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Summary

In FPGAs, interconnects account for a large part of the area and timing bud-

get. Given the significant intra- clock cycle idleness of wire segments in conventional

architecture, we in this work propose tm-arch, a time-multiplexed architecture

for FPGA interconnects. In this architecture, a wire can be multiplexed among

multiple nets within one clock cycle. Specially designed time-multiplexing switches

(TM switches) are used to enable the multiplexing of wires. Correspondingly, we

present a time-multiplexing -aware timing-driven routing algorithm. Based on the

VPR 5 timing-driven routing algorithm, this algorithm actively identifies nets that

can be scheduled to multiplex wires. This routing algorithm accepts placement

results from conventional placement tool, and requires no changes to the upstream

EDA tools in FPGA design flow. This is the first timing-driven routing algorithm

that performs combined global and detailed routing on FPGA architectures with

time-multiplexed interconnects.

Our experiments with MCNC 20 benchmark show that, average minimum

channel width required by the proposed tm-arch architecture is 20% less than

that of conventional island-style architectures. Also, the average circuit critical

path delay is 1.7% smaller. However, these improvements come at the expense of a

46% increase in routing area. As a result, tm-arch exhibits 10% larger area-delay
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SUMMARY

product compared with conventional island-style architectures. The area overhead

is largely due to TM switches.

Our further investigation finds that partial depopulation can reduce the num-

ber of TM switches required, hence mitigate the area overhead. Correspondingly,

we propose tm-arch(a), a family of FPGA architectures with partially popu-

lated time-multiplexed interconnects. This architecture family is extended from

tm-arch architecture. In this architecture, only a portion of tracks in routing

channels can be time-multiplexed with the aid of TM switches. We define an archi-

tecture parameter, a, to parameterize this portion. Our experimental results show

that, tm-arch(a) architecture with small a values can achieve up to 10% smaller

area-delay product than conventional island-style architectures.

This thesis demonstrates that the technique of time-multiplex can be applied

to FPGA interconnects. Our proposed architectures show that time-multiplexed

interconnect reduces channel width and improves circuit critical path delay. Our

architectures also show that FPGA architectures with time-multiplexed intercon-

nects can have area-delay product advantages, if area overhead of time-multiplexing

is controlled appropriately.
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Chapter 1

Introduction

Field-programmable gate arrays (FPGAs), as an important media to imple-

ment digital circuits, have been becoming increasingly popular. This trend is

bound to continue, as the manufacturing technology of integrated circuits keeps

on advancing. Although its programmability gives it some key advantages over

application-specific integrated circuits (ASICs) technology, FPGA’s programmabil-

ity also causes significant timing, area, and power overhead compared with ASICs.

If gaps between FPGAs and ASICs in these key metrics could be closer, FPGAs

would be a more competitive technology.

It has been understood that FPGA interconnection network is a main contrib-

utor to the overall timing, area, and power budget. Hence, this thesis focuses on

FPGA interconnection network exclusively. Traditionally, three factors are identi-

fied as determining the performance of an FPGA at large: quality of the FPGA

architecture, quality of the computer-aided design (CAD) tools, and electrical de-

sign of the FPGA. This thesis attempts to examine and optimize the performance

of FPGA interconnection network mainly by looking at the former two factors, i.e.,

1



CHAPTER 1. Introduction

architecture and CAD.

The technique of time-multiplex has been applied to FPGAs before. Originally

this technique was applied to FPGA logic blocks so as to improve utilization of logic

blocks. This is reasonable because logic resources used to be at a premium in early

years of FPGAs. Given that nowadays FPGA interconnect resources are more

costly than the logic, this thesis proposes that time-multiplex be applied to FPGA

interconnects; hence the title of this thesis.

In this thesis, we present tm-arch, an FPGA architecture with fully popu-

lated time-multiplexed interconnects. This architecture is based on the classical

island-style architecture [6]. All wires in routing channels can be time-multiplexed

with the aid of specially designed switches. We also present tm-arch(a), a family

of FPGA architectures with partially populated time-multiplexed interconnects.

tm-arch(a) is extended from tm-arch architecture, and the parameter a is used

to parameterize the portion of routing tracks that can be time-multiplexed. At

CAD side, we present a time-multiplexing -aware timing-driven routing algorithm,

which is based on VPR 5 timing-driven routing algorithm [20]. We implement

this algorithm as our routing tool. With this routing tool, we employ a standard

CAD flow and a set of benchmark circuits to experimentally evaluate tm-arch

and tm-arch(a) architecture.

This thesis demonstrates that the technique of time-multiplex can be applied

to FPGA interconnects. Our proposed architectures show that time-multiplexed

interconnect reduces channel width and improves circuit critical path delay. Our

architectures also show that FPGA architectures with time-multiplexed intercon-

nects can have area-delay product advantages, if area overhead of time-multiplexing

is controlled appropriately.

2



CHAPTER 1. Introduction

The remainder of this chapter is organized as follows. Section 1.1 and 1.2 give

an overview of FPGAs at large and FPGA interconnection network, respectively.

Section 1.3 proposes the use of time-multiplex technique for FPGA interconnects.

Section 1.4 briefly describes our approaches and some key results. Section 1.5 and

1.6 describes contributions and organizations of this thesis, respectively.

1.1 Overview of FPGAs

Since their introduction in 1980s, field-programmable gate arrays (FPGAs)

have gained wide popularity. Some of the historical key application fields of FP-

GAs include rapid prototyping, custom computing, and design emulation. Besides,

with the technology scaling enabling high degree of integration, FPGAs nowadays

contain rich logic, as well as a variety of customized functional blocks, such as block

memory, digital signal processing (DSP) blocks, and Ethernet controller. Hence,

FPGA has also become an important medium to implement user designs.

Compared with application-specific integrated circuits (ASICs), FPGAs have

two desirable qualities: low non-recurring engineering (NRE) cost and fast turn-

around time. While the IC technology is progressing towards 28nm technology

node, it is expected that the cost and complexity of ASICs will skyrocket. This

will make FPGA implementation more attractive for IC designers working on low-

to-middle volume productions.

The above-mentioned advantages of FPGAs come with a price. It has been

well known that, for the same user design, the FPGA implementation will consume

more area and power, yet achieve lower performance than the ASIC implementa-

tion. A recent work [11] which measures the gap between FPGA implementation

3
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Fig. 1.1: A generic FPGA architecture (from [37])

and ASIC implementation points out that the required silicon area of the FPGA

implementation is about 18 times that of ASIC implementation, the critical path

delay about three to four times, and the dynamic power consumption about 14

times.

1.2 FPGA Interconnection Network

Resources in an FPGA device can be broadly divided into two parts: logic

resources and interconnect resources. Logic resources are used to implement user

logic. Logic resources in FPGAs are usually organized as arrays (or columns) of

logic blocks. Interconnect resources are used to implement connections between dif-

ferent logic blocks. Interconnect resources usually include routing wires, grouped

into channels, and routing switches. Figure 1.1 illustrates a generic FPGA ar-

chitecture. FPGA interconnects (or interconnection network) can be defined as

the programmable network of signal pathways between inputs and outputs of logic

blocks within FPGA.
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Both analysis and measurements reveal that interconnection network is the

main contributor to area, delay, and power. To achieve high routability leading to

successful implementation of user design, and also to ease routing task for CAD

tools leading to reduced compile time, FPGA vendors usually devote much silicon

area to routing tracks and programmable switches used to connect tracks. This

explains why interconnects out-weight logic in terms of area and power budget.

Routing a net to connect pins at different logic blocks usually means traversing a

series of tracks connected by switches. This explains why interconnects in FPGA

implementation are slow. Given that the interconnection network has a profound

effect on FPGA’s overall performance, optimizing the interconnection network is

essential.

1.3 Time-Multiplexed Interconnects for FPGAs

Previous research [35] has shown that time-multiplexing can improve the uti-

lization of logic resources in FPGA. In our work, we apply time-multiplexing to in-

terconnection networks in FPGA. The idea is based on the observation that most in-

terconnect wires are only used for a short period in a clock cycle. That is, the delay

for a signal to propagate along a wire segment is only a small portion of the clock cy-

cle. Take the 65nm FPGA architecture file n10k04l04.fc15.area1delay1.cmos65nm.bptm

from iFAR [23]. The delay of a wire spanning four logic blocks (plus the delay of the

switch driving the wire) is around 70ps. Assuming this same architecture file, the

average post-route critical path delay of MCNC 20 benchmark circuits is around

4ns. Dividing 70ps by 4ns gives a percentage of 1.8%. This means that, in a clock

cycle, a wire is effectively used to propagate a signal in only 1.8% of the time. In
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other words, a wire remains idle for more than 90% of the time. An intuitive way

to understand this fact is that the circuit critical path usually spans a number of

logic blocks and nets. If we examine one wire segment used along this critical path,

we may find that its delay is far less than the whole critical path delay.

By time-multiplexing signals on interconnects, we can better utilize the in-

terconnect resources. This could translate to area savings, as well as performance

improvement, at the cost of routing circuitry complexity. As the FPGA architec-

ture keeps evolving, time-multiplexed interconnection network could be a viable

solution to the scalable FPGA architecture.

1.4 Approaches and Key Results

In this thesis, we first present tm-arch, an FPGA architecture with fully pop-

ulated time-multiplexed interconnects. This architecture is based on the classical

island-style architecture [6]. All wires in routing channels can be time-multiplexed.

Specially designed switches, time-multiplexing switches (TM switches), replace con-

ventional switches to enable time-multiplexing of wires. Following Trimberger et

al ’s terminology, we define the architecture parameter, K, as the number of micro-

cycles in a user clock cycle. That is, the number of time slots for time-multiplexing.

It is worth to mention here that this architecture does not time-multiplex logic

blocks.

We then present a time-multiplexing -aware timing-driven routing algorithm.

This routing algorithm is based on VPR 5 timing-driven routing algorithm [20].

It employs a multiplexing-aware congestion cost function so as to identify nets for

time-multiplexing. We implement this algorithm as our routing tool. By assuming
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standard FPGA CAD flow and replacing the conventional router with our router,

we are able to implement circuits onto our proposed tm-arch FPGAs. More

importantly we are able to evaluate experimentally tm-arch architecture by map-

ping a set of benchmark circuits to the architecture and measuring area and timing

results.

In our evaluation of tm-arch, we use MCNC benchmark circuits and VPR

flow, which are the common practices in the research community. We compare

tm-arch with the conventional island-style architecture based on four metrics:

minimum channel width, routing area, circuit critical path delay, and area-delay

product. Our evaluation shows that tm-arch generally can achieve smaller min-

imum channel widths. For example, with K=4, tm-arch achieves average 20%

reduction in minimum channel widths over 20 MCNC circuits. But tm-arch is

also shown to exhibit significant routing area overhead although it reduces channel

widths. In the case of K=4, tm-arch requires 46% larger routing area. This

significant area overhead is mainly due to TM switches, which consume much more

area than their conventional counterpart. Our evaluation shows that tm-arch can

achieve similar or slightly better critical path delays with smaller channel widths

than the conventional island-style architecture. In the case of K=4, tm-arch im-

proves critical path delay by 1.7% while using 20% smaller channel widths. Finally,

our evaluation shows that tm-arch generally has larger area-delay product. With

K=4, tm-arch exhibits 10% larger area-delay product.

Our evaluation of tm-arch architecture reveals that area overhead of TM

switches can be significant. This motivates us to propose a family of FPGA archi-

tectures with partially populated time-multiplexed interconnects. This architecture

family is extended from tm-arch architecture. In this architecture, only a portion
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of tracks in routing channels can be time-multiplexed with the aid of TM switches.

We define a second architecture parameter, a, to parameterize this portion. We

denote this family of architecture by tm-arch(a). With a=1.0, tm-arch(a) is

equivalent to tm-arch.

Again, we compare tm-arch(a) with the conventional island-style architec-

ture. Our evaluation shows that tm-arch(a) architecture with small a values can

achieve smaller area-delay product than the conventional island-style architecture.

For example, with K=4 and a=0.1, tm-arch(a) achieves 10% smaller area-delay

product.

1.5 Contributions of This Thesis

This thesis investigates two issues related to employing time-multiplexed inter-

connects for FPGAs. First, it investigates the proper FPGA interconnect architec-

tures which support time-multiplexing. Second, it investigates the corresponding

routing algorithm which schedules signals to achieve time-multiplexing. Main con-

tributions of this thesis are:

1. An FPGA architecture with fully populated time-multiplexed intercon-

nects is presented. This architecture is based on VPR island-style architecture.

All the wires in the routing channels can be time-multiplexed with the aid of

specially designed switches, TM switches. This architecture differs from existing

FPGA architectures with time-multiplexed interconnects mainly in two aspects.

First, only interconnect resources can be multiplexed, and logic blocks cannot be

multiplexed (compared with [35]); Second, TM switches provide signal latching

capability (compared with [18] and [10]). We believe that our work is the first to
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examine the feasibility of applying time-multiplexed interconnects to an academic

island-style FPGA architecture.

This architecture is evaluated against and compared with island-style archi-

tecture experimentally. Our experimental results show that this architectural gen-

erally can achieve smaller channel widths. This acknowledges findings of related

work in literature ([18] [10]). As part of the architecture evaluation, an important

architectural parameter K, number of microcycles in a user clock cycle, is inves-

tigated. The investigation shows that K = 2 and K >= 8, exhibiting significant

area overhead, are inappropriate. This finding, to some extent, challenges practices

in related work, which either use K = 2 ([18]) or K >= 8 ([35] [10]). The archi-

tecture evaluation also reveals that time-multiplexed interconnect could achieve

comparable or slightly better timing and use smaller channel widths than its con-

ventional counterpart. This finding is the first to demonstrate that, in terms of

circuit timing, time-multiplexed interconnect is competitive with its conventional

counterpart.

2. A time-multiplexing -ware timing-driven routing algorithm is presented.

This algorithm is based on VPR 5 timing-driven routing algorithm. Multiplexing-

aware congestion cost function is used so as to identify signals for time-multiplexing.

This routing algorithm is implemented as a routing tool, which is used for ex-

perimental evaluation of our proposed time-multiplexed interconnect architectures

stated in contribution 1 and 3. This is the first timing-driven routing algorithm

that performs combined global and detailed routing on FPGA architectures with

time-multiplexed interconnects. This algorithm is important for us to demonstrate

that time-multiplexed interconnect is competitive with its conventional counterpart

in terms of circuit timing.
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3. A family of FPGA architectures with partially populated time-multiplexed

interconnects is presented. This architecture is also based on VPR island-style ar-

chitecture, and extended from our proposed architecture stated in contribution 1.

A portion of tracks in the routing channels can be time-multiplexed with the aid of

TM switches, while the remaining tracks cannot be multiplexed. An architectural

parameter a, multiplex-able track population, is used to parameterize this portion.

This family of architectures is evaluated against and compared with island-style ar-

chitecture experimentally. The experimental results demonstrate that small values

for a help this architecture achieve good tradeoff between channel width reduction

and area overhead. This finding, to some extent, acknowledges a previous find-

ing in the literature ([10]). The results also show that our proposed architecture

with small a values could achieve comparable or better area-delay product than

the conventional island-style FPGA architecture. This finding is important, for it

demonstrates that time-multiplexed interconnect is practical for FPGAs.

1.6 Organization of This Thesis

The remainder of this thesis is organized as follows. The next chapter provides

background information and reviews some of the previous work in the area of FPGA

interconnect architecture. Chapter 3 presents our proposed FPGA architecture

with time-multiplexed interconnects. Chapter 4 presents our time-multiplexing -

aware timing-driven routing algorithm. Architecture and routing algorithm are the

two facets of our work. Then the proposed architecture is evaluated, and exper-

imental results are given in Chapter 5. Chapter 6 presents the proposed FPGA

architecture with partially populated time-multiplexed interconnects. In this same
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chapter, we evaluate this partially populated architecture and give experimental

results. Chapter 7 concludes this thesis and provides suggestions for future work.
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Chapter 2

Background and Previous Work

The first half of this chapter gives background information about island-style

FPGA architecture and VPR routing tool. The second half of this chapter reviews

some of the previous research on FPGA interconnect architecture.

2.1 Island-Style FPGA Architecture

In their classical book Architecture and CAD for Deep-Submicron FPGAs [6],

Betz et al classified FPGAs into three groups according to their routing architec-

ture: island-style, row-based, and hierarchical. Lemieux and Lewis largely followed

this classification in their book Design of Interconnection Networks for Program-

mable Logic [15]. The island-style architecture is certainly the most popular one.

Almost all modern commercial FPGAs employ the island-style architecture. And

in academia, research and literature on the island-style FPGA architecture also

dominate.

In our work, we propose a new FPGA architecture by extending the classical
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Fig. 2.1: An island-style FPGA (from [6]).

island-style FPGA architecture, as defined in Betz et al ’s book. Hence, in the

following, we give a short summary of key features of the island-style FPGA archi-

tecture. Readers are referred to Betz et al ’s book for a detailed treatment of the

island-style architecture.

Island-style architecture is also called mesh architecture in Lemieux’s book.

In island-style FPGAs, logic resources are organized as a two dimensional array

of logic blocks. Logic blocks are surrounded by routing channels on four sides. A

routing channel, either horizontal or vertical, usually contains a number of routing

tracks. A routing track usually consists of a series of wire segments. Figure 2.1

illustrates an island-style FPGA.

Input and output pins of a logic block can connect to the peripheral routing

channels via connection blocks. And at the intersection of a horizontal channel

and a vertical channel, there is a switch block. Both connection blocks and switch
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blocks are made up of routing switches. A routing switch contains a one-bit memory

cell, and can be turned on or off by appropriately configuring the memory cell. It

is the routing switches inside connection blocks and switch blocks that achieve

programmable interconnections between logic blocks.

Logic blocks themselves are also programmable, thus allowing users to imple-

ment different logic functions. A logic block usually contains a cluster of look-up

tables (LUTs) and registers. A k-input LUT can implement any Boolean function

with k inputs and one output. Registers enable the implementation of sequential

logic.

2.1.1 Uni-Directional and Single Driver Wiring

Major commercial FPGAvendors have shifted away from using bi-directional

and multiple-driver wires. They use uni-directional and single-driver wires, instead.

Figure 2.2 and Figure 2.3 illustrate these two paradigms, respectively. In Figure

2.2, the horizontal wire w1 spanning two logic blocks can route a signal either

from left to right or from right to left. Correspondingly, the switches used are

bi-directional. A pass transistor switch connects wire w1 with another horizontal

wire w2, and two back-to-back tri-state buffers connect wire w1 with a vertical wire

w3. Also notice that wire w1 can be driven from multiple points: it can be driven

via the tri-state buffer b3 by wire w3, or via tri-state buffer b1 by a logic block, or

via tri-state buffer b2 by a second logic block. But in Figure 2.3, the horizontal

wire w1 can route a signal from left to right only. And it can only be driven via

the buffer b1 from the left endpoint. A wide multiplexer is used to select from all

possible sources.

It has been shown in [14] that uni-directional and single-driver wiring reduces

14



CHAPTER 2. Background and Previous Work
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Fig. 2.2: Bi-directional wires with multiple drivers (adapted from [19]).

area and improves delay over bi-directional and multiple-driver wiring. This may

explain the trend towards uni-directional and single-driver wiring in the industry.

2.1.2 Direct Drive Mux Switch

In the context of uni-directional and single-driver wiring, one switch widely

used is direct drive mux switch [17].

This type of switch consists of two parts: a multiplexer used to select input

lines and a buffer to drive the wire. The multiplexer usually is constructed using

NMOS pass transistors. As a result, a logic-1 signal at the selected input line will

produce a weak-1 signal at the output of the multiplexer. A level-restoring PMOS

transistor is integrated with the buffer to restore the voltage level of the weak-1

signal [25] [4]. Figure 2.4 illustrates a direct drive mux switch.

Assuming that we only use NMOS pass transistors to construct the multi-

plexer, there can be three kinds of topology: tree, flat, and two-level hybrid [12].

A comparison of these three topologies can be found at [12]. The two-level hybrid
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Fig. 2.3: Uni-directional and single-driver wires (adapted from [19]).
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Fig. 2.4: A direct drive mux switch.
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Fig. 2.5: A 4:1 multiplexer assuming the two-level hybrid topology. Each “MC” represents one-bit
memory cell.
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topology, which strikes a good balance between area and performance, is employed

in [25] [4] [12] [16]. We also use the two-level hybrid topology in our work. Figure

2.5 shows a transistor-level implementation of a 4:1 multiplexer, which assumes the

two-level hybrid topology.

2.2 VPR Router

VPR (Versatile Pace and Route) CAD tool [5] was developed by the FPGA

research group at University of Toronto. It has been well maintained and regularly

updated by the same research group. Since its release in 1997, it has become the

standard tool among the FPGA researchers, due to its free availability and high

quality. In our work, we mainly use VPR version 5.0 [20], which we will refer to as

“VPR 5” hereafter.

VPR 5 includes a timing-driven router, which is based on the Pathfinder nego-

tiated congestion-delay algorithm [22]. Section 2.2.1 briefly introduces Pathfinder

algorithm. In our work, we make extensive use of VPR 5 timing-driven router’s

capabilities of delay modeling and static timing analysis. Section 2.2.2 briefly de-

scribes how VPR router models the delay of a routing path. Section 2.2.3 gives

background knowledge on static timing analysis.

2.2.1 Pathfinder Routing Algorithm

Pathfinder negotiated congestion-delay routing algorithm is based on an itera-

tive approach [22]. It rips-up and re-routes each net in each iteration. During each

iteration, it finds the shortest path for each sink sij of each net Ni using directed

search, and allows resource overuse. Figure 2.6 presents pseudo-code of Pathfinder
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routing algorithm.

Q(i): Priority queue used while routing net Ni

RT (i): Routing tree of net Ni

Source(i): Source of net Ni

1 Crit(i, j) = 1.0 for all i and j;
2 while (overused resources exist) {
3 for (each net Ni) {
4 Rip-up RT (i), and update p(n) for all nodes n in RT (i);
5 RT (i) = Source(i);
6 for (each sink j of net Ni in decreasing Crit(i, j) order) {
7 Q(i) = RT (i);
8 while (sink(i, j) not found) { /* Wave expansion */
9 Remove lowest cost node, m, from Q(i);
10 for (all fanout nodes n of node m) {
11 Add n to the Q(i);
12 }
13 } /* Routing of one sink is finished. */
14 for (all nodes, n, in path from RT (i) to sink(i, j)) {
15 Update p(n);
16 Add n to RT (i);
17 }
18 } /* Routing of one net is finished. */
19 } /* Routing of all nets are finished. */
20 Update h(n) for all nodes n;
21 Update Crit(i, j);
22 } /* End of one routing iteration*/

Fig. 2.6: Pseudo-code of Pathfinder routing algorithm. From [6]

A key innovation of Pathfinder algorithm is its cost function. By using a

cost function as shown by Eq. 2.1, it gradually resolves the overuse after multiple

iterations, and at the same time optimizes the delay. The cost to include a node n

into the routing path is

c(n) = Crit(i, j) · d(n) + [1− Crit(i, j)] · b(n) · h(n) · p(n) (2.1)
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b(n), p(n) and h(n) are nodes n’s base cost, present congestion cost and historical

congestion cost, respectively. p(n) and h(n) both increase as a node n is overused.

d(n) is node n’s intrinsic delay. Crit(i, j), the criticality of the connection from

net Ni source to sink sij, is defined as

Crit(i, j) = 1− Slack(i, j)

Tcrit

(2.2)

Tcrit is the circuit critical path delay, and Slack(i, j) the connection’s timing slack.

The first term in right hand side of Eq. 2.1 is called delay sensitive term, and

the second term congestion sensitive term. When a source-sink connection lies

on a critical path, the congestion sensitive term becomes zero. This means that

Pathfinder will ignore congestion and route this connection for minimum delay.

2.2.2 Delay Modeling of Routing Path

VPR version 4.30 employs the Elmore delay model to compute the delay of a

route from a net source to any of its sinks. Pass transistors and wires are modeled

as RC trees. And a buffer is modeled by a constant delay and a resistor. The

Elmore delay of a source-sink path is:

Tpath =
∑

i∈path

(RiCds,i + di) (2.3)

Basically, the Elmore delay of the path is a summation of the Elmore delay of each

node over all the nodes along the path. A node i can be a wire, a pass transistor,

or a buffer. Ri is node i’s equivalent resistance, and di is node i’s intrinsic delay.

Cds,i is the nodes i’s downstream capacitance.
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VPR 5 recommends that FPGAs assume uni-directional single driver wiring.

As a result of that, it favors a constant delay model over the Elmore delay model

[26]. Hence, the delay of a source-sink path now is:

Tpath =
∑

i∈path

di (2.4)

Again, delay of the path is a summation of delay of each node over all the nodes

along the path. A node i can be a wire, or a switch. di is a constant delay value

specified in architecture files.

Note that VPR 5 can also compute Elmore delay for old-style VPR version

4.30 routing architectures. And it handles these two different cases transparently.

In our research, we have worked with both the old-style routing architecture and

the uni-directional single driver routing architecture. VPR 5 computes and reports

delay values based on the Elmore delay model for old-style architectures; and it

computes and reports delay values based on the constant delay model for uni-

directional single driver architectures. Hereafter, we will simply use the same single

word “delay” for routing path delay values computed based on both delay models.

VPR contains a delay extractor which can compute the delay of any routed

net. The delay extractor can also incrementally compute the delay from the net

source to a node in the current routing tree while a net is being routed.

2.2.3 Static Timing Analysis

Usually a timing graph is used to perform static timing analysis. In a timing

graph, nodes represent input and output pins of basic circuit elements. In the case

of FPGAs, the basic circuit elements include LUTs, registers, and IO pads. Edges
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Fig. 2.7: A simple circuit, and its timing graph (from [6]).

are added between input pins of combinational logic blocks (e.g., LUTs) and their

outputs. Edges are also added between pins which the circuit netlist specifies are

connected. Each edge is annotated with a delay value. This delay value specifies

the delay required to pass through the circuit element or routing.

As explained in Section 2.2.2, VPR’s delay extractor computes the delay of a

net’s routing path, after this net is routed. Delay values of all nets’ routing paths

will be annotated on the edges in the timing graph, after all nets are routed.

Figure 2.7 shows a simple circuit implemented with 2-input LUTs and registers,

and its corresponding timing graph.

In sequential digital circuits, we usually assume that signal arrival times at

primary inputs are 0. We can start from the primary inputs, breadth-first traverse

the timing graph, and compute arrival time for each node in the graph.

Tarrival(i) = Maxj∈fanin(i){Tarrival(j) + delay(j, i)} (2.5)

21



CHAPTER 2. Background and Previous Work

, where delay(j, i) is the delay value annotated on the edge joining node j to i.

The node with the largest arrival time defines the maximum delay Tcrit through

the circuit. The required clocked period of this circuit should be no less than Tcrit.

We can do a backward breadth-first traversal of the timing graph, and deter-

mine required times at all nodes. Required times of all primary outputs we set to

Tcrit. The required time of any node with fanouts is

Trequired(i) = Minj∈fanout(i){Trequired(j)− delay(i, j)} (2.6)

Timing slack of the connection from node i to node j is then

Slack(i, j) = Trequired(j)− Tarrival(i)− delay(i, j) (2.7)

A connection with a slack of zero is said to be on the circuit critical path. Any

delay increase of such a connection will result in increase of Tcrit. It is easy to prove

that the delay along the critical path equals to Tcrit.

Note that one can find the circuit critical path by using a traceback method.

The traceback starts from the node with the largest arrival time.

VPR contains a path-based static timing analyzer which can compute circuit

critical path delay after all nets of a circuit have been routed.

2.3 Previous Work

The FPGA community have long realized that an optimized interconnect ar-

chitecture is important to the overall performance of an FPGA. This can partly

explain the extensive research activities on FPGA interconnect architecture. The
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remainder of this section reviews some of the previous work related to this thesis.

2.3.1 Pipelined Interconnect

The idea of pipelined interconnect is mainly motivated by the fact that inter-

connect delay dominates logic delay and hence limits user designs’ clock frequency.

If interconnect between two logic blocks is pipelined and the delay of each inter-

connect pipeline stage is comparable to the delay inside logic blocks, interconnect

delay will cease to be the bottleneck.

Architecture of pipelined interconnect has been reported in [36], [31], and

[32]. HSRA [36] assumes a hierarchical routing architecture, instead of island-

style architecture. Given a target clock frequency, the authors calculate (at HSRA

design time) the length of interconnect that can be travelled within one clock

cycle. At the end of this length, a register is placed. Figure 2.8 illustrates a

switch block in this architecture. As can be observed, a register is present in

the switch block. As a result of this register pipelined interconnect, signal route

that consists of long interconnects takes more than one clock cycle. An HSRA

prototype achieving 250MHz frequency was implemented with a 0.4um DRAM

process. The authors have shown that HSRA architecture allows many pipeline-

able designs to run at frequencies of 2-17x the un-pipelined frequencies. However,

HSRA architecture exhibits 50% area overhead per logic block, compared with un-

pipelined architecture. The area overhead is due to pipeline registers in switch

blocks and retiming registers in logic blocks.

In [32], Singh and Brown assume the island-style routing architecture. Figure

2.9 illustrates a registered switch in switch blocks. Note that this switch contains

both a multiplexer and a register. Hence the route can be either pipelined or un-
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Fig. 2.8: Switch boxes with registers in HSRA architecture. From [36]

pipelined. Also an extra input register per LUT is added for retiming purpose.

A noticeable feature of Singh and Brown’s architecture is that the number of reg-

istered tracks is parameterizable. All wire segments on a registered track have

registered switches at their ends. For the architecture in which 25% of all tracks

are registered, the authors reported 12% - 25% speedup for circuit critical path

delay, at the price of around 10% area overhead.

Pipelined interconnect architecture poses implications on FPGA design flow.

For example, a typical scenario in [36] is that there are more registers between some

LUT pairs in the placed and routed design than there were in the original netlist.

As a result, retiming the design is necessary to ensure the correct logical behavior.

More specifically in [36] the authors retimed all LUTs such that the number of

registers between any two LUTs is larger or equal to the number of registers required

by the interconnects. In [32], the authors proposed a modified CAD flow in which
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Fig. 2.9: Switch boxes with registers in Singh and Brown architecture. From [32]

the routing phase consists of two separate steps, namely, retiming aware routing and

architecturally constrained retiming. In the first step, a conventional Pathfinder-

based timing-driven routing algorithm routes all nets as if there were no registers

in the connection network at all. Then long routes are shifted to registered tracks.

In the second step, the actual retiming is performed.

A pipelining-aware router for FPGA called PipeRoute was presented in [30].

PipeRoute takes retimed netlist and pipelined FPGA architecture as inputs, and

gives an assignment of nets (or signals) to routing resources as output. At the core

of PipeRoute is an optimal one-delay router, which finds a lowest cost route between

a source and a sink that goes through at least one registered switch-point. The

registered switch-point is assumed to pick up either one clock cycle delay or no delay

at all. This optimal one-delay router is then used to build a heuristic two-terminal
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N -delay router. This heuristic recursively builds an N -delay route from a (N − 1)-

delay route by successively replacing each segment of the (N−1)-delay route with a

one-delay route and then greedily selecting the lowest-cost N -delay route. Finally

the two-terminal N -delay router is extended to a multi-terminal N -delay router.

The multi-terminal router routes one sink at a time. All sinks are sorted in non-

decreasing order of delay separation from the signal source. So the multi-terminal

router first finds a route to the sink that is the least number of delays from the

source, which is really a two-terminal N -delay routing problem. Then this partial

routing tree connecting signal source and the first sink is expanded to include all

remaining sinks. PipeRoute was employed for the design space exploration for the

pipelined interconnect architecture in [29].

Armada, a timing-driven pipeline-aware router, was presented in [9]. In con-

ventional FPGA routing, a link’s timing criticality tends to be consistent between

the routing iterations. This is so because the link’s two endpoints are already fixed

by the placement tool. However, in pipeline-aware routing, a link’s criticality can

change dramatically, depending on the route it takes. This happens because regis-

ters are discovered along the way during the routing. Authors of Armada tackled

this problem by using assumed criticality breadth first search. To route from a

source to a sink, N independent waves are started from the source, each assuming

a different criticality from 1/N to 1.0. Each of these multiple simultaneous searches

emphasizes delay versus congestion in a different way. The first wave exploration

to reach the sink is the least expensive, representing a proper balance between con-

gestion and delay. The actual value of N can be tuned to achieve tradeoff between

runtime and timing accuracy. Experimental results presented in [9] showed that

Armada produces significantly (as much as 60%) better critical path delays than
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non- timing-driven router (such as PipeRoute).

2.3.2 Wave-Pipelined Interconnect

Pipelining, which breaks logic gates into stages and inserts storage elements

(for example, registers) between stages, is a commonly used technique to improve

the system throughput. Wave-pipelining can be considered as a virtual pipelining,

in which logic gates serve as the storage elements. Hence, wave-pipelining can

achieve high throughput, while avoiding the timing overhead of the storage ele-

ments. But for wave-pipelining to operate correctly, additional constraints apply.

This can partly explain why wave-pipelining has not gained wide popularity.

Recently, wave-pipelining technique has been applied to FPGA interconnects,

and has been proved to be able to improve the bandwidth of interconnect links.

Mak et al in [21] presented closed-form expressions for throughput of both register-

based pipelining and wave-pipelining in the context of FPGA interconnects. Their

theoretic analysis showed that, in a 65nm technology and to achieve the same

throughput, register-based pipelining requires 49% larger latency and 26% more

power consumption than wave-pipelining. Their further SPICE modeling and sim-

ulation results confirmed advantages of wave-pipelining. For example, assuming

PTM 65nm technology 1, wave-pipelining claims about 22% latency improvement

and around 9% power improvement over registered-based pipelining. And wave-

pipelining’s improvement over register-based pipelining is expected to be even

larger as technology scales down: at PTM 32nm technology, the latency and power

improvement are shown to be 35% and 13%, respectively. Both the theoretical

analysis and simulation results predicted that wave-pipelining could achieve 1.4

1Predictive Technology Model. See http://ptm.asu.edu/
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Gbps throughput for a data link spanning 75 tiles in 65nm FPGAs.

Teehan et al in [34] proposed using wave-pipelining as an on-chip serial sig-

naling technique, especially for data-path FPGA designs which operate on words.

Their architecture added dedicated serializer and de-serializer to each logic block.

The serializer captures a data word from the logic block. The serialized data is then

transmitted along the interconnect wires. At the receiving side, the de-serializer

restores the data word. The reference clock signal for serializer and de-serializer

is generated from user clock by a ring oscillator at the serializer side. And this

reference serial clock is transmitted to the receiving side parallelly with data. This

is called source-synchronous signaling. The authors’ SPICE simulation results re-

ported that wave-pipelining could achieve 2 to 4 Gbps throughput for a data link

spanning 200 tiles in 65nm FPGAs. It is interesting to note that the authors

predicted interconnect area saving in spite of the apparent area overhead of seri-

alizers and de-serializers. For example, almost 50% interconnect area saving can

be achieved, if 512 length-4 channel wires are replaced with 8-to-1 bit-serial wires.

The reasons, the authors argue, are that the number of wires is greatly reduced and

connection block area shrinks significantly. One problem of Teehan’s interconnect

architecture is power consumption. The authors reported that wave-pipelined in-

terconnect exhibits at least 6-8x power penalty compared with parallel-bus, due to

increased data activity and high-frequency toggling of serial timing strobe. As for

reliability, the authors showed that wave-pipelining is sensitive to PVT (process,

temperature, and voltage) variations as well as clock jitter and skew. Although it

could achieve throughput as high as 5Gbps for short links, wave-pipelined inter-

connect has to run much slower than that (2 - 4 Gbps) due to reliability issue.

Wave-pipelined interconnect requires neither new routing algorithm nor modi-
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fications to conventional FPGA design flow. However, as put forward in [34], better

supply noise modeling and accounting is essential to achieve robust communica-

tion over wave-pipelined interconnect. Hence, CAD tool support in this regard is

valuable.

2.3.3 Three-Dimensional Architecture

Three-dimensional architecture for FPGAs has been reported in [1], [13], and

[24]. In these architectures, logic blocks are organized into a three-dimensional

mesh array. These architectures have shorter average interconnect length than the

conventional two-dimensional architecture. Also, they provide switch blocks with

larger flexibilities. Besides, analytical results based on predicting models in [24]

show that three-dimensional integration can improve interconnect delay by as much

as 45% - 60%.

Alexander et al are possibly the first to propose a three-dimensional FPGA

architecture [1]. Alexander’s three-dimensional FPGA architecture is a generaliza-

tion of the basic island-style architecture. In Alexander’s architecture, each switch

block has six immediate neighbors, as opposed to four in two-dimensional archi-

tecture. Three-dimensional switch blocks are analogous to their two-dimensional

counterparts. They allow each channel segment to connect to a subset of channel

segments incident on the other five faces of the switch block.

The authors’ first-order analysis showed that, their proposed three-dimensional

architecture achieves a shorter average interconnect length. For example, for FP-

GAs with 525 switch blocks (a modest size at the time of their work), average

interconnect length in three-dimensional architecture is only half of that in two-

dimensional architectures.
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The authors assumed the subset switch block generalized to three dimensions:

a segment connects to a single segment in each of the five adjacent channels. That

is, Fs = 5, while Fs = 3 in two-dimensional architecture. As a result, a three-

dimensional switch block requires more transistors than its two-dimensional coun-

terpart. A more refined analysis, which takes this overhead into account, showed

that, for FPGAs with more than 250 switch blocks, the benefits from reduced in-

terconnect length outweigh the overhead of three-dimensional switch block. Hence

the authors concluded that an average net would consume less routing transistors

in three-dimensional FPGAs.

Another early three-dimensional FPGA architecture is Rothko [13]. Rothko

architecture is based on Triptych architecture: a layer of Rothko architecture is

similar to Triptych, and inter-layer connections are provided. In Triptych archi-

tecture, the basic logic element is RLB (routing and logic block)2 [7]. Rothko

architecture extends the Triptych RLB by allowing an RLB receive outputs of the

neighboring RLBs in adjacent layers. The authors’ experimental results from man-

ually mapping two designs to a two-layer Rothko architecture showed that Rothko

mapping’s footprint is about half of that of Triptych.

In spite of their claimed advantages, these three-dimensional architectures have

not been adopted by major commercial vendors, possibly due to challenges involved

in the fabrication of three-dimensional chips. Fabrication of 3D chips is usually

complex, requiring additional process steps. Alexander et al proposed that multi-

chip module (MCM) technology is used to vertically stack a number of 2D FPGA

dies [2]. Solder bumps are used to bond dies to an underlying substrate containing

wires. In this way vertical interconnections are established. A problem with this

2An RLB in Triptych architecture can perform both logic implementation and signal routing.
Hence the name.
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vertical stacking technique is that there is a non-zero probability of defect when

joining two dies. A second problem is heat dissipation. 3D architectures have a

higher power-to-area ratio; hence the thermal issues are more challenging. Leeser

et al proposed a thin film transfer approach for fabricating Rothko architecture

[13]. Take a two-layer Rothko for example. First processed is a bulk silicon wafer

containing half of the circuit. This is followed by the process of a second silicon-

on-insulator (SOI) wafer containing the other half of the circuit. Then the SOI

circuit is transferred face-down onto the top of the bulk silicon wafer. An adhesive

bonds the transferred circuit to the bulk. Vertical interconnections are enabled by

3D vias, which connect metals at both layers to a third common metal.

In [28], the concept of extra-dimensional FPGA, in which logical third and

fourth dimension are mapped to standard two dimensional IC, is introduced. Logic

blocks are grouped into xy planes. A conventional 2D FPGA can be considered as

a xy plane. Logic blocks only connect to wires on the same xy plane. Extra dimen-

sions are formed by interconnecting planes. The experiments demonstrated that

a four-dimensional FPGA provides better scalability. For example, as the design

size increases from 20 to 585 CLBs 3, minimum channel width of 4D architecture

remains constant, while that of 2D architecture needs to steadily increase.

Mostly, placement and routing algorithms for 2D FPGAs can be extended

for 3D FPGAs. For example, the placement, global routing, and detailed routing

algorithms used in [1] are extended from their 2D versions presented in [3]. More

specifically, the 3D placement uses a 3D partitioning template (an m ∗ n ∗ r grid),

while the 2D version uses a 2D template (an m∗n grid). Another example is the 3D

FPGA design flow presented in [8], which extends VPR. The author modified the

3This work assumes that a CLB consists of a four-input LUT and a bypass-able register.
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VPR simulated annealing algorithm by introducing a non-adaptive schedule and a

two-stage annealing. In fact, the first modification may not be strictly necessary,

although the second modification is intended for optimizing circuit critical path

delay. The author re-used VPR routing algorithm without any modification, as

long as a routing resource graph can be generated from the 3D FPGA architecture

description.

Stacked Silicon Interconnect (SSI) technology recently introduced by Xilinx

represents another approach to achieve scalable interconnect for FPGAs [39]. SSI

technology combines multiple FPGA die slices and a passive silicon interposer to

create a die stack. The multiple die slices are placed side-by-side. This avoids the

power and reliability issues that could result from stacking dies on top of each other.

The passive silicon interposer interconnects the die slices by providing more than

10,000 traces between multiple die slices. Finally the die slices/ interposer stack is

mounted on package substrate. Through-silicon vias (TSVs) are employed to prove

connection between stack and package substrate. SSI technology is employed in

Xilinx’s Virtex-7 FPGAs.

FPGAs with SSI technology claim several advantages, compared with the tra-

ditional approach of connecting multiple conventional FPGAs to obtain a larger

logic capacity. First, the interposer can provide as many as 10,000 connections,

while IO pin count of a conventional FPGA is limited to around 1,200; Second,

die-to-die latency of interposer is one fifth of pin-to-pin latency of standard IOs;

Third, die-to-die connections implemented by interposer consume far less power.

Xilinx claims that, in terms of design flow, FPGAs with SSI technology can

be treated like monolithic devices. There is no need of partitioning. And routing

between die slices is transparent to users. Xilinx’s ISE design tool supports the
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Virtex-7 family.

2.3.4 Time-Multiplexed Interconnect

The seminal work on time-multiplexed FPGA is [35] by Trimberger et al.

Based on the Xilinx XC4000E FPGA family, the introduced architecture features

both time-multiplexed configurable logic blocks (CLBs) and time-multiplexed in-

terconnects. The whole architecture is backed by one active configuration and eight

inactive configurations. All the configuration bits of CLBs and interconnects can be

flash reconfigured from one of the eight inactive configurations. Logic engine mode

is one of the operation modes proposed by the authors for the time-multiplexed

FPGA. In this mode, the FPGA sequences through multiple configurations. One

configuration is called one microcycle. One pass through all the microcycles is

called a user cycle. Therefore, the FPGA is reconfigured multiple times inside a

user cycle. Our proposed FPGA architecture in this thesis is different from Trim-

berger’s architecture, in that we time-multiplex interconnects only. We do not

time-multiplex logic blocks. Our architecture is similar to Trimberger’s architec-

ture, in that we use the same concept of user cycle and microcycle. In particular,

our architecture assumes that a user cycle is divided evenly into K microcycles. K

is an architecture parameter, which in our work is chosen to be 2, 4, 6, or 8.

Recently a commercial time-multiplexed FPGA architecture was introduced

by a start-up vendor Tabula. The architecture is named Spacetime [33]. A user

clock cycle is divided to eight folds (fold 0, fold 1, ..., and fold 7). The FPGA

device starts from fold 0. In each fold, the FPGA device performs a portion of user

logic, and stores results in place. Then the device gets re-configured, and moves to

the next fold, in which it uses the locally stored data to perform another portion
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of user logic. At the completion of fold 7, the entire user logic has been performed,

and a user clock cycle has been finished. After that, the device gets re-configured

and starts again from fold 0, repeating the procedure described above. The re-

configuration between folds is ultra-rapid. In fact, the first generation of Tabula

device employs a 1.6 GHz clock for this reconfiguration. This enables a user clock

of 200 MHz divided into eight folds.

Advantages claimed by Spacetime architecture include greater logic density,

higher performance, as well as greater memory density. The memory density ad-

vantage stems from the fact that Spacetime architecture uses single-port memory

cells while still providing fold-based multi-port capability.

One can see that, in many ways, Spacetime architecture resembles Trim-

berger’s time-multiplexed FPGA architecture. However, Spacetime architecture

does have some unique features. For example, it allows tradeoff between speed and

area. If a higher clock frequency is desired from user design, less number of folds

should be used. Hence more area of the device is committed. Take a 200 MHz user

design with eight folds for instance. To get higher performance, the user could run

the design at 400 MHz with four folds (or, 800 MHz with two folds only) 4.

Tabula claims that design flow with Spacetime architecture is similar to that

with conventional FPGAs. In Tabula’s design flow, synthesis optimized for Space-

time architecture is coupled with timing-driven place-and-route. As a result, map-

ping from RTL to Spacetime architecture is transparent.

The limited information disclosed by Tabula does not explicitly state whether

interconnects are also time-multiplexed in Spacetime architecture.

4In fact, different sections of Tabular device core can run at different frequencies (and corre-
sponding numbers of folds). The granularity of this tuning can be down to the level of individual
tiles. Each tile in Tabula devices is logically equivalent to 16 4-input LUTs.
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Another early interesting work by Lin et al [18] applied time-multiplexing to

FPGA routing resources (i.e., interconnects) only. The proposed architecture has

two configuration bits for each routing connection. A phase clock whose frequency

is twice that of system clock is used. In operation, the phase clock shifts in a loop

the two configuration bits, so that each of these two configuration bits alternately

controls the routing switch. As a result, the physical routing resources work as

two, time-multiplexed routing structures. The authors performed experiments with

this architecture based on the Xilinx 4000 architecture, and their routing results

reported a 30% reduction of channel density. The authors did not tell how the

timing performance would be affected by the time-multiplexed interconnects.

A recent work by Francis et al [10] applied the idea of time-multiplexed in-

terconnects to an Altera Stratix-based FPGA architecture. Both a realization of

the time-multiplexed wirings and an algorithm to use the time-multiplexed wirings

were described in detail. Similar to Trimberger’s time-multiplexed FPGAs, Francis’

architecture divides design clock cycle into a series of time slots, each representing

a interconnect clock cycle. Design clock cycle and interconnect clock cycle here

correspond to user cycle and microcycle, respectively, in Trimberger’s architecture.

Besides the extra configuration bits required for time-multiplexing, the authors

also introduced latches to the time-multiplexed wire segments and look-up table

inputs. Noticeably, the authors explored three architectural parameters: (1) the

number of time slots in a design clock cycle, (2) the length of a time slot (in terms

of picoseconds), and (3) the number of time-multiplexed wires per switch box. The

third architectural parameter implied the co-existence of time-multiplexed wires

and conventional wires. An important feature that Francis’ architecture and our

proposed architecture share in common is the co-existence of time-multiplexed wires
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and conventional wires.
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FPGAs with Time-Multiplexed

Interconnects

This chapter presents tm-arch, our proposed FPGA architecture with time-

multiplexed interconnects. tm-arch architecture is based on the classical island-

style architecture. Section 3.1 first gives an overview of tm-arch architecture.

Section 3.2 introduces the term user clock cycle and microcycle. Time-multiplexing

always has the technique of time slot. In our work, microcycle is the equivalent to

time slot.

A key difference between tm-arch and the island-style architecture is that,

in tm-arch, all wires in routing channels can be time-multiplexed. Section 3.3

explains how a wire in tm-arch is time-multiplexed.

Specially designed time-multiplexing switches (TM switches) are used in tm-

arch to enable time-multiplexing of wires. TM switches differs from conventional

switches in two aspects. First, a TM switch has multiple contexts (or configura-

tions) associated with it. And it sequences through these multiple contexts within
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a user clock cycle. Second, a TM switch is able to latch data. Section 3.4 describes

these two aspects.

Finally section 3.5 presents our circuit design for TM switches. It helps un-

derstand TM switches’ behavior described in section 3.4.

3.1 Overview

Figure 3.1 illustrates the architecture of our proposed FPGAs with time-

multiplexed interconnects. This architecture is based on the island-style archi-

tecture. As in conventional island-style FPGAs, logic blocks are surrounded by

horizontal/ vertical routing channels on all four sides. Each channel can contain

multiple metal wires. The total number of wires in a channel is defined as the chan-

nel width. There is a switch block at every intersection of a horizontal channel and

a vertical channel. Logic block pins connect to wires in routing channels through

connection blocks. Programmable switches reside in connection blocks and switch

blocks to achieve configurable routing.

At the architecture level, the only difference between this architecture and

the conventional island-style architecture is that all wires in the routing channels

can be time-multiplexed. Note that in this architecture, logic blocks cannot be

multiplexed.

At the circuit level, the only difference between this architecture and the

conventional island-style architecture is that, this architecture replaces the con-

ventional switches with TM switches at the connection blocks and switch blocks.

Unlike a conventional switch, a TM switch has multiple contexts, and sequences

through the contexts in a clock cycle. To visually highlight this difference, we rep-
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Fig. 3.1: Proposed architecture of FPGAs with time-multiplexed interconnects

resent a switch using a filled circle in Figure 3.1, while we represent a conventional

switch using a void circle in Figure 2.1.

3.2 User Clock Cycle and Microcycle

Time-multiplexing generally works by dividing the time domain into time slots

of fixed lengths and assigning a communication link to signals on the time slot basis.

During time-multiplexing, multiple signals apparently take the same physical link,

but they use the link at mutually exclusive time slots.

In tm-arch architecture, time-multiplexing works by dividing a user clock

cycle evenly into multiple microcycles. Within a user clock cycle, multiple signals

can use a same wire given that they use this wire at mutually exclusive microcycles.

We borrow the terms user clock cycle and microcycle from Trimberger et al ’s
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work [35]. User clock cycle is the clock cycle constrained by the critical path delay

of users’ design. For example, user clock cycle period must be no less than 1 ns, if

the user’s design has a critical path delay of 1 ns.

In our work, we define a parameter K for tm-arch architecture. This pa-

rameter denotes the number of microcycles in a user clock cycle. For we divide

a user clock cycle evenly into K microcycles. Hence, microcycle period is 1/K of

user clock cycle period.

3.3 Time-Multiplexed Wires

In FPGAs, route of a net very often consists of multiple wire segments. When

the signal transition propagates from net source to net sinks, a wire in the route

is idle before the signal transition arrives and after the transition leaves. That is,

the net occupies the wire only for a short interval in a clock cycle.

In tm-arch FPGAs, multiple nets can time-multiplex a wire segment, given

that these nets occupy the wire at different microcycles in a clock cycle. This can

be best illustrated by the example shown in Figure 3.2(a). Assume that in this

tm-arch device, a user clock cycle is divided into two microcycles. A wire w1 is

included in the route of both net N1 and net N2. This is allowed because N1 and

N2 occupy the wire at different microcycles in a clock cycle. N1 uses this wire at

interval [T/4, T/3], hence resides in the 1st microcycle. And N2 uses this wire

at [2T/3, 3T/4], hence resides in the 2nd microcycle. Figure 3.2(b) illustrates the

time intervals in which N1 and N2 occupy the wire.
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Fig. 3.2: (a) Signals of N1 and N2 time-multiplex a wire; (b) N1 and N2 do not overlap in the
time domain; (c) On/off state of the TM switches.

3.4 TM Switch

In tm-arch architecture, it is TM switches that provide hardware support for

time-multiplexing of wires. Compared with switches in conventional FPGAs, TM

switches have two features. First, a TM switch is associated with multiple contexts.

Second, a TM switch is able to latch data. Section 3.4.1 and 3.4.2 present these

two features respectively.

3.4.1 Multiple Contexts

In conventional FPGAs, a switch has only one context, and assumes that

context until the whole FPGA is re-programmed 1. This re-programming usually

requires that the circuit’s operation has to be suspended. A switch’s context de-

1Some modern commercial FPGAs support an advanced feature called partial reconfiguration.
In the case of partial reconfiguration, a switch assumes its context until the region where it resides
is re-programmed.

41



CHAPTER 3. FPGAs with Time-Multiplexed Interconnects

termines its on/off state. For it assumes the one context until re-programming, a

switch’s on/off state will not change throughout the circuit’s operation.

In our proposed architecture, a TM switch has K contexts: one context for

each microcycle. As the time ticks through the K microcycles in a user clock cycle,

a TM switch sequences through the K contexts. As a result, a TM switch’s on/off

state can change on-the-fly during the circuit’s operation. This unique feature

of TM switches provides the support for the time-multiplexing of wires in our

architecture.

As an illustration, Figure 3.2(c) lists the on/off states of TM switches (S1, S2,

S3, and S4) that can realize the time-multiplexing shown in Figure 3.2(a). In this

case, the TM switches have two contexts, and sequence through the two contexts

in a clock cycle. More specifically, the TM switches assume the first context in the

first half of the cycle (i.e., 1st microcycle), and the second context in the second

half cycle (i.e., 2nd microcycle).

3.4.2 Latching Capability of TM Switch

Another feature of TM switch is that it latches the current logic value when

it transits from on state to off state.

The necessity for this capability of latching data is best illustrated by the

example shown in Figure 3.2. In the 1st half cycle, TM switches S1 and S3 are

on. Hence, the connection w2-w1-w3 is maintained for signal of net N1. In the

2nd half cycle, TM switches S2 and S4 turn on, while S1 and S3 turn off. Hence,

the connection w4-w1-w5 is maintained for signal of net N2, while the connection

w2-w1-w3 is broken. Now consider the wire w3 in the 2nd half cycle. To prevent w3

from floating, the switch S3 needs to serve as the driver. This is when the latching
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capability comes to rescue. When it transits from on to off, S3 latches the current

logic vale, and then drives w3.

Note that in Francis’ architecture [10], the latching capability is provided by

the wire itself, not the switch. This marks an important difference between Francis’

architecture and ours. A derived difference is that our architecture does not need

to deploy latches at look-up table inputs.

3.5 TM Switch Design

To help understand TM switch’s behavior described in section 3.4, in this

section we present our circuitry design for TM switches. Since this thesis does not

claim circuit design for TM switches as one of the main contributions, the circuit

design presented here may not be optimal, in terms of area or timing.

Section 3.5.1 first presents design of TM pass transistor. TM pass transistor

is extended from a simple NMOS pass transistor. It is a basic structure used by

us to build TM switches. Section 3.5.2 presents how we use TM pass transistor to

build TM switches that have multiple contexts. Section 3.5.3 then presents how

we use TM pass transistor to add data latching ability into TM switches.

3.5.1 TM Pass Transistor

A basic component used in both bi-directional and uni-directional wiring is the

pass transistor. The gate of pass transistor (usually NMOS) is connected to one bit

of configuration memory (or, one memory cell). Hence, the pass transistor’s on/off

state is controlled by this bit. An input line connects to the in terminal; and the

out terminal connects to the downstream circuitry (another NMOS pass transistor
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Fig. 3.3: A pass transistor controlled by a SRAM cell
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Fig. 3.4: A TM pass transistor

in the case of two-level hybrid multiplexer, as shown in Figure 2.5). Figure 3.3

illustrates this basic component.

In our work, we extend this basic component in the following way. First, we

back the pass transistor with K bits of memory. Then, we use a K:1 multiplexer to

select one out of the K memory bits. Third, we use a circular counter to generate

the select signals. This counter is clocked by a fast clock signal (Clkf ), of which

the frequency is K times that of system clock (Clk). The counter counts from

0 upwards to K − 1 repeatedly. Figure 3.4 illustrates our extension. For the

sake of brevity, hereafter we will refer to this extended pass transistor as TM pass

transistor.

Now we examine how the TM pass transistor works. Without loss of generality,

we assume K=2 for this moment. The pass transistor now is backed by two bits,
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Table 3.1: Pass transistor’s on/off state in 1st and 2nd half cycles for different configurations

MC1MC2 1st half cycle 2nd half cycle
00 Off Off
01 Off On
10 On Off
11 On On

MC1 and MC2. The 2:1 multiplexer’s one-bit select signal is generated by the

counter. The counter counts 0, 1, 0, 1, and so on. Frequency of Clkf is two times

that of Clk.

Assume that MC1 will be selected that if the select signal is 0, and MC2 will

be selected otherwise. In the first half cycle of Clk, counter value is 0, so MC1

controls the on/off state of the pass transistor. In the second half cycle of Clk,

counter value is 1, so MC2 controls the pass transistor. Table 3.1 lists the pass

transistor’s on/off state for different combinations of MC1 and MC2.

Comparing Figure 3.3 with Figure 3.4, one finds that our extension brings in

area overhead. The area due to configuration memory increases by a factor of K.

Also, an extra K:1 multiplexer is required for the TM pass transistor. However,

the counter can possibly be shared by a number of TM pass transistors.

3.5.2 Design for Multiple Contexts

Now we use TM pass transistor to build TM switches with multiple contexts.

Switches in conventional island-style FPGAs are of different types. For example,

pass transistor switch and tri-state buffer switch are the two common types for bi-

directional wiring; direct drive mux switch is widely used for uni-directional wiring.

For major commercial FPGA vendors are now using uni-directional wiring, here
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Fig. 3.5: A direct drive mux type switch. Its multiplexer selects one from four input lines.
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Fig. 3.6: A TM switch of direct drive mux type. For the sake of illustration, circular counters are
not shown, and K is assumed to be 2.

we present how we use TM pass transistor to build direct drive mux -type TM

switches with multiple contexts.

Figure 3.5 illustrates a direct drive mux switch which selects one from four

input lines to drive its output line. The 4-to-1 multiplexer, implemented with

NMOS pass transistors, assumes a two-level hybrid topology. Figure 3.6 illustrates

a TM switch of direct drive mux type. Comparing Figure 3.6 with Figure 3.5, one

can see that TM pass transistors replace NMOS pass transistors. Notice that TM

pass transistor s0 and s2 share the configuration memory cells. So do s1 and s3.

Now we see how we can use this TM switch to enable the time-multiplexing
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Table 3.2: Configurations of TM pass transisotrs to achieve the time-multiplexing in Figure 3.2.

MC1 MC2

s0 & s2 0 1
s1 & s3 1 0

s4 1 0
s5 0 1

shown in Figure 3.2. From Section 3.3, we know that net N1 uses wire w1 in the 1st

microcycle and net N2 uses wire w1 in the 2nd cycle. Hence the connection w2-w1

needs be on in the 1st microcycle and off in the 2nd microcycle. The connection

w4-w1 needs be off in the 1st microcycle and on in the 2nd microcycle.

Now we deploy the TM switch at the left endpoint of wire w1
2. Without

loss of generality, we assume that wire w2 connects to input line in1, and wire w4

connects to input line in2. Output line out connects to wire w1. Table 3.2 shows

configurations of TM pass transistors s0 - s5 that could meet requirement of the

time-multiplexing in Figure 3.2.

3.5.3 Design for Latching Ability

The direct drive mux TM switch present in the previous section has multiple

contexts. But it does not have the ability to latch data. Here we add one more

TM pass transistor (s6) to it and obtain its latching ability by feeding the buffer

output back to the buffer input. This is illustrated in Figure 3.7. At any particular

microcycle, the feedback loop is enabled (or disabled) if s6’s configuration bit at

this microcycle is 1 (or 0).

Now we see how we can use this TM switch to provide the data latching

2Note that now the TM switch replace the two switches S1 and S2 in Figure 3.2.
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in0 in1

in3in2

out

MUX

MC1 MC2

s0 s1

s2 s3

s4

s5

s6

Buffer

Fig. 3.7: A TM switch of direct drive mux type. For the sake of illustration, circular counters are
not shown, and K is assumed to be 2. Notice that this TM switch can latch data.

Table 3.3: Configurations of TM pass transisotrs to achieve the time-multiplexing in Figure 3.2.

MC1 MC2

s0 & s2 0 0
s1 & s3 1 0

s4 0 0
s5 1 0
s6 0 1

required in Figure 3.2. From Section 3.4.2, we know that connection w1-w3 needs

be off in the 2nd microcycle. The switch S3 needs drive w3 in the 2nd microcycle

to prevent w3 from floating.

Now we deploy the TM switch shown in Figure 3.7 at the lower end point of

wire w3
3. Without loss of generality, we assume that wire w1 connects to input

line in3, and output line out connects to wire w3. Table 3.3 shows configurations

of TM pass transistors s0 - s6 that could meet requirement of the time-multiplexing

in Figure 3.2.

3Note that now the TM switch replaces the switch S3 in Figure 3.2.
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Chapter 4

Time-Multiplexing -Aware

Timing-Driven Routing

Algorithm

This chapter presents our proposed time-multiplexing -aware timing-driven

routing algorithm. This algorithm is intended to route a circuit onto tm-arch

FPGAs. Section 4.1 presents formulation of the problem. Our algorithm is an

extension of VPR 5 timing-driven routing algorithm, which has been well docu-

mented [6] [20]. Hence this chapter focuses on our major improvements relative to

VPR 5 algorithm.

One technique introduced in our algorithm is signal’s occupation bitmap. Oc-

cupation bitmap indicates at which microcycle(s) this signal would probably use a

wire. Section 4.2 presents this technique and explains how we compute occupation

bitmap. A second technique introduced in our algorithm is to compute a wire’s

congestion penalty on a microcycle basis. This is to cater to tm-arch architecture,
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in which a wire can be used by nets on a microcycle basis. Section 4.3 presents

this technique and explains how we compute a wire’s congestion penalty at each

microcycle. An important innovation of our algorithm is time-multiplexing -aware

congestion cost, which is the key to our algorithm’s ability to identify and schedule

multiple nets to time-multiplex a wire. Section 4.4 describes formulation of our

time-multiplexing -aware congestion cost.

Section 4.5 presents formulation of our overall cost, which includes a congestion

sensitive term and a delay sensitive term. This overall cost function gives our

algorithm the ability to resolve congestion and optimize timing. Section 4.6 defines

how we determine that a routing solution is legal for tm-arch architecture. The

used criterion is slightly different from that of VPR 5 router.

Finally, Section 4.7 puts all these together and presents pseudo code of our

algorithm. And Section 4.8 gives some further details of our algorithm. Section

4.9 presents analysis of our algorithm on its time complexity, memory requirement,

and unroutability detection.

4.1 Problem Formulation

A routing-resource graph G(V, E) is used to represent the routing resources

in tm-arch and their connections. The set of vertices (or nodes) V corresponds

to wires or CLB pins, and the set of edges E to switches. Associated with each

node and each edge, there is a delay d. A node’s capacity Cap is defined as the

maximum number of different nets that can use this node at a microcycle. We

define that, in tm-arch architecture, Cap equals to 1 for the nodes corresponding

to wires. This is so, because at any microcycle a wire must be used by at most one
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in1 in2
out

wire1

wire2

wire3 wire42-LUT

wire1 (1)

wire3 (1)
wire4 (1)

wire2 (1)

out (1)

source (1)

in2 (1)in1 (1)

sink (2)

Fig. 4.1: Representing tm-arch architecture as a routing resource graph

net. Fig. 4.1 shows the routing-resource graph for a portion of a tm-arch device

with K=2. The number shown next to the node name denotes a node’s capacity.

Note that source and sink are two dummy nodes. A capacity of 2 is assigned to

sink to model the logic equivalence of the two input pins of the 2-input LUT.

For a signal i to be routed in tm-arch, its net Ni is a set of terminals,

including the source terminal si and sink terminals sij. Ni forms a subset of V .

A routing solution to net Ni is a directed routing tree RTi embedded in G and

connecting si with all sij.

The task of a router for our tm-arch architecture is to route all the nets and

optimize the circuit delay at the same time. Since a wire can be time-multiplexed

in tm-arch, the router should be able to identify and schedule multiple nets to

time-multiplex a wire.

4.2 Signal’s Occupation Bitmap

Our time-multiplexing -aware routing algorithm is able to identify a signal (or,

net) that may multiplex a wire with other signals. And it does this on-the-fly while
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routing the signal net. Our algorithm achieves this capability by actively tracking

a signal’s arrival and leave time at a wire. Based on these two timing values, it

computes occupation bitmap for this signal. This occupation bitmap indicates at

which microcycle(s) this signal would probably use this wire.

Section 4.2.1 describes how we compute signal arrival and leave times and

record them internally in our data structure. Section 4.2.2 describes how we com-

pute and record occupation bitmap.

4.2.1 Arrival Time and Leave Time

At the core of Pathfinder algorithm, VPR 5 routing algorithm, and our algo-

rithm is a maze router. The maze router routes a net by starting from the net

source and wave-expanding over the routing-resource graph until the wave-front

reaches the destination sink of the net. This process is called wave expansion. The

maze router then back-traces and records the path from net source to sink.

In our algorithm for each wire being expanded, we compute two timing values,

arrival time (tarrival) and leave time (tleave). As its name suggests, tarrival is the

time at which the signal arrives at this wire. And tleave is the time at which the

signal leaves this wire. They can be formally defined as:

tarrival(n) =
∑

m∈path from source(i) to n

dm + Tarrival(source(i)) (4.1)

tleave(n) = tarrival(n) + dn (4.2)

In Equation 4.1 the first term on the right hand side evaluates to the delay from

source of net i to the node n. The second term is signal arrival time at source of
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net i, as computed according to Equation 2.5.1 The sum of these two terms gives

the signal arrival time at the node n.

In Equation 4.2, dn is node n’s delay. That is, it takes the signal dn time

to pass through node n. The value of dn is specified in FPGA architecture files.

Hence, the sum of tarrival and dn gives the signal leave time.

Like VPR timing-driven router, our router uses a heap data structure to fa-

cilitate wave expansion. When a node n is added to the heap, we store its tleave.

Later when any of n’s fan-out nodes is being expanded, we compute the fan-out

node’s arrival and leave time as:

tarrival(m) = tleave(n) (4.3)

tleave(m) = tarrival(m) + dm (4.4)

, in which m is a fan-out node of n.

In this way, we incrementally compute a node’s arrival and leave time, rather

than start from the net source and compute all the way down to the current node.

For each wire included in a net’s route, we record the signal arrival time and

leave time. During the routing, at sometime a wire may be included in multiple

nets’ routes. In this case, we record all these nets’ arrival/ leave time at the wire.

Internally we implement this using a linked list. Each list node stores the net index,

signal arrival time, and signal leave time. We put the linked list under the wire.

Going through this list, we know all the nets currently using the wire, and their

1Equation 2.5 computes signal arrival time for nodes in the timing graph. VPR actually does
not create a node for a net source in timing graph. But it does create a node for the logic block
output pin which drives the net. Hence we set Tarrival(source(i)) to be the arrival time at the
driving node.
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Net
index
tarrival

tleave

... ... ...

tarrival tarrival

tleave tleave

Net
index

Net
index

Fig. 4.2: A linked list to record all the nets currently using the wire.

arrival/ leave times.

Figure 4.2 illustrates such a linked list. In this case, three nets are currently

using the wire in their routes.

4.2.2 Occupation Bitmap

For each wire being expanded, we use the above calculated tarrival and tleave

values to compute what we call occupation bitmap. This bitmap is used by us

to represent occupation of a wire n by a net i at difference microcycles. It is an

array consisting of K elements. Each element corresponds to a microcycle: the first

element corresponds to the 1st microcycle, and the last to the K-th microcycle.

Each element in the bitmap array takes a binary value (0 or 1). A value of “1”

means that the net occupies the wire at the corresponding microcycle. A value of

“0” means that the net does not occupy the wire at the corresponding microcycle.

The formula we use to calculate each element in the array is as follows:

Bitmap[k] =





0, if tarrival > kTucycle or tleave < (k − 1)Tucycle

1, else
(4.5)
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Tucycle = Tcrit/K (4.6)

, in which k is in the range [1, K]. The basic idea behind this equation is that the

net does not occupy the wire at a particular microcycle, if the net’s signal arrives

after this microcycle or the signal leaves before this microcycle.

Figure 4.3 presents the pseudo code of the algorithm we use to compute

bitmaps. First, we reset all K elements in the bitmap array (line 1 - 3). Then

we determine the very microcycle in which the signal arrives, and denote it with a

variable begin (line 5 - 9). After that, we determine the very microcycle in which

the signal leaves, and denote it with a variable end (line 10 - 14). Finally, we set

all the microcycles between begin and end to 1 (line 15 - 17), for these are the

microcycles in which the net will occupy the wire.

For each wire included in a net i’s route, we also record the bitmap array.

Recall from Section 4.2.1 that, for each wire included in a net i’s route, we have

recorded net i’s signal arrival and leave time at the wire. We use these recorded

tarrival and tleave to compute the bitmap. And the computed bitmap is recorded

along with tarrival and tleave. As in the case of tarrival and tleave, we record multiple

bitmaps if a wire is included in multiple net’s routes.

Figure 4.4 shows the same linked list as that in Figure 4.2, but with the

corresponding bitmap computed and recorded in each list node.

4.3 Congestion Penalties at Microcycles

Pathfinder algorithm uses occupancy to record the number of nets currently

using a wire. This occupancy indicates the degree of congestion at the wire: a larger

occupancy value means more congestion. Suppose that Pathfinder is currently
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tarrival : Signal arrival time at wire n; 
tleave : Signal arrival time at wire n; 
Tcrit : Circuit critical path delay; 
K : Number of microcycles in a clock cycle; 
 
1. for (i=1; i <=K; i++) { 
2.     Bitmap[i] = 0; 
3. } 
4. Tucycle = Tcrit / K; 
5. for (i=1; i <=K; i++) { 
6.     if (tarrival > (i-1)* Tucycle && tarrival < i* Tucycle) { 
7.         begin = i; 
8.         break; 
9. } 
10. for (i=1; i <=K; i++) { 
11.     if (tleave > (i-1)* Tucycle && tleave < i* Tucycle) { 
12.         end = i; 
13.         break; 
14. } 
15. for (i=begin; i <=end; i++) { 
16.     Bitmap[i] = 1; 
17. } 

Fig. 4.3: Pseudo code of our algorithm to compute occupation bitmaps.

Net
index
tarrival

tleave

Bitmap Bitmap Bitmap

tarrival tarrival

tleave tleave

Net
index

Net
index

... ... ...

Fig. 4.4: A linked list to record all the nets currently using the wire.
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routing a net. When its wave-front arrives at a wire with a large occupancy during

wave expansion, Pathfinder assigns a large congestion penalty to this wire. In the

end from the standpoint of resolving congestion, Pathfinder is unlikely to include

this wire in the routing path of the net.

In tm-arch FPGA devices, a wire can be used by nets on a microcycle basis.

Hence our algorithm uses micro occupancy to record the number of nets currently

using a wire at each microcycle. This micro occupancy indicates the degree of con-

gestion at the wire’s each microcycle. Now suppose that our algorithm is currently

routing a net on a tm-arch FPGA. When its wave-front arrives at a wire, our

algorithm then computes congestion penalties at the wire’s each microcycle based

on the wire’s micro occupancy values. At a microcycle, a larger micro occupancy

leads to a larger congestion penalty.

Section 4.3.1 details how we compute and maintain micro occupancy values

for a wire. Section 4.3.2 details how we compute a wire’s two congestion penalties

(present congestion penalty and historical congestion penalty) based on the wire’s

micro occupancy.

4.3.1 Micro Occupancy

We use micro occupancy to record the number of nets that are currently using

a wire at each microcycle. Defined for each wire, micro occupancy is an array

consisting of K elements. Each element corresponds to a microcycle: the first

element corresponds to the 1st microcycle, and the last to the K-th microcycle.

Each element in the array takes an integer value. The value represents the

number of nets that are currently using the wire at the corresponding microcycle.

In short, micro occupancy records a wire’s occupancy at each microcycle.
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Initially all elements of each wire’s micro occupancy are zeros. When a wire n

is included in a net i’s route, n’s micro occupancy is updated based on the bitmap

as computed in section 4.2.2.

uOcc[k] =





uOcc[k] + 1, if Bitmap[k] = 1

uOcc[k], else
(4.7)

The idea behind Equation 4.7 is simple. The k-th element of bitmap being 1 means

that the net occupies the wire in the k-th microcycle. Hence, the k-th element of

wire n’s micro occupancy increases by one, as wire n is now included in net i’s

route.

When a net i is being ripped-up, micro occupancy of all the wires in net i’s

route are also updated.

uOcc[k] =





uOcc[k]− 1, if Bitmap[k] = 1

uOcc[k], else
(4.8)

The idea here is similar. Since wire n was occupied by net i in the k-th microcycle,

and net i is now being ripped-up, we need to decrease micro occupancy’s k-th

element by one.

4.3.2 Present and Historical Congestion Penalty

For we have micro occupancy records, we can define and compute a wire n’s

present and historical congestion penalty in each microcycle.

The formulas we use to compute present and historical congestion penalty are
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Table 4.1: Routing schedule of our time-multiplexing -aware routing algorithm

Routing Schedule Value
pfac 0.5 in the first and the second routing iteration;

1.3 times its previous value from the third iterations onwards.
hfac 1.0 for all the iterations

listed as follows:

p[k] = 1 + max(0, pfac[uOcc[k] + 1− Cap]) (4.9)

h[k]i =





1, i = 1

h[k]i−1 + max(0, hfac[uOcc[k]− Cap]), i > 1
(4.10)

Note that these two formulas are essentially the same as those used by VPR au-

thors. In VPR router, the formulas are used to compute a wire’s present and

historical congestion penalty. And here the formulas are used to present and his-

torical congestion penalty in each microcycle.

Like VPR authors, we update p[k] for all the affected wires whenever any net

is ripped-up and re-routed. And we update h[k] for all wires only after an entire

routing iteration.

Routing schedule defines the value of hfac and pfac in each routing iteration.

Table 4.1 lists the routing schedule used by us. This is the default routing schedule

of VPR 5.
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4.4 Multiplexing-aware Congestion Cost

A key innovation of our algorithm is time-multiplexing -aware congestion cost.

The idea behind this congestion cost is simple. If a wire in tm-arch FPGAs

is currently used by two signals and these two signals use this wire at mutually

exclusive microcycles, our algorithm should not see congestion at this wire. This is

so, because these two signals time-multiplex this wire, hence cause no congestion.

We have shown in Section 4.2 that, while it is routing a signal, our algorithm

computes this signal’s occupation bitmap at a wire being expanded. This occupa-

tion bitmap indicates at which microcycle(s) this signal would probably use this

wire. Then we have shown in Section 4.3 that, our algorithm computes congestion

penalties at a wire’s each microcycle based on the wire’s micro occupancy values.

We in this section show how our algorithm computes the time-multiplexing -aware

congestion cost based on a signal’s occupation bitmap and a wire’s congestion

penalties at microcycles.

Figure 4.5 presents the pseudo code of our algorithm to compute a wire’s

congestion cost during wave expansion. Here we assume that we have already

computed the bitmap array, as described in Section 4.2. Further more, we assume

that the present and historical congestion penalties in each microcycle are up-to-

date.

Line 1 - 4 loops over all the microcyles, and records the largest historical

congestion penalty. Line 5 - 10 looks for the first “1” value in the bitmap array,

and sets the begin index. This index indicates from which microcycle the wire’s

occupation by the wire starts. Similarly, line 11 - 16 sets the end index, which

indicates the microcycle until which the occupation ends. Line 17 - 20 records
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Bitmap[1..K] : Bitmap array of net i at wire n; 
pn[1..K] : Present congestion penalty array of wire n; 
hn[1..K] : Historical congestion penalty array of wire n; 
bn : Base cost of wire n; 
 
1. accCost = 0.; 
2. for (i=1; i <=K; i++) { 
3.     accCost = max(accCost, hn[i]) 
4. } 
5. for (i=1; i <=K; i++) { 
6.     if (Bitmap[i] == 1) { 
7.         begin = i; 
8.         break; 
9.     } 
10. } 
11. for (i=begin; i <=K; i++) { 
12.     if (Bitmap[i] == 0) { 
13.         end = i-1; 
14.         break; 
15.     } 
16. } 
17. presCost = 0.; 
18. for (i=begin; i <=end; i++) { 
19.     presCost = max(presCost, pn[i]) 
20. } 
21. cCost = presCost*accCost*bn 

Fig. 4.5: Pseudo code of our algorithm to compute congestion cost.
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the largest present congestion penalty in the microcycles between begin and end

inclusive. Finally line 21 computes the congestion cost, which is the product of the

wire’s base cost, the largest historical congestion penalty found, and the largest

present congestion penalty found.

cCost = pn ∗ hn ∗ bn (4.11)

Note that Equation 4.11 is modeled after the equation that VPR router uses to

compute congestion cost. The differences here are

• For pn, we use the largest present congestion penalty found in the microcycles

during which the wire is occupied.

• For hn, we use the largest historical congestion penalty found in all the mi-

crocycles.

The whole idea here is to make the congestion cost multiplexing-aware. A

net occupying a wire from the begin-th microcycle until the end-th microcycle

needs be aware of congestion in these microcycles only. It needs not concern about

congestion in the other microcycles.

4.5 Overall Cost Function

Like that of VPR timing-driven router, the overall cost function of our router is

the sum of two terms. One is the congestion sensitive term, which is the congestion

cost as computed in Section 4.4. The other is the delay sensitive term. We follow

VPR authors’ practice which uses the wire intrinsic delay as the delay cost, and
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weighs the two terms based on the connection’s timing criticality. Equation 4.12

presents the overall cost function used in our routing algorithm.

c(n) = Crit(i, j) ∗ d(n) + [1− Crit(i, j)] ∗ cCost(n) (4.12)

4.6 Legal Routing Solution

Like the VPR router, after each routing iteration our time-multiplexing -aware

router checks if the current routing solution is legal. If yes, our router exits and

returns this routing solution. If not, the router starts another iteration. By default

our router will try at most 50 iterations before giving up.

A legal routing solution contains no overused routing resources. A wire that

is multiplexed by multiple nets is not overused, as long as it is occupied by at

most one net in any microcycle. Mathematically, our router checks if the following

condition holds in each microcycle.

uOcc[k] ≤ 1 k ∈ [1, K] (4.13)

4.7 Pseudo Code

Figure 4.6 presents pseudo code of our time-multiplexing -aware timing-driven

routing algorithm. This algorithm largely follows VPR 5 timing-driven routing

algorithm. Hence here we only point out our major improvements relative to VPR

5 timing-driven routing algorithm.

Lines 13, 22, and 26 reflect the fact that our algorithm computes and updates

signal arrival and leave times. This has been detailed in Section 4.2.1. Lines 14,
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Gt: Circuit timing graph
Q(i): Priority queue used while routing net Ni

RT (i): Routing tree of net Ni

Source(i): Source of net Ni

1 Back-annotate placement delays of all nets into Gt;
2 Propagate timing in Gt, and compute Tcrit;
3 Crit(i, j) = 1.0 for all i and j;
4 while (overused resources exist) {
5 for (each net Ni) {
6 Rip-up RT (i), and update p(n) for all nodes n in RT (i);
7 RT (i) = Source(i);
8 for (each sink j of net Ni in decreasing Crit(i, j) order) {
9 Q(i) = RT (i);
10 while (sink(i, j) not found) { /* Wave expansion */
11 Remove lowest cost node, m, from Q(i);
12 for (all fanout nodes n of node m) {
13 Calculate tarrival and tleave for n;
14 Calculate B(i, n) using current Tcrit;
15 Evaluate c(n);
16 Add n to the Q(i);
17 }
18 } /* Routing of one sink is finished. */
19 for (all nodes, n, in path from RT (i) to sink(i, j)) {
20 Update p(n);
21 Add n to RT (i);
22 Calculate tarrival and tleave for n;
23 Calculate B(i, n) using current Tcrit;
24 }
25 Update Elmore delay of RT (i);
26 Update tarrival and tleave for all n in RT (i);
27 Update B(i, n) all n in RT (i);
28 } /* Routing of one net is finished. */
29 } /* Routing of all nets are finished. */
30 Back-annotate Elmore delays of RT (i) of all nets i into Gt;
31 Propagate timing in Gt, and compute Tcrit;
32 Update B(i, n) for all nets Ni on all nodes n;
33 Update h(n) for all nodes n;
34 Update Crit(i, j);
35 } /* End of one routing iteration*/

Fig. 4.6: Time-multiplexing -aware timing-driven routing algorithm pseudo-code
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23, 27, and 32 reflect the fact that our algorithm computes and updates occupa-

tion bitmap of wires. This has been detailed in Section 4.2.2. Lines 6 and 20

are where our algorithm computes present congestion penalties at microcycles for

wires. And line 33 is where our algorithm computes historical congestion penalties

at microcycles. Present and historical congestion penalties at microcycles have been

detailed in Section 4.3. Line 15 is where our algorithm computes time-multiplexing

-aware congestion cost for a wire and then evaluates this wire’s overall cost. Time-

multiplexing -aware congestion cost and the overall cost have been detailed in

Section 4.4 and Section 4.5, respectively. Finally, line 4 is where our routing algo-

rithm checks if there are any congested routing resources remaining. This has been

detailed in Section 4.6.

4.8 Further Details

Section 4.2.2 has described how we compute occupation bitmap. For our

algorithm relies on this occupation bitmap to determine at which microcycle(s)

this signal would probably use this wire, it is desirable that the occupation bitmap

is accurate. From Equation 4.5 in Section 4.2.2, we can see that occupation bitmap

is a function of both signal arrival/ leave times (tarrival & tleave) and circuit critical

path delay (Tcrit). Hence accuracy of occupation bitmap depends on that of tarrival,

tleave, and Tcrit.

Our algorithm contains some improvements relative to the VPR 5 algorithm so

as to ensure that the computed tarrival, tleave, and Tcrit values are accurate enough.

This section describes these improvements.
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4.8.1 Accuracy of tarrival and tleave

In our time-multiplexing -aware routing algorithm, there are two cases when

we need to compute tarrival and tleave for a node n:

• The node n is being expanded during the wave expansion from source of net

i to one of its sink sij;

• The node n has been included in a routing path from source of net i to one

of its sink sij.

In both cases, we compute tarrival and tleave based on a partial routing tree. But

this partial routing tree will change subsequently. In the first case, more nodes will

be expanded and possibly included, at the downstream of n, in the routing path

from net source to sij; in the second case, n may be included in routing paths from

net source to its other sinks.

This has implications on the accuracy and validity of computed tarrival and

tleave values. In some FPGA architectures, delay of a node depends on the topology

of the routing tree. For example, this is the case with the old-style VPR version 4.30

routing architectures. As a result, computed tarrival and tleave values will become

inaccurate and invalid, as the partial routing tree’s topology gets changed.

To address this problem, we update tarrival and tleave for all the nodes in the

current partial routing tree, after routing for each sink is done. This ensures that

the latest routing tree topology is taken into consideration, hence tarrival and tleave

values are as accurate as possible.

Note that this problem does not exist for the constant delay model. In constant

delay model, delay of a node does not depend on topology of the routing tree.
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Also recall that values of tarrival and tleave depend on Tarrival(source(i)), signal

arrival time at source of net i. Tarrival(source(i)) is computed by the static timing

analyzer, when the timing analyzer traverses the timing graph to compute Tcrit.

Due to Pathfinder’s nature of routing nets one after one, the timing analyzer does

its task only after all nets are routed. Indeed, in VPR timing-driven router, the

timing analyzer is triggered only once in one iteration.

Hence, we can only use Tarrival(source(i)) value computed in the last iteration.

But this make computed values of tarrival and tleave inaccurate, for Tarrival(source(i))

actually oscillates over the iterations.

To address this problem, we could call the static timing analyzer and have it

compute Tarrival(source(i)) after each net is routed. This ensures that Tarrival(source(i))

is as accurate as possible. A minor problem caused by this approach is increased

running time.

Fortunately, we can make use of the fact that Tarrival(source(i)) is mostly

affected by critical nets. This means that we need not call the static timing analyzer

after each net is routed. Instead we could call the static timing analyzer only after a

critical net is routed. This saves considerable running time without compromising

the accuracy of Tarrival(source(i)).

4.8.2 Accuracy of Tcrit

According to Equation 4.5, we need to know Tcrit value as well to compute the

bitmap. Recall that the value of Tcrit is determined by the path-based static timing

analyzer. The timing analyzer traverses the timing graph and computes Tcrit, after

all nets are routed. As said in Section 4.8.1, in VPR timing-driven router, the

timing analyzer is triggered only once in one iteration.
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Similar to the case of Tarrival(source(i)), we can use Tcrit value computed in

the last iteration. But this value may be inaccurate, for Tcrit value also oscillates

over the iterations.

Fortunately this problem can be solved by the approach we present in Sec-

tion 4.8.1 to solve the problem of Tarrival(source(i)) accuracy. When it performs

the breadth-first traversal on the timing graph, the timing analyzer computes

Tarrival(source(i)) as well as Tcrit. Hence, the approach improves the accuracy

of both Tarrival(source(i)) and Tcrit values.

4.9 Analysis of Algorithm

In this section, we present analysis of our algorithm. We focus on its time

complexity, memory requirement, and unroutability detection ability.

4.9.1 Time Complexity

Now we analyze timing complexity of the presented time-multiplexing -aware

timing-driven routing algorithm. The algorithm is iteration-based, and the number

of iterations is always capped at a fixed number in practice. As a result, it suffices

to analyze complexity of one iteration in the algorithm.

By looking at the pseudo-code shown in Figure 4.6, one can observe that, one

iteration consists of two parts. The first part is netlist routing (line 5 - 29), and

the second is post-processing (line 30 - 34). Let’s examine each of the two parts

individually.

Netlist routing part consists of running a net routing algorithm for each net in

circuit netlist. It has been shown that typical complexity of net routing algorithm
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in Pathfinder is O(k2logk) [6]. k is the number of terminals that a net has. In

our presented algorithm, the extra computations introduced during net routing

include:

• Computing signal arrival and leave times (line 13, 22, and 26);

• Computing occupation bitmap (line 14, 23, ad 27);

From Section 4.2.1, we know that it takes only constant time to compute

signal arrival and leave times for a routing-resource node n. From Section 4.2.2,

we know that it takes O(K) time to compute occupation bitmap. K is the number

of microcycles in a user clock cycle. However, we limit K to 8 in our work, as we

will see in later chapters. As a result, we can consider that, in practice, it takes

only constant time to compute occupation bitmap.

Taking the above into considerations, we can conclude that, in our presented

algorithm, routing a k-terminal net typically takes O(k2logk) time. This is the

same as that in Pathfinder.

Next, let’s examine the post-processing part. The main computation here is

performing static timing analysis on timing graph to compute Tcrit (line 31). The

critical path method (CPM) algorithm employed and implemented in VPR 5 is

re-used here. It has been shown in [27] that this algorithm has a complexity of

O(V + E). V is the number of vertices in the circuit timing graph, and E is the

number of edges in the timing graph.

As for other operations in post-processing part, back-annotation of routing tree

Elmore delay (line 30) takes O(C) time, where C denotes the number of source-sink

connections in circuit; Both computing occupation bitmap (line 32) and updating

historical congestion penalties for all nodes (line 33) takes O(R) time, where R
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denotes the number of nodes in routing-resource graph.

4.9.2 Memory Requirement

For our presented algorithm, memory requirement is mainly due to FPGA

routing-resource graph and circuit timing graph.

For each node in the routing-source graph, we store its physical information

(for example, coordinates), connectivity information (for example, number and

type of outgoing edges), timing information (for example, its resistance and capac-

itance), congestion information (capacity, micro occupancies, present and historical

congestion penalties, etc), and some extra information needed for maze expansion.

Generally memory requirement due to routing-resource graph is O(R). R denotes

the number of nodes in routing-resource graph.

For each vertex in timing graph, we store connectivity information (for exam-

ple, number of outgoing edges) and timing information (for example, arrival time

of the last input signal). For each edge in timing graph, we also store connectivity

information (for example, destination timing node) and timing information (for

example, delay). Generally memory requirement due to timing graph is O(V +E).

V is the number of vertices in the circuit timing graph, and E is the number of

edges in the timing graph.

4.9.3 Unroutability Detection

Our presented algorithm uses a heuristic way to detect unroutability. Like

Pathfinder algorithm, our algorithm will only declare that the given placement is

un-routable on the given FPGA after 50 iterations. But this process will take a
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long time. A possible future work to enhance our algorithm is to add the quick

unroutability detection ability.
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Architecture Evaluation

In this chapter, we evaluate our proposed time-multiplexed interconnect ar-

chitecture tm-arch. The evaluation has two major foci: (1) comparing the time-

multiplexed architecture with the conventional architecture, and (2) comparing

time-multiplexed architectures of different K values. Architectural evaluations of

similar foci have been done by previous researchers, as part of their work on time-

multiplexed architecture. In the next section, we review some results from the

literature.

We evaluate interconnect architectures experimentally. We use the standard

CAD flow which is widely used in the FPGA research community. We use various

metrics, including minimum channel width, routing area, circuit critical path delay,

and area-delay product. Section 5.2 details our experiment flow and evaluation

metrics, as well as the area model, delay model, and our assumptions regarding

some significant architectural details.
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Table 5.1: Channel width comparison between Trimberger’s architecture and XC4000E architec-
ture. Data of the former architecture is from [35] Table 1, and data of the later is from [38] Table
14.

Trimberger’s XC4000E
Wire Types Vertical Horizontal Vertical Horizontal
Singles 8 8 8 8
Doubles 0 0 4 4
Quads 8 8 0 0
Octals 8 8 0 0
Long Lines 0 6 6 6

5.1 Key Results from Related Work

Trimberger et al revealed that their proposed time-multiplexed FPGA requires

larger channel widths than its conventional counterpart [35]. Their architecture is

based on Xilinx XC4000E architecture, and divides a user clock cycle into eight

microcycles. It time-multiplexes both logic blocks and interconnects. Table 5.1

compares channel widths between their architecture and XC4000E architecture.

Note that singles, doubles, quads, and octals in Table 5.1 correspond to length-1,

length-2, length-4, and length-8 lines, respectively, in VPR terminology. We can

see that, in both vertical and horizontal channels, their architecture has a larger

channel width. The reason, according to them, is that signals routed from micro

registers to their destinations represent additional nets that need to be routed. As

a result, additional channel width is required.

Lin et al demonstrated that their proposed time-multiplexed interconnects

could achieve channel width reduction compared with its conventional counterpart

[18]. Their architecture is based on Xilinx XC4000 FPGA architecture, and, in

terminology of this thesis, divides a user clock cycle into two microcycles. Their
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experimental results from five benchmark circuits showed that their architecture

reduced channel widths by about 30%.

Francis et al showed that significant channel width reduction can be achieved

given that the number of time slots is large enough (i.e., K is large enough, in

terminology of this thesis) [10]. Their architecture is based on Altera Stratix FPGA

architecture, and allows at most 64 time slots in a user clock cycle. For example,

their architecture with 24 time slots in a user clock cycle could reduce channel

widths by up to 80%, compared with Stratix architecture. But their architecture

also exhibited inferior timing performance. Critical path delay of circuits mapped

to their architecture is 2x - 4x that of circuit mapped to Stratix. This is likely to

be caused by their scheduling algorithm which actually delays signals until a free

time slot is available. They also investigated the effect of number of time slots

on multiplexing. Their experimental results suggested that, for their architecture,

at least 8 time slots are necessary to achieve channel width reduction. If number

of time slots was less than 8, their architecture actually required larger channel

widths.

Table 5.2 summarizes the key results from the related architectures we re-

viewed above. We can see that both Lin’s and Francis’ architecture showed that

time-multiplexed interconnects can achieve channel width reduction over their con-

ventional counterparts. Increased channel width of Trimberger’s architecture could

be mainly due to the increased number of nets that need to be routed. While all

the work agreed that time-multiplexed interconnects have area overhead due to

extra circuitry, none of them have reported routing area results which take into

consideration the two fighting factors, namely, reduced channel width and area

overhead. Finally, Trimberger’s and Lin’s work did not report circuit critical path
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Table 5.2: Key results from related architectures in the literature

Main features Key Results
Baseline ar-
chitecture

Multiplexing K Channel
Width

Routing
Area

Critical
Path Delay

Trimberger’s
[35]

Xilinx
XC4000E

Both logic
and inter-
connect

8 Larger width
for horizon-
tal and verti-
cal channel

Unavailable Unavailable

Lin’s [18] Xilinx
XC4000

Interconnect
only

2 30% reduc-
tion

Unavailable Unavailable

Francis’
[10]

Altera
Stratix

Interconnect
only

2-64 Up to 80%
when K=24

Unavailable 2x-4x larger

delay results of their architectures, while Francis’ architecture reported 2x - 4x

larger critical path delays.

5.2 Experimental Methodology

5.2.1 CAD Flow

Figure 5.1 illustrates our CAD flow. We start from circuit netlists that have

been technology-mapped to LUTs. First, TVPack tool in the VPR package is used

to pack LUTs to clustered logic blocks. Next VPR tool is used to place the cir-

cuit. Then, based on this same placement result, two routings are performed. The

timing-driven router of VPR is used to route the circuit into FPGAs with con-

ventional interconnects. And our time-multiplexing -aware router is used to route

the circuit into tm-arch FPGAs with time-multiplexed interconnects. We call

these two routing braches as conventional routing and time-multiplexing routing,

respectively. For the sake of brevity, the VPR timing-driven router and our time-

multiplexing-aware router will be referred to as vpr-router and tm-router
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Fig. 5.1: Architecture evaluation flow.

hereafter, respectively.

5.2.2 FPGA Architectural Assumptions

In our work, we only explore homogeneous FPGA architecture. Three main

issues in homogeneous FPGA architecture are logic cluster architecture, global

routing architecture, and detailed routing architecture. Inside each of these three

issues, there are many parameters that can be varied. The design space of FPGA

architecture is so huge that we cannot possibly study time-multiplexed intercon-

nects over the entire design space.

To make our work tractable, we first fix on a representative baseline FPGA

architecture. This baseline FPGA architecture assumes conventional interconnects.

We replace all the wires in the baseline FPGA with time-multiplexed wires, hence

get the tm-arch FPGA architecture with time-multiplexed interconnects.
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Table 5.3: Main features of our used baseline FPGA architecture

Architecture Parameter Value/ Specifica-
tion

Comments

LUT size 4
Logic block size 10
Logic block inputs 22
Amount of bias between horizontal and
vertical channels

No bias

Uniformity of routing channels in the
same direction

Uniform

Aspect ratio 1:1 Assuming square
logic blocks

Segmentation distribution 100% length 4 wires
Switch types used Uni-directional sin-

gle driver switches
Switch block topology Wilton
Switch block internal population 100%
Connection block internal population 100%

Baseline architecture We choose as baseline FPGA architecture the architec-

ture defined by XML file n10k04l04.fc15.area1delay1.cmos65nm.bptm from iFAR

[23]. Main parameters of this baseline FPGA architecture are listed in Table 5.3.

5.2.3 Evaluation Metrics

Minimum Channel Width

Minimum channel width, Wmin, refers to the minimum number of tracks per

channel required by a router to successfully route a circuit onto an FPGA. Note that

in our work, we assume that channel width is uniform over all the horizontal and

vertical channels. This corresponds to architectures with “no directional routing

bias” and “uniform channel widths” in [6]. It has been shown in [6] that this kind

of routing architecture is the most area-efficient.

Both vpr-router and tm-router can perform a binary search for Wmin.
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That is, the router repeatedly routes a circuit using different channel widths, until

it finds the minimum channel width required to successfully route the circuit.

By examining and comparing achievable Wmin given by the conventional ar-

chitecture and the time-multiplexed architecture, we can evaluate how much wire

saving the time-multiplexed architecture can bring in.

Routing Area

FPGA fabrics consist of two parts, logic and interconnect. Routing area, AR,

refers to the part of silicon area devoted to interconnect (or routing network).

Although it lets us quickly assess the possible wire saving brought in by the

time-multiplexed architecture, Wmin is by no means a good indicator of routing

area. This is so, because transistors rather than wires determine an FPGA’s routing

area.

vpr-router reports FPGAs’ routing area by adding all transistor areas in the

routing network. It employs minimum-width transistor area model. Following this

practice, we let tm-router report routing area of time-multiplexed architectures.

And routing area reported by tm-router is based on the same area model. This

allows us to compare routing areas of time-multiplexed architecture with that of

conventional architecture.

By examining routing area of time-multiplexed architectures and comparing

it with that of conventional architecture, we can evaluate the area impact of the

time-multiplexed architecture.
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Circuit Critical Path Delay

At the end of routing, both vpr-router and tm-router report a circuit’s

critical path delay (Tcrit). The reported delay values are based on PTM 65nm

CMOS technology.

Area-Delay Product

Area-delay product is obtained by multiplying an FPGA’s overall area (in-

cluding both logic and interconnect) by critical path delay of a circuit implemented

onto this FPGA. It has been used in [6] as a metric to evaluate different FPGA

architectures.

5.2.4 TM Switches Area and Delay Assumptions

We assume the implementation of TM switches shown in Figure 3.7. We

further assume that multiplexers selecting from multiple configuration bits are im-

plemented with minimum sized NMOS pass transistors 1. Consistent with VPR 5,

we assume that each bit of memory cell takes six minimum-width transistor area.

The circular counter generating select signals for multiplexers can be shared by a

number of TM switches. For example, a single counter provides select signals for

all TM switches in a switch block. Hence we can safely ignore area of the counter.

We assume that delay of a TM switch is the same as that of its conventional

counterpart. Comparing Figure 3.7 with Figure 3.5, we can see that TM switch

introduces no extra logic along its critical path. Also, the extra capacitive loading

seen by the buffer is minimal. Usually this buffer is strong enough to be able to

1Gate voltage boosting can be used to compensate voltage drop across NMOS pass transistor.
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drive a wire segment spanning a number of logic blocks. So, the minimal extra

capacitive loading should not increase delay of TM switch.

5.3 Experimental Results: Minimum Channel Width

In this set of experiments, for each circuit, both conventional routing and time-

multiplexing routing perform binary searches to find out the minimum channel

widths. More specifically, vpr-router finds the minimum channel width required

to route a circuit onto the FPGA with conventional interconnects, and tm-router

finds the minimum channel width required to route a circuit onto tm-arch FPGA

with time-multiplexed interconnects. The maximum number of iterations is set to

50 for both vpr-router and tm-router.

Table 5.4 presents minimum channel width results for MCNC 20 benchmark

circuits [40]. The first column of the table lists name of each benchmark circuit.

The values listed under column “Wmin” are the minimum channel widths achieved

by vpr-router in conventional routing. The values listed under columns “W
′
min”

are minimum channel widths achieved by tm-router for different K values. We

can see that, when K=2, tm-arch FPGA actually requires larger channel widths

than its conventional counterpart. Averaged over the 20 circuits, the increase of

minimum channel width is 14.58%. This result is counterintuitive, for we expected

multiplexing wires should result in a reduction of minimum channel width.

A possible reason for the counterintuitive result is that having two microcycles

in a clock cycle provides only limited opportunities for tm-router to achieve

time-multiplexing of wires. Table 5.5 tabulates the percentage of wires used in the

1st and the 2nd microcycle in the final routing results for MCNC 20 benchmark
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Table 5.4: Minimum channel width for different K values

Wmin W ′
min K=2 W ′

min K=4 W ′
min K=6 W ′

min K=8
alu4 48 50 30 36 26
apex2 62 74 38 36 22
apex4 64 86 48 34 26
bigkey 44 44 32 32 32
clma 78 138 74 48 36
des 44 40 34 32 32
diffeq 38 36 34 32 30
dsip 38 36 30 30 30
elliptic 62 58 52 N.A. 34
ex1010 74 88 60 40 34
ex5p 68 70 48 34 22
frisc 74 84 44 40 40
misex3 54 60 42 26 22
pdc 90 106 128 60 70
s298 34 76 28 28 20
s38417 48 48 50 26 22
s38584.1 50 52 48 26 22
seq 60 74 48 26 22
spla 74 100 N.A. 52 34
tseng 46 44 40 34 32
Geo. Mean 56 64 44 34 29
Reduction - 14.58% -19.92% -38.11% -47.74%
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Table 5.5: Percentages of wire used in the 1st and the 2nd microcycle for MCNC 20 benchmark
circuits. Assume that a user clock cycle is divided into two microcycles.

1st microcycle 2nd microcycle
alu4 94.59% 4.67%

apex2 97.09% 2.42%
apex4 87.35% 10.56%
bigkey 93.65% 4.77%
clma 96.50% 2.97%
des 90.08% 9.15%

diffeq 95.97% 3.80%
dsip 94.70% 4.28%

elliptic 95.35% 4.46%
ex1010 90.04% 8.67%
ex5p 82.63% 14.85%
frisc 86.87% 12.06%

misex3 93.09% 5.60%
pdc 95.09% 4.36%
s298 85.82% 13.48%

s38417 92.87% 6.60%
s38584.1 97.41% 1.88%

seq 97.50% 2.20%
spla 95.98% 3.60%
tseng 96.48% 3.34%

Geo. Mean 92.85% 5.17%
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Table 5.6: Percentages of wire used in the 1st, the 2nd, the 3rd and the 4th microcycle for MCNC
20 benchmark circuits. Assume that a user clock cycle is divided into four microcycles.

1st microcycle 2nd microcycle 3rd microcycle 4th microcycle
alu4 56.04% 29.64% 4.19% 0.45%

apex2 67.82% 25.32% 2.17% 0.21%
apex4 28.13% 56.96% 9.45% 1.00%
bigkey 61.57% 28.13% 4.77% 0.00%
clma 68.86% 25.69% 2.83% 0.12%
des 63.16% 24.61% 6.50% 1.96%

diffeq 74.31% 18.47% 3.71% 0.10%
dsip 59.70% 31.89% 4.04% 0.18%

elliptic 87.51% 7.36% 3.65% 0.73%
ex1010 23.65% 64.19% 7.98% 0.51%
ex5p 21.70% 56.98% 12.71% 1.99%
frisc 68.23% 18.50% 10.58% 1.41%

misex3 52.19% 33.60% 4.64% 0.80%
pdc 46.93% 42.92% 3.88% 0.42%
s298 63.21% 21.00% 9.76% 3.16%

s38417 65.09% 24.77% 5.83% 0.67%
s38584.1 73.30% 19.91% 1.59% 0.26%

seq 69.24% 24.66% 1.99% 0.17%
spla 49.20% 41.06% 3.31% 0.25%
tseng 88.49% 6.82% 2.35% 0.73%

Geo. Mean 55.83% 26.19% 4.49% 0.51%
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circuits. Here we assume that a user clock cycle is divided into two microcycles.

The data are produced in the following way. We modify vpr-router so that it

will record signal arrival/ leave times at each used wire segment and write these

timing values as a part of routing result output. Then we let vpr-router perform

routing assuming minimum channel width listed under column “Wmin” in Table

5.4. After that, we use a script to parse the routing result and, as per Equation

4.5, decide in which microcycle each wire segment is used. The script also counts

number of wires used in each microcycle and divides the number by total number

of wires used in final routing. This gives the percentages listed in Table 5.5.

Table 5.5 reveals that, in average 92.85% of the wires are used in the 1st

microcycle, while only 5.17% are used in the 2nd microcycle. This translates to

severely limited opportunities for tm-router to achieve time-multiplexing. As we

have seen in Chapter 4, to achieve time-multiplexing, our time-multiplexing -aware

routing algorithm matches a net using a wire in the 1st microcycle with a second

net using the same wire in the 2nd microcycle. Table 5.5 suggests that a used wire

segment is most probably used by a net in the 1st microcycle, and very unlikely used

by a second net in the 2nd microcycle. As a result, our time-multiplexing -aware

routing algorithm is unlikely to achieve time-multiplexing for this wire. Recall from

Chapter 4 that our time-multiplexing -aware routing algorithm does not actively

delay signals. This is in contrast to Francis et al ’s scheduling algorithm, which

actively delays signals to achieve more time-multiplexing [10].

For comparison, Table 5.6 tabulates used wires’ distribution in microcycles

when a user clock cycle is divided into four microcycles. The procedure to produce

this table is similar to that for Table 5.5. In this case, the distribution between the

1st microcycle and the 2nd microcycle (55.83% versus 26.19%) is more balanced
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than that in Table 5.5. This translates to more opportunities for tm-router to

achieve time-multiplexing.

Besides the reason above, the fact that tm-router may have produced some

noise in the routing results could also partially explain the counterintuitive result.

Take clma for example. Figure 5.2 illustrates the channel width values tried by

tm-router during the binary search for minimum channel width. For example,

the first three channel widths tried by tm-router are 34, 68 (i.e., 2*34), and 136

(i.e., 2*68), respectively. Considering that Wmin found by vpr-router is 78 (see

Table 5.4), we would expect that tm-router could successfully route clma using

a channel width of 136. However, as shown in Figure 5.2, it failed, and subsequently

tried an even larger value of 272 (i.e., 2*136).

Now let us examine one detailed aspect of tm-router’s routing with the chan-

nel width 136. Figure 5.3 illustrates the number of remaining congested routing-

resource nodes after each iteration during the routing. Recall that tm-router

declares routing successful and exits when no congested nodes remain after an it-

eration. From Figure 5.3, it can be observed that throughout the first 20 iterations

the number of remaining congested nodes decreases steadily (from over 6,000 down

to around 30). But after 30 iterations, the number, instead of decreasing to zero,

oscillates between 1 and 10. Although they account for a tiny percent of all the

nodes (around 100K in this case), these remaining congestions prolong the routing,

and eventually cause the routing to fail (for we limit the number of iteration to

50).

The used channel width 136 is sufficiently large, compared with Wmin achieved

by vpr-router. Hence tm-router’s difficulty to resolve the remaining conges-

tion, as observed in Figure 5.3, is most probably due to some defects in tm-router.
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Fig. 5.2: Channel width values that are tried by tm-router during the binary search.
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Fig. 5.3: Number of remaining congested nodes after each iteration. (Channel width W = 136;
y-axis shown in logarithmic scale)
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Unfortunately, we are not able to solve this problem in this work.

From K=4 onwards, we see that tm-arch FPGA generally requires smaller

channel widths. This is in accordance with our expectation that multiplexing

wires will result in a reduction of minimum channel width. And the reduction

of minimum channel width is more significant when a clock cycle is divided into

more microcycles: the percentages of minimum channel width reduction are 19.92%

(K=4), 38.11% (K=6), and 47.74% (K=8), respectively. This is due to the nature

of time-multiplexing: a same wire can be shared among more nets as K increases,

hence less number of wires will be required to route a given number of nets.

5.4 Experimental Results: Routing Area

In the previous section, we have reported the impact of time-multiplexed in-

terconnect on minimum channel width. In this section, we report the impact on

routing area. All results presented in this section are reported by the routing tool

(vpr-router and tm-router) assuming minimum channel width (Wmin and

W
′
min) for each benchmark circuit. The unit is minimum-width transistor area.

Table 5.7 presents the routing area results. The values listed under column

“AR” are area values reported by vpr-router in conventional routing. The values

listed under columns “A
′
R” are area values reported by tm-router for different

K values. We can see that time-multiplexed interconnects consume more routing

area that conventional interconnects. For the cases of K=2, 4, 6, and 8, the area

overhead, averaged over MCNC20 circuits, is 44.47%, 45.64%, 48.41%, and 59.47%,

respectively.

The 44.47% routing area overhead in the case of K=2 can be attributed to
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Table 5.7: Routing area reported by routers, assuming minimum channel width. Unit is minimum-
width transsitor area.

AR A
′
R K=2 A

′
R K=4 A

′
R K=6 A

′
R K=8

alu4 8.04e+05 1.08e+06 9.57e+05 1.46e+06 1.31e+06
apex2 1.20e+06 1.79e+06 1.36e+06 1.68e+06 1.31e+06
apex4 9.19e+05 1.49e+06 1.25e+06 1.19e+06 1.12e+06
bigkey 8.31e+05 1.06e+06 1.16e+06 1.50e+06 1.84e+06
clma 5.95e+06 1.30e+07 1.08e+07 9.26e+06 8.72e+06
des 1.07e+06 1.29e+06 1.62e+06 1.95e+06 2.39e+06
diffeq 6.57e+05 7.99e+05 1.08e+06 1.30e+06 1.50e+06
dsip 7.57e+05 9.22e+05 1.11e+06 1.42e+06 1.74e+06
elliptic 2.39e+06 2.78e+06 3.68e+06 N.A. 3.97e+06
ex1010 3.35e+06 5.03e+06 5.17e+06 4.48e+06 4.80e+06
ex5p 8.09e+05 1.07e+06 1.06e+06 1.00e+06 8.19e+05
frisc 2.52e+06 3.57e+06 2.78e+06 3.36e+06 4.14e+06
misex3 7.68e+05 1.11e+06 1.09e+06 9.14e+05 9.71e+05
pdc 4.00e+06 5.92e+06 1.04e+07 6.74e+06 9.60e+06
s298 7.06e+05 1.83e+06 1.02e+06 1.32e+06 1.21e+06
s38417 3.08e+06 3.95e+06 5.97e+06 4.19e+06 4.47e+06
s38584.1 3.24e+06 4.28e+06 5.70e+06 4.19e+06 4.47e+06
seq 1.18e+06 1.79e+06 1.69e+06 1.24e+06 1.31e+06
spla 2.79e+06 4.69e+06 N.A. 4.81e+06 3.97e+06
tseng 5.41e+05 6.69e+05 8.86e+05 1.00e+06 1.15e+06
Geo. Mean 1.44e+06 2.08e+06 2.10e+06 2.14e+06 2.30e+06
Overhead - 44.47% 45.64% 48.41% 59.47%
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two factors. The first is the larger channel width required. As we have seen in

the previous section, when K=2, tm-arch requires 14.58% larger channel widths

than its conventional counterpart. A larger channel width means more routing

transistors used in connection blocks and switch blocks, hence larger routing area.

The second is that a TM switch consumes more area than a conventional switch.

Routing area overhead exhibited by tm-arch when K=4, 6, and 8, however,

is entirely due to the fact that TM switches consume more area. In fact, as we have

seen in the previous section, tm-arch requires smaller channel widths. As TM

switches incurs significant area overhead, tm-arch requires larger routing area, in

spite of the reduction in channel width.

5.5 Experimental Results: Circuit Critical Path

Delay

In this section, we look at the timing metric, namely, circuit critical path

delay. In real life applications, FPGAs routing resources tend to be sufficient

compared with the requirements by the user designs, so as to improve circuit timing

performance. As a result, delay values presented in this section are based on low-

stress routing. That is, given a circuit, the router performs routing using a channel

width which is 20% more than the minimum channel width. Table 5.8 presents the

channel width values used in the low-stress routing. The minimum channel width

values we have presented in Table 5.4 at Section 5.3.

Table 5.9 presents the critical path delay values reported from low-stress rout-

ing for MCNC 20 benchmark circuits. The “Tcrit” column corresponds to conven-

tional architecture, while the “T
′
crit” columns to tm-arch architecture. It can be
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Table 5.8: Channel width values used in low-stress routing.

Wls W
′
ls K=2 W

′
ls K=4 W

′
ls K=6 W

′
ls K=8

alu4 58 60 36 44 32
apex2 74 88 46 44 26
apex4 76 104 58 40 32
bigkey 52 52 38 38 38
clma 94 166 88 58 44
des 52 48 40 38 38
diffeq 46 44 40 38 36
dsip 46 44 36 36 36
elliptic 74 70 62 N.A. 40
ex1010 88 106 72 48 40
ex5p 82 84 58 40 26
frisc 88 100 52 48 48
misex3 64 72 50 32 26
pdc 108 128 154 72 84
s298 40 92 34 34 24
s38417 58 58 60 32 26
s38584.1 60 62 58 32 26
seq 72 88 58 32 26
spla 88 120 N.A. 62 40
tseng 56 52 48 40 38
Geo. Mean 66 76 53 41 35
Reduction - 14.99% -19.86% -37.74% -47.89%
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Table 5.9: Circuit critical path delays reported from low-stress routing (In unit of nano-seconds).

Tcrit T
′
crit K=2 T

′
crit K=4 T

′
crit K=6 T

′
crit K=8

alu4 3.31 3.31 3.31 3.23 3.45
apex2 3.90 3.69 3.69 3.69 3.65
apex4 3.80 3.13 3.13 3.20 3.20
bigkey 1.80 1.87 1.80 1.80 1.80
clma 6.74 N.A. 6.63 6.70 6.70
des 2.86 N.A. 2.78 2.85 2.85
diffeq 4.44 4.51 4.37 4.44 4.37
dsip 1.73 1.73 1.80 1.80 1.80
elliptic 6.22 5.52 5.66 N.A. 5.37
ex1010 4.42 4.49 4.49 N.A. 4.42
ex5p 3.55 3.30 3.34 3.23 3.37
frisc 7.63 7.46 7.42 7.42 7.49
misex3 3.13 3.13 3.06 3.20 3.27
pdc 5.26 4.60 4.49 4.49 4.49
s298 N.A. N.A. 6.14 6.17 6.07
s38417 4.68 4.47 4.47 4.61 4.40
s38584.1 3.71 3.99 N.A. 3.64 3.65
seq 3.13 3.13 3.06 3.20 3.06
spla 4.46 4.14 N.A. 4.14 4.07
tseng 4.43 4.43 4.43 4.43 4.43
Geo. Mean 3.90126 3.71999 3.83374 3.7541 3.85156
Reduction - -4.65% -1.73% -3.77% -1.27%
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observed that tm-arch achieves a 4.65% reduction in critical path delay, when K

is 2. However, there is nothing remarkable here, for tm-arch has used, in average,

14.99% larger channel widths than the conventional architecture. See Table 5.8.

In the cases of K=4, 6, and 8, tm-router uses 19.86%, 37.74%, and 47.89%

smaller channel widths, respectively. And tm-router achieves modest reduction

in critical path delay: 1.73%, 3.77%, and 1.27%, respectively.

5.6 Experimental Results: Area-Delay Product

Finally we examine the metric of area-delay product. For each circuit, we

multiply the critical path delay by FPGA’s total area. The delay and area values

are reported by vpr-router and tm-router from low-stress routing. FPGA’s

total area is the sum of logic area and routing area. Since vpr-router and tm-

router report both logic and routing area in unit of minimum-width transistor

area, the total area values are also in unit of minimum-width transistor area. The

unit of delay values is nano-seconds (ns).

Figure 5.4 plots the area-delay product results. Each data point is the geo-

metric average value over 20 MCNC benchmark circuits. The x-axis is the value

of K, the number of microcycles in a user clock cycle. Here K being 1 is used to

refer to conventional architecture.

It can be observed from Figure 5.4 that tm-arch FPGAs exhibit larger area-

delay products. For K=2, 4, 6, and 8, the increase of area-delay product is 6.66%,

10.27%, 10.24%, and 23.12%, respectively.

In Section 5.5, tm-arch has been shown to be able to achieve modest re-

duction in critical path delay. However, the significant area overhead of tm-arch
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Fig. 5.4: Area-delay product results averaged over 20 MCNC benchmark circuits versus K.
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Fig. 5.5: Total area results averaged over 20 MCNC benchmark circuits versus K.
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architecture outweighs the delay reduction. As a result, tm-arch produces larger

area-delay products. Figure 5.5 plots the total area reported by vpr-router/ tm-

router for low-stress routing. Again, each data point is the average value over

20 MCNC circuits. And K being 1 is used to refer to conventional architecture.

It can be seen that tm-arch architecture’s area overhead is indeed significant.

In the cases of K=2, 4, 6, and 8, the overhead, compared with the conventional

architecture, is 11.86%, 12.21%, 14.56%, and 24.71%, respectively.
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Chapter 6

Partial Depopulation of

Time-Multiplexed Interconnects

6.1 Motivation

Two observations motive us to partially depopulate time-multiplexed inter-

connects.

• Time-multiplexed interconnects require TM switches. Compared with their

conventional counterparts, TM switches incur significant area overhead. By

partially depopulating time-multiplexed interconnects, we could have less TM

switches. Hence, overhead due to TM switches can be reduced.

• The actual utilization of time-multiplexed interconnects is low. In the final

routing results, most of the wires are not time-multiplexed. Although they

can be multiplexed, these wires are used in only one net’s route.
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6.2 Overview

Figure 6.1 illustrates the architecture of our proposed FPGA architecture with

partially populated time-multiplexed interconnects. It is based on the architecture

we have presented in Chapter 3. Compare with Figure 3.1. At the architecture

level, the difference is that this architecture partially depopulates time-multiplexed

wires. That is, not all the wires in the routing channels can be time-multiplexed:

some wire can be time-multiplexed (or, are time- multiplex-able), while the others,

just like wires found in conventional FPGAs, cannot. At the circuit level, the differ-

ence is that this architecture partially depopulates TM switches. In connection and

switch blocks, some switches are TM switches, while the others are conventional

switches. Figure 6.1 illustrates the co-existence of TM switches and conventional

switches. Again, a TM switch is denoted by a filled circle, while a conventional

switch by a void circle.

Figure 6.2 shows a portion of a routing channel in this architecture. This

channel contains both multiplex-able wires (shown in bold lines) and conventional

wires. In this work, we assume that a routing track consists entirely of either

multiplex-able wires or conventional wires. A routing track consisting of multiplex-

able wires is called a multiplex-able track. Otherwise, it is called a conventional

track. For example, the routing channel illustrated in Figure 6.2 consists of four

conventional tracks and one multiplex-able track.

6.3 Multiplex-able Track Population

We define an architectural parameter a, multiplex-able track population. This

parameter specifies multiplex-able tracks’ proportion in a routing channel. Take
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Logic
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Fig. 6.1: Proposed architecture of FPGAs with partially depopulated time-multiplexed intercon-
nects.

 

CLB 

Fig. 6.2: A routing channel consisting of four conventional tracks and one multiplex-able tracks.
All wire segments span four logic blocks.
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Table 6.1: Switch of choice to implement the configurable connection from wire segment wA to
wire segment wB

Is wA multiplex-able? Is wB multiplex-able? Switch of choice
No No Conventional
No Yes TM
Yes No TM
Yes Yes TM

the channel shown in Figure 6.2. Out of the total five tracks, one is multiplex-able.

That is, multiplex-able track population of this channel is 0.2 or 20%.

6.4 Co-Existence of TM Switches and Conven-

tional Switches

In this architecture with partially populated time-multiplexed interconnects,

TM switches and conventional switches co-exist. Whether a TM switch or a con-

ventional switch should be used to implement the configurable connection from a

wire segment wA to a wire segment wB depends. Table 6.1 lists all the four possible

scenarios and the corresponding switch of choice, based on whether wA and wB are

multiplex-able or not.

It is easy to understand that a conventional switch is sufficient if both wires

are conventional wires, and a TM switch must be used if both wires are multiplex-

able. These two scenarios correspond to the conventional FPGA architecture and

our proposed tm-arch architecture presented in Chapter 3, respectively.

When a conventional wire wA connects to a multiplex-able wire wB, a TM

switch should be used. Figure 6.3(a) helps understand why this is so. In this case,
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Fig. 6.3: A TM switch should be used for (a) a connection from a conventional wire wA to a
multiplex-able wire wB , and (b) a connection from a multiplex-able wire wA to a conventional
wire wB .

wB is included in routes of two nets, N1 and N2. Connection wA-wB is for N1, and

wC-wB for N2. At any given time in a clock cycle, only one of the two connections

can be on. Hence, connection wA-wB should be able to turn off, when wC-wB turns

on. A conventional switch cannot support this function. As a result, a TM switch

is needed.

Figure 6.3(b) helps understand why a TM switch should be used for the con-

nection from a multiplex-able wire wA to a conventional wire wB. In this case, wire

wA is time-multiplexed by two nets N1 and N2, and only one of the two connec-

tions (wA-wB and wA-wC) can be on at any given time. Hence, connection wA-wB

should be able to turn off, when wA-wC turns on. A conventional switch cannot

support this function. As a result, a TM switch is needed. Also note that, after

the connection wA-wB turns off, the TM switch can serve as the driver so that

wB would not be floating. We have seen TM switch’s latching capability in the

previous chapter.
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6.5 Architecture Evaluation

In this section, we evaluate the proposed architecture with partially populated

time-multiplexed interconnects. The two major foci of our evaluation are: (1) com-

paring time-multiplexed interconnects with different values of multiplex-able track

population, and (2) comparing partially populated time-multiplexed interconnect

with conventional interconnect architecture. We do the evaluation by exploring

two architectural parameters, namely, the number of microcycles in a user clock

cycle (K) and multiplex-able track population (a).

6.5.1 Key Results from Related Work

In the literature, the only work that has investigated an FPGA interconnect

architecture containing both multiplex-able wires and conventional wires is [10] by

Francis et al. Their FPGA interconnect architecture with multiplex-able wires is

based on Altera Stratix interconnect architecture. Unlike our architecture which

uniformly deploys multiplex-able wires on a track basis in routing channels, their

architecture uniformly deploys multiplex-able wires on a switch block basis. One

multiplex-able wire deployed at a switch block means that this wire’s left or lower

endpoint is at this switch block. Since their work consider wires of six different

types 1, they use an array notation [x1, x2, x3, x4, x5, x6] to represent number of

multiplex-able wires deployed at a switch block 2. For example, [2, 1, 1, 1, 1, 1]

1The six different wire types are from Stratix interconnect architecture, which has length-4,
length-8, and length-24 wires in horizontal channels, and length-4, length-8, and length-16 wires
in vertical channels.

2One wire at a switch block, as meant in Francis’ work, corresponds to L wires in the routing
channel. L is the length of the wire segment type. This is so, because Stratix architecture staggers
wire segments, and this notation counts only wire segments with their left or lower endpoints at
a particular switch block.
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means that, at a switch block, there are two multiplex-able wires of the first type,

one of the second type, one of the third type, one of the fourth type, one of the fifth

type, and one of the sixth type. They explore interconnect architectures containing

both multiplex-able wires and conventional wires by varying the values of individual

elements in the array notation. In their work, the authors constrained that their

time-multiplexed interconnect architecture contains at least one multiplex-able wire

at a switch block for each wire type (i.e., [1, 1, 1, 1, 1, 1]).

Their experimental results showed that only a few multiplex-able wires make

a very large difference to the channel width required to successfully route a user

design. The majority of channel width reduction is achieved by having only a few

multiplex-able wires at a switch block (for example, [1, 1, 1, 1, 1, 1] and [2, 2, 1, 1, 1, 1]).

In terminology of this thesis, [1, 1, 1, 1, 1, 1] is approximately equivalent to a between

0.15 and 0.22; and [2, 2, 1, 1, 1, 1] is approximately equivalent to a between 0.17 and

0.25. Notice that this observation is based on their assumption that a user clock

cycle is divided into at least 24 time slots. That is, K >= 24, in terminology of

this thesis.

6.5.2 Experimental Methodology

CAD Flow

Figure 6.4 illustrates our CAD flow. Similar to the flow we used in Chapter 5,

we start from circuit netlists that have already been technology-mapped to 4-input

LUTs. First, TVPack tool in VPR package is used to pack LUTs to clustered logic

blocks. Next, VPR placement tool is used to place the circuit. Then, the same

placement result is used for two separate branches of routing. On the left branch,
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Fig. 6.4: Architecture evaluation flow.

our time-multiplexing -aware router is used to route a circuit into FPGAs with time-

multiplexed interconnects; and on the right branch, VPR timing-driven router is

used to route a circuit into FPGAs with conventional interconnects. Consistent

with Chapter 5, we refer to these two routing braches as time-multiplexing routing

and conventional routing, respectively. And we refer to our time-multiplexing -

aware router and VPR timing-driven router as tm-router and vpr-router,

respectively.

FPGA Architectural Assumptions

Similar to the approach in Chapter 5, we fix on a baseline FPGA architecture,

which assumes conventional interconnects. We choose this baseline architecture

to be the same as that in Chapter 5. That is, the architecture defined by XML

file n10k04l04.fc15.area1 delay1.cmos65nm.bptm. Main features of this architec-
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ture can be found in Table 5.3. For the sake of brevity, we refer to this baseline

architecture as arch, hereafter.

To get FPGA architectures with time-multiplexed interconnects, we replace a

portion of tracks in each routing channel of the baseline FPGA with multiplex-able

tracks. We use the parameter a to denote this portion. For the sake of brevity, we

refer to this architecture with time-multiplexed interconnects as tm-arch(a).

Evaluation Metrics

In our evaluation of partially populated time-multiplexed interconnects, we

use the same four metrics that we used in Chapter 5. They are minimum channel

width, routing area, circuit critical path delay, and area-delay product.

6.5.3 Experimental Results

Minimum Channel Width

In this set of experiments, for each circuit, both conventional routing and

time-multiplexing routing perform binary searches to find out minimum channel

width required. Specifically, in conventional routing, vpr-router finds out the

minimum channel width required to route the circuit into architecture arch. And

in time-multiplexing routing, tm-router finds out the minimum channel width

required to route the circuit into architecture tm-arch(a). The maximum number

of iterations is set to 50 for both vpr-router and tm-router.

To compare time-multiplexed interconnects with different values of multiplex-

able track population, we sweep a by using four values: 0.1, 0.2, 0.5, and 1.0. Note

that a=1.0 means that all tracks in the routing channels are multiplex-able. Hence
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Fig. 6.5: Average minimum channel widths versus multiplex-able track population, a, and number
of microcycles in a user clock cycle, K.

the architecture tm-arch(a) with a=1.0 is equivalent to the architecture we have

presented in Chapter 3.

Figure 6.5 presents minimum channel width results. The x-axis is number

of microcycles in a user clock cycle. The y-axis is the achieved minimum channel

width. Each curve corresponds to a different value of parameter a, and plots average

minimum channel width versus K. Each data point is the geometric average over

20 MCNC benchmark circuits. Note that K=1 denotes conventional interconnect

architecture arch. That is, there are no multiplex-able tracks at all. So this

architecture is insensitive to the value of parameter a. As a result, left end-points

of all four curves are at the same coordinate.
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Table 6.2: Average minimum channel width reduction of architecture tm-arch(a) at different K
values.

a K=1 K=2 K=4 K=6 K=8
0.1 - 16.88% 0.90% -8.79% -14.99%
0.2 - 10.85% -7.27% -16.01% -21.07%
0.5 - 10.18% -12.89% -21.28% -35.77%
1.0 - 14.58% -19.92% -38.11% -47.74%

Table 6.2 tabulates the reduction of average minimum channel width achieved

by tm-arch(a) at different K values. A minus percentage means that tm-arch(a)

achieves smaller average minimum channel width than arch. A positive percentage

means that tm-arch(a) requires larger average minimum channel width. For

example, Table 6.2 shows that, with K=2, tm-arch(0.1) requires 16.88% larger

average minimum channel width than arch. Note that K=1 denotes conventional

interconnect architecture arch.

A first observation from Figure 6.5 is the poor performance of time-multiplexed

interconnects tm-arch(a) when K equals to 2. In this case, tm-arch(a) requires

larger minimum channel widths than its conventional counterpart. For multiplex-

able track population of 0.1, 0.2, 0.5, and 1.0, the increase of minimum channel

widths is 16.88%, 10.85%, 10.18%, and 14.58%, respectively.

From K=4 onwards, tm-arch(a) begins to show their advantages by achieving

smaller minimum channel widths. Two observations here are (1) the minimum

channel width improvement of architecture tm-arch(a) is greater as a increases;

(2) the improvement of tm-arch(a) is always bounded by the architecture tm-

arch(a) with a being 1.0, i.e., the FPGA architecture with fully-populated time-

multiplexed interconnects. This is reasonable, because a larger a means more
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Table 6.3: Routing area overhead of tm-arch(a) at different K values.

a K=1 K=2 K=4 K=6 K=8
0.1 - 19.91% 14.99% 13.36% 14.24%
0.2 - 19.22% 18.60% 22.92% 31.78%
0.5 - 29.81% 38.64% 46.05% 53.95%
1.0 - 44.47% 48.78% 51.61% 59.47%

multiplex-able wires available in the architecture. This in turn gives tm-router

more opportunities to achieve multiplexing, hence reducing channel width.

If we focus on the individual curve and look at its trend, we can have another

observation: the minimum channel width improvement of architecture tm-arch(a)

is greater as K increases from 4 to 8.

Routing Area

This section reports routing area results collected in the same set of exper-

iments which produces minimum channel width results reported in the previous

section. Therefore, area values reported here correspond to FPGA architectures

with their channel widths set to minimum channel widths.

Figure 6.6 presents the routing area results. The x-axis is number of micro-

cycles in a user clock cycle. The y-axis is routing area per logic tile. Here we

use routing area per logic tile as a normalized metric, because it allows averaging

of results from circuits of different sizes 3. Each curve corresponds to a different

value of parameter a, and plots average routing area per tile versus K. Each data

point is the geometric average over 20 MCNC benchmark circuits. Note that K=1

3This metric is recommended and used by Betz et al in their work on FPGA detailed routing
architecture. See page 158 of their book
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Fig. 6.6: Routing area per logic tile versus multiplex-able track population, a, and number of
microcycles in a user clock cycle, K.

109



CHAPTER 6. Partial Depopulation of Time-Multiplexed Interconnects

denotes conventional interconnect architecture arch.

Table 6.3 tabulates routing area overhead of tm-arch(a) compared with

arch. For example, Table 6.3 shows that, when K=2, tm-arch(0.1) requires

19.91% more routing area. Also here K=1 column denotes conventional intercon-

nect architecture arch.

First, it can be observed that, compared with arch, time-multiplexed inter-

connect architectures tm-arch(a) invariably bring in routing area overhead. When

K=2, routing area overhead of tm-arch(a) with a being 0.1, 0.2, 0.5, and 1.0 is

19.91%, 19.22%, 29.81%, and 44.47% (See Table 6.3). This area overhead is due to

two reasons: larger channel width and more expensive TM switches. One can refer

Table 6.2 for larger channel widths required by tm-arch(a) when K equals to 2.

From K=4 onwards, tm-arch(a) still exhibits at least 13% routing area over-

head, in spite of smaller channel widths shown in Table 6.2. This means that,

from the standpoint of routing area, time-multiplexed interconnect architecture’s

overhead outweighs its superiority of reducing channel widths. This can be further

verified when we compare the four curves in Figure 6.6. The larger value a is of, the

larger the overhead is. Routing area overhead of tm-arch(a) is upper-bounded

by that of tm-arch(a) with a being 1.0. We have seen in Section 6.5.3 that tm-

arch(1.0) has the smallest channel width. But still it consumes the most routing

area.

When we examine the trend of each individual curve in Figure 6.6, the curve

corresponding tm-arch(0.1) is close to flat from K=4 onwards. A possible expla-

nation is as follows: when K increases, area overhead due to TM switches naturally

increases. But this is almost completely offset by larger reduction of channel width.

As a result, overall routing area overhead is held constantly at around 14%. This
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property may make tm-arch(0.1) a particularly interesting architecture: one can

have tradeoff between more expensive TM switches and smaller channel width,

given that the overall 14% routing area overhead is acceptable.

The other three curves corresponding architectures tm-arch(a) with a=0.2,

0.5, and 1.0 generally exhibit a trend that, routing area overhead increases as K

increases. Given that these same architectures have smaller channel widths as K

increases (see Figure 6.5), we may here further conclude that time-multiplexed

interconnect architecture’s overhead outweighs its superiority of reducing channel

widths.

Circuit Critical Path Delay

In the second set of experiments, low-stress routing, instead of minimum chan-

nel width routing, is performed on each benchmark circuit. From this low-stress

routing, we collect critical path delay and area delay product results. We do in

this way, because, as we have explained in section 5.5, real-life applications usu-

ally have slightly abundant routing resources to achieve better performance. We

report critical path delay results in this section, and area delay product in the next

section.

For each circuit, its low-stress routing assumes a channel width which is 20%

larger than the minimum channel width. Recall that the minimum channel width

has been found out in the previous binary-search routing. The 20% percentage

applies to both conventional routing and time-multiplexing routing. Take circuit

alu4 as an example. Table 6.4 lists its minimum channel widths and low-stress

channel widths for different combinations of a and K. Wmin is determined from

binary-search, and Wls is derived from Wmin.
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Table 6.4: Minimum channel width and low-stress channel width of circuit alu4 versus a and K.
Wmin is determined from binary-search routing. Wls is derived from Wmin.

K=1 K=2 K=4 K=6 K=8
Wmin Wls Wmin Wls Wmin Wls Wmin Wls Wmin Wls

a=0.1 48 58 58 70 46 56 44 52 38 46
a=0.2 48 58 52 62 46 56 40 48 34 40
a=0.5 48 58 54 64 36 44 30 36 28 34
a=1.0 48 58 50 60 30 36 36 44 26 32
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Fig. 6.7: Average circuit critical path delay versus multiplex-able track population, a, and number
of microcycles in a user clock cycle, K.
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Figure 6.7 presents the circuit critical path delay results. The x-axis is number

of microcycles in a user clock cycle. The y-axis is the achieved critical path delay

in unit of nano-seconds. Each curve corresponds to a different value of parameter

a, and plots average critical path delay versus K. Each data point is the geometric

average over 20 MCNC benchmark circuits. Note that K=1 denotes conventional

interconnect architecture arch.

When K=2, compared with conventional interconnect architecture arch, tm-

arch(0.5) improves critical path delay by 2.49%, and tm-arch(1.0) by 4.65%.

This improvement is largely due to the fact that larger channel widths are assumed.

Table 6.5 lists average low-stress channel width for different combinations of K and

a. When K=2, tm-arch(0.5) and tm-arch(1.0) assumes 4.82% and 8.73% larger

channel width than arch, respectively.

When K=2, tm-arch(0.1) and tm-arch(0.2) achieve almost the same delay

as arch, although they use extra 13.45% and 7.89% channel width, respectively.

This is somewhat surprising. Compared with tm-arch(0.5) and tm-arch(1.0),

these two architectures contain less multiplex-able track population, hence are

closer to architecture arch. But the critical path delay results seem to suggest the

opposite: while tm-arch(1.0) assuming extra 8.73% channel width improves delay

by 4.65%, tm-arch(0.1) assuming extra 13.45% channel width does not improve

delay at all.

From K=4 onwards, time-multiplexed interconnects demonstrate their perfor-

mance advantages over conventional interconnect. For example, tm-arch(0.2) im-

proves delay by 3.03%, 6.20% and 1.76%, respectively. And tm-arch(0.2) achieves

these improvements using 13.61%, 16.52%, and 22.86% smaller channel widths (see

Table 6.5). Similarly, tm-arch(0.5) improves delay by 2% - 3%, assuming at least
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Table 6.5: Average low-stress channel widths versus multiplex-able track population, a, and
number of microcycles in a user clock cycle, K.

K=1 K=2 K=4 K=6 K=8
Wls % Wls % Wls % Wls % Wls %

a=0.1 68.2 - 77.4 13.45% 65.4 -4.15% 62.0 -9.09% 56.5 -17.16%
a=0.2 68.2 - 73.6 7.89% 59.0 -13.61% 57.0 -16.52% 52.6 -22.86%
a=0.5 68.2 - 71.5 4.82% 58.1 -14.84% 52.3 -23.42% 42.8 -37.34%
a=1.0 68.2 - 74.2 8.73% 53.0 -22.34% 41.0 -39.88% 34.6 -49.27%

14% smaller channel widths. One may say that the percentages improvements are

quite small. But the percentages of channel width saving are decent. At least, we

can claim that tm-arch(a) achieves comparable performance with decent channel

width savings.

In Figure 6.7, the four curves do not share a common trend along the x-axis.

For example, tm-arch(0.1) achieves the best delay at K=6, while tm-arch(0.5)

at K=4. This is so, because actually different channel widths are assumed at the

various data points along each curve. Take the curve correspond to tm-arch(0.1)

as an example. Average channel width of 77.4, 65.4, 62.0, and 56.5 is assumed for

K=2, 4, 6, and 8, respectively. Since the assumed channel width is different, here

it is difficult for us to correlate critical path delay with K. Hence the individual

curve’s trend is not very meaningful here in this figure. Based on this same reason,

we cannot correlate critical path delay with a in this figure.

Area-Delay Product

This section reports area-delay product results collected from the low-stress

routing experiments. Here area is the total FPGA area including both logic area

and routing area. Figure 6.8 presents the area-delay product results. The x-axis
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is number of microcycles in a user clock cycle. The y-axis is area-delay product.

Each curve corresponds to a different value of parameter a, and plots average area-

delay product versus K. Each data point is the geometric average over 20 MCNC

benchmark circuits. Note that K=1 denotes conventional interconnect architecture

arch.

It can be observed that, at a few combinations of K and a, time-multiplexed

interconnects can achieve smaller area-delay products than conventional intercon-

nect architecture arch. These include (1) tm-arch(0.1) with K= 4; (2) tm-

arch(0.1) with K=6; (3) tm-arch(0.2) with K=4; and (4) tm-arch(0.5) with

K=4. Of these four, tm-arch(0.1) with K=4 could be a promising candidate of

time-multiplexed interconnect architecture. It achieves 9.56% smaller area-delay

product than arch. A possible explanation for its superior area-delay product

performance could be that it has the advantage of achieving better delay (5.34%

smaller) with less channel width (4.15% less) by exploiting time-multiplexing,

and at the same time exhibits minimal area overhead of time-multiplexing (0.1

multiplex-able track population). This same can be said on tm-arch(0.2) with

K=4 and tm-arch(0.1) with K=6.

When we examine the trend of each individual curve, all but tm-arch(1.0)

achieve their optimal area-delay product at K=4. This may suggest that having

4 microcycles in a user clock cycle is optimal for time-multiplexed interconnects.

The curve of tm-arch(1.0) achieves its optimum at K=1, at which point the

architectural is actually arch. This means that fully populated time-multiplexed

interconnect architectures yield no gain in terms of area-delay product.

When we compare the four curves, we can observe that, from K=4 onwards,

area-delay product generally gets worse as a increases. This is reasonable: as a
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Fig. 6.8: Area delay product versus multiplex-able track population, a, and number of microcycles
in a user clock cycle, K.
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increases, the increasing area overhead of TM switches dominates both channel

width reduction and delay improvement.
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Chapter 7

Conclusion

This chapter concludes this thesis by summarizing our work and giving rec-

ommendations for future work.

7.1 Summary

The subject of this thesis is time-multiplexed interconnects for FPGAs. Around

this subject, this thesis has contributed to two related research areas: FPGA ar-

chitecture and FPGA routing algorithm.

Chapter 3 presents tm-arch, our proposed FPGA architecture with fully pop-

ulated time-multiplexed interconnects. This architecture is based on the classical

island-style architecture. All wires in routing channels can be time-multiplexed

with the aid of specially designed TM switches. An architecture parameter, K, is

defined to denote the number of microcycles in a user clock cycle. That is, the

number of time slots for time-multiplexing.

Chapter 4 presents our time-multiplexing -aware timing-driven routing algo-
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rithm. This routing algorithm is based on VPR 5 timing-driven routing algorithm.

It employs a multiplexing-aware congestion cost function so as to identify nets for

time-multiplexing. We implement this algorithm as our routing tool. By assuming

standard FPGA CAD flow and replacing the conventional router with our router,

we are able to implement circuits onto our proposed tm-arch FPGAs.

Chapter 5 presents our evaluation of tm-arch. Following the common prac-

tices in the research community, we use MCNC benchmark circuits and VPR flow.

We compare tm-arch with the conventional island-style architecture based on four

metrics: minimum channel width, routing area, circuit critical path delay, and area-

delay product. Our evaluation shows that tm-arch generally can achieve smaller

minimum channel widths. For example, with K=4, tm-arch achieves average

20% reduction in minimum channel widths over 20 MCNC circuits. But tm-arch

is also shown to exhibit significant routing area overhead although it reduces chan-

nel widths. In the case of K=4, tm-arch requires 46% larger routing area. This

significant area overhead is mainly due to TM switches, which consume much more

area than their conventional counterpart. Our evaluation shows that tm-arch can

achieve similar or slightly better critical path delays with smaller channel widths

than the conventional island-style architecture. In the case of K=4, tm-arch im-

proves critical path delay by 1.7% while using 20% smaller channel widths. Finally,

our evaluation shows that tm-arch generally has larger area-delay product. With

K=4, tm-arch exhibits 10% larger area-delay product.

Chapter 6 presents tm-arch(a), a family of FPGA architectures with par-

tially populated time-multiplexed interconnects. tm-arch(a) is mainly motivated

by our evaluation of tm-arch architecture, which reveals that area overhead of

TM switches can be significant. tm-arch(a) family is extended from tm-arch
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architecture. In tm-arch(a) family FPGAs, only a portion of tracks in routing

channels can be time-multiplexed with the aid of TM switches. The architecture

parameter, a, parameterizes this portion. With a=1.0, tm-arch(a) is equivalent to

tm-arch. We evaluate tm-arch(a) family by comparing it with the conventional

island-style architecture. Our evaluation shows that tm-arch(a) architecture with

small a values can achieve smaller area-delay product than the conventional island-

style architecture. For example, with K=4 and a=0.1, tm-arch(a) achieves 10%

smaller area-delay product.

Time-multiplexing in FPGAs has been a recurring topic for more than a

decade. This thesis represents a new effort on proposing the technique of time-

multiplex for FPGAs. It is hoped that this thesis could re-raise some interests in

time-multiplex among the FPGA research community.

7.2 Future Work

Limitations of this study and our recommendations for future research include:

1. This thesis does not evaluate the impact of time-multiplexed interconnects

on power consumption. Being able to justify time-multiplexed interconnects

from the power consumption perspective is important. Work on the power

issue is already underway at our group.

2. In this thesis, we have presented a time-multiplexing -aware routing algo-

rithm, and implemented this algorithm as our routing tool. In the CAD flow

of FPGAs with time-multiplexed interconnects, we replace the conventional

router with our router. However, the tools used for technology mapping,

logic block packing, and placement are not time-multiplexing -aware. Given
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that these various stages in the CAD flow (especially placement and routing)

are correlated, it is necessary to have a full time-multiplexing -aware flow

for FPGAs with time-multiplexed interconnects. Hence, another future work

might be to develop time-multiplexing -aware algorithms for placement.

3. This thesis focuses on island-style FPGAs exclusively, and does not consider

the column-based and the hierarchical architectures. This is mainly due to

two reasons: (1) the island-style architecture is the most studied and the

most widely used in academia and industry; (2) the underlying framework

of our studies is VPR 5 tool, which targets the island-style architecture. An

interesting future work might be to examine appropriate architectures and

CAD algorithms to apply time-multiplexed interconnects to column-based

and/ or hierarchical FPGAs.

4. Homogeneous FPGA architecture is assumed throughout this thesis. This

simplification largely ignores the fact that almost all modern FPGAs con-

tain some hard blocks, such as digital signal processing (DSP) blocks, block

memories, and processors. It is important to evaluate time-multiplexed in-

terconnects in the context of heterogeneous FPGAs. An interesting future

work might be extending the architectures and algorithms presented in this

thesis to heterogeneous FPGAs.
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