106 research outputs found

    The fourth phase of the radiative transfer model intercomparison (RAMI) exercise : Actual canopy scenarios and conformity testing

    Get PDF
    The RAdiative transfer Model Intercomparison (RAMI) activity focuses on the benchmarking of canopy radiative transfer (RT) models. For the current fourth phase of RAMI, six highly realistic virtual plant environments were constructed on the basis of intensive field data collected from (both deciduous and coniferous) forest stands as well as test sites in Europe and South Africa. Twelve RT modelling groups provided simulations of canopy scale (directional and hemispherically integrated) radiative quantities, as well as a series of binary hemispherical photographs acquired from different locations within the virtual canopies. The simulation results showed much greater variance than those recently analysed for the abstract canopy scenarios of RAMI-IV. Canopy complexity is among the most likely drivers behind operator induced errors that gave rise to the discrepancies. Conformity testing was introduced to separate the simulation results into acceptable and non-acceptable contributions. More specifically, a shared risk approach is used to evaluate the compliance of RI model simulations on the basis of reference data generated with the weighted ensemble averaging technique from ISO-13528. However, using concepts from legal metrology, the uncertainty of this reference solution will be shown to prevent a confident assessment of model performance with respect to the selected tolerance intervals. As an alternative, guarded risk decision rules will be presented to account explicitly for the uncertainty associated with the reference and candidate methods. Both guarded acceptance and guarded rejection approaches are used to make confident statements about the acceptance and/or rejection of RT model simulations with respect to the predefined tolerance intervals. (C) 2015 The Authors. Published by Elsevier Inc.Peer reviewe

    Forest structure from terrestrial laser scanning – in support of remote sensing calibration/validation and operational inventory

    Get PDF
    Forests are an important part of the natural ecosystem, providing resources such as timber and fuel, performing services such as energy exchange and carbon storage, and presenting risks, such as fire damage and invasive species impacts. Improved characterization of forest structural attributes is desirable, as it could improve our understanding and management of these natural resources. However, the traditional, systematic collection of forest information – dubbed “forest inventory” – is time-consuming, expensive, and coarse when compared to novel 3-D measurement technologies. Remote sensing estimates, on the other hand, provide synoptic coverage, but often fail to capture the fine- scale structural variation of the forest environment. Terrestrial laser scanning (TLS) has demonstrated a potential to address these limitations, but its operational use has remained limited due to unsatisfactory performance characteristics vs. budgetary constraints of many end-users. To address this gap, my dissertation advanced affordable mobile laser scanning capabilities for operational forest structure assessment. We developed geometric reconstruction of forest structure from rapid-scan, low-resolution point cloud data, providing for automatic extraction of standard forest inventory metrics. To augment these results over larger areas, we designed a view-invariant feature descriptor to enable marker-free registration of TLS data pairs, without knowledge of the initial sensor pose. Finally, a graph-theory framework was integrated to perform multi-view registration between a network of disconnected scans, which provided improved assessment of forest inventory variables. This work addresses a major limitation related to the inability of TLS to assess forest structure at an operational scale, and may facilitate improved understanding of the phenomenology of airborne sensing systems, by providing fine-scale reference data with which to interpret the active or passive electromagnetic radiation interactions with forest structure. Outputs are being utilized to provide antecedent science data for NASA’s HyspIRI mission and to support the National Ecological Observatory Network’s (NEON) long-term environmental monitoring initiatives

    ModĂ©lisation de l'architecture des forĂȘts pour amĂ©liorer la tĂ©lĂ©dĂ©tection des attributs forestiers

    Get PDF
    The quality of indirect measurements of canopy structure, from in situ and satellite remote sensing, is based on knowledge of vegetation canopy architecture. Technological advances in ground-based, airborne or satellite remote sensing can now significantly improve the effectiveness of measurement programs on forest resources.The structure of vegetation canopy describes the position, orientation, size and shape of elements of the canopy.The complexity of the canopy in forest environments greatly limits our ability to characterize forest structural attributes. Architectural models have been developed to help the interpretation of canopy structural measurements by remote sensing. Recently, the terrestrial LiDAR systems, or TLiDAR ( Terrestrial Light Detection and Ranging ), are used to gather information on the structure of individual trees or forest stands.The TLiDAR allows the extraction of 3D structural information under the canopy at the centimetre scale.The methodology proposed in my Ph.D. thesis is a strategy to overcome the weakness in the structural sampling of vegetation cover.The main objective of the Ph.D. is to develop an architectural model of vegetation canopy, called L-Architect (LiDAR data to vegetation Architecture ), and to focus on the ability to document forest sites and to get information on canopy structure from remote sensing tools. Specifically, L-Architect reconstructs the architecture of individual conifer trees from TLiDAR data. Quantitative evaluation of L-Architect consisted to investigate (i) the structural consistency of the reconstructed trees and (ii) the radiative coherence by the inclusion of reconstructed trees in a 3D radiative transfer model. Then, a methodology was developed to quasi-automatically reconstruct the structure of individual trees from an optimization algorithm using TLiDAR data and allometric relationships. L-Architect thus provides an explicit link between the range measurements of TLiDAR and structural attributes of individual trees. L-Architect has finally been applied to model the architecture of forest canopy for better characterization of vertical and horizontal structure with airborne LiDAR data. This project provides a mean to answer requests of detailed canopy architectural data, difficult to obtain, to reproduce a variety of forest covers. Because of the importance of architectural models, L-Architect provides a significant contribution for improving the capacity of parameters' inversion in vegetation cover for optical and lidar remote sensing

    Fine-scale Inventory of Forest Biomass with Ground-based LiDAR

    Get PDF
    Biomass measurement provides a baseline for ecosystem valuation required by modern forest management. The advent of ground-based LiDAR technology, renowned for 3D sampling resolution, has been altering the routines of biomass inventory. The thesis develops a set of innovative approaches in support of fine-scale biomass inventory, including automatic extraction of stem statistics, robust delineation of plot biomass components, accurate classification of individual tree species, and repeatable scanning of plot trees using a lightweight scanning system. Main achievements in terms of accuracy are a relative root mean square error of 11% for stem volume extraction, a mean classification accuracy of 0.72 for plot wood components, and a classification accuracy of 92% among seven tree species. The results indicate the technical feasibility of biomass delineation and monitoring from plot-level and multi-species point cloud datasets, whereas point occlusion and lack of fine-scale validation dataset are current challenges for biomass 3D analysis from ground.S.G.S. International Tuition Award from the University of Lethbridge The Dean's Scholarship from the University of Lethbridge Campus Alberta Innovates Program NSERC Discovery Grants Progra

    Remote sensing technologies for enhancing forest inventories: a review

    No full text
    Forest inventory and management requirements are changing rapidly in the context of an increasingly complex set of economic, environmental, and social policy objectives. Advanced remote sensing technologies provide data to assist in addressing these escalating information needs and to support the subsequent development and parameterization of models for an even broader range of information needs. This special issue contains papers that use a variety of remote sensing technologies to derive forest inventory or inventory-related information. Herein, we review the potential of 4 advanced remote sensing technologies, which we posit as having the greatest potential to influence forest inventories designed to characterize forest resource information for strategic, tactical, and operational planning: airborne laser scanning (ALS), terrestrial laser scanning (TLS), digital aerial photogrammetry (DAP), and high spatial resolution (HSR)/very high spatial resolution (VHSR) satellite optical imagery. ALS, in particular, has proven to be a transformative technology, offering forest inventories the required spatial detail and accuracy across large areas and a diverse range of forest types. The coupling of DAP with ALS technologies will likely have the greatest impact on forest inventory practices in the next decade, providing capacity for a broader suite of attributes, as well as for monitoring growth over time

    Remote sensing tools for the objective quantification of tree structural condition from individual trees to landscape scale assessment

    Get PDF
    Tree management is the practice of protecting and caring for trees for sustainable, defined objectives. However, there are often conflicts between maintaining trees and the obligation to protect targets, such as people or infrastructure, from the risks associated with the failure of trees and major limbs. Where there are targets worthy of protection, tree structural condition is typically monitored relative to the prescribed management objectives. Traditionally, field methods for capturing data on tree structural condition are manual with a tree surveyor taking very limited direct measurements, and only from parts of the tree that are within reach from the ground. Consequently, large sections of the tree remain unmeasured due to the logistical complications of accessing the aerial structure. Therefore, the surveyor estimates tree part sizes, approximates counts of relevant tree features and uses personal interpretation to infer the significance of the observations. These techniques are temporally and logistically demanding, and largely subjective. This thesis develops solutions to the limitations of traditional methods through the development of remote sensing (RS) tools for assessing tree structural condition, in order to inform tree management interventions. For individual trees, a proximal photogrammetry technique is developed for objectively quantifying tree structural condition by measuring the self-affinity of tree crowns in fractal dimensions. This can identify the individual tree crown complexity along a structural condition continuum, which is more effective than the traditional categorical approach for monitoring tree condition. Moving out in scale, a framework is developed which optimises the matchpairing agreement between ground reference tree data and RS-derived individual tree crown (ITC) delineations in order to quantify the accuracy of different ITC delineation algorithms. The framework is then used to identify an optimal ITC delineation algorithm which is applied to aerial laser scanning data to map individual trees and extract a point cloud for each tree. Metrics are then derived from the point cloud to classify a tree according to its structural condition, a process which is then applied to the tree population across an entire landscape. This provides information with which to spatially optimise tree survey and management resources, improve the decision making process and move towards proactive tree management. The research presented in this thesis develops RS tools for assessing tree structural condition, at a range of investigative scales. These objective, data-rich tools will enable resource-limited tree managers to direct remedial interventions in an optimised and precise way

    Proceedings of the 7th International Conference on Functional-Structural Plant Models, SaariselkÀ, Finland, 9 - 14 June 2013

    Get PDF

    On the use of rapid-scan, low point density terrestrial laser scanning (TLS) for structural assessment of complex forest environments

    Get PDF
    Forests fulfill an important role in natural ecosystems, e.g., they provide food, fiber, habitat, and biodiversity, all of which contribute to stable ecosystems. Assessing and modeling the structure and characteristics in forests can lead to a better understanding and management of these resources. Traditional methods for collecting forest traits, known as “forest inventory”, is achieved using rough proxies, such as stem diameter, tree height, and foliar coverage; such parameters are limited in their ability to capture fine-scale structural variation in forest environments. It is in this context that terrestrial laser scanning (TLS) has come to the fore as a tool for addressing the limitations of traditional forest structure evaluation methods. However, there is a need for improving TLS data processing methods. In this work, we developed algorithms to assess the structure of complex forest environments – defined by their stem density, intricate root and stem structures, uneven-aged nature, and variable understory - using data collected by a low-cost, portable TLS system, the Compact Biomass Lidar (CBL). The objectives of this work are listed as follow: 1. Assess the utility of terrestrial lidar scanning (TLS) to accurately map elevation changes (sediment accretion rates) in mangrove forest; 2. Evaluate forest structural attributes, e.g., stems and roots, in complex forest environments toward biophysical characterization of such forests; and 3. Assess canopy-level structural traits (leaf area index; leaf area density) in complex forest environments to estimate biomass in rapidly changing environments. The low-cost system used in this research provides lower-resolution data, in terms of scan angular resolution and resulting point density, when compared to higher-cost commercial systems. As a result, the algorithms developed for evaluating the data collected by such systems should be robust to issues caused by low-resolution 3D point cloud data. The data used in various parts of this work were collected from three mangrove forests on the western Pacific island of Pohnpei in the Federated States of Micronesia, as well as tropical forests in Hawai’i, USA. Mangrove forests underscore the economy of this region, where more than half of the annual household income is derived from these forests. However, these mangrove forests are endangered by sea level rise, which necessitates an evaluation of the resilience of mangrove forests to climate change in order to better protect and manage these ecosystems. This includes the preservation of positive sediment accretion rates, and stimulating the process of root growth, sedimentation, and peat development, all of which are influenced by the forest floor elevation, relative to sea level. Currently, accretion rates are measured using surface elevation tables (SETs), which are posts permanently placed in mangrove sediments. The forest floor is measured annually with respect to the height of the SETs to evaluate changes in elevation (Cahoon et al. 2002). In this work, we evaluated the ability of the CBL system for measuring such elevation changes, to address objective #1. Digital Elevation Models (DEMs) were produced for plots, based on the point cloud resulted from co-registering eight scans, spaced 45 degree, per plot. DEMs are refined and produced using Cloth Simulation Filtering (CSF) and kriging interpolation. CSF was used because it minimizes the user input parameters, and kriging was chosen for this study due its consideration of the overall spatial arrangement of the points using semivariogram analysis, which results in a more robust model. The average consistency of the TLS-derived elevation change was 72%, with and RMSE value of 1.36 mm. However, what truly makes the TLS method more tenable, is the lower standard error (SE) values when compared to manual methods (10-70x lower). In order to achieve our second objective, we assessed structural characteristics of the above-mentioned mangrove forest and also for tropical forests in Hawaii, collected with the same CBL scanner. The same eight scans per plot (20 plots) were co-registered using pairwise registration and the Iterative Closest Point (ICP). We then removed the higher canopy using a normal change rate assessment algorithm. We used a combination of geometric classification techniques, based on the angular orientation of the planes fitted to points (facets), and machine learning 3D segmentation algorithms to detect tree stems and above-ground roots. Mangrove forests are complex forest environments, containing above-ground root mass, which can create confusion for both ground detection and structural assessment algorithms. As a result, we needed to train a supporting classifier on the roots to detect which root lidar returns were classified as stems. The accuracy and precision values for this classifier were assessed via manual investigation of the classification results in all 20 plots. The accuracy and precision for stem classification were found to be 82% and 77%, respectively. The same values for root detection were 76% and 68%, respectively. We simulated the stems using alpha shapes in order to assess their volume in the final step. The consistency of the volume evaluation was found to be 85%. This was obtained by comparing the mean stem volume (m3/ha) from field data and the TLS data in each plot. The reported accuracy is the average value for all 20 plots. Additionally, we compared the diameter-at-breast-height (DBH), recorded in the field, with the TLS-derived DBH to obtain a direct measure of the precision of our stem models. DBH evaluation resulted in an accuracy of 74% and RMSE equaled 7.52 cm. This approach can be used for automatic stem detection and structural assessment in a complex forest environment, and could contribute to biomass assessment in these rapidly changing environments. These stem and root structural assessment efforts were complemented by efforts to estimate canopy-level structural attributes of the tropical Hawai’i forest environment; we specifically estimated the leaf area index (LAI), by implementing a density-based approach. 242 scans were collected using the portable low-cost TLS (CBL), in a Hawaii Volcano National Park (HAVO) flux tower site. LAI was measured for all the plots in the site, using an AccuPAR LP-80 Instrument. The first step in this work involved detection of the higher canopy, using normal change rate assessment. After segmenting the higher canopy from the lidar point clouds, we needed to measure Leaf Area Density (LAD), using a voxel-based approach. We divided the canopy point cloud into five layers in the Z direction, after which each of these five layers were divided into voxels in the X direction. The sizes of these voxels were constrained based on interquartile analysis and the number of points in each voxel. We hypothesized that the power returned to the lidar system from woody materials, like branches, exceeds that from leaves, due to the liquid water absorption of the leaves and higher reflectivity for woody material at the 905 nm lidar wavelength. We evaluated leafy and woody materials using images from projected point clouds and determined the density of these regions to support our hypothesis. The density of points in a 3D grid size of 0.1 m, which was determined by investigating the size of the branches in the lower portion of the higher canopy, was calculated in each of the voxels. Note that “density” in this work is defined as the total number of points per grid cell, divided by the volume of that cell. Subsequently, we fitted a kernel density estimator to these values. The threshold was set based on half of the area under the curve in each of the distributions. The grid cells with a density below the threshold were labeled as leaves, while those cells with a density above the threshold were set as non-leaves. We then modeled the LAI using the point densities derived from TLS point clouds, achieving a R2 value of 0.88. We also estimated the LAI directly from lidar data by using the point densities and calculating leaf area density (LAD), which is defined as the total one-sided leaf area per unit volume. LAI can be obtained as the sum of the LAD values in all the voxels. The accuracy of LAI estimation was found to be 90%. Since the LAI values cannot be considered spatially independent throughout all the plots in this site, we performed a semivariogram analysis on the field-measured LAI data. This analysis showed that the LAI values can be assumed to be independent in plots that are at least 30 m apart. As a result, we divided the data into six subsets, where each of the plots were 30 meter spaced for each subset. LAI model R2 values for these subsets ranged between 0.84 - 0.96. The results bode well for using this method for automatic estimation of LAI values in complex forest environments, using a low-cost, low point density, rapid-scan TLS

    The data concept behind the data: From metadata models and labelling schemes towards a generic spectral library

    Get PDF
    Spectral libraries play a major role in imaging spectroscopy. They are commonly used to store end-member and spectrally pure material spectra, which are primarily used for mapping or unmixing purposes. However, the development of spectral libraries is time consuming and usually sensor and site dependent. Spectral libraries are therefore often developed, used and tailored only for a specific case study and only for one sensor. Multi-sensor and multi-site use of spectral libraries is difficult and requires technical effort for adaptation, transformation, and data harmonization steps. Especially the huge amount of urban material specifications and its spectral variations hamper the setup of a complete spectral library consisting of all available urban material spectra. By a combined use of different urban spectral libraries, besides the improvement of spectral inter- and intra-class variability, missing material spectra could be considered with respect to a multi-sensor/ -site use. Publicly available spectral libraries mostly lack the metadata information that is essential for describing spectra acquisition and sampling background, and can serve to some extent as a measure of quality and reliability of the spectra and the entire library itself. In the GenLib project, a concept for a generic, multi-site and multi-sensor usable spectral library for image spectra on the urban focus was developed. This presentation will introduce a 1) unified, easy-to-understand hierarchical labeling scheme combined with 2) a comprehensive metadata concept that is 3) implemented in the SPECCHIO spectral information system to promote the setup and usability of a generic urban spectral library (GUSL). The labelling scheme was developed to ensure the translation of individual spectral libraries with their own labelling schemes and their usually varying level of details into the GUSL framework. It is based on a modified version of the EAGLE classification concept by combining land use, land cover, land characteristics and spectral characteristics. The metadata concept consists of 59 mandatory and optional attributes that are intended to specify the spatial context, spectral library information, references, accessibility, calibration, preprocessing steps, and spectra specific information describing library spectra implemented in the GUSL. It was developed on the basis of existing metadata concepts and was subject of an expert survey. The metadata concept and the labelling scheme are implemented in the spectral information system SPECCHIO, which is used for sharing and holding GUSL spectra. It allows easy implementation of spectra as well as their specification with the proposed metadata information to extend the GUSL. Therefore, the proposed data model represents a first fundamental step towards a generic usable and continuously expandable spectral library for urban areas. The metadata concept and the labelling scheme also build the basis for the necessary adaptation and transformation steps of the GUSL in order to use it entirely or in excerpts for further multi-site and multi-sensor applications
    • 

    corecore