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CONTROL-RELEVANT SYSTEM IDENTIFICATION USING NONLINEAR

VOLTERRA AND VOLTERRA-LAGUERRE MODELS

Abhishek S. Soni, PhD

University of Pittsburgh, 2006

One of the key impediments to the wide-spread use of nonlinear control in industry is the

availability of suitable nonlinear models. Empirical models, which are obtained from only the

process input-output data, present a convenient alternative to the more involved fundamental

models. An important advantage of the empirical models is that their structure can be

chosen so as to facilitate the controller design problem. Many of the widely used empirical

model structures are linear, and in some cases this basic model formulation may not be

able to adequately capture the nonlinear process dynamics. One of the commonly used

nonlinear dynamic empirical model structures is the Volterra model, and this work develops

a systematic approach to the identification of third-order Volterra and Volterra-Laguerre

models from process input-output data.

First, plant-friendly input sequences are designed that exploit the Volterra model struc-

ture and use the prediction error variance (PEV) expression as a metric of model fidelity.

Second, explicit estimator equations are derived for the linear, nonlinear diagonal, and

higher-order sub-diagonal kernels using the tailored input sequences. Improvements in the

sequence design are also presented which lead to a significant reduction in the amount of data

required for identification. Finally, the third-order off-diagonal kernels are estimated using a

cross-correlation approach. As an application of this technique, an isothermal polymerization

reactor case study is considered.

In order to overcome the noise sensitivity and highly parameterized nature of Volterra

models, they are projected onto an orthonormal Laguerre basis. Two important variables
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that need to be selected for the projection are the Laguerre pole and the number of Laguerre

filters. The Akaike Information Criterion (AIC) is used as a criterion to determine projected

model quality. AIC includes contributions from both model size and model quality, with

the latter characterized by the sum-squared error between the Volterra and the Volterra-

Laguerre model outputs. Reduced Volterra-Laguerre models were also identified, and the

control-relevance of identified Volterra-Laguerre models was evaluated in closed-loop using

the model predictive control framework. Thus, this work presents a complete treatment of

the problem of identifying nonlinear control-relevant Volterra and Volterra-Laguerre models

from input-output data.
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1.0 INTRODUCTION

With ever increasing energy prices and the need to remain competitive in a global mar-

ketplace in the face of strict environmental regulations, the chemical industry needs to

operate in an efficient manner with respect to both raw material and energy usage. This

goal can be achieved by either improved process technology or plant retrofitting, by the

implementation of advanced control technologies for regulation and control. Compared to

new process equipment, which is both capital and time intensive, using an advanced control

system in existing plants offers a cost-effective and more immediate alternative. In addition,

the combination of new process technology and advanced process control can lead to safe,

energy-efficient and economical plants [1]. As an example, the reduction in emissions and fuel

consumption in automobiles has been brought about by a combination of improved process

technology (catalytic converters) and advanced process control (microcomputer based engine

control) [2]. One of the basic tenets of model-based control is that theoretically achievable

controller performance is directly related to model quality [3]. Thus a good process model

is a key requirement for any successful controller. In fact, it has been reported that in

some cases, process model development accounts for about 75% of the time required to

implement an advanced control strategy [4], thereby highlighting the critical nature that

model development plays in advanced controller design.

The nature of the chemical industry itself, i.e., economics of operation and the unit

operations themselves, imposes additional requirements on process models. The need for

improved product quality while maintaining a safe and economical operation requires that

plants be operated over a broad range about the nominal operating point. This leads to

plant operation close to constraints and excites nonlinearities in the system behavior. As

an example, high purity distillation columns exhibit asymmetric output changes (overhead
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product quality) to symmetric input changes (reflux ratio) [5]. In addition, reacting systems

often display nonlinearities arising due to the reaction mechanisms or due to the non-

isothermal nature of the rate constants. Thus nonlinearity is an integral part of chemical

process operation and must be accounted for while developing process models. There are

various approaches for developing nonlinear models. Models could be derived based on the

process physics using ordinary and/or partial differential equations, or by using process

input-output data and a suitable empirical model structure. Another approach is to develop

mixed models which are a combination of the aforementioned approaches.

Fundamental models, also called first-principles models are based on the underlying

physics of the system. These models are developed by applying mass and energy balances

over the components or states and may also include a description of the fluid flow and

transport processes that occur in the system. A number of fundamental models have been

developed to model processes ranging from a single cell [6, 7, 8], to a complex two phase

pulp digester [9]. Fundamental models offer several potential benefits. Since they include

details about the physics of the system, they can better represent the nonlinear behavior and

system dynamics; this allows the model to be used with confidence, beyond the operating

range in which the model was constructed. Another benefit of utilizing the first-principles

approach is that the states are generally physical variables that can be measured, such as

temperature or concentrations of the system components. However, these models are time

consuming to develop and they often have a high state dimension [10, 11]. The involved

mathematical description may result in a model with a large number of equations and many

parameters that need to be estimated. In many cases, all of these parameters cannot be

obtained experimentally. In some cases, regression analysis is used or adjustable parameters

are employed to adequately represent the system behavior. On account of the complexity

included in these models they often take person-years to develop.

In many cases the actual system may be complex and the underlying phenomena are

not well enough understood to develop a first-principles model. Empirical models are useful

in this scenario. In empirical modeling, a model structure is first selected and the model

identification problem involves determining the model parameters that best fit the input-

output data. Among the widely used empirical models are the auto-regressive with exogenous
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inputs (ARX) model [12], Artificial Neural Networks (ANN) [13],[14], and polynomial models

such as the Volterra-Laguerre models [15],[16],[17]. The parameters describing the model

are then identified by a regression analysis of the process data [18]. As an example of the

empirical modeling framework, Parker et al. utilized a second order Volterra series model

to capture the dynamic behavior exhibited by continuous cultures of Klebsiella pneumoniae

[15]. Although practical insight into the problem may be lost, as physical variables of the

system such as temperature and concentration may not be explicitly represented in the

empirical model, the time requirement to obtain these models is often significantly reduced

[19].

Mixed models are developed, as the name suggests, by combining the fundamental and

empirical models, thus encompassing the benefits of both. As an example, Henson used a

fundamental model to capture the key process dynamics and then appended an empirical

model to capture the modeling error between the fundamental model and the actual plant

[20].

The quality and level of complexity included in the process model is intricately related

with the subsequent controller design and implementation. In the commonly used model

predictive control (MPC) algorithm, the control input implemented in the plant is the

solution to an optimization problem that minimizes the deviation of the output from a given

reference. Generally, there are time constraints within which the optimization problem must

be solved so that the input can be implemented in the plant. Complexities in the process

model may cause problems in the solution of the optimization problem, such as infeasibilities

and lack of algorithm convergence in real-time. For process control applications it may not be

necessary for a model to describe the complete set of dynamic process behavior. Such a model

that is built with an emphasis on controller design is called a control-relevant model. As an

example, Skogestad and Morari consider a linear two time constant model for a distillation

column where the two time constants that capture the dynamic behavior are motivated by

the internal and external flows in the column. The main focus of their work was to develop

a model, that included the factors that were most important for feedback control, rather

than an accurate physical model for feed-back control [21]. Similarly, Balasubramhanya

and Doyle III [22] used traveling wave phenomena to develop a low-order nonlinear model

3



that captured the nonlinear dynamic behavior of a high purity distillation column for use

in model-based control strategies. Thus, the main idea behind control-relevant modeling is

that in order to facilitate the subsequent controller design problem, it is advisable to employ

the least complex model that adequately captures the relevant process dynamics [19].

The level of complexity included in fundamental models may preclude them from being

used in control design. In contrast, the simplicity of empirical models offer a lot of ad-

vantages. They are comparatively easier and less time-consuming to develop as compared

to fundamental models. They can be control-relevant, as the model structure in empirical

models can be chosen to facilitate subsequent controller design. As a testament to their

appeal, a vast majority of industrial model predictive controllers (MPC) employ empirical

dynamical models [23]. Thus, the focus of this work is the development of a specific class of

empirical nonlinear dynamic models from input-output data. Before moving on to specifics,

the next section offers a broad overview of empirical model identification.

1.1 EMPIRICAL SYSTEM IDENTIFICATION

A schematic of empirical model identification is given in Figure 1. The main goal is to

develop an empirical model for the unknown physical process. In its most basic form, the

problem of system identification involves determining the parameters, θ, of the empirical

model such that the predicted response from the model ŷ closely approximates the response

of the physical process y, for the same inputs u. In a historical context, the term “system

identification” was first defined by Lotfi Zadeh: “Identification is the determination, on the

basis of input and output, of a system within a specified class of systems, to which the system

under test is equivalent” [24]. With this definition in mind, system identification in practice

involves the following steps [25]:

1. Selection of a model structure

2. Given a model structure, design of the input sequence, u(k)

3. Given u(k), generation of the system response y(k)

4. From the input-output dataset, estimation of the model parameters

4
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Figure 1: Schematic of the system identification problem
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5. Assessment of identified model quality based on the estimated model parameters

6. Iteration and model refinement as necessary

1.1.1 Steps in Empirical Model Identification

A schematic of the various steps in empirical model identification is shown in Figure 2, and

these are explained in the subsequent sections.

1.1.1.1 Model Structure Selection One of the most difficult steps in constructing an

empirical model is the selection of a suitable model structure. The selection of the model

structure could be carried out using two distinct philosophies. In the first, the exploratory

philosophy, structural process data such as the time constant, magnitude and sign of the

gain, and steady-state input-output map are determined. This information can be obtained

by subjecting the process to specific screening inputs such as sinusoids, steps of various

magnitude, etc. [26]. This available process data is then used to select a model structure

that exhibits a qualitative behavior similar to that exhibited by the actual process. The

other philosophy is the confirmatory philosophy whereby a model structure is selected and

the process data is used to accept or reject its appropriateness [26]. Closely related to these

ideas is the concept of parametric, non-parametric, or semi-parametric modeling [27]. In

parametric modeling, the structure of the model is fixed and the identification problem

is reduced to determining the model parameters that best-fit the process input-output

dataset. In non-parametric modeling, a model structure itself, i.e. the functional form

of the structure, is sought from from the available data [18]. Finally, in semi-parametric

modeling, only part of the model structure is completely specified. In general, selection

of the model structure is greatly facilitated by an adequate knowledge of a priori process

information.

1.1.1.2 Input Sequence Design The input used to generate the u − y dataset is

user-defined, and it can be tailored to facilitate estimation. In addition, since the input

is implemented in the plant, it should satisfy certain characteristics. First, the input signal

6
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must have sufficient energy to excite the full range of nonlinear process dynamics. For linear

systems, the random binary signal or the deterministic pseudo random binary signal (PRBS)

have been commonly used. However, these signals cannot excite certain nonlinearities (eg.,

even-ordered symmetric behavior), so that more input levels in the sequence are necessary.

As a special case, Nowak and van Veen have shown that identification a Volterra model

of order N requires the input sequence to have at least N + 1 levels [28]. Second, the

input should be plant-friendly. Since this input signal is implemented by an actuator in the

plant, such as a control valve, the input sequence should not have frequent transitions which

cause actuator wear. In addition, the magnitude of the input sequence must not be large

so that valve saturation is avoided. At the same time the magnitude of the input should

be high enough to ensure that the output response lies outside the noise-band for process

operation. In addition, a sequence with a length as short as possible is desirable so that

system identification does not interfere with normal plant operation [29].

However, these practical requirements are often in conflict with theoretical identification

results. It has been shown that the coefficient error variance can be reduced by using a

sequence as long as possible. In fact, asymptotic convergence is achieved as the sequence

length approaches infinity [18]. In addition, the variance also decreases when the input

spectrum, i.e., input magnitude, is as high as possible so that the operation is under a

high input signal to noise ratio [18]. An example of such a sequence is the Gaussian White

Noise (GWN) sequence, which is completely random and uncorrelated with itself, i.e., this

sequence has the maximum possible input energy.

Various metrics have been proposed to characterize the plant-friendliness of input se-

quences [29, 30, 31]. Braun et al. [29] employed multi-sine signals in the frequency domain

with a goal of minimizing the crest-factor of the input signal. The crest-factor is a ratio of

the L∞ norm to the L2 norm of the input signal. A low crest factor signifies that most of

the input values are distributed around its extreme ends. Minimization of the crest factor

improves the signal to noise ratio of the output, thereby making it plant-friendly. The metric

used to account for plant-friendliness in this work is the friendliness factor, Ff , given as [30]:

Ff = 100

(

1− nt
NL − 1

)

(1.1)
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Here, Ff is the friendliness factor, NL is the total sequence length, and nt is the total number

of level transitions. Any sequence that remains at the same level is 100% plant friendly (since

there are no transitions). However, it would not provide any meaningful data for identifying

the system dynamics or nonlinearities. A sequence where nt equals NL − 1, e.g., a sequence

that changes at every time-step, is 0% plant friendly as the frequent transitions would cause

actuator wear.

1.1.1.3 Parameter Estimation Both the selection of the model structure and the

design of the input sequence can affect the complexity of the parameter estimation problem.

As an example, Hammerstein models, which consist of a memoryless nonlinear function

followed by a linear dynamic element, are nonlinear in the parameters and require an

iterative procedure, the Narendra-Gallman algorithm, to estimate the model parameters

[26, 32]. On the other hand, Wiener models reverse the order of the two blocks, i.e., the

linear dynamic element precedes the memoryless nonlinearity, so that the estimation problem

is comparatively easier and non-iterative in nature. In general, parameter estimation for

models that are linear in the parameters, such as the Finite Impulse Response (FIR) model,

is easier, and the parameters can be obtained by a simple least squares regression. However,

for models that are a nonlinear function of the parameters, such as the ARMAX, Box-

Jenkins, and Output Error models, a slightly more involved nonlinear iterative solution to

the parameter estimation problem is required [18, 26].

1.1.1.4 Model Validation Once a model is obtained that best fits the input-output

dataset, its validity needs to be evaluated. Validation of the identified model is carried out

by assessing the performance of the model for a dataset other than that used for identification,

and such a validation exercise is termed as cross-validation. However, a simple comparison

of the outputs from the actual process and the identified model may not be enough to

ascertain the validity or invalidity of the model. Consequently, the model’s response to

an impulse or step input is used to compare with a priori process information such as the

time constant, or the gain sign and magnitude. When the identified model yields estimates

that deviate significantly from known process behavior, the existing model needs to be
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revised, i.e., a new model structure, or a more informative input-output dataset should be

used. Residual analysis is another metric that can be used to assess the performance of

the identified model. When the auto-correlation of the residual time series, or the cross-

correlation of the residual time series with the input does not show a significant interaction

effect, i.e., when these correlations lie within 95% confidence limits, the model can be selected

as an adequate representation of the actual process [18]. Finally, another important metric

for model validation is model stability, i.e., the model of a stable process must be bounded

input-bounded output (BIBO) stable over the process operating range [33].

1.1.2 Linear Model Identification

With the wide array of available choices and associated constraints in the selection of model

structures, in input sequence design, and in validation criteria, empirical system identification

is a non-trivial challenge. However, the model identification problem is somewhat simplified

for linear models. Linear models are very easy to develop because the model identification

step often requires specification of relatively few parameters. As an example, for FIR models,

only the number of lags, or past input terms, need to be identified in order to completely

specify the model. As it relates to input sequence design, any binary level sequence is

applicable for linear analysis. A popular sequence used for linear identification is the pseudo

random binary sequence (PRBS) which is deterministic in nature, and its properties are

well understood [18]. Also, since linear models are linear with respect to parameters, the

parameter estimation problem simplifies to a least-squares problem. Other non-parametric

approaches have also been used to identify linear models [33]. Prominent examples are

correlation analysis, transient analysis, and frequency based analysis. Unlike the correlation

and transient analysis, which obtain the impulse response of the system, frequency analysis

identifies the entire frequency response or transfer function of the system under study. This

technique involves the discrete Fourier transform (DFT) of the input and output, and the

advantage of this approach is that it allows one to concentrate on a frequency range of

interest. The other advantage of using linear models is that the common linear model

structures, eg., FIR, ARMA, or linear state-space, are either fully or nearly equivalent.
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This is an important result as it implies that preliminary model structure selection is not as

important for linear models. As an example, the identified ARX model could be transformed

to a linear state-space model for use in optimal or model predictive control [26].

Besides ease of identification, another reason for the wide-spread use of linear models

is their suitability for control. In the most general form, when a linear model is used for

controller design using the MPC philosophy, the controller objective function is quadratic.

This quadratic optimization problem can be easily transformed into a quadratic program, for

which a globally optimal solution exists and convergence is guaranteed. However, increasing

operational, environmental, and economic constraints, have placed additional challenges on

controller performance, so that nonlinear control becomes necessary. In such a scenario,

the simplified linear model structures may not be able to capture the full range of process

dynamic behavior and consequently may be unsuitable for nonlinear control.

1.1.3 Nonlinear Model Identification

In a stark contrast to linear models, the identification problem is considerably more complex

for nonlinear systems. To begin with, nonlinear models exhibit a diverse range of nonlinear

behavior, and unlike linear models, nonlinear model structures are generally not equivalent.

Because of this diversity, selection of an appropriate model structure becomes critical. In this

context, Pearson classified processes using a degree of nonlinearity, i.e. mild, intermediate, or

strongly nonlinear, and the qualitative nature of process nonlinear behavior. Mildly nonlinear

processes included those that exhibited asymmetric response to symmetric changes in input,

and showed input multiplicities i.e., the same output could be generated by different input

magnitudes. Intermediate nonlinear processes showed an output multiplicative behavior,

whereas strongly nonlinear processes showed chaotic dynamics. Based on these behaviors,

Pearson presented guidelines for selecting one of the following nonlinear model structures:

the block oriented model structure, bilinear, recursive neural network, and finally the Lur’e

model structure [26]. Thus, a priori process information plays a critical role in the selection

of a nonlinear model structure.
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Selection of an appropriate input is also considerably more challenging for nonlinear

models than their linear counterparts. As an example, the PRBS sequence that is widely

used for linear model identification is inadequate for identification of a broad class of the

block-oriented models [25]. The input should also possess enough energy to exercise the

full range of process nonlinear behavior, and this persistence of excitation condition, well

established for linear systems, does not have a well-defined nonlinear equivalent. Finally, as

discussed in Section 1.1.1.2, a good sequence for identification may not be plant-friendly, so

that input sequence design for nonlinear models is non-trivial.

This complexity in identifying a nonlinear model also extends to the controller design

problem. Unlike the linear case, the optimization problem in MPC is now nonlinear, and

requires the solution of a nonlinear programming problem. This solution is an iterative

process and global optimality cannot be guaranteed.

However, the difficulty in identifying nonlinear models can be alleviated by using intuition

gleaned from linear model identification. The parameter estimation problem can be simplified

for a sub-class of the block oriented nonlinear models. The structure of the nonlinear model

framework can be exploited to design tailored input sequences [30, 34]. In addition, the

model structure can also be represented in a compact state-space form to facilitate its use

in subsequent controller design problems [15, 17, 35, 36].

One model structure that has been successfully used to develop empirical nonlinear

models is the block-oriented model structure [26, 37, 38, 39]. These models consist of a static

nonlinearity G(·) and a linear dynamic element L(t). The order of these blocks defines the

model class: Hammerstein models are composed of a static nonlinearity followed by a linear

dynamic element, whereas Wiener models have the order of these blocks reversed (Figure

3). Both the Hammerstein and Weiner models are actually special cases of the sandwich

model which consists of a linear dynamic element, followed by a static nonlinearity, and then

another linear dynamic element. Using L(t), and by selecting a specific class of G(·), the
system identification problem can be simplified.

One such simplification is the Volterra model, a subclass of the Wiener model where the

static nonlinearity is of a polynomial type and the linear dynamic element is of the Finite

Impulse Response (FIR) type [26]. Although the Volterra model itself is nonlinear, it is
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still linear with respect to the model parameters, and this makes the parameter estimation

problem comparatively easier. Volterra model identification is the focus of the present work.

1.1.4 Volterra Models

The general form of the discrete-time Volterra model is as follows:

ŷ(k) = h0 +
N
∑

i=1

M
∑

j1=1

· · ·
M
∑

jN=1

hi(j1, .., jN )u(k − j1) · · · u(k − jN) (1.2)

In this equation h0 represents the bias term, N is the order of the Volterra model, and M is

the model memory, which is the window of past inputs beyond which an input does not have

a significant effect on the current or future outputs. The kernels of the Volterra model are

given by hi(j1, .., jN ) whereas u(k−ji) represents the past inputs, over a horizon 1 ≤ j ≤M .

An essential requirement for the use of Volterra models is that the process must display

fading memory, i.e., past inputs must have a decreasing effect on the current output. The

kernels of the Volterra series have the following properties [40]:

hi(j1, .., ji) = 0 for ji ≤ 0 i = 1, 2, 3, · · ·, N (1.3)

lim
ji→∞

hi(j1, .., ji) = 0 i = 1, 2, 3, · · ·, N (1.4)

hi(j1, .., jN ) are or can be made symmetrical (1.5)

The first two properties state that the output depends only on the past inputs and that the

response becomes zero as values ji increase. This is the primary reason for the imposition

of the fading memory requirement on processes to be modeled. The last property states

that that the kernels are symmetric, or can be made symmetrical, by a cyclic change of the

arguments for the asymmetric kernel. In addition, the Volterra model structure also exhibits

the following properties:

• For N > 1 Volterra models can capture asymmetric output responses to symmetric

input changes. Such asymmetric behavior is exhibited by polymerization reactors and

distillation columns, thereby rendering the Volterra model an effective structure for

modeling chemical engineering systems.
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• For an open-loop stable process, an empirical model based on the Volterra series is always

stable. This stability is guaranteed in the presence of unmeasured disturbances and even

when the input violates allowable bounds [41]. This stability feature makes the Volterra

model structure very attractive in nonlinear model-based control systems.

• For N = 1 the Volterra model reduces to the popular and widely used linear FIR model

so that the Volterra model with N > 1 can be thought of as a nonlinear extension of the

FIR model.

1.1.4.1 Background Literature on Volterra Models Various approaches have been

developed to identify Volterra kernels from process input-output data. One of the earliest

was the cross-correlation method [5, 42, 43, 44, 45, 46, 47]. For a detailed description of the

cross-correlation technique, the interested reader is referred to [42, 45, 46]. Cross-correlation

is essentially a statistical technique that uses the input auto-correlation and input-output

cross-correlation data to identify the Volterra kernels. An N + 1-level input sequence (at a

minimum) is required to identify a Volterra model of order N by cross-correlation [28].

One of the earliest applications of the cross-correlation technique was reported by Lee

and Schetzen [43]. Their approach required that the input sequence be zero-mean, white

and Gaussian distributed. However, a white sequence has little practical significance as it

would cause actuator wear and it may not be practical to implement in a plant setting

due to the continuum of levels employed in a Gaussian white noise (GWN) sequence. As

an additional requirement, the sequence was to be as long as possible to yield accurate

parameter estimates. This is also a cause for concern for highly parameterized and nonlinear

systems as the amount of data required to identify the parameters increases as well.

Marmarelis and Marmarelis showed that Constant-switching-pace Symmetric Random

Sequences (CSRS) could be used for Volterra model identification instead of GWN signals

[44]. The advantage of these signals is the fact that they are finite-level and their probability

distributions can be varied to achieve the desired moment properties. The commonly known

random binary sequence (RBS) is a CSRS.
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Koh and Powers [46] identified a second-order Volterra model whereby the linear and

quadratic kernels were identified so as to minimize the prediction error variance σ2
p given as:

σ2
p = E{[ŷ(k)− y(k)]2} (1.6)

In this equation E{·} is the expectation operator. Building on the work of Koh and Powers,

Pearson et al. [48] also designed plant-friendly input sequences that did not require the input

sequence to be white. In their identification algorithm for second-order Volterra models,

Pearson et al. calculate the bias term y0 by setting E{ŷ(k)} = E{y(k)} i.e. ŷ(k) is an

unbiased estimator of y(k). The linear and quadratic kernels were similarly calculated so

as to minimize the PEV expression given in (1.6). In addition, they showed that the only

requirements on the input were as follows:

ū = 0 (1.7)

E{u(k − i)u(k −m)u(k − n)} = 0 ∀ i,m, n (1.8)

This implies that the input must must have symmetric density and that the expected value

of the auto-tri-correlation of the input sequence must be zero. They also identified pruned

Volterra models, i.e., models in which certain contributions were set to zero. The advantage

of pruned models was that it reduced the number of coefficients to be estimated and hence

the data required for estimation. For example, a diagonally pruned second-order kernel is

one where all coefficients not on the main diagonal are zero (h2(i, j) = h2(j, i) = 0). They

also analyzed the effect of the sequence of the input distribution (symmetric or Gaussian)

on the identification of different combinations of pruned second-order Volterra models.

Parker et al. [30] developed a novel plant-friendly tailored-sequence design approach

for the identification of the linear and diagonal kernels of a second-order Volterra model.

This tailored input sequence was symmetric, satisfied the requirements placed in (1.7), and

was significantly shorter than the sequence used in the cross-correlation technique. The

identification of the kernels was also based on a PEV approach and their results showed a

considerable improvement over the cross-correlation technique.
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Since the Volterra model is linear in parameters, Korenberg estimated the kernel values

directly by solving the least-squares problem using a QR factorization technique [49]. Zhang

et al. utilized the Korenberg algorithm to study the effects of model nonlinearity and model

memory on the quality of the Volterra kernel estimates for a nonlinear model of the lung

[50]. They developed an algorithm for the automatic and simultaneous identification of the

kernel and memory length from available data. They found that an incorrect memory led to

substantial distortion in the kernel estimates and neglecting higher-order kernel contributions

led to a significant bias in the estimates of the lower-order kernels.

Ling and Rivera presented a two-step algorithm in which a nonlinear auto-regressive

model with exogenous inputs (ARX) was first estimated from the input-output data and

then a Volterra model was generated from this ARX model [51]. Their reason for using this

approach was to reduce the number of parameters required to identify the Volterra model

since the ARX model required a lesser number of parameters to be estimated.

Dodd et al. solved the Volterra identification problem by creating a Hilbert space of

functions corresponding to the Volterra series [52]. This Hilbert space was a reduced kernel

Hilbert space (RKHS), in which a feature space was created. The feature space consists of

all possible polynomials in the input up to and including the Volterra model order. The

Volterra kernels were then expressed in terms of this feature space in the RKHS. Thus a

mapping was obtained from the Volterra kernels in the RN space to a higher dimensional

Hilbert space. The advantage of this approach is that functions in the Hilbert space can be

approximated using a finite series of point observations. The Volterra kernel was then easily

identified in the Hilbert space. However, this technique is applicable only for problems with

relatively low model memory. For physical systems where the model memory is generally

high, the dimension of the feature space can be prohibitively high.

Parker and Tummala used the group method of data handling approach to identify a

second-order Volterra model using neural networks [53]. They used an artificial neural net-

work employing a combination of linear and quadratic layers based on polynomial activation

functions. A set of input-output data was used to train the network by computing the

necessary neural network coefficients, and then an optimum combination of the coefficient

set was used to determine the Volterra model parameters. While training the network, all
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possible combinations of the inputs were realized and tested for suitability. This is a problem

for systems with large M , as the polynomial activation functions may take a long time to

converge. Furthermore, the authors also reported convergence problems when the inputs

were not properly selected. There have been other approaches to identify Volterra models

using neural networks [54, 55], however they are also restricted to low memory and low

order problems, and could potentially have convergence difficulties due to the polynomial

activation functions.

Németh et al. identified the Volterra kernel transfer function, i.e., they carried out a

Fourier transform of the input and outputs to obtain the Volterra kernel [56]. The authors

used a multisine input signal, which was characterized by its maximum frequency and the

number of frequency components. Their analysis was restricted to second-order Volterra

models and they approximated the second-order kernel space using interpolation functions.

B-splines were used as the interpolation functions, and the authors obtained good results for

the quadratic case. However, extension to higher orders is difficult because of the complexities

in the selection of, and number of, interpolating splines. In addition, interpolation means

that the kernels are not exact but only approximations of the exact Volterra kernel, and the

accuracy is a strong function of the number of splines selected.

1.1.5 Laguerre Models

Another related class of models that have been used in the identification of nonlinear systems,

are those based on the Laguerre function. The similarity with the Volterra model arises

because the polynomial output nonlinearity is a feature of the Laguerre function as well. In

addition, the Laguerre functions are orthonormal, with the generating basis function given

as:

φj(i) =
√
1− α2

{

j−1
∑

k=0

(−α)k
(

j − 1

k

)(

i+ k − 1

k − 1

)

αi−j+kU(i− j + k)

}

(1.9)

In this equation, α represents the Laguerre pole and U represents the unit step function.
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The Laguerre pole controls the exponential rate of decay of the Laguerre functions, and it

takes values such that, 0 ≤ α < 1. The Laguerre orthonormal basis describes a complete set

in the real domain and can describe a class of functions (which are discussed in Chapter 3),

to within arbitrary accuracy. Thus, in order to describe the dynamic behavior of a nonlinear

function exactly, the Laguerre model can be given as:

ŷl =
∞
∑

j=1

ajφj (1.10)

In this equation, ŷl represents the Laguerre output, φj represents the jth Laguerre filter,

whereas aj represent the coefficients that describe the output as a linear combination of

the Laguerre filters. In practice, only a finite number of filters are necessary so that the

upper limit on the summation term is give by L, the number of Laguerre filters used. Thus,

identification of a system using a Laguerre model involves determination of the Laguerre

pole and selection of a suitable number of Laguerre filters.

1.1.5.1 Background Literature on Laguerre Models Because of the fact that only

two parameters, α and L need to be specified, the Laguerre models have been used extensively

[30, 34, 57, 58, 59, 60, 61, 62, 63]. Other benefits of the Laguerre models include a good

approximation to systems with time delay, tolerance to unmodeled dynamics, and a reduced

sensitivity to the estimated parameters [59]. Furthermore, since the Laguerre series is

orthonormal, the lower order coefficients in a Laguerre model remain practically unchanged

when the model order is increased. Thus, model order can be changed on-line with minimum

transient behavior. However, for models such as the ARMAX models, a change in the model

order requires a change in all of the model coefficients.

For linear systems, Laguerre models offer a great substitute for FIR and ARX models.

In situations where the process dynamics are fast and rapid sampling is required, the FIR

models require a lot of parameters. The model parameterization can be reduced by using

Laguerre functions with α selected to be the same as the dominant time constant of the

system [58].
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One difficulty in the identification of Laguerre models is that the output from the

Laguerre model is a nonlinear function of α. On account of this nonlinearity, tailored

sequence design for direct identification of Laguerre models is difficult. An alternative to

direct Laguerre identification, Volterra-Laguerre (VL) models are often used. VL models

involve a projection of the Volterra kernels onto the orthonormal Laguerre space. Lee first

proposed this idea [43], and Watanabe and Stark identified the VL models using a least

squares algorithm and non-white input sequences [57]. Marmarelis further extended these

results by demonstrating the effect of α in capturing Laguerre filter exponential decay to

zero.

Zheng and Zafiriou presented necessary conditions that nonlinear Volterra kernels must

satisfy in order to be projected onto the Laguerre basis [41, 64]. In addition, the authors also

presented an algorithm based on orthogonal regression to retain dominant terms in the VL

model. As an application of these results, Seretis and Zafiriou utilized a Volterra-Laguerre

model to identify a continuous stirred tank reactor system undergoing a reversible exothermic

first-order reaction [65]. Using a Laguerre model with eight basis functions the authors were

able to capture the process behavior represented by a fourth-order Volterra model. While

Zheng and Zafiriou present very good theoretical results related to projection of Volterra

kernels onto the Laguerre space, they do not address the selection of α or L.

Marmarelis used a Laguerre model to characterize renal blood flow dynamics [60]. Signif-

icant third-order dynamics were observed, and they were characterized by a Laguerre model

with eight basis functions. Mitsis et al. used neural networks with polynomial activation

functions for the hidden layers identify VL models [63]. The uniqueness in this work was

that they used two α values to capture both the fast, and slow system dynamics. They

applied this technique to study the cerebral auto-regulation in humans and they reveal this

behavior to be significantly nonlinear.
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1.2 MODEL PREDICTIVE CONTROL

Model based control is currently one of the most widely used controller design philosophies

in process control, of which model predictive control is the most common. In a recent survey,

Qin and Badgwell report that MPC has found applications in diverse areas such as chemicals,

food processing, aerospace, pulp and paper, and the automotive industries [66]. A number

of comprehensive reviews on MPC have appeared in the literature [20, 67, 68, 69, 70].

The basic philosophy in model based control is shown in Figure 4. In this figure, P
represents the process, and it is desired that the measured process output y follow the

reference trajectory r, in the presence of external disturbances d. The mathematical model

that describes the process is M, and it has an output ŷ. Both r and y are provided to the

controller C, which utilizesM to calculate the manipulated variable (u) changes required to

attain the desired output. The manipulated variable is the solution to an on-line optimization

problem which aims to minimize the difference between the predicted process response and

the desired response, over a future horizon. As discussed before, the selection of the model

M plays a significant role in the complexity of the controller design problem and in the

context of this work, the model is either a Volterra, or Volterra-Laguerre, structure.

1.3 THESIS OVERVIEW

The goal of this dissertation is the development of nonlinear Volterra and Volterra-Laguerre

models from input-output data. This is accomplished as follows: Chapter 2 details the

Volterra model identification problem focusing on third-order systems. Input sequences are

designed, and estimation algorithms are developed to identify the kernels of the Volterra

model. Improvements in the sequence design and refinements in the estimation algorithm

are also presented. An isothermal methyl-methacrylate polymerization reactor serves as

the simulation case study. Chapter 3 details the development of the Volterra-Laguerre

model. The problem of optimally determining the Laguerre pole and the number of Laguerre

filters, is addressed. In addition, the performance of reduced Volterra-Laguerre models is
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evaluated. In Chapter 4, MPC controllers based on both the full and reduced Volterra-

Laguerre models are designed to evaluate the performance of the identified models in the

closed-loop. Finally, Chapter 5 concludes the dissertation with a brief summary of the results

and presents recommendations for future work.
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2.0 VOLTERRA MODEL IDENTIFICATION

One of the key impediments to the wide-spread use of nonlinear control in industry is the

availability of suitable nonlinear models [67]. Nonlinear models can be broadly classified into

two main categories: fundamental models and empirical models. Fundamental models are

derived from the physics of the underlying system. These models are generally formulated

using differential equations and often have a high state dimension [8, 10, 11, 71, 72]. In many

cases the model parameters are difficult to estimate, and it is often not possible to obtain full

state measurement. This complexity in the system model manifests directly in the controller

design and implementation, making model-based controller design a non-trivial problem. In

such a scenario, empirical or black-box models provide a viable alternative to fundamental

models.

In empirical modeling, a model structure is first selected, and the model identification

problem involves determining the model parameters that best fit the input-output data

[18]. Since only the input-output data is used to develop these models, the identification

is comparatively easier, and the time required for model development is reduced [26]. As

discussed in Section 1.1.4, one of the commonly used empirical nonlinear dynamic model

structures is the Volterra model [17, 25, 30, 50, 60, 73]. The Volterra model offers several

beneficial features. It is a nonlinear extension of the popular FIR model. In spite of being

nonlinear, the Volterra model is still linear with respect to the parameters, and this makes

the parameter estimation problem easier. The only condition for using a Volterra model is

that the process should exhibit a fading memory, and this behavior is exhibited by many

chemical engineering systems such as polymerization reactors, stirred tank reactors, catalytic

crackers, and bioreactors [15, 17, 25, 73].
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In previous studies on Volterra models, the primary area of emphasis has been on the

identification of second-order models. However, these models display a multiplicity behavior,

i.e., they undergo a change in the sign of the gain. This can be cause for closed-loop

instability in processes that do not show inherent second-order behavior [74]. Furthermore,

for the polymerization reactor case-study considered in this work, the second-order Volterra

model has limited ability to capture the qualitative steady-state behavior. Over a large

operating range, the second-order Volterra model is qualitatively incorrect because of the

change in the sign of the gain at the upper end of the input range. It also fails to capture the

increase in output at the lower end of the input range, a behavior which is more adequately

represented by a third-order Volterra model. The use of a third-order model leads to an

increase in the number of parameters that need to be estimated. The performance of cross-

correlation approaches for Volterra kernel estimation are adequate (as shown in the Results

section), but improvements in data requirements and parameter estimate quality are possible.

This chapter presents the development of tailored-sequences that use the PEV expression as

a metric for model fidelity and exploit the Volterra model kernel structure to identify third-

order Volterra models. These sequences are plant-friendly and shorter than the corresponding

sequences for cross-correlation. In addition, explicit estimator equations are derived for the

identification of the linear, nonlinear diagonal, and third-order sub-diagonal kernels of the

third-order Volterra model.

2.1 POLYMERIZATION REACTOR CASE STUDY

The case study used in this work is the Congalidis, Richards, and Ray polymerization

reactor [75]. This reaction system involves the isothermal free radical polymerization of

methyl-methacrylate using azo-bis-isobutyronitrile as an initiator and toluene as a solvent;

a schematic is shown in Figure 5. The output (y) is the number average molecular weight

(NAMW) of the polymer and is a measure of the quality of the final product. The NAMW

is controlled by manipulating the inlet initiator flow rate which serves as the input (u).

25



Monomer

Product
(Toluene)
Solvent

(methyl−methacrylate)
(azo−bis−isobutyronitrile)

Initiator

(poly−methyl−methacrylate)

u = F

y = NAMW

Figure 5: Schematic of the polymerization reactor case study
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Table 1: Nominal operating point

Variable Nominal Value Units

x10 5.12796 kmol/m3

x20 0.4791035 kmol/m3

x30 0.00623093 kmol/m3

x40 87.308673 kg/m3

u0 0.0605 m3/h

y0 14012 kg/kmol

The mathematical model of this system is [75]:

ẋ1 = 60− 10x1 − 2.45684x1
√
x2

ẋ2 = 80u− 10.1022x2

ẋ3 = 0.0024121x1
√
x2 + 0.112184x2 − 10x3 (2.1)

ẋ4 = 245.979x1
√
x2 − 10x4

y =
x4
x3

The state variables for this system are the monomer concentration (x1), the initiator con-

centration (x2), and the zeroth (x3) and first moments (x4) of the polymer molecular weight

distribution. Under the restriction of a symmetric input sequence, the nominal operating

point was selected as the mid-point of the flow rate end-points [34]. The nominal values are

given in Table 1. This represents the fundamental model of the system composed of coupled

nonlinear differential equations.
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2.1.1 Calculation of Analytical Volterra Kernels

In order to test the effectiveness of the proposed algorithms, and have a fair comparison, a

Volterra kernel representation of the fundamental model is needed. Carlemann linearization,

or bi-linearization, of the system in 2.1 was performed. The nonlinear reactor system was

first written in scaled deviation form such that:

v =
u− u0
0.001

ỹ =
y − y0
100

(2.2)

The scaling factor for u was chosen such that a Gaussian input sequence with a variance of

one does not excite the system in a regime outside the linear region. Also, the scaling factor

for y was chosen to ensure that the input and output have similar magnitudes. The scaling

factors employed were the same as those used in [30, 34]. The Taylor series expansion of the

resulting system (truncated to the third order) is given as:

q̇1 = −11.7q1 − 0.85q2 + 0.2125q22 − 0.10625q32 − 0.85q1q2

+ 0.2125q1q
2
2

q̇2 = 0.1669v − 10.1022q2

q̇3 = 1.3740q1 + 9.31295q2 − 10q3 + 0.687q1q2 − 0.17175q22

− 0.17175q1q
2
2 + 0.085875q32 (2.3)

q̇4 = 10q1 + 5q2 − 10q4 + 5q1q2 − 1.25q22 − 1.25q1q
2
2 + 0.625q32

ỹ = 140.12(q4 − q4q3 + q4q
2
3 − q3 + q23 − q33)

In this system, qi represent the state variables, v represents the scaled input and ỹ the scaled

output, all of which are in deviation form. The complete derivation is shown in Appendix

C. Using this system of equations, Carlemann linearization of the system was carried out

[40]. The resulting system in state-space form is given as,

˙̃q = Acq̃ +Ncq̃v +Bcv

ỹc = Ccq̃ (2.4)
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For the polymerization reactor case study, these matrices are reported in Appendix D. In

equation (2.4),

q̃ = [ q̃1 q̃2 q̃3]
T

and,

q̃1 = [ q1 q2 q3 q4 ]

q̃2 = [ q21 q1q2 q1q3 q1q4 q
2
2 q2q3 q2q4 q

2
3 q3q4 q

2
4 ]

q̃3 = [ q31 q
2
1q2 q

2
1q3 q

2
1q4 q1q

2
2 q1q2q3 q1q

2
4 q

3
2 q

2
2q3 q

2
2q4 q2q

2
3 q2q3q4 q2q

2
4 q

3
3 q

2
3q4 q

3
4 q3q

2
4 ]

The plot of the nonlinear system response to step-changes of magnitude v = ±30 is

shown in Figure 6. The output responses from the third-order Carlemann linearized model

to the same inputs are also shown. Also, Figure 7 shows the Integral Square Error (ISE)

profiles between the nonlinear and the identified Volterra models in response to steps of

integer magnitude in [−56, 56] over 1.2 hr. It is observed that the third-order Carlemann

linearized model closely approximates the nonlinear reactor system. However, due to the

approximation introduced in the bi-linearization, the Carlemann linearized model output

deviates from the nonlinear model output at the input extremes (Figure 7).

The bilinear state-space system (2.4) was then discretized using the fourth-order Runge-

Kutta algorithm yielding:

q̃(k + 1) = Â0q̃(k) + Â1q̃(k)v(k) + Â2q(k)v
2(k)

+B̂1v(k) + B̂2v
2(k) + B̂3v

3(k) (2.5)

ỹdisc(k) = Ccq̃(k)
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Figure 6: Plot of the polymerizer response to a step-change of ±30 in v. Nonlinear model

(—) and the Carlemann linearized model truncated to third-order terms (− · −)
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Figure 7: Steady-state step response ISE profiles between the nonlinear (—) and the

Carlemann linearized model truncated to third-order terms (− · −)
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The discrete time matrices in (2.5) are related to their continuous time counterparts via

the following relations:

Ã0 = I +
∆t

6

{

6Ac + 3∆tA2
c +∆t2A3

c +
1

4
∆t3A4

c

}

Ã1 =
∆t

6

{

6Nc + 3∆t(AcNc +NcAc) + ∆t2(A2
cNc + AcNcAc +NcA

2
c)

+
1

4
∆t3(A3

cNc + A2
cNcAc + AcNcA

2
c +NcA

3
c)
}

Ã2 =
∆t

6

{

3∆tN 2
c +∆t2(AcN

2
c +NcAcNc +N2

cAc)

+
1

4
∆t3(A2

cN
2
c + AcNcAcNc + AcN

2
cAc +NcA

2
cNc +NcAcNcAc +N2

cA
2
c)
}

B̃1 =
∆t

6

{

6Bc + 3∆tAcBc +∆t2(A2
cBc) +

1

4
∆t3(A3

cBc)
}

B̃2 =
∆t

6

{

3∆tNCBc +∆t2(AcNCBc +NcAcBc) +
1

4
∆t3(A2

cNcBc + AcNcAcBc +NcA
2
cBc)

}

B̃3 =
∆t

6

{

∆t2N2
CBc +

1

4
∆t3(AcN

2
cBc +NcAcNcBc +N2

cAcBc)
}

In the equation for Ã0, I is the identity matrix. Based on the analysis in [34, 30, 25],

a sampling time (∆t) of 0.06 hr and model-memory M = 20 were selected. From the

discretized equations, the Volterra kernels for the system were determined as follows [40]:

h1(i) = CÃi−1
0 B̃1 ∀ i ∈ [1,M ], j = l = 0

h2(i, i) = CÃj−1
0 B̃2 ∀ i ∈ [1,M ], j ∈ [1, i], i = j, l = 0

h2(i, j) = CÃj−1
0 Ã1Ã

i−1
0 B̃1 ∀ i ∈ [1,M ], j ∈ [1, i], i 6= j, l = 0

h3(i, i, i) = CÃi−1
0 B̃3 ∀ i ∈ [1,M ], j ∈ [1, i], l ∈ [1, j], i = j = l

h3(i, j, l) = CÃl−1
0 Ã1Ã

j−1
0 B̃2 ∀ i ∈ [1,M ], j ∈ [1, i], l ∈ [1, j], j = l

h3(i, j, l) = CÃl−1
0 Ã2Ã

i−1
0 B̃1 ∀ i ∈ [1,M ], j ∈ [1, i], l ∈ [1, j], i = l

h3(i, j, l) = CÃl−1
0 Ã1Ã

j−1
0 Ã1Ã

i−1
0 B̃1 ∀ i ∈ [1,M ], j ∈ [1, i], l ∈ [1, j], i 6= j 6= l

The kernels thus obtained are symmetric, or triangular, kernels and they can be converted

to full kernels using (2.9). A third-order Volterra model is thus obtained, which is used to

test the effectiveness of the identification algorithms vis-a-vis the real system.
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2.2 VOLTERRA MODEL IDENTIFICATION USING TAILORED

SEQUENCES

2.2.1 Third-order Volterra Model Decomposition

Without loss of generality, the third-order Volterra model can be written as [30, 76]:

ŷ(k) = h0 + L(k) +D2(k) +D3(k) + S3(k) +O2(k) +O3(k) (2.6)

In this equation L, D, S, and O represent the linear, diagonal, sub-diagonal, and off-diagonal

terms, respectively. A schematic of the Volterra model kernels is given in Figure 8, and

mathematically these kernels are given as:

L(k) =
M
∑

i=1

h1(i)u(k − i)

D2(k) =
M
∑

i=1

h2(i, i)u
2(k − i)

D3(k) =
M
∑

i=1

h3(i, i, i)u
3(k − i)

S3(k) = 3
M
∑

i=1

M
∑

j 6=i

h3(i, i, j)u
2(k − i)u(k − j) (2.7)

O2(k) =
M
∑

i=1

M
∑

j 6=i

h2(i, j)u(k − i)u(k − j)

O3(k) =
M
∑

i=1

M
∑

j 6=i

M
∑

l 6=j 6=i

h3(i, j, l)u(k − i)u(k − j)u(k − l)

The linear term, L(k), is an FIR model and can be visualized as a column vector. The

first order kernel h1(i), is comprised of the impulse response coefficients. The second order-

kernel, h2(i, j), can be visualized as a matrix, whereas the third-order kernel, h3(i, j, l), can

be thought of as a 3-index tensor (cube). The contributions of the past inputs are given

by the terms u(k − i), and the first, second, and third-order kernels include the effects

of one, two and three past inputs, respectively. The diagonal and the off-diagonal terms

include contributions from both the second- (D2(k), O2(k)) and third-order (D3(k), O3(k))
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kernels. The diagonal terms are those for which all the indices are the same, whereas for

the off-diagonal kernel all the indices are different from one another. Finally, the third-order

sub-diagonal term (S3(k)) represents the kernel having one index repeated, so that the sub-

diagonal coefficients are just above or just below the main diagonal of the full third-order

kernel.

The Volterra model can be assumed symmetric without loss of generality [40]. For

example, considering the two-dimensional case the following holds:

h2sym
(j1, j2) =

1

2

[

h2asym
(j1, j2) + h2asym

(j2, j1)
]

(2.8)

Generalizing for n-dimensions, this property can be written as:

hisym
(j1, j2, · · ·, jN) =

1

N !

[

h2asym
(j1, · · ·jN) + · · ·+ hiasym

(jN , · · ·j1)
]

(2.9)

Symmetry in the third-order term can be visualized with respect to the main diagonal, and

this reduces the number of unique parameters that need to be determined. A full third-order

Volterra model has 1+M +M 2 +M3 total coefficients, whereas the total number of unique

symmetric coefficients is given by:

3
∑

i=1

(

M + i− 1

i

)

= 1 +M +
M(M + 1)

2!
+
M(M + 1)(M + 2)

3!

As an example, for M = 20 the full kernel has 8421 coefficients, whereas the symmetric

kernel has 1771 coefficients.

Another advantage of carrying out the decomposition in (2.7) is that it facilitates de-

velopment of the identification algorithm as the identification is carried out on the basis of

structure and order (L and D, O2, S, and O3) rather than based only on the polynomial

order, i.e., first, followed by the second, and finally the third-order kernel.
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Figure 8: Schematic of the Volterra model kernels
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2.2.2 Prediction Error Variance

The PEV expression forms the conceptual basis on which the identification of the third-order

Volterra kernels is carried out. It can be represented mathematically as:

σ2
p = E

{

[ŷ(k)− y(k)]2
}

(2.10)

In this expression, σ2
p represents the PEV, E{·} the expectation operator, and y(k), and ŷ(k)

represent the outputs from the process (or fundamental model), and the Volterra model,

respectively. For the third-order Volterra model the PEV expression can be written in terms

of model coefficient errors as follows [25]:

σ2
p = σ2

0 + σ2
u

M
∑

i=1

δ21(i) + (κ+ 2)σ4
u

M
∑

i=1

δ22(i, i) + (m6 −
m2

4

σ2
u

)
M
∑

i=1

δ23(i, i, i) (2.11)

+9(κ+ 2)σ6
u

M
∑

i=1

M
∑

j 6=i

δ23(i, j, j) + 2σ4
u

M
∑

i=1

M
∑

j 6=i

δ22(i, j) + 6σ6
u

M
∑

i=1

M
∑

j 6=i

M
∑

l 6=j 6=i

δ3(i, j, l)

This equation assumes that a Volterra model is identified from a process which is described

by a Volterra model structure. In equation (2.11) σ2
0 is the bias term, σ2

u is the input signal

variance, and mk is the kth moment of the input signal. The coefficient κ represents the

kurtosis. The PEV equation is written with respect to the coefficient error variance, where δ

denotes the coefficient error between the identified and actual Volterra kernels. In the PEV

expression, the terms are as follows: first term - bias; second - linear model error contribution;

third and fourth - contributions of the nonlinear diagonal terms; fifth - sub-diagonal term

contribution; and sixth and seventh - contributions of the off-diagonal coefficients.

For a given input signal, the kurtosis is mathematically defined as:

κ =
m4

σ4
u

(2.12)

Kurtosis is a measure of the peak and tail shape of the input signal distribution relative

to a normally distributed input sequence. As it pertains to input sequence design, kurtosis

was used as a measure to characterize the situation when the bulk of the input levels are

of a certain magnitude, whereas the remainder are of a higher magnitude, thus leading to

a sharp distinction in the two input levels. Figure 9 shows an example of such a sequence.
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The kurtosis of this sequence is 16.10, and the probability distribution that generated this

sequence is given as:

uκ1(k) =































56 with probability 3
100

5.6 with probability 47
100

−5.6 with probability 47
100

−56 with probability 3
100

(2.13)

In contrast, consider a sequence given by the following probability distribution:

uκ2(k) =































56 with probability 15
100

5.6 with probability 35
100

−5.6 with probability 35
100

−56 with probability 15
100

(2.14)

The probabilities of the two levels are not as different from each other (i.e., one level does not

occur significantly more often than the other). Consequently, the kurtosis of this sequence

(Figure 10) is −0.09. Hence, for signals represented as probability distributions, kurtosis can

be used as a surrogate measure of outlier frequency.

2.2.3 Linear and Nonlinear Diagonal Identification

The identification of the bias, linear, and nonlinear diagonal parameters is carried out first in

order to take advantage of tailored input sequences that selectively excite these contributions.

Furthermore, since the diagonal parameters are involved in the calculation of all of the

other kernels, an accurate estimate of the diagonal terms at the beginning ensures better

estimates for the subsequent parameters. The general form of the input sequence used for
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Figure 9: Distribution of input levels in a sequence with high kurtosis
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Figure 10: Distribution of input levels in a sequence with low kurtosis
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the estimation of the linear and nonlinear diagonal kernels is given as:

u(k) =















































































γ1 k = 0

0 1 ≤ k ≤M

γ3 k = M + 1

0 M + 2 ≤ k ≤ 2M + 1

γ2 k = 2M + 2

0 2M + 3 ≤ k ≤ 3M + 2

γ4 k = 3M + 3

0 3M + 4 ≤ k ≤ 4M + 3

(2.15)

This sequence ensures that the output contributions due to the nonlinear sub-diagonal and

off-diagonal terms are zero identically (u(k − i)u(k − j) = 0 ∀i 6= j (1 ≤ i, j ≤ M)).

Applying this input to the third-order Volterra model yields the following output:

ŷ(k) =



















































































































h0 k = 0

h0 + γ1h1(k) + γ21h2(k, k) + γ31h3(k, k, k) 1 ≤ k ≤M

h0 k = M + 1

h0 + γ3h1(k −M − 1) + γ23h2(k −M − 1, k −M − 1)

+γ33h3(k −M − 1, k −M − 1, k −M − 1) M + 2 ≤ k ≤ 2M + 1

h0 k = 2M + 2

h0 + γ2h1(k − 2M − 2) + γ22h2(k − 2M − 2, k − 2M − 2)

+γ32h3(k − 2M − 2, k − 2M − 2, k − 2M − 2) 2M + 3 ≤ k ≤ 3M + 2

0 k = 3M + 3

h0 + γ4h1(k − 3M − 3) + γ24h2(k − 3M − 3, k − 3M − 3)

+γ34h3(k − 3M − 3, k − 3M − 3, k − 3M − 3) 3M + 4 ≤ k ≤ 4M + 3

(2.16)

The linear and nonlinear diagonal kernels are derived by minimizing the sum-squared pre-

diction error given as:

Jd =
4M+3
∑

k=0

e(k)2 =
4M+3
∑

k=0

{y(k)− ŷ(k)}2
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In this equation e(k) is a zero-mean prediction error sequence due to measurement errors in

the data-set y(k) and any plant-model mismatch, and ŷ(k) is the model prediction with the

input sequence given in (2.15). Applying the condition

∂Jd
∂hn

= 0 n = 0, 1, 2, 3

and simultaneously solving the equations for ∂Jd

∂h1(k)
= 0 and ∂Jd

∂h3(k,k,k)
= 0 yields estimators

for the linear and the third-order diagonal kernels. This is a departure from [30] where the

estimator h1(k) was calculated independently. Since the current sequence identifies a third-

order Volterra model, the estimators for h1(k) and h3(k, k, k) are interdependent and must

be calculated simultaneously. Thus, for h1(k),
∂Jd

∂h1(k)
= 0 yields:

(γ1 + γ3 + γ2 + γ4)h0 + (γ21 + γ23 + γ22 + γ24)h1(k)

+(γ31 + γ33 + γ32 + γ34)h2(k, k) + (γ21 + γ23 + γ22 + γ24)h3(k, k, k) (2.17)

= γ1y(k) + γ3y(k +M + 1) + γ2y(k + 2M + 2) + γ4y(k + 3M + 3) ∀ k = 1, · · ·,M

Similarly, ∂Jd

∂h3(k,k,k)
= 0 yields:

(γ31 + γ33 + γ32 + γ34)h0 + (γ41 + γ43 + γ42 + γ44)h1(k)

+(γ51 + γ53 + γ52 + γ54)h2(k, k) + (γ61 + γ63 + γ62 + γ64)h3(k, k, k) (2.18)

= γ31y(k) + γ33y(k +M + 1) + γ32y(k + 2M + 2) + γ34y(k + 3M + 3) ∀ k = 1, · · ·,M

Likewise, the even-order estimators are co-dependent and must be derived simultaneously.

Solving for ∂Jd

∂h0

= 0 yields:

4M+3
∑

k=0

y(k) = 4M + 4h0 + (γ1 + γ3 + γ2 + γ4)
M
∑

k=1

h1(k) + (γ21 + γ23 + γ22 + γ24)
M
∑

k=1

h2(k, k)

+(γ31 + γ33 + γ32 + γ34)
M
∑

k=1

h3(k, k, k) (2.19)

Finally, ∂Jd

∂h2(k,k)
= 0 returns:

(γ21 + γ23 + γ22 + γ24)h0 + (γ31 + γ33 + γ32 + γ34)h1(k)

+(γ41 + γ43 + γ42 + γ44)h2(k, k) + (γ51 + γ53 + γ52 + γ54)h3(k, k, k) (2.20)

= γ21y(k) + γ23y(k +M + 1) + γ22y(k + 2M + 2) + γ24y(k + 3M + 3) ∀ k = 1, · · ·,M
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Solving Equations (2.17) through (2.20) simultaneously, one can derive equations for the

linear and nonlinear diagonal kernel estimators. However, solving these equations in the

general form is algebraically tedious and the solution provides limited insight. As a special

case, consider:

γ3 = −γ1

γ4 = −γ2 (2.21)

γ1, γ2 > 0

With this simplification and using γ1 and γ2 to represent the magnitudes of the two

unique pulse-heights, the input sequence simplifies to the following:

ud(k) =















































































γ1 k = 0

0 1 ≤ k ≤M

−γ1 k = M + 1

0 M + 2 ≤ k ≤ 2M + 1

−γ2 k = 2M + 2

0 2M + 3 ≤ k ≤ 3M + 2

γ2 k = 3M + 3

0 3M + 4 ≤ k ≤ 4M + 3

(2.22)

In order to ensure suitable excitation, the pulse-heights were chosen as large as possible.

Furthermore, to avoid a singularity in the estimator equations (denominator term in (2.28)

and (2.29) derived below), the smaller pulse-height was selected to be 80% of the larger one.

This led to γ1 = 44.8 and γ2 = 56. This magnitude of γ2 spans the full input range (in

scaled deviation variables) for the polymerization reactor example considered in this work.

The 20% difference in the pulse-heights also ensures that the output contributions can be

distinguished from each other in the presence of noise. The sequence given by Equation

(2.22) (Figure 11) has a friendliness factor (Equation 1.1) of 93%.
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Figure 11: Input sequence used for linear and nonlinear diagonal kernel identification. The

levels are γ1 = 44.8 and γ2 = 56, and M = 20.
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Applying this input to the third-order Volterra model yields the following output:

ŷ(k) =
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







h0 k = 0

h0 + γ1h1(k) + γ21h2(k, k) + γ31h3(k, k, k) 1 ≤ k ≤M

h0 k = M + 1

h0 − γ1h1(k −M − 1) + γ21h2(k −M − 1, k −M − 1)

−γ31h3(k −M − 1, k −M − 1, k −M − 1) M + 2 ≤ k ≤ 2M + 1

h0 k = 2M + 2

h0 − γ2h1(k − 2M − 2) + γ22h2(k − 2M − 2, k − 2M − 2)

−γ32h3(k − 2M − 2, k − 2M − 2, k − 2M − 2) 2M + 3 ≤ k ≤ 3M + 2

0 k = 3M + 3

h0 + γ2h1(k − 3M − 3) + γ22h2(k − 3M − 3, k − 3M − 3)

+γ32h3(k − 3M − 3, k − 3M − 3, k − 3M − 3) 3M + 4 ≤ k ≤ 4M + 3

(2.23)

Applying the condition ∂Jd

∂h1(k)
= 0 yields:

h1(k) =
γ1

2(γ21 + γ22)
{y(k)− y(k +M + 1)}

+
γ2

2(γ21 + γ22)
{y(k + 2M + 2)− y(k + 3M + 3)} (2.24)

−(γ41 + γ42)

(γ21 + γ22)
h3(k, k, k)

Similarly, ∂Jd

∂h3(k,k,k)
= 0 yields:

h1(k) =
γ31

2(γ41 + γ42)
{y(k)− y(k +M + 1)}

+
γ32

2(γ41 + γ42)
{y(k + 2M + 2)− y(k + 3M + 3)} (2.25)

−(γ61 + γ62)

(γ41 + γ42)
h3(k, k, k)
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Solving Equations (2.24) and (2.25) simultaneously returns the estimator equations for the

linear and the third-order diagonal kernels.

h1(k) =
n1(k)

dodd
(2.26)

n1(k) =
γ61 + γ62
γ41 + γ42

[ γ1
2(γ21 + γ22)

{y(k)− y(k +M + 1)}

+
γ2

2(γ21 + γ22)
{y(k + 2M + 2)− y(k + 3M + 3)}

]

−γ
4
1 + γ42
γ21 + γ22

[ γ31
2(γ41 + γ42)

{y(k)− y(k +M + 1)}

+
γ32

2(γ41 + γ42)
{y(k + 2M + 2)− y(k + 3M + 3)}

]

dodd =
γ61 + γ62
γ41 + γ42

− γ41 + γ42
γ21 + γ22

h3(k, k, k) =
n3(k)

dodd(k)
(2.27)

n3(k) =
[ γ31
2(γ41 + γ42)

− γ1
2(γ21 + γ22)

]

{y(k)− y(k +M + 1)}

+
[ γ32
2(γ41 + γ42)

− γ2
2(γ21 + γ22)

]

{y(k + 2M + 2)

−y(k + 3M + 3)}

These equations can be simplified to yield:

h1(k) =
1

2γ1γ2(γ22 − γ21)

[

γ32{y(k)− y(k +M + 1)}

−γ31{y(k + 2M + 2)− y(k + 3M + 3)}
]

(2.28)

h3(k, k, k) =
1

2γ1γ2(γ21 − γ22)

[

γ2{y(k)− y(k +M + 1)}

−γ31{y(k + 2M + 2)− y(k + 3M + 3)}
]

(2.29)

Similarly, solving for ∂Jd

∂h0

= 0 yields:

h0 =
1

4M + 4

4M+3
∑

k=0

y(k)− γ21 + γ22
2M + 2

M
∑

k=1

h2(k, k) (2.30)
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And finally ∂Jd

∂h2

= 0 returns:

h0 =
γ21

2(γ21 + γ22)
{y(k) + y(k +M + 1)}

+
γ22

2(γ21 + γ22)
{y(k + 2M + 2) + y(k + 3M + 3)} (2.31)

−γ
4
1 + γ42
γ21 + γ22

h2(k, k)

Solving Equations (2.30) and (2.31) simultaneously, the bias term and the second-order

diagonal kernel estimators are obtained. These are as follows:

h0 =
n0
d0

(2.32)

n0 =
γ21

2(γ41 + γ42)

M
∑

k=1

{y(k) + y(k +M + 1)}

+
γ22

2(γ41 + γ42)

M
∑

k=1

{y(k + 2M + 2) + y(k + 3M + 3)}

− 1

2(γ21 + γ22)

4M+3
∑

k=0

y(k)

d0 = M
γ21 + γ22
γ41 + γ42

− 2M + 2

γ21 + γ22

h2(k, k) =
γ21

2(γ41 + γ42)
{y(k) + y(k +M + 1)}

+
γ22

2(γ41 + γ42)
{y(k + 2M + 2) + y(k + 3M + 3)}

−γ
2
1 + γ22
γ41 + γ42

h0 (2.33)
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2.2.4 Sub-diagonal Identification

Once the linear and nonlinear diagonal kernels are identified, an ideal input sequence to iden-

tify S3 would be one that does not excite O2 and O3 . If an input sequence is designed such

that no more than two points within the model memory, M , have non-zero values, then the

third-order off-diagonal terms would be zero identically (according to (2.7)). Furthermore,

the ratio of the leading PEV coefficients in (2.11) for the third-order sub-diagonal term to

that of the second-order off-diagonal term is:

CS3

CO2

= 4.5(κ+ 2)σ2
u (2.34)

If the value of this coefficient is large, then the implication is that modeling errors in the

third-order sub-diagonal term dominate the second-order off-diagonal term contributions,

thereby aiding the identification of S3. A sequence with a high kurtosis and a high variance

could be a candidate sequence to achieve this result. One such CSRS input sequence, which

is also plant-friendly (Ff = 94%), is shown in Figure 12.

A short length of the sequence is also shown in order to highlight the signal design. For

this sequence, the ratio given by (2.34) is 11, 360. An increase in the coefficient in (2.34)

causes the S3 contribution to dominate, leading to a decrease in error in S3 according to

(2.11). This results in O2 PEV calculations being weighted comparatively less heavily. Thus,

for a value of 11, 360 the O2 contribution is weighed 104 times less than the S3 contribution,

so that the latter dominates. In addition, the O2 kernel is identified (see Section 2.2.4.1)

before the S3 identification, and the O2 contributions are removed by pre-whitening. For

the same reasons as for the linear and nonlinear diagonal kernels, i.e. to ensure sufficient

excitation and non-singularity of the estimator equations (denominator term in (2.42) and

(2.43) derived below), the pulse-heights were selected as ±44.8 and ±56.
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Figure 12: Input sequence used for sub-diagonal identification. The levels used are λ1 = 44.8

and λ2 = −56, and M = 20. Bottom: Zoom of the plot over the first 8 hours to show

increasing pulse separation with time.
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The first two sub-units of the input sequence used for sub-diagonal identification are

given as:

usd1(k)

usd2(k)

}

=


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
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
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λ1 k = 1

λ2 k = 2

0 3 ≤ k ≤M + 1

−λ2 k = M + 2

−λ1 k = M + 3

0 M + 4 ≤ k ≤ 2M + 1

λ1 k = 2M + 2

0 k = 2M + 3

λ2 k = 2M + 4

0 2M + 5 ≤ k ≤ 3M + 3

−λ2 k = 3M + 4

0 k = 3M + 5

−λ1 k = 3M + 6

0 3M + 7 ≤ k ≤ 4M + 5

(2.35)

In subsequent sub-units of the input sequence, there is a gap between the two pulses λ1

and λ2. This gap length increases by one with increasing sub-units, and it is employed to

ensure the tailored excitation of all of the sub-diagonal parameters. The second sub-unit of

(2.35) is shown in order to highlight the gap between two successive pulses. Furthermore,

the presence of zeros of length M between each successive set of two pulses ensures that the

contribution of the third-order off-diagonal term is zero identically.
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Removing the bias, linear, nonlinear diagonal, and second-order off-diagonal kernel con-

tributions from the output signal recovers the residual output z(k). The ẑ(k) corresponding

to the first sub-unit of the input sequence is as follows:

ẑ1(k) =


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
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























0 k = 1

0 k = 2

h3(k − 2, k − 1, k − 1)λ21λ2 3 ≤ k ≤M + 1

+h3(k − 2, k − 2, k − 1)λ1λ
2
2

0 k = M + 2

0 k = M + 3

−h3(k −M − 3, k −M − 2, k −M − 2)λ1λ
2
2 M + 4 ≤ k ≤ 2M + 2

−h3(k −M − 3, k −M − 3, k −M − 2)λ21λ2

(2.36)

The estimates for the third-order sub-diagonal coefficients can be obtained by minimizing

the following sum-squared prediction error:

Jsd =
2M+1
∑

k=0

{z1(k)− ẑ1(k)}2 (2.37)

In order to obtain the coefficients for S3, the following equations need to be satisfied:

∂Jsd
∂h3(k, k + 1, k + 1)

= 0 (2.38)

∂Jsd
∂h3(k, k, k + 1)

= 0 (2.39)

k = 1, 2, . . .M − 1

Applying the conditions in Equations (2.38) and (2.39) yields:

(Λ2
1 + Λ2

2)h3(k, k + 1, k + 1) +

(2Λ1Λ2)h3(k, k, k + 1) = Λ1z(k + 1)− Λ2z(k +M + 2) (2.40)

(2Λ1Λ2)h3(k, k + 1, k + 1) +

(Λ2
1 + Λ2

2)h3(k, k, k + 1) = Λ2z(k + 1)− Λ1z(k +M + 2) (2.41)

Λ1 = λ21λ2

Λ2 = λ22λ1

k = 1, 2, . . .M − 1
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Solving Equations (2.40) and (2.41) simultaneously, the estimators for the third-order sub-

diagonal kernel are as calculated as follows:

h3(k, k + 1, k + 1) =
Λ1

Λ2
1 − Λ2

2

z(k + 1) +
Λ1

Λ2
1 − Λ2

2

z(k +M + 2) (2.42)

h3(k, k, k + 1) =
−Λ2

Λ2
1 − Λ2

2

z(k + 1) +
−Λ1

Λ2
1 − Λ2

2

z(k +M + 2) (2.43)

k = 1, 2, . . .M − 1

This calculation can be generalized for the entire length of the S3 sequence as follows:

[

z(2 + 2(q − 1)(M + 1) + (q − 1)2 + p)
z(2 + 2(q − 1)(M + 1) + (q − 1)2 +M + q + p)

]

=

[

Λ1 Λ2

−Λ2 −Λ1

] [

h3(p, p+ q, p+ q)
h3(p, p, p+ q)

]

zSq,p = uShSq,p

ZSq =
[

zT
Sq,1 · · · zT

Sq,M−q

]T
= USHSq

US = block{uS}
HSq =

[

hT
Sq,1 · · · hT

Sq,M−q

]T
(2.44)

In this equation, the sub-script S is used to denote the sub-diagonal kernel, q represents the

sub-sequence number and p counts along the length of the qth sub-diagonal.

ZS =
[

ZT
S1 · · · ZT

S(M−1)

]T
= USHS (2.45)

US = block{US}

HS =
[

HT
S1 · · ·HT

S(M−1)

]T

In this equation ZS is a 380 × 1 vector of output data points. US is a 380 × 380 block-

diagonal matrix, with US along the main diagonal. The column vector HS represents the

sub-diagonal coefficients for the entire sequence. The solution reduces to the relaxed least-

squares problem:

HS = (UT
S US)−1UT

S ZS (2.46)
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Figure 13: First 12 hours of the sequence used for the off-diagonal identification. The input

levels used are ±56
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2.2.4.1 Off-diagonal Identification Consider the input sequence given in Figure 13.

This is a random binary sequence (RBS) which has a theoretical kurtosis of −2. From

Equation (2.11), if an RBS with a high input variance is used, the off-diagonal terms

dominate. Using this sequence and the cross-correlation technique, the off-diagonal kernels

can be estimated [30]. Cross-correlation is essentially a statistical technique which utilizes

the correlation between the input and output of a system to identify the Volterra kernels.

For a detailed description of this technique, the interested reader is referred to [42, 43, 45].

For the second-order off-diagonal kernel identification, pre-whitening was used to elimi-

nate the contributions of the bias, linear, and second-order diagonal kernel. The M(M−1)
2

=

190 off-diagonal coefficients were identified using a 1900 point random binary sequence

(RBS). Finally, for the third-order off-diagonal kernel, pre-whitening was used to eliminate

the contributions of all the kernels previously identified. The M(M−1)(M−2)
6

= 1, 140 third-

order off-diagonal coefficients were identified using a 11, 400 point RBS.

2.2.5 Identification using Cross-correlation

As discussed previously, an alternate approach for calculating Volterra kernels is cross-

correlation. Since an N + 1-level input sequence (at a minimum) is required to identify a

Volterra model of order N by cross-correlation [28], five-level sequences were used to identify

the linear and nonlinear diagonal kernels, and a four-level sequence was used for the sub-

diagonal kernels. A very long four-level sequence could also be used, but different sequences

for the linear and nonlinear diagonal, and sub-diagonal kernel enable a comparison with [34].

The cross-correlation approach is statistically based, and the sequence length was chosen so

that there were 10 input-output data points per identified coefficient, in order to reduce the

variance of the coefficient estimates. Since there are NM = 60 unique linear and nonlinear

diagonal coefficients (for N = 3 and M = 20) a 600 point five-level sequence was used. The
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mathematical structure of this sequence is given as:

uccld(k) =






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
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
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



56 with probability 1
10

11.2 with probability 2.5
10

0 with probability 3
10

−11.2 with probability 2.5
10

−56 with probability 1
10

(2.47)

This sequence has a friendliness factor of 24%. Similarly, for the M 2−M = 380 unique sub-

diagonal kernel coefficients, a 3800 point random quaternary sequence (RQS) was employed.

This sequence had a friendliness factor of 45%, and its mathematical structure is given as:

uccsd(k) =































56 with probability 3
100

11.2 with probability 47
100

−11.2 with probability 47
100

−56 with probability 3
100

(2.48)

For comparison purposes, the probability distribution of the sequences in (2.47) and (2.48)

are the same as in [34]. The second- and third-order off-diagonal kernels were identified as

in Section 2.2.4.1.

2.2.6 Tailored Reduced Length Sequences for Kernel Identification

The length of the input sequence used for the sub-diagonal identification in Section 2.2.4 is

given as:

2M2 − 2 +
M−2
∑

Ξ=0

2Ξ (2.49)

= 3M(M − 1)

In this equation, Ξ is the gap between any set of two pulses. In many cases, the value

of M may be high so that a substantial amount of data is required to estimate the third-

order sub-diagonal kernel. On the contrary, short input sequences are plant-friendly as they

lead to a reduction in the duration for which the plant operates in identification mode,

thereby reducing off-specification product. This motivates the design of a reduced length

input-sequence for third-order sub-diagonal kernel identification.
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Figure 14: Full length input sequence used for sub-diagonal identification. Bottom: zoom of

the plot to show pulses λ1 and λ2 and M length zeros. The levels used are λ1 = 11.2 and

λ2 = 56, and M = 20
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2.2.6.1 Sub-diagonal Identification The main reason for the large number of data-

points in the sub-diagonal sequence in Section 2.2.4 was the presence of M zeros after every

second pulse. This can be seen in Figure 14 where the top shows the full sequence, whereas

the bottom portion shows the sequence between the data-points 900 to 1100. The M -length

zeros after every second pulse are also shown. While theM -length zeros effectively eliminated

interactions between all but the intended pulses, they add significantly to the sequence length

without adding input excitation.

The structural basis of the reduced-length sequence (Figure 15) is similar to the one in

Section 2.2.4; the reduced-length sequence also involves two pulses, and the gap between

them successively increases. However, the length of each sub-unit is fixed so that the length

of zeros after every second pulse actually decreased. Consider the first two sub-units of the

reduced-length input sequence:
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β1 k = 1

β2 k = 2

0 3 ≤ k ≤M

−β2 k = M + 1

−β1 k = M + 2

0 M + 3 ≤ k ≤ 2M

β2 k = 2M + 1

β1 k = 2M + 2

0 2M + 3 ≤ k ≤ 3M

−β1 k = 3M + 1

−β2 k = 3M + 2

0 3M + 3 ≤ k ≤ 4M
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β1 k = 4M + 1

0 k = 4M + 2

β2 k = 4M + 3

0 4M + 4 ≤ k ≤ 5M

−β2 k = 5M + 1

0 k = 5M + 2

−β1 k = 5M + 3

0 5M + 4 ≤ k ≤ 6M

β2 k = 6M + 1

0 k = 6M + 2

β1 k = 6M + 3

0 6M + 4 ≤ k ≤ 7M

−β1 k = 7M + 1

0 k = 7M + 2

−β2 k = 7M + 3

0 7M + 4 ≤ k ≤ 8M

(2.50)

The second sub-unit, uredsd2(k) is shown to highlight the gap between the pulses. For the

first sub-unit of the input sequence, the input data from points 2M +1 to 4M are the same
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Figure 15: Reduced length input sequence used for sub-diagonal identification. Bottom:

zoom of the plot over the first two sub-units to show increasing pulse separation. The levels

used are β1 = 11.2 and β2 = 56.
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as that from 1 to 2M , with the exception that the order of the pulses is interchanged; i.e.,

β2 forms the outer, and β1 the inner, pulses. This was done to avoid singularities in the

solution of the estimator equations, i.e., non-singularity of ua in (2.51). Furthermore, when

only the first 2M points were used as a sub-unit, the resulting sub-diagonal kernels were

poorly estimated owing to the interchanging order of pulses for each sub-unit. The addition

of the second 2M points averages out the contribution of both pulse orders, i.e., (β1, β2) and

(β2, β1), resulting in smooth estimates for the sub-diagonal kernel. For the next sub-unit

there is a gap of one point between the two pulses β1 and β2 (or β2 and β1). This gap

length successively increases by one, until the gap length is of (M
2
− 1) points. Since the

length of each sub-unit is fixed at 4M , an increase in the gap-length does not change the

sequence length. This results in M
2

sub-units, each of length 4M so that the total length of

this sequence is 2M 2. This represents a savings of −2 +∑M−2
Ξ=0 2Ξ data-points over the full

length sub-diagonal sequence.

To calculate the estimator equations for the reduced-length sequence, consider Figure 16.

From the figure, two distinct regions, a and b, can be identified. The region a (length M−q)
corresponds to the output data-set used to estimate the h3(p, p+ q, p+ q) and h3(p, p, p+ q)

kernel coefficients for q = 1, 2, ..., M
2

and p = 1, 2, ..,M − q. The region b (length M − i)

data are used to estimate the h3(j, i + j, i + j) and h3(j, j, i + j) kernel coefficients for

i = M − 1,M − 2, ..., M
2
+ 1 and j = 1, 2, ...,M − i. Note that the first two points of the

subsequent sub-unit, e.g., 4M + 1 and 4M + 2, are required for estimation of the kernels

from a given sub-unit, e.g., sub-unit 1. For each subsequent sub-unit, the length of region

a decreases by 1, whereas that of region b increases by 1, until the M
2

sub-unit where they

have the same length. The kernel structure can be visualized as shown in Figure 17. For

the first sub-unit, region a is the hypotenuse and region b is the opposite vertex. For each

successive sub-unit, the regions move towards the center, until they finally converge for the

M
2

sub-unit, i.e., a = b.
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Figure 16: A schematic of the first 4M + 10 points of the reduced sequence. β1 = 11.2 and

β2 = 56, and M = 20.
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For the a regions of the sequence:

















y(q + 1 + 4M(q − 1) + p)

y(q + 1 + 4M(q − 1) + p+M)

y(q + 1 + 4M(q − 1) + p+ 2M)

y(q + 1 + 4M(q − 1) + p+ 3M)

















=

















β2
1β2 β2

2β1

−β2
2β1 −β2

1β2

β2
2β1 β2

1β2

−β2
1β2 −β2

2β1





















h3(p, p+ q, p+ q)

h3(p, p, p+ q)





yq,p = uahq,p (2.51)

Yq =
[

yTq,1 · · · yTq,M−q
]T

= UaHa,q

Ua = block{ua}

Ha,q =
[

hTq,1 · · · hTq,M−q
]T

In this equation, q represents the sub-sequence number and p counts along the length of the

qth sub-diagonal.

Yredsd =
[

Y T
1 · · · Y T

M−M
2

]T

= UaHa (2.52)

Ua = block{Ua}

Ha =
[

HT
a,1 · · ·HT

a,M−M
2

]T

In this equation Yredsd is a 580 × 1 column vector of output data points. Ua is a 580 × 290

non-square block-diagonal matrix, with Ua along the main diagonal. The 290 × 1 column

vector Ha represents the sub-diagonal coefficients for the a regions. The solution reduces to

the relaxed least-squares problem:

Ha = (UT
a Ua)−1UT

a Yredsd (2.53)

The calculation for the kernel contributions corresponding to the b regions for the entire

sequence proceeds in a similar manner. The main differences are that the equivalent of q is

i = (M − 1) : (M
2
+ 1) and ub (replacing ua) is given as:

ub =

















−β3
2 β3

2

β2
1β2 −β2

2β1

−β3
1 β3

1

β2
2β1 −β2

1β2
















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The rest of the calculations proceed in a similar manner as follows:

wi,j = ubhi,j

Wi =
[

wT
i,M−1 · · · wT

i,M
2
+1

]T

= UbHb,i

Ub = block{ub}

Hb,i =
[

hTi,M−1 · · · hTi,M
2
+1

]T

W =
[

W T
M−1 · · ·W T

M
2
+1

]T

= UbHb (2.54)

Here, W (180× 1), Ub (180× 90), and Hb (90× 1) are equivalent to Y ,Ua, and Ha in region

a respectively.

The equations thus derived are equivalent to those obtained by starting from the PEV

expression and minimizing the sum-squared prediction error given by:

Jred−sd =
2M2

∑

k=1

{zred−sd(k)− ẑred−sd(k)}2 (2.55)

In this equation, ẑred−sd(k) is the model output prediction and zred−sd(k) is the residual

output from the plant, in response to the reduced-length input sequence after removing the

contribution of the bias, linear, nonlinear diagonal kernels, and second-order off-diagonal

kernels. The details of the derivation are presented in Appendix B.

2.2.6.2 Simultaneous Identification of O2 and S3 Since the sequence designed for

identifying the sub-diagonal kernel also excites the second-order off-diagonal kernel, it can

also be used to identify the second-order off-diagonal kernel. The advantage of this approach

over the cross-correlation method used in Section 2.2.4.1 is that explicit estimator equations

can be derived for the O2 contribution. The sequence is the same as in Figure 15 and

the length is now 74% shorter than the combined lengths of the sequences used for S3 and

O2 estimation in Sections 2.2.4 and 2.2.4.1, for M = 20. Note that since the O2 kernel
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is symmetric about the diagonal, only the h2(k, k + 1), k = 1, 2, · · ,M − 1 needs to be

identified. The generalized equation for the complete a region, similar to (2.51), is given as:

















y(q + 1 + 4M(q − 1) + p)

y(q + 1 + 4M(q − 1) + p+M)

y(q + 1 + 4M(q − 1) + p+ 2M)

y(q + 1 + 4M(q − 1) + p+ 3M)

















=

















β2
1β2 β2

2β1 β1β2

−β2
2β1 −β2

1β2 β1β2

β2
2β1 β2

1β2 β1β2

−β2
1β2 −β2

2β1 β1β2



























h3(p, p+ q, p+ q)

h3(p, p, p+ q)

h2(p, p+ q)











yOSq,p = uOSahOSq,p (2.56)

YOSq =
[

yTOSq,1 · · · yTOSq,M−q

]T
= UOSaHOSa,q

UOSa = block{uOSa}

HOSa,q =
[

hTOSq,1 · · · hTOSq,M−q

]T

YOSa =
[

Y T
OS1 · · · Y T

OS(M−M
2
)

]T

= UOSaHOSa

In this equation the sub-script OS signifies that the S3 and the O2 kernels are identified

simultaneously, UOSa is a non-square block-diagonal matrix with UOSa along the main diago-

nal. The column vector HOSa represents the sub-diagonal and the second-order off-diagonal

coefficients for the a regions. As in (2.53), the solution for the kernel coefficients is given as:

HOSa = (UT
OSaUOSa)

−1UT
OSaYOSa (2.57)

Similarly, the equivalent of uOSa for the b regions of the sequence is given as:

uOSb =

















−β3
2 β3

2 −β2
2

β2
1β2 −β2

2β1 −β2
1

−β3
1 β3

1 −β2
2

β2
2β1 −β2

1β2 −β2
1

















The rest of the calculations proceed in a manner similar to that for the a region.
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2.3 IDENTIFICATION ALGORITHMS

The following algorithms are used to identify Volterra kernels using the tailored sequences,

and from the cross-correlation approach.

Algorithm 1 (Tailored Sequence)

1. The bias, linear, and nonlinear diagonal parameters are estimated using a four-pulse,

five-level, 4M + 4 length (84 point) sequence and equations (2.28), (2.29), (2.32), and

(2.33).

2. The second-order off-diagonal kernel is estimated using the cross-correlation technique

described in Section 2.2.4.1 (as in [30]). Pre-whitening is used to eliminate the con-

tributions of the bias, linear, and second-order diagonal kernel. The M(M−1)
2

= 190

off-diagonal coefficients are identified using a 1900 point RBS.

3. A tailored sequence with length 3M(M−1) (1140 points) is used to excite the system, and

residuals are calculated by subtracting off the bias, linear, nonlinear diagonal, and second-

order off-diagonal contributions. Third-order sub-diagonal coefficients are estimated from

residuals obtained by pre-whitening using equations (2.42) and (2.43).

4. The third-order off-diagonal terms are estimated using a cross-correlation technique. Pre-

whitening is used to eliminate the contributions of all the kernels previously identified.

The M(M−1)(M−2)
6

= 1140 third-order off-diagonal coefficients are identified using a 11, 400

point RBS.

Algorithm 2 (Cross-correlation)

1. The estimation of bias, linear, and nonlinear diagonal kernels is carried out using a 600

point (length 10NM) random five-level sequence.

2. The second-order off-diagonal kernel is estimated as in Algorithm 1, step 2.

3. For theM(M−1) unique third-order sub-diagonal kernels, a 3800 point (length 10M(M−
1)) RQS is employed. Pre-whitening is used to eliminate the contributions of the bias,

linear, and nonlinear diagonal kernels.

4. The third-order off-diagonal terms are estimated as in Algorithm 1, step 4.
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Algorithm 3 (Data-efficient Tailored Sequence for S3)

1. The bias, linear, and nonlinear diagonal parameters are estimated using a four-pulse,

five-level, 4M + 4 length (84 point) sequence as in Algorithm 1, step 1.

2. The second-order off-diagonal kernel is estimated using a cross-correlation technique as

in Algorithm 1, step 2.

3. A tailored sequence with length 2M 2 (800 points) is used to excite the system, and

residuals are calculated by subtracting off the bias, linear, nonlinear diagonal, and second-

order off-diagonal contributions. Third-order sub-diagonal coefficients are estimated from

residuals obtained by pre-whitening.

4. The third-order off-diagonal terms are estimated using a cross-correlation technique as

in Algorithm 1, step 4.

Algorithm 4 (Data-efficient Identification of O2 and S3)

1. The estimation of bias, linear, and nonlinear diagonal kernels is carried out as in Algo-

rithm 1, step 1.

2. The sequence used for the identification of S3 in Algorithm 3 (length 2M 2, 800 points) is

used to calculate the third-order sub-diagonal and the second-order off-diagonal kernels

as described in Section 2.2.6.2. Pre-whitening is first carried out to eliminate the

contributions of the bias, the linear, and the nonlinear diagonal kernels.

3. The third-order off-diagonal terms are estimated as in Algorithm 1, step 4.

2.4 RESULTS

2.4.1 Nominal Identification

Table 2 shows the sum-squared coefficient errors (SSE) between the theoretical kernels

obtained from the Carlemann linearization and those calculated from the identification

algorithms using the nonlinear system (2.1) as the process (data generator). Due to the

statistical nature of random sequences, the SSE values for all kernels obtained from a cross-

correlation calculation, are reported as a mean of 100 runs.
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Table 2: SSE values between the analytically obtained and identified Volterra kernels, for

the nominal study

Kernel Algorithm 1 Algorithm 2 Algorithm 2? Algorithm 3 Algorithm 4

Linear 3.55× 10−6 6.67× 10−3 − − −
2nd Diag. 9.15× 10−8 7.74× 10−6 − − −
2nd Off-diag. 9.37× 10−8 5.48× 10−7 4.55× 10−7 9.37× 10−8 8.74× 10−8

3rd Diag. 1.27× 10−10 1.14× 10−7 − − −
3rd Sub-diag. 9.00× 10−10 4.56× 10−8 1.30× 10−9 9.48× 10−10 9.48× 10−10

3rd Off-diag. 7.84× 10−11 3.78× 10−10 3.67× 10−10 7.84× 10−11 7.85× 10−11

It is observed that the tailored sequence algorithms consistently outperform the cross-

correlation approach (Algorithm 2) based on the low values of the squared coefficient errors.

The bias term values (not shown) were close to zero for all of the algorithms as expected. As

a “fairer”comparison, the fourth column (Algorithm 2?) represents the coefficient SSE when

the linear and nonlinear diagonal kernels from Algorithm 1 are used in place of the cross-

correlation kernel estimates for pre-whitening prior to subsequent coefficient estimations

using cross-correlation.

The numbers in Table 3 represent the % improvement in estimates of the tailored

algorithms versus Algorithm 2 and Algorithm 2?. Table 4 shows the reduction in data

requirement for the tailored algorithms when compared with Algorithm 2. The n.a. in the

last column for O2, indicates that a separate identification sequence is not necessary. This

is because of the simultaneous identification of S3 and O2 in Algorithm 4.

It is observed in Figure 18 that the tailored algorithms capture the first-order Volterra

kernel behavior admirably. The statistical nature of cross-correlation is evident, and the

estimates are scattered around the theoretical kernel behavior. A graphical comparison of

the nonlinear diagonal kernels, along with the corresponding theoretical kernels, is shown
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Table 3: % Improvement in SSE values

Kernel A1 vs. A2 A1 vs. A2? A3 vs. A2? A4 vs. A2?

Linear 99 − − −
2nd Diag. 99 − − −
2nd Off-diag. 83 79 79 81

3rd Diag. 99 − − −
3rd Sub-diag. 98 31 28 28

3rd Off-diag. 79 78 78 78

Table 4: Data Reduction when compared to Algorithm 2

Kernel Algorithm 1 Algorithm 3 Algorithm 4

Linear 7× 7× 7×
2nd Diag. 7× 7× 7×
2nd Off-diag. − − n.a.

3rd Diag. 7× 7× 7×
3rd Sub-diag. 3.3× 4.75× 4.75×
3rd Off-diag. − − −
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Figure 18: Comparison of the analytical (—), Algorithm 1 (o), and Algorithm 2 (•) first-

order Volterra kernels for the nominal case
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in Figure 19. The identified second-order kernel underpredicts slightly at the low indices.

Similarly, the third-order diagonal kernel captures the nonlinear behavior qualitatively, i.e.,

an initial dip followed by a return to zero. However the identified kernel does not adequately

capture the magnitude of this dip. In both cases, the identified coefficients converge to the

theoretical values after the first few coefficients.

For the sub-diagonal kernels, the data reduction is 3.3 times for Algorithm 1 versus

Algorithm 2, and there is an improvement of 98% in the SSE value of Algorithm 1 over

Algorithm 2. The SSE values from all the tailored algorithms are nearly identical. It is

interesting to note that Algorithm 1 shows an improvement of 31% in the value of the

coefficient SSE over Algorithm 2?. This improvement is strictly due to sequence tailoring,

as both Algorithms use the same linear and nonlinear diagonal kernel estimates. The

only difference lies in the input sequences for S3 identification, thereby emphasizing the

importance of input sequence design in the quality of the identified Volterra model estimates.

At first glance, one would expect the SSE values for O2 from Algorithms 1 and 3, and

Algorithm 2? to be similar as they are all identified from the same input sequences. The

difference arises because pre-whitening in Algorithms 1 and 3 includes a contribution from

the third-order diagonal term, unlike in Algorithm 2?, where the kernels are identified strictly

on the basis of Volterra model order. Furthermore, since the O2 kernel is identified explicitly

in Algorithm 4, its SSE value is the lowest amongst all algorithms. The SSE values for

the O3 kernel for all the tailored identification algorithms are almost identical. Overall,

the tailored algorithms and Algorithm 2? all outperform Algorithm 2. This highlights the

importance of the linear and nonlinear diagonal kernels, in addition to tailored sequence

design, in estimating subsequent kernels.

One reason for this quantitative difference between the analytically calculated and the

identified Volterra kernels is that the analytically calculated Volterra kernels are obtained

from the discretized Carlemann linearized model, which itself, is a third-order approximation

of the actual nonlinear system (2.1). The quantitative differences are not due to the estimator

equation calculations, but instead are due to the difference between the nonlinear system

and the “theoretical” Volterra kernel outputs to the input sequence (2.22). Thus, these

errors are an artifact of the case study that has been used. The polymerization reactor is
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Figure 19: Comparison of the analytically calculated (-×-) and identified

(Algorithm 1, − ◦ −) second-order (left) and third-order (right) diagonal kernels
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Table 5: A comparison of the SSE values between the identified and analytically calculated

kernels

Kernel Algorithm 3 Algorithm 4

Linear 1.95× 10−30 1.95× 10−30

D2. 3.38× 10−17 3.38× 10−17

O2 3.08× 10−9 5.43× 10−10

D3 5.20× 10−39 5.20× 10−39

S3 5.93× 10−14 4.87× 10−14

O3 1.69× 10−13 1.68× 10−13

not governed by a true third-order Volterra model. The algorithm can identify the kernel

coefficients exactly for systems that are governed by a third-order Volterra model. In the

light of these facts, and to highlight the capabilities of the algorithm, subsequent analyses

employ the analytically calculated Volterra kernels as the process data generator. Since

all the tailored algorithms outperform the cross-correlation approach, all further analysis is

reported for Algorithms 3 and 4, as they require the least amount of data of the tailored

identification algorithms.

The nominal identification results are once again reported in Table 5 as sum squared

errors between the identified and the analytically calculated Volterra kernels. Algorithms 3

and 4, effectively captured the complete linear and nonlinear diagonal kernel behavior, as is

seen from the low SSE values. Since the O2 kernel in Algorithm 4 was calculated explicitly,

the SSE values are superior to those for Algorithm 3, where the O2 kernel was calculated via

cross-correlation. A comparison of the O2 kernels is shown in Figure 20. Furthermore, since

the O2 kernel in Algorithm 4 is calculated explicitly, i.e., without pre-whitening, there is no

compounding of pre-whitening effects for subsequent kernel identification.

The third-order sub-diagonal kernel can be visualized as a two dimensional matrix by

assigning the h3(i, j, j) coefficients to the (i, j), and the h3(i, i, j) coefficients to the (j, i),

71



5
10

15
20

5
10

15
20

0

2

4

x 10−4

ij

Th
eo

re
tic

al

5
10

15
20

5
10

15
20

0

2

4

x 10−4

ij
A

lg
or

ith
m

 3

5
10

15
20

5
10

15
20

0

2

4

x 10−4

ij

A
lg

or
ith

m
 4

5
10

15
20

5
10

15
20

0

2

4

x 10−4

ij

A
lg

or
ith

m
 2

Figure 20: Comparison of the O2 kernels (z-axis is kernel value). First row: theoretical (L),

Algorithm 3 (R), second row: Algorithm 4 (L), Algorithm 2 (R)
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Figure 21: Comparison of the S3 kernels (z-axis is kernel value). First row: theoretical (L),

Algorithm 3 (R), second row: Algorithm 4 (L), Algorithm 2 (R)
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elements. A comparison of the identified S3 kernels is shown in Figure 21. From the figure,

it is observed that the S3 kernel from cross-correlation captures neither the quantitative,

nor the qualitative, nature of the theoretical kernel adequately. Finally, the O3 kernel for

both the algorithms is calculated by the cross-correlation approach. Once again, due to

the improved estimates from previously identified kernels (S3 + O2), the O3 kernel from

Algorithm 4 yields better estimates than the kernel from Algorithm 3.

In addition to improving the quality of kernel estimates, the tailored sequences are also

significantly shorter than the corresponding sequences used for cross-correlation. Since the

same sequence is used for identifying the S3 and O2 kernels for the simultaneous approach

(Algorithm 4), there is a reduction of 86% in the data required to identify these two kernels,

compared to the cross-correlation approach (i.e., the O2 cross-correlation sequence is no

longer necessary).

2.4.2 Identification in the Presence of Noise

An additive uncorrelated white measurement noise with variance equal to 5% of the output

was added to the output signal, and Volterra kernels were estimated. All kernel estimates are

reported as a mean of 100 runs to average out the effects of the random noise. The results

are reported in Table 6 as SSE values between the identified and analytical kernels. For noisy

measurement sequences, the number of data points employed per coefficient estimated is an

important quantity as the noise effects can be decreased by averaging. Consequently, five

repeat units of the input sequence were used for linear and nonlinear diagonal estimation.

The resulting sequence, even after five repeat units, was still 30% shorter than the one used

in the cross-correlation approach. However, there is a considerable decrease in the quality of

the linear and nonlinear diagonal kernel estimates in the presence of noise, for all algorithms.

Figure 22 shows a comparison of the linear kernels.

In Algorithm 4, the O2 kernel is identified simultaneously with the S3 kernel; it can be

observed that noise has a more significant impact on the O2 than the S3 kernel. This is

consistent with (2.11) and (2.34) where the simultaneous identification of O2 and S3 leads

to a trade-off in the minimization of the PEV expression. An increase in the coefficient in
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Table 6: A comparison of the SSE values between the identified and analytically calculated

kernels in the presence of noise

Kernel Algorithm 2? Algorithm 3 Algorithm 4

Linear 9.41× 10−4 9.41× 10−4 9.41× 10−4

D2 1.49× 10−8 1.49× 10−8 1.49× 10−8

O2 7.25× 10−7 5.31× 10−9 1.59× 10−6

D3 1.25× 10−10 1.25× 10−10 1.25× 10−10

S3 4.21× 10−9 2.91× 10−9 2.76× 10−9

O3 3.93× 10−10 8.24× 10−12 8.62× 10−12
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Figure 22: Comparison of the first-order Volterra kernel in the presence of measurement

noise
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(2.34) causes the S3 contribution to dominate, leading to a decrease in error in S3 according

to (2.11). This results in O2 PEV calculations being weighted comparatively less heavily,

and hence, preferential noise-corruption of O2 versus S3 in Algorithm 2. Finally, the SSE

value for O3 is greater for Algorithm 4 due to the propagation of noise effects from previously

identified kernels. Overall, with the exception of O2 in Algorithm 4, kernel estimates from

the tailored identification Algorithms outperform the estimates from cross-correlation.

2.4.3 Validation of the Identified Volterra Models

Validation of the identified Volterra models was carried out using step inputs of magnitude

v = ±30. Figure 23 shows a comparison of the system response for the analytically calculated

Volterra model as well as the linear, second-order, and third-order Volterra models for the

nominal kernels. From the residuals presented in the legend (representing the SSE between

the outputs from the nonlinear and the identified Volterra models summed for the two steps),

it is observed that the third-order Volterra model output prediction captures the analytical

Volterra kernel output behavior with very high accuracy. In addition, the SSE values are

better for Algorithm 4 because of the improved estimates of the noise-free O2 kernel which

is calculated explicitly.

Similarly, Figure 23 also shows the validation results for the kernels identified in the

presence of noise. There is a marked drop-off in performance in the presence of noise, more so

for Algorithm 4 than for Algorithm 3. This is due to the decreased accuracy of the estimates

in the O2 kernel, and their effect on subsequent kernels due to pre-whitening as outlined

in Section 2.4.2. However, it is interesting to note that the third-order Volterra model still

outperforms the second-order Volterra model in the presence of noise, independent of the

identification algorithm. The decrease in performance is attributed to error propagation due

to pre-whitening.

Figure 24 shows the steady-state locus for the nonlinear polymerizer model, as well as

the linear, second-, and third-order Volterra models in response to step inputs from −56 to

+56. The linear model is unable to account for the asymmetry exhibited by the nonlinear

model. Of the Volterra models, the third-order Volterra best captures the nonlinear system
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Figure 23: System response to step-inputs of magnitude v = ±30 for the nominal (left

column) and the noise (right column) cases. Outputs from Algorithm 3 (top row) and

Algorithm 4 (bottom row) are shown. Lines indicate the analytically calculated Volterra

model (—), identified linear model (− ◦ −), identified second-order Volterra model (− · −),
and identified third-order Volterra model (−−−)
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behavior. The identified model does not exactly capture the polymerization system response

because the latter is not governed by a third-order Volterra model structure. The results

represent the best Volterra model for the system based on the input-output data-set.

Figure 25 shows the Integral Square Error (ISE) between the nonlinear and the identified

Volterra models in response to steps of integer magnitude for ν ∈ [−56, 56] over 1.2 hr.

Once again, the third-order Volterra model generally outperforms the linear and second-

order Volterra models. ISE is potentially misleading, however. The second-order Volterra

model at high v values is qualitatively incorrect (wrong gain sign, see Figure 24).

2.5 SUMMARY

In this Chapter, algorithms for the identification of third-order Volterra models were de-

veloped. Tailored input sequences were designed based on the PEV expression and these

sequences exploited the Volterra model structure. The estimation of the bias, linear, and non-

linear diagonal kernels was carried out using a tailored four pulse sequence. The third-order

sub-diagonal parameters were estimated using a novel sequence designed to preferentially

excite the third-order sub-diagonal terms versus the off-diagonal terms. Random binary

signals were used to estimate the second- and third-order off-diagonal kernels. Simultaneous

identification of the second-order off-diagonal and third-order sub-diagonal kernels was also

carried out, thereby completely eliminating the need for a separate sequence for the identifi-

cation of the second-order off-diagonal kernel. Kernel estimates from this novel identification

algorithm consistently outperformed those from the cross-correlation approach.

The effect of measurement noise on the quality of the model estimate was analyzed; while

coefficient estimation error increased, the novel identification algorithm estimates were supe-

rior to the corresponding cross-correlation estimates. The off-diagonal coefficient estimates

showed moderate noise sensitivity (due to the cross-correlation calculation), but improvement

in other kernels uniformly improved off-diagonal model quality. In the validation studies,

the third-order Volterra model performed significantly better than the lower-order Volterra

models.
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One way to reduce the noise-sensitivity of the identified Volterra kernels, is to project

them onto a set of basis functions, e.g., the Laguerre basis [30, 41]. This projection also

leads to a decrease in the number of parameters, and makes the resulting Volterra-Laguerre

model less sensitive to measurement noise. The problem of optimal projection of Volterra

models onto the orthonormal Laguerre basis is addressed in the next Chapter.
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3.0 VOLTERRA-LAGUERRE MODELS

One of the main difficulties in the estimation of higher order Volterra models is the large

number of unique model coefficients that need to be estimated, given by the relation:

N
∑

i=1

(

M + i− 1

i

)

(3.1)

Here, N is the order of the Volterra model under consideration andM is the system memory.

For the polymerization reactor study, this leads to 1770 parameters. Although it is possible

to estimate these parameters, a large amount of data is required which may not always be

easily available. In addition, it was observed in the previous chapter that while the quality

of nominal Volterra kernels is excellent, there is a considerable decrease in the validation

performance for Volterra kernels in the presence of noise. This is not surprising, as the

Volterra model is a time series model, and this model class is known to be sensitive to

measurement noise. The Volterra model offers several benefits, however: it is linear with

respect to parameters, which makes the parameter estimation easier, and its structure is a

nonlinear extension of the well known finite impulse response model. Finally tailored input

sequence design is possible for the efficient identification of Volterra models.

One way to reduce the parameterization and noise sensitivity of Volterra models is to

project them onto a set of orthonormal basis functions. Generally, a relatively small number

of orthonormal functions are required, so that the projection operation significantly reduces

the number of parameters needed to describe the original nonlinear system. A number of

orthogonal basis functions have been considered in literature, such as the Laguerre [30, 41,

59], Kautz [65, 77], generalized basis functions, distorted sines [78], etc. In contrast to the

Volterra model, common orthonormal functions (e.g., Laguerre and Kautz) consist of a set
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of smooth exponential filters so that models based on orthonormal bases have inherent noise

filtering. The difference between the orthonormal basis functions lies in their complexity

and in their qualitative behavior. As an example, only one parameter (the pole) is required

to determine the dynamics for the Laguerre model whereas two poles need to be specified

for the Kautz model. The Kautz model can capture oscillatory behavior when the two poles

are chosen to be complex conjugates, at the cost of a more complicated model. Owing

to the single pole, the Laguerre model is structurally incapable of manifesting oscillatory

dynamics. However, the polymerization reactor in this work does not exhibit oscillatory

behavior, and the single parameter makes the identification of Laguerre models comparatively

easier. Consequently, the Laguerre basis is used in this work.

3.1 LAGUERRE MODEL

Since the Laguerre basis is orthonormal, pertinent mathematical preliminaries of orthonormal

bases are presented [79]:

Definition 1. If, in a space V , there exists a set of n elements φ1, φ2, φ3,..., φn such that

every element v ∈ V can be written as a linear combination of φ1,...,φn, i.e.,

v = a1φ1 + a2φ2+, · · ·+ anφn

where a1, a2,..., an are scalars not all zero, then the set {φ1, φ2, φ3, ..., φn} is called a basis

of V and n is the dimensionality of V .

Definition 2. If the basis set {φ1, φ2, φ3, ..., φn} satisfies

< φi, φi > = 1 ∀i = 1, ..., n

< φi, φj > = 0 ∀i 6= j

then the basis is an orthonormal basis.

In this definition, < · > denotes the inner product operation.
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Definition 3. Given an orthonormal basis, any real function f(i), i = 0, 1, ... satisfying

f(0) = 0 can be expanded as [41]:

f(i) =
∞
∑

k=1

akφk(i)

ak =
∞
∑

i=0

f(i)φk(i)

In a similar manner, nonlinear functions can be expressed as a linear combination of

Laguerre filters. In discrete time, the Laguerre basis function is given as:

φj(i) =
√
1− α2

{

j−1
∑

k=0

(−α)k
(

j − 1

k

)(

i+ k − 1

k − 1

)

αi−j+kU(i− j + k)

}

(3.2)

In this equation, α represents the Laguerre pole and U(·) represents the unit step function.

The parameter α controls the exponential rate of decay of the Laguerre functions and thus

specifies the dynamic behavior of the Laguerre model. It lies in the range, 0 ≤ α < 1. Figure

26 shows the effect of the Laguerre pole on the dynamics of discrete Laguerre filters. The

dynamic behavior of one Laguerre filter is shown for α values of 0.1 and 0.9. Two Laguerre

filters are shown for α = 0.5. It is observed that all Laguerre filters exponentially decay

to zero. However, an increase in α is accompanied by a slower rate of exponential decay.

Furthermore, there are n − 1 zero crossings for a Laguerre filter of order n as is observed

for α = 0.5. The discrete nature of the filters is also evident for the filter corresponding to

α = 0.1.

Akin to Definition 3, the output from a Laguerre model can be given as:

ŷl(k) = c0 +
∞
∑

i=1

ci`i(k) +
∞
∑

i=1

∞
∑

j=1

cij`i(k)`j(k) +
∞
∑

i=1

∞
∑

j=1

∞
∑

n=1

cijn`i(k)`j(k)`n(k) (3.3)

`j(k) =

ul
∑

i=1

Φj(i)u(k − i) (3.4)

In (3.3), ŷl is the Laguerre output, c represents the Laguerre coefficients (similar to ak in

Definition 3), and ul is the total length of the input sequence u. The practical advantage of

the Laguerre basis is its efficiency because instead of the infinite sum used in (3.3), it is often

possible to truncate this sum to a relatively small number of terms [25]. As the number
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of filters included in the Laguerre model is increased, the truncation error from using a

finite number of Laguerre filters, decreases. Also, for a given Laguerre model accuracy, the

truncation error of the Laguerre approximation can be reduced by properly choosing α [59].

The total number of parameters, Np, in a third-order Laguerre model with L filters is given

as:

Np =
(L+ 1)(L+ 2)(L+ 3)

6
(3.5)

The Laguerre model can also be written in state-space form, which is a useful structure

for predictive control. The third-order discrete time state-space representation is given as

[59]:

`(k + 1) = A(α)`(k) +B(α)u(k) (3.6)

ŷl(k) = CT `(k) + `T (k)D`(k) +
L
∑

i=1

[`(k)TEi`(k)]`i(k) (3.7)

This structure reveals that the Laguerre model, like the Volterra model, is a member of the

Wiener class of models as it is composed of a linear dynamic element (3.6), followed by a

static memoryless output nonlinearity (3.7). In equations (3.6) and (3.7),

A(α) =























α 0 0 . . . 0

(1− α2) α 0 . . . 0

(−α)(1− α2) (1− α2) α . . . 0
...

... . . .
. . .

...

(−α)L−2(1− α2) (−α)L−3(1− α2) . . . . . . α























(3.8)
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B(α) =
√

(1− α2)























1

−α
(−α)2

...

(−α)L−1























(3.9)

CT = [c1 · · · cL] (3.10)

D =











c11 . . . c1L
...

. . .
...

cL1 . . . cLL











(3.11)

Ei =











c11i . . . c1Li
...

. . .
...

cL1i . . . cLLi











(3.12)

Here, A(α) and B(α) only depend on α, i.e., the dynamic behavior of the Laguerre filters

is set by the pole (α) value. This structure is shown in Figure 27, adapted from [59]. The

Laguerre model, given by (3.6), is shown in the z-domain. The top part of the memoryless

nonlinearity block includes the linear contributions to the output and has a total of L terms.

The middle represents the second-order combinations of Laguerre filter outputs i.e., `21,

`1`2,· · ·, `1`L, `22,· · ·, `2L. The subsequent parts of the memoryless nonlinearity block represent

the higher-order contributions.

3.2 VOLTERRA KERNEL PROJECTION ONTO THE LAGUERRE BASIS

3.2.1 Volterra-Laguerre Model

Since the Laguerre basis is orthonormal in the interval [0,∞) and is complete in the L2[0,∞)

space [59], the following Theorem holds [41]:

Theorem 1. The N th-order kernel hN(i1, ...iN ) can be expanded by a Laguerre series as:

hN(i1, ...iN ) =
∞
∑

j1=1

· · ·
∞
∑

jN=1

cN(j1 · · · jN)φj1(i1), · · ·, φjN (iN) (3.13)
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Figure 27: Schematic of the nonlinear Laguerre model structure (adapted from [59])
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where

cN(j1, ...jN ) =
∞
∑

i1=1

· · ·
∞
∑

iN=1

hN(i1, · · ·, iN)φj1(i1) · · · φjN (iN) (3.14)

if the kernel is stably separable and strictly proper.

Definition 4. A kernel is separable if [41]:

hN(i1, ..., iN ) =

q
∑

j=1

ν1j(i1)ν2j(i2) · · · νNj(iN) (3.15)

where q is some finite number and νgj(ig) is a single variable real function g = 1, 2, · · ·, N .

If each νgj(ig) also satisfies
∞
∑

ig=0

|νgj(ig)| <∞ (3.16)

the kernel is called stably separable.

Definition 4 states that the the Volterra kernel can be deconstructed in terms of νgj(ig)

(which can be thought of as pseudo-input terms), and (3.16) states that if each of νgj(ig) is

bounded, then the system is stable. Definition 4 and (3.16) state that the Volterra kernels

are BIBO stable, i.e., for a bounded input, the output of the Volterra model is bounded.

Definition 5. A symmetric kernel is called strictly proper if

hN(i1, · · ·, iN) = 0, for i1, i2, · · ·, iN = 0 (3.17)

This definition implies that the Volterra model has no direct feed, i.e., the current

output is a function of only the past inputs, and does not depend on the current input. The

polymerization reactor case-study is a fading memory system and the Volterra kernels for

this system satisfy the conditions of Definitions 4 and 5. Hence the Volterra kernels can be

projected onto the Laguerre basis. As discussed before, instead of the infinite sum in (3.13),

only L terms are retained, so that:

hN(i1, · · ·, iN) =
L
∑

j1=1

· · ·
L
∑

jN=1

cN(j1, · · ·, jN )φj1(i1) · · · φjN (iN) (3.18)
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In this equation, cN(j1, · · ·, jN) represent the Laguerre coefficients, and they are obtained

using the Volterra kernels using the following equation:

cN(j1, · · ·, jN) =
L
∑

j1=1

· · ·
L
∑

jN=1

hN(i1, · · ·, iN)φj1(i1) · · · φjN (iN) (3.19)

The Laguerre coefficients thus obtained are equivalent to the C, D, and E matrices in (3.7).

The dynamics of the VL model are determined by α and are given by (3.6).

The main advantage of the Laguerre basis is that a system can be adequately described

with L << M , so that the number of parameters required to characterize the Laguerre model

decreases considerably. Another advantage of using the Laguerre basis is that α and L are

the only two variables that need to be specified to completely describe a VL approximation

of a given Volterra model. However, as seen before (Figure 26) L and α are coupled, i.e.,

the truncation error is a function of both L and α.

3.2.2 Determination of Laguerre Model Parameters

Since L and α are coupled, the appropriate selection of these two parameters is critical for

an accurate and compact VL model description. The selection of the number of Laguerre

filters has generally been carried out heuristically. This choice is a balance between increased

model accuracy due to an increase in the number of filters, and the corresponding increase

in the number of parameters. One of the approaches to determine α is the brute force

technique, i.e., for evenly-spaced α in the range [0, 1), what value minimizes the SSE between

the Volterra and the Volterra-Laguerre model output predictions. This approach assumes

that the appropriate number of Laguerre filters has already been selected, and it has been

successfully employed in literature [19, 30, 34, 65]. Less computationally intensive methods

have also been employed. Wahlberg proposed a methodology to collapse ARX models onto

the orthonormal Laguerre basis [58]. The Laguerre pole was selected based on the time-

constant of the system and was chosen to avoid a slow convergence rate of the Laguerre filters.

Fu and Dumont used an optimization-based approach to estimate the optimal Laguerre pole

for linear systems [80]. Their objective function ensured that the coefficients of higher-

order Laguerre functions rapidly decayed to zero. In their objective function, the weight
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on each additional Laguerre filter increased linearly. Sabatini used a least-squares approach

to determine the optimal α for a Laguerre model. Their objective function minimized the

truncation error from using a finite number of Laguerre filters, and they converted the

optimization to a roots finding problem. A hybrid genetic algorithm (GA) based approach

was used, whereby the GA was used for fast convergence to reach a neighboring region of

solution and then a Newton Raphson method was used to attain convergence within the

region identified by the GA [81]. Malti et al. minimized the SSE between the system

and Laguerre model outputs. They used a Newton Raphson technique to calculate the

optimal Laguerre pole [82]. The authors provided analytical expressions for the gradients

and Hessians of the optimization problem. A drawback of the above approaches is that they

do not address the projection of nonlinear Volterra models, and their results are demonstrated

for relatively simple numerical examples. A notable exception is the approach by Campello

et al. [83]. Their results are an extension of those presented in [59] for nonlinear systems.

However, this approach is strictly optimal only for infinite dimensional expansions. This

approach is not conducive for practical implementation, as the high model dimensionality

(L) could pose challenges for control.

3.2.3 Optimal Projection of Volterra kernels onto the Laguerre Basis

One of the main disadvantages of the approaches for determining the optimal α presented

in the previous Section is that they are valid only for linear time invariant (LTI) systems.

The objective function for optimization in these problems could be broadly classified into

two main categories given as follows:

• Minimization of model complexity: In this class of problems the objective function is

formulated to reduce the number of model parameters, e.g., Dumont and Fu penalize

the addition of Laguerre filters [59]. However these approaches do not explicitly address

the accuracy of the projection.

• Maximization of model accuracy: Here the objective function minimizes the SSE between

the nonlinear and (Volterra-)Laguerre model predictions [30, 41, 65]. However these

92



approaches do not explicitly address the selection of the number of Laguerre filters, and

thus leave the question of the size of the resultant model unaddressed.

As discussed in Chapter 1, a nonlinear model developed for the purpose of control should

be both accurate and parsimonious. Thus, a different approach is selected to determine the

optimal Laguerre pole in this work. The key motivation is that the identified VL model must

take into account optimality for both α and L.

Generally, an increase in the number of Laguerre filters leads to a higher quality VL

model. However, this improvement in quality is at the cost of increased model parameter-

ization. In such a scenario, statistical information criteria are useful as they can be used

to determine the quality of model fit with respect to both model size and model accuracy.

Information criteria are generally composed of a sum of two terms. The first term takes

into account the accuracy with which the model predicts the data, and this term attains

an increasingly negative magnitude as the model becomes more accurate. The second term

penalizes the addition of new parameters in the resulting model. Thus information criteria

enable a balance between model accuracy and model complexity. The commonly used

information criteria are the Akaike Information Criterion, the Bayes Information Criterion,

Final Prediction Error, and Law of Iterated Logarithmic Criterion [84].

In this work the Akaike Information Criterion is used as a metric to trade-off model size

(set by the number of Laguerre filters) and model quality (characterized by both the number

of Laguerre filters and the Laguerre pole) as measured by the sum-squared error between

the Volterra and the Volterra-Laguerre model outputs. The Akaike Information Criterion

(AIC) is given as [85]:

AIC = K log

(

SSE(α,L)

K

)

+ 2Np (3.20)

The first term accounts for model accuracy, and K is a measure of the amount of data used

to determine the model. The second term penalizes the complexity of the resultant model.

In the context of this work, K is the number of Volterra model coefficients that are to be

projected, SSE is the sum squared error between the original Volterra and the projected VL

model outputs, and Np is the number of parameters in the resulting VL model. For a given

data-set, the SSE depends on both the number of Laguerre filters and the corresponding
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Laguerre pole. Each pair of α and L characterizes a VL model that has a unique AIC value

associated with it. The model with the lowest AIC value represents the optimal balance

between the number of parameters and model quality.

In this work, the optimal Laguerre pole for a given L is calculated for the complete

nonlinear Volterra model, a problem which has not received attention before. The SSE

term in the AIC expression is given as follows:

SSE(α,L) = (ŷv(k)− ŷl(k, α, L))
2 (3.21)

In this equation ŷ and ŷl(α,L) represent the Volterra and VL model outputs, respectively.

The dynamics of the VL model are set by α in (3.6), whereas L determines the size of the

output matrices C, D, and E in (3.7). Thus the optimization problem can be formulated as:

J(α,L) = min
α,L

K log

(

(ŷv(k)− ŷl(k, α, L))
2

K

)

+ 2Np (3.22)

s.t. 0 ≤ α < 1

This is a constrained nonlinear optimization problem due to the nonlinear dependence of the

Laguerre filters on α.

The complete algorithm for determining the optimal number of Laguerre filters and

Laguerre pole is as shown in Figure 28. The Algorithm is initialized with L = 1. The

optimization routine determines an α that minimizes the SSE for the training data-set,

which could be an impulse, step, or multi-level input. In general, the training SSE would

depend on the data-set, but preliminary investigations for impulse and random data-sets

revealed SSE to be a convex function of α. For an (α,L) pair, an AIC value is calculated,

and the number of Laguerre filters is increased until a minimum in AIC is reached. To avoid

over-parameterization the upper bound for the number of Laguerre filters is the Volterra

model memory M . Thus another approach to determine the optimal α and L is to select

the lowest AIC value corresponding to L in the range [1,M ]. The combination of L and

corresponding α sets all the parameters needed for the VL model. In the above optimization,

L is an integer valued variable. Thus, optimizing over both the α and L range would lead to a

mixed-integer nonlinear programming problem (MINLP). In order to restrict the complexity

of the optimization problem, the Laguerre space is discretized, i.e., the algorithm increments

the addition of Laguerre filters.
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Figure 28: A schematic of the Algorithm for determining the optimal Laguerre pole
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3.3 RESULTS

The Volterra kernels identified in the previous chapter can now be projected onto the

Laguerre basis using the approach presented in Section 3.2.3. The polymerization reactor

case study presented in Section 2.1 continues to serve as the simulation case study. Since

Algorithm 4 required the least amount of data, and Algorithm 3 showed the best performance

in the presence of noise, all results in this Section are presented using Volterra kernels

identified via these two algorithms. As the analytical Volterra kernels (Section 2.1.1) are a

given, they are used to validate the performance of the identified Volterra and the VL models

to enable a fair comparison.

3.3.1 Projection of the Full Volterra Model onto the Laguerre Basis

3.3.1.1 Nominal Identification In order to project the Volterra kernels onto the La-

guerre basis, the projection algorithm was initialized with one filter (L = 1). An impulse

response was selected to generate the training data-set for two main reasons: first, the

Volterra model is a nonlinear extension of the FIR model; second, all of the tailored input

sequences used to identify the Volterra models were based on impulses. The magnitude of

the impulse was selected as 28. The SSE values between the Volterra and the VL model

outputs were found to be relatively insensitive to the magnitude of the impulse input. Hence

a value of 28 was selected as it represented the mid-point of the positive half of the input

range.

Using the projection algorithm, the minimum AIC value was obtained for L = 19 with

an optimal pole of 0.0393. A visualization of the AIC results can be found in Figure 29.

The sub-plot of the SSE between the Volterra and Volterra-Laguerre models for the training

data-set (Figure 29, middle) shows that the SSE value is negligible for L = 19, and small for

L = 2. A plot of the output residuals between the Volterra and the VL model (Figure 29,

bottom) confirms this observation; the residuals are close to zero for the entire duration of

the training data-set. However, 19 filters implies that the dimensionality of the VL model

approaches that of the original Volterra model (M = 20). This is a somewhat contrasting
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Figure 29: Projection of Volterra kernels identified from Algorithm 3 onto the Laguerre basis.
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model for the training data-set
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Table 7: Optimal Laguerre parameters from the projection algorithm for the nominal case

Algorithm 3 Algorithm 4

Training SSE 0.0508 0.0486

L 2 2

α 0.5624 0.5625

result for the nominal case, as the SSE value is small for L = 2 and the residuals are close

to zero.

Figure 30 shows the individual contributions of the two terms that constitute the AIC.

The first term, based on the SSE value, is given by K log(SSE
K

), whereas the second term,

based on the number of parameters, is given by 2Np. For the nominal case, since the SSE

value is low for two filters, the contribution of the first term dominates that of the second

term. The addition of subsequent filters improves the SSE value so that the first term, and

hence the AIC, continue decreasing. This contribution is two orders of magnitude greater

than that of the second term, so that the effect of additional parameters with added filters

has no significant effect on the AIC value.

For L = 2, the projection SSE was 0.0508 for a sequence consisting of 21 data-points.

For the impulse input, on a per coefficient basis, the output is within 1% of the analytically

calculated Volterra kernel output. Hence, the incremental accuracy improvement provided

by additional filters was not justifiable. Consequently, 2 filters were selected for the VL

model and the optimal α was 0.5624. The results for kernels from both Algorithms are

shown in Table 7. Since the nominal performance of the Volterra kernels from Algorithms

3 and 4 is similar, the corresponding VL models are similar as well. The outputs for the

nonlinear, Volterra, and the Volterra-Laguerre models for the training data-set are shown in

Figure 31 for kernels identified from both Algorithms 3 and 4.
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Validation of the VL models was carried out using a random multi-level sequence con-

sisting of 220 data-points characterized by the following distribution:

urandom−val(k) =























































56 with probability 1
10

42 with probability 1
10

28 with probability 3
10

−28 with probability 3
10

−42 with probability 1
10

−56 with probability 1
10

(3.23)

The first 20 points were used to initialize the input sequence and thereby eliminate coefficient

error bias related to initial condition effects. To average out the sequence effects due to the

random input, results from 100 input sequences given by the distribution in (3.23) were

considered. The complete set of validation results are presented in Table 8. The first row

represents results for the training data-set, i.e., the SSE values between the analytically

calculated and the VL, and the analytically calculated and Volterra model outputs. The

subsequent rows present a representative result (Figure 32), the mean, and the range of the

results from the random sequence, respectively. Since the Volterra kernels from Algorithm 4

are identified with the least amount of data (i.e., the most efficient identification algorithm),

all subsequent figures are shown for VL models identified from Volterra kernels identified

from Algorithm 4. Also, the inputs and outputs in all the figures considered in this chapter

are reported in scaled deviation form.

Since validation of the identified Volterra and VL models is carried out against analyt-

ically obtained Volterra kernels, the nominal performance of the Volterra models for the

training data-set is excellent (SSE = 1.36 × 10−10 in Figure 31). Although worse than the

Volterra model, the performance of the VL model is still admirable and on a per-coefficient

basis predictions are within 1% of the analytically calculated Volterra kernel output values.

For the validation performance using the random sequence, with a representative result

shown in Figure 32, the Volterra model continues to outperform the VL model. The VL

model does not accurately match the peaks in the analytical Volterra model output (Figure

32, top). There is a considerable loss in the performance of the VL model when compared
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Table 8: SSE values between the analytical Volterra and VL, and analytical Volterra and

Volterra models for the nominal case

Algorithm 3 Algorithm 4

Sequence Volterra-Laguerre Volterra Volterra-Laguerre Volterra

Training 0.05 0.00 0.05 0.00

Random 1315.52 3.70 1317.36 1.59

mean 1252.00 3.59 1274.89 1.36

min 810.76 1.74 813.79 0.64

max 1708.06 6.34 1865.72 2.40
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Figure 31: Output from the analytically obtained Volterra kernels (—), VL (−o−), and

Volterra (−−−) model for an impulse input of magnitude 28 in the nominal case. Results

from both Algorithm 3 (top) and Algorithm 4 (bottom) are shown. The input and the

output are in scaled deviation form.
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Table 9: Optimal Laguerre parameters from the projection algorithm for noise corrupted

Volterra kernels

Algorithm 3 Algorithm 4

Training SSE 0.2752 0.2687

L 2 2

α 0.5688 0.5701

to the original Volterra model. Since analytically calculated Volterra kernel output was used

to validate the models, the excellent performance of the identified Volterra models is not

surprising.

3.3.1.2 Identification in the Presence of Noise As in the nominal case, the kernels

from both Algorithm 3 and Algorithm 4 were used to obtain a VL model. The noise was

inherent in the identification of the Volterra kernel, i.e. no noise was added in the projection

of Volterra kernels onto the Laguerre basis. The characteristics of the noise are described

in Section 2.4.2. Once again, an impulse response of magnitude 28 was used to generate

the training data-set. The results from the projection algorithm are shown in Table 9. Two

Laguerre filters were found to be sufficient in the noise case. The optimal pole locations

do not significantly deviate from their nominal counterparts (see Table 7). However, as the

behavior of the Volterra kernels from Algorithms 3 and 4 are different in the presence of

noise, the corresponding pole locations for the VL model are also slightly different. The SSE

errors for the training data-set are also higher than their nominal counterparts, as expected.

The output for the analytically calculated, Volterra, and the VL models for the training

data-set are shown in Figure 33. Here the excellent noise filtering capabilities of the Laguerre

basis are evident. The VL model captures the nonlinear model behavior for the training data-

set accurately, whereas the Volterra model shows some deviations about the nonlinear model,
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Figure 32: Validation performance of identified models with a random sequence, nominal

case. Top: analytical Volterra (—), VL (− − −), and Volterra (· · ·) model outputs. The

legend represents the SSE values between the analytically obtained Volterra kernels and the

identified models. Middle: residuals between the analytical Volterra and the VL (—) and

Volterra (− − −) models. Bottom: random input sequence used for validation. The input

and the output are in scaled deviation form.
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Figure 33: Output from the analytical Volterra kernels (—), VL (−o−), and Volterra (−−−)
model for an impulse input of magnitude 28 in the projection of noise-corrupted Volterra

kernels. Results from both Algorithm 3 (top) and Algorithm 4 (bottom) are shown. The

input and the output are in scaled deviation form.
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Table 10: SSE values between the analytical Volterra and VL, and analytical Volterra and

Volterra models, in the presence of noise

Algorithm 3 Algorithm 4

Sequence Volterra-Laguerre Volterra Volterra-Laguerre Volterra

Training 0.07 0.24 0.06 0.24

Random 1330.52 37231.19 1558.33 35330.54

mean 1360.26 28862.73 1623.73 27378.74

min 738.65 19154.77 1033.00 19227.09

max 2290.10 42645.13 2475.41 38356.62

especially at later time-points (where the signal to noise ratio was low), for kernels identified

using both Algorithms 3 and 4.

The validation SSE results are shown in Table 10. The first row presents the SSE values

for the training data-set, whereas the subsequent rows present the results for the random

sequence. As in the nominal case, results from 100 inputs are shown, and the distribution

of the random sequence is as shown in (3.23). Figure 34 shows the output responses of the

analytical Volterra, VL, and Volterra model outputs to the random validation sequence. The

excellent noise filtering capabilities of the VL model are evident. When compared to the

nominal case (see Table 8), the performance of the VL model does not degrade as significantly

as that of the Volterra model. Comparing the means, the loss in performance due to noise

is 9% and 26% for the VL models from Algorithm 3 and 4, respectively. On the other hand,

the decrease in performance for the Volterra model is five orders of magnitude. Since the

Laguerre model is a set of exponential filters, the VL model shows excellent noise filtering

abilities, and consequently an improved performance.

Thus the VL model outperforms the Volterra model in the presence of noise. In addition,

it was found that both the number of Laguerre filters (2) and the Laguerre pole remained

relatively unchanged for the nominal, as well as the noise cases (see Tables 7 and 9).
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Figure 34: Validation performance of identified models with a random sequence in the

projection of noise-corrupted Volterra kernels. Top: analytical Volterra (—), VL (−−−), and
Volterra (· · ·) model outputs. The legend represents the SSE values between the analytically

obtained Volterra kernels and the identified models. Middle: residuals between the analytical

Volterra and the VL (—) and Volterra (− − −) models. Bottom: random input sequence

used for validation. The input and the output are in scaled deviation form.
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Furthermore, the improved performance is accompanied by a considerable reduction in the

number of parameters.

3.3.2 Performance of the Volterra-Laguerre Model

Normally, the identification of the process model is carried out at a particular point in

the operating space. This point is generally selected as the one where the nominal plant

operation is carried out. The process model must be able to successfully represent the

process behavior over the entire operating range. If the process is linear, then the model

identified at a single operating point is valid over the entire range. However, since the

identified VL model is nonlinear, the performance of the VL model over the operating range

was analyzed. The identified models were first initialized to a steady state corresponding

to an input of magnitude ν. The range for ν was [−40 , 40] in increments of 4 units. After

reaching steady state, the process was subjected to a random input consisting of 220 data-

points characterized by the following distribution:

urandom(k) =



















ν − 10 with probability 1
3

ν with probability 1
3

ν + 10 with probability 1
3

(3.24)

The first 20 points were used to initialize the input sequence and thereby eliminate coefficient

error bias related to initial condition effects. In order to average out the effects of the random

sequence, SSE results are reported for 100 runs in Table 11.

Figures 35 and 36 show the response of the analytically calculated Volterra, identified

VL, and Volterra models, to a random sequence given by the distribution in (3.24), around

steady states corresponding to inputs of magnitude 28 and −28, respectively. Once again,

the nominal Volterra model outperforms the VL model. However, observing the plot of the

residuals (Figures 35 and 36, middle) the VL model does an excellent job of capturing the

analytical Volterra model behavior. In addition, the nominal performance of the VL models

from both algorithms is comparable.

Figure 37 shows the SSE between the analytically calculated Volterra, and the VL

Volterra models over the operating space. It is found that, the Volterra model is uniformly
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Table 11: SSE values between the analytical Volterra and VL, and analytical Volterra and

Volterra models around steady-states of ±28 for the nominal case

Algorithm 3 Algorithm 4

Sequence Volterra-Laguerre Volterra Volterra-Laguerre Volterra

ν = 28 35.45 0.44 36.96 0.13

mean 33.51 0.52 35.66 0.17

min 27.45 0.31 25.01 0.11

max 41.84 0.94 48.94 0.23

ν = −28 56.92 1.33 53.45 0.07

mean 50.24 0.78 47.61 0.06

min 32.09 0.38 33.40 0.04

max 75.49 1.67 64.71 0.08
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Figure 35: Validation performance of the identified models subjected to a random input

around a steady-state corresponding to an input of ν = 28. Top: analytical Volterra (—), VL

(−−−), and Volterra (···) model outputs. The legend represents the SSE values between the

analytically obtained Volterra kernels and the identified models. Middle: residuals between

the analytical Volterra and the VL (—) and Volterra models (− − −). Bottom: random

input sequence used for validation. The input and the output are in scaled deviation form.
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Figure 36: Validation performance of the identified models subjected to a random input

around a steady-state corresponding to an input of ν = −28. Top: analytical Volterra

(—), VL (− − −), and Volterra (· · ·) model outputs. The legend represents the SSE

values between the analytically obtained Volterra kernels and the identified models. Middle:

residuals between the analytical Volterra and the VL (—) and Volterra models (− − −).
Bottom: random input sequence used for validation. The input and the output are in scaled

deviation form.
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Table 12: SSE values between the analytically obtained Volterra kernels and the Volterra

and VL models around steady-states of ±28 for noise-corrupted Volterra kernels

Algorithm 3 Algorithm 4

Sequence Volterra-Laguerre Volterra Volterra-Laguerre Volterra

ν = 28 40.88 752.77 76.19 792.42

mean 40.63 888.06 73.20 923.20

min 29.99 567.14 54.74 547.79

max 56.56 1481.23 106.57 1440.23

ν = −28 71.02 956.76 59.41 961.35

mean 59.23 964.67 54.29 982.11

min 42.67 618.15 41.41 674.63

max 80.15 1472.37 73.59 1625.73

better than that of the VL model, for the nominal case. However, there is a qualitative

similarity in the steady-state outputs from the Volterra and VL models. Once again, the

excellent performance of the Volterra model is unsurprising given that analytically calculated

Volterra kernel output is used to validate the identified Volterra and VL models.

For analysis with noise-corrupted Volterra kernels, the SSE values are shown in Table

12. It is observed that the VL model significantly outperforms the Volterra model. The

system response to ν = ±28 is shown in Figures 38 and 39, respectively. As before, noise

is inherent in the identification of the Volterra kernels, and noise was not added in the

projection of Volterra kernels onto the Laguerre space. The Volterra model performance

decreases substantially in the presence of noise, and the sub-plot of the residuals confirms

this observation. Compared to the nominal case, the performance of the VL models decreases

only slightly. Comparing the means, the decrease in performance of VL models is 20% around

a steady-state of ν = −28, whereas the Volterra model shows a three orders of magnitude

decrease in SSE performance, compared to the nominal case. Once again, the advantage of
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Figure 38: Validation performance of the identified noise-corrupted models subjected to a

random input around a steady-state corresponding to an input of ν = 28. Top: analytical

Volterra (—), VL (−−−), and Volterra (· · ·) model outputs. The legend represents the SSE

values between the analytically obtained Volterra kernels and the identified models. Middle:

residuals between the analytical Volterra and the VL (—) and Volterra (− − −) models.

Bottom: random input sequence used for validation. The input and the output are in scaled

deviation form.
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Figure 39: Validation performance of the identified noise-corrupted models subjected to a

random input around a steady-state corresponding to an input of ν = −28. Top: analytical
Volterra (—), VL (−−−), and Volterra (· · ·) model outputs. The legend represents the SSE

values between the analytically obtained Volterra kernels and the identified models. Middle:

residuals between the analytical Volterra and the VL (—) and Volterra (− − −) models.

Bottom: random input sequence used for validation. The input and the output are in scaled

deviation form.
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the VL models in the presence of noise is attributed to the noise filtering of the Laguerre

model structure.

Similarly, Figure 37 shows that the VL model outperforms the Volterra model over the

entire range of ν values in the noise case. Furthermore, there is minimal degradation in the

performance of the VL models for the noise case. In contrast, the Volterra model shows a

drastic decrease in validation performance over the range of input steady-states.

Thus, for the nominal case, both the Volterra and VL models identified at the nominal

point given in Table 1 are valid over the entire operating range. There is a considerable

decrease in performance of the Volterra model in the presence of noise, whereas the VL

model showed excellent noise filtering characteristics.

3.3.3 Projection of a Reduced Volterra Model

In Section 3.3.1.1, the complete Volterra model was projected onto the Laguerre basis. It

was shown that the resulting VL model was robust to measurement noise in the identification

of the Volterra kernel. However, one key difficulty that still remains is the amount of data

required to identify the complete Volterra model. The total number of unique coefficients

in the full third-order Volterra model is 1, 770, and these required a considerable amount of

identification data. The parameterization also made the Volterra model more susceptible to

noise, as was observed in Section 3.3.1.2. One way to reduce the amount of data required

would be to identify only certain structural components of the Volterra model. A similar

approach was also used in [48, 86]. Both Pearson et al., and Florian Jr. and Parker

identified only the linear and diagonal components of a second- and third-order Volterra

model, respectively.

Different combinations of the Volterra kernels could be projected onto the Laguerre space,

e.g., L+D2+D3, L+D2+D3+S3, L+D2+D3+O2+O3, L+D2+D3+S3+O2+O3, etc. Of

these combinations, L+D2 +D3, represents the most drastic reduction in the identification

data requirement, while preserving the third-order model structure. Thus, only the linear

and nonlinear diagonal kernels, representing 60 of the 1, 770 parameters, were projected onto

the Laguerre basis using the projection algorithm in Section 3.2.3. The training data-set was
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Table 13: Optimal Laguerre parameters from the projection algorithm using the linear plus

nonlinear diagonal Volterra kernels

Reduced Volterra-Laguerre Model

Nominal Noise

Training SSE 0.0886 0.3362

L 2 2

α 0.5697 0.5762

the same as that used in Section 3.3.1.1 and the results are shown in Table 13. Since the

linear and nonlinear diagonal kernels are the same for both Algorithm 3 and Algorithm 4,

the results from the projection algorithm are identical. Hence only one resultant VL model is

obtained. A representative plot of the residuals, SSE, and AIC value for the noise-corrupted

Volterra kernels is shown in Figure 40. Unlike the projection of the full Volterra model, a

distinct minimum is obtained in AIC at L = 2. The SSE sub-plot (Figure 40, middle) shows

that the SSE value is fairly small for L = 2. Figure 41 shows the contribution of the two

terms that constitute the AIC. Only 60 Volterra kernel coefficients were projected. This

decrease in the value of K ensures that the first term does not dominate the contribution of

the second term. As a result, the addition of subsequent filters is penalized, and a minimum

in AIC is achieved at 2 filters. Furthermore, on comparing with Tables 7 and 9, it is observed

that the location of the optimal pole does not shift significantly, for either the nominal or

the noise case. The validation results for the reduced VL model forced with a random multi-

level sequence with the same distribution as in (3.23) are shown in Table 14. Once again, in

order to average out the effects of the random sequence, 100 runs of the random sequence

were used. The first row in Table 14 represents results for the training data-set, whereas

the subsequent rows represent results for the random multi-level sequence. Figures 42 and

43 present the outputs for the analytically obtained Volterra kernels, reduced Volterra, and

reduced VL models for the nominal and noise cases, respectively. For the random sequence,
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Table 14: SSE values between the analytically obtained Volterra kernels and the identified

Volterra and VL models for the training and random input sequences

Nominal Noise

Sequence Volterra-Laguerre Volterra Volterra-Laguerre Volterra

Training 0.09 0.00 0.15 0.24

Random 3166.68 3655.85 3200.03 3650.79

mean 3507.92 3552.16 3795.40 3772.10

min 1268.78 1706.31 1782.40 1932.52

max 7405.84 7852.58 13923.78 15737.36
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Figure 40: Projection of noise-corrupted linear and nonlinear diagonal Volterra kernels onto

the Laguerre basis. AIC (top), SSE (middle), and the residuals (bottom) between the

Volterra and VL model outputs. An impulse signal of magnitude 28 was used as the input

to generate the training data-set. The input and the output are in scaled deviation form.
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random input sequence. Top: analytical Volterra (—), reduced VL (− − −), and reduced

Volterra (· · ·) model outputs. The legend represents the SSE values between the analytically

obtained Volterra kernels and the identified models. Middle: residuals between the analytical

Volterra and the reduced VL (—) and reduced Volterra (−−−) models. Bottom: random

input sequence used for validation. The input and the output are in scaled deviation form.
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the mean of 100 runs for both the nominal and noise cases yields comparable performance for

the VL and Volterra models. The advantage of the Volterra model is now not as pronounced

owing to the bias error that arises from using only the linear and nonlinear diagonal kernels.

The performance of both reduced models is considerably better than that of the full

noise-corrupted Volterra model (SSE of 3795.40 for VL, 3772.10 for Volterra, versus 19, 227

for the best full Volterra model). This is an extremely important result as it suggests that

reduction in the number of parameters yields a considerable improvement in performance

in the presence of noise. The error in the noise-corrupted full Volterra model is associated

with large magnitude input excitation of higher-order noise-sensitive kernels, e.g., O2, S3,

and especially O3. In addition, there is a significant reduction in the number of Volterra

coefficients that require identification (60 versus 1, 770). Since noise, (e.g., measurement

noise, is prevalent in most real physical systems, it is advisable to use a VL model due to

its inherent noise filtering capabilities. Furthermore, the reduced parameterization of the

resultant VL models makes them attractive candidates for use in model-based control. Thus

projection of the Volterra kernels onto the Laguerre basis provides considerable benefits.

3.4 SUMMARY

In this chapter the problem of projecting the Volterra kernels onto the Laguerre basis was

addressed. This projection was accomplished in an optimal manner, using AIC as the

criterion for optimality. The AIC incorporates terms for both the accuracy of projection

onto the Laguerre basis and the size of the resulting Volterra-Laguerre model. It was found

that only two filters were required to capture the complete nonlinear reactor behavior and

excellent validation performance was achieved. In addition, the location of the optimal

Laguerre pole was found to be relatively insensitive to the presence of noise. The excellent

noise filtering capabilities of the Volterra-Laguerre model were also evident when the model

was used to track random inputs about different steady-state operating points over the

reactor operating range. A reduced VL model was also obtained by projecting only the linear
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and nonlinear diagonal kernels. Similar to the full VL model, the number of Laguerre filters

and the location of the Laguerre pole in the linear plus nonlinear diagonal case were found

to be insensitive to the presence of noise. Although the reduced VL model was outperformed

by the full Volterra model in the open-loop noise-free case, the true test of practical utility

of the reduced models is their performance in closed-loop. Evaluation of the closed-loop

performance for both the full and reduced VL models forms the basis of the next chapter.
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4.0 CLOSED-LOOP PERFORMANCE OF VOLTERRA-LAGUERRE

MODELS

For process control applications, it may not be necessary for a model to describe the complete

set of dynamic process behaviors. As an example, Balasubramhanya and Doyle III [22] used

traveling wave phenomena to develop a low-order nonlinear model that captured the dynamic

behavior of a high purity distillation column to sufficient accuracy for use in model-based

control strategies. As discussed in Chapter 1, such reduced models are known as control-

relevant models. In this chapter the performance of the reduced VL model is analyzed

in closed-loop to assess its applicability as a control-relevant model. In Section 3.3.3, it

was observed that while the reduced Volterra-Laguerre models showed adequate nominal

performance and low noise sensitivity, their performance was compromised when compared

with a full Volterra-Laguerre model. However, the number of coefficients that need to be

identified is significantly reduced from 1771 for the full, to just 60 for the reduced Volterra

model. In this Chapter the closed-loop performance of the reduced VL models is compared to

the full VL model, and the capability of the reduced VL model to serve as a control-relevant

model is assessed.

4.1 VOLTERRA-LAGUERRE MODELS FROM SIMULATED

POLYMERIZATION REACTOR DATA

In Chapter 3, VL models were constructed by projecting Volterra kernels identified using

data from simulating analytical Volterra kernels. This provided the best way to evaluate the

performance of the projection algorithm, as the analytical Volterra kernels were calculated
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Table 15: Optimal Laguerre parameters from the projection algorithm using Volterra kernels

identified from simulated polymerization reactor data

Full Volterra-Laguerre Model Reduced Volterra-Laguerre Model

Nominal Noise Nominal Noise

Training SSE 0.0039 0.1444 0.1505 0.3287

L 2 2 2 2

α 0.5651 0.5587 0.5718 0.5658

explicitly. However, in practice analytical Volterra kernels are rarely, if ever, available.

Thus the performance of the projection algorithm is evaluated in this chapter by projecting

Volterra kernels identified using data from the simulated polymerization reactor (Equation

2.1). Since kernels from Algorithm 4 require the least amount of data to be identified, these

full kernels are projected onto the Laguerre basis. Reduced kernels, i.e., only the linear and

nonlinear diagonal kernels, are also projected for comparison.

An impulse input of magnitude 28 was used to generate the training data-set. The results

from the projection algorithm (Section 3.2.3), are shown in Table 15 for the full and reduced

Volterra kernel projection. In this table, noise refers to the projection of noise-corrupted

Volterra kernels, and no noise was added during the projection of Volterra kernels onto the

Laguerre basis. Two Laguerre filters were found to be sufficient. For both the full and

reduced Volterra model projection, the location of the optimal α did not vary significantly

from the nominal to the noise case. The training SSE results are not surprising. The SSE

values for both the full and reduced Volterra projection were higher in the noise than in

the nominal case. Also, because of the bias error introduced from using only the linear and

nonlinear diagonal kernels, the training SSEs for the reduced Volterra kernel projection were

greater than their full Volterra model counterparts.
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Table 16: SSE values between simulated polymerization reactor NAMW and the identified

VL model predictions using a random input sequence (3.23).

Nominal Noise

Full Reduced Full Reduced

Volterra VL Volterra VL Volterra VL Volterra VL

mean 193.17 183.1205 3911.28 3728.18 24, 627.06 306.18 3995.88 3712.46

min 63.79 52.64 985.94 702.10 13881.8 77.97 1058.95 579.77

max 697.97 713.78 15996.01 15600.50 35702.70 2520.39 25665.13 24191.40

Validation of the identified VL models was also carried out using a random sequence

consisting of 220 data-points. This sequence had the distribution as in (3.23). The first 20

points were used to initialize the input sequence and thereby eliminate coefficient error bias

related to initial condition effects. To average out the sequence effects due to the random

input, results from 100 input sequences given by the distribution in (3.23), were considered.

The range and mean of the validation results from the 100 sequences are presented in Table

16 and representative results are shown in Figures 44 and 45 for the nominal and the noise

cases, respectively. In these two figures, and in all subsequent figures in this chapter,

the inputs and outputs are given in scaled deviation form. The full VL model does an

admirable job of capturing the nonlinear reactor behavior. The performance of the reduced

VL model degrades slightly, owing to the bias error from using only the linear and nonlinear

diagonal kernels. A decrease in performance is observed for both the full and reduced VL

models obtained from noise-corrupted Volterra kernels, when compared to their nominal

counterparts. Overall, all of the VL models outperform their Volterra model counterparts

with the difference in performance more pronounced for the noise case.
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Figure 44: Validation of the identified VL model (nominal case) using a random sequence.

Top and middle: nonlinear (solid) and full VL (top, dashed) or reduced VL (middle, dashed)

model outputs. The legend represents the SSE value between the nonlinear and the identified

VL model. Bottom: random six-level sequence used for validation. The input and the two

outputs are in scaled deviation form.
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So far, only open-loop performance of the identified VL models was considered. Since

an important test of model quality is the performance of the identified model in closed-loop,

the next section discusses the closed-loop performance of the full and reduced VL models.

4.2 CLOSED-LOOP PERFORMANCE OF VOLTERRA-LAGUERRE

MODELS

4.2.1 Model Predictive Control

Model predictive control refers to a broad class of control schemes in which a controller uses a

process model to generate a manipulated variable profile that minimizes an open-loop perfor-

mance objective over a future prediction horizon. This optimization uses a model prediction

of the future plant behavior. The manipulated variable move thus obtained is implemented

on the process until a new measurement becomes available. Process measurements are used

to update the optimization at the next time interval, thus incorporating feedback in the

control scheme. Optimization of the open-loop performance objective over the prediction

horizon, at each time-step, is the defining feature of MPC which separates it from other

control schemes [87, 88]. Mathematically, the MPC problem can be represented as:

min
∆u(k|k)

JMPC(∆u(k|k)) (4.1)

s.t. x(k + 1) = f(x(k), u(k))

y(k) = g(x(k), u(k))

ς(x(k), u(k)) = 0

ϕ(x(k), u(k)) ≥ 0

x(k = 0) = x0

where k ∈ [t0, t0 + p∆ts]
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The input and output are given by u and y respectively. The time interval is from the

current time, t0, to t0+p∆ts, where p is the prediction horizon and ∆ts is the sampling time.

The scalar function JMPC serves as the performance objective for the optimization problem.

The functions f and g describe the process, whereas ς and ϕ are input and state equality

and inequality constraints, respectively.

Figure 46 presents a schematic of the MPC algorithm implementation. The first part of

the MPC algorithm is the specification of the reference trajectory, which may be as simple

as a step change to a new set-point or, as is common in batch processes, a trajectory that

the system should follow. At the present time, k, the reference trajectory has a value r(k)

and a predicted value of r(k + 1|k). Also at k, consider the predicted process output over a

future prediction horizon, p. A model of the process is used to obtain the projected behavior

of the output over the prediction horizon by simulating the effects of past inputs applied to

the actual process (value ŷ(k) at the current time). The same model is used to calculate

a sequence of m current and future manipulated variable moves, in order to satisfy a user-

specified objective function. Here, m is the move horizon. A common objective function is

to minimize the sum of squared deviations of the predicted controlled variable values from

a (possibly time-varying) reference trajectory, over the prediction horizon, based on system

information available at the current time, k. The minimization also takes into account

constraints that may be present on the state and/or the manipulated variable. Conceptually,

the problem is similar to constructing and utilizing the relaxed inverse of the controller model

to determine the sequence ofmmoves that most closely achieve the specified output behavior

over the predicted horizon [88].
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Figure 46: MPC algorithm schematic (adapted from [88])
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Due to unmodeled disturbances and modeling errors, there may be deviations between

the actual observed output, ym(k), and the predicted output behavior. Due to this deviation,

the computed future manipulated variable moves may no longer be appropriate, and hence,

only the first of the computed manipulated variable moves, ∆u(k|k), is implemented on the

actual process. The error, d(k|k) = ym(k)− ŷ(k|k − 1), is calculated and is used to update

the future predictions. At the next time instant, k + 1, the process measurement is again

taken and the horizon is shifted forward by one step. Based on this new horizon, and using

the updated system information, the optimization is carried out again at the next time step,

and the algorithm repeats.

4.2.1.1 Linear and Nonlinear Model Predictive Control MPC algorithms have

been classified most generally on the basis of the type of controller used. In the most general

implementation of MPC, the model is a nonlinear function of the system states, manipulated

inputs, and/or outputs. The objective function and system constraints could be nonlinear

as well, and this particular implementation is known as Nonlinear Model Predictive Control

(NMPC). Linear Model Predictive Control (LMPC) refers to the particular case when the

controller employs a linear model. A quadratic objective function is commonly used, which

is one of the most convenient forms for the on-line optimization problem; the input and

output constraints, if present, are linear in the decision variables. However, as pointed out

by Biegler and Rawlings, the constrained LMPC problem is no longer linear [89].

In the case of LMPC, the most commonly used model form is the discrete-time finite

convolution model. This convolution model is based on either step or impulse response

models in which case the output is represented as:

yimpulse(k) =
M
∑

i=0

h(i)u(k − i) FIR or Linear Volterra Model

ystep(k) =
M
∑

i=0

s(i)∆u(k − i) Step Response Model

∆u(k) = u(k)− u(k − 1)

Here the parameters h(i) and s(i) are the impulse and step response coefficients, respectively,

which are usually obtained from plant data. The coefficients in h(i) are, in fact, the first
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order Volterra model coefficients. The model memory, M , denotes the window over which

past inputs affect the output significantly, and it is the same as the Volterra model memory.

Other model forms that have been used are the state-space format and the discrete transfer

function format, and a description of these model forms can be found in [88].

Considering NMPC, a nonlinear optimization problem needs to be solved at every time

step. The general methodology is to convert the objective function and the constraints into

a nonlinear programming problem. This approach has been used by a number of authors

[90, 91, 92, 93, 94], and a representative example is the control of a CSTR by Eaton and

Rawlings [95]. However, NMPC can be computationally demanding, and the optimization

problem may not be strictly convex, so that the solution may converge to local minima. If

the algorithm does converge to the global minimum, it may take a long time to do so [69].

This makes the on-line implementation of NMPC a non-trivial task. However, by properly

selecting the model structure for control, the optimization problem can be greatly simplified.

Using the Volterra-Laguerre model, several researchers have developed analytical solutions

to the optimization problem under special conditions [15, 36, 96, 97]. Obtaining a global

analytical solution to the nonlinear optimization problem is an area of on-going research.

4.2.2 Model Predictive Controller Design

In this section, an on-line closed-loop controller is designed using the Model Predictive

Control framework. The essential components of this strategy are summarized below.

Objective Function: The 2-norm squared objective function used in this work is of the

following form:

min
∆U(k|k)

{

∣

∣

∣

∣

∣

∣
Γy

[

Ŷ(k + 1|k)−R(k + 1|k)
] ∣

∣

∣
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∣

∣

2

2
+
∣

∣

∣

∣

∣

∣
Γu∆U(k|k)

∣

∣

∣

∣

∣

∣

2

2

}

(4.2)

In this equation, the first term denotes the projected deviations of the controlled variable,

Ŷ(k + 1|k), from the reference trajectory, R(k + 1|k), (both of which are vectors of length

p for the single input single output polymerizer case study); the second term penalizes the

manipulated variable moves (∆U(k|k), length m). The relative importance of trajectory

tracking and control effort can be tuned by altering the values of the diagonal weights, Γy

and Γu, respectively.
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Specification of the Reference Trajectory: The reference trajectory is generally user

specified, and in the case of the polymerization reactor, it could be a step-up or a step-down

to a polymer with a different NAMW.

Output Trajectory Prediction: The process is described by the set of coupled nonlinear

differential equations given by (2.1). In order to design a suitable controller for this process,

the controller requires a model to predict the process behavior. The VL model given by (3.6)

and (3.7) serves as the model for controller design. Based on the VL model, future values

of the Laguerre state variable can be calculated with a knowledge of the current state, the

past input, and the future input changes.

Considering the input, the controller determines the moves extending until the control

horizon, i.e., the next m moves only, so that the vector of current and future manipulated

variables is given as:

∆U(k|k) = [∆u(k|k) ∆u(k + 1|k) .... ∆u(k +m− 1|k)]T (4.3)

Beyond m, the input remains constant so that ∆u(k + j|k) = 0 ∀ j ≥ m.

Equation (3.6) can be re-written in terms of the past input and the current input change

as:

`(k + 1|k) = A`(k) +Bu(k − 1) +B∆u(k|k) (4.4)

For the next step, the Laguerre states can be written as follows:

`(k + 2|k) = A`(k + 1|k) +Bu(k) +B∆u(k + 1|k)

= A[A`(k) +Bu(k − 1) +B∆u(k|k)] +B[u(k − 1) + ∆u(k|k)] +B∆u(k + 1|k)

= A2`(k) + (A+ I)Bu(k − 1) + (A+ I)B∆u(k|k) +B∆u(k + 1|k) (4.5)

Generalizing, the state-space model for future time-steps can be written as:

`(k + i|k) = Ai`(k + i|k) + Āiu(k − 1) +
i−1
∑

j=0

Āi−jB∆u(k + j|k) (4.6)

where Āj = Aj−1 + Aj−2 + · · ·+ I
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The future output in terms of the future Laguerre states can be written as:

ŷl(k+i|k) = CT `(k+i|k)+`T (k+i|k)D`(k+i|k)+
L
∑

j=1

[`(k+i|k)TEj`(k+i|k)]`j(k+i|k) (4.7)

The controlled variable in (4.2) can now be written as:

Ŷ(k + 1|k) = [ŷl(k + 1|k) ŷl(k + 2|k) · · · ŷl(k + p|k)]T (4.8)

The unmodeled effects at the current sampling time are computed as the difference

between the plant measurement obtained from the actual nonlinear model, ym(k), and

the model prediction, ŷl(k|k − 1). In the absence of any further information about these

disturbances at future times, it is assumed that the predicted values of the disturbances are

equal to the current values over the prediction horizon (the so-called “stepwise constant”

assumption). Using (4.6) and (4.7), the objective function in (4.2) is expressed in terms of

the current Laguerre state `(k), the past input u(k − 1), the current and future reference

R(k + 1|k), and the future manipulated variable changes ∆U(k|k). With the exception of

∆U(k|k), all other quantities are known at time k.

4.2.3 Results

The MPC algorithm was implemented in MATLAB ( c©The Mathworks, Natick MA, 2006),

and the routine fmincon was used to solve the optimization problem. For results in this

section, the full VL model derived from projecting Volterra kernels from Algorithm 4 is

considered. This full VL model is then used as a basis to compare the closed-loop performance

of the reduced VL model.

The upper half of Figure 47 shows the nonlinear reactor (plant) outputs from both the

full and reduced VL model-based controllers (henceforth referred to as full and reduced VL

controllers, respectively), in response to a set-point of +40 in the scaled polymer NAMW.

The SSE between the reference and the plant output from the VL controllers is shown in

the legend. The bottom half of the figure shows the control moves. It is observed that

while the full model has a smooth approach to the set-point, the reduced model exhibits

an overshoot of 7.5%. The rise times, defined as the the time required to first attain the
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Figure 47: Set-point tracking performance of VL model based controllers with no

measurement noise. Top: reference trajectory R(k+1|k) = 40 (dotted), plant output under

the full VL controller (solid), and plant output under the reduced VL controller (dashed).

The SSEs between the reference and the plant outputs from the VL controllers are shown

in the legend. Bottom: control moves for the full VL (solid) and the reduced VL (dashed)

controllers. The input and the output are in scaled deviation form. The controller parameters

were m = 1, p = 10, Γy = 5Ip×p, and Γu = Im×m
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final value, are also different for the outputs from the two controllers. The rise time for the

reduced controller, 0.42 hr, is half of that from the full VL controller. Consequently, the SSE

for the reduced VL controller is lower than that of the full VL controller. Finally, the 99%

settling time, defined as the time at which the plant output enters and remains within 1% of

the final value, is 0.72 hr for both the controllers. The results thus presented are generated

with ad hoc tuning rules, i.e., values of m, p, Γy, and Γu were selected that showed good

performance for the two controllers. Determination of the optimal tuning parameters is a

non-trivial problem as it requires the solution of a mixed integer nonlinear programming

problem. The speed of response, (and hence the rise time) can certainly be improved by

changing the controller parameters.

Similarly, Figure 48 shows the performance of the full and reduced VL controllers for a

set-point of −40 in scaled NAMW. The performance of the two controllers is similar and

neither of the two controllers exhibits an overshoot. The settling time of the reduced VL

controller (1.56 hr) is less than that of the full VL controller (2.34 hr).

A choice of Γy = Ip×p and Γu = Im×m showed the best combination of low overshoot

and a fast response time, so these values were used for all subsequent analysis. Furthermore,

keeping Γy and Γu constant enables evaluation of the effect of control and prediction horizons

on the closed-loop performance.

Figure 49 shows the effect of the prediction horizon on the set-point tracking performance

for a set-point of 40 in scaled NAMW. The left column shows the plant output responses

(top) and the control moves (bottom) for the full and reduced VL controllers for p = 2.

The rise times for both controllers were identical (0.42 hr), however the settling time of the

reduced VL controller (1.68 hr) was greater than that of the full VL controller (0.9 hr).

Both controllers exhibit overshoot, but the overshoot in the reduced VL controller (48%) is

considerably higher than that of the full VL controller (20%). The reduced VL controller

also shows a damped oscillatory behavior. In the context of the polymerization reactor, both

a large overshoot and slow rise and settling times are undesirable, as they signify a product

with uneven NAMW distribution. The right column of Figure 49 shows the response for

p = 10. Both controllers lead to outputs that successfully track the set point and exhibit

lower overshoot, 5% and 20% for the full and reduced VL controllers, respectively. The
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Figure 48: Set-point tracking performance of VL model based controllers with no

measurement noise. Top: reference trajectory R(k + 1|k) = −40 (dotted), plant output

under the full VL controller (solid), and plant output under the reduced VL controller

(dashed). The SSEs between the reference and the plant outputs from the VL controllers

are shown in the legend. Bottom: control moves for the full VL (solid) and the reduced VL

(dashed) controllers. The input and the output are in scaled deviation form. The controller

parameters were m = 1, p = 10, Γy = 5Ip×p, and Γu = Im×m
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Figure 49: Set-point tracking performance of the VL model based controllers with different

prediction horizons, p = 2 (left column) and p = 10 (right column). Top: reference trajectory

R(k+1|k) = 40 (dotted), plant output under the full VL controller (solid), and plant output

under the reduced VL controller (dashed). The SSEs between the reference and the plant

outputs from the VL controllers are shown in the legend. Bottom: control moves for the full

VL (solid) and the reduced VL (dashed) controllers. The controller parameters were m = 2,

Γy = Ip×p, and Γu = Im×m
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settling times of the full and reduced VL controllers are reduced to 0.66 hr and 0.90 hr,

respectively. This is because with a larger prediction horizon, the controller can make more

accurate predictions of the future NAMW behavior, thus leading to improved control. Thus

a value of p = 10 was selected for all further analysis.

Figure 50 shows the plant output obtained from the full and reduced VL controllers in

response to a set-point change of +40 in scaled NAMW for different values of the control

horizon, m. For m = 1, the full VL controller was sluggish but showed no overshoot.

The response of the reduced controller was faster with a rise time 0.42 hr, but showed an

overshoot of 8%. The settling times of the full and reduced controllers were 0.72 hr and

0.84 hr, respectively. For m = 2, the controller response was not as sluggish as for m = 1,

and the rise time of the full VL controller improved to 0.48 hr, at the cost of an overshoot of

5%. The rise time of the reduced controller remained unchanged but its overshoot increased

to 20%. For m = 3 and m = 5, no appreciable change in either the rise or the settling time

was observed. However, the overshoot for the reduced VL controller increased to 25%.

For a set-point of −40 in scaled NAMW, the full VL controller showed a sluggish response

for m = 1 (settling time 2.40 hr, Figure 51, top left) whereas the settling time of the reduced

VL controller was 1.56 hr. For m = 2, the settling time of the full VL controller improved

to 2.04 hr, and subsequent increase in m did not result in a noticeable decrease in settling

time of either the full, or the reduced, VL controller. For all subsequent analysis a value of

m = 2 was selected as the controllers showed a fast response.

Figure 52 shows the closed-loop SSE profiles between the reference and plant outputs

under the full and reduced VL controllers, in response to steps of magnitude between [−40, 40]
in increments of 8 in scaled NAMW units over 2.4 hr. It is observed that over the entire

range of inputs, the performance of the full and reduced VL controllers is comparable. There

is a slight difference between the two curves in the set-point range of +20 to +40 where the

reduced VL controller outperforms the full VL controller. The improved performance of the

reduced VL controller is attributed to its faster rise time, and hence a faster approach to the

reference set-point (as in Figure 47).
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Figure 50: Set-point tracking performance of the VL model based controllers with different

control horizons. Top row (left to right) m = 1 and m = 2, bottom row m = 3 and m = 5.

Reference trajectory R(k + 1|k) = 40 (dotted), plant output under the full VL controller

(solid), and plant output under the reduced VL controller (dashed) are shown. The input and

the output are in scaled deviation form. The controller parameters were p = 10, Γy = Ip×p,

and Γu = Im×m
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Figure 51: Set-point tracking performance of the VL model based controllers with different

control horizons. Top row (left to right) m = 1 and m = 2; bottom row m = 3 and m = 5.

Reference trajectory R(k + 1|k) = −40 (dotted), plant output under the full VL controller

(solid), and plant output under the reduced VL controller (dashed) are shown. The input and

the output are in scaled deviation form. The controller parameters were p = 10, Γy = Ip×p,

and Γu = Im×m
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Figure 52: Sum Squared Error comparison of the plant outputs under the full (–o–) and

reduced (−−x−−) VL controllers with no measurement noise in the set-point range [−40, 40].
The controller parameters were m = 2, p = 10, Γy = Ip×p, and Γu = Im×m
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Figure 53 shows the SSE profiles for both the full and reduced VL controllers derived

from the nominal Volterra model, and for VL models obtained from noise corrupted Volterra

kernels. It is observed that for both the full and reduced VL controllers, the control

performance is unaffected by noise in the identification of the Volterra kernels.

In order to evaluate the performance of the VL controllers in the presence of measurement

noise, a 10% random additive measurement noise was added to the plant output. All other

controller parameters were the same as in the nominal case, i.e., m = 2, p = 10, Γy = Ip×p,

and Γu = Im×m. Figure 54 shows the plant outputs for a set-point of +40 in scaled NAMW.

The control moves and the noise sequence are also shown (Figure 54, middle and bottom,

respectively). The reduced VL controller exhibits an overshoot of 25% as compared to 8% for

the full VL controller. The SSE is 4354.14 between the reference and the output under the

full VL controller, and is 4415.98 between the reference and the output under the reduced VL

controller. The corresponding SSE values in the absence of measurement noise were 4170.26

for the full, and 4082.35 for the reduced VL controller. Thus even in the presence of 10%

random additive measurement noise, the performance of the full and reduced VL controllers

decreased by only 4.4% and 8.3%, respectively.

Figure 55 shows the plant outputs for a set-point of −40 in scaled NAMW. The settling

times of the full and reduced VL controllers are similar (1.14 hr for the reduced, and 1.2 hr for

the full VL controller). The SSE is 4833.28 between the reference and the output under the

full VL controller, and is 4936.51 between the reference and the output under the reduced

VL controller. These values are within 2% of their corresponding nominal counterparts,

4768.24 and 4846.49 for the full and reduced VL controllers, respectively. Thus, both the

VL controllers display excellent tracking of negative set-points. This improvement over the

positive set-point is attributed to the absence of overshoot in the plant outputs while tracking

negative set-points.
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Figure 53: Sum Squared Error comparison of the plant outputs under the full (top) and

reduced (bottom) VL controllers with no measurement noise in the set-point range [−40, 40].
Plant output from controllers based on nominal VL models (–o–) and from controllers based

on VL models identified from noise-corrupted Volterra kernels (−−x−−) are shown. The

controller parameters were m = 2, p = 10, Γy = Ip×p, and Γu = Im×m
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Figure 54: Set-point tracking performance of VL model based controllers with 10% random

additive measurement noise. Top: reference trajectory, R(k + 1|k) = 40 (dotted), plant

output under the full VL controller (solid), and plant output under the reduced VL controller

(dashed). The SSE between the reference and the plant outputs from the VL controllers

are shown in the legend. Middle: control moves for the full VL (solid) and the reduced

VL (dashed) controllers. Bottom: noise sequence for the VL controllers. The input and

the output are in scaled deviation form. The controller parameters were m = 2, p = 10,

Γy = Ip×p, and Γu = Im×m
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Figure 55: Set-point tracking performance of VL model based controllers with 10% random

additive measurement noise. Top: reference trajectory, R(k + 1|k) = −40 (dotted), plant

output under the full VL controller (solid), and plant output under the reduced VL controller

(dashed). The SSEs between the reference and the plant outputs from the VL controllers

are shown in the legend. Middle: control moves for the full VL (solid) and the reduced

VL (dashed) controllers. Bottom: noise sequence for the VL controllers. The input and

the output are in scaled deviation form. The controller parameters were m = 2, p = 10,

Γy = Ip×p, and Γu = Im×m
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Figure 56 shows the SSE profiles for both the full and reduced VL controllers in the

presence of the 10% additive random measurement noise, in response to steps of magnitude

between [−40, 40] in increments of 8 units in scaled NAMW over 2.4 hr. It is observed

that the reduced VL controller performance is similar to that of the full VL controller over

the range of set-points. The reduced Volterra Laguerre models are thus shown to be useful

control-relevant models.

4.3 SUMMARY

In this chapter the performance of NMPC controllers synthesized from the VL models

was evaluated. Using the projection algorithm in Section 3.2.3, models were obtained

from Volterra kernels identified using data from the polymerization reactor. The effect

of prediction and control horizons on control performance was analyzed. Overall, the VL

controllers showed excellent set-point tracking performance over the operating range in both

the absence, and presence, of measurement noise. Although the reduced VL controller showed

higher overshoot than the full VL controllers for positive set-points, the steady-state closed-

loop performance of the two controllers was comparable.

A distinct advantage in favor of the reduced VL models is that the number of coefficients

requiring identification is 29× less than that required for the full Volterra model. This

reduction in the number of coefficients results in a corresponding decrease in the amount

of data required for identification. An additional advantage of the VL model structure is

its linearity with respect to the parameters. This makes it possible to update the model

parameters of a reduced VL model on-line using a recursive least squares (RLS) algorithm

[15].
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Figure 56: Sum Squared Error comparison of the plant outputs under the full (–o–) and

reduced (−−x−−) VL controllers with 10% random additive measurement noise in the set-

point range [−40, 40]. The controller parameters were m = 2, p = 10, Γy = Ip×p, and

Γu = Im×m
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5.0 SUMMARY AND RECOMMENDATIONS

This dissertation addressed the problem of nonlinear system identification using third-order

Volterra and Volterra-Laguerre models. Input sequences were designed for the efficient

identification of Volterra models. The Volterra models were then projected optimally onto

the Laguerre basis. The resultant Volterra-Laguerre models were validated in both open-loop

and closed-loop. The contributions of this dissertation have been presented in the summary

section at the end of each chapter, and the main contributions are restated in the next

section.

5.1 SUMMARY

Tailored plant-friendly input sequences were designed for the efficient identification of third-

order Volterra models. The Congalidis, Richards, and Ray polymerization reactor served

as the simulation case-study [75]. The tailored sequences were designed based on the PEV

expression, and these sequences simplified the identification by exploiting the structure of

the Volterra model. Improvements in the sequence design were also evaluated, and this

resulted in the simultaneous identification of the third-order sub-diagonal and second-order

off-diagonal kernels. A significant reduction in the data requirement for identification was

achieved, as the need for a separate second-order off-diagonal sequence was eliminated. All of

the tailored input sequences were shorter than, and provided more accurate kernel estimates

than, the corresponding sequences based on cross-correlation.

While the Volterra models showed excellent nominal performance, there was a slight

degradation in performance in the presence of noise. In order to reduce the noise sensitivity
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and high parameterization of the Volterra model, the Volterra kernels were projected onto

the orthonormal Laguerre basis. This projection was optimal, using the Akaike Information

Criterion as the optimality metric. AIC took into account both the accuracy and size of the

resultant Volterra-Laguerre model. Reduced VL models were also obtained by projecting

only the linear plus nonlinear diagonal Volterra kernels onto the Laguerre basis. All of the

identified Volterra-Laguerre models showed excellent validation performance, across a broad

operating range. The defining feature of the identified Volterra-Laguerre models was their

excellent predictive performance, even when generated from the noise-corrupted Volterra

kernels. Two Laguerre filters were sufficient for the full and reduced Volterra-Laguerre

models, so that a significant reduction in the model parameterization was achieved.

The identified Volterra-Laguerre models were employed in closed-loop by designing con-

trollers based on the model predictive control algorithm. The full and reduced Volterra-

Laguerre controllers showed excellent set-point tracking performance in both the absence

and presence of measurement noise. Over the operating range of the reactor, the closed-loop

performance of both the controllers was comparable. The reduced Volterra-Laguerre models

were thus, a suitable control-relevant alternative to the full Volterra and Volterra-Laguerre

models.

5.2 RECOMMENDATIONS FOR FUTURE WORK

5.2.1 Identification of Multi-Input Multi-Output Volterra Models

All of the work in this dissertation was carried out for the SISO polymerization reactor

presented in Section 2.1. The algorithms developed for Volterra model identification could,

in principle, be extended to multi-input multi-output (MIMO) systems as well, but this

extension is accompanied by a significant increase in the number of parameters that need

to be identified. For a b-input c-output third-order Volterra model, the number of unique

Volterra model coefficients that need to be identified is given as:

c

3
∑

i=1

(

bM + i− 1

i

)

= c

(

1 + bM +
bM(bM + 1)

2!
+
bM(bM + 1)(bM + 2)

3!

)

(5.1)
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Assuming M = 20 and b = c = 2, leads to 24, 862 unique coefficients that need to be

identified, which is quite a significant challenge. One way to reduce the number of coefficients

to be identified is to consider only reduced Volterra kernel identification, i.e., identify only

the linear and nonlinear diagonal kernels. For the hypothetical 2 × 2 system, the third-

order diagonal kernel would now include contributions from u31(k − j), u21(k − j)u2(k − j),

u1(k − j)u22(k − j), and u32(k − j) ∀ j = 1, 2, · · ·,M ] .

Another approach to reducing the number of identified coefficients would be to consider

only those input interactions that contribute significantly to the process output. Korenberg

et al. proposed an orthogonal regression analysis based algorithm that accomplishes this goal

[98]. The advantage of the orthogonal regression analysis is that entering a new interaction

term in the model does not alter the values of identified coefficients from previously included

terms. The best model component to be introduced into the model can be obtained by

calculation of the SSE contribution from regression of candidate terms; the term which

results in the largest decrease in SSE is introduced [99]. When used in conjunction with the

Laguerre basis, a significant reduction in the number of identified coefficients for a MIMO

Volterra model could be achieved.

5.2.2 Parameter Update using Recursive Least Squares

One of the main differences between the reduced Volterra and the reduced VL models is

that as opposed to the reduced Volterra models, the reduced VL model is a full parameter

model, i.e., there are no zeros in the parameter matrices C, D, and E in (3.7). In addition,

since the VL model is linear with respect to the parameters, (3.7) can be re-written as:

ŷ`(k) = ΦT (k)Θ̂(k) (5.2)

ΦT (k) =
[

`1(k) `2(k) `1(k)`1(k) `1(k)`2(k) `2(k)`2(k) · ··

`1(k)`1(k)`1(k) `1(k)`1(k)`2(k) `1(k)`2(k)`2(k) `2(k)`2(k)`2(k)
]

Θ̂ = [c1 c2 c11 2c12 c22 c111 3c112 3c122 c222]

Since only two Laguerre filters are required, the parameter set, Θ, is of a manageable size.

Furthermore, in Chapters 3 and 4 it was observed that the location of the Laguerre pole
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does not change significantly when using a reduced VL model as compared to a full VL

model. Consequently the parameters of the reduced VL model could be updated on-line

using a recursive least squares algorithm [18], so that the reduced VL model output could

asymptotically approach the output of the full VL model. The RLS parameter update could

also account for disturbances that could create a mismatch between the process and the

identified VL model.

The parameter update algorithm can be written as [96]:

Ω(k) = Υ−1I −
[

Ω(k − 1)Φ(k)ΦT (k)

Υ + ΦT (k)Ω(k − 1)Φ(k)

]

Ω(k − 1) (5.3)

E(k) = y(k)− ΦT (k)Θ̂(k) (5.4)

Θ̂(k) = Θ̂(k − 1) + Ω(k)Φ(k)E(k) (5.5)

In (5.3), Ω and Υ are the covariance matrix and the forgetting factor respectively. The initial

covariance matrix, i.e., Ω(k = 0) and the forgetting factor are adjustable parameters that

can be chosen to determine the rate of convergence of the parameter estimates. In (5.4), E
represents the error vector between the process and identified model outputs. Finally the

parameter update can be carried out, recursively, as in (5.5).

Thus using this RLS algorithm, the reduced VL model parameters could be updated

on-line in the presence of disturbances, and the reduced VL outputs could asymptotically

approach the full VL model or process outputs.

5.2.3 Simultaneous Model Predictive Control and Identification

The Volterra and the Volterra-Laguerre models considered in this work were identified in

open-loop, and the resultant VL model was used in closed-loop for controller design. An

alternative to open-loop identification is to identify the models in closed-loop. Closed-loop

identification has been addressed extensively in a linear control setting [2, 18, 100]. However,

the identification of closed-loop nonlinear models is a significantly more challenging problem

[101]. The key requirement in system identification is that the input must be persistently

exciting (PE) [18]. This PE condition is difficult to satisfy in closed-loop because the PE

properties of the input depend on the closed-loop properties, which in turn depend on the
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model to be identified in the first place. Dithering of the process inputs, i.e., addition of an

external signal such as a sum of sinusoids at various frequencies, can be used to guarantee

PE but this can compromise closed-loop control performance [12, 18].

An alternative approach is used by Genceli and Nikolaou termed as simultaneous model

predictive control and identification (MPCI). MPCI is an extension of the MPC algorithm,

and it includes a PE condition on the inputs. At each time step the MPCI controller

minimizes a standard quadratic objective function subject to the standard MPC constraints

(Equation 4.2), and additional input constraints. The modified objective function is given

as [101]:

min
∆U(k|k)

{

∣

∣

∣

∣

∣

∣
Γy

[

Ŷ(k + 1|k)−R(k + 1|k)
] ∣

∣

∣
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∣

∣

2

2
+
∣

∣

∣

∣

∣

∣
Γu∆U(k|k)

∣

∣

∣

∣

∣

∣

2

2

}

+ wøø
2 − wρρ (5.6)

s.t. IM º (ρ− ø)I Â 0 (5.7)

The first two terms in (5.6) are the same as in (4.2), whereas the last two terms arise due to

the persistence of excitation condition. The relative importance of the terms can be adjusted

by the weights wø and wρ. The constraint equation (5.7) guarantees that the input will be

PE. IM represents the information matrix and includes the past input terms, whereas the

identity, A º B : A-B is positive semi-definite, whereas A Â B : A-B is strictly positive

definite.

The MPCI design can be applied to the reduced VL models and the advantage of

closed-loop identification would be that the controller could take into account closed-loop

performance objectives in model design, and potentially identify situation-specific models

thereby improving the control performance.

5.2.4 Analytical Solution to the Model Predictive Control Problem

The objective function for the MPC optimization problem used in this work is given as (4.2):

min
∆U(k|k)

{

∣

∣

∣

∣

∣

∣
Γy

[

Ŷ(k + 1|k)−R(k + 1|k)
]
∣

∣
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∣

∣
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2
+
∣
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∣
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∣
Γu∆U(k|k)

∣

∣

∣

∣

∣

∣

2

2

}

The optimization is carried out with ∆U(k|k) as the manipulated variable. Analytical

solutions to (4.2) have been reported for m = 1 [15, 59, 102], and for higher values of
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m, a local linearization was employed to approximate the future control moves [103, 104].

The difficulty in obtaining an analytical solution arises due to the complexity in (4.2), e.g.,

for the third-order VL models in this work, the objective function contains terms of the order

∆U6(k|k). In order to obtain the optimal input (4.2) needs to be differentiated so that a set

of m polynomials in ∆U(k|k) need to be solved.

Πi(∆u(k + i|k)) = 0 ∀ 0 ≤ i ≤ m− 1 (5.8)

This set of polynomials may contain terms up to a maximum order of five, and may include

a combination of input terms of different orders.

One approach to solving the set of polynomial equations is to use Grob̈ner bases [105, 97].

Using Gröbner bases, the set of polynomial equations in (5.8) can be converted into a possibly

larger set of polynomial equations such as:

%i(∆u(k + 1|k),∆u(k + 2|k), · · ·,∆u(k +m− 1|k)) = 0 1 ≤ i ≤ ι1

%j(∆u(k + 2|k),∆u(k + 3|k), · · ·,∆u(k +m− 1|k)) = 0 ι1 + 1 ≤ j ≤ ι2
...

... (5.9)

%x(∆u(k +m− 1|k)) = 0 x = 1 +
m−1
∑

i=1

ιi

The advantage of using this approach is that (5.9) now consists of ι1 equations that are

a function of all manipulated variable moves, ι2 equations that are a function of all but

∆u(k|k), and so on until the last equation is a function only of ∆u(k + m − 1|k). This

approach is thus similar to the Gaussian elimination technique used to solve a system of

linear simultaneous equations. An important choice that has to be made in the solution of

this set of equations is the ordering, i.e., the order in which the ∆u(k+ i|k) are successively

eliminated. The use of Gröbner bases thus simplifies a nonlinear optimization problem into

one that requires solving for the roots of a set of polynomial equations. Also, this approach

leads to all possible extrema, so that a simple back-substitution of the input in (4.2) can

enable determination of the global minimum. Thus, a global minimum to the nonlinear

optimization problem can be obtained.
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The complexity of the system of equations in (5.9), and thus the ease with which the

solution can be obtained, depends on the choice of ordering that is employed. In addition, this

choice may also be determined by the input-output behavior of the process [97]. The choice of

m is also critical, as higher values ofm would lead to an increase in problem size and potential

computational difficulties. However, it was found that for the polymerization reactor case

study only 2 Laguerre filters were necessary and good closed-loop control performance was

achieved using m = 2. Thus the Gröbner basis approach to solving the optimization problem

in (4.2) shows great promise both in general, and for the polymerization reactor case-study

specifically.
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APPENDIX A

NOMENCLATURE

Abbreviations

AIC Akaike’s information criterion

ANN artificial neural network

ARMA auto-regressive moving average

ARMAX auto-regressive moving average with exogenous inputs

ARX auto-regressive with exogenous inputs

BIBO bounded-input bounded-output

CSRS constant-switching-pace symmetric random signal

CSTR continuous stirred tank reactor

DFT discrete Fourier transform

FIR finite impulse response

GA genetic algorithm

GWN Gaussian white noise

ISE integral squared error

LMPC linear model predictive control

LTI linear time invariant

MIMO multiple-input multiple-output

MINLP mixed-integer nonlinear program
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MPC model predictive control

MPCI model predictive control and identification

NAMW number average molecular weight

NLP nonlinear program

NMPC nonlinear MPC

PE persistently exciting

PEV prediction error variance

PRBS pseudo-random binary signal

ODE ordinary differential equation(s)

QR quadratic regulator

RBS random binary signal

RKHS reduced kernel Hilbert space

RLS recursive least squares

RQS random quartenary sequence

SISO single input single output

SSE sum squared error

VL Volterra-Laguerre
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General Notation

A,B,C,D,E Volterra-Laguerre model state-space matrices

Ac, Bc, Cc, Nc Carlemann linearization model matrices

Â0, Â1, Â2, B̂1, B̂2, B̂3 discretized Carlemann linearization model matrices

ci linear Volterra-Laguerre or Laguerre coefficients

cij second-order Volterra-Laguerre or Laguerre coefficients

cijl third-order Volterra-Laguerre or Laguerre coefficients

CO2 coefficient of the second-order off-diagonal kernel in PEV

expression

CS3 coefficient of the third-order sub-diagonal kernel in PEV

expression

D2(k) second-order diagonal kernel

D3(k) third-order diagonal kernel

d disturbance

E(·) expectation operator

Ff friendliness factor

hi scaled Volterra kernel of order i

h0 Volterra kernel bias term

hisym symmetric/triangular Volterra kernel of order i

hiasym asymmetric/full Volterra kernel of order i

J objective function

k discrete time index

L L2 space

L number of Laguerre filters used in projection

` Laguerre states

M Volterra model memory

m control move horizon
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mk kth moment of the input sequence

N Volterra model order

NL total length of the input sequence

nt total number of transitions in input sequence

ø PE condition variable in MPCI objective function

O2(k) second-order off-diagonal kernel

O3(k) third-order off-diagonal kernel

p prediction horizon (except when used as a counting index)

q Carlemann linearized model state variable (except when used as

a counting index)

q̃ discretized Carlemann linearized model state variable

R real space

r reference signal

S3 third-order sub-diagonal kernel

s(i) step-response coefficients

t time

U(·) unit step function

u input sequence

ū mean of the input sequence

v scaled input corresponding to operating points over the reactor

input range

∆u manipulated variable move

wø, wρ tuning weights for ø and ρ in MPCI objective function

x process model state variable

xi0 ith model state nominal operating condition

y controlled variable

ŷ output prediction
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ym measured output

yc output from Carlemann linearized model

ỹ discretized output from Carlemann linearized model

z identification residual
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Calligraphic letters

C controller

E error vector in RLS formulation

G(·) static nonlinearity

Ha sub-diagonal coefficient vector for a regions of reduced sequence

for sub-diagonal kernel identification

Hb sub-diagonal coefficient vector for b regions of reduced sequence

for sub-diagonal kernel identification

HOS sub-diagonal coefficient vector for simultaneous O2 and S3 kernel

identification

HS sub-diagonal coefficient vector for S3 kernel identification

IM information matrix in MPCI objective function

L(t) linear dynamic element

M model

P plant

R vector of future reference values

U vector of future manipulated variable values

∆U vector of future manipulated variable changes

Ua block diagonal input matrix for a regions of reduced sequence

for sub-diagonal kernel identification

Ub block diagonal input matrix for b regions of reduced sequence

for S3 kernel identification

US block diagonal input matrix for S3 kernel identification

UOS block diagonal input matrix for a regions of sequence for

simultaneous O2 and S3 kernel identification

W output vector for b regions of reduced sequence for S3 kernel

identification

Ŷ vector of predicted future outputs
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Yredsd output vector for a regions of reduced sequence for S3 kernel

identification

YOS output vector for simultaneous O2 and S3 kernel identification

ZS output vector for S3 kernel identification
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Greek Letters

α Laguerre pole

β pulse magnitude of reduced sequence for S3 kernel identification

Γu manipulated variable weighting matrix

Γy controlled variable weighting matrix

γ pulse magnitude of sequence for linear and nonlinear diagonal

kernel identification

δi Volterra kernel coefficient estimation error for the ith-order

kernel contribution

κ kurtosis

λ pulse magnitude of sequence for third-order sub-diagonal kernel

identification

ν scaled input in deviation variables corresponding to steady-

states in reactor operating range

Ω covarianc matrix in RLS

Π set of polynomials in ∆U from the MPC objective function

Ξ gap between successive pulses for the full S3 sequence

ρ condition for PE in the MPCI objective function

% set of polynomials obtained from Gröbner bases

φj jth-Laguerre function

ϕ inequality constraints on the input

σ2
p prediction error variance

σ2
u input signal variance

θ parameter set

Θ parameter set in RLS

Υ forgetting factor

ς equality constraints on the input
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APPENDIX B

ESTIMATORS BASED ON REDUCED S3 SEQUENCE

Consider the first 2M + 2 data-points of u1 in (2.50). The output corresponding to this

section of the input sequence is as follows:

ẑred−sd(k) =















































































0 k = 1

0 k = 2

h3(k − 2, k − 1, k − 1)β2
1β2 3 ≤ k ≤M + 1

+h3(k − 2, k − 2, k − 1)β2
2β1

−h3(1,M,M)β3
2 + h3(1, 1,M)β3

2 k = M + 2

−h3(k −M − 2, k −M − 1, k −M − 1)β2
2β1 M + 3 ≤ k ≤ 2M + 1

−h3(k −M − 2, k −M − 2, k −M − 1)β2
1β2

h3(1,M,M)β2β
2
1 − h3(1, 1,M)β1β

2
2 k = 2M + 2

(B.1)

It is possible to calculate the two contributions separately because the sequence from 2M+1

to 4M is the same as the sequence from 1 to 2M , with the exception that the order of the

pulses β1 and β2 is now reversed. The estimates for the third-order sub-diagonal coefficients

can be obtained by minimizing the following sum-squared prediction error:

Jred−sd =
2M+2
∑

k=1

{zred−sd(k)− ẑred−sd(k)}2 (B.2)

In Equation ( B.1) there are two sets of coefficients that need to be calculated. The first set

corresponds to the coefficients in the range 3 ≤ k ≤ M + 1 and M + 3 ≤ k ≤ 2M + 1, and

the second set corresponds to the h3(1,M,M) and h3(1, 1,M) coefficients.
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Consider the calculation for the h3(1,M,M) and h3(1, 1,M) coefficients. Applying the

conditions,

∂Jred−sd
∂h3(1,M,M)

= 0

∂Jred−sd
∂h3(1, 1,M)

= 0

yields:

− β2{β4
2 + β4

1}h3(1,M,M) +

β2
2{β3

2 + β3
1}h3(1, 1,M) = β3

2zred−sd(M + 2) + β2
1zred−sd(2M + 2) (B.3)

−β2{β3
2 + β3

1}h3(1,M,M) +

β2
2{β2

2 + β2
1}h3(1, 1,M) = β2zred−sd(M + 2)− β1zred−sd(2M + 2) (B.4)

Solving Equations ( B.3) and ( B.4) simultaneously returns the following:

h3(1,M,M) =
β1zred−sd(M + 2) + β2zred−sd(2M + 2)

β1β2
2(β1 − β2)

(B.5)

h3(1, 1,M) =
β2
1zred−sd(M + 2) + β2

2zred−sd(2M + 2)

β1β3
2(β1 − β2)

(B.6)

Proceeding in a similar manner, the coefficients for the second half of the sequence, i.e., for

points from 2M + 1 to 4M , are given as:

h3(1,M,M) =
β2zred−sd(3M + 2) + β1zred−sd(4M + 2)

β2β2
1(β2 − β1)

(B.7)

h3(1, 1,M) =
β2
2zred−sd(3M + 2) + β2

1zred−sd(4M + 2)

β2β3
1(β2 − β1)

(B.8)

In a similar manner the coefficients corresponding to the range 3 ≤ k ≤M + 1 and M +3 ≤
k ≤ 2M + 1 can be derived.

However, when the entire sequence of length 4M is considered, there are four sets of

equations (two corresponding to each half of length 2M) for two sets of coefficients. This leads

to an overdetermined system of equations which was solved using a least-squares calculation

as shown in Section 2.2.6.1. The coefficients obtained in this manner are an average of the

coefficients obtained from the two half sequences, i.e., from 1 to 2M and from 2M + 1 to

4M .
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APPENDIX C

TAYLOR EXPANSION OF THE REACTOR SYSTEM

In order to obtain analytical Volterra kernels from (2.1), the system was first written in

scaled deviation form such that:

v =
u− u0
001

ỹ =
y − y0
100

qi =
xi − xi0
xi0

∀i = 1, · · ·, 4 (C.1)

The nominal operating conditions are given in Table 1. Writing the original system in

deviation variables yields:

x1 = 5.128q1 + 5.128

x2 = 0.479q2 + 0.479

x3 = 00623q3 + 00623 (C.2)

x4 = 87.309q4 + 87.309

u = 001v + 0605

y = 100ỹ + 14012

Also,

ẋi = q̇ixi0 (C.3)
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Substituting ( C.2) and ( C.3) in (2.1) results in the following system of equations:

q̇1 = 11.70− (1 + q1)
[

10 + 1.7(1 + q2)
1/2
]

q̇2 = 0.1669v − 10.1022q2

q̇3 = 1.374(1 + q1)(1 + q2)
1/2 − 10q3 + 8.626q2 − 1.3740 (C.4)

q̇4 = 10(1 + q1)(1 + q2)
1/2 − 10(1 + q4)

ỹ = 140.12
q4 − q3
1 + q3

The equation for q̇2 is the only linear equation in ( C.4). In order to linearize the nonlinear

terms in ( C.4), the following mathematical relations are employed [106]:

(1 + a)1/2 = 1 +
1

2
a− 1

8
a2 +

1

16
a3 − · · · (C.5)

1

1 + a
= 1− a+ a2 − a3 + · · · (C.6)

Since a third-order Taylor series approximation is being developed, all terms higher than

third-order, are neglected in ( C.5) and ( C.6). Substituting ( C.5) in the equations for q̇1,

q̇3, and q̇4 in ( C.4) and simplifying yields:

q̇1 = 11.70− (1 + q1)[10 + 1.7(
1

2
q2 −

1

8
q22 +

1

16
q32)]

= −11.7q1 − 0.85q2 + 0.2125q22 − 0.10625q32 − 0.85q1q2 + 0.2125q1q
2
2 (C.7)

q̇3 = 1.374(1 + q1)(
1

2
q2 −

1

8
q22 +

1

16
q32)− 10q3 + 8.626q2 − 1.3740

= 1.3740q1 + 9.31295q2 − 10q3 + 0.687q1q2 − 0.17175q22

−0.17175q1q22 + 085875q32 (C.8)

q̇4 = 10(1 + q1)(
1

2
q2 −

1

8
q22 +

1

16
q32)− 10(1 + q4)

= 10q1 + 5q2 − 10q4 + 5q1q2 − 1.25q22 − 1.25q1q
2
2 + 0.625q32 (C.9)

In ( C.7), ( C.8), and ( C.9), terms with an overall order greater than three are neglected.

Similarly, substituting ( C.6) in the equation for ỹ in ( C.4), and neglecting terms greater

than three, yields:

ỹ = 140.12(q4 − q3)(1− q3 + q23 − q33)

= 140.12(q4 − q4q3 + q4q
2
3 − q3 + q23 − q33) (C.10)
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Thus the system of equations given in (2.3) which is a third-order Taylor series expansion of

(2.1), is obtained.
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APPENDIX D

CARLEMANN STATE-SPACE MATRICES

The Carlemannn linearized system for (2.1) in state-space form is given as:

˙̃q = Acq̃ +Ncq̃v +Bcv

ỹc = Ccq̃

The matrices are given as: Ac(:, 1 : 12) =
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

-11.700 -0.85028 0 0 0 -0.85028 0 0 0.21250 0 0 0
0 -10.102 0 0 0 0 0 0 0 0 0 0

1.3740 9.3130 -10 0 0 0.68700 0 0 -0.17175 0 0 0
10 5.0 0 -10 0 5.0 0 0 -1.2500 0 0 0
0 0 0 0 -23.401 -1.7006 0 0 0 0 0 0
0 0 0 0 0 -21.803 0 0 -0.85028 0 0 0
0 0 0 0 1.3740 9.3130 -21.701 0 0 -0.85028 0 0
0 0 0 0 10 5.01 0 -21.701 0 0 -0.85028 0
0 0 0 0 0 0 0 0 -20.204 0 0 0
0 0 0 0 0 1.3740 0 0 9.3130 -20.102 0 0
0 0 0 0 0 10 0 0 5.01 0 -20.102 0
0 0 0 0 0 0 2.7481 0 0 18.626 0 -20
0 0 0 0 0 0 10 1.3740 0 5.01 9.3130 0
0 0 0 0 0 0 0 20 0 0 10 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

171



Ac(:, 13 : 24) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 0 0 0 0 0.21250 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -1.2500 0 0 0 0 0
0 0 0 -1.7000 0 0 0.42500 0 0 0 0 0
0 0 0 0 0 0 -0.85000 0 0 0 0 0
0 0 0 0.68790 0 0 -0.17175 -0.85000 0 0 0 0
0 0 0 5.0 0 0 -1.2500 0 -0.85000 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.68700 0 0 0 0 0
0 0 0 0 0 0 5.0 0 0 0 0 0
0 0 0 0 0 0 0 1.3740 0 0 0 0
-20 0 0 0 0 0 0 5.0 0.68700 0 0 0
0 -20 0 0 0 0 0 0 10 0 0 0
0 0 -35.100 -2.5500 0 0 0 0 0 0 0 0
0 0 0 -33.502 0 0 -1.7000 0 0 0 0 0
0 0 1.3740 9.3130 -33.400 0 0 -1.7000 0 0 0 0
0 0 10 5.0 0 -33.400 0 0 -1.7000 0 0 0
0 0 0 0 0 0 -31.904 0 0 0 0 0
0 0 0 1.3740 0 0 9.3130 -31.802 0 0 0 0
0 0 0 10 0 0 5.0 0 -31.802 0 0 0
0 0 0 0 2.7480 0 0 18.626 0 -31.700 0 0
0 0 0 0 10 1.3740 0 5.0 9.3130 0 -31.700 0
0 0 0 0 0 20 0 0 10 0 0 -31.700
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1.3740 0 0 0 0 0
0 0 0 0 0 0 10 0 0 0 0 0
0 0 0 0 0 0 0 2.7482 0 0 0 0
0 0 0 0 0 0 0 10 1.3740 0 0 0
0 0 0 0 0 0 0 0 20 0 0 0
0 0 0 0 0 0 0 0 0 4.1220 0 0
0 0 0 0 0 0 0 0 0 10 2.7480 0
0 0 0 0 0 0 0 0 0 0 20 1.3740
0 0 0 0 0 0 0 0 0 0 0 30

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
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7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5
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Ac(:, 25 : 34) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6
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6
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6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

-0.10625 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

085875 0 0 0 0 0 0 0 0 0
0.62500 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0.21250 0 0 0 0 0 0 0 0 0

0 0.21250 0 0 0 0 0 0 0 0
0 0 0.21250 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

-0.17175 0 0 0 0 0 0 0 0 0
-1.2500 0 0 0 0 0 0 0 0 0

0 -0.34300 0 0 0 0 0 0 0 0
0 -1.2500 -0.17175 0 0 0 0 0 0 0
0 0 -2.5000 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

-0.85000 0 0 0 0 0 0 0 0 0
0 -0.85000 0 0 0 0 0 0 0 0
0 0 -0.85000 0 0 0 0 0 0 0
0 0 0 -0.85000 0 0 0 0 0 0
0 0 0 0 -0.85000 0 0 0 0 0
0 0 0 0 0 -0.85000 0 0 0 0

-30.307 0 0 0 0 0 0 0 0 0
9.3130 -30.204 0 0 0 0 0 0 0 0
5.0 0 -30.204 0 0 0 0 0 0 0
0 18.626 0 -30.102 0 0 0 0 0 0
0 5.0 9.3130 0 -30.102 0 0 0 0 0
0 0 10 0 0 -30.102 0 0 0 0
0 0 0 27.938 0 0 -30 0 0 0
0 0 0 5.0 18.626 0 0 -30 0 0
0 0 0 0 10 9.3130 0 0 -30 0
0 0 0 0 0 15.0 0 0 0 -30

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
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Bc =






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0.16698
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CT
c =
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Nc(:, 1 : 12) =

2

6

6

6

6
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6

6

6

6

6

6

6

6

4

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0.16698 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0.33396 0 0 0 0 0 0 0 0 0 0
0 0 0.16698 0 0 0 0 0 0 0 0 0
0 0 0 0.16698 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.16698 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.33800 0 0 0 0 0 0
0 0 0 0 0 0 0.16698 0 0 0 0 0
0 0 0 0 0 0 0 0.16698 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.50070 0 0 0
0 0 0 0 0 0 0 0 0 0.33380 0 0
0 0 0 0 0 0 0 0 0 0 0.33380 0
0 0 0 0 0 0 0 0 0 0 0 0.16698
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
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Nc(:, 13 : 24) =

2
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Nc(:, 25 : 34) = zeros(34, 10)
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