during calibration. Finally, regional crop growth and streamflow 

responses due to changes in air temperature, precipitation, and CO2 enhancement at two 

future periods (2031-2050; 2071-2090) were evaluated. 

5.3 Method 

5.3.1 Study area 

The St. Joseph River Watershed (Figure 5.1) is located in northeastern Indiana, 

northwestern Ohio and southeastern Michigan, with a drainage area of 2821 km2. Cropland, 

with coverage of 38% of the watershed area, is the dominant land use/cover type based on 

the USDA National Agricultural Statistics Service (NASS) Cropland Data Layer (CDL) 
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for 2010. Other land use types in this watershed are pasture (26.6%), forest (13.0%), urban 

areas (12.5%) and wetland (9.3%).  

5.3.2 SWAT model overview 

Developed by the USDA-ARS, the Soil and Water Assessment Tool (SWAT) is widely 

used to assess the impact of climate variability on hydrologic process and crop production. 

The basic simulation unit for SWAT is the hydrologic response unit (HRU), which is a 

lumped land area, possessing a unique combination of land use, soil and slope within a 

subbasin. At the HRU level, SWAT simulates the hydrologic cycle based on a water 

balance equation of soil water content including evapotranspiration, surface runoff, 

infiltration, percolation, shallow and deep aquifer flow (Arnold et al., 1998). A detailed 

description of SWAT hydrological simulation can be found in Neithsch et al. (2009). 

SWAT simulates crop growth both under optimal and actual conditions. When no growth 

stress is considered, daily growth rate or daily biomass accumulation (Δbio; kg/ha) is 

regulated by leaf area index (LAI) development, light interception (kl), photosynthetically 

active radiation (Hday; MJ m-2), and radiation-use efficiency (RUE; 10-1 g/MJ), as follows:  

∆𝑏𝑖𝑜 = 0.5𝐻𝑑𝑎𝑦 ∗ (1 − exp(−𝑘𝑙 ∗ 𝐿𝐴𝐼)) ∗ 𝑅𝑈𝐸 (5.1)   

For annual crops, LAI accumulates following an optimal leaf area development curve for 

each day. LAI starts to accumulate from the planting date until it reaches the maximum 

LAI. It remains stable until the senescence point (DLAI) is attained, where LAI drops until 

maturity. 
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Figure 5.1 Location and land cover of the St. Joseph River watershed.  Land cover is 

from the USDA NASS Cropland Data Layer for 2010. The location of three USGS 

gauging stations and seven weather stations are also shown. 
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Actual daily growth varies from optimal growth due to various stresses. SWAT considers 

growth constraints from five aspects: drought, aeration, temperature, nitrogen and 

phosphorous stresses. The plant growth factor quantifies the fraction of potential growth 

achieved on a given day and is calculated as: 

      (5.2) 

where γreg is the plant growth factor (0.0-1.0), wstrs is the water stress for a given day 

expressed as a fraction of optimal plant growth, astrs is aeration stress, tstrs is the 

temperature stress, and nstrs and pstrs are nitrogen and phosphorus stress, respectively. 

Therefore, the potential LAI, and biomass are adjusted daily if any individual stress is 

greater than 0.0. If there is no stress, then γreg =1. In this study, the auto fertilization option 

was applied to avoid nutrient limitation. Therefore, nutrient stress was not considered in 

this research. Unlike the original SWAT drought stress and aeration stress calculation 

method, an S-curve method is used to convert the physical measure of excess or low soil 

moisture to the aeration or drought stress factor (Wang et al., 2016). 

5.3.3 The representation of CO2 effects in the SWAT model 

SWAT considers the biomass production enhancement due to elevated CO2 concentration 

in two ways. The direct impact on stimulating photosynthesis is reflected in a change in 

radiation-use efficiency (RUE) under different ambient CO2 levels.   Radiation-use 

efficiency is sensitive to variations in atmospheric CO2 concentrations.  The relationship 

used to adjust the RUE for effects of elevated CO2 (Stockle et al., 1992) is: 

1 max( , , , , )reg wstrs astrs tstrs nstrs pstrs  
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        (5.3) 

where RUE is the radiation use efficiency of the plant (10-1 g/MJ), CO2 is the concentration 

of carbon dioxide in the atmosphere (ppmv), and r1 and r2 are shape coefficients. For corn, 

r1=5.7998 and r2=-0.00135 (Stockle et al., 1992; Neitsch et al., 2009). According to 

equation 5.3, when CO2 is between 330 and 660 ppmv, RUE increases with increasing CO2 

concentration, reflecting that plants can accumulate more biomass for the same amount of 

absorbed energy due to greater carbon intake.  

The indirect impact of CO2 enrichment due to improving plant-water productivity is 

considered by modifying the canopy resistance term when using the Penman-Monteith 

equation to calculate potential/actual evapotranspiration. The Penman-Monteith method 

combines components that account for energy needed to sustain evaporation, the strength 

of the mechanism required to remove the water vapor and aerodynamic and canopy 

resistance terms. Based on this method, increased canopy resistance or reduced stomatal 

conductance leads to a decreased ET. Easterling et al. (1992) proposed the following 

equation to consider CO2 effect on canopy resistance:  

        (5.4) 
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where rc is the canopy resistance (s/m), rl is the minimum effective stomatal resistance of 

a single leaf (s/m), and LAI is the leaf area index of the canopy. Increased canopy resistance 

or reduced stomatal conductance leads to a decreased ET. 

 

5.3.4 Input Data 

5.3.4.1 Historical climate input 

Historical climate input (daily precipitation and air temperature) from 1991 to 2010 is 

provided from NOAA National Climate Data Center weather stations, as well as weather 

stations maintained by the USDA-ARS National Soil Erosion Research Laboratory. Seven 

precipitation and three temperature stations were selected around or inside the St. Joseph 

River watershed (Figure 5.1). Model calibration is based on observed historical climate 

data.  

5.3.4.2 GCM climate input 

Three Global Circulation Models (GFDL-CM2.1.1, NCAR-PCM1.3, UKMO-

HADCM3.1), under three Special Report on Emissions Scenarios (SRES) Emission 

Scenarios (b1, a1b, a2) were provided by World Climate Research Programme’s (WCRP’s) 

Coupled Model Intercomparison Project Phase 3 (CMIP3). Data was first bias corrected 

and then temporally disaggregated to daily scale based on resampling of the historic time 

series (Cherkauer and Sinha, 2010), before being utilized as weather input to evaluate 

climate change effects on crop growth and streamflow. The downscaled and bias-corrected 
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projected daily data is available from 1950 to 2099 for all three models and all three 

emissions scenarios.  

5.3.4.3 CO2 input 

Historical annual CO2 concentration and future CO2 concentration predicted for the three 

SRES emission scenarios are provided by the IPCC Third Assessment Report - Climate 

Change (Houghton et al., 2001). Concentration data is provided annually from 1970 to 

2100 for each emission scenario.  

 

5.3.5 Model implementation 

Model implementation and all parameters are based on multi-variable calibration from 

Chapter 4. Daily weather from the three selected GCMs under three emissions scenarios, 

including the dynamic CO2 concentrations, were used to drive the SWAT model.  Model 

applications were performed using calibrated parameters from the previous section for 

three 30-year time periods. The first period represents the baseline period (1981-2010). 

The second and third periods represent the near future (2021-2050) and far future (2061-

2090). In order to explore how CO2 enhancement and future climate change affect crop 

growth and streamflow, the following model experiments were conducted: 

1) Baseline run: Baseline period daily precipitation and temperature data (1981-2010) 

plus baseline period (1981-2010) CO2 concentrations ([CO2]). 
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2) Near future run:  Near future daily precipitation and temperature data (2021-2050) 

plus near future (2021-2050) CO2 concentrations ([CO2]). 

3) Near future run, with CO2 control: Near future daily precipitation and temperature 

data (2021-2050) plus baseline period (1981-2010) CO2 concentrations ([CO2]). 

4) Far future run: Far future daily precipitation and temperature data (2061-2090) plus 

far future period (2061-2090) CO2 concentrations ([CO2]). 

5) Far future run, with CO2 control: Far future daily precipitation and temperature data 

(2061-2090) plus baseline period (1981-2010) CO2 concentrations ([CO2]). 

 

5.4 Results and Discussions 

5.4.1 Future climate change and CO2 enhancement 

As shown in Figure 5.2, annual precipitation and temperature change prediction are quite 

different between models and scenarios. Figure 5.2 displays variations in average annual 

temperature and precipitation for the two future periods relative to the baseline period 

(1991-2010). Both future projections indicate a consistent rise in temperature, but distinct 

differences in magnitude. For the near future period (2021-2050), the change varied 

between +0.43 °C and +1.98 °C, with an average value of +1.20 °C, while for the far future 

period (2061-2090), the range is from +1.42 °C to 3.75 °C, with an average change of 

2.79 °C. For precipitation, all of these scenarios experienced an annual increasing 

precipitation, with average change of +4.69% for the 2021-2050 period, and +7.51% for 
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the 2061-2090 period. The UKMO-HADCM 3.1 model always predicts lower precipitation 

change but higher temperature increases. On the contrary, higher precipitation change but 

lower temperature change was projected by the NCAR-PCM 1.3 model.  Under the B1 

scenario, all three models predict lower annual precipitation and temperature change than 

the other two scenarios in both the near future and far future periods. 

 

Figure 5.2 Annual mean temperature and precipitation change from the baseline 

period (1981-2010) to a) the near future period (2021-2050) and b) the far future 

period (2061-2090) according to three GCMs under three GHG scenarios in St. 

Joseph River watershed 

 

The monthly temperature and precipitation change based on the three future emission 

scenarios is illustrated in Figure 5.3. Temperature increases are predicted for all months in 

the near future period (Figure. 5.3(a)). Temperature is expected to keep increasing in the 

far future period under all three scenarios (Figure. 5.3(b)). July, August and September are 

expected to experience greater temperature increases compared to the other months. Most 
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of the time, scenario B1 predicts a smaller increase in temperature when compared with 

the other two scenarios.   

Precipitation change also varies seasonally in the study area. Precipitation increases are 

predicted in winter and spring months (November to March) for all scenarios in the two 

future periods, with the magnitude of the increase highest in the far future period. Marginal 

variations (could be positive or negative) in precipitation are predicted in June and July. 

For August, only scenario A2 predicted a moderate increase, on average (around 10%), all 

other scenarios report marginal precipitation variations. All three scenarios project 

different precipitation change patterns in September and October. Scenario B1 indicates a 

moderate decrease in both future periods. For the near future period, scenario A1B 

indicates moderate decreases in September but moderate increases in October, scenario A2 

shows the revers. For the far future period, both A1B and A2 predict precipitation increases 

in September and October. Therefore, no clear direction of precipitation change is 

predicted for the fall months (September and October).  

Based on Figure 5.2 and 5.3, the St. Joseph River watershed will more likely experience 

enhanced air temperature in both future periods, especially during the summer months (July, 

August, and September). Precipitation is expected to substantially increase in winter and 

spring, but show little change in summer months (July, June and August). Increased 

temperature accompanied with nearly unchanged precipitation in summer months indicate 

a higher evapotranspiration demand. Therefore, the study area may become much drier in 

the summer months, which are often critical corn growth periods, and an increase in 

drought stress during this critical period will lead to final yield reduction.     
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Figure 5.3 Monthly mean: (a) temperature and (b) precipitation variation between 

the baseline period (1981-2010) and the near future period (2021-2050); Monthly 

mean: (c) temperature and (d) precipitation variation between the baseline period 

(1981-2010) and the far future period (2061-2090) 

 

Figure 5.4 depicts the CO2 concentration prediction from 1970 to 2100 for different SRES 

scenarios. The A2 scenario has the highest CO2 increasing rate. A2 and A1B have quite 

similar CO2 concentrations until year 2050 (522 ppm), when A2 projects a much more 

rapid increase. The B1 scenario has the lowest concentration among all three SRES 

emission scenarios, and it reaches a relatively stable concentration (530 ppm) by the year 

2080. Since biomass accumulation and final yield are closely related to Radiation Use 

Efficiency RUE (Eq. 5.1), which is a function of CO2 level (Eq. 5.3), Figure 5.4(b) was 
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generated to indicate how corn RUE responds to different CO2 concentrations. Generally, 

RUE responds to CO2 increases positively, but when the CO2 level is over 500 ppm, further 

CO2 increases will not cause much further increase in RUE. For this reason, RUE impacts 

under both the A1B and A2 scenarios are very similar even though their CO2 

concentrations diverge after 2050.  This divergence occurs when both scenarios are over 

500 ppm CO2 and SWAT is no longer sensitive to the change.  Furthermore Eq. 5.3 is only 

suitable for CO2 concentration from 330 to 660 ppm, as it starts to reverse the effect of CO2 

fertilization at higher concentrations.  Thus the equation has been modified so that if CO2 

concentration is greater than 660 ppm, the equation ignores further increases. Therefore, 

RUE will not exceed 45.05 (RUE at 660 ppm from Eq. 5.3).  

 

Figure 5.4 Future changes to CO2 and radiation use efficiency as estimated by the 

modified SWAT model. 

 

5.4.2 Crop biophysical responses to future climate and CO2 change 

Section 3.1 indicates that future climate change may introduce more drought stress during 

the crop growing season, which may in turn impact the final yield in our study area. 
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However, the enhanced CO2 is also expected to increase crop yield to some extent. Their 

combined biophysical impacts on crop yields are unknown and might be different between 

the two future periods due to differences in future climate and CO2 concentration. 

Therefore, in this section, the biophysical impacts of future climate and CO2 change are 

explored.  

Figure 5.5 exhibits the impacts of climate change and CO2 enhancement on three crop 

stresses (aeration, drought and temperature) and final yield based on the different 

simulation experiments in both the baseline and two future periods. Annual stress for each 

corn HRU was first computed from the daily time series, and then aggregated into basin 

level based on HRU areas. Compared to the baseline scenario, both annual total aeration 

(Figure 5.5(a)) and drought stress (Figure 5.5(b)) experienced more variance in both future 

periods. Furthermore, the variances for both stresses were predicted to increase from the 

near future to the far future periods. This can be seen from the increase of Q75 (upper 

quartile, meaning 25% of the data lie above this threshold) and the range (Differences 

between upper and lower Whisker) of both stresses (Table 5.2). Limited change in the 

median value of aeration or drought stress was detected.  The impact of CO2 change on any 

of the stresses was not appreciable in the near future period.  For the far future period, CO2 

enhancement slightly increases the median of annual aeration stress (1.06 vs 0.82), and 

slightly reduces annual drought stress (10.48 vs. 10.73).  

Figure 5.5(c) indicates the temperature stress variation for different simulation experiments. 

In contrast to aeration and drought stress, climate change impacts to temperature stress are 

quite different. The median value for temperature stress for baseline, near future, and far 
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future periods are 14.71, 8.73, and 6.07, respectively, indicating a decreasing trend in the 

future periods. This decreasing trend is also accompanied by decreased variation in stress.  

 

Figure 5.5 Boxplots for annual basin level stress and corn yield for the different 

modeling experiments: a) Aeration stress, b) Drought stress, c) Temperature stress, 

and d) corn yield. Box plots for each experiment based on annual average results for 

the 30 year period as projected be three GCMs and three climate change scenarios. 

BL: Baseline, NF: Near future, FF: Far future.  
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Table 5.1 Statistics for stresses and corn yield based on all modeling experiments. 

Statistic Stress/Yield 

Baseline 

climate 

and 

[CO2] 

Near 

future 

climate 

and 

[CO2] 

Near 

future 

climate, 

baseline 

[CO2] 

Far 

future 

climate 

and 

[CO2] 

Far 

future 

climate, 

baseline 

[CO2] 

Median 

Aeration 

Stress 0.70 0.75 0.67 1.06 0.82 

Drought 

Stress 9.82 9.91 9.96 10.48 10.73 

Temperature 

Stress 14.71 8.74 8.74 6.07 6.07 

Corn Yield 

(t/ha) 7.85 7.37 7.38 6.62 6.63 

Q75 

Aeration 

Stress 1.45 2.00 1.94 2.49 2.23 

Drought 

Stress 11.85 13.29 13.39 13.82 14.12 

Temperature 

Stress 21.88 11.33 11.33 8.00 8.00 

Corn Yield 

(t/ha) 8.12 7.71 7.70 7.15 7.16 

Range 

Aeration 

Stress 3.42 4.76 4.65 5.76 5.30 

Drought 

Stress 11.99 18.68 18.93 20.66 21.56 

Temperature 

Stress 39.81 19.22 19.22 14.46 14.46 

Corn Yield 

(t/ha) 2.46 3.02 3.05 4.19 4.29 

 

The difference in yield for each experiment is caused by the effect of all three stresses. 

Based on Figure 5.5(d), median crop yield is projected to decrease, the reduction for the 

near future period is around 0.5 t/ha, while for the far future period yield loss is 1.2 t/ha.  

More variance in crop yield is also predicted for both future periods. Larger yield variance 

in the future is caused by more extremely low yield conditions rather than an increase in 

high yield occurrences. CO2 enhancement shows a marginal effect on crop yield (around 
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0.01 t/ha difference in median value), which is consistent with its influence on growth 

stresses.   

The relationship between growth stresses and crop responses was further investigated by 

plotting annual yield versus various biophysical stresses (aeration, drought and temperature 

stresses) for each modeling experiment, as shown in Figure 5.6-8. Results indicate an 

increasing trend in aeration stresses, as seen in the increasing number of years with bigger 

aeration stress in contrast to the baseline period (Figure 5.6). However, there is no clear 

relationship between aeration stress and crop yield. This is mainly due to the low frequency 

of aeration stress events during the simulation period. In terms of drought stress (Figure 

5.7), an inverse correlation was found between yield and annual stress. Compared to the 

baseline period, the two future periods experienced larger annual stresses, which is also 

associated with more yield loss. Another interesting point from Figure 5.7 is the effect of 

CO2 on drought stress and yield.  When the baseline period CO2 was used for future periods, 

it resulted in larger drought stress and more yield reduction, (The gold or purple circles are 

always to the lower right of their counterpart dots). This indicates that CO2 enhancement 

can reduce drought stress and reduce the risk of yield loss. We conducted t-tests between 

corn yields for scenarios with baseline CO2 and those with near future and far future CO2 

concentrations. Significant differences (p<0.01) in mean yield were found when CO2 

enhancement is considered. However, the difference in mean yield is marginal (0.001 

ton/ha and 0.003 ton/ha for near future and far future periods, respectively).   Therefore, 

the positive influence of CO2 enhancement on crop growth cannot compensate the negative 

effect of temperature and precipitation change. This finding is supported by several field 
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studies that also indicate that CO2 enhancement effect is not significant to corn yield. For 

example, Leakey et al (2006) found the yield of maize is not affected by open-air elevation 

of CO2 in the absence of drought. Ainsworth and Long (2005) also found no significant 

yield increase in C4 crops or C4 wild grasses in the Free-Air Concentration Enrichment 

(FACE) studies under different CO2 treatments.   

Figure 5.8 illustrates the relationship between temperature stress and crop yield for the 

different modeling experiments. Consistent with Figure 5.5(c), temperature stress 

decreased in the future period when compared to the baseline period.  Decreased 

temperature stress is caused by the increase in mean temperature. In SWAT, temperature 

stress is computed based on daily mean temperature, as shown in Figure 5.9. For corn, the 

optimal mean growth temperature is 25 °C. When daily mean temperature is between 20 °C 

to 30 °C, very limited temperature stress is found. When mean temperature is below 20 °C 

or over 30 °C, temperature stress increases rapidly. The threshold of high temperature, 

beyond which heat stress may increase substantially, is consistent with other studies (e.g. 

Schlenker and Robert, 2009). Schlenker and Roberts (2009) found that corn yield decreases 

sharply, if temperature is over 29 °C. Future temperature increases may help to release 

stress caused by low temperature (cold condition), however, SWAT does not predict much 

more stress due to high temperatures, since daily mean temperature over 30 °C is still rare. 

Figure 5.8 also indicates that lower temperature stress is accompanied with lower yield. 

This can be explained by the increasing threat of drought stress. Although direct 

temperature stress due to warmer temperatures is not predicted by SWAT, increased 

temperature does exacerbate the drought stress in summer months, which is more critical 
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to final corn yield (Nielsen, 2008). The reduced temperature stress in the early growing 

season (cold condition) due to mean temperature increasing cannot compensate for the 

yield reduction risk due to exacerbated drought stress in summer months. This finding is 

consistent with other studies (Brown et al., 2000; Hawkins et al., 2013). Brown et al., (2000) 

applied the erosion productivity impact calculator (EPIC) crop growth model in the 

Missouri-Iowa-Nebraska-Kansas (MINK) region to study environmental effects of 

switchgrass and traditional crops under current and future greenhouse-altered climate. 

They found that higher temperatures would decrease cold stress, but increase heat stress 

with water deficit, so climate would still threaten the final corn yield. Hawkins et al. (2013) 

used an empirical model and GCM data to study the heat stress influence on French maize 

yield. They found that most large maize producing regions could experience a greater 

number of hot days in 2016-2035, causing an estimated 12% yield loss. However, hot days 

may become less damaging for yields as precipitation increases. Actually, the increase of 

temperature itself is not an issue if plenty of soil moisture is provided for corn. Field 

experiments indicate that no direct damage to photosynthetic capacity was found even 

when the temperature of the corn plant was raised to 37.8 °C (Nafziger  2011). It should be 

noted that the temperature stress computed by SWAT is the function of air temperature 

alone (Neitsch et al., 2009). If water is limited or the stomatal conductance is reduced due 

to CO2 enhancement, tissue temperature should also increase, but the possible damage 

(Nava, 2013; Wang et al., 2008; Ristic et al., 1996) caused by this increase is not reflected 

by the model. Therefore, the negative effects of future temperature stress on corn growth 

is likely underestimated, especially when growing season rainfall is reduced and CO2 is 

enhanced in the future.   
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Figure 5.6 SWAT estimated corn yield vs. aeration stress for all model experiments 

 

Figure 5.7 SWAT estimated corn yield vs. drought stress for all model experiments 
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Figure 5.8 SWAT estimated corn yield vs. temperature stress for all model 

experiments 

 

Figure 5.9 The SWAT modeled relationship between corn temperature stress and 

mean daily air temperature 
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5.4.3 Streamflow response to future climate change and enhanced CO2 

Flow duration curves (Figure 5.10) are used to visualize streamflow change under different 

modeling experiments for the whole range of annual daily flows. Figure 5.10a uses a log 

scale on the horizontal axis to display the streamflow change at low probability of 

exceedance (PE). Figure 5.10b employs log scale on the vertical axis to better visualize 

streamflow change at low flow conditions. Figure 5.10c uses linear scale to highlight low 

flow changes. For the near future period, streamflow volumes are generally predicted to 

increase for both small and large PE.  For the far future period, streamflow is expected to 

decrease for large PE, while streamflow discharge for small PE will increase. This indicates 

that more hydrological drought and flooding events are expected to happen in the far future 

period (2061-2090). This is probably due to the shifted seasonal precipitation pattern in 

future, with wetter springs and more intense but less frequent summer storms. Warmer air 

temperatures coupled with unchanged summer precipitation increases ET in the study 

region, and in turn reduces flow volumes for low flow conditions (Cherkauer and Sinha, 

2010). Table 5.3 summarizes the mean annual discharge based on different SRES scenarios. 

For the near future period, all three SRES scenarios predict an increasing trend in mean 

discharge, while for the far future period, only the B1 scenario predicts an increasing trend 

in mean discharge, the other two indicate a slightly decreasing trend in mean discharge.   
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Figure 5.10 Flow duration curves for all modeling experiments 

 

Table 5.2 Mean discharge from the five modeling experiments. 

 Mean discharge (m3/s) 

 

Baseline 

climate 

and [CO2] 

Near future 

climate 

and [CO2] 

Near future 

climate, 

baseline [CO2] 

Far future 

climate 

and [CO2] 

Far future 

climate, 

baseline [CO2] 

b1 32.63 33.20 33.01 33.66 33.26 

a1b 32.35 34.95 34.70 29.06 28.18 

a2 31.71 35.21 34.97 31.00 30.19 

 

By comparing the flow duration curves with baseline and future CO2 concentrations, it can 

be seen that CO2 enhancement can increase streamflow in both low PE and high PE 

conditions. However, the amount of increase is quite marginal and only visible at very low 
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PE conditions (PE < 0.001).  For the whole flow range, the mean discharge for the near 

future period varies from 34.37 m3/s to 34.14 m3/s, so only a 0.67% increase due to CO2-

related crop impacts.  The situation for the far future period is quite similar, with mean 

discharge increased by 1.26% due to CO2 enhancement. The increased amount of 

streamflow is mainly due to the improvement of plant-water relationship. Enhanced 

atmospheric CO2 levels result in the reduced stomatal conductance, and therefore decreases 

the transpiration rate for similar levels of productivity.  Reduced ET leaves more water 

available for streamflow. This finding is consistent with many other studies (Wu et al., 

2012; Niu et al., 2013; Butcher et al., 2014), which all predict annual streamflow volume 

increases (of 1%-4%) when CO2 enhancement effects on stomatal conductance are 

considered by models.   

5.5 Conclusions 

In this research, the SWAT model was used to explore future climate change and CO2 

enhancement effects on corn growth and hydrology in the St. Joseph River watershed, 

Eastern Corn Belt. The current SWAT model was first modified to make it take dynamic 

CO2 concentration as a model input. Then remote sensing information was used to generate 

regional potential leaf area development curve for parameterization.  A multi-objective 

calibration strategy was conducted to ensure the capturing of daily streamflow, seasonal 

crop growth and interannual crop yield simultaneously. After calibration, the model was 

driven by CO2 concentration, and downscaled, bias-corrected precipitation and 

temperature from three GCMs under three SRES scenarios to study potential biophysical 

and hydrological impacts in two future periods (2021-2050; 2061-2090).  
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Based on this work, we can conclude the following: 

1. The St. Joseph River watershed will more likely experience significant increasing 

precipitation in winter and spring months. But for summer months, a slight decrease 

or unchanged precipitation is predicted. Air temperature is also expected to rise for 

all months, but especially for summer months. Increased temperature accompanied 

with decreased or unchanged precipitation indicates more late summer threat to 

corn growth due to increased drought stress in the future period.  

2. Both total annual aeration and drought stresses are expected to experience more 

year-to-year variability in both future periods. No significant change in the median 

value of aeration or drought stress was detected. Temperature stress is expected to 

decrease in the future period when compared to the baseline period. This is mainly 

due to the reduction of cold stress in the early growing season; however, reduced 

temperature stress cannot compensate for the yield reduction risk due to 

exacerbated drought stress in summer months due to temperature increases and 

precipitation reduction.  

3. Future CO2 enhancement benefits the crop growth and final yield by improving 

radiation use efficiency (RUE) and reducing drought stresses. The improvement in 

RUE is not significant when the CO2 level is over 500 ppm. Annual median drought 

stress is expected to reduce marginally (from 10.73 to 10.48) due to CO2 increasing, 

while median aeration stress is expected to increase marginally. Therefore, the 

mitigation impact of CO2 enhancement on crop yield reduction is not significant. 

Detrended crop yield is still expected to reduce by 6.1% in the near future period, 
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and by 15.6% in the far future period due to both climate change and CO2 

enhancement. 

4. Climate change results in changes in streamflow frequency. Streamflow was 

predicted to increase for the whole flow range in the near future period, primarily 

due to precipitation increases. Increases in streamflow due to enhanced crop water 

productivity are quite low and only visible at very low PE condition (PE < 0.001). 

For the far future period, high flows are expected to increase, while low flows are 

expected to decrease, indicating a potential for both more hydrological drought and 

flood events in St. Joseph River watershed.  
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CHAPTER 6. CONCLUSIONS AND RECOMMEDATIONS FOR FUTURE WORK 

Corn seasonal growth and yield are strongly affected by climate variability and will be 

affected under future climate change situation. When investigating climate impacts on corn 

growth via a modeling method, plant-water relationships must be seriously considered. In 

this dissertation, I evaluated climate impacts on crop growth by first improving 

representation of plant-water interactions when water is either limited or oversupplied. The 

modeled crop responses under various climate conditions are regulated by moisture related 

bio-climatic parameters, which modulate simulated crop sensitivity to climate variability. 

My modeling method was applied at both plot scale at several sites in the Midwest USA, 

where moisture data is available, and watershed scale in the St. Joseph River watershed, 

Eastern Corn Belt, where direct moisture evaluation is not feasible. The multi-variable 

calibration strategy was compared with a streamflow only calibration to evaluate the model 

representation in plant-water interactions based on different calibration methods. Future 

climate change impact on crop growth was also investigated by not only considering 

precipitation and temperature change, but also the increasing trend of CO2.  
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6.1 Conclusions 

This study tested four main hypotheses raised in Chapter 1. The results of those hypothesis 

tests and main findings are concluded as follows: 

Hypothesis 1:  Annual crop yield variability is regulated by moisture related 

(oversupplied or limited water) bioclimatic stresses. Those stresses have significant 

effects on crop yield at specific growing periods.  

To better quantify the effect of climate variability on crop growth via moisture related 

bioclimatic indices, I evaluated the SWAT model’s ability to reproduce observed moisture 

at plot scale in four NRCS-SCAN sites across the Midwest in Chapter 2. I then calibrated 

biophysical parameters, including stress parameters, which are directly related to soil 

moisture to regulate both mean and interannual yield variability. Results indicate an 

improvement in both mean and interannual yield variability in all four SCAN sites after 

the improved simulation of soil moisture. Therefore, evaluation of soil moisture in a crop 

modeling study is recommended for its importance in constraining crop water availability 

and thus better simulates crop responses to climate variability.  

Our results in Chapter 2 demonstrated that annual observed corn yield is inversely 

correlated with drought stress intensity in the early and middle reproductive stage, which 

were more critical than other growth stages. Severe drought stress in the early and middle 

reproductive periods is substantially correlated with low observed yields. No significant 

relationship between crop yield and aeration stress was found at any of the four sites, due 

to the fact that aeration stress is hard to detect at county scales, as well as low frequency of 
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events in the historical record. This finding indicates the significance of drought stresses 

(limited water) on seasonal crop growth, and address the importance of correct 

representation of moisture to evaluate drought stress.  

 

Hypothesis 2: Crop response to oversupplied or limited water varies with spatial scale. 

Drought stress results in regional yield declines, while aeration stress results in higher 

yield decline over smaller spatial areas, but is not detectable at large special scales.  

Drought stress explains the majority of yield reduction across all return periods.  

Leaf growth condition detected by satellite based NDVI time series is used to represent 

corn growth conditions at watershed scale in Chapter 3. NDVI shows larger spatial 

variance during the leaf development and senescence periods, but minimum variance when 

the canopy is fully developed. Crop responses to bioclimatic stresses are quantified via 

NDVI residual by comparing image NDVI with long term “normal growth curve” from 

remote sensing images in Chapter 3.  

I found that water stresses are closely associated with NDVI residuals. Limited water stress 

tends to result in crop growth below normal conditions, while plenty of rainfall reduces the 

risk of yield loss over larger areas. The percentage of corn cells under stress are also 

significantly correlated with water stress. More corn pixels are under stress when water is 

limited at regional scale. The spatial extent of cells under stress is much lower when water 

is oversupplied, masking the impact of small areas of yield loss at regional scale.   
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Results in Chapter 2 showed that drought stress explains the majority of yield reduction 

across all return periods. Long term simulation of yield reduction indicates that drought 

stress dominates aeration stress affecting yield in the historical period both at short and 

long return periods (high/low probability of exceedance). For a 70-year period, the total 

yield reduction due to drought stress is 8.1%, 17.5%, 15.2% and 9.7% respectively for 

Boone, Woodbury, Madison and Mason. 

 

Hypothesis 3: Multi-variable calibration of streamflow, the seasonal crop growth curve 

(LAI development), and annual yield within an ecohydrologic model can improve 

simulation performance in the face of climate variability, and reduce uncertainty in 

moisture prediction. 

 Merging satellite information into model output is helpful to improve model representation 

in seasonal crop growth. In Chapter 4, I found that the multi-variable calibration strategy 

is able to capture seasonal crop growth development, and thus reduce the equifinality in 

final yield estimation due to the selection of incorrect parameter sets. Interannual yield 

variability is also improved, which correctly reflects the climate effects on final yield. 

Model performance in streamflow is reduced marginally (0.820 to 0.817 in NSC), but still 

satisfactory. Simulated corn responses to climate variability is improved without 

hampering model performance in streamflow. Neither of the calibration strategies could 

successfully capture the bias of soil moisture, however, the uncertainty in moisture 

prediction is reduced when applying multi-variable calibration strategy.  
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Hypothesis 4: Future climate change will have negative impacts on rainfed corn yield, 

and introduce more interannual variability in the Eastern Corn Belt because of 

increased spring wetness and decreased summer rainfall. CO2 enhancement cannot 

compensate for yield reduction due to changes in rainfall and temperature.  

Multiple GCM outputs under different scenarios shown in Chapter 5 demonstrate that the 

St. Joseph River watershed will likely experience increased air temperature, especially in 

summer months, accompanied with decreased or unchanged precipitation. Precipitation in 

winter and spring months is expected to increase significantly in near future (2021-2050) 

and far future periods (2061-2090). These changes introduce more variability in total 

aeration and drought stress.  

Although future CO2 enhancement benefits the crop growth and yield by improving 

radiation use efficiency (RUE) and reducing drought stresses, the compensation to reduce 

yield loss risk is not sufficient. Modeling results in Chapter 5 indicate that yield is still 

expected to decrease by 6% in the near future period, and 16% in the far future period due 

to the combined effect of both climate change and CO2 enhancement. More yield 

variability is also predicted by the model associated with the variance in total aeration and 

drought stress.  

Streamflow frequency is also predicted to change in the future. Stream discharge is 

projected to increase for the whole flow range in the near future period. For the far future 

period, high flows are expected to increase, while low flows are expected to decrease, 

indicating more hydrologic drought and flood events in the St. Joseph River watershed.  
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6.2 Limitations and Future Work 

In this study, crop modeling was improved via modifying and evaluating the simulation of 

water-plant relationships. Our understanding of climate variability and climate change 

impacts on crop growth is improved. However, there are still several limitations in this 

study, which could be addressed by future research.   

1. Current yield calibration strategy does not consider the susceptibility of corn to 

drought stress or aeration stress. Though our study indicates yield is more related 

to stress in some specific periods, the same stress transformation is employed for 

the whole growing period. Future studies should focus on improve stress 

parameterization to represent susceptibility.  

 

2. Crop death is not defined in the SWAT model, so the simulated crop can recover 

under any situation. This can result in unrealistic yield prediction under very 

extreme conditions (flooding or drought). Future study should include “crop death” 

in model simulation, which is more consistent with reality.  

 

3. The difficulty in identifying aeration stress effect on crop yield is caused by scale 

issues, since losses are more localized within the field scale rather than county or 

watershed scale, and the low frequency and resolution of historical records. More 

future greenhouse studies are required to artificially control moisture condition, and 

observe how crop responds to excess water at different phenological stages. 
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4. The regional LAI curve was generated based on a published empirical NDVI-LAI 

relationship. It could be helpful to evaluate this relationship by measuring LAI 

directly in the study region. The seasonal LAI development method in this 

dissertation could also be used for other satellite images or aerial photos taken by 

unmanned aerial vehicles (UAVs), which do not have the same issues with clouds 

or spatial and temporal resolution.  

 

5. When the model is used at watershed level, the inconsistency of soil property 

representation across counties introduced inconsistencies into the simulation of soil 

moisture and crop yield. The bias-correction approach used by this dissertation 

could be avoided if using more uniform soil datasets to overcome the discrepancy 

between soil representations across counties.  

 

6. The current moisture evaluation method is based on in-situ sensors in the study area, 

which are still at point scale. Future studies will get benefits from basin level 

moisture evaluation by the help of the newly launched NASA-SMAP (Soil 

Moisture Active Passive) satellite.  

 

7. The current SWAT algorithm to reflect CO2 effect on crop growth is limited 

between 330 ppm to 660 ppm. For future climate studies, especially high emission 

scenarios, this algorithm needs to be extended to represent crop affects over 660 

ppm. Generating an updated relationship will require more greenhouse studies, 

which could be a focus for future studies.  
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