46 research outputs found

    TIME-MULTIPLEXED INTERCONNECTION NETWORK FOR FIELD-PROGRAMMABLE GATE ARRAYS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    2.5D Chiplet Architecture for Embedded Processing of High Velocity Streaming Data

    Get PDF
    This dissertation presents an energy efficient 2.5D chiplet-based architecture for real-time probabilistic processing of high-velocity sensor data, from an autonomous real-time ubiquitous surveillance imaging system. This work addresses problems at all levels of description. At the lowest physical level, new standard cell libraries have been developed for ultra-low voltage CMOS synthesis, as well as custom SRAM memory blocks, and mixed-signal physical true random number generators based on the perturbation of Sigma-Delta structures using random telegraph noise (RTN) in single transistor devices. At the chip level architecture, an innovative compact buffer-less switched circuit mesh network on chip (NoC) capable of reaching very high throughput (1.6Tbps), finite packet delay delivery, free from packet dropping, and free from dead-locks and live-locks, was designed for this chiplet-based solution. Additionally, a second NoC connecting processors in the network, was implemented based on token-rings, allowing access to external DDR memory. Furthermore, a new clock tree distribution network, and a wide bandwidth DRAM physical interface have been designed to address the data flow requirements within and across chiplets. At the algorithm and representation levels, the Online Change Point Detection (CPD) algorithm has been implemented for on-line learning of background-foreground segmentation. Instead of using traditional binary representation of numbers, this architecture relies on unconventional processing of signals using a bio-inspired (spike-based) unary representation of numbers, where these numbers are represented in a stochastic stream of Bernoulli random variables. By using this representation, probabilistic algorithms can be executed in a native architecture with precision on demand, where if more accuracy is required, more computational time and power can be allocated. The SoC chiplet architecture has been extensively simulated and validated using state of the art CAD methodology, and has been submitted to fabrication in a dedicated 55nm GF CMOS technology wafer run. Experimental results from fabricated test chips in the same technology are also presented

    Experimental Evaluation and Comparison of Time-Multiplexed Multi-FPGA Routing Architectures

    Get PDF
    Emulating large complex designs require multi-FPGA systems (MFS). However, inter-FPGA communication is confronted by the challenge of lack of interconnect capacity due to limited number of FPGA input/output (I/O) pins. Serializing parallel signals onto a single trace effectively addresses the limited I/O pin obstacle. Besides the multiplexing scheme and multiplexing ratio (number of inter-FPGA signals per trace), the choice of the MFS routing architecture also affect the critical path latency. The routing architecture of an MFS is the interconnection pattern of FPGAs, fixed wires and/or programmable interconnect chips. Performance of existing MFS routing architectures is also limited by off-chip interface selection. In this dissertation we proposed novel 2D and 3D latency-optimized time-multiplexed MFS routing architectures. We used rigorous experimental approach and real sequential benchmark circuits to evaluate and compare the proposed and existing MFS routing architectures. This research provides a new insight into the encouraging effects of using off-chip optical interface and three dimensional MFS routing architectures. The vertical stacking results in shorter off-chip links improving the overall system frequency with the additional advantage of smaller footprint area. The proposed 3D architectures employed serialized interconnect between intra-plane and inter-plane FPGAs to address the pin limitation problem. Additionally, all off-chip links are replaced by optical fibers that exhibited latency improvement and resulted in faster MFS. Results indicated that exploiting third dimension provided latency and area improvements as compared to 2D MFS. We also proposed latency-optimized planar 2D MFS architectures in which electrical interconnections are replaced by optical interface in same spatial distribution. Performance evaluation and comparison showed that the proposed architectures have reduced critical path delay and system frequency improvement as compared to conventional MFS. We also experimentally evaluated and compared the system performance of three inter-FPGA communication schemes i.e. Logic Multiplexing, SERDES and MGT in conjunction with two routing architectures i.e. Completely Connected Graph (CCG) and TORUS. Experimental results showed that SERDES attained maximum frequency than the other two schemes. However, for very high multiplexing ratios, the performance of SERDES & MGT became comparable

    Technical design of the phase I Mu3e experiment

    Get PDF
    The Mu3e experiment aims to find or exclude the lepton flavour violating decay μ→eee at branching fractions above 10−16. A first phase of the experiment using an existing beamline at the Paul Scherrer Institute (PSI) is designed to reach a single event sensitivity of 2⋅10−15. We present an overview of all aspects of the technical design and expected performance of the phase I Mu3e detector. The high rate of up to 108 muon decays per second and the low momenta of the decay electrons and positrons pose a unique set of challenges, which we tackle using an ultra thin tracking detector based on high-voltage monolithic active pixel sensors combined with scintillating fibres and tiles for precise timing measurements

    Technical design of the phase I Mu3e experiment

    Full text link
    The Mu3e experiment aims to find or exclude the lepton flavour violating decay at branching fractions above . A first phase of the experiment using an existing beamline at the Paul Scherrer Institute (PSI) is designed to reach a single event sensitivity of . We present an overview of all aspects of the technical design and expected performance of the phase I Mu3e detector. The high rate of up to muon decays per second and the low momenta of the decay electrons and positrons pose a unique set of challenges, which we tackle using an ultra thin tracking detector based on high-voltage monolithic active pixel sensors combined with scintillating fibres and tiles for precise timing measurements

    Reliable Design of Three-Dimensional Integrated Circuits

    Get PDF

    Technical design of the phase I Mu3e experiment

    Get PDF
    The Mu3e experiment aims to find or exclude the lepton flavour violating decay μeee\mu \rightarrow eee at branching fractions above 101610^{-16}. A first phase of the experiment using an existing beamline at the Paul Scherrer Institute (PSI) is designed to reach a single event sensitivity of 210152\cdot 10^{-15}. We present an overview of all aspects of the technical design and expected performance of the phase~I Mu3e detector. The high rate of up to 10810^{8} muon decays per second and the low momenta of the decay electrons and positrons pose a unique set of challenges, which we tackle using an ultra thin tracking detector based on high-voltage monolithic active pixel sensors combined with scintillating fibres and tiles for precise timing measurements.Comment: 114 pages, 185 figures. Submitted to Nuclear Instruments and Methods A. Edited by Frank Meier Aeschbacher This version has many enhancements for better readability and more detail
    corecore