512 research outputs found

    Control-Relevant System Identification using Nonlinear Volterra and Volterra-Laguerre Models

    Get PDF
    One of the key impediments to the wide-spread use of nonlinear control in industry is the availability of suitable nonlinear models. Empirical models, which are obtained from only the process input-output data, present a convenient alternative to the more involved fundamental models. An important advantage of the empirical models is that their structure can be chosen so as to facilitate the controller design problem. Many of the widely used empirical model structures are linear, and in some cases this basic model formulation may not be able to adequately capture the nonlinear process dynamics. One of the commonly used nonlinear dynamic empirical model structures is the Volterra model, and this work develops a systematic approach to the identification of third-order Volterra and Volterra-Laguerre models from process input-output data.First, plant-friendly input sequences are designed that exploit the Volterra model structure and use the prediction error variance (PEV) expression as a metric of model fidelity. Second, explicit estimator equations are derived for the linear, nonlinear diagonal, and higher-order sub-diagonal kernels using the tailored input sequences. Improvements in the sequence design are also presented which lead to a significant reduction in the amount of data required for identification. Finally, the third-order off-diagonal kernels are estimated using a cross-correlation approach. As an application of this technique, an isothermal polymerization reactor case study is considered.In order to overcome the noise sensitivity and highly parameterized nature of Volterra models, they are projected onto an orthonormal Laguerre basis. Two important variables that need to be selected for the projection are the Laguerre pole and the number of Laguerre filters. The Akaike Information Criterion (AIC) is used as a criterion to determine projected model quality. AIC includes contributions from both model size and model quality, with the latter characterized by the sum-squared error between the Volterra and the Volterra-Laguerre model outputs. Reduced Volterra-Laguerre models were also identified, and the control-relevance of identified Volterra-Laguerre models was evaluated in closed-loop using the model predictive control framework. Thus, this work presents a complete treatment of the problem of identifying nonlinear control-relevant Volterra and Volterra-Laguerre models from input-output data

    Multi Look-Up Table Digital Predistortion for RF Power Amplifier Linearization

    Get PDF
    Premi extraordinari doctorat curs 2007-2008, àmbit d’Enginyeria de les TICAquesta Tesi Doctoral se centra en el disseny d'un nou linealitzador de Predistorsió Digital (Digital Predistortion - DPD) capaç de compensar la dinàmica i els efectes no lineals introduïts pels Amplificadors de Potència (Power Amplifiers - PAs). Un dels trets més rellevants d'aquest nou predistorsionador digital i adaptatiu consisteix en ser deduïble a partir d'un model de PA anomenat Nonlinear Auto-Regressive Moving Average (NARMA). A més, la seva arquitectura multi-LUT (multi-Taula) permet la implementació en un dispositiu Field Programmable Gate Array (FPGA).La funció de predistorsió es realitza en banda base, per tant, és independent de la banda freqüencial on es durà a terme l'amplificació del senyal de RF, el que pot resultar útil si tenim en compte escenaris multibanda o reconfigurables. D'altra banda, el fet que aquest DPD tingui en compte els efectes de memòria introduïts pel PA, representa una clara millora de les prestacions aconseguides per un simple DPD sense memòria. En comparació amb d'altres DPDs basats en models més computacionalment complexos, com és el cas de les xarxes neuronals amb memòria (Time-Delayed Neural Networks - TDNN), la estructura recursiva del DPD proposat permet reduir el nombre de LUTs necessàries per compensar els efectes de memòria del PA. A més, la seva estructura multi-LUT permet l'escalabilitat, és a dir, activar or desactivar les LUTs que formen el DPD en funció de la dinàmica que presenti el PA.En una primera aproximació al disseny del DPD, és necessari identificar el model NARMA del PA. Un dels majors avantatges que presenta el model NARMA és la seva capacitat per trobar un compromís entre la fidelitat en l'estimació del PA i la complexitat computacional introduïda. Per reforçar aquest compromís, l' ús d'algoritmes heurístics de cerca, com són el Simulated Annealing o els Genetic Algorithms, s'utilitzen per trobar els retards que millor caracteritzen la memòria del PA i per tant, permeten la reducció del nombre de coeficients necessaris per caracteritzar-la. Tot i així, la naturalesa recursiva del model NARMA comporta que, de cara a garantir l'estabilitat final del DPD, cal dur a terme un estudi previ sobre l'estabilitat del model.Una vegada s'ha obtingut el model NARMA del PA i s'ha verificat l'estabilitat d'aquest, es procedeix a l'obtenció de la funció de predistorsió a través del mètode d'identificació predictiu. Aquest mètode es basa en la continua identificació del model NARMA del PA i posteriorment, a partir del model obtingut, es força al PA perquè es comporti de manera lineal. Per poder implementar la funció de predistorsió en la FPGA, cal primer expressar-la en forma de combinacions en paral·lel i cascada de les anomenades Cel·les Bàsiques de Predistorsió (BPCs), que són les unitats fonamentals que composen el DPD. Una BPC està formada per un multiplicador complex, un port RAM dual que actua com a LUT (taula de registres) i un calculador d'adreces. Les LUTs s'omplen tenint en compte una distribució uniforme dels continguts i l'indexat d'aquestes es duu a terme mitjançant el mòdul de l'envoltant del senyal. Finalment, l'adaptació del DPD consisteix en monitoritzar els senyals d'entrada i sortida del PA i anar duent a terme actualitzacions periòdiques del contingut de les LUTs que formen les BPCs. El procés d'adaptació del contingut de les LUTs es pot dur a terme en la mateixa FPGA encarregada de fer la funció de predistorsió, o de manera alternativa, pot ser duta a terme per un dispositiu extern (com per exemple un DSP - Digital Signal Processor) en una escala de temps més relaxada. Per validar l'exposició teòrica i provar el bon funcionalment del DPD proposat en aquesta Tesi, es proporcionen resultats tant de simulació com experimentals que reflecteixen els objectius assolits en la linealització del PA. A més, certes qüestions derivades de la implementació pràctica, tals com el consum de potència o la eficiència del PA, són també tractades amb detall.This Ph.D. thesis addresses the design of a new Digital Predistortion (DPD) linearizer capable to compensate the unwanted nonlinear and dynamic behavior of power amplifiers (PAs). The distinctive characteristic of this new adaptive DPD is its deduction from a Nonlinear Auto Regressive Moving Average (NARMA) PA behavioral model and its particular multi look-up table (LUT) architecture that allows its implementation in a Field Programmable Gate Array (FPGA) device.The DPD linearizer presented in this thesis operates at baseband, thus becoming independent on the final RF frequency band and making it suitable for multiband or reconfigurable scenarios. Moreover, the proposed DPD takes into account PA memory effects compensation which representsan step forward in overcoming classical limitations of memoryless predistorters. Compared to more computational complex DPDs with dynamic compensation, such Time-Delayed Neural Networks (TDNN), this new DPD takes advantage of the recursive nature of the NARMA structure to relax the number of LUTs required to compensate memory effects in PAs. Furthermore, its parallel multi-LUT architecture is scalable, that is, permits enabling or disabling the contribution of specific LUTs depending on the dynamics presented by a particular PA.In a first approach, it is necessary to identify a NARMA PA behavioral model. The extraction of PA behavioral models for DPD linearization purposes is carried out by means of input and output complex envelope signal observations. One of the major advantages of the NARMA structure regards its capacity to deal with the existing trade-off between computational complexity and accuracy in PA behavioral modeling. To reinforce this compromise, heuristic search algorithms such the Simulated Annealing or Genetic Algorithms are utilized to find the best sparse delays that permit accurately reproducing the PA nonlinear dynamic behavior. However, due to the recursive nature of the NARMA model, an stability test becomes a previous requisite before advancing towards DPD linearization.Once the PA model is identified and its stability verified, the DPD function is extracted applying a predictive predistortion method. This identification method relies just on the PA NARMA model and consists in adaptively forcing the PA to behave as a linear device. Focusing in the DPD implementation, it is possible to map the predistortion function in a FPGA, but to fulfill this objective it is first necessary to express the predistortion function as a combined set of LUTs.In order to store the DPD function into a FPGA, it has to be stated in terms of parallel and cascade Basic Predistortion Cells (BPCs), which are the fundamental building blocks of the NARMA based DPD. A BPC is formed by a complex multiplier, a dual port RAM memory block acting as LUT and an address calculator. The LUT contents are filled following an uniform spacing procedure and its indexing is performed with the amplitude (modulus) of the signal's envelope.Finally, the DPD adaptation consists in monitoring the input-output data and performing frequent updates of the LUT contents that conform the BPCs. This adaptation process can be carried out in the same FPGA in charge of performing the DPD function, or alternatively can be performed by an external device (i.e. a DSP device) in a different time-scale than real-time operation.To support all the theoretical design and to prove the linearization performance achieved by this new DPD, simulation and experimental results are provided. Moreover, some issues derived from practical experimentation, such as power consumption and efficiency, are also reported and discussed within this thesis.Award-winningPostprint (published version

    Optics for AI and AI for Optics

    Get PDF
    Artificial intelligence is deeply involved in our daily lives via reinforcing the digital transformation of modern economies and infrastructure. It relies on powerful computing clusters, which face bottlenecks of power consumption for both data transmission and intensive computing. Meanwhile, optics (especially optical communications, which underpin today’s telecommunications) is penetrating short-reach connections down to the chip level, thus meeting with AI technology and creating numerous opportunities. This book is about the marriage of optics and AI and how each part can benefit from the other. Optics facilitates on-chip neural networks based on fast optical computing and energy-efficient interconnects and communications. On the other hand, AI enables efficient tools to address the challenges of today’s optical communication networks, which behave in an increasingly complex manner. The book collects contributions from pioneering researchers from both academy and industry to discuss the challenges and solutions in each of the respective fields

    NONLINEAR SYSTEM MODELING UTILIZING NEURAL NETWORKS: AN APPLICATION TO THE DOUBLE SIDED ARC WELDING PROCESS

    Get PDF
    The need and desire to create robust and accurate joining of materials has been one of up most importance throughout the course of history. Many forms have often been employed, but none exhibit the strength or durability as the weld. This study endeavors to explore some of the aspects of welding, more specifically relating to the Double Sided Arc Welding process and how best to model the dynamic non-linear response of such a system. Concepts of the Volterra series, NARMAX approximation and neural networks are explored. Fundamental methods of the neural network, including radial basis functions, and Back-propagation are investigated

    Linear Operation of Switch-Mode Outphasing Power Amplifiers

    Get PDF
    Radio transceivers are playing an increasingly important role in modern society. The ”connected” lifestyle has been enabled by modern wireless communications. The demand that has been placed on current wireless and cellular infrastructure requires increased spectral efficiency however this has come at the cost of power efficiency. This work investigates methods of improving wireless transceiver efficiency by enabling more efficient power amplifier architectures, specifically examining the role of switch-mode power amplifiers in macro cell scenarios. Our research focuses on the mechanisms within outphasing power amplifiers which prevent linear amplification. From the analysis it was clear that high power non-linear effects are correctable with currently available techniques however non-linear effects around the zero crossing point are not. As a result signal processing techniques for suppressing and avoiding non-linear operation in low power regions are explored. A novel method of digital pre-distortion is presented, and conventional techniques for linearisation are adapted for the particular needs of the outphasing power amplifier. More unconventional signal processing techniques are presented to aid linearisation of the outphasing power amplifier, both zero crossing and bandwidth expansion reduction methods are designed to avoid operation in nonlinear regions of the amplifiers. In combination with digital pre-distortion the techniques will improve linearisation efforts on outphasing systems with dynamic range and bandwidth constraints respectively. Our collaboration with NXP provided access to a digital outphasing power amplifier, enabling empirical analysis of non-linear behaviour and comparative analysis of behavioural modelling and linearisation efforts. The collaboration resulted in a bench mark for linear wideband operation of a digital outphasing power amplifier. The complimentary linearisation techniques, bandwidth expansion reduction and zero crossing reduction have been evaluated in both simulated and practical outphasing test benches. Initial results are promising and indicate that the benefits they provide are not limited to the outphasing amplifier architecture alone. Overall this thesis presents innovative analysis of the distortion mechanisms of the outphasing power amplifier, highlighting the sensitivity of the system to environmental effects. Practical and novel linearisation techniques are presented, with a focus on enabling wide band operation for modern communications standards

    Adaptive weighted least squares algorithm for Volterra signal modeling

    No full text
    Published versio
    corecore