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ABSTRACT  
 
 
 
 

NONLINEAR SYSTEM MODELING UTILIZING NEURAL NETWORKS: AN 
APPLICATION TO THE DOUBLE SIDED ARC WELDING PROCESS 

 
 
 The need and desire to create robust and accurate joining of materials has been 
one of up most importance throughout the course of history.  Many forms have often 
been employed, but none exhibit the strength or durability as the weld.  This study 
endeavors to explore some of the aspects of welding, more specifically relating to the 
Double Sided Arc Welding process and how best to model the dynamic non-linear 
response of such a system.  Concepts of the Volterra series, NARMAX approximation 
and neural networks are explored.   Fundamental methods of the neural network, 
including radial basis functions, and Back-propagation are investigated.   
 
KEYWORDS: Radial Basis, Neural Network, Volterra Series, Double Sided Arc 
Welding, Back-propagation 
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Chapter 1 
 
 
 
1.1   Introduction 
 
 

Welding is the most economical and efficient way to join metals permanently. It is 

the only way of joining two or more pieces of metal to make them act as a single piece. 

The technology itself, can trace its roots back to ancient times. The earliest examples 

come from the Bronze Age.  Artifacts from this age showed the interest that early man 

had in creating weapons.   The early methods employed to join the metals involved 

heating the metals in charcoal furnaces to reduce it to a spongier, more pliable material.  

Once heated, the metals would then be beaten with a hammer to form the weld.  This was 

known as “pressure” or “solid-phase” welding [1].  The advent of the Industrial 

Revolution showed great potential for advancing the methods and practices surrounding 

the concept of welding technology.  New materials were being discovered, as well as 

being made that demanded newer techniques.   

During recent times, more exotic materials are being utilized.  The need to 

mechanically join them is still of great importance.  Today’s modern age of 

industrialization targets metallurgical materials, and in some cases such exotics as carbon 

fibers, to manufacture and build structures.  In the past, common methods to join these 

materials involved such mechanisms as bolting, riveting, and/or adhesive technologies.  

While each provides certain benefits, none compare to the overall robustness and strength 

of the weld.   

To this extent, the focus of the research investigates this capability--more specifically 

as it pertains to a process developed at the University of Kentucky known as Double 

Sided Arc Welding (DSAW) [2].  The overall concept of this research delves into the 

ability to physically develop a non-linear model to describe the DSAW process.  

Expanding from this model, future work may entail developing a robust control 

mechanism by which the system in its entirety may be controlled reliably. 

 To gain a fundamental understanding of the DSAW process, a brief overview will 

be presented.  The acronym DSAW as it is aptly named, is short for Double Sided Arc 
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Weld.  The general concept provides for the evolution of two independent processes by 

which both processes are utilized simultaneously to provide an improved welding 

process.  The DSAW process in simplest terms involves the utilization of Gas Tungsten 

Arc Welding (GTAW) and Plasma Arc Welding (PAW).  Both are well known in 

industry, with each providing unique characteristics and advantages in particular 

applications.  The pursuit of improving overall process performance stems from the need 

to improve speed, quality, and reduce the overall cost.  This in itself provides for a better-

commercialized product.    

 

1.2   Gas Tungsten Arc Welding 

 
A process also known as heliarc or TIG welding, GTAW produces its weld by 

utilizing a heating mechanism generated by an arc between a non-consumable tungsten 

electrode (the electrode does not melt and become part of the weld) and the work piece. 

The oxygen atmosphere is very corrosive to the materials and tends to oxidize them.  To 

this end, a shielding mechanism is employed to prevent the degradation of the materials.  

The shield is developed around the weld using an inert gas or some form of a gas 

mixture.  Figure 1.1 below provides a schematic diagram of the process. 

 

 

Figure 1.1 GTAW Process 
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GTAW is often employed in the creation of high performance and quality welds.  

The welds produced by the GTAW process are usually without flaws or defects 

regardless of the materials being used.  From an industrial standpoint, GTAW is used in 

the aerospace, shipbuilding, automotive, and power production industries.  Overall, 

GTAW is capable of providing precise control of welding parameters and heat input, and 

has low equipment cost.  While the process provides both cost and quality benefits, it 

lacks the capability of being a speedy process.  Not only does it lack speed, but also it 

fails to produce deep joint penetration.  The lack of first pass penetration often requires 

multiple passes of the torch to provide the adequate depth and can become burdensome 

and time consuming. 

 

1.3   Plasma Arc Welding 

 
The Plasma Arc Welding process produces a bonding of metals by heating them 

with a constricted arc between an electrode and the work piece (transferred arc) or the 

electrode and the constricting nozzle (non-transferred arc).  Like that of the GTAW 

process, a shielding mechanism is often employed as well.  In general, it consists of a hot 

ionized gas issuing from the orifice, which may be supplemented by an auxiliary source 

of shielding gas.  The shielding gas may be an inert gas such as argon or a mixture of 

gases.  Figure 1.2 below provides a diagram of the process. 

 

 

 
Figure 1.2 PAW Process
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The PAW process can be considered a cost effective solution for higher speed 

welding and keyhole welding.  Providing the heat intensity of the plasma arc is great 

enough, the process can operate in keyhole mode. An unfortunate issue with this process 

is the occurrence of porosity and holes in the weld, not to mention the spattering due to 

the highly focused beam, resulting in low quality welds.  The keyhole mode is enabled 

when the gas flow is restricted through a reduction of the gas orifice size.  This increases 

the gas velocity and the overall arc temperature. If too severe a constriction occurs in the 

orifice, then the gas flow produces a cutting arc.  Essentially, the plasma arc blows a hole 

through the joint or plate on which it is operating [3].  Behind the hole, the molten metal 

flows together--filling the hole.  This phenomenon is due to gravity forces, surface 

tension and the gas pressure from the shielding gas.  While not as fast or energy efficient 

as Laser Beam Welding (LBW) or Electron Beam Welding (EBW), PAW does provide 

the distinct advantage in tolerancing to joint gaps and material misalignment.  Both LBW 

and EBW provide a fine column of focused energy, which make them idea for high 

tolerance welds. They however, require the original joints to be very close in order for the 

weld to occur.  The PAW effectively addresses the closeness issue by having a greater 

radial heating area.  The downside to this, though, is that it tends to affect material 

distortion. 

 
 
1.4   Double Sided Arc Welding 
 
 

As was previously mentioned, DSAW is the merger of the GTAW and PAW 

processes.  Although other torch combination may be utilized, the research thus far has 

been focused on the employment of these two processes.  Namely, we have a 

configuration in which a PAW torch is positioned on one side of the material and the 

GTAW torch is placed on the other.   
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This can be seen in Figure 1.3 below. 

 

 

 
 

Figure 1.3 DSAW System 
 
 
 

The DSAW system is primarily operated in what is known as keyhole model.  To this 

extent, the goal is to switch the welding current from the peak intensity to a base level 

after keyhole establishment in order to prevent burn-through due to arc pressure, which is 

proportional to the square of the current [5].   

In DSAW, simultaneous electric arcs are formed between the material work piece 

and the two torches.  This characteristic requires that the current pass through the entire 

thickness of the material.  The direction of flow of this current is conveniently termed as 

through-the-thickness (TTT). The TTT is established along the keyhole providing for a 

columnar arc to form [4]. 

From a comparative standpoint, we can see that the total energy being utilized is 

now being focused into the actual weld and not into the surrounding area that is 

commonly encountered with more traditional welding techniques.  This focusing effect 

allows the weld to produce a cleaner, deeper joint. 
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1.5   Proposed Technique 
 
 

As with most things in nature, the need to accurately control and describe a system is 

a must.  This holds true for the research involving the DSAW process.  The process as a 

whole is not an easy one to define, as there are numerous parameters and variables, which 

must be taken in consideration.  A great amount of information exists regarding the linear 

modeling and identification of a system, but as will be demonstrated, linear models do 

not hold true for the DSAW system.   

 

1.6  Organization 
 
This thesis is organized into four main chapters. 

In Chapter 2, a survey of some of the existing non-linear modeling techniques and 

methodologies will be investigated and a proposed method for the DSAW model will be 

presented. 

In Chapter 3, a history of neural networks will be presented, including the origin 

of the famous back-propagation algorithm.  In addition, radial basis functions and black 

box state space neural networks will be explained. 

Chapter 4, will introduce the DSAW model data.  The data will be segmented into 

a training set and test set and provided to a neural network.  The net will then generate a 

model to describe the data.    

In Chapter 5, a general conclusion will be provided as well as thoughts and 

concepts for further research revolving around the neural model. 
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Chapter 2 

 

2.1  Non-linear Systems 

There exists a wealth of information when it comes to system identification and 

modeling from a linear perspective.  Linear system identification, in general, is a very 

strong and well-developed field of study.  Linear system models, however, are beneficial 

only when the dynamic system is well behaved and tends to follow a linear response 

around a set operating point.  In fact, some phenomena arise precisely because of non-

linearity. Linear analysis offers little to no insight in such cases.  The fact that all physical 

systems can be thought as non-linear in nature, has led to a following in which the 

modeling and analyzes have become a more mainstream area of study.   

Non-linear systems are by far, more complex to analyze and model- this fact has 

often been a reason to abandon a fully realized non-linear model and pursue a more 

generalized "best-fit" linear model.  Part of the complexity of non-linear systems involves 

the ability to resolve a low order, manageable dimensionality.  This "curse of 

dimensionality" as it is often termed arises, from the fact that non-linear systems exhibit 

complex dynamic behavior around the operating region of interest.   

The main focus of this chapter will be to survey some of the existing well-known 

techniques often employed in solving these types of dynamic systems.  Volterra-series, 

NARMAX, local modeling, and neural networks will be of most interest. 

 

2.2  Non-linear System Representations 

The problem of system identification is in finding a suitable model structure.  In 

general, the identification becomes a problem of relating a series of outputs to 

corresponding inputs.  This is often based upon past input-output pairs as well as being 

able to predict and extrapolate what the future values will be.   

 

 7



 

If finite sets of data points are collected, as will be in the research, then a 

generalized data vector ϕ can be represented in the form of: 

 

 ϕ ( t ) = [y(t – 1) y(t – 2) … y(t – ny)  u(t – 1) u(t – 2) … u(t – nx)]T (2.1)

 

where y(•) and u(•) represent the output and input vectors respectively.  Upon the 

formulation of the vector, the goal is to evaluate the relationship between y(t) and ϕ(t).  

In other words, a mapping function is defined such that: 

 

 y(t) → f(ϕ(t)) (2.2)

 

It is from this point on that the presentation of several potential techniques that could be 

utilized for an appropriate solution set. 

 

2.3  Volterra Series 

Stemming from the early work of the Italian mathematician Vitto Volterra, and a 

later expansion by Norbert Weiner, who used the concept as a generalized analysis in the 

spectrum of an FM system with gaussian noise.  The Volterra series marries the concepts 

of the Taylor series expansion with that of a convolution integral [6][7].  In general, the 

impulse response of a linear system can be realized such that [8]: 

 

 
∫
∞

∞−

−⋅= τττ dtuhty )()()(  (2.3)

 

where y(t) is the output, u(t-τ) is the input, and h(τ) is the impulse response of the system. 
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The non-linearity of the system can be represented by the Taylor series: 
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The Volterra series is then represented as: 
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The total output of the system is then said to be the sum of outputs from smaller parallel 

sub-systems represented by the hn coefficients, also known as Volterra functionals or 

kernels.  In essence, the series is defining two regions of operation, one being of a global 

nature, the other being one of a local nature.   The overall system is being subdivided into 

smaller more localized units.  These, in turn, are solved for and reassembled--which is 

commonly known as a divide and conquer technique.   
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From a graphical perspective, Figure 2.1 illustrates this hierarchy. 

  

Figure 2.1 Volterra Series 

 

 

 

 

 

 

 

 

 

 

 

As previously mentioned, the Volterra series involves a solution to system kernels hn.  

There are numerous methods that can be leveraged to perform the necessary calculations.  

 

2.3.1  Volterra Kernel 

Assume the function f is such that a Taylor series expansion about some fixed 

point can be calculated such that [6]:   
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the coefficients hn are then defined as: 
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where u represents the fixed point where the Taylor series is expanded about.  In their 

writing, Boyd and Chua [7], show that the above model provides a good approximation 

for wide variety of non-linear systems. 

Careful observation and deduction show that the computational feasibility of this 

model quickly evaporates as the order of the model increases.  Based on these 

observations, it is quite realizable that if a model can be well behaved over a particular  

region of interest, then a small degree model can be utilized to approximate it- thus a 

Volterra series could be used to approximate a non-linear system.  Most non-linear 

systems, however, tend to require a higher degree of accuracy to better depict the system.  

From this standpoint, it is a safe assumption that a better modeling technique needs be 

incorporated. 

 

 

2.4  NARMAX modeling technique 

With such a wealth of knowledge already existing for linear systems, it seems 

reasonable to ascertain that utilization of these fundamental principles could be expanded 

to inclusion within a non-linear system.    The Non-linear AutoRegressive Moving 

Average with eXongenous inputs or NARMAX models describe systems in terms of 

linear-in-the-parameter difference equations.  Leontaritis and Billings [8] introduced the 

NARMAX approach as a means of describing the input-output relationship of a non-

linear system.  This model takes into account contributions from the present and past 
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inputs as well as the past outputs of the system.  When identifying a NARMAX model 

structure, two key factors must be defined:  structure detection and parameter estimation.   

 The structure detection can be subdivided to include model order selection and 

parameter selection.  Model order is critical since an infinite number of candidate terms 

may exist for a particular problem.  Once an order has been established, calculation of 

parameter estimates can be performed.   

The NARMAX is an extension to the well known linear model ARMAX and is 

defined as: 

 

 

)())(),...,1(),(...,

),...1(),(),...,1(()(

kenkekenku

kunkykyFky

eu

y
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where F is a non-linear function mapping; y(k), u(k), and e(k) represent the systems 

output, input, and error respectively.  The ny, nu, and ne terms depict the maximum lags 

associated with the output, input, and error.  The prediction error is defined as: 

 

 )(ˆ)()( kykyke −=  (2.9)

 

with  being the prediction output.  Defining F as a polynomial function of degree l 

allows expansion of equation 2.8 to show the representation of u(k), y(k), and e(k) up to 

degree l.   

)(ˆ ky

It then can be represented as: 
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The above equation can be written in a more concise matrix representation by defining a 

variable p such that p1(k) = y(k-1), p2(k) = u(k-1), p3(k) = u(k-1)y(k-1),  

p4(k) = y(k-1)e(k-1), p5(k) = e(k-1)e(k).  
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 If N input-output pairs are available and M terms are in the model, then the matrix form 

of 2.10 is: 

 

 ePY += θ  (2.11)
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In the above, px represents a term in the NARMAX model and θ  is a parameter that 

needs to be estimated.  There exist numerous methods that can be used in estimating the 

parameterθ .  These include the well known least squares or error estimation algorithms.  

In their research, Billings and Tsang [9] employed a orthogonal estimator, which 

provided for simplicity and efficiency. 

 

 

2.4.1  NARMAX Orthogonal Parameter Estimation 

The basis for this algorithm employs transforming equation 2.11 into an 

equivalent auxiliary equation such that: 
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where wi(k) is constructed to be orthogonal to the data set and gi represent constant 

coefficients.  The property of orthogonality allows each of the parameters to be estimated 

one at a time.  Orthogonal vectors can be constructed for the data set so that: 
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such that j = 1, 2, … ; and i = 1, 2, …, j – 1, j.  To estimate the coefficients gθn i for 

equation 2.13, the parameters are defined as: 
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We are now able to obtain the original unknown parameters via  by the following 

conversion formulas: 

iĝ
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The auxiliary regressors are thus orthogonal (i.e. wi(k)wj(k) = 0, i ≠ j) so additional terms 

may be added as necessary without computing the previous , for j < i. jĝ

As in the case of the volterra series, it becomes critical to select an order number that can 

best represent the system, and again we potentially suffer from the “curse of 

dimensionality”.  

 

2.5  Local Modeling Approaches 

Stemming from the pseudo-Taylor series idea, local modeling involves 

localization of a global operating plane.  This modeling technique was developed by 

Johansen and Foss [10, 11].  The architectures thus proposed, provide a promising 

alternative solution to non-linear model structures with a character that resembles that of 

a neural network--of which will be discussed in more detail to follow.  The common 

termed values of neuro-fuzzy and fuzzy systems belong to this local modeling technique. 

 The concept is based upon the decomposition of the input space into a varied 

series of operating regimes.  Within each of these regimes, a local sub-model is held to be 

valid, or defined such as to describe the operation over the particular input space.  Each 

sub-model is weighted by some activation function iΦ .  The ultimate system output 

response (i.e. global) y)  is then defined to be the combination of all local sub-models: 
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Where M is the number of models, gi(u) is the local model output.  
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Figure 2.2 below is a graphical representation of the local model scheme [12].   
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 Figure 2.2 Local Modeling Approach 

 

Often times, the activation function is defined to be of a gaussian nature.  The shape of 

this activation function gives a smoothing effect to the overall output of the sub-system 

and falls into the category of radial basis functions (RBF).  The gaussian distribution is 

defined  such that: 
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where  is the activation as previous mentioned, Φ ϕ  is the scheduling variable, c is the 

center point, and σ  is the width for the local model. 
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Different architectures are distinguishable in relation to the following three properties: 

[13] 

 

• Partitioning Principle: The activation function iΦ  defines a decomposition 

strategy in relation to: grid structure, recursive partitioning, or partitioning into 

operating regimes of arbitrary form. 

• Local model structure: While the structure can be of any form, a linear structure is 

most often applied due to simplicity.  The optimization of the linear model 

parameters is simply parameter identification.  A concept well known in linear 

system theory.   

• Transition between sub-models: In general, the transition can be thought as a hard 

or soft transition.  A hard transition being such as a sudden switch occurs. Refer 

to Figure 2.3 below.  The solid curve indicates the soft transition, whereas the 

dotted depicts the hard transition. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3 Sub-model Transitions 
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For more detailed and comprehensive description regarding various local model 

architectures, refer to Murray-Smith and Johanson [14]. 

 

2.6 Remarks 

While numerous other methodologies exist to provide sufficient modeling 

capabilities for nonlinear systems, the ascribed methods above have proven beneficial in 

a wide range of areas.  Take for example, some of the more modern circuit simulator 

programs.  These simulators utilize modified methods of the Volterra series to simulate 

and extrapolate real world circuits.   The NARMAX structure is a welcomed extension to 

the already know linear ARMAX model.  With a wealth of knowledge already in 

existence for such linear systems, an obvious choice would be the modify these and make 

them work within the nonlinear framework.  Finally, the local modeling approach 

provides a brute force method to provide a solution to a more complex system.  It can be 

paralleled with that of a normal design flow (i.e. breaking a design into smaller 

manageable units.) 
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Chapter 3 

 

3.1  History of the Neural Network 

 The concept of a neural network was first envisioned in a McCullock and Pitts 

paper [15].  The first proposed artificial neuron came to be known as the Threshold Logic 

Unit (TLU).  The TLU as proposed, summed a number of n-inputs.  Each input in turn is 

multiplied by a weighting function to produce a scaled version of the input signal.  Each 

of the n-scaled signals provide the input to an activation unit, which for this first 

embodiment, was hard limited to either a logic ‘1’ or ‘0’.  The general structure of the 

TLU provides a comparable relationship to digital logic circuits.  The TLU is graphically 

represented in Figure 3.1 below. 
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  Figure 3.1 TLU
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In most common applicable applications, however, the need for the activation function to 

be continuous and analog is often desired.  There are numerous functions that exist.  A 

sigmoid function is often utilized due to its ability to provide smoothing.  The general 

form of the sigmoid functions is defined as: 

 

 
ρθσ /)(1

1)( −−+
≡= ae

ay  
(3.1)

 

where ρ determines the flatness of the sigmoid and θ adds a non-zero threshold activation 

or shift as can be seen in Figure 3.2 below. 

 

θ 

 

 

 

 

 

 

 

 

 
Figure 3.2 Influence of ρ and θ 

 

The TLU offered a new hope for system identification in that a system could be grouped 

or classified by a decision plane.  In essence, the input space is separated into two parts 

defined by this decision plane.  As an example, assume a binary system has an output that 

produces either an “A” or “B”.   The TLU classifies the two linearly separable input 

spaces into those that produce an “A” and those that produce a “B”.   
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The decision line is shown in Figure 3.3 below: 
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Figure 3.3 Decision plane for a binary system 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.1  TLU Training 

The concept of a neural network encompasses the ability to train the network to 

respond to a certain set of stimulus.  To this end, training entails utilizing a weighting 

vector and a threshold unit as a discriminator.  A set of vectors v and t are defined as the 

training set and output class respectively, with w being defined as the weighting vector.  

The set pairs {v, t} are known as a supervised learning scheme, in that, the investigator 

tells the network what the output should be. 

In general, assume there is a set of vectors v and an initial weighting vector w that 

is believed to provide the target class t.  The w vector, however, produces an activation 

output of y = 0 when t is expected to be 1.  To produce this contrivance, the activation 

was negative.  In order to compensate for this, the weight vector w must be modified to 
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correctly resemble the activation.  In order to accomplish this, the vector does not need to 

undergo a major change, as this would destroy prior learning of the network.  A small 

part of the vector v is added to the existing weight vector.  Defining a new weight as: 

 

 w’ = w - αv (3.2)

 

such that the new weight is the old weight w adjusted by a fractional part of the input 

vector v.  In the case that t is expected to be a 0 and y = 1, the updated weight is defined 

as: 

 

 w’ = w + αv (3.3)

 

Equations 3.2 and 3.3 and concisely be combined and be rewritten as: 

 

 w’ = w + α(t-y)v (3.4)

 

And further refined in terms of the change of the weight vector ∆w 

 

 ∆wi = α(t-y)vi (3.5)

 

The preceding equation is commonly known as the training rule.  The parameter α is 

defined to be the learning rate.   
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A simple training algorithm is as follows in listing 3.1: 

 

initialize weight vector to small random number 

for each vector pair (v,t) 

 evaluate output y 

  if y ≠ t then 

   create new weight vector w’ 

  else 

   do nothing 

  end if 

end for 

until y = t for all vectors, repeat for  

 

 

 

 

 

 

 

 

 

  

 Listing 3.1 Training Algorithm

 

This concept of adaptive training was first introduced by Rosenblatt [16] and is known 

more commonly as the Perceptron. 

 

3.1.2  The Delta Rule 

 Widrow and Hoff [17] proposed a technique to train a network on the activation 

itself and not on the output.  This concept is based upon a gradient descent calculation in 

determining the error of the network when presented with a training vector.  Recall from 

calculus, that given some arbitrary function y = y(x) where the exact form of the function 

is not known, a local minimum is able to be calculated .  To determine the position x that 

provides for the minimal value of the function, y is differentiated with respect to x.   
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The slope ∆y / ∆x is defined to be the gradient of the tangent and is depicted in Figure 

3.4: 
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Figure 3.4 Gradient Descent and minimum of unknown function 

 

For each pattern feed into the network, a corresponding error Ep as a function of the 

weights is given such that: 

 

 p = Ep(w1,w2, …, wn). (3.6)

 

The error is commonly defined to be the square of the difference between the actual 

output and the desired target. 

 

 2)(
2
1 atE p −=  

(3.7)
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Equation 3.7 depicts the utilization of the activation a rather than the output y as 

previously described.  The total error is then simply the sum of all the errors: 

 

 ∑=
p

pEE  (3.8)

 

The new learning rule as defined in (3.5) becomes: 

 

 ∆wj = α(t – a)xj (3.6)

 

where xj is the input element of the weight wj as shown in Figure 3.1. 

Unlike the Perceptron, whose theoretical basis is the hyper-plane manipulation of 

input classification, the Delta (δ) rule is given by the gradient descent on the square of the 

error.  The benefits of the delta rule provide the ability to train more than a single layer 

network.  Up until this point, only single layers were able to perform calculations.  With 

the addition of the delta rule,  the sophistication and capability of problems that can be 

solved improved. 

 

3.1.3  Backpropagation 

 While the concept of neural networks blossomed into a fledging science in the 

early 40’s through late 60’s,  a 1969 publication entitled ‘Perceptrons’ [18] became 

detrimental to the concept of using neural networks in solving real world problems.  It 

was found that the capabilities of the network where incapable of solving problems 

associated with linearly inseparable problems.  The nexus of the exclusive-or function 

proved somewhat novel to the network as they were incapable of solving the simple 

problem.  The science remained somewhat dormant until the mid-80’s when Back- error-

propagation (a.k.a. Backpropagation) was popularized by Rumelhart, Hinton, and 

Williams [19]. 
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 The concept of Backpropagation extends the previously mentioned Delta rule to 

include more than one node, such that the error is now calculated over all nodes.  The 

error calculation then becomes: 
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The above equation, takes into account all the weights of the intermediary layers, 

inclusive of the hidden and output nodes.  Note the fact that the hidden layers are not 

directly connected to any input, thus there is no direct method for training these nodes 

(i.e. they are unobservable outputs).  This new network architecture is depicted in the 

following Figure 3.5. 
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Figure 3.5 General Neural Network
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The updated output weighting equation of 3.6 becomes: 

 

 j
i

jjjj
i xytaw ))((' −=∆ ασ (3.8)

 

The superscripts denote which node in the network is presently being addressed.  As 

previously stated, the  term indicates the error between the targeted output t and 

the nodes actual output y.  The  and  terms define how fast the nodes activation 

function is allowed to change the output and the impact that the input has on the system 

output respectively.  Small values indicate little contribution.  The above equation gives 

us a measure of the rate of change of the error (i.e. gradient descent).   Keep in mind,  

(3.8) only describes the weighting of the output node and does not entail the internal 

hidden nodes.  To this end, the error signal of the hidden nodes is defined as: 

)( jj yt −

)(' jaσ j
ix

 

 ))((' jjjj yta −= σδ (3.9)

 

such that (3.8) becomes: 

 

 j
i

jj
i xw αδ=∆ (3.10)

 

for the output node.  To gain a more beneficial and fundamental understanding of the 

hidden network, refer to Figure 3.6 below.  The diagram symbolizes the interconnection 

of a single path output from the input through the hidden node. 
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Figure 3.6 Single path Network Interconnection  

 

The two additional terms  and  are defined as being the error of nodes j and k.  The 

influence that each node i has on k and k has on j is defined by the weights,  and .  

Based on this,  will have a component of  such that each node connected must be 

summed so that: 

jδ kδ
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Combining (3.11), (3.10), and (3.7) provides us with the backpropagation error equation: 
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3.2  Neural Net Models 

 The current field of neural networks has grown in recent years and thus has 

provided a vast library on neural modeling.   To gain a better appreciate of some of the 

literature available, one can reference [20].  As with most modeling schemes, one of the 

key components is to determine the model structure.  Neural networks are no different.  

To maintain focus, only two of the possible schemes will be investigated.  These include 

a Radial Basis Function (RBF) neural network and the other entails utilization of a state-

space neural network. 

 

3.2.1  Radial Basis Functions 

The RBF neural network can be thought of as a two layer network structure such 

that the first layer is a hidden layer and contains the RBF activation nodes (neurons).  The 

second layer encompasses the output neurons, which compose a weighted sum of the 

hidden layers output.  One of the interesting facets of the RBF neural network is the 

input-output correlation pair it provides.  The input to the network is nonlinear in nature 

while the output is linear.   For this reason, the RBF network are said to be good curve 

fitters, such that they are capable of approximations in the higher dimensional spaces.  

This fact has been studied in [21]. 

The general definition of the RBF neural network can be defined such that: 
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where  is the output of the ith neuron.  The variables )(xzi iµ  and  dictate the center 

and width of the corresponding neuron.  The function r(·) is chosen to be a suitable radial 

basis function or activation.   

2
iσ

 

 

 

 29



 

The most common function chosen is gaussian in nature so that (3.13) becomes: 

 

 22 /)( iix
i exz σµ−−= (3.14)

 

here, x is the input vector.  To gain a better understanding of the effects that the iµ  and 

 terms have on the basis function, refer to the following Figure 3.7 below. 2
iσ

 

 

 

 

 

 

 

(d)(c)

(b)(a)

Figure 3.7 Influences of iµ  and  2
iσ
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Figure 3.6 (a) and (b) show the impact of iµ  and  while (c) and (d) show the 

composite representation of the three activations summed.  The transfer function 

associated with any of the intermediate neuron is defined as: 

2
iσ

 

 )(xWzy = (3.15)

 

where y = [y1 y2 y3 ··· ym] assuming m number of neurons in the secondary layer.  The 

output vector z(x) becomes [z1(x) z2(x) z3(x)··· zn] defining n number of output neurons.  

The resulting weight matrix W forms an m x n matrix.  This matrix is the adapted weights 

for connecting the jth input neuron with the ith neuron in the second hidden layer.  This 

decomposes the overall network into two workable subcategories.  The first containing 

the modified weights, the second vector z(·) being the structural parameters of the 

network. 

 

3.2.1.1  RBF neural network as nonlinear modelers  

There has been recent work in determining the suitability of radial basis functions 

to accurately approximate non-linear models [21].  To expand, the authors provide a 

defense for a property known as “The universal approximation property”.  In it, the 

statement is made that for any continuous function f(·) and some ε  defined over a 

bounded set C, there will always exist a matrix W and vector z(x) such that: 

 

 ε<−∈ )()(max xzWxfCx
(3.16)

 

In essence, the property guarantees that a network exists to describe the system so long as 

the system is continuous and defined over a compact region of operation.  This is a 

corollary to local modeling techniques described in the previous chapter.  In that, assume 

some function f is defined over a finite range, this range can be sub-divided into smaller 

local regions and it is in these regions that a RBF is applied to sufficiently perform a 

curve fit.  A graphical representation is given in Figure 3.8 below.  This graph shows how 
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three RBF’s are utilized to generate a rough outline to that of the original non-linear 

functions indicated by the solid line.  A little thought and insight to the preceding 

statements indicate that for higher complexity systems, the network of RBF functions can 

grow considerably large.   

 

Figure 3.8 RBF 
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The actual summed version is provided in Figure 3.9.  With the lighter line showing the 

RBF summed curves. 

 

Figure 3.9 Composite RBF signal 

 

 

 

 

 

 

 

 

 

 

 

While there is still considerable error associated with the above, increasing the number of 

RBF’s increases the fit and reduces the error.  To this end, the radial basis network is 

often employed into a more powerful scheme known as multi-scale modeling.  In this, it 

is known that any system can be represented as having both global and local features.  

The multi-scale model strikes a balance between the two.   

 

3.2.1.2  Multi-scale Structure  

The previous sectioned describe the RBF such that the center locations were 

defined at some fixed interval ∆x between them.  Under the multi-scale model an attempt 

to construct sufficient width levels and center locations for the prescribe RBF is made.   
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This can be represented as:  
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or more concisely written: 
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maintaining the previous nomenclature, Wi is a subset of the overall weight matrix W,  

zi(x) is the set of neurons at scale i with d defining the localized minimum operating 

range. 

At each of the scales i, zi is represented as: 
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where  
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One of the key features of utilizing this technique is that the multi-scale RBF effectively 

decomposes the model into several smaller partial models.  Once each of these is 

calculated, they can be collectively summed to produce the global representation of the 

system [22]. 
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3.2.2  State-space Neural Networks 

In general, a state space model can be thought to fall into one of two categories.  

One being knowledge-based modeling, and the other being black-box modeling.  To give 

a better understanding of what each of these entail some short definitions are in order. 

In a knowledge-based model, a model is assumed if it is possible to construct it 

based upon prior knowledge of the system.  These models typically relate their state 

variables to their physical meaning.  The black-box model, on the other hand, can be 

thought of more in terms of an input-output relationship.  This latter model scheme is 

what is utilized in the modeling of an unknown process.  From this standpoint, the 

concepts of black-box modeling will be expounded upon.  It is interesting to note, that in 

Suykens et al, a state space neural network can be guaranteed to be globally 

asymptotically stable based upon the NLq stability theory [ 26]. 

 

3.2.2.1  Black-box modeling 

 The concept of this scheme is somewhat simple, in that three criteria are set to 

accomplish the task.  First, an appropriate candidate model is chosen to utilize in the 

modeling process.  Second, the systems predictors are determined.  Thirdly, the best 

model is selected. 

Consider a nonlinear system in the form: 
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where yk denotes the output of the process, uk is the known external inputs, and xk+1 is the 

state vector.  The additive terms kk ψϑ ,  denote the state noise and output noise 

respectively.  For our modeling attempts it should be noted that the state  is not 

measurable.  

1+kx

Continuing, the derivation of the associated predictors is essential.  In general, a 

theoretical predictor is the conditional expectation ))1(( kkyE p + of the output.  In this, it 
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is assumed that the past observations { })0(,),1(),( ppp ykyky K−  are given.  The 

predictor is defined as: 

 

 ),,,()1( kyuyhky kkk
ppred=+ (3.22)

 

where y is the predictor output, and  denotes a series of past outputs.  The nonlinear 

mapping function h

k
py

pred is defined.  From 3.22 above, a state-space representation can be 

formulated as: 
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where, x is the state vector, and fpred and gpred define non-linear mappings.  The functions 

fpred and gpred are then replaced by functions parameterized by a set of parameters θ.  The 

state-space neural predictor becomes: 
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where ξ  is the n-state vector that will be trained to minimize the Mean Square Prediction 

Error (MSPE) of the training set.  It has been shown in  Hornik et al. [23] that any 

universal function approximator can be used. Sontag and Sjoberg [24, 25] show other 

potential approximators as well.  From this point, it becomes important to understand 

how the predictors are to be properly conditioned for training. 

 

3.3  Training Predictors 

 The ultimate goal in any neural modeling is to determine the best neural 

predictors of the provided candidate models.  These, in turn, are defined to provide the 
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best fit for the model.    The Prediction Error (PE) or Extended Kalman Filtering (EKF) 

approach is often employed in the training of the candidates.  The EKF approach, 

however, has a major drawback.  In order for this approach to provide sufficiently 

accurate results, the noise covariance of the system must be known.  This in itself is 

highly unlikely since a knowledge of the system to which the model is being applied is 

not typically available.  To this end, the PE method is used and provides a convergent 

solution. 

 To choose the best candidate, a minimization of the cost function is utilized.  The 

cost function is defined as the MSPE of a training sequence having N samples.  An 

iterative approach to this is defined as: 
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where ei is the error of the output in terms of the predictor at times k and iteration i.  

Substituting this equality into 3.24 yields: 
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The next logical question is defining a method by which 3.25 can be minimized.  

To this end, the cost function )(θJ  can be minimized utilizing the gradient method as 

defined in the previous chapter as well as utilization of a quasi-Newtonian method.  Other 

methods have also been proposed which include the teacher forcing algorithm [ 27], and 

Backpropagation through time [28].  For a more in depth overview of state space neural 

network training, refer to Rivals [29, 30, 31].  
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3.4  Remarks 

While the concept of neural networks have been studied for more than 50 years, it 

was not until more recently that they are becoming a more active research focus.  Many 

researchers have shown that neural networks are capable of simulating and modeling real 

world processes.  Many forms and models exist that can be utilized in setting up a 

suitable network, the key criteria for selecting a model should be based upon its 

performance measurement.  This measurement gives the observers a relative view of how 

well the network will actually simulate the problem presented to it. 
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Chapter 4 

 

4.0 The DSAW Process 

The DSAW process as outlined in the previous chapter is the merger of two 

independent welding technologies.  The key desire of the process is to be able to control 

the duration that the process operates in the keyhole process.  Remembering that this 

event, if left unattended, is the same as a cutting torch.  The duration of the keyhole 

cannot always be maintained as desired due to uncertainties in the welding process.  To 

this end, a peak current Ip is applied to establish the keyhole and the current is switched to 

a lower level called base current once the keyhole is established. The objective of the 

control is to establish the keyhole within a certain period, which is called the keyhole 

establishment time. Because the current is switched to the base level once the keyhole is 

established, the keyhole establishment time is thus the same as the period during which 

the peak current is applied. Hence, the peak current period Tp is the output and the peak 

current Ip is the input of the process to be controlled.    

 

4.1  Modeling of the DSAW Data 

 Up until this point, the focus has been on providing a general synopsis on some of 

the current techniques employed in nonlinear modeling of dynamic systems.  To this end, 

an overview of the neural network architecture has been presented and expanded upon.  

The inclusion of both a foundational history and current modeling structures serves to 

better prepare the reader for the analysis and construction of the Double Sided Arc 

Welding (DSAW) process model as first outlined in a previous chapter.  As was 

previously mentioned, the establishment of a keyhole in the work material is a function of 

the current and duration.  The input to the network will be the welding peak current per 

weld cycle while the output is the total time duration of that particular level.   Each of the 

inputs and outputs have been normalized.  The peak current ratio is 239:1 while the peak 

current duration has a ratio of 5074:1.   
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The normalized sequences are outlined in Figure 4.1 below. 
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Figure 4.1 Training and Test Sequences 
 

Now that a sample set has been provide, the goal is to separate the sequence into a 

training set by which the network will be trained and a test set to test the ability of the 

network to simulate the process.    
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To this end, the training and test sets are outlined in Figure 4.2 below. 
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Figure 4.2 Partitioning of the training and test set. 
 

 

The complexity of this system involves the seemingly noise input for the peak current 

intensity.  The goal of the modeling procedure will be to develop a suitable simulator of 

the process.  In each instance of a chosen predictor, a feedback model is used.  Overall 

performance of the simulated models will be based upon the MSPE of the test sequence. 
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4.1.1  NARX Assumed Model 

 The NARX feed-forward predictor will be assumed for the process.  The structure 

of the feed-forward predictor is defined  as: 

 

 ))1(),...,(),1(),...,(()1( +−+−=+ mkukunkykyky ppφ (4.1)

 

The inputs to our network will be the output yp and u, where yp is the predicted output.  A 

generalized block can be realized as presented in Figure 4.3. 

 

 

NN
u(k), .... , u(k-m+1)

y(k), .... , y(k-n+1)

y(k+1)

 
Figure 4.3  Neural NARX predictor

 

 

 

 

 

 

Two hidden neurons will initially be used to learn the system.  The performance will then 

be compared with the same network, but with five hidden neurons.  The goal here is to 

see if increasing the number of neurons actually help the system performance.  This 

methodology will be employed in each of the test cases.  
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Graphically, the implementation of the network architecture is shown in Figure 4.4.  Each 

node is fully connected. 

 

 

Σφ φ...

y(k+1)

u(k), .... , u(k-m+1) y(k), .... , y(k-n+1)  

 

 

 

 

 

 

 

 
Figure 4.4 Fully connected NARX predictor 

 

 

4.1.1.1  NARX Network Response 

 The performance criteria used for the training and testing of the network utilizes 

the mean square error (MSE).  In each trial, a 150 sample training set is presented to the 

network.  The network then trains itself for 2500 epochs in an attempt to establish a 

suitable process fit.  The initial weights of the network are generated randomly and the 

process is simulated to provide a base line.   
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The initial response is shown in Figure 4.5. 

0 50 100 150
0

0.2

0.4

0.6

0.8

1
P

ea
k 

C
ur

re
nt

 D
ur

at
io

n Mesured
Predicted

0 50 100 150
-0.2

-0.1

0

0.1

0.2

E
rro

r

Weld Cycle
 

Figure 4.5 NARX response to the training set. 
 

The blue line in the graph indicates the measured data. The predicted output of the 

network is indicated with the green line.  As can be noted, the initial response to the 

training set appears to have a fairly good fit.  After training, it is noticeable that the 

network acceptably describes the process with minimized error.  The MSE performance 

of the network for this training set is 0.0012.  
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Figure 4.6 indicates the progression of the error as the training epochs increases. 
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 Figure 4.6 MSE Performance of the NARX predictor 

 

 After the initial training is accomplished, the task is to verify that the network truly 

describes the process in question.  To accomplish this, our test set is now presented to the 

network.  The network is then simulated with this new set of inputs.  After simulation, the 

MSE of the test set has slightly poorer performance than the training set and comes in at 

0.0181.     

 

 

 

 

 45



 

Comparing the response of the training set and test set is depicted in Figure 4.7. 
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Figure 4.7 NARX Response to the test set.  

 

The interconnecting weight matrix of the network was found to be: 
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Increasing the number of hidden neurons to five within the network does provide better 

performance for the system as is shown in Figure 4.8 below. 
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Figure 4.8 Five Neuron NARX response  
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4.1.2  NARMAX Assumed Model 

 One of the simplest input-output models that can be represented is the NARMAX.  

As a second experiment, the NARMAX is assumed to be the model of the process and 

the predictor is defined as:  

 

 ))1(),...,(),1(),...,(),1(),...,(()1( +−+−+−=+ pkekemkukunkykyky ppφ (4.2)

 

Like the NARX model, the NARMAX can be represented as the NARX with the addition 

of an error term.  A proposed neural architecture is presented in Figure 4.9. 
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u(k), .... , u(k-m+1) y(k), .... , y(k-n+1) e(k), .... , e(k-p+1)  

• • • 

 

 

 

 

 

 

 

Figure 4.9 NARMAX Predictor  
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4.1.2.1  NARMAX Network Response 

 Like the NARX assumption, the performance criteria, number of samples and 

experimental methodology are the same, so as to provide a valid comparison between the 

two assumed models.  That said, the MSE of the NARMAX predicted system does 

perform slightly better than the original NARX assumed model.  The performance of the 

MSE comes in at 0.0013, on par with the NARX assumption.   

 

The trained network response is shown in Figure 4.10 
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 Figure 4.10 NARMAX response to the training set. 
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The MSE progression over the 2500 epochs of training is shown in Figure 4.11. 
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 Figure 4.11 MSE Performance of the NARMAX predictor 

 

After simulation with the test set, the MSE performance is 0.0069. This is once again 

better than the NARX response for the same test set.  From that standpoint, it can be safe 

to draw the conclusion that either one of the assumed models should provide similar 

responses.   
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The final comparison for the training set and test set is shown in Figure 4.12. 
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Figure 4.12 NARMAX response to the test set.  

 

The interconnecting weight matrix of the NARMAX network was found to be: 

Initial untrained network weights: 
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Increasing the number of hidden neurons to five within the network does not provide 

better performance for the system as is shown in Figure 4.13 below.  In this instance, the 

network over fits the data and thus the increased errors. 
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Figure 4.13  Five neuron NARMAX response  
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4.1.3  State Space Assumed Model 

 The given predictor for a state-space model is given by the following set of 

equations: 

 

 

))1(),...,1(()1(

))(),(),(),...,(()1(

))(),(),(),...,(()1(

1

111

++=+

=+

=+

kkky

kykukkk

kykukkk

n

pnnnn

pn

ξξψ

ξξφξ

ξξφξ (4.3)

 

The proposed state space model utilizes a two neuron hidden network and is graphically 

represented in Figure 4.14. 
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 Figure 4.14 State Space Predictor 
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4.1.3.1  State Space Network Response 

Out of the three proposed models, the state-space model performs poorest.  The 

MSE is 0.0133, which, in comparison, is almost an order of magnitude less than the 

previous two.  The response to the training set is shown in Figure 4.15. 
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 Figure 4.15 State-space response to the training set. 

 

The state-space assumed model lacks in sufficiently predicting the system response . 
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The MSE progression over the 2500 epochs of training is shown in Figure 4.16. 

 

0 500 1000 1500 2000 2500
10

-2

10
-1

100

101

2500 Epochs

Tr
ai

ni
ng

-B
lu

e
Performance is 0.0133932, Goal is 0

 

 
Figure 4.16 MSE Performance of the State-space predictor 

 

As can be seen, the MSE fails to converge to an acceptable level.  The model is 

essentially stuck.  After simulation with the test set, the MSE performance is 0.0076.  The 

interesting fact here, is that the MSE of the test set is better than the training set?  

Perplexing thought, what could this be attributed to?  Looking carefully at the training set 

and test set, one can notice that the test set has less spurious peaks occurring.  The overall 

response of the network was flat for all intensive purpose.  The greatest error is due to the 

one peak. 
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The final comparison for the test set is shown in Figure 4.17. 
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Figure 4.17 Training set to Test Set NARMAX Network Response  

The interconnecting weight matrix of the state-space network was found to be: 

Initial untrained network weights: 
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Increasing the number of hidden neurons to five within the network does not provide 

better performance for the system as is shown in Figure 4.18 below.  In this instance, the 

network over fits the data and thus the increased errors. 
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Figure 4.18 Five neuron State Space response. 
 

 

4.2  Remarks 

 After careful review of the three proposed network structures, it becomes obvious 

that the NARX and the NARMAX models provide the best performance. The NARMAX 

structure provided the best results.  Oftentimes, to improve the MSE, the networks are 

trained to a much higher degree- often approaching tens of thousands of epochs.  While 

this extra training does provide improvements, overall, the performance for these 

particular cases did not improve significant enough to warrant the extra training.  Another 

goal of the network is to be of minimal size.  Increased network size leads to over-fitting 
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and allows additional system noise in, not to mention that the speed of the network is also 

decreased. 
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Chapter 5 

 

5.1  Conclusions 

 The primary focus of this research has been to provide a fundamental knowledge 

and understanding of the existing technologies, to solve problems associated with non-

linearity.  More specifically, a basis of the neural network was provided as an 

approachable mechanism by which to solve more complex problems. 

 To develop a working model of a system, an acceptable data sample should be 

collected of the typical process and provided as the inputs to the network to the be 

trained.  Aptly selecting the data set provides a generality for the network.  The goal is 

not to provide a complete picture to the network but rather a snapshot, so that the network 

is able to make an “educated” guess of what the response should be. 

 Within the neural network framework several structures exist to accomplish the 

modeling task.  Structures ranging from the NARMAX, NARX, and state-space models 

may all be utilized.  While these tend to provide good results, there does exist a wealth of 

other network structures that may be used.  

The DSAW process provided a dynamic data set to functionally assert the 

networks features.  The establishment of the keyhole evolution, control of the welding 

current provide a window into the evolution of an acceptable weld.  The neural network 

provides a means by which to effectively predict at what stage of the development the 

process may be in.  The key once again, is to provide an acceptable date set to show the 

network how the process behaves.   

A key benefit of the network, other than its ability to predict process response, is 

to be able to control the level of dimensionality of the simulating model.  Some of the 

other non-linear techniques as presented to work but at high cost to processing power and 

number of variables that must be maintained and controlled.  The “curse of 

dimensionality” is always of great importance. 
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5.2  Future work 

 This thesis is but the tip of the iceberg for the realm of possibilities that can stem 

from it.  The DSAW process is very dynamic in nature and the need for an accurate 

control system is desired.  To this end, further research is necessary in the fields of 

control algorithms associated with neural modeling and process control.  

 An improved understanding of the environmental aspects that influence the 

evolution of the weld, as well as, an increased understanding of the heat transfer can 

provide further development of the neural model.   A neural sensor may be developed for 

online monitoring of the critical parameters.  This in turn, would provide the necessary 

inputs to the neural controller.   One of the powerful features of the network is its ability 

to scale with a process.  As a process becomes more complex and other variables are 

factored into the process, the neural controller is able to adapt and provide the necessary 

result. 

 Finally, a process can be expanded, in that, not only one process can be 

controlled, but rather a multitude of simultaneous weld operations could be performed 

and controlled in succinct succession. 
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