116 research outputs found

    Providing efficient services for smartphone applications

    Get PDF
    Mobile applications are becoming an indispensable part of people\u27s lives, as they allow access to a broad range of services when users are on the go. We present our efforts towards enabling efficient mobile applications in smartphones. Our goal is to improve efficiency of the underlying services, which provide essential functionality to smartphone applications. In particular, we are interested in three fundamental services in smartphones: wireless communication service, power management service, and location reporting service.;For the wireless communication service, we focus on improving spectrum utilization efficiency for cognitive radio communications. We propose ETCH, a set of channel hopping based MAC layer protocols for communication rendezvous in cognitive radio communications. ETCH can fully utilize spectrum diversity in communication rendezvous by allowing all the rendezvous channels to be utilized at the same time.;For the power management service, we improve its efficiency from three different angles. The first angle is to reduce energy consumption of WiFi communications. We propose HoWiES, a system-for WiFi energy saving by utilizing low-power ZigBee radio. The second angle is to reduce energy consumption of web based smartphone applications. We propose CacheKeeper, which is a system-wide web caching service to eliminate unnecessary energy consumption caused by imperfect web caching in many smartphone applications. The third angle is from the perspective of smartphone CPUs. We found that existing CPU power models are ill-suited for modern multicore smartphone CPUs. We present a new approach of CPU power modeling for smartphones. This approach takes CPU idle power states into consideration, and can significantly improve power estimation accuracy and stability for multicore smartphones.;For the location reporting service, we aim to design an efficient location proof solution for mobile location based applications. We propose VProof, a lightweight and privacy-preserving location proof scheme that allows users to construct location proofs by simply extracting unforgeable information from the received packets

    MEC vs MCC: performance analysis of real-time applications

    Get PDF
    Hoje em dia, numerosas são as aplicações que apresentam um uso intensivo de recursos empurrando os requisitos computacionais e a demanda de energia dos dispositivos para além das suas capacidades. Atentando na arquitetura Mobile Cloud, que disponibiliza plataformas funcionais e aplicações emergentes (como Realidade Aumentada (AR), Realidade Virtual (VR), jogos online em tempo real, etc.), são evidentes estes desafios directamente relacionados com a latência, consumo de energia, e requisitos de privacidade. O Mobile Edge Computing (MEC) é uma tecnologia recente que aborda os obstáculos de desempenho enfrentados pela Mobile Cloud Computing (MCC), procurando solucioná-los O MEC aproxima as funcionalidades de computação e de armazenamento da periferia da rede. Neste trabalho descreve-se a arquitetura MEC assim como os principais tipos soluções para a sua implementação. Apresenta-se a arquitetura de referência da tecnologia cloudlet e uma comparação com o modelo de arquitetura ainda em desenvolvimento e padronização pelo ETSI. Um dos propósitos do MEC é permitir remover dos dispositivos tarefas intensivas das aplicações para melhorar a computação, a capacidade de resposta e a duração da bateria dos dispositivos móveis. O objetivo deste trabalho é estudar, comparar e avaliar o desempenho das arquiteturas MEC e MCC para o provisionamento de tarefas intensivas de aplicações com uso intenso de computação. Os cenários de teste foram configurados utilizando esse tipo de aplicações em ambas as implementações de MEC e MCC. Os resultados do teste deste estudo permitem constatar que o MEC apresenta melhor desempenho do que o MCC relativamente à latência e à qualidade de experiência do utilizador. Além disso, os resultados dos testes permitem quantificar o benefício efetivo tecnologia MEC.Numerous applications, such as Augmented Reality (AR), Virtual Reality (VR), real-time online gaming are resource-intensive applications and consequently, are pushing the computational requirements and energy demands of the mobile devices beyond their capabilities. Despite the fact that mobile cloud architecture has practical and functional platforms, these new emerging applications present several challenges regarding latency, energy consumption, context awareness, and privacy enhancement. Mobile Edge Computing (MEC) is a new resourceful and intermediary technology, that addresses the performance hurdles faced by Mobile Cloud Computing (MCC), and brings computing and storage closer to the network edge. This work introduces the MEC architecture and some of edge computing implementations. It presents the reference architecture of the cloudlet technology and provides a comparison with the architecture model that is under standardization by ETSI. MEC can offload intensive tasks from applications to enhance computation, responsiveness and battery life of the mobile devices. The objective of this work is to study and evaluate the performance of MEC and MCC architectures for provisioning offload intensive tasks from compute-intensive applications. Test scenarios were set up with use cases with this kind of applications for both MEC and MCC implementations. The test results of this study enable to support evidence that the MEC presents better performance than cloud computing regarding latency and user quality of experience. Moreover, the results of the tests enable to quantify the effective benefit of the MEC approach

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Comnet: Annual Report 2013

    Get PDF

    Network architecture for large-scale distributed virtual environments

    Get PDF
    Distributed Virtual Environments (DVEs) provide 3D graphical computer generated environments with stereo sound, supporting real-time collaboration between potentially large numbers of users distributed around the world. Early DVEs has been used over local area networks (LANs). Recently with the Internet's development into the most common embedding for DVEs these distributed applications have been moved towards an exploiting IP networks. This has brought the scalability challenges into the DVEs evolution. The network bandwidth resource is the more limited resource of the DVE system and to improve the DVE's scalability it is necessary to manage carefully this resource. To achieve the saving in the network bandwidth the different types of the network traffic that is produced by the DVEs have to be considered. DVE applications demand· exchange of the data that forms different types of traffic such as a computer data type, video and audio, and a 3D data type to keep the consistency of the application's state. The problem is that the meeting of the QoS requirements of both control and continuous media traffic already have been covered by the existing research. But QoS for transfer of the 3D information has not really been considered. The 3D DVE geometry traffic is very bursty in nature and places a high demands on the network for short intervals of time due to the quite large size of the 3D models and the DVE application requirements to transmit a 3D data as quick as possible. The main motivation in carrying out the work presented in this thesis is to find a solution to improve the scalability of the DVE applications by a consideration the QoS requirements of the 3D DVE geometrical data type. In this work we are investigating the possibility to decrease the network bandwidth utilization by the 3D DVE traffic using the level of detail (LOD) concept and the active networking approach. The background work of the thesis surveys the DVE applications and the scalability requirements of the DVE systems. It also discusses the active networks and multiresolution representation and progressive transmission of the 3D data. The new active networking approach to the transmission of the 3D geometry data within the DVE systems is proposed in this thesis. This approach enhances the currently applied peer-to-peer DVE architecture by adding to the peer-to-peer multicast neny_ork layer filtering of the 3D flows an application level filtering on the active intermediate nodes. The active router keeps the application level information about the placements of users. This information is used by active routers to prune more detailed 3D data flows (higher LODs) in the multicast tree arches that are linked to the distance DVE participants. The exploration of possible benefits of exploiting the proposed active approach through the comparison with the non-active approach is carried out using the simulation­based performance modelling approach. Complex interactions between participants in DVE application and a large number of analyzed variables indicate that flexible simulation is more appropriate than mathematical modelling. To build a test bed will not be feasible. Results from the evaluation demonstrate that the proposed active approach shows potential benefits to the improvement of the DVE's scalability but the degree of improvement depends on the users' movement pattern. Therefore, other active networking methods to support the 3D DVE geometry transmission may also be required

    Data center resilience assessment : storage, networking and security.

    Get PDF
    Data centers (DC) are the core of the national cyber infrastructure. With the incredible growth of critical data volumes in financial institutions, government organizations, and global companies, data centers are becoming larger and more distributed posing more challenges for operational continuity in the presence of experienced cyber attackers and occasional natural disasters. The main objective of this research work is to present a new methodology for data center resilience assessment, this methodology consists of: • Define Data center resilience requirements. • Devise a high level metric for data center resilience. • Design and develop a tool to validate and the metric. Since computer networks are an important component in the data center architecture, this research work was extended to investigate computer network resilience enhancement opportunities within the area of routing protocols, redundancy, and server load to minimize the network down time and increase the time period of resisting attacks. Data center resilience assessment is a complex process as it involves several aspects such as: policies for emergencies, recovery plans, variation in data center operational roles, hosted/processed data types and data center architectures. However, in this dissertation, storage, networking and security are emphasized. The need for resilience assessment emerged due to the gap in existing reliability, availability, and serviceability (RAS) measures. Resilience as an evaluation metric leads to better proactive perspective in system design and management. The proposed Data center resilience assessment portal (DC-RAP) is designed to easily integrate various operational scenarios. DC-RAP features a user friendly interface to assess the resilience in terms of performance analysis and speed recovery by collecting the following information: time to detect attacks, time to resist, time to fail and recovery time. Several set of experiments were performed, results obtained from investigating the impact of routing protocols, server load balancing algorithms on network resilience, showed that using particular routing protocol or server load balancing algorithm can enhance network resilience level in terms of minimizing the downtime and ensure speed recovery. Also experimental results for investigating the use social network analysis (SNA) for identifying important router in computer network showed that the SNA was successful in identifying important routers. This important router list can be used to redundant those routers to ensure high level of resilience. Finally, experimental results for testing and validating the data center resilience assessment methodology using the DC-RAP showed the ability of the methodology quantify data center resilience in terms of providing steady performance, minimal recovery time and maximum resistance-attacks time. The main contributions of this work can be summarized as follows: • A methodology for evaluation data center resilience has been developed. • Implemented a Data Center Resilience Assessment Portal (D$-RAP) for resilience evaluations. • Investigated the usage of Social Network Analysis to Improve the computer network resilience

    The Next Frontier for Network Neutrality

    Get PDF
    The challenge for policymakers evaluating calls to institute some form of network neutrality regulation is to bring reasoned analysis to bear on a topic that continues to generate more heat than light and that many telecommunications companies appear to believe will just fade away. Over the fall of 2007, the hopes of broadband providers that broadband networks could escape any form of regulatory oversight were dealt a blow when it was revealed that Comcast had degraded the experience of some users of Bittorent (a peer-to-peer application) and engaged in an undisclosed form of network management. This incident, as well as the polarized debate that followed it, underscores the need to reframe the policy and academic debate over broadband regulation and begin evaluating a blueprint for a next generation regulatory strategy that will focus on promoting innovation in the network itself and by applications developers. This Article seeks to do just that. This Article begins by explaining how the debate over network neutrality has all-too-often presented polarized perspectives and slogans where more nuanced analysis is called for. As Internet pioneer David Clark commented on the network neutrality debate, [m]ost of what we have seen so far (in my opinion) either greatly overreaches, or is so vague as to be nothing but a lawyer\u27s employment act. As the Article explains, any effort by Congress to develop a well-specified response to network neutrality concerns would be premature, as the Federal Communications Commission (FCC) and the Federal Trade Commission (FTC) should first be afforded an opportunity to develop an effective consumer protection and competition policy strategy. As the Article explains, the FTC has an important opportunity - and indeed a responsibility - to develop and implement a consumer protection strategy in this area, calling for effective disclosure of broadband terms of service and the enforcement of the commitments made in those policies. Moreover, as to the relevant competition policy issues, the Article calls on either the FTC or the FCC (or both) to develop and implement an effective institutional strategy to guard against anticompetitive refusals to provide access to quality of service assurances. In short, the appropriate response to network neutrality concerns is not to ban such quality of service assurances altogether - as that would stifle the Internet\u27s development - but to ensure that the offering of such assurances is not used to injure competition and harm consumers

    Definition and specification of connectivity and QoE/QoS management mechanisms – final report

    Get PDF
    This document summarizes the WP5 work throughout the project, describing its functional architecture and the solutions that implement the WP5 concepts on network control and orchestration. For this purpose, we defined 3 innovative controllers that embody the network slicing and multi tenancy: SDM-C, SDM-X and SDM-O. The functionalities of each block are detailed with the interfaces connecting them and validated through exemplary network processes, highlighting thus 5G NORMA innovations. All the proposed modules are designed to implement the functionality needed to provide the challenging KPIs required by future 5G networks while keeping the largest possible compatibility with the state of the art

    Mission-Critical Communications from LMR to 5G: a Technology Assessment approach for Smart City scenarios

    Get PDF
    Radiocommunication networks are one of the main support tools of agencies that carry out actions in Public Protection & Disaster Relief (PPDR), and it is necessary to update these communications technologies from narrowband to broadband and integrated to information technologies to have an effective action before society. Understanding that this problem includes, besides the technical aspects, issues related to the social context to which these systems are inserted, this study aims to construct scenarios, using several sources of information, that helps the managers of the PPDR agencies in the technological decisionmaking process of the Digital Transformation of Mission-Critical Communication considering Smart City scenarios, guided by the methods and approaches of Technological Assessment (TA).As redes de radiocomunicações são uma das principais ferramentas de apoio dos órgãos que realizam ações de Proteção Pública e Socorro em desastres, sendo necessário atualizar essas tecnologias de comunicação de banda estreita para banda larga, e integra- las às tecnologias de informação, para se ter uma atuação efetiva perante a sociedade . Entendendo que esse problema inclui, além dos aspectos técnicos, questões relacionadas ao contexto social ao qual esses sistemas estão inseridos, este estudo tem por objetivo a construção de cenários, utilizando diversas fontes de informação que auxiliem os gestores destas agências na tomada de decisão tecnológica que envolve a transformação digital da Comunicação de Missão Crítica considerando cenários de Cidades Inteligentes, guiado pelos métodos e abordagens de Avaliação Tecnológica (TA)
    corecore