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ABSTRACT

Mobile applications are becoming an indispensable part of people's lives, as they 
allow access to a broad range of services when users are on the go. We present 
our efforts towards enabling efficient mobile applications in smartphones. Our 
goal is to improve efficiency of the underlying services, which provide essential 
functionality to smartphone applications. In particular, we are interested in three 
fundamental services in smartphones: wireless communication service, power 
management service, and location reporting service.

For the wireless communication service, we focus on improving spectrum 
utilization efficiency for cognitive radio communications. We propose ETCH, a 
set of channel hopping based MAC layer protocols for communication 
rendezvous in cognitive radio communications. ETCH can fully utilize spectrum 
diversity in communication rendezvous by allowing all the rendezvous channels 
to be utilized at the same time.

For the power management service, we improve its efficiency from three 
different angles. The first angle is to reduce energy consumption of WiFi 
communications. We propose HoWiES, a system for WiFi energy saving by 
utilizing low-power ZigBee radio. The second angle is to reduce energy 
consumption of web based smartphone applications. We propose 
CacheKeeper, which is a system-wide web caching service to eliminate 
unnecessary energy consumption caused by imperfect web caching in many 
smartphone applications. The third angle is from the perspective of smartphone 
CPUs. We found that existing CPU power models are ill-suited for modern 
multicore smartphone CPUs. We present a new approach of CPU power 
modeling for smartphones. This approach takes CPU idle power states into 
consideration, and can significantly improve power estimation accuracy and 
stability for multicore smartphones.

For the location reporting service, we aim to design an efficient location proof 
solution for mobile location based applications. We propose VProof, a 
lightweight and privacy-preserving location proof scheme that allows users to 
construct location proofs by simply extracting unforgeable information from the 
received packets.
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1 Introduction

1.1 Overview

Since the emergence of smartphones, users have been able to enjoy traditional 

mobile applications (e.g., phone calls and SMS) as well as many new applications 

with their mobile phones. Smartphone applications are now tapping into virtually 

every aspect of people’s lives, spanning from online banking to health monitoring, 

from news reading to mobile gaming, and from trip planning to video streaming. 

Applications that can efficiently utilize smartphone resources (e.g., CPU, battery, 

and network bandwidth) are important to both smartphone owners and service 

providers. Because they can not only bring better user experience (e.g., smaller 

response time and longer battery life) for smartphone owners, but also lead to 

more optimal resource usage (e.g., better bandwidth utilization ratio and smaller 

computation overhead) for mobile service providers. Therefore, enabling efficient 

mobile applications in smartphones has been an important topic in mobile com­

puting research.

Smartphone applications rely on different services provided by the smartphone 

operating system to offer good user experience and achieve optimal resource us­

age. Each service provides a specific kind of functionality that is necessary for 

many applications running in the phone. Wireless communication, battery power 

management, and location dependent applications are the three most important 

aspects that set smartphone based computing different from traditional PC com­
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puting. Therefore, we are interested in improving the following smartphone ser­

vices that are related to these three aspects.

• Wireless communication service provides wireless connectivity for smart­

phone applications. Compared to applications in PCs, the most salient fea­

ture of smartphone applications is that they allow a user to access resources 

in the Internet in a wireless manner or to connect to other users even when 

she is on the go. Most smartphone applications need to use at least one kind 

of wireless connection (e.g., cellular, WiFi and Bluetooth). A recent survey 

on 856 free Android applications and 100 paid Android applications reveals 

that 87% of free and 66% of paid Android applications request permissions 

of accessing wireless network [1], Therefore, improving efficiency of wire­

less communication service is key to enhancing efficiency of smartphone 

applications.

• Power management service allows smartphone applications to use battery 

power efficiently. Because smartphones are powered by batteries, the us­

ability of smartphone applications is affected by one important factor, which 

is not so significant in traditional PC computing - power efficiency. There­

fore, improving efficiency of power management service in smartphones is 

important to providing good user experience.

• Location reporting service enables location based service (LBS) applica­

tions in smartphones. LBS is an important category of services enabled 

by the proliferation of smartphones. LBS utilizes smartphones’ on-board 

chips/sensors, such as GPS, cellular, gyroscope and accelerometer, to re­

port phones' geolocations, based on which mobile applications can provide 

customized services to the users. Examples of well-known LBS applica­

tions on the Android platform include Google Maps [2] (which provides map 

and real-time navigation services based on user's geolocations), Facebook

2



[3] and Foursquared [4] (both of which allow users to “check in" different 

venues and post comments and ratings about the venues), and GasBuddy [5] 

(through which users can report fuel prices they see and find the gas sta­

tions providing satisfying prices based on other users’ reports). Improving 

efficiency of location report service is of great benefit to these LBS mobile 

applications.

In this dissertation, we present our efforts in improving efficiency of the above 

three most important services that differentiate smartphone based computing from 

traditional PC based computing. In the next section, we give an overview of the 

problem of each effort, as well as our contribution of solving the problem.

1.2 Problems and contributions

1.2.1 Achieving efficient rendezvous for cognitive radio com­

munications

Wireless communication service is critical to the proper functioning of mobile ap­

plications. However, as smartphones and other mobile devices are getting pop­

ular, we are facing a severe wireless spectrum deficiency problem, where the 

unlicensed band are becoming too crowded to achieve good wireless communi­

cation performance. Cognitive radio is a promising technology to solve this spec­

trum scarcity problem. In this technology, cognitive radio transceivers can au­

tomatically detects available wireless channels, and changes its transmission or 

reception parameters accordingly so that more wireless communications may run 

concurrently in a given spectrum band [6]. With the introduction of cognitive ra­

dios and dynamic spectrum access (DSA for short) management, those previously 

closed licensed spectrum, whose bandwidth is much larger than that of unlicensed 

spectrum, can be opened to unlicensed wireless users without affecting the nor-
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mal operations of the licensed users. Because of the great benefits that could 

be brought by cognitive radios, we believe that smartphones will be shipped with 

cognitive radios as the technology matures in the near future. Therefore, study­

ing how to improve efficiency of cognitive radio communications is an important 

direction of providing good wireless communication service to mobile applications 

in smartphones.

In cognitive radio communications, unlicensed users (i.e., secondary users) 

are granted the access to the licensed spectrum if it is not being used by the li­

censed users (i.e., primary users). In the meantime, secondary users should yield 

the working wireless channel if the primary user appears. The dynamic availability 

of wireless spectrum requires secondary users to hop on different wireless chan­

nels, rather than staying in the same channel. Therefore, for two secondary users 

without knowing each other’s working channel for communication, they need to 

first establish a control channel, upon which they exchange certain control infor­

mation, such as communication channel and data rate, before they can start the 

data communication. The process of establishing control channel for the pair of 

secondary users is called communication rendezvous.

Existing solutions fall short of providing a solution for communication rendezvous 

that can efficiently utilize wireless spectrum. For example, the state-of-the-art 

channel hopping based solution can only guarantee one channel to be utilized 

at the same time [7], To solve the problem, we propose ETCH, efficient channel 

hopping based MAC-layer protocols for communication rendezvous in cognitive 

radio communications [8,9], Compared to the existing solutions, ETCH fully uti­

lizes spectrum diversity in communication rendezvous by allowing all the ren­

dezvous channels to be utilized at the same time. We propose two protocols, 

SYNC-ETCH, which is a synchronous protocol assuming secondary users can 

synchronize their channel hopping processes, and ASYNC-ETCH, which is an 

asynchronous protocol not relying on global clock synchronization. Our theoreti­
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cal analysis and ns-2 based evaluation show that ETCH achieves better perfor­

mances of time-to-rendezvous and throughput than the existing work.

1.2.2 Gaining energy savings for WiFi communications

Wireless communication service enables connectivity between smartphones. How­

ever, it is also a major source of power consumption in smartphones. An effi­

cient power management service is important for prolonging battery life for smart­

phones. In this effort, we aim to improve smartphone power management service 

by gaining energy savings for WiFi communications.

WiFi is the one of the two most commonly used means for data transmission in 

smartphones (with the other one being cellular based data transmission). WiFi in­

terface consumes a considerable amount of power when it is active, and is a major 

source of energy consumption affecting user experience. Therefore, studying how 

to gain energy savings from WiFi communications is a crucial step towards pro­

viding good power management service to mobile applications in smartphones.

We observe that there are three scenarios where a WiFi radio has to stay 

active without performing any real communications.

• First, a WiFi radio has to stay active to scan for networks in the scanning 

state. The power consumption for network scanning is considerably salient 

for the lack of WiFi coverage in many places.

• Second, during PSM (Power Save Mode) standby, a WiFi radio needs to 

constantly switch to active to receive wireless access point (AP) beacons 

and check if the AP has buffered its packets. Recent work [10,11] show that 

users usually leave their smartphones idle for most of the time. The long idle 

time contributes to a non-negligible amount of WiFi energy consumption.

• Third, when waken up from PSM standby, a WiFi radio has to stay active 

doing nothing while waiting for its turn to communicate with the AP if there

5



are multiple devices contending for the channel.

The WiFi radio power consumptions in the above scenarios are significant: our 

measurements show that the power consumptions of WiFi scanning and PSM 

standby in a Samsung Galaxy S2 smartphone account for 65% and 11% of the 

entire system power consumption respectively, and recent work [12,13] show that 

the wakeup contentions could cause up to four times more power consumption.

We propose HoWiES, a system that saves energy consumed by WiFi inter­

faces in mobile devices with the assistance of ZigBee radios [14,15]. The key 

idea of HoWiES is that the operations of a WiFi radio in above scenarios can be 

delegated to a low power ZigBee radio. In this case, WiFi radio will be turned 

off when there is no packet to transmit and receive, and the ZigBee radio is re­

sponsible for discovering the presence of WiFi networks and detecting if the AP 

intends for the device to communicate. This way, the significant power consump­

tions on WiFi radio in those scenarios are reduced to the reasonably low power 

consumptions on ZigBee radio. The core component of HoWiES is a WiFi-ZigBee 

message delivery scheme that enables WiFi radios to convey different messages 

to ZigBee radios in mobile devices. Based on the WiFi-ZigBee message delivery 

scheme, we design three protocols that target at three WiFi energy saving op­

portunities in scanning, standby and wakeup respectively. We have implemented 

the HoWiES system with two mobile devices platforms and two AP platforms. Our 

real-world experimental evaluation shows that our system can convey thousands 

of different messages from WiFi radios to ZigBee radios with an accuracy over 

98%, and our energy saving protocols, while maintaining the comparable wakeup 

delay to that of the standard 802.11 power save mode, save 88% and 85% of 

energy consumed in scanning state and standby state respectively.

1.2.3 Reducing energy consumption for web applications.
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In this effort, we are trying to improve the power management service by reducing 

energy consumption caused at the application layer.

Web traffic is the dominant type of Internet traffic [16], and with the popularity of 

smartphones and tablets, an increasing amount of web traffic originates from mo­

bile devices. The mobile web traffic has grown 35% in under a year [17], and now 

accounts for 20% of the U.S. web traffic [18]. Unlike conventional PCs, where 

web browser is the dominant source of web traffic, smartphones have another 

significant source of web traffic: dedicated mobile apps. The dedicated apps are 

getting popular because they provide users with convenient user interfaces that 

are tailored according to specific tasks and smartphones' physical constraints. 

The popularity of dedicated mobile apps has led online content providers to de­

velop their own dedicated app to interact with their web services. Consequently, 

the diversity of apps and their developers has resulted in certain apps not being 

fully compliant with Internet standards or guidelines.

Among those guidelines, guideline on web caching is an important one for en­

ergy consumption and performance of web based applications. This is because 

an appropriate web caching implementation in mobile apps will benefit both users 

and network operators. With such an implementation, users can (a) conserve en­

ergy by reducing unnecessary data transmissions, (b) experience a higher quality 

of service, since the data can be accessed faster locally, and (c) lower costs, since 

users may have to pay a higher fee for downloading more data. Network oper­

ators also benefit when mobile apps implement web caching correctly since this 

reduces the congestion on the network, especially the last mile radio connections.

However, despite the importance of web caching, large numbers of mobile 

apps have imperfect web caching, meaning that web caching is either imple­

mented for only certain HTTP resources the apps request, or is not implemented 

at all. The reason is that since apps without caching or with poor caching will still 

have the “look-and-feel”, some developers will spend less time implementing and
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testing the caching behavior of their apps.

We propose CacheKeeper, an OS web caching service transparent to mobile 

apps for smartphones [19j. CacheKeeper provides the correct web caching im­

plementation with no effort on the part of mobile app developers. Developers do 

not need to install any additional libraries or incorporate any additional API calls to 

take advantage of CacheKeeper. Furthermore, CacheKeeper is backward com­

patible, meaning that existing apps can take advantage of CacheKeeper without 

any modifications. We implemented a prototype of CacheKeeper in Linux kernel, 

and evaluated it with extensive experiments. Our evaluation on 10 top ranked 

Android apps shows that our CacheKeeper prototype can save 42% HTTP traf­

fic with real user browsing behaviors and reduce web accessing latency by half 

under real 3G settings.

1.2.4 Improving CPU power modeling for multicore smartphones.

CPU is a major source of power consumption in smartphones [20]. As multicore 

smartphones become increasingly popular, CPU power consumption becomes 

a much more significant component in the smartphone power consumption port­

folio. For example, on a quad-core Samsung Galaxy S3 smartphone, the CPU 

power is as high as 2,845 mW, which is 2.53 times of the maximum power of 

the screen, and is 2.5 times of the maximum power of the 3G interface [21]. Ac­

cording to our measurements, the CPU power consumption of the Google Nexus 

series smartphones has increased significantly in the last three generations: the 

CPU power consumption of a Google Nexus 4 smartphone (quad-core, the 4th 

Nexus generation) could reach 4,065 mW, which is 2.03 times of the maximum 

CPU power of a Galaxy Nexus smartphone (dual-core, the 3rd Nexus generation), 

and is 4.51 times of that of a Nexus S smartphone (single-core, the 2nd Nexus 

generation). Therefore, accurate estimation and efficient management of CPU 

power consumption are among the most important issues in power management
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of multicore smartphones.

Power modeling is a lightweight and effective approach to estimate power con­

sumption of smartphone CPU. Proper and accurate power models of smartphone 

components benefit both users and developers. Accurate power models help to 

detect power hungry applications, and thus users get better battery life of their 

smartphones [22], Accurate power models also help developers profile, and con­

sequently optimize, the energy consumption of their smartphone applications [23]. 

Because of its importance, power modeling has been attracting an increasing 

amount of research effort [24-29], In this project, we in particular study how to 

build accurate models for CPU power consumption in multicore smartphones.

Existing CPU power modeling approaches for smartphones assume CPU op­

erating frequency and CPU utilization are the only major factors that affect CPU 

power consumption [24-26]. However, we find that this assumption does not hold 

with multicore CPUs in modern smartphones: under the same frequency and CPU 

utilization, two workloads with different CPU usage patterns could consume sig­

nificantly different amounts of energy. Our experiments show that the difference 

can reach 50% in a quad-core Google Nexus 4 smartphone. Therefore, existing 

smartphone CPU power models are not suited for multicore smartphones. Our 

measurements indicate that the existing CPU power models give an estimation 

error as high as 34% on modern multicore smartphones. Moreover, the estimation 

accuracy of existing models is also notably unstable: the same CPU power model 

could generate an estimation variation larger than 30% for the different types of 

workloads.

The root cause of the estimation inaccuracy and instability comes from multi­

ple newly introduced CPU idle power states, which consume markedly different 

amounts of power in multicore CPUs. We have carefully analyzed the impacts of 

idle power states on CPU power consumption, and developed a new CPU power- 

modeling method that treats CPU idle power states as a new major factor of CPU
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power modeling [30]. As a result, the new modeling method is able to significantly 

improve power estimation accuracy and stability. To the best of our knowledge, 

our work is the first to target accurate CPU power modeling for multicore smart­

phone CPUs.

1.2.5 Enabling lightweight and privacy preserving location proofs 

for location based service applications

Location Based Service (LBS) application is a new and major category of applica­

tions in smartphone applications. An important problem of providing trustworthy 

LBS applications in smartphones is to enable efficient location proof schemes.

A location proof scheme allows LBS providers to verify if users’ location claims 

are in accordance with their actual location history, and to exclude those falsified 

ones. For example, in location based online social networks, such as Facebook 

and Foursquared, users can post comments and ratings about the venues they 

visited. Without proper location proof schemes, malicious users can comment 

on any places without actually visiting them. Another example is in today’s In­

telligent Transportation Systems (ITS), a popular category of applications is that 

vehicles report information about the transportation system elements (e.g., drivers 

and road conditions) to the ITS system for services like real time traffic control and 

roads maintenance [31,32], Successes of recent research projects on vehicle- 

based data sensing and collection [33-35] have bolstered such ITS data collec­

tion applications. However, before accepting data about a location reported by a 

vehicle, ITS operators need to verify if the vehicle visited the location at the time 

indicated in the reported data. Failing to do so will allow malicious users to launch 

an attack to the ITS system by reporting fake information about places where he 

did not actually visit. The damages of the attack are particularly serious, since 

the attacker can report fake information about numerous places by just clicking 

mouse at home. Therefore, studying how to provide efficient location reporting
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Figure 1: Summary of the problems.

service is important to enable efficient LBS applications in smartphones.

We propose VProof, a vehicle location proof scheme that enables users on 

vehicles to prove their location claims match their historical locations [36, 37], 

With VProof, applications construct their location proofs by simply extracting rel­

evant contents from the packets received from roadside units. Our scheme is 

lightweight, since there is no communication required for a prover to obtain a lo­

cation proof. Our scheme also well preserves users’ privacy, as we do not put 

any information that can be related to a user’s ID in a location proof. We have im­

plemented a prototype VProof system and evaluated it with extensive real-world 

experiments. Our evaluation results show that VProof is able to reliably prove 

vehicle’s locations without leaking any user privacy. Although our current design 

and evaluation are performed on a vehicular basis, VProof can be extended to 

other mobile scenarios (e.g., waling and bicycling) with simple modifications.

1.3 Summary and organization

This dissertation proposes to improve efficiency of smartphone applications by 

improving the three fundamental services in smartphones: the wireless communi­
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cation service, the power management service, and the location reporting service. 

We have conducted five projects for this purpose (summarized in Figure 1).

1. The first project (ETCH) improves the wireless communication service by 

achieving efficient rendezvous for cognitive radio communications.

2. The second project (HoWiES) improves the power management service 

from the perspective of WiFi communications.

3. The third project (CacheKeeper) improves the power management service 

from the perspective of applications.

4. The fourth project (accurate CPU power modeling) improves the power man­

agement service from the perspective of smartphone CPUs.

5. The last project (VProof) improves the location reporting service by providing 

a lightweight and privacy-preserving location proof scheme.

The rest of the dissertation is organized as follows. In Chapter 2, we present 

the details of ETCH. In Chapter 3, Chapter 4, and Chapter 5, we describe the three 

projects for improving the power management service respectively: HoWiES, 

CacheKeeper, and the accurate CPU power modeling method for multicore smart­

phones. In Chapter 6, we present the details of VProof. Finally, we conclude the 

dissertation and present our vision for future work in Chapter 7.
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2 ETCH: Efficient Channel Hopping 

Based Communication Rendezvous 

for Cognitive Radio Communica­

tions

Wireless communication is important to mobile application in smartphones. We 

are facing an increasingly severe wireless spectrum scarcity problem, where the 

unlicensed bands are getting overcrowded. Cognitive radio is a promising tech­

nology to solve the problem, and thus is expected to shipped with future smart­

phones. We studied how to achieve efficient communication rendezvous, which 

is a critical step of establishing communication in cognitive radio networks.

2.1 Background and related work

2.1.1 Background

Communication rendezvous in cognitive radio (or dynamic spectrum access, DSA 

for short) networks is the process of establishing a control channel between two 

network nodes, over which they can exchange essential control information, be­

fore the pair of nodes can communication with each other. The common control 

channel approach, where a well-known channel is designated as control channel
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for all nodes, is the most straightforward way to establish a control channel be­

tween a pair of DSA nodes. However, it suffers from the channel congestion prob­

lem and is vulnerable to jamming attacks [38]. Moreover, this approach cannot 

be applied in DSA networks because the control channel itself may be occupied 

by the primary user and hence become unavailable to the secondary users. The 

channel hopping approach, by contrast, increases control channel capacity and 

is immune to jamming attacks by utilizing multiple control channels. In this ap­

proach, all idle network nodes hop on a set of sequences of rendezvous channels 

(i.e., channels that are assigned for the purpose of control information exchange). 

When two nodes wishing to communicate hop to the same channel, this channel 

will serve as a control channel between the pair of nodes. The time that it takes 

for a pair of nodes to establish the control channel is called "time-to-rendezvous" 

or TTR for short.

To establish a control channel in DSA networks through channel hopping (ab­

breviation CH), every pair of nodes should have chance to rendezvous with each 

other periodically. In particular, due to the unique property of DSA networks that 

the channel availability is dynamic, the control channel established between any 

pair of nodes should equally likely be any one of the rendezvous channels. Other­

wise, a pair of nodes would not be able to communicate if a primary user occupies 

the channels on which they rendezvous, even though there may still exist some 

other available channels to exchange the control information. QCH [7] is a recent 

control channel establishment protocol specifically designed for DSA networks. It 

utilizes the overlap property of quorums in a quorum system to develop CH se­

quences such that any two CH sequences are able to rendezvous periodically. 

Meanwhile, to accommodate the dynamics of the channel availability in DSA net­

works, QCH guarantees that any two nodes can meet each other as long as there 

are rendezvous channels not being occupied by primary users. While QCH is 

more suitable for DSA networks scenario and has better performances than exist­
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ing CH-based multi-channel communication protocols, the following two concerns 

motivated us to explore for a better scheme.

First, in the scenario where global clock synchronization is available for DSA 

nodes to synchronize their channel hopping processes, QCH is only able to use 

one rendezvous channel as control channel in each hopping slot. This approach 

neglects the spectrum diversity, which is the most salient advantage brought by 

the DSA technique, in control channel establishment, and thus will potentially lead 

to severe traffic collision in a high probability. We propose SYNC-ETCH, a syn­

chronous ETCH protocol, which efficiently exploits the spectrum diversity in a way 

that every rendezvous channel can serve as a control channel in each hopping 

slot. In SYNC-ETCH, while achieving the same goal, two CH sequence con­

struction algorithms are proposed: two-phase CH sequence construction [8] and 

single-phase sequence construction. These two algorithms are complementary 

in design. The single-phase algorithm can guarantee the satisfaction of the even 

use of rendezvous channels requirement, which states that all the rendezvous 

channels should have the same probability to appear in each constructed CH se­

quence. This requirement is important for CH based communication rendezvous 

protocols, since if a CH sequence is heavily using a certain rendezvous chan­

nel, the nodes hopping on this sequence will lose contact with other nodes if the 

heavily relied channel is taken away by the primary user. The constraint of the 

single-phase algorithm is that it requires the total amount of rendezvous chan­

nels to be an odd number. The two-phase CH sequence construction algorithm 

can be applied to DSA networks with an arbitrary number of rendezvous chan­

nel, but it tries (cannot guarantee) to satisfy the even use of rendezvous channel 

requirement. As will be showed later, both of the SYNC-ETCH CH sequence con­

struction algorithms achieve the optimal average TTR under the premise that all 

the rendezvous channels should be utilized as control channels in every hopping 

slot.
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Second, in the scenario where the channel hopping processes of different DSA 

nodes are not synchronized, QCH only guarantees two of the rendezvous chan­

nels to be used as control channels. This arrangement also does not take ad­

vantage of spectrum diversity in DSA networks, and may lead to communication 

outage when the primary users appear on the two channels. We propose ASYNC- 

ETCH, an asynchronous ETCH protocol, which solves the problems by using all 

rendezvous channels as control channels.

2.1.2 Related work

Channel hopping based rendezvous protocols in normal multi-channel wire­

less networks. SSCH [39] is a well known synchronous communication ren­

dezvous protocol for IEEE 802.11 network. In SSCH, each node hops on a se­

quence of channels determined by multiple (channel, seed) pairs. The arrange­

ment of the hopping sequence ensures that any two nodes have chance to ren­

dezvous with very high probability. In very small chance that two nodes will never 

meet, a parity slot with fixed channel is introduced to allow the two nodes to 

communicate. CHMA [40] is another synchronous CH based rendezvous pro­

tocol. It directs all nodes to hop on a common channel sequence such that any 

two nodes can communicate while utilizing all the channels. These protocols for 

normal multi-channel wireless networks do not take into account some important 

properties of dynamic spectrum access (DSA) networks, e.g., dynamic availabil­

ity of channels, and thus are not suitable to be applied in DSA networks. More­

over, these protocols do not consider exploiting spectrum diversity in each hop­

ping slot. DSA networks usually have much more spectrum diversity than normal 

multi-channel wireless networks. Therefore, exploiting spectrum diversity in DSA 

networks will bring much more performance gain.

Spectrum sharing in DSA networks. DSA network research can be divided 

into the following areas [41]: spectrum sensing ([42-47]), spectrum management
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([47,48]), spectrum mobility and spectrum sharing. Our work belongs to the area 

of spectrum sharing. In this area, techniques can be categorized into two classes 

based on network architecture. Techniques in the first class assume there is a 

centralized entity that is responsible for the spectrum allocation for all the sec­

ondary users in the network. DSAP [49] is a typical solution that belongs to this 

category. The second class of spectrum sharing techniques perform the sharing 

in a distributed manner. These techniques can be further divided into two groups 

based on the assumption about the existence of a common control channel. Tech­

niques in the first group (e.g., DOSS [50]) use common control channels that are 

available to all secondary users for spectrum sharing information exchange. The 

second group of techniques, which do not rely on common control channel, al­

low DSA nodes rendezvous with each other and exchange spectrum sharing in­

formation in a dynamic manner. Among these techniques, some are based on 

channel hopping (detailed next) and some are not. HD-MAC [38] is a represen­

tative distributed technique that ensure rendezvous in DSA networks not based 

on channel hopping. In this scheme, secondary users self-organize into groups 

based on similarity of available channels. In each of the groups, a group control 

channel, elected by group members, is used to carry control information of the 

group nodes. A weakness of HD-MAC is that it relies on all-channel broadcast to 

spread spectrum availability information and control channel votes. Both sender 

and receiver of a broadcast message need to rotate on all their available chan­

nels to send or receive the message, which will take a long time in establishing 

the group control channel especially when the number of channels is high.

Channel hopping based rendezvous protocols in DSA networks. Our 

work, QCH [7], SeqR [51] and Jump-stay CH [52] are representative CH based 

rendezvous protocols in DSA networks. QCH [7] deal with communication ren­

dezvous in both the synchronous scenario and the asynchronous scenario, while 

SeqR [51] and Jump-stay CH [52] only deal with the asynchronous scenario. Dif­
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ferent from the previous work, ETCH focuses on exploiting the spectrum diversity, 

which is the most salient advantage of DSA networks, in designing communication 

rendezvous protocols (for both scenarios).

2.2 Problem Formulation

2.2.1 Problem setting

In a DSA network, there are N  (orthogonal) licensed channels labeled as Co, Ci, 

C V -i that can be used for control information exchange. In other words, there 

are N rendezvous channels in the DSA network. Any pair of nodes wishing to 

communicate with each other should first establish a control channel between 

them before data communications. We assume that there is no centralized en­

tity that globally controls the allocation of communication channels, so the control 

channel establishment between a pair of nodes is executed in a distributed man­

ner.

In a CH-based solution, idle nodes1 periodically hop on (i.e., switch their work­

ing channel according to) a CH sequence, which is a sequence of rendezvous 

channels. The time during which a node stays on a channel is defined as a hop­

ping slot, which is notated as a (slot-index, channel) pair. Thus, a CH sequence 

S is notated as

5 =  {(0, S[0]), (1, S [l]) ,..., (*, S[i]),..., (P -  1 , S \ p -  1])},

where i e [0,p -  1] is the index of a hopping slot, and S[i] e {Co, • • • , Cw_i} is 

the rendezvous channel assigned to the i-th slot of the sequence S. The time 

it takes for a node to hop through the entire CH sequence is called a hopping 

period. When two nodes hop to the same channel, they can hear from each other

and that channel is established as their control channel. If more than two nodes

1Here idle nodes refer to nodes waiting to initiate a communication with other nodes and nodes 
waiting others to connect to them.
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hop to the same rendezvous channel at the same time, they use existing collision 

avoidance mechanisms (e.g. RTS/CTS) or retransmission to establish pairwise 

control channels between them.

A CH-based solution should take account of the following requirements in its 

design.

• Overlap requirement. This requirement requires that any two CH sequences 

must overlap at a certain slot to ensure the rendezvous between the two 

nodes. Formally, given two CH sequences S0 and Si, they overlap if there 

exists a slot («,50[*]) € SQ and a slot (*,5i[i]) e Si such that 5b[*] = Sx\i]. 

This slot is called an overlapping slot between SQ and Si, and the rendezvous 

channel 50[i] (50[*] e {Co, • • • , CV-i}) is called an overlapping channel be­

tween So and Si. If a rendezvous channel serves as an overlapping channel 

between a pair of CH sequences in the *-th slot, we say that the rendezvous 

channel is utilized (as a control channel) in the i-th slot.

• Full utilization of rendezvous channels. This requirement requires that 

any pair of nodes should be able to utilize every rendezvous channel as 

their control channel. This is to ensure the nodes have an opportunity to 

communicate with each other even if some of (but not all) the rendezvous 

channels are occupied by primary users.

• Even use of rendezvous channels. This requirement requires that all the 

rendezvous channels should have the same probability to appear in each 

CH sequence. If a CH sequence heavily relies on a certain channel (i.e., 

the channel is assigned to most of the slots of the CH sequence), nodes 

that hop on this CH sequence will lose contact with most of other nodes 

when the heavily relied channel is occupied by the primary user.
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2.2.2 Metrics

We use the following three metrics in our numerical analysis for the proposed 

ETCH scheme.

• Average rendezvous channel load. This metric measures the average 

fraction of nodes that meet in the same rendezvous channel among all the 

nodes. Given a DSA network with M  nodes and an average rendezvous 

channel load a (0 < a < 1), there are on average M a  nodes rendezvous 

in the same channel. A light rendezvous channel load alleviates traffic col­

lisions and increases the communication throughput.

• Average time-to-rendezvous. This is the average number of hopping slots 

that two nodes need to wait before they can rendezvous. A smaller aver­

age time-to-rendezvous (TTR) allows nodes to rendezvous and establish a 

communication link more quickly.

• Rendezvous channel utilization ratio. This is the ratio of the number of 

rendezvous channels that can be utilized as control channels in a hopping 

slot to the total number of rendezvous channels. It measures, in a given 

hopping slot, the extent that a communication rendezvous protocol utilizes 

the spectrum diversity in establishing control channels. A high rendezvous 

channel utilization ratio is helpful to reduce collision and improve the network 

capacity at the communication setup stage. This metric does not apply to the 

asynchronous case in which the hopping slot boundaries are not necessarily 

aligned.

We also use two other metrics, traffic throughput and actual time-to-rendezvous, 

to evaluate the practical performance of a communication rendezvous protocol. 

We will show that ETCH outperforms the existing solutions through mathematical 

analysis and simulations in §2.5 and §2.6 respectively.
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2.2.3 Assumptions

We have the following assumptions regarding DSA networks and the node hard­

ware.

• All the rendezvous channels are known to all the nodes. Information about 

rendezvous channels of a DSA network can be announced by regulation 

authorities such that all secondary users wishing to join the network will have 

this information.

• Each node is equipped with a single transceiver, which means a node cannot 

communicate in multiple channels at the same time. This assumption is in 

accordance with the ability of most commodity wireless devices.

• The channel switching overhead is negligible. This assumption is valid be­

cause most wireless hardware manufacturers claim that the channel switch­

ing delay is of the order of 80-90 ps [53], This delay is negligible compared 

to the length of a slot in a hopping sequence, which is in the magnitude of 

10ms.

2.3 SYNC-ETCH

SYNC-ETCH assumes that there exists a synchronization mechanism to achieve 

global clock synchronization among DSA nodes, so that two nodes wishing to 

communicate with each other can start channel hopping at the same time.

A newly joined node execute the SYNC-ETCH protocol in following two steps. 

In the first step, the node constructs a set of CH sequences by using either the 

two-phase CH sequence construction algorithm (§2.3.1) or the single-phase CH 

sequence construction algorithm (§2.3.2). The two-phase algorithm can be ap­

plied to scenarios with arbitrary numbers of rendezvous channels. It satisfies the 

overlap requirement in the first phase, and tries to fulfill the requirement of even
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use of rendezvous channels in the second phase. The single-phase algorithm 

guarantees the satisfaction of both requirements in an integral design. Both of 

the algorithms achieve the optimal average TTR under the premise that all the 

rendezvous channels should be utilized as control channels in every hopping slot. 

The key design goal of both CH sequence construction algorithms is to fully utilize 

all the rendezvous channels in every hopping slot.

Theorem 1. In a DSA network with N rendezvous channels, for any CH based 

synchronous communication rendezvous protocols where all the rendezvous chan­

nels are utilized in each hopping slot, the minimum number of hopping slots of 

each CH sequence is 2N -  l, and the average TTR is

Proof. To let all the N  rendezvous channels be fully utilized in each CH time slot, 

we must arrange at least 2N CH sequences in a way that N  pairs of CH sequences 

rendezvous at N  different channels. We also must arrange at least 2iV - 1 hopping 

slots for each of the 2N  CH sequences to allow each sequence to rendezvous 

with the rest 2N -  l  CH sequences (for the overlap requirement). Considering 

that the rendezvous time of two randomly selected CH sequences (from the 2N 

sequences) is uniformly distributed between slot one and slot 2N  -1 , the average 

TTR is □

Theorem 1 reveals that, to fully utilize all the N  rendezvous channels in each 

hopping slot, there are at least 2N  - 1 hopping slots in each CH sequence. As we 

will show later, both CH sequence construction algorithms in SYNC-ETCH can 

achieve such optimal length of CH sequences.

In the second step, the node starts the CH sequence execution process (§2.3.3) 

in a way that the full utilization of rendezvous channels requirement is satisfied.

We introduce the CH sequence construction algorithms and the CH sequence 

execution algorithm in the rest of this section.
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Figure 2: Phase 1 of the two-phase CH sequence construction - rendezvous schedul­
ing. This figure shows the 5 rendezvous schedules (D0 to DA) of a DSA network with 3 
rendezvous channels (i.e., N =  3). In this network, 6 CH sequences (S0 to S5) are con­
structed. Each CH sequence has 5 hopping slots. Rendezvous schedule £>*(0 < i < 4) 
specifies how nodes following two different CH sequences rendezvous in the slot-i. For 
instance, in slot-0, the nodes hopping on CH sequence So meet the nodes on S5 in one 
of the 3 rendezvous channels, the nodes on Si meet the nodes on 54 in a different ren­
dezvous channel, and the nodes on S2 meet the nodes on S3 in the remaining channel.

2.3.1 Two-phase CH sequence construction

To simplify the presentation of the two-phase CH sequence construction algo­

rithm, we first give an overview and an example of the construction process. Then, 

we provide the formalized algorithm.

An overview and an example

The two-phase CH sequence construction algorithm constructs a set of CH se­

quences in two phases. The first phase is called the rendezvous scheduling 

phase. In this phase, the algorithm creates a set of rendezvous schedules, each 

of which instruct how nodes with different CH sequences meet with each other in 

a hopping slot. Given a DSA network with N  rendezvous channels, to fully utilize 

spectrum diversity, an ideal rendezvous schedule allows N  pairs of nodes to ren­

dezvous at N  different channels in a hopping slot, which is equivalent to arrange 

for 2N  CH sequences (each of which is used by one participating node) to overlap 

at different N  channels in a slot. Meanwhile, the rendezvous schedules should

/ / / a v / m m v m
V / / A  V//A-
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Figure 3: Phase 2 of the two-phase CH sequence construction - rendezvous channel 
assignment. This figure shows the 6 final CH sequences of a DSA network with 3 ren­
dezvous channels C 0 , C \  and C 2 (i.e., N  =  3). A greedy algorithm is used to assign the 
3 rendezvous channels to each slot (slot-0 to slot-5) of all the 6 CH sequences (So to 
S5) based on the rendezvous schedules output by the rendezvous scheduling phase. 
For instance, nodes following the CH sequence S0 hop on a sequence of channels 
C o —► C \  —̂ C 2  —► C o —̂ C i  periodically.

ensure the satisfaction of the overlap requirement, i.e., any pair of nodes hopping 

on different CH sequences can meet at least once within a hopping period.

The second phase is called the rendezvous channel assignment phase. In this 

phase, the algorithm fills the rendezvous channels in the 2N CH sequences based 

on the rendezvous schedules generated in the previous phase. This phase tries 

to satisfy the design requirement of even use of rendezvous channels by using a 

greedy algorithm. At the end of the rendezvous channel assignment phase, 2N  

CH sequences are constructed.

Figure 2 and Figure 3 illustrate an example of the two-phase CH sequence 

construction in a DSA network with three (N  =  3) rendezvous channels. Fig­

ure 2(a) shows the five rendezvous schedules D 0 , D 1 , . . . , D 4 generated in the ren­

dezvous scheduling phase. Each rendezvous schedule corresponds one of the 

five (2N  -  1) hopping slots of the six (2N) the CH sequences S0, S i, ..., S5. As we 

can see, in each of the five hopping slots, six nodes (selecting different CH se­

quences) are supported to rendezvous in three different channels. For example, 

in the first slot (i.e., slot-0), where the rendezvous schedule D 0 is used to arrange
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rendezvous, the node selecting CH sequence SQ is arranged to rendezvous with 

the node selecting CH sequence S5 on one rendezvous channel, while the node 

selecting Si meets with the node selecting S4 on a different rendezvous chan­

nel, and the node selecting S2 meets with the node selecting S3 on the remaining 

rendezvous channel. Figure 2(b) shows the overall effect of how the six node 

selecting different CH sequences rendezvous in different hopping slot. In each 

hopping slot in Figure 2(b), a pair of nodes whose CH sequences have the same 

type of shade will meet on the same rendezvous channel. Please note that the 

detailed arrangement about rendezvous channels on which pairs of nodes ren­

dezvous has not yet been determined in this phase, and is left to the next phase.

As will be presented shortly, our algorithm schedules the 2N CH sequences to 

meet in the N  different rendezvous channels in a hopping slot as follows. It se­

lects 2N -  2 out of the first 2iV -  l  CH sequences (i.e., S0, • • • , S2N- 2) to form 

N -  1 CH sequences pairs, where each sequence is scheduled to meet the other 

sequence from the same pair in the slot -si, such that the index sum of each pair 

of CH sequences is congruent to si modulo 2N  - 1. The remaining CH sequence 

(within S0,--- ,S2N- 2) and S 2n -  1 form the last pair of CH sequences (shown in 

blue color in Fig 2(a)) that are scheduled to meet in the slot -si.

Figure 3 shows an example of rendezvous channel assignment once the schedul­

ing is determined. From the example we can see that all the rendezvous chan­

nels are utilized for communication in each of the hopping slots, and that each 

rendezvous channel appears in each of the CH sequences with roughly the same 

probability.

Phase 1: rendezvous scheduling

We now formalize the problem of rendezvous scheduling, the first phase of the 

two-phase CH sequence construction process, as follows. Given a set of 2N 

CH sequences U =  {50, Si-- - , S2N- 1}, Dsl = {do, dx,--- , dN„  1} is called a ren-
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Algorithm 1: Rendezvous Scheduling
Data: U = {So, • • • , A v -i}: a set of 2N empty CH sequences, each of 

which has 2N -  1 slots;
Result: T> =  { A ,  A ,  ■ ■ • , A jv - 2}: 2N - l  different rendezvous schedules 

of U.
1 Initialize A ,  A ,  - - , A jv - 2  to be empty;
2 for si <- 0 to 2N -  2 do
3 V < - £ / \ { 5 2iv - i} ;
4 for i  <r- 0 to N  -  1 do
5 a < -  the sm allest subscript in V
6 \t a <  si then
7 | b <r- si — a;
8 else
9 | b 1— 2N —  1 +  si — a;

10 if a = =  b then
11 | b < - 2 N - l \
12 di <— { A ,  Sb}',
13 D si D si U {d j};
14 v ^ v \ { s a,sby,
18 return A ,  A , - -  - , A y v -2;

dezvous schedule for the hopping slot indexed in si if \J Dsi =  doUdi u • • -u d ^ - i = 

U, where d* =  {Sa, S6} (0 <  i  <  N  -  l)  is a pair of CH sequences that are sched­

uled to rendezvous in the slot-sf.

According to theorem 1, the optimal rendezvous scheduling algorithm must 

construct 2N - 1  different rendezvous schedules, each of which corresponds to a 

hopping slot, such that each CH sequence is able to rendezvous with all the other 

2N — 1 CH sequences in 2N -  1 hopping slots. SYNC-ETCH uses Algorithm 1 to 

construct the schedules.

In Algorithm 1, rendezvous schedule Dsl (0 < si < 2N -  2), which is the 

rendezvous schedule for the slot -si, is constructed as follows. Within the CH 

sequences set V =  {5 0, • ■ • , S 2n - 2 }, Sa and Sb are scheduled to rendezvous in 

the slot -si (i.e., {5^, S'b} e A ;)  if a + b =  sl(mod(2N -  1)) and a ^  b. For the 

CH sequence Sa e V that satisfies 2a = sl(mod(2N -  1)), it is scheduled to 

rendezvous with the CH sequence SW-i in the slot -si (i.e., {A S W - i}  e A;)- 

We prove the correctness of Algorithm 1 as follows.
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Theorem 2. Algorithm 1 constructs 27V -  l  rendezvous schedules of U, and all 

these 27V -  l  rendezvous schedules are different.

Proof. In order to prove Algorithm 1 constructs 27V - 1 rendezvous schedules, we 

need to prove given an integer si (0 < si < 27V -  2), D sl is a rendezvous schedule 

of U. To prove this, we need to prove

(1) there is only a number x e [0,27V -  2] such that 2x = si (mod (27V -  1)), and

(2) V a, b, c, d e [0,27V -  2] that satisfy a + b = si (mod (27V -  1)) and c + d = 

si (mod (27V -  l) ) , if a j ^ c  then b ^ d .

By proving ( l )  we can guarantee that the CH sequence S2n- i only exists in only 

a CH sequence pair d* (0 < i < TV -  l)  within rendezvous schedule Dsl. From 

( l ) , (2) and the strategy that we always choose the first CH sequence of dt (0 < 

i < TV — 1) from a set of CH sequences that have never been chosen (i.e. set V 

in Algorithm 1)(line 5), we can ensure that (J Dsl = do u dx u • ■ • u dN -1 = U (i.e. 

Dsi is a rendezvous schedule of U).

We prove both ( l)  and (2) by contradiction. For ( l) ,  suppose there are two 

different number m and n that satisfy 0 < m < n < 2 N - 2 , 2 m  =  sl (mod (27V -  

1)) and 2n = si (mod (27V - 1)), then we can have 2m =  si and 2n =  27V - 1 + si. 

A contradiction is found that si is an even number because 2m = si, and si is 

an odd number because 2n = 27V -  l  + si. For (2), without loss of generality, 

we suppose a < c. If b = d, then we have a + b =  si and c + d -  27V -  l  + si. 

By subtracting these two equations we get c -  a = 27V -  l  which is impossible 

because 0 < a < c < 2 7 V - 2 .

In order to prove Vp,q e [0,27V -  2] (p ±  q), rendezvous schedule Dp and 

schedule Dq are different, we need to prove Vdj e Dp(0 < i < TV -  l)  and Vef, e 

Dq(0 < j  < TV -  l), di ±  dj. We prove this by contradiction. Suppose there 

exist di € Dp and dj e Dq such that di =  djt which means di and dj contain 

the same pair of CH sequences. Suppose these two sequences are Su and Sv, 

where 0 < u, v < 27V -  l. Then we have u + v = p (mod (27V -  l)) and u +  v =
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q (mod (2N  -  1)), where p , q e  [0,2N -  2] and p ± q, which is impossible. □  

Phase 2: rendezvous channel assignment

In the second phase of the two-phase CH sequence construction process, we as­

sign rendezvous channels to each of the 2TV CH sequences according to the ren­

dezvous schedules generated in the previous phase. The goal of the rendezvous 

channel assignment phase is two-fold. First, to fully exploit the frequency diversity 

of a DSA network in establishing control channels, all the rendezvous channels 

should be utilized in each hopping slot. Second, the assignment tries to satisfy the 

even use of rendezvous channels requirement presented in §2.2.1 by an arrange­

ment that allows each rendezvous channel to have a roughly equal probability to 

appear in each CH sequence.

We employ a greedy algorithm (shown in Algorithm 2) to achieve the goals 

of rendezvous channel assignment. In Algorithm 2, rendezvous channels are as­

signed to CH sequences round by round (lines 3-18). In the si-th (0 < si < 2JV-2) 

round, the rendezvous channels are assigned to the slot -si of all the CH se­

quences based on the slot’s rendezvous schedule, D si, constructed in the pre­

vious phase. For each hopping slot, the algorithm needs to guarantee that every 

rendezvous channel is assigned to a pair of CH sequences (to achieve the first 

goal of rendezvous channel assignment). To keep track of the channel assign­

ment for each slot, the variable slotOC is used to record the outstanding ren­

dezvous channels of the current slot, i.e., the rendezvous channels that have not 

been assigned to the slot. At the beginning of each round of channel assignment, 

slotOC  is reset to the whole set of rendezvous channels (line 4). The algorithm 

also tries to make all the rendezvous channels appear in each CH sequence with 

a roughly equal probability (to achieve the second goal of rendezvous channel as­

signment). To keep track of the channel assignment for each CH sequence, the 

variable seqOC[i} (0 < i <  2N -  1) is used to record the outstanding rendezvous
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Algorithm 2: Rendezvous Channel Assignment
Data: C =  {Co, Cu • • • , C jv - i} :  N  rend, channels; V  =  {D 0, D u ■ ■ ■ , £>2^ - 2}: 

27V -  1 rendezvous schedules returned by Algorithm 1.
Result: S0, Su ■ ■ ■, S 2n -  1 ' 27V final CH sequences.

1 for i <- 0 to 27V -  1 do
seqOC[i] <- {C0, Ci, ■ ■ ■ , Cw_i}; /*Initializing the outstanding channels of 
the CH sequence Si. */

3 for si < -  0 to 2iV -  2 do

9

10

11

12

13

14

15

16

17

18

slotOC  1-  {Co, C i, • ■ ■ , C/v-n}; /* Initializing the outstanding channels of
the slot-sl. */
for n 4-  0 to N  -  1 do
| Mark CH sequence pair dn e Dal as unassigned]
while slotOC ^  (j> do 

Pick dn = {Si, Sj} from the unassigned CH sequence pairs in Dsl such 
that seqOC[i] +  seqOC\j] is the greatest (if multiple choices exist, pick 
the pair that contains the CH sequence with the smallest index);
k <r- seqOC[i] >  seqOC[j} ? i  : j ]  
if  slotOC D seqOC[k] 7  ̂<fr then 

c <r- the channel in slotOC n seqOC[k\ with the smallest index; 
seqOC[k] 1— seqOC[k]\{c}] 

else
c 4-  the channel in slotOC that appears the fewest times in Sk (if 
multiple choices exist, pick the one with the smallest index);

Si ^  Si u (sl,c );
Sj <— Sj u (s/,c);
Mark dn =  {St, Sj} as assigned; 
slotOC <— s lo tO C\{c };

19 re tu r n  SQ,S i , - -  - , S'2̂ v-1;

channels of the CH sequence 5i( i.e., the rendezvous channels that have not 

been assigned to the CH sequence SV The variables seqOC[i} are initialized to 

the whole set of rendezvous channels (lines 1-2).

Before the si-th round of rendezvous channel assignment (i.e., the round that 

assign channels to slot-si of all the CH sequences), all the CH sequence pairs 

in D ai are initially marked as “unassigned" (lines 5-6). In the si-th round of ren­

dezvous channel assignment, the algorithm checks all the unassigned CH se­

quence pairs in Dsi, and selects the pair {Si, Sj} such that the sum of outstanding 

channels of St and Sj is greatest compared to other unscheduled CH sequence 

pairs in D al. If there are multiple pairs that produce the same greatest outstand­
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ing channels sum, the pair that contains the smallest indexed CH sequence is 

selected (line 8). Then the algorithm chooses a rendezvous channel to assign 

to the slot-si of both S< and Sj (lines 9-16). This rendezvous channel is selected 

as follows. Within the CH sequences Si and Sjt the one with more outstanding 

channels is notated as Sk (line 9). The rendezvous channel is first selected from 

the intersection of the slot-s/’s outstanding channels (recorded in slotOC) and Sk's 

outstanding channels (recorded in seqOC[k]) (line 11). If the intersection is empty, 

the channel is selected from the slot-sf s outstanding channel that appears fewest 

times in Sk (line 14). Then this rendezvous channel is assigned to the slot-si of 

both CH sequences of Si and Sj (lines 15-16), and the CH sequence pair {Su Sj} 

is marked as “assigned” (line 17). The selected rendezvous channel is removed 

from the current slot’s outstanding channels set (line 18). It is also removed from 

Sfc’s outstanding channels if has not been assigned to Sk before the assignment 

(line 12).

Figure 3 shows the result of rendezvous channel assignment in a DSA network 

with 3 rendezvous channels, Co, C\ and C2. CH sequences SQ to S5 are the final 

CH sequences constructed by the two-phase CH sequence construction process. 

From the example we can see that all the rendezvous channels are utilized for 

communication in each of the hopping slots, and that each rendezvous channel 

appears in each of the CH sequences with roughly the same probability.

2.3.2 Single-phase CH sequence construction

Similar to the presentation of the two-phase CH sequence construction process, 

we provide an overview and an example of the single-phase CH sequence con­

struction process, followed by the formalized algorithm.
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An overview and an example

In a DSA network with N  rendezvous channels, similar to the two-phase algo­

rithm, the single-phase CH sequence construction algorithm constructs 2N  CH 

sequences, each of which has 2N  -  1 hopping slots, such that the following two 

requirements are satisfied. First, every CH sequence meets with all the other 

2JV -  l  CH sequences each at a time in a hopping slot. Second, all the ren­

dezvous channels are utilized for CH sequence rendezvous in every hopping slot. 

The improvement of the single-phase algorithm over the two-phase algorithm is 

that it can guarantee to satisfy a third requirement that every rendezvous channel 

has the same probability to appear in each CH sequence (i.e., the even use of 

rendezvous channels requirement). For instance, in a DSA network with three 

rendezvous channels, the even use of rendezvous channels requirement expects 

there are two rendezvous channels appearing twice and the remaining channel 

appearing once in the five hopping slots of every CH sequence. However, in the 

six CH sequences constructed by the two-phase algorithm (shown in Figure 3), 

channel C2 and C i appear three times in the CH sequence S2 and S4 respec­

tively. By contrast, the single-phase algorithm can guarantee the even use of 

rendezvous channels requirement.

The single-phase CH sequence construction algorithm views the rendezvous 

among the CH sequences within a hopping period as a colored graph G. To sat­

isfy the three requirements above, the colored graph G should have the following 

properties. First, there are 2N  vertices in G:

\V(G)\ =  2N, (1)

where V(G)  denotes the vertex set of the graph G. Each vertex corresponds to 

one of the 2N  CH sequences. Second, the edges in G have N  different colors:

C(G) = {c0, ..., cjv_i}, (2)
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where C(G) denotes the color set on edges in the graph G. Each color corre­

sponds to a rendezvous channel. If two CH sequences rendezvous in a certain 

channel, the corresponding pair of vertices in G are connected by an edge with the 

corresponding color. Third, since every CH sequence should rendezvous with all 

the other 2 N - 1  sequences exactly once in a hopping period, the graph G should 

satisfy

Vv £ V(G),d(v) =  2N  -  1, (3)

where d(v) denotes the degree of vertex v. In other words, the graph G should 

be a 2iV-vertex complete graph K 2n ■ Fourth, since all the rendezvous channels 

should appear in every CH sequence, the color degree of each vertex, which is 

the number of colors on the edges incident to the vertex, should be N:

Vv<EV{G),S{v) =  N,  (4)

where 6(v) is the number of colors on edges incident to the vertex v. Fifth, since 

each of the N  rendezvous channel should have the same probability to appear 

in every CH sequence (i.e., the even use of rendezvous channels requirement), 

among the N  different colors on the 2JV — l  edges incident to a vertex v, there 

should be one color to appear once and the remaining N  -  l  colors to appear 

twice, which is the best scenario satisfying the even use of rendezvous channels 

requirement:

Vt> 6 V(G)  (3^  € C(G) (Sc.(v) = 1&&<5C»  -  2, Vj e [ 0 , N - l ] , j ?  i)), (5)

where 6Ci(v) is the number of edges colored with c< that are incident to the vertex v. 

Figure 5(a) shows an example of the graph G for a DSA network with 5 rendezvous 

channels (i.e., N  =  5). The graph G in the example is a 5-colored 10-vertex 

complete graph K w . In this graph, each of the 5 colors has an even probability 

to appear on the 9 edges that are incident to each vertex (i.e., one color appears 

once and each of the rest four colors appear twice), which is the best case of 

satisfying the even use of rendezvous channels requirement.

32



The graph G with the properties (1) to (5) tells how each of the 2N  CH se­

quence meets with each other in the N  rendezvous channels within a hopping 

period. The single-phase CH sequence construction algorithm needs to further 

specify how the CH sequences rendezvous with each other in each of the 2N  -  1 

hopping slots. To fully exploit the spectrum diversity, our algorithm ensures that all 

the rendezvous channels can be utilized as control channel in every hopping slot. 

This is achieved by decomposing the graph G into 2N -  1 different perfect rain­

bow matchings, each of which instructs how the 2N CH sequences rendezvous 

in a hopping slot. In graph theory, a matching in a graph G is a set of edges of 

G without common vertices, a perfect matching in G is a matching that covers all 

the vertices of the graph G [54], and a rainbow matching in G is a matching where 

edges have distinct colors [55], Therefore, in our case, a perfect rainbow match­

ing (notated as PRM) in a N -colored 2iV-vertex complete graph G is an edge set 

that contains N  disjoint edges of G colored with the N  distinct colors:

PRM  =  {E  I V(E) =  V(G) && Ve* G E  (Vu € V{e{) {v <£ VfoJ.Ve,- G E, j  ?  *)) 

&& Ve*, ej e E ,  (C(eO ±  C(ej))} (6)

where V(E)  denotes the set of vertices of the edge set E, V(ei) denotes the two 

vertices on the edge eit and C'(ej) denotes the color on the edge e{. Given two 

perfect rainbow matching PRMi  and PRMjt they are different if and only if the 

there is no common edges in them:

PRMi  and PRMj  are different i f f  Ve* g E(PRMi),ej  e E(PRMj)  (e* ^  ej), (7)

where E(PRMi)  denotes the edge set in the perfect rainbow matching PRM{. 

In our example, the 5-colored 10-vertex complete graph G shown in Figure 5(a) 

can be decomposed into 9 different PRMs shown in Figure 4(1), Figure 4(6a- 

1) to (6a-4), and Figure 4 (6b-1) to (6b-4) respectively. Each of these PRMs is 

the rendezvous schedule for one hopping slot within a hopping period. The final
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Figure 4: The six steps of the intuitive description of the single-phase CH sequence con­
struction algorithm for a DSA network with 5 rendezvous channels (i.e., N -  5). (0) is 
the initial state of the graph G; (1) shows how the the first PRM is formed in the step 
#1; (2) shows how the graph G is shrank to K5 in the step #2 based on the first PRM\ 
(3a) and (3b) are the two 2-factors of K5 obtained in the step #3; (4a) and (4b) show the 
rainbow-coloring of the two 2-factors of K 5 in the step #4; (5a) and (5b) show how the two 
rainbow-colored 2-factors of K5 are expanded back to the two 4-factors in K w in the step 
#5; (6a-1) to (6a-4) and (6b-1) to (6b-4) are respectively the final 4 PRMs decomposed 
from the two rainbow-colored 4-factors of K l0.

CH sequences (shown in Figure 5(b)) are constructed based on these 9 different 

PRMs.

In the following, we will show that, for a DSA network with N  rendezvous chan­

nels, where N  is an odd number greater than two, our single-phase CH sequence 

construction algorithm can form a graph G with the properties of (1) to (5), and 

decompose the graph G into 2JV -  l  different perfect rainbow matchings (i.e., 

properties of (6) and (7)).

An intuitive description of the algorithm

For a DSA network with N  rendezvous channels, where N  is an odd number 

greater than two, the single-phase CH sequence construction algorithm constructs
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(a) (b)

Figure 5: For a DSA network with 5 rendezvous channels (i.e., N = 5), (a) is the N- 
colored 2/V-vertex complete graph G that shows how the 2N CH sequence rendezvous 
with each other within a hopping period, and (b) shows the final 2N CH sequences.

the 2N  CH sequences as follows.

The initial state: We treat the 2N  CH sequences to be constructed as 2N  

vertices in a graph G, and assign different colors to each of the N  rendezvous 

channels. Initially, the graph G only contains the 2 N  vertices and no edges. Our 

goal is to add colored edges to G to make it an iV-colored 2 iV-vertex complete 

graph K 2N with the properties (1) to (5), and then decompose the K 2N into 2N  - 1  

different perfect rainbow matchings (i.e., properties (6 ) and (7)).

In the following, we notate the 2 N  CH sequences as S0 ■ ■ ■ S 2n - i. and the N  

rendezvous channels as C0, • • • , CV-i- We will take a DSA networks with 5 ren­

dezvous channels (i.e., N  =  5) as an example throughout this subsection. Figure 

4(0) shows the initial state of the graph G in the example.

Step #1 - forming the first perfect rainbow matching of K 2N: In the first 

step, we form the first P R M  by connecting vertex St with vertex Si+i by using 

an edge with the color of channel C i,  where i  is an even number in the range 

of [0,2N -1 } .  The P R M  tells how the 2N  CH sequences rendezvous with each 

other in the hopping slot-0. In our example, Figure 4(1) shows the state of the 

graph G after the step #1 is applied. It is a P R M  of a 2iV-vertex complete graph



Algorithm 3: 2-factorization of complete graph K,N
Data: K N formed after step #2, the TV vertices of K N are

{'S'o.l, • • • ! S 2N - 2 ,2N -l}',
iV-1Result: 2-factors of K N: TFU ■ ■ • , TF n_±.

1 for d <- l  to do
TFd <- 0;
for eac/7 edge (Siii+u Sjd+l) e E (K N) do 

if ^-j \ °/oN = = d  then
| Add edge (SM+i, 5jJ+i) and its vertices to TFd,

2

3

4

5

6 return T F i, • • • , T F n- i ;
2

F 2/v, which specifies that in the hopping slot-0, CH sequences S0 and Si, S2 and 

S3, S4 and S5, S6 and S7, S7 and S8 rendezvous in channel C0 to C4 respectively.

Step #2 - shrinking the 2TV vertex graph G to K N: In the second step, we 

shrink the 27V-vertex graph G to an TV-vertex TV-colored complete graph K N as 

follows. First, we combine every connected vertex pair in the first P R M  of K 2N 

(i.e., {Si, Si+i}, where i  =  2a, a e [0, TV -  l]) into a new vertex (notated as SM+1), 

and connect the new vertices to each other to form a TV-vertex complete graph 

K n . Second, we give each vertex \n K N the color of the edge connecting the 

corresponding vertex pair in the first P R M  of K 2N. Figure 4(2) shows the state of 

the graph G after the step #2 is applied.

Step #3 - decomposing K N into different 2-factors: In graph theory, a 

2-factor of a graph G is spanning subgraph of G, where the degree of each vertex 

in the subgraph is 2. Algorithm 3 decomposes K N into - 1 2-factors. In the algo­

rithm, each edge of K N and its vertices are put into graphs, T F \, • • • , TFn- 1, 

depending on the subscript difference between the two vertices: given an edge 

e = (Siii+i,S j j+i) e E ( K n ), where i  < j ,  the edge e and its vertices are put into 

the graph TFd (1 < d <  - 1) if either or iAr2*~ j equals to d (line 5). We prove 

in Theorem 3 that each graph TFd (1 < d < ^ ) decomposed from K N using 

Algorithm 3 is a 2-factor of the complete graph K N. It is obvious that the ~  

2-factors are different, since each edge of K N can only belong to one 2-factor. In
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Algorithm 4: Rainbow-coloring a 2-factor of K N
Data: A 2-factor TF  obtained in step #3;
Result: Rainbow-coloring the 2-factor such that every edge's color is 

different from the colors of its two vertices.
1 for each edge e = (SM+i, SjJ+i) e TF  do
2 if is an even number then
3 I Put the color of vertex S±±± i± i,, on the edge e;I 2 ’ 2 '
4 else
s | Put the color of vertex Si+i+™a/„ „ ti+i+2N„ 2„ , 1 on the edge e;

our example, Figure 4(3a) and Figure 4(3b) are the two 2-factors of the complete 

graph K5 obtained after the step #2. They are both Hamiltonian cycles of K5.

Theorem 3. Each graph TFd (l < d < - 1) decomposed from KN using Algo­

rithm 3 is a 2-factor of the complete graph KN.

Proof. In the algorithm, among all the edges that are incident to each S 2«,2i+i £ 

V(Kn) (0 < i < N  — 1), only the edge (S2t,2i+i> £(2(t+d))%2N,(2{i+d)+i)%2Jv) and the 

edge (S2i}2i+u S{2{i„ d))%2Nt{2ii„ d)+1)%2N) and their associated vertices are added to 

the graph TFd. Since d ±  0 and d ±  f ,  we have (2 (i +  d))%2N ±  (2 (i -  d))%2N, 

which means the two edges added to TFd are different. Therefore, V{TFd) equals 

to V (K n ), and the degree of each vertex in TFd is 2. Thus, TFd is a 2-factor of 

the complete graph KN.

Simple calculation can easily confirm that the 2-factor TFd is either a Hamilto­

nian cycle of K n if d and N  is coprime, or GCD(N , d) disjoint GĈ {Nd)-cycles (i.e., 

cycles with cc5(W"d) ed9es). where GCD(N, d) is the greatest common divisor of 

N  and d, otherwise. □

Step #4 - rainbow-coloring 2-factors of KN: In the fourth step, we color each 

of K n 's 2-factors using all the N  colors such that each edge will have a different 

color, which is a process called “rainbow-coloring”.

Algorithm 4 shows the rainbow-coloring algorithm. In this algorithm, the color 

to put on a edge is the color of another vertex that is different from the two
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vertices of the edge. Specifically, the color to put on the edge (SM+1,SjJ+ i) is

the color of either the vertex Si±i <±2.1 (if is an even number) or the vertex2*2 1
Sj+j+2N0/ojv,i+'i+2Ny.g.y 11 (if ^  is an odd number). We have the following two theo­

rems about the rainbow-coloring algorithm.

Theorem 4. The coloring process is a rainbow-coloring process (i.e., after the 

coloring process, the colors on the N  edges of each 2-factor are different).

Proof. Prove by contradiction. Suppose there exist two different edges ex = 

(Si,i+i, Sj<j+1) and e2 -  (Sm,m+l,S„,„+i) in the the 2-factor TFd (d e [l, £=i]) that 

have the same color. Since ex and e2 are not the same, without loss of generality, 

let us assume and m >  n.

Since ex and e2 have the same color, they correspond to the same vertex in 

K n . Without loss of generality, let us assume is an even number, then we 

have =  a±s (*).

Meanwhile, since ex and e2 belong to the same 2-factor T F d, we have ^  = 

^  = d(**).

From (*) and (**) we have i  = m, which is contradictory to i ^ m .  Therefore, 

all the colors on the edges in the 2-factor T F d are different. □

Theorem 5. Put the 2-factor together (which forms the complete graph K N),

the colors on the N  -  1 edges incident to a vertex Shl+1 are different, and these 

colors are also different from the color of the vertex SiMX.

Proof. Prove by contradiction. Suppose among the N - 1  edges that are incident 

to the vertex there exist two edges that have the same color, and these two 

edges are ex =  (Sid+l, SjJ+1) and e2 = (Siti+x,SkMX). Because ex and e2 have 

the same color, they correspond to the same vertex. Without loss of generality, 

let us assume ^  is an even number. Then we have ^  ^  =» j  =  k, which is

impossible since ex and e2 are not the same. Therefore, the colors on the N  -  l  

edges that are incident to the vertex Sid+X are all different. □
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In our example, Figure 4(4a) and Figure 4(4b) show the rainbow-coloring for 

the two 2-factors of K 5.

Step #5 - expanding the rainbow-colored 2-factors of K N back to 4-factors

of K 2N: Here we expand each 2-factor of K N back to a 4-factor of the 27V-vertex 

complete graph K 2N• For each edge e = {SiA+i,S j}j+i) in a 2-factor of K N, we 

expand it to a monochromatic complete bipartite graph K 2;2\

MCBij  =  (Vi + Vj, Eij), (8)

where V  and Vj are the vertex pairs {Si,Sm } and {Sj,Sj+ 1} in the original 2N-

vertex graph G, and is the edge set of K 2,2. Additionally, we give all the 4

edges in the same color as that on the edge e = (Si4+1, Sjtj+ i) in K N. After

this process, every 2-factor in K N is expanded to a 4-factor in K 2N. Since the ^  

2-factors of K N are different, we have obtained ~  different 4-factors of K 2N. We 

prove in Theorem 6 that the different 4-factors of K 2N together with the first 

PRM  obtained in the step #2 form the JV-colored 2iV-vertex complete graph K 2N 

that has the properties of (1) to (5).

In our example, Figure 4(5a) and Figure 4(5b) show the two 4-factors of K w 

that are converted from the two 2-factors of K h. These two 4-factors and the first 

PRM  obtained in the step #2 (i.e., Figure 4(2)) together form the complete graph 

K w with the properties of (1) to (5) (Figure 5(a)).

Theorem 6. The different 4-factors of K 2N together with the first PRM ob­

tained in the step #2 form the N-colored 2N-vertex complete graph K 2N that has 

the properties of (1) to (5).

Proof. For the reasons that 1) the ~  4-factors are obtained by expanding each 

edge of the 2-factors of K N to a complete bipartite graph K 2<2 and 2) each 

pair of unconnected vertices in a K 2,2 will be connected by an edge in the first 

PRM  obtained in the step #1, we can conclude that the 4-factors together
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i :  o u [ o ] , M O ] ) , ( u iU 2 [ o ] ) , a 2 [ iU o m )
2: (X o [0 ],X i[ l]) , (X itO ],X2[l]) ,(A .2 [0 ],X o [l])
3: a o [ l ] ,X i [0 ] ) ,a i [ l ] ,X 2 [ l ] ) , a : [0 ] ,X o [0 ] )
4: a o [ u , x . [ i ] ) , a i [ 0 ] , H O ] ) , a 2 t i ] A o [ 0 ] )

Figure 6: Dividing the edges of a CMCB that contains 3 MCBs, i.e., CMCB = 
{A0, Ai, A2}, into four groups such that all the edges in each group have no common 
vertex.

with the first P R M  form a 2iV-vertex complete graph K 2N (i.e., the properties (1) 

and (3)).

For the reasons that 1) the coloring process of the 2-factors of K N is a rainbow 

coloring process (i.e., Theorem 4) and 2) the color of each monochromatic com­

plete bipartite graph (M C B) is taken from the corresponding edge of the 2-factor 

of K n , we can conclude that all the N  colors appear on K 2n  (i.e., the property 

(2)).

For the reasons that 1) the colors on the N  - 1 edges incident to a vertex Siii+ 1 

of K n are different (i.e., Theorem 5), 2) these colors are also different from the 

color of the vertex Siti+i (i.e., Theorem 5) and 3) the color of the vertex Si|i+1 is 

the same as the color on the edge (Si,5i+1) of K 2N (i.e., the step #2), we can 

conclude that all the N  colors appear on the 2N - 1 edges that are incident to the 

vertex Sf (which is also true for Sj)(i.e., the property (4)).

For the reasons that 1) the colors on the N  - 1 edges incident to a vertex Siii+i 

of K n  are different (i.e., Theorem 5) and 2) each edge in K N is expanded to two 

edges in K 2N, we can conclude that each of the N  - 1 colors appears twice on the 

edges that are incident to the vertex Si (also true for Si+1). Furthermore, for the 

reasons that 1) the color on the vertex Si>i+1 is different from the previous N  -  l  

colors (i.e., Theorem 5) and 2) the color of the vertex SM+1 is the same as the 

color on the edge (Si,Si+1) of K 2N (i.e., the step #2), we can conclude that the 

color on 5^+1 appear once on the edges that are incident to the vertex Si (also 

true for Si+1). Therefore, the property (5) is satisfied. □

Step #6 - decomposing the 4-factors of K 2N into perfect rainbow match-
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1: ao[OU,[OD, (A.i[l]»MO]), (A.2[ 1 ], A.3[ 1 ]), 
2: (MO],MU)> (M0],M1])>(MO],A.s[l]). 
3: (M U, MO]), (M U, MU), (MO], MO]), 
4: (M  1 ], Xi[ 1 ]), a . [0], MO]), (M 1 ], MO]),

:(M0], MO]), (M iU iU  ]).••■. & M O L M p M W iL M 'i] ) !  
i(Moj,Mi'ij;'(X4[oi:x5iiD,;..., rô fo}'; r l t
i(X j[ i l, M io i)V (M f i i,  X5f6i)V...,

Figure 7: Dividing the edges of a CMCB = {A0, • • •, An_!, A0}, where n is the number of 
MCBs in the CMCB  and n is greater than 3, into four groups such that all the edges in 
each group have no common vertex.

ings in K 2N: Finally, we decompose each of the 4-factors of K 2n  obtained in the 

step #5 into 4 different PRM s such that the properties (6) and (7) are satisfied.

In the previous step, each edge (5i)i+1, Sjij+i) in a 2-factor TFd (d e [1, ^ f 1}) of 

K n  is expanded to a monochromatic complete bipartite graph M CBitj. Further­

more, recall that TFd is either a Hamiltonian cycle of K N (when GCD(N,d) = 1) 

or a set of GCD(N, d) disjoint -cycles (when GCD(N, d) ^  l), where

GCD(N, d) is the greatest common divisor of N  and d. Therefore, the 4-factor FFd 

of K2N, which is expanded from the 2-factor TFd of K N, is a spanning graph of K 2N 

consisting of either one chained monochromatic complete bipartite graph (notated 

as CMCB) (when GCD(N , d) = l)  or a set of GCD(N, d) disjoint CMCBs (when 

GCD(N, d) ±  1).

Since a monochromatic complete bipartite graph M C B ij connects two pairs 

of unconnected vertices {S^Sj+i} and {Sj,Sj+1}, each C M C B  in the 4-factor

FFd (de  [l, of K2N can be expressed as

< Aq, Aj, ■ • • , An_i, Aq >, (9)

where n N is the number of MCBs contained in the C M C B , and Ap (p  gG C D (N ,d )  ,w    ~

[0, n - 1]) is the p-th unconnected vertex pair in the C M C B : {S2pcP/a2N, S(2pd+i)%2N}. 

For example, for the first 4-factor FFV of K m shown in Figure 4(5a), we have 

A0 = {50,5i}, Ax = (52, S3 }, A2 = {54,5 5}, A3 = {56,5 7} and A4 = {58,5 9}. 

Meanwhile, for the second 4-factor FF2 of K m shown in Figure 4(5b), we have 

Ao = {So,S\}, Ai = {54,55}, A2 = {58,59}, A3 = {52,5 3} and A4 = {56,57}.

Given a CMCB  in a 4-factor expressed in formula (9), we divide the edges of 

the CM CB  into 4 groups as follows. For the 4 edges of each M C B , we put them
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into 4 groups respectively such that edges in the same group share no common 

vertex. Figure 6 and Figure 7 show the way we divide the edges. Figure 6 shows 

the case that the CMCB  has 3 MCBs, and Figure 7 shows the case that the 

CMCB  has more than 3 MCBs. In these two figures, Ap[0] and Ap[l] are the first 

and the second vertex of the vertex pair Ap (p e [0,1]) respectively.

If a 4-factor of K2N contains one CMCB  (when GCD(N , d) =  1), the four edge 

groups obtained by using the dividing method shown in Figure 7 are the 4 different 

PRMs. If the 4-factor contains several disjoint CMCBs (when GCD(N, d) ^  1), 

we put the i-th (1  <  i <  4 )  edge group of each CMCB  into the same group to 

form a PRM. Therefore, each 4-factor of K 2n  leads to 4 different PRMs, and the 

different 4-factors of K 2N produce 27V -  2 different PRMs. Adding the first 

PRM  obtained in the step #1, we now have 27V - 1 different PRMs of K 2N. Each 

of these PRMs instructs the 27V CH sequences rendezvous in one of the 27V -  l  

hopping slots of a hopping period.

Since the edges in the same PRM  share no common vertex and the colors 

of the K 2N's M C Bs  are different, the property (6) is satisfied. Meanwhile, since 

each edge is assigned to only one PRM, the 27V - 1 PRMs are different (i.e., the 

property (7) is satisfied).

In our 5-rendezvous channel network example (i.e., TV = 5), using the dividing 

method in Figure 7, the first 4-factor of K 10 (Figure 4(5a)) is decomposed into four 

different PRMs shown in Figure 4 (6a-1) to (6a-4), and the second 4-factor of K w 

(Figure 4(5b)) is decomposed into another four different PRMs shown in Figure 4 

(6b-1) to (6b-4). Based on the 9 PRMs (i.e., Figure 4(2), Figure 4 (6a-1) to (6a-4) 

and Figure 4 (6b-1) to (6b-4)), we construct the final 27V CH sequences shown in 

Figure 5(b).
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Algorithm 5: Single-phase CH sequence construction
Data: N  rendezvous channels Co, ■■ ■ , CN i , where N  is an odd number; 
Result: 2 N  CH sequence So, • , S2 n - i . each of which has 2N -  1 slots.

1 So, • • • ,S 2N - 1 4 -  <t>\
2 for i  <- 0 to N  -  1 do
3 5*2i &2i U (0, C i) \
4 S2i+ l SWi u (0,Cj);
S fo r d 4-  1 to  — :-  do
6 si 4-  1 +  4 ( d -  1);
7 fo r  a 4 - 0 to  G C D ( N ,  d) -  1 do
6 1 1— 2a;
9 fo r c 0 to  i d o

10 if  (S even n um t

11 u (  f+(i+2d)%2/V.

12 else
, + (<+2d)«2JV+2JV% N

13 * < ----------------- s -----------------:
14 If c = =  0 then
16 AddSlot(i, d, u ,0 ,0, sl);
16 AddSlot(t,d, u, 0, l ,s l  +  1);
17 AddSlot(i, d, u,  1,0, sl +  2);
18 AddSiot (i,d , u, 1,1, si +  3);
19 e lse  If  c = =  1 then
20 AddSlotfi, d, u, 1,0, sl);
21 AddSlotfi, d, u, 0 ,1 , si +  1);
22 AddSlot(i, d, u, 1,1, sl +  2);
23 AddSlotfi, d, u,  0 ,0 , sl +  3);
24 e lse  If c = =  2 then
26 AddSlotfi, d, u, 1,1, sl);
26 AddSlot(i, d, u, 0 ,1 , sl +  1)|
27 AddSiot (t, d, u, 0 ,0 , si +  2);
26 AddSlot(i, d ,u , 1,0, sl +  3);
29 e lse  If c is an odd number then
30 AddSlot(t, d, u , 0 ,0 , sl);
31 AddSlot(i, d, u ,0 ,1, si +  1);
32 AddSlot(t,d, u, 1,1, si +  2);
33 AddSiot (i,d , u, 1,0, sl +  3);
34 e lse
36 AddSlot(i,d, u, 1,1, si);
36 AddSlot(t, d, u, 0 ,1 , sl +  1);
37 AddSlotfi, d, u, 0 ,0 , sl +  2);
38 AddSlot(i, d, u, 1,0, si +  3);
39 i 4 - ( i  +  2d)%2JV;
40 re tu rn  S o , S2n - i >

Algorithm 6: Subfunction AddSlotO of Alg. 5
1 void AddSlot(i, d, u, a, b, sl) {
2 *§i-(-a  i  S i+ a  U  ( S i ,  C u ) ,

3 S(i+2d)%2N+b S(i+2d)%2N+b U (si, Cu)\
4 }

The complete algorithm

The complete single-phase CH sequence construction algorithm is given in Algo­

rithm 5 with its subfunction AddSiot () shown in Algorithm 6. Given a DSA network 

with N  rendezvous channels, the algorithm outputs 2N  CH sequences, each with
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27V — l  hopping slots, such that the following three conditions are satisfied. First, 

within the 27V-1 hopping slots, every CH sequence meets with all the other 27V-1 

sequence each at a time in a hopping slot. Second, there are exactly two CH se­

quences hopping to the same rendezvous channel in a hopping slot. Third, in a 

CH sequence, each of the TV rendezvous channels has the same probability to 

appear in the 27V -  l  hopping slots.

The algorithm essentially integrates the six intuitive steps described previously. 

Lines 2 to 4 of the algorithm schedule how the 27V CH sequences meet with each 

other in the slot-0, which is equivalent to forming the first PRM  in step #1. Each 

iteration of the for-loop (lines 6 to 39) outputs rendezvous schedules for 4 hopping 

slots, which correspond to the 4 PRM s decomposed from a 4-factor of K 2N. Each 

iteration of the for loop (lines 8 to line 39) correspond to dividing the edges of 

a CMCB  into 4 groups (i.e., step #6). Lines 10 to 13 decides the channel to 

assigned, which correspond to the rainbow-coloring of 2-factors of K N in step #4.

2.3.3 CH sequence execution

At the completion of constructing CH sequences by using either the two-phase CH 

sequence construction algorithm or the single-phase CH sequence construction 

algorithm, the newly joined node obtains a set of CH sequences, which are the 

same as those that any other nodes construct. Then the node synchronizes to 

the existing nodes using the global synchronization mechanism, and starts the 

channel hopping process described as follows. The node randomly selects a CH 

sequence to hop on. After hopping through all the slots, it performs the random CH 

sequence selection again and starts hopping on the newly chosen CH sequence. 

The node repeats this process while it is idle. The reason for the node to re-select 

a CH sequence after a hopping period is to make sure that any pair of nodes are 

able to rendezvous in different rendezvous channels. Since the selection of CH 

sequence is random, the requirement of full utilization of rendezvous channels

44



is satisfied. When a rendezvous channel’s primary user appears, the nodes on 

that channel should yield using the channel, wait until a hopping slot, in which the 

rendezvous channel is available, is reached, and resume the hopping process.

2.4 ASYNC-ETCH

Our study of the communication rendezvous so far is based on the assumption 

that there exists a global synchronization mechanism to synchronize the hopping 

processes of the nodes. In this section, we investigate the design of CH based 

communication rendezvous without leveraging the synchronization mechanism. 

Without synchronization, a pair of nodes wishing to communicate with each other 

start channel hopping at a random time. Consequently, their CH sequences are 

most probably misaligned and SYNC-ETCH cannot guarantee channel overlap for 

rendezvous. We develop an asynchronous scheme, ASYNC-ETCH, to address 

the issue.

ASYNC-ETCH follows the similar steps: the CH sequence construction and 

CH sequence execution. ASYNC-ETCH constructs the CH sequences in a similar 

fashion as SeqR [51] but employs a novel enhancement: it constructs multiple CH 

sequences rather than only one as in SeqR. The arrangement of having multiple 

sequences brings two benefits. First, multiple sequences reduce the chance that 

two nodes select the same CH sequence. As we will show later, it takes less time 

for two nodes to rendezvous when they select different sequences. Second, with 

multiple sequences, participating nodes have more chances to rendezvous with 

each other within a hopping period. We show that a pair of nodes using ASYNC- 

ETCH that select two different CH sequences are guaranteed to rendezvous in N  

slots (where N  is the number of rendezvous channels) within a hopping period no 

matter how the hopping processes of the pair of nodes are misaligned.
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A: 0 3 1 4 2 subseq-2 C0 C3 C, C4 C2

a 3 0 4 3 2 I subseq-3 c 0 c 4 C3 C2 C,

a frame (2N+1 slots) 
 W=5)......*

So Co subseq-0 \ subseq-0 C, subseq-0 \subseq-0 C l subseq-01 subseq-0 C3 subseq-01 subseq-0 C4 subseq-0 \subseq-0

S, Co subseq-1 \ subseq-1 C l subseq-1 \subseq-l C4 subseq-1 \subseq-1 C , subseq-1\subseq-1 C3 subseq-1|subseq-1

Sl Co subseq-2 J subseq-2 C3 subseq-2 * subseq-2 C, subseq-2 j subseq-2 C4 subseq-2 \ subseq-2 C l subseq-2 \subseq-2

S, c0subseq-3 \ subseq-3 c4subseq-3 | subseq-3 C s subseq-3 J subseq-3 C l subseq-3 J subseq-3 C , subseq-3 jsubseq-3

Figure 8: CH sequences of a DSA network with 5 rendezvous channels.

2.4.1 An overview and an example

In a DSA network with five (N) rendezvous channel, the nodes first construct a 

set of four (N  -  1) CH sequences, 50,5 i,5 2 and S3, as shown in Figure 8. As 

we can see from the lower part of the figure, each CH sequence consists of five 

(N) frames, each of which contains 11 (2N  +  l)  slots: a pilot slot followed by two 

five-slot (JV-slot) subsequences. The arrangement of the pilot slots is displayed 

in the the upper left part of the figure where pilot slot sequences A0,A U A2, A3 are 

used in CH sequences 50,51,52 and 53, respectively. The arrangements for A0 

to A3 are derived by the method of addition modulo the prime number five (N ) 

with different addends from one to four respectively. The construction of the four 

subsequences (shown in the upper right part of the figure) also follows the channel 

assignment order determined in A0 to A3. As we will prove later, the above CH 

sequence construction guarantees that any pair of nodes (selecting two different 

sequences) rendezvous in N  slots within a hopping period regardless how much 

channel hopping misalignment between the two nodes. Each ASYNC-ETCH CH 

sequence has 55 slots (N  * (2N  +  1)).

After finishing the CH sequences construction, the nodes start the same CH 

hopping execution as in SYNC-ETCH: each of them randomly selects a CH se­

quence to start, and randomly reselects another one to continue after hopping on
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Algorithm 7: Async. CH sequence Construction
Data: C =  {Co, • • • .CW-i}: TV rendezvous channels (TV is prime). 
Result: S0, ■ ■ ■, SN- 2: TV - 1  final CH sequences.

1 for * 4-  0 to TV -  2 do
2 At[0] 4— 0;
3 fo r j  4-  1 to TV -  1 do
4 I Ai[j] 4- (Ai [0] + j ( i  + 1)) mod TV; 
s for i  4-  0 to TV -  2 do

for j  4-  0 to N  -  1 do
| subSeqi[j] 4- CAiyy,

6
7

8 for i  <r- 0 to iV -  2 do
9

10

11

12

13

14

15

k 4— 0 ,

fo r j  4-0 to 2iV2 + iV -  l  do 
if j  mod (27V + 1) = =  0 then 
I Si 4 - Si U (j, subSeqiljjt—})] / / p ilo t Slot 

else
Si 4- Si u (j ,  subSeqi [A:]); / /  normal slot
k 4r- (k +  1) mod TV;

16 return S0,S U --- ,SN- 2

the old one for a hopping period. By doing this, we ensure that any pair of nodes 

can rendezvous in different channels, which satisfies the requirement of full uti­

lization of rendezvous channels. This arrangement also eliminates the unfairness 

that nodes selecting the same CH sequence have less chance to rendezvous than 

nodes selecting different CH sequences.

2.4.2 CH sequences construction

Algorithm 7 describes the construction of the TV -  l  CH sequences in ASYNC- 

ETCH. To ease our presentation, we assume the number of rendezvous channels, 

TV, is a prime number. We hold the discussion of a general case (where TV is not 

prime) till §2.4.4.

Given TV rendezvous channels, ASYNC-ETCH first derives TV -  l  integer se­

quences A 0 through A N_2 (which will be used as indices for later channel as­

signment) by applying addition modulo the prime number TV (lines 1 to 4). Note 

that all the integer sequences are derived with different addends. In lines 5 to 7,
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the algorithm constructs N -  1 CH sub-sequences, subSeq0 to subSeqN- 2. whose 

channel indices are the same as the integer sequences A 0 through A N- 2 respec­

tively. Next, the algorithm constructs the CH sequence S( (0 < i  <  N  -  2) by 

concatenating five frames of St together (line 8 to 15). Each frame of 5* consists 

of a pilot slot followed by a pair of subSeqi. Slots in subSeqi are referred as normal 

slots. The channels in Si’s pilot slots, combined together, are exactly channels 

appearing in subSeqi in the same order. From Algorithm 7, it is easy to see that 

ASYNC-ETCH fulfills the requirement of even use of the rendezvous channels.

2.4.3 Proof of rendezvous

In ASYNC-ETCH, the TTR between a pair of nodes is related to the fact that 

whether the two nodes select the same CH sequence or two different ones. Here 

we provide the theoretical analysis to determine the TTR performance in the above 

two situations. In particular, we prove that the two nodes have at least one over­

lapped CH slot within a hopping period in the former case, and they can ren­

dezvous at least N  times in the latter one.

Let us first rewrite the definition of rotation closure property from QCH [7] as 

follows.

Definition 1. Given a CH sequence S with p slots and a non-negative integer d,

7l(S , d) =  {(*, 7l(S, d)\i}) | TZ(S, d)\i] = S[(i + d) mod p\} is called a rotation ofS  

with distance d.

Definition 2. A CH sequence S with p slots is said to have the rotation closure 

property with a degree of overlapping m if 'id  e [0,p -  1], | S n  TZ(S, d)\ > m .

For instance, considering a CH sequence with three hopping slots, S =  {(0, Co), 

(1, Co), (2, C i)} , the two possible rotations are 72.(5, 1) = {(0 ,C o) , ( l ,C 1), (2,C0)} 

and 71(5,2) = { (0 ,C i) , ( l ,C o),(2 ,C o)}. It is obvious that 5  has the rotation closure 

property with a degree of overlapping 1.
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Different from the prior work in SeqR [51], ASYNC-ETCH constructs multiple 

CH sequence rather than a single one. We provide the following definition to 

distinguish one CH sequence from another.

Definition 3. Two CH sequences, S0 and Si, each with p slots, are said be different

if W e  [ 0 ,p -  1], S i^ K ( S 0,d).

It is obvious that the TV - 1 CH sequences constructed by Algorithm 7 are differ­

ent, since the subsequences, which are the building blocks of the CH sequences, 

are different.

We first analyze the case that two nodes select the same CH sequence.

Lemma 1. For two nodes periodically hopping on a CH sequence that has the 

closure property with a degree of overlapping m, they can rendezvous in at least 

f  slots within a hopping period no matter how their hopping processes are mis­

aligned.

Proof. This lemma has been proved in QCH [7], □

Theorem 7. For two nodes that select the same CH sequence constructed by 

Algorithm 7, they can rendezvous in at least 1 slot within a hopping period no 

matter how their hopping processes are misaligned.

Proof. We need to prove that for any CH sequence S{ (0 < i  <  TV -  2) returned 

by Algorithm 7, S* has the rotation closure property with a degree of overlapping 

2, which combined with Lemma 1 can lead to this theorem. Specifically, we need 

to prove Vd e [ i,p  -  l], 3a b e [0,p -  l] such that Sf[a] =  Tl{Si,d)[a] and 

Si[b\ =  H (S i, d)[b], where p =  27V2 + TV is the number of slots of S

If d mod (27V + l)  =  0 (i.e., the 0-th slot of both 7Z(Si, d) and are both pilot 

slots), then all subSeq, in both S, and 7l(S i, d) are aligned, there are 27V2 different 

overlappings.

If d mod (27V + l) ^  0 (i.e., the 0-th slot in 7l(S i,d )  is a normal slot while the 

0-th slot in Si is a pilot slot), then we find the 2 overlappings as follows.
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First, Vm,n G [0, AT — 1] (m ^  n), we have S'i [m(2./V + 1)] ±  5i [n(2Ar +  1)] 

(since the 0-th slot in S'* is a pilot slot) =» (J,S,i [p(2iV-M)] =  {Co, •• • ,Cjv_i}. where 

p =  0,• • • , iV — 1, and W(5i,d)[m(2iV-|-l)] = H (S u d)[n(2N + l)] G {C0,--- ,C'^_1} 

(since the 0-th slot in n(Su d) is a normal slot). Then there must exist a p g 

[0, AT -  l] such that Si\p(2N +  1)] =  'Jl(Si ,d)\p(2N +  l) ].

Second, for k =  2N  +  1 -  d mod (2N  +  1), the fc-th slot in K (S i,d ) is a pilot 

slot while the fc-th slot in S* is a normal slot. Similar to the previous case, we 

can conclude that there exits an p g [0, N  -  l ]  such that Si\p{2N +  1) + k] = 

TZ{Sh d)\p{2N +  l )  +  k\. □

To determine the rendezvous performance when two nodes select two different 

CH sequences, we first give the definition of integer sequences derived by the 

method of addition modulo a prime number with different addends, and prove its 

overlap property.

Definition 4. Two integer sequences, A =  {a0, ■ • ■ , aN- i }  and B =  {60, • ■ ■ , bN- 1} 

where N  is a prime number, are said to be derived by the method of addition 

modulo the prime number N  with different addends m and n i fa{ =  (oq + im) mod

N, bi = (bQ + in ) mod N, where 0 < a0, b0 < N  -  l, l  < i  < N  -  1 and 1 < m ±  

n <  N  — 1.

Lemma 2. Given two integer sequences derived by the method of addition modulo 

a prime number with different addends m and n, A =  {a0, • • • ,aN- 1} and B = 

(60, • • ■ , bN-\}, there must exist an integer t e [0, • • • , N -  1] such that at =  6t.

Proof. Prove by contradiction. Suppose Vf g [0, ■ • • ,N  -  1], at bt. Construct 

a integers sequence C = {co, • • • , c^_i}, where c< = a* -  bi (0 < t < N -  l). It 

is easy to see that Vq,Cj g C (0 < i  /  j  < N  -  l), c{ ^  cjt othenwise we can

get a0 -  b0 +  i(m  -  n) =  aQ -  bQ +  j(m  -  n ) (modiV) =» m  -  n is multiple times 

of N, which is impossible since \ < m ^ n < N - l .  Because at ±  bt Vt g
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[0, ■ • • , N  -  l], C contains N  different integers that are in the range of [1, N  -  1], 

which is a contradiction. □

Theorem 8. For two nodes that select two different CH sequence constructed 

by Algorithm 1, there must be at least N  overlapping slots within a hopping pe­

riod between the two CH sequences no matter how their hopping processes are 

misaligned.

Proof. Suppose Si and Sj are two different CH sequences selected by the two 

nodes, we prove this theorem in the following two cases.

(1) The slot boundaries of Si and Sj are aligned during the hopping processes 

of the two nodes. In this case, we have two further sub-cases as follows.

First, pilot slots in S', overlap with pilot slots in Sj. In this case, all subSeqi in St 

exactly overlap with all subSeqj in Sj. Since integer sequences {A[0], • • • , At[N -  

1]} and {A,-[0], ,A j[N  -  1]}, which are the subscript sequences of subSeqi 

and subSeqj respectively, are derived by the method of addition modulo the prime 

number N  with different addends, there exists one overlapping between a sub­

sequence pair by Lemma 2. So there are 2N  overlapping slots between Si and 

Sj within a hopping period.

Second, pilot slots in St do not overlap with pilot slots in Sj. If the 0-th slot in 

Si (a pilot slot) is aligned with the k-th (0 < k < N  -  1) slot of the first subSeqj in a 

frame of Sj, then the first subSeq, in all the frames of St overlap with N  contiguous 

normal slots in Sj. If the 0-th slot in S* (a pilot slot) is aligned with the fc-th (0 < 

k < N  -  1) slot of the second subSeqj in a frame of Sj, then the first subSeqj in 

all the frames of Sj overlap with N  contiguous normal slots in S<. In either case, 

there exists at least one overlapping slot in each frame of both Si and Sj because 

of Lemma 2 and the fact that the sequences of normal slots in Si and Sj are 

developed by addition modulo prime the number N  with different addends. So 

there are at least N  overlapping slots between S{ and Sj within a hopping period.
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(2) The slot boundaries of St and S, are misaligned during the hopping pro­

cesses of the two nodes. Suppose the first /3 (0 < /3 < l)  portion of the 0-th slot in 

Sj overlaps with the /-th slot (0 < I <  2N 2 + N) in St, then the rest 1 -/3  portion of 

the 0-th slot in Sj overlaps with the /'-th slot in Su where /' =  (/+1) mod (2N 2+N).  

Suppose the m-th slot in each frame of Sj is an overlapping slot if the boundaries 

of the 0-th slot in Sj and the /-th slot in St were aligned, and the n-th slot in each 

frame of Sj is an overlapping slot if the boundaries of the 0-th slot in Sj and the /'-th 

slot in Si were aligned, then in each frame of Sjt Sj overlaps with Si in the first /3 

portion of the m-th slot and in the last 1-/3  portion of the n-th slot. In other words, 

there is at least one overlapping slot in each frame of both 5, and Sj. So there are 

at least N  overlapping slots between St and Sj within a hopping period. □

2.4.4 Additional discussion

Our previous analysis is based on the assumption that N  is a prime number. To 

address the practical issue when N  is not a prime number in a certain DSA net­

work, we can make the following adjustment to easily remove the assumption. 

ASYNC-ETCH picks the smallest prime number that is greater than the number 

of rendezvous channels as the parameter N  for Algorithm 7, and maps the ex­

cessive rendezvous channels down to the actual rendezvous channels. Figure 

9 demonstrates an example of ASYNC-ETCH CH sequences construction in a 

DSA network with 4 rendezvous channels C0 to C3. ASYNC-ETCH first con­

structs 4 integer sequences A0 to A3 using addition modulo a prime number 5 

with addends 1 to 4 respectively. Then it converts the integer sequences A{ to 

A[ (0 < i  <  3) by replacing number 4 with number 0 in A{ (0 < i  <  3). Then 

the ASYNC-ETCH CH sub-sequences will be constructed according to integer 

sequences A't (0 < i  < 3). The drawback of this method is that some rendezvous 

channels are assigned more times to the CH sequences. Therefore, for DSA net­

works using ASYNC-ETCH, we recommend to assign a prime number of channels
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Figure 9: ASYNC-ETCH CH sequences construction in a DSA network with 4 rendezvous 
channels.

for control information exchange.

2.5 Comparisons

In this section, we theoretically compare ETCH with QCH [7] and SeqR [51], which 

are two existing CH based solutions for communication rendezvous in DSA net­

works.

In QCH, three versions of communication rendezvous protocols are designed. 

M-QCH and L-QCH are two synchronous versions that assume clocks are syn­

chronized between nodes, and A-QCH is the asynchronous version that is used 

without such an assumption. The design goal of M-QCH is to minimize time-to- 

rendezvous between two CH sequences, while L-QCH’s goal is to minimize the 

number of nodes that rendezvous in the same channel. SeqR is a DSA network 

communication rendezvous protocol without assuming global clock synchroniza­

tion. SeqR does not have a synchronous version. We divide the comparisons into 

two group. In the first group, we compare SYNC-ETCH with M-QCH and L-QCH, 

all of which assume the existence of global clock synchronization. In the second 

group, we compare three asynchronous protocols: ASYNC-ETCH, A-QCH and 

SeqR.

We compare the two groups of communication rendezvous protocols on the 

three metrics introduced in §2.2.2: average rendezvous channel load, average 

TTR and rendezvous channels utilization ratio. Note that the choice of the CH 

sequence construction algorithm in the SYNC-ETCH protocol, i.e., the two-phase
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Table 1: Comparisons between communication rendezvous protocols.

Avg. Rend. Average Rend, channels
channel load TTR utilization ratio

M-QCH 2
3

3
2

i
N

L-QCH ~  1 2 N -1 1
‘  J 2 N - 1 2 N

SYNC-ETCH 1
N

22V—1 
2 1

A-QCH 1
2 > 1 N/A

SeqR 1
N

n 2+ n
2 N/A

ASYNC-ETCH 1
N

2 N 2+ N  ^  n  AT 
N - 1 ~ N/A

algorithm or the single-phase algorithm, makes no difference on the protocol's 

theoretical performances on the three metrics, because we do not consider the 

impacts of the appearances of primary users in these theoretical comparisons. 

We will evaluate how the appearances of primary users have impacts on the per­

formances of the SYNC-ETCH protocol using different CH construction algorithms 

later in §2.6.2.

Table 1 summarizes the comparison results, where N  is the number of ren­

dezvous channels of the DSA network. In the synchronous protocols group, we 

pick parameters for L-QCH such that it produces the same number of CH se­

quences as SYNC-ETCH for the purpose of fair comparison. SYNC-ETCH out­

performs M-QCH and L-QCH on the metrics of average rendezvous channel load 

and rendezvous channels utilization ratio, because in every hopping slot it ef­

ficiently utilizes all rendezvous channels in establishing control channels, while 

there is only one channel can be used as control channel in each hopping slot 

with M-QCH and L-QCH. Thus theoretically, SYNC-ETCH experiences less traf­

fic collisions and achieves higher throughput than QCH. For the metric of average 

TTR, M-QCH achieves the best theoretical performance. However, it has a very 

large average load on each rendezvous channel ( |  of all the network nodes use 

the same rendezvous channel), which will cause a high probability of traffic col­

lisions and further make the time-to-rendezvous performance of M-QCH worse
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than its theoretical value in practice.

In the asynchronous protocols group, A-QCH has the worst performance in 

terms of average rendezvous channel load, because it only ensures two of the 

rendezvous channels can be used as control channels while both ASYNC-ETCH 

and SeqR utilize all the rendezvous channels in control channel establishment. 

Moreover, A-QCH cannot provide a bounded TTR. SeqR, which constructs only 

one CH sequence, can only guarantee one overlapping slot in a hopping period. 

So the average TTR for SeqR is half of the number of slots in the CH sequence 

(i.e., For ASYNC-ETCH’s performance on the metric of average TTR, we

make the following analysis: we proved in §2.4.3 that for the cases that when 

two nodes select the same CH sequence and when they select two different CH 

sequences, they are respectively guaranteed to meet in at least 1 slot and at least 

N  slot within a hopping period. Since ASYNC-ETCH generates N  -  1 different 

CH sequences and the CH sequence selection is random, on average there are 

_ i_  +  {Nr 9 N -  n  _ i  guaranteed overlapping slots in a hopping period. So the 

average TTR for ASYNC-ETCH is «  2N.

2.6 Performance Evaluation

We evaluate ETCH’S performance by simulation experiments. In §2.6.1, we com­

pare ETCH with the existing CH based communication rendezvous protocols. In 

§2.6.2, we compare the two algorithms of SYNC-ETCH for CH sequence con­

struction, i.e., the two-phase algorithm and the single-phase algorithm.
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2.6.1 Comparing ETCH to the existing CH based communica­

tion rendezvous protocols

Methodology

We evaluate ETCH by comparing it to QCH and SeqR in the ns-2 simulator. We 

divide the evaluation into two portions based on the assumption about the exis­

tence of global clock synchronization. In §2.6.1, we compare the performances 

of SYNC-ETCH (using the two-phase algorithm for CH sequence construction), 

M-QCH and L-QCH. In §2.6.1, we compare the performances of ASYNC-ETCH 

with A-QCH and SeqR.

In the evaluation, we modify the ns-2 simulator to make it be able to perform 

multi-channel wireless communication simulations based on the Hyacinth project 

[56]. In our simulations, there are a varying number of nodes in a 500m x 500m 

area, where each of the nodes is in all other nodes’ communication ranges. The 

length of a hopping slot is set to 100 ms. We establish Constant Bit Rate (CBR) 

flows, where the packet size is set to 800 bytes and the packet rate is 125 pack­

ets/sec, from each node to all other nodes. These flows are started and stopped 

randomly during the simulation such that there is no more than one flow from 

the same node is activated simultaneously (because there is only one transceiver 

equipped with each node). Hyacinth’s manual routing protocol is used in routing 

packets between the nodes. We disable the RTS/CTS function in the simulator, 

and rely on the retransmission mechanism to deal with packet collisions. In the 

simulations, the DSA network has 5 rendezvous channels (i.e., N =  5), each of 

which can possibly be used by the primary user. To simplify the simulation, we 

suppose all the secondary users are within the communication range of the pri­

mary user. The appearances of the primary user is simulated as follows. We first 

decide whether the primary user shows or not by flipping a coin. If the primary 

user appears, we randomly disable a rendezvous channel for a random period

56



of time. Otherwise all the rendezvous channels are made to be available to the 

nodes also for a random period of time. We repeat this process during the entire 

simulation.

Synchronous communication rendezvous protocols

We conduct two simulation experiments to study the performances of the syn­

chronous protocols on traffic throughput and actual time-to-rendezvous (TTR). In 

each experiment, we run the simulation for ten rounds with different number of 

secondary users (from 5 to 50 with a step length of 5) in each round.

Figure 10 shows the traffic throughput performances of the three synchronous 

protocols. Part (a) of this figure shows the actual throughput while part (b) illus­

trates the improvement ratio curves of SYNC-ETCH over L-QCH and M-QCH. 

SYNC-ETCH has a lower throughput than L-QCH and M-QCH when there are 

5 secondary users in the network. This is because in CH sequences of L-QCH 

and M-QCH, rendezvous channels are randomly assigned to those non-frame- 

channel-slots, which may give a pair of nodes using L-QCH or M-QCH extra slots 

to rendezvous in other than the frame-channel-slot. And this is also because 

there are no or little collisions in this case. However, when the number of sec­

ondary users is equal or greater than 10, SYNC-ETCH achieves higher traffic 

throughput than L-QCH and M-QCH, especially when the nodes-channels ratio is 

in the range of 3 to 6 (i.e. when there are 15 to 30 nodes in the DSA network). 

In this case, traffic collision dominates the factors that influence the throughput 

performance. With both L-QCH and M-QCH, nodes are always compete for one 

rendezvous channel as control channel leaving all other rendezvous channels un­

used in a hopping frame, which causes a high probability of collisions when the 

nodes-channels ratio is bigger than 1. On the contrary, SYNC-ETCH schedules 

rendezvous among its CH sequences such that all the rendezvous channels can 

be utilized in every hopping slot. This approach greatly reduces traffic collisions
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Figure 11: TTR performances of the synchronous protocols.

and hence increases throughput. Furthermore, it can be also noticed in Fig 10 

that the throughput performance of the three synchronous protocols converges 

as the nodes-channels ratio approaches 10. This is because collisions dominate 

traffics in each rendezvous channel with all the synchronous protocols. In this 

case, it is suggested to assign more rendezvous channels to accommodate such 

a high number of secondary users.

Figure 11 part (a) shows the TTR performances of the three synchronous pro­

tocols, and part (b) demonstrates the TTR ratios of SYNC-ETCH over L-QCH 

and M-QCH. The TTRs of the three protocols increase as the number of sec­

ondary users grows because of the increasing traffic collisions. Although M-QCH 

achieves the best TTR performance among the three as analyzed in §2.5, it does 

not get the theoretical TTR performance boost over SYNC-ETCH as analyzed in 

§2.5. Theoretically, M-QCH performs 3 times better than SYNC-ETCH in TTR, 

because it has an average TTR of 1.5 while SYNC-ETCH’s value is 4.5. How-
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ever, the simulation results shows that SYNC-ETCH’s actual TTR is only 1.5 times 

of M-QCH’s actual TTR on average. The reason of M-QCH’s TTR performance 

degradation in the simulation experiment is because the nodes using M-QCH ex­

perience more severe traffic collisions that those using SYNC-ETCH.

From the above two simulations it can be seen that SYNC-ETCH achieves the 

best balance between traffic throughput and TTR among the three synchronous 

protocols.

Asynchronous communication rendezvous protocols

In this subsection, we compare the throughput and the TTR performances be­

tween the three asynchronous protocols: ASYNC-ETCH, A-QCH and SeqR.

Figure 12 shows the performances of the three asynchronous protocols. In 

Figure 12 part (a), the traffic throughput performances are shown. ASYNC-ETCH 

performs constantly better than the other two protocols in this metric. This is 

because ASYNC-ETCH is able to utilize all the rendezvous channels as control 

channels while A-QCH uses only two of them. Meanwhile, ASYNC-ETCH im­

proves on SeqR such that it achieves a shorter average TTR, which contributes 

to the throughput performance boost over SeqR. Figure 12 part (b) shows the 

actual TTR performances of the three protocols. It is not surprised that ASYNC- 

ETCH performance better than SeqR, because ASYNC-ETCH’s average TTR is 

shorter than that of SeqR (see Table 1 for details). For A-QCH, we construct CH 

sequences such that they have an average TTR of 4.5, which is the best that A- 

QCH is able to achieve. Even so, ASYNC-ETCH still performs better than A-QCH.

2.6.2 Comparing the two algorithms in SYNC-ETCH

In the SYNC-ETCH protocol, we have proposed two algorithms for CH sequence 

construction. The two-phase algorithm can be applicable to DSA networks with 

an arbitrary number of rendezvous channels. However, it is unable to guarantee
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Figure 13: Channel appearance evenness score of the two-phase CH sequence con­
struction algorithm. (The evenness score of the single-phase algorithm is always 1).

the even use of rendezvous channels requirement. The single-phase algorithm 

improves on its two-phase counterpart in that it guarantees, under the premise 

that N  (i.e., the number of the rendezvous channels) is an odd number, all the 

rendezvous channels appear in each constructed CH sequence with the same 

probability.

To quantize how even the N  rendezvous channels (i.e., C0, ■ ■ ■ , Cy_0 appear 

in a CH sequence S, we define the “evenness score” of S regarding rendezvous 

channel appearance probability as

£s N
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where |S| is the number of hopping slots of S, and a{ is the number of hopping 

slots of S in which channel Q  appears. We further convert ss into a normalized 

score N ( e s ), which is the range of [0,1] and can be expresses as

N ( e s ) =  1 -  £ s ~ £best .
£  w o rs t £best

In N(es), £best and e WOTSt are the evenness scores of the best case and the worst 

case of fulfilling the even use of rendezvous channels requirement respectively. 

In the best case, each of the N  rendezvous channels appears in S with the 

same the same probability, while in the worst case, a single channel appears 

in all the hopping slots of S. For instance, with the SYNC-ETCH protocol where 

there are 2N -  1 hopping slots in a CH sequence, the best case that a CH se­

quence S satisfies the even use of rendezvous channels requirement is that a 

rendezvous channels appears once in S while each of the remaining N  -  1 chan­

nels appears twice in S. The evenness score of the best case is calculated as 

ebe3t =  |n the worst case, all the 2 N -1  slots is assigned

with the same CH sequence. Accordingly, the evenness score of the worst case 

IS calculated as e w o rs t = \J - ----------— — - — Ci- L .

Low normalized evenness score of a CH sequence S indicates that S uses 

one or several rendezvous channels more than the remaining channels, which 

causes the nodes selecting S to have higher probability to experience communi-
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cation outages if the primary users of those heavily relied channels show up. In 

SYNC-ETCH, every CH sequence constructed by the single-phase algorithm has 

a normalized evenness score of 1 , which is the optimal case of fulfilling the even 

use of rendezvous channels requirement. To evaluate how well the two-phase 

algorithm satisfies this requirement, we calculate the average value and the cor­

responding standard deviation of the evenness scores of the 2N  CH sequences 

constructed by the two-phase algorithm. Figure 13 shows the results of the cases 

where the value of N  ranges from 3 to 99. The top graph of Figure 13 plots the av­

erage value of the evenness scores, and the bottom graph plots the corresponding 

standard deviations. We can see from the results that the two-phase algorithm 

still achieves an average normalized evenness score that is larger than 0.9 when 

N  is greater than 10, and that the averaged score increases as N  increases.

We further perform an experiment to evaluate how the normalized evenness 

scores of CH sequences affect the performances of the communication rendezvous 

protocol. In the experiment, we let a node A that is stick to a fixed CH sequence 

Si rendezvous with another node B for 2JV -  l  times, where the node B selects 

a different CH sequence Sj ( j  /  i) at each time. We disable 7  (0  < 7  < l) of 

the rendezvous channels that are used most frequently in Sf. The node A fails to 

rendezvous with the node B at a time if the overlapping channel between Si and 

Sj is disable. We then calculate “rendezvous miss ratio” of the CH sequence St 

as the ratio between the number of times when a rendezvous attempt fails and 

the total number of rendezvous attempts (i.e., 2 N  -  1). Figure 14 (b) plots the re­

lationship between the normalized evenness score and the rendezvous miss ratio 

of a CH sequence constructed by the two-phase algorithm S when N =  33 and 

7  = 0.3. Under the same settings, the rendezvous miss ratio of a CH sequence 

constructed by the single-phase algorithm is 0.27.
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2.7 Conclusion

ETCH is a set of efficient channel hopping based communication rendezvous 

protocols for CR networks. ETCH protocols include SYNC-ETCH and ASYNC- 

ETCH. SYNC-ETCH, which assumes global clock synchronization, efficiently uti­

lizes all the rendezvous channels in establishing control channels all the time. 

ASYNC-ETCH is able to make a pair of nodes rendezvous without being syn­

chronized. Using a combination of theoretical analysis and simulations, we show 

that ETCH protocols perform better than the existing solutions for communication 

rendezvous in CR networks.
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3 HoWiES: A Holistic Approach to 

ZigBee Assisted WiFi Energy Sav­

ings

Wireless communication service provides wireless connectivity to smartphone ap­

plications, However, it is also a major source of power consumption in smart­

phones. To provide efficient power management service in smartphones, we first 

studied how to reduce energy consumption for one of the most common wireless 

communication interfaces in smartphones: WiFi interface.

3.1 Background and related work

3.1.1 WiFi power management

The power management mode of WiFi stations1 can be either CAM (Constantly 

Awake Mode) or PSM (Power Save Mode).

CAM stations keep their WiFi radio active all the time. Figure 15 (a) shows 

the operating states of CAM stations. After detecting and associating with a WiFi 

network, CAM stations switch their working states between “rx/tx” and “standby” 

(transitions between CS3 and CS4 in Figure 15 (a)): stations in the rx/tx state

1 Mobile devices operating as stations in a infrastructure WiFi network as specified in the IEEE 
802.11 standards.
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Figure 15: Operating state diagrams of CAM (a) and PSM (b) stations. Shaded states 
have room for energy savings.

are actively receiving and transmitting packets, while standby stations overhear 

all the packets in the air. Since the WiFi radio is active all the time, batteries in 

CAM stations drain at a rapid speed.

To save energy wasted in the CAM standby state, 802.11 power save mode 

is introduced [57]. Figure 15 (b) depicts the operating states of PSM stations. 

Similar to CAM stations, PSM stations also switch their working states between 

“rx/tx" and “standby” during operations. The difference is that PSM stations do not 

always keep their WiFi radios active in the standby state. Instead, PSM stations 

make their WiFi radios sleep (state PS4 in Figure 15 (b)) most of the time during 

standby. In the sleep state, WiFi radios consumes very low power but is not able 

to receive to transmit. PSM stations in sleep state switch to “rx/tx" state whenever 

they have outgoing packets (transition PS4 to PS3). To receive incoming pack­

ets, a sleeping PSM station needs to periodically switch its WiFi radio to active 

(transition PS4 to PS5, usually right before each beacon arrives) to receive its 

AP’s beacons, through which the AP advertises buffered packets for its sleeping 

clients. If there is no packet indicated in the beacon for the PSM station, the sta­

tion simply goes back to the PSM sleep state (transition PS5 to PS4). Otherwise, 

the station stays active and waits for its incoming packets from the AP (transition
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Table 2: System power consumption in WiFi scanning state

with WiFi scanning with WiFi off scanning/overall pert.

Galaxy S2 766 mW 265 mW 65.4%

T400 14498 mW 12732 mW 1 2 .2 %

PS5 to PS6 ). Then the station further switches to the "rx/tx” state on receiving the 

first incoming packet from its AP (transition PS6  to PS3). Upon completion of the 

receptions/transmissions, depending on detailed implementation, the station goes 

back to the sleep state either immediately or after a fixed amount of time without 

incoming or outgoing packets (transition PS3 to PS4). The default power man­

agement mode (i.e., CAM or PSM) of a station depends on the implementation of 

the WiFi driver. For example, ath5k and ath9k (i.e., the official Linux WiFi drivers 

for 802.11g and 802.11 n Atheros chipset based stations respectively) [58,59] con­

figure CAM as the default power management mode. Users can use the iw [60] 

utility to switch the power management mode between CAM and PSM. Drivers for 

Broadcom wireless chipsets being widely used in smartphones (e.g., BCM4329 

chipset and BCM4330 chipset) configure PSM as the default power management 

mode.

3.1.2 WiFi energy saving opportunities

We observe that there are multiple significant energy saving opportunities for WiFi 

stations (i.e., mobile devices operating as stations in a infrastructure WiFi network 

as specified in the IEEE 802.11 standards.) in several of their working states, 

which are detailed as follows.

Opportunity 1 - scanning state: The first significant WiFi energy opportunity 

lies in the scanning state. Stations in scanning state constantly iterate through all 

the channels to search available WiFi networks. We have measured the system 

power consumption of two mobile platforms, a Samsung Galaxy S2 smartphone
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Table 3: System power consumption in WiFi standby state

with WiFi standby with WiFi off standby/overall pert.

Galaxy S2 298 mW 265 mW 1 1 .1 %
T400 14078 mW 12732 mW 9.6%

and a Lenovo T400 laptop, in the WiFi radio scanning state. From the measure­

ment results (Table 2), we can see that about 65% and 12% of the system power 

consumption are spent in WiFi scanning for the Galaxy S2 smartphone and the 

Lenovo T400 laptop respectively. Moreover, recent research shows that people 

spend only half of their daily life in areas with WiFi signal coverages [61], which 

means their WiFi devices would spend about 12 hours a day in the high-power 

scanning state if they do not turn off WiFi radio when they are outside of WiFi 

coverages. Therefore, we are motivated to find an energy efficient way for mobile 

devices to discover WiFi networks instead of using power-hungry WiFi radios.

Opportunity 2 - standby state: The power management mode of WiFi sta­

tions can be either CAM (Constantly Awake Mode) or PSM (Power Save Mode). 

The difference between these two modes lies in when WiFi stations are in standby: 

a CAM station keeps its WiFi radio on all the time; a PSM station puts its WiFi ra­

dio into sleep (i.e., stay in a low-power state) for most of the time when there is 

no traffic, and periodically wakes up the radio to receive and check AP beacons, 

through which the AP informs the PSM stations about their packets buffered at 

the AP.

Table 3 presents the measurement results of the standby state power con­

sumption of a Galaxy S2 smartphone and a T400 laptop, which are by default 

configured as PSM and CAM stations respectively by the device drivers. The 

Galaxy S2 smartphone consumes 33 mW more power, which accounts for about 

11% of the overall system power, in the WiFi standby state than when the WiFi 

radio is turned off. This power overhead mainly comes from the periodic wakeup 

to check beacons, because when we increased the smartphone’s wakeup inter-
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Figure 16: The experiment on WiFi standby time: (a) is the CDF of WiFi connection 
lengths, (b) is the CDF of the WiFi standby percentages in the corresponding WiFi con­
nection sessions.

val, the power overhead decreased accordingly. The T400 laptop also consumes 

about 10 percent of its system power in the standby state. Recent works [10,11] 

show that smartphone users usually leave their phones idle for most of the time, 

which makes the standby power consumption of WiFi radios even salient regard­

ing saving energies for mobile devices. Ideally, WiFi radios should sleep without 

periodic wakeup or be completely turned off as long as there is no WiFi activities. 

Meanwhile, it must be possible to wake up the WiFi radios if there are incoming 

packets for them.

To study how much time stations spend in the standby state during WiFi con­

nection sessions, we developed and deployed a WiFi activity recorder in our office 

building and in the college’s library, both of which are heavy WiFi usage spots. The 

recorder sniffed all the WiFi packets and recorded their MAC addresses, packet 

types (e.g., data, management or control), packet sizes, data rates, received sig­

nal strength (RSS) and the packet reception times. To process the data, we first 

identified WiFi stations based on MAC addresses and packet types, and filtered 

out those stations whose packets have low RSS values, as the recorder may miss 

some of their packets because of low SNR. Then we analyzed the WiFi packets 

of the remaining stations to study how much time they were idle during WiFi con­

nection sessions. Based on the 15 hours of WiFi activity data collected in 5 days, 

we identified 151 unique stations in 218 WiFi connection sessions. Figure 16 (a)
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Table 4: Power consumption of CC2420 and BCM4330.

CC2420 (ZigBee) BCM4330 (WiFi) ZigBee/WiFi ratio

Rx/Tx 56 mW 435 mW 0.129

Idle/Standby 1.2 mW 33 mW 0.036

plots the CDF of WiFi connection lengths, and (b) plots the CDF of the standby 

percentages in the corresponding WiFi connection sessions. If the reception time 

difference between two consecutive packets from the same station is larger than 

5 seconds, we marked the interval between the two reception times as a WiFi 

standby duration of that station. Finally we concluded that in our measurement, 

over 70% of stations spent more than 60% of their time in standby during their 

WiFi sessions.

The notable standby power overhead (about 10%) and the large proportion of 

WiFi standby time over the entire WiFi session motivate us to design an energy- 

efficient way for WiFi standby. Ideally, WiFi radios should sleep without periodic 

wakeup or be completely off as long as there is no WiFi activities. Meanwhile, it 

must be still possible to wake up the WiFi radios if there are incoming packets for 

the WiFi radios.

Opportunity 3 - energy waste due to wakeup contention: When multiple 

PSM stations working at the same channel and associated either with the same 

AP [12] or with multiple co-located APs [13], are waken up to receive buffered 

packets at the same time, the contention between these stations will make them 

stay awake but without performing any communication tasks, which further causes 

about up to 4 times more energy consumption. Motivated by these research re­

sults, we want our approach to wake up standby WiFi radios to avoid these energy- 

expensive wakeup contentions.

69



3.1.3 ZigBee radio assisted WiFi energy savings

Compared with WiFi radios, ZigBee radios are more power efficient. Table 4 lists 

the power consumptions we measured of ZigBee radio CC2420 and WiFi radio 

BCM4330 in different operating modes. Since ZigBee is able to work at the same 

frequency band as WiFi while consumes significantly less energy, it would provide 

great assistance in saving WiFi energy for mobile devices if we could make Zig­

Bee radios communicate with WiFi radios. Esense [62] is the first effort to enable 

communications between a WiFi radio and a ZigBee radio. The idea is using Zig­

Bee radio to continuously sample the background energy in the air. Once there 

is a WiFi packet being transmitted, the sampling ZigBee radio will generate sev­

eral consecutive samples whose energy readings are above a certain threshold, 

which we call positive samples. Esense studies how the number of consecutive 

positive samples (denoted as distributes when sampling WiFi packets re­

played from several public WiFi traces. Esense proposes that each of those rarely 

occurring #+nsec when sampling the public WiFi traces can be used to convey a 

certain message from WiFi to ZigBee. The experimental results of Esense show 

that it is able to deliver up to 100 different messages from WiFi to ZigBee.

The message capacity achieved by Esense is far from enough for being appli­

cable to WiFi energy savings in mobile devices, since there could be up to 2007 

stations associated with an AP [57], Therefore, we are motivated to study how 

to extend the WiFi-ZigBee message capacity by using combinations of different 

Bconsecto represent a message. Based on our new WiFi-ZigBee message delivery 

scheme, we design and implement three protocols that exploit the three opportu­

nities to save WiFi energies for mobile devices.
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3.1.4 Related work

Energy saving in WiFi scanning. To save the energy spent in scanning WiFi 

networks, several projects have considered, without turning on WiFi radios, pre­

dicting WiFi networks availability by using different context information [61], track­

ing and learning user movements [63], or collecting information about bluetooth 

devices and cell towers [64]. Turducken [65] proposes a heterogeneous devices 

architecture where a WiFi detector is used to detect whether WiFi signals are 

present. Similar to our solution, ZiFi [6 6 ] discovers WiFi networks with the assis­

tance of ZigBee radios. The idea of ZiFi is using ZigBee to detect WiFi beacon 

patterns, which indicate the existence of WiFi networks. HoWiES takes a differ­

ent approach: we enable APs to advertise themselves by broadcasting messages 

that are understandable by ZigBee radios. Thus, an advantage of our solution is 

that with FloWiES, mobile devices are able to selectively wake up and associate 

to the APs.

Energy saving in WiFi standby. To save the energy spent in WiFi standby, 

researchers have proposed to turn off WiFi radios when they are idle, and wake 

them up through a low-power non-WiFi channel when there are incoming WiFi 

activities. Wake-on-wireless [67] establishes the low-power channel by attaching 

a additional device to both APs and WiFi clients. Cell2Notify [6 8 ] considers using 

cellular channel to wakeup WiFi radios for VOIP calls. In our system, we establish 

the low-power channel directly between APs and devices’ ZigBee radios through 

which APs can wake up standby devices selectively.

Energy saving in WiFi wakeup. Recent works have shown and addressed 

the energy waste problems caused by wakeup contentions between WiFi clients 

that belong to the same AP [12] or multiple interfering APs [13]. In our system, 

our solution naturally solves the problem of wakeup contentions between clients 

associated with the same AP by waking up WiFi clients one at a time. To alleviate
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wakeup contention between clients associated with different APs, we coordinate 

APs such that there are not two interfering APs wake up their client at the same 

time.

3.2 System design

3.2.1 WiFi-ZigBee message delivery scheme

The high level idea. Let us assume the messages that WiFi radios can deliver to 

ZigBee radios correspond to different numbers. A WiFi radio encodes the number 

that it wants to convey to a ZigBee radio by sending a sequence of WiFi packets 

(called WiFi-ZigBee message packets), whose sizes are chosen from a group 

of predefined values, using a fixed transmission rate. These predefined packets 

sizes form the alphabet of our message delivery scheme. The ZigBee radio de­

termines the size of each packet by sampling background energy, and obtains 

the number that the WiFi radio wants to convey by interpreting the combination of 

packet sizes.

Alphabet construction. The alphabet A  is a set of b packet sizes: A  = 

{Si, • • • , Sb}, where Si <■■■< Sb. In order to ensure that ZigBee radios can 

detect a WiFi-ZigBee message (abbreviated to "message” in later descriptions), 

we need to make message packets be distinguishable from normal WiFi packets. 

To this end, we carefully choose the predefined sizes for message packets and 

select the message packets transmission rate such that the air time of a message 

packet is longer than those of normal WiFi packets.

To study the air times of normal WiFi packets, we deployed WiFi sniffers in 

our office building and the university’s library, both of which are heavy WiFi usage 

spots, and sniffed WiFi packets for three days. By looking at the sizes and the 

transmission rates of the sniffed packets, we observed that WiFi packets transmit­

ted using low transmission rates were small in size (these packets were usually
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Figure 17: WiFi packets airtime distribution.

802.11 management/control frames like beacons and ACKs), and packets that 

were large in size were usually transmitted using high transmission rates (these 

packets were usually for massive data transmission like video streaming). Figure 

17 shows the CDF of the sniffed packet airtime. From this figure we can observe 

that over 95% of all the sniffed packets had an air time less than 1 millisecond. 

Therefore, we ensure the air time of a message packet to be longer than those 

of normal WiFi packets by selecting large sizes for massage packets and send­

ing them at the lowest transmission rate. Meanwhile, the difference between two 

adjacent predefined message packet sizes should be set appropriately to ensure 

ZigBee will not generate the same number of energy samples for message pack­

ets with different sizes. We will detail our choices of the predefined packet sizes 

for the alphabet later in §3.3.

WiFi-ZigBee message encoding: A WiFi radio encodes a WiFi-ZigBee mes­

sage M  by sending a sequence of I message packets, whose size are chosen 

from the alphabet A, using the transmission rate R. Here we call I the length of 

the message. The value of the message is calculated as

t=i
v(M) =  -  l ) 6l- x (3.1)

i—1

where b is the size of the alphabet A, Pi represents the *-th of the I message
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packets and IPiiA is the index of the packet p/s size in the alphabets, for example, 

U,a =  j  if the size of packet p* is Sj (Sj e A, l  < j  < b). Then the capacity of a 

message delivery scheme, which is the total amount of numbers that the scheme 

can encode, is bl . Here R,l,b and A  are fixed and shared between WiFi and 

ZigBee radios.

For instance, for a WiFi-ZigBee message delivery scheme where WiFi radios 

encode each message by transmitting 3 WiFi packets with sizes chosen from 

100 and 200 bytes, the alphabet A  is { 100 ,2 0 0 }, the size of the alphabet b is 

2 and the message length I is 3. The total number of messages that an WiFi 

radio can convey to a ZigBee radio is 23 =  8 (i.e., the capacity of the scheme is 

8 ). If a WiFi radio encodes a message by sending a sequence of 3 packets with 

200B, 100B and 200B respectively, essentially it sends out 3 digits with values 

of 1, 0 and 1 in that order, and the message is interpreted as number 5 (i.e., 

1 x 2° +  0 x 21 +  1 x 22 =  5).

Parameters selection: To ensure that ZigBee radios can distinguish WiFi- 

ZigBee message packets from background packets, we ensure the air time of 

message packets longer than the maximum packet air time of normal WiFi pack­

ets2. Suppose in a WiFi network the base transmission rate is Rw, then a WiFi- 

ZigBee message delivery scheme should choose its message packet transmis­

sion rate R and the smallest message packet size Si such that they satisfy ^  > 

where 1500 is the Ethernet MTU [69]. Meanwhile, to guarantee ZigBee ra­

dios will not have the same energy sampling count for two message packets with 

different sizes, the difference between two adjacent message packet sizes should 

be at least where H  is the background energy sampling frequency of ZigBee 

radios.

WiFi-ZigBee message detection and decoding: Algorithm 8  presents the al­

gorithm that ZigBee radios use to detect and decode WiFi-ZigBee messages. Zig-

2The maximum air time of ZigBee packets are smaller than that of WiFi packets.
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Algorithm 8: WiFi-ZigBee message detection/decoding 
Data: R, I, b, H, P and .4 =  {& , • • • , Sb}.
Result: Report message value M  once a message is detected. 
PC, IC, i  <- 0; state <- WAITING MSG] 
while ZigBee listening is enable do 

Sample background energy, store the reading in e; 
if (state == WAITING-MSG) then 

if (e > E) /*on positive sample*/ then 
| PC «- 1; state PKTJN-PROGRESS]

else if (state == WAITING-PKT) then 
if (e > E) /*on positive sample*/ then 
| PC «— 1; state PKTJN.PROGRESS]
else 

IC++]
if ( IC  >  INTERVAL-TIME-OUT) then 
I PC, IC , i  f -  0; State <- WAITING-MSG] 

else if (state == PKTJN-PROGRESS) then
if (e > E) /*on positive sample*/ then 
| PC++; 
else

if (P C  > - ^ i ) /*message packet detected*/ then 
i++]

if P C - L ^ J  < 2 ; 
if ( i = =  i) /*message detected*/ then 

Report M  = D ! : ‘i( / i - l ) 6i- 1;
PC, IC , i  <- 0; state WAITING-MSG] 

else
I IC  < - l ]  PC  ^ 0 ]  state <- WAITING-PKT] 

else
if i  ===== 0 /*no message packet has been detected*/ then
| PC, IC , i  <- 0; state <- WAITING-MSG] 
else 

JC <- /C  +  PC;
if ( /C  >  INTERVAL-TIME-OUT) then
j PC, IC , i  <- 0; state WAITING-MSG] 
else
I P C  «- 0; state <- WAITING-PKT]

1

2

3

4

5
6

7

8 

9

10
11

12

13

14

15

16

17

18

19

20 

21 

22

23

24

25

26

27

28

29

30

31

32

33

34

Bee radios detect WiFi-ZigBee messages by continuously sampling background 

energy with a frequency H. If a sample’s energy reading is greater than a thresh­

old E, the sample is a “positive” sample, otherwise it is a “negative” sample. In the 

algorithm, the variable PC (positive sample counter) records the number of the
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most recent consecutive positive energy readings that ZigBee radios have sam­

pled, and the variable IC  (message packet interval counter) records the time since 

the last message packet in terms of energy sample count. There are three work­

ing states in the algorithm. In the waiting message (WAITING-MSG) state (line 

4-6), a ZigBee radio is waiting for a new WiFi-ZigBee message. Upon obtaining 

a positive sample it switches to the packet receiving (PKT_IN_PROGRESS) state 

(line 6 ). In the PKT_IN_PROGRESS state, the ZigBee radio keeps incrementing 

PC as it continuously gets positive samples (line 16). Upon receiving a negative 

sample, it decides whether the consecutive positive samples just observed come 

from a message packet or from a normal packet. If they come from a message 

packet (line 18-25), the ZigBee radio increments the message packet counter (line 

19) and records the index of the packet’s size in the alphabet (line 20). If all the 

message packets have been detected, it reports the message value based on the 

formula (3.1) (line 22), resets counters and switches back to the WAITING-MSG 

state (line 23). If there are message packets pending, it switches to the waiting 

message packet (WAITING-PKT) state (line 25). In the case that the consecu­

tive positive samples come from a normal packet (line 27-34), the ZigBee radio 

switches back to the WAITING-MSG state directly if no message packet has been 

detected (line 28); otherwise, it counts the consecutive positive samples just ob­

served into message packet interval (line 30). If the message packet interval is 

greater than a threshold, it switches back to the WAITING-MSG state (line 32). 

Otherwise, it goes to the WAITING_PKT state (line 34). In the WAITING_PKT 

state, the ZigBee radio keeps counting the message packet interval as they ob­

tains negative samples (line 11), and ceases the decoding process if the interval 

is greater than the threshold (line 13). It goes to the PKT_IN_PROGRESS state 

once it obtains a positive sample (line 9).

Self-correcting message encoding/decoding. Without considering hidden 

terminals’ effects, which is a case we will discuss at the end of this section, mes-

76



Background Background

Normal packet packet
--------------►— ►

&T/me
Message \  Mess!*e.."K'"'V''

Message Sender packet HI ■ - packet #2 ■ ------------------------ a

wrong correct 6  Time

Message Receiver Q ^  t  1 _____|  D  fl C| |___ |___ |___ Ll_D___ I___ D___ >
(zigBee)

Figure 18: An example of background packet interference.

sage packets will not overlap with normal packets in time domain because of the

802.11 CSMA/CA scheme. However, since ZigBee radio cannot sample with an 

interval smaller than the IEEE 802.11 short interframe space (SIFS) (802.11 SIFS 

is 10 /is while the ZigBee standard [70] mandates that the energy reporting inter­

val should be at least a symbol period (16 ps)), it is possible that a ZigBee radio 

obtains the same number of energy samples for two message packets with dif­

ferent sizes if there are two packets sent with an interval smaller than the ZigBee 

radio’s sampling interval. Figure 18 shows an example: A WiFi radio sends out 

two WiFi-ZigBee message packets on which a ZigBee radio normally will gener­

ate 2-3 and 4-5 energy samples respectively. However, before the ZigBee radio 

could get the first sample after the first packet is transmitted, the channel is taken 

by another normal WiFi client, which transmits a packet causing the ZigBee radio 

to generate 2 positive samples on it. Then the positive samples of the first mes­

sage packets is mistakenly counted as 5 instead of 3, which makes the ZigBee 

radio believe it has detected two message digits with the same value. We call this 

kind of problem background (packet) interference.

To address the above issue, we design a self-correcting message encod­

ing/decoding algorithm, which extends the base encoding/decoding algorithm. 

With the self-correcting scheme, ZigBee radios can still extract the correct value of 

a message with high possibility even if background interferences exist. The fun­

damental observation supporting the self-correcting scheme is that when back­

ground interference happens, it only affects a minority amount of all the mes­
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sage packets of a WiFi-ZigBee message. Thus, we can utilize the majority of 

correctly detected message packet sizes to help correcting those wrongly de­

tected message packet sizes. With the self-correcting scheme, the alphabet a =  

{su - , s b} is divided into p sub-alphabets as Al={Si,Sp+i,S2p+l — }, ^ 2 = { S 2 ,S p + 2,S'2p+2,"' },

, A p= {s p,s2p, - s b}. To encode a message, a WiFi radio uses packet sizes in one 

randomly chosen sub-alphabet. To decode a message, a ZigBee radio gets the 

sizes of all the message packets using Algorithm 8 . If all the sizes are from the 

same sub-alphabet, the ZigBee radio can calculate the message value directly. 

Otherwise, it indicates that there were background interferences happened to the 

message packets. In this case, the ZigBee radio first identify the correct sub­

alphabet (notated as A c) as the sub-alphabet to which the majority packet sizes 

belong. Then it converts each of those packet sizes that are not in A c to the value 

in A c that is immediately smaller than the current wrong size. This approach ex­

tends the difference between two adjacent predefined packet sizes in the alphabet 

by a factor of p, which makes it possible to tolerate multiple interfering background 

packets. Meanwhile, the capacity of the message delivery scheme is shrunk from 

bl tob^py - \

For instance, suppose there is a message delivery scheme where the alphabet 

is A  =  {100,200,300,400} and message length is 3. An self-correcting scheme 

with two sub-alphabet (i.e., p =  2) allows WiFi radios to send a WiFi-ZigBee 

message by transmitting 3 packets with sizes chosen from one of the two sub­

alphabets: A i =  {100,300} and A 2 =  {200,400}. If a ZigBee radio detects that 

the sizes of the three message packets are 300B, 100B and 300B, which are 

from the same sub-alphabet, it can directly conclude that the message value is 

1 x 2° +  0 x 21 +  1 x 22 = 5. If the packet sizes are 300B, 200B and 100B respec­

tively, it indicates that A i is the correct sub-alphabet as there are two packet sizes 

chosen from A i, and that the second packet (whose size is 200B) was affected by 

background interference. In this case, the ZigBee radio replaces the size 200B in
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Ai with size 10OB in A \ , and reports the message value as 1 x 2°+0 x 21+0 x 22 =  1.

3.2.2 HoWiES energy saving protocols

Based on the WiFi-ZigBee message delivery scheme, we design three HoWiES 

energy saving protocols that save energy consumed in WiFi scanning, standby 

and wakeup respectively. At the mobile device side, three components relate to 

HoWiES operations: The WiFi component performs the ordinary 802.11 opera­

tions. The ZigBee component acts as a receiver in the WiFi-ZigBee message 

delivery scheme. The HoWiES manager is a software component that connects 

the components of WiFi and ZigBee and performs all the HoWiES management 

operations. At the AP side, each AP has a pool of WiFi-ZigBee message num­

bers, each of which is assigned to deliver a certain piece of information from WiFi 

to ZigBee as specified in the following protocol descriptions.

HoWiES scanning and association. The HoWiES scanning and association 

protocol establishes a connection between APs and HoWiES-capable mobile de­

vices. Figure 19 shows the protocol. With this protocol, mobile devices trying to 

search and join a HoWiES-enable WiFi network keep their WiFi radios off while 

using the ZigBee radio to detect WiFi network advertisement messages broadcast 

regularly by HoWiES-enabled APs (Op.1). Among all the WiFi-ZigBee message 

numbers, APs use a set of common numbers to advertise their networks (in the 

HoWiES scanning protocol) and to indicate buffered broadcast/multicast pack­

ets (in the HoWiES wakeup protocol). During the scanning process, a HoWiES 

client turn on its WiFi radio and associate to an AP based on the numbers en­

coded in the WiFi-ZigBee messages received. For example, a system operator 

can configure open APs to encode "1” in their network advertisement WiFi-ZigBee 

messages, and configure encrypted APs to encode “2”. Then mobile devices can 

selectively turn on their WiFi radios based on whether the encountered networks 

is encrypted. Upon detecting an advertisement message (Op.2), the ZigBee com-
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Figure 19: HoWiES scanning and association operations.

ponent notifies the HoWiES manager about the presence of a WiFi network and 

the scale of the WiFi signal strength calculated based on the energy samples of 

the message (Op.3). The HoWiES manager turns on the WiFi radio if the WiFi 

network meets the device’s needs (Op.4). The WiFi radio sends an association 

request, indicating that the request issuer is HoWiES-capable, to the AP based 

on the information in the WiFi beacons (Op.5 and 6 ). If the association succeeds, 

the AP chooses a number from its message number pool to assign to the newly 

associated client as its HoWiES ID, and puts this ID in the association response 

(Op.7). Finally, the WiFi component extracts the ID from the association response 

and send it to the ZigBee radio via the HoWiES manager (Op.8-9).

HoWiES standby. This protocol puts mobile devices into HoWiES standby by 

turning off the WiFi radio and informing AP about the status change on the mobile 

devices. The upper half of Figure 20 shows the protocol. The HoWiES manager 

keeps monitoring the WiFi traffic on the mobile device (Op.1). On detecting that 

the WiFi radio has been idle for a certain amount of time, the HoWiES manager 

notifies the WiFi radio to go into HoWiES standby state (Op.2). Then the WiFi 

radio informs the AP that it will switch to the HoWiES standby state and then 

turns itself off for energy savings (Op.3). Right after notifying the WiFi component
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to switch to HoWiES standby, the HoWiES manager turns on the ZigBee radio for 

WiFi-ZigBee message listening during standby (Op.2'). With this protocol, WiFi 

radios in HoWiES standby devices do not need to switch to active periodically to 

check beacons for buffered packets. Instead, they can just sleep all the time till 

the ZigBee radio detects wakeup messages sent from the AP.

In the above design, we let both CAM devices and PSM devices switch to 

HoWiES standby only when their HoWiES managers predict that the durations of 

inactivities are longer than a threshold. The purpose of this rule for CAM devices 

is obvious: we want to reduce the performance impact to CAM devices brought 

by standby wakeup delays as performance has higher priority in CAM devices. 

For PSM devices, this rule will greatly reduce the overheads generated by WiFi- 

ZigBee messages on both network throughput and AP performances. As we will 

see later, the message delivery scheme we have implemented has a negligible 

amount of overheads on network throughput and AP performances when the mes­

sage sending frequency is less than 10 (i.e., 10 messages per second). However, 

when the sending frequency is larger than 1 0 , the overheads increase linearly as 

the message sending frequency increases. Therefore, putting a PSM station into 

HoWiES standby only when the HoWiES manager predicts that the station will 

stay idle for a long duration will significantly reduce the overheads. The WiFi in­

activity prediction could be achieved by combining statistical WiFi traffic history 

analysis [71] and user WiFi usage pattern learning. We leave the design of the 

inactivity prediction to the future work.

HoWiES wakeup. The bottom half of Figure 20 shows the HoWiES wakeup 

operations. During standby, the ZigBee component keeps listening for WiFi- 

ZigBee messages encoding the device’s HoWiES ID (Op.4). Once the AP has 

buffered incoming packets for a HoWiES standby client, it wakes up the client by 

sending out a WiFi-ZigBee message that encodes the HoWiES ID assigned to 

the client in the association process (Op.5). If the buffered packets are broad­
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cast/multicast packets, a common number, instead of the HoWiES ID, is encoded 

in the message. If there are multiple clients that have buffered packets, the AP 

wakes them up one by one in a FIFO manner. The ZigBee component informs 

the HoWiES manager about the buffered packets if it detects the number encoded 

by a WiFi-ZigBee message matches the device’s HoWiES ID (Op.6 ). Then the 

HoWiES manager turns on the WiFi radio (Op.7), which in turn gets the buffered 

packets from the AP (Op. 8-9).

Since APs wake up its HoWiES standby clients one at a time, this approach 

naturally solves the wakeup contention problem causing by waking up multiple 

WiFi clients associated with the same AP. However, if multiple interfering APs 

(i.e., APs that can hear each other) wake up their own clients at the same time, 

the awake times of the clients due to the wakeup contentions could be extended 

by a factor of 5 [13]. To solve the problem, we let each AP exclusively occupies 

a repeated wakeup period, during which it can wake up its clients to get their 

buffered packets, such that wakeup periods of any two interfering APs do not 

overlap. An AP’s wakeup period starts at the beginning of each of its beacon 

period (i.e., right after a beacon is sent out), and lasts a duration of Tdur. The value 

of TdUT is determined in the same way as the length of a fair share is determined in 

[13]. Interfering APs coordinate their beacon periods [13] to ensure their wakeup 

periods do not overlap with each other.

3.2.3 Discussions

Dealing with hidden terminals. In designing the self-correcting message encod­

ing/decoding scheme, we assume that two WiFi packets will not overlap in time 

domain due to 802.11 CSMA/CA. However, if there are two hidden nodes trans­

mitting without knowing each other, their packets could be concatenated in time 

domain at a certain place between them. In this case, the concatenated packet 

may have an airtime equal to a WiFi-ZigBee message packet, causing a sampling
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Figure 20: HoWiES standby and wakeup operations.

ZigBee radio to have wrong detections. Similar to the existing solutions dealing 

with the hidden terminal problems, we address this issue by using retransmis­

sions: when an AP sends a message encoding a client’s HoWiES-ID to wake up 

the client, it will keep sending the message with a certain interval until the client 

wakes up and fetches the buffered packets.

Variable message length. In our current design, all WiFi-ZigBee messages 

have the same length (i.e., use the same number of packets to encode different 

messages). A promising way to increase the efficiency of the message delivery 

scheme is to use less packets to encode those frequently used messages and 

more packets to encode those rarely used messages (which is an idea similar to 

Huffman coding). We leave this exciting improvement to our future work.

3.3 System implementation

We have implemented the HoWiES system with the devices shown in Figure 21. 

The system consists of two types of entities: HoWiES clients and HoWiES APs. 

HoWiES clients are implemented in two mobile platforms: a smartphone platform 

(Samsung Galaxy S2) and a laptop platform (Lenovo T400). We enable ZigBee

83



Table 5: OSes and WiFi drivers of implementation devices

Device Operating System Driver

Samsung Galaxy S2 Android 2.3 (Linux 2.6.35) DHD

Lenovo T400 Ubuntu 10.04 (Linux 2.6.32) ath9k

Dell Latitude D820 Ubuntu 10.04 (Linux 2.6.32) madwifi

Wiligear WBD-500 OpenWrt 8.09 (Linux 2.6.26) madwifi

Figure 21: (a) HoWiES client implemented in a Samsung Galaxy S2 smartphone, (b) 
HoWiES client implemented in a Lenovo T400 laptop, (c) HoWiES APs implemented in 
Dell Latitude D620/D820 laptops, (d) HoWiES APs implemented in the Willigear WBD- 
500 integrated radio platform.

in both mobile platforms by integrating each of them with a TelosB mote that has 

a CC2420 ZigBee radio via USB interface. HoWiES APs are implemented in two 

AP platforms: a laptop platform (Dell Latitude D620/D820) and a standalone AP 

platform (Wiligear WBD-500 integrated radio platform). Table 5 lists the OS and 

the WiFi driver used in each device.

3.3.1 HoWiES client

A HoWiES client has three major components: the WiFi component (consisting 

of the WiFi radio and the WiFi driver), the ZigBee component (consisting of the 

CC2420 ZigBee radio and the message detection/decoding TinyOS module) and 

the HoWiES manager.
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Background energy detection: The CC2420 ZigBee radio has an RSSI reg­

ister that records the RSS averaged over 8  symbol periods. The TinyOS provides 

an interface for programs to read the value of the RSSI register. However, ac­

cording to our experience, the native TinyOS interface needs around 500 fis to 

get an RSS reading from the register. To increase the RSS sampling rate (so as 

to have more packet sizes for the alphabet), we have managed to reduce the RSS 

reading interval to about 150 ^s. In our implementation, we set the ZigBee RSS 

reading interval to 180 ^s (i.e., H =  5 5 5 5 ) for stable performances.

Message detection/decoding: The ZigBee component continuously detects 

and decodes all WiFi-ZigBee messages by running Algorithm 8 , and notifies the 

HoWiES manager about the messages that are related to the hosting mobile de­

vice (e.g., WiFi network advertisements and the device’s HoWiES ID).

Duty cycling ZigBee radio: According to our measurement, the power con­

sumption that a TelosB mote has when it is sampling background energy is about 

60 mW, which is higher than the standby WiFi power overheads in Galaxy S2 (33 

mW). To solve this issue, we adopted a solution similar to [72], where the sen­

sor is put to sleep periodically for energy savings. We have reduced the energy 

sampling power consumption of TelosB mote to 5 mW by duty cycling the ZigBee 

radio. In our implementation, a ZigBee radio samples background energy only 

during the wakeup period of the AP that its hosting device is associated with. To 

synchronize ZigBee radios with the corresponding APs’ wakeup periods, we let 

APs broadcast the durations of their current wakeup periods (i.e., Tdur) via bea­

cons. Then the HoWiES manager enables ZigBee energy sampling only in the 

first Tdur of time of the corresponding AP's beacon period (recall that each AP's 

wakeup period starts at the beginning of its beacon period). Before an AP has 

to adjust its beacon period (because of topology changes of interfering APs), it 

wakes up all its HoWiES standby clients to let them be able to re-synchronize to 

its new wakeup period.
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The HoWiES manager: The HoWiES manager is implemented as a Linux 

kernel module in the mobile device’s OS. It is responsible for turning on/off WiFi 

radios as specified in the protocols, controlling background energy sensing in Zig- 

Bee radio and relaying information between the WiFi and the ZigBee components. 

The HoWiES manager communicate with the ZigBee component via USB serial 

connection.

3.3.2 HoWiES AP

WiFi-ZigBee message parameters selection: In our implementation, HoWiES 

APs send out a WiFi-ZigBee message by transmitting 3 packets (i.e., I =  3) with a 

transmission rate of 1 Mb/s (i.e., R =  l  Mb/s). We experimentally quantified how 

stable the CC2420 radio generates energy samples in sampling packets with a 

fixed length. We found that the CC2420 radio we used can produces 4 different 

numbers of energy samples for the same WiFi packet size. Therefore, to ensure 

ZigBee will not generate the same number of energy samples for two message 

packets with different sizes, we set the difference between two adjacent packet 

sizes in the alphabet to 90 bytes (i.e. *$), which gives us 14 packet sizes for the 

alphabet: A  =  {300,390, • • • , 1470}. Thus, the smallest air time for the message 

packet is 2.4 millisecond, which is larger than the air times of all the sniffed WiFi 

packets obtained in our experiment described in the "Alphabet construction" sub­

section.

WiFi-ZigBee message packets transmission: HoWiES APs transmit mes­

sage packets using a user space packet sending program implemented with the 

libpcap library. The user space program and the WiFi driver located in kernel 

space are connected by using the Linux usermode-helper API.
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Table 6 : Reliability and accuracy of the implemented WiFi-ZigBee message delivery 
scheme in the uncontrolled experiment.

Reliability Accuracy
Total msg 

detected/sent
Correct msg/detected 
(w/o self-correction)

Correct msg/detected 
(w/ self-correction)

19,904/20,000 19,223/19,904 19,737/19,904

99.5% 96.6% 99.2%
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Figure 22: Reliability and accuracy of the implemented WiFi-ZigBee message delivery 
scheme in the controlled experiment, (a) shows the reliability performance: the message 
detection percentage vs. different background traffic bandwidth, (b) shows the accuracy 
performance: the correctly decoded message percentage vs. different background traffic 
bandwidth.

3.4 System evaluation

3.4.1 WiFi-ZigBee message delivery

Reliability and accuracy. The message delivery scheme needs to be reliable, 

which means HoWiES clients should reliably detect WiFi-ZigBee messages sent 

by HoWiES AP without firing any false alarms (i.e., reporting messages when 

there is none). Meanwhile, the message delivery scheme needs to be accurate, 

which means HoWiES clients should be able to correctly decode the detected 

messages.

We have performed an uncontrolled experiment to evaluate the reliability and 

the accuracy performances of the implemented message delivery scheme in real
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WiFi environments. We deployed a HoWiES AP and client pair in the university’s 

library, and performed the experiment from 8  PM to 10 PM, a time section during 

which the library are full of students surfing web and watching online videos, in 

several days. In the experiment, the AP sent different numbers to the client in 

different rounds. In each round, the HoWiES AP randomly chose a number from 

1 to 2744, encoded the number into a WiFi-ZigBee message and transmitted the 

message for 100 times with an interval of 100 ms. The chosen number is recorded 

such that we can use it as ground truth when deciding if the client has correctly 

decoded the messages. The HoWiES client detected and decoded the messages 

using the base message encoding/decoding algorithm (i.e., without using the self- 

correcting scheme), and output the results to a data file for analysis. We ran the 

experiment for 200 rounds. Table 6  shows the results. For the total 20,000 WiFi- 

ZigBee messages, 99.5% of them were detected by the HoWiES client. Within 

all the detected messages, the HoWiES client correctly decoded 96.6% of them. 

We then examined all the wrongly decoded messages as follows. We marked 

an wrongly decoded message as correctable using the self-correcting scheme 

with 2 sub-alphabets (i.e., p =  2), if the following conditions are satisfied. First, 

there is only one message packet whose size is wrongly detected (since we use 

I =  3, one is the maximum minority number). Second, the wrong size’s index in 

the alphabet is greater than the actual size’s index in the alphabet by 1 (if using 

p =  3, this value is 2). We found that after using the self-correcting algorithm, 

the accuracy of the message decoding increased to 99.2%. We further examined 

what caused the rest uncorrectable messages. There are two reasons. The first 

reason is that some messages have more than one message packet whose size 

is wrongly detected. The second reasons is that although there is only one wrong 

message packet size, the energy samples count for that packet is less than the 

expected value. This might be because of the imperfection of CC2420 hardware 

implementation of energy detection.
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We also conducted a controlled experiment to study how the message deliv­

ery reliability and accuracy performances respond to the changes of background 

traffic. In this experiment, we produced background traffic by establishing a direct 

iperf UDP connection between two 802.11g WiFi nodes (UDP packet size was 

1500 bytes). We varied the connection bandwidth between the two nodes and 

observed how our message delivery scheme responded to that. We have tested 

background traffic bandwidth from 1 Mb/s to the saturated bandwidth (30 Mb/s) 

with a step length of 3 Mb/s. Similar to the uncontrolled experiment, the HoWiES 

AP transmitted messages encoding a randomly selected number, without using 

the self-correcting algorithm, for 100 times in each round. With each background 

traffic bandwidth, we performed the test for 100 rounds. Figure 22 (a) presents 

the message delivery’s reliability performance. For all the tested background traf­

fic bandwidths, our scheme can correctly detect at least 99% of them. Figure 22 

(b) shows the accuracy performance. Without using the self-correcting encod­

ing/decoding algorithm, the accuracy ratio decreased as the background traffic 

bandwidth increased. For the saturated background traffic bandwidths, the accu­

racy percentage was 92%. Similar to the uncontrolled experiment, we analyzed 

all the wrongly decoded messages and marked those that were correctable. After 

applying the self-correcting algorithm, the accuracy percentages for all the back­

ground traffic bandwidths increased to at least 98%.

Message delivery overheads. To evaluate the message delivery overheads 

imposed on network throughput, we tested the iperf UDP bandwidth between two 

directly connected WiFi nodes while a HoWiES AP was sending WiFi-ZigBee 

messages with different frequencies in vicinity. We have tested the message 

sending frequencies (Hz) of 0.5, 1, 2, 5, 10, 20, • ■ ■, 60, 80 and 100. Figure 23 

(a) shows the experiment result. With the message sending frequencies (Hz) of 

0.5, 1, and 2, there were only a negligible amount of throughput degradation on 

network throughput. With the sending frequencies of 5 and 10, the tested iperf
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Figure 23: HoWiES WiFi-ZigBee message delivery overheads, (a) shows the message 
delivery overheads on network throughput, (b) shows the message delivery overheads 
on performances of two different AP platforms: Latitude D820 laptop and WBD-500 stan­
dalone AP.

connection still had 90% of its bandwidth. Then the network bandwidth decreased 

approximately in linear as the message sending frequency increased.

To evaluate the overheads imposed on AP performances, we established an 

iperf UDP connection between two WiFi node via a HoWiES AP. Then we tested 

the bandwidth between the two WiFi nodes while the HoWiES AP varied the WiFi- 

ZigBee sending frequencies in the same way as in the previous network overhead 

experiment. We tested our implementation on two different AP platforms: the Dell 

Latitude D820 laptop and the Wiligear WBD-500 standalone AP. Figure 23 (b) 

shows the experiment result. Similar to the network overhead experiment, both 

AP platforms has a small amount of throughput degradation when the message 

sending frequency is smaller than 10. When the sending frequency is higher than 

1 0 , the throughputs on both platforms decreased linearly as the message send­

ing frequency increased. The WBD-500 standalone AP had a faster performance 

drop than the Dell laptop. This is because the standalone AP has more con­

strained computational resources.

From the two experiments we learn that our message delivery scheme has a 

negligible amount of overheads on both network throughput and AP performance 

when the message sending frequency is less than 10  (i.e., 1 0  messages per sec-
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Figure 24: Energy gain on the WiFi scanning state, (a) is the energy generated by the 
WiFi scanning operation as the time elapses, (b) is the scanning power consumption com­
parisons between the two types of HoWiES clients and corresponding normal devices.

ond). When the sending frequency is higher than 10, the overheads increase 

linearly as the frequency increases.

3.4.2 Energy gain achieved by the energy saving protocols

Power measurement setup and methodology. To measure the power con­

sumption in the T400 laptop, we use the smart battery interface come with the 

operating system. According to [28], the smart battery interface is highly accu­

rate when the battery interface reading rate is low. Since we are only interested 

in long term energy consumptions, the smart battery interface satisfies our re­

quirements. To measure the power consumption in the smartphone, we use the 

Monsoon power monitor [73], which provides accurate power readings for hand­

held mobile devices. When we measure the power of a device, we turn off all the 

unnecessary applications and services, and shut down the power-hungry LED 

screen. To get the power consumption value for a WiFi operation (e.g., scanning 

or standby) in a device, we first measure the baseline system power consumption 

(i.e., system power consumption without running any WiFi operations). Then we 

measure the system power when the device is continuously performing the tar­

geted WiFi operation. Finally, the difference between the two values is the power 

consumption for the WiFi operation.
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Figure 25: Energy gain on the WiFi standby state, (a) is the energy generated during 
standby as the time elapses, (b) is the power consumption comparison between the 
HoWiES-enabled Galaxy S2 smartphone and the original device.

Energy gain in WiFi scanning. We measured the WiFi scanning power con­

sumptions of three devices: a normal T400 laptop, a normal Galaxy S2 smart­

phone and a HoWiES client. Our measurement shows that the T400 laptop, the 

Galaxy S2 smartphone and the HoWiES client spend 1740 mW, 501 mW and 61 

mW for WiFi scanning respectively. Figure 24 (a) shows the energy generated by 

the WiFi scanning operation as the time elapses in a 3 minutes duration. Figure 

24 (b) shows the percentages of WiFi scanning power reduction of the HoWiES 

client when compared to the normal mobile devices. From the result we can con­

clude that our scheme can effectively reduce power consumptions for the WiFi 

operation in mobile devices.

Energy gain in WiFi standby. To evaluate the power savings achieved in 

the WiFi standby state, we compared a Galaxy S2 smartphone and its HoWiES- 

enabled version. Our measurement shows that the normal Galaxy S2 and the 

HoWiES-enabled Galaxy S2 consumes 33 mW and 5 mW in the standby state 

respectively. Figure 25 (a) shows the energy generated during standby as the 

time elapses in a 3 minutes duration. Figure 25 (b) compares the standby power 

consumption between the two subjects. Although the absolute value of power 

consumption gain is small at the first glance, it is still quite meaningful considering 

that users usually leave the WiFi radios in their mobile devices idle most of the
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time.

3.4.3 HoWiES wakeup delay

We evaluate the delay performance of our implemented system in terms of wak­

ing up a standby client. To do the evaluation, we instrumented the WiFi device 

driver in AP to record the times that a 802.11 PSM standby client and a HoWiES- 

standby client needs to wake up and get their buffered packets: when the first 

incoming packet of a standby client is enqueued, the AP records the packet en­

queue time Ta and wakes up the standby client to get its packets (through either 

standard 802.11 PSM wakeup operation or HoWiES wakeup operation). The AP 

records the time Te when the client notifies the AP that it is ready to receive the 

buffered packets. The time that the client used to perform the wakeup operation 

is calculated as Te -  Ts. On the clients side, the wakeup interval of the normal 

Galaxy S2 is set to a beacon period, which is the default setting used by the WiFi 

driver. For the HoWiES-enabled Galaxy S2, it goes to sleeping state once it en­

ters HoWiES standby, and keeps sleeping until it is waken up by a WiFi-ZigBee 

message. Figure 26 shows the empirical CDF of time that a normal Galaxy S2 

and a HoWiES-enabled Galaxy S2 needs to wake up. Through the figure we can 

see that the wakeup delay of our implemented system is already comparable to 

that of a normal 802.11 PSM client. Actually there is still room to improve the
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Figure 27: Accuracy of ZigBee based WiFi signal strength indicator.

wakeup latency in our implementation. For example, currently an AP is using a 

user space program to transmit message packets. This will incur some extra time 

in the kernel-user space communication. Moreover, the user space program can­

not set its packets to have higher transmission priority than other packets, which 

may cause more extra time between two message packets.

3.4.4 WiFi signal strength indicator by using ZigBee

When a HoWiES client in scanning state detects a WiFi network advertisement 

WiFi-ZigBee message, the HoWiES manager uses the signal strength indicator 

(SSI) generated by the ZigBee radio to determine the signal quality of the WiFi 

network. In this experiment, we evaluate how accurate the WiFi SSIs generated 

by ZigBee radios are when compared to SSIs that are generated by a WiFi ra­

dio. In the experiment, we let a HoWiES AP transmit WiFi-ZigBee messages 

continuously with an interval of 1 second. Then we walked further away from the 

HoWiES AP carrying a HoWiES client, which ran a program that captured all the 

WiFi-ZigBee message packets using a WiFi sniffer while the ZigBee radio was 

continuously detecting, decoding and recording messages. To process the data, 

we first correlated the 3 WiFi packets (recall that each WiFi-ZigBee messages is 

encoded by 3 WiFi packets) with the corresponding WiFi-ZigBee message. The 

SSI of each WiFi-ZigBee message generated by the ZigBee radio is calculated as
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the average of all the positive energy samples of the message, and the SSI gen­

erated by the WiFi radio is the average of the 3 corresponding WiFi packet’s SSI. 

We plot the SSI values generated for each message by both radios in Figure 27

(a), and plot the accuracy percentage of each SSI generated by the ZigBee radio 

compared to the corresponding WiFi generated SSI. From the figure we can see 

that ZigBee generated SSI can accurately reflect the actual WiFi signal strength.

3.5 Conclusion

HoWiES is a Wifi energy saving system that achieves WiFi energy savings in three 

different aspects: scanning energy saving, standby energy saving and standby 

wakeup contention reduction. The foundation of the HoWiES system is a novel 

WiFi-ZigBee message delivery scheme that enables WiFi radios to deliver differ­

ent information to ZigBee radios. Our extensive evaluations show that our im­

plementation of the WiFi-ZigBee message delivery scheme works accurately and 

reliably with reasonable overheads, and that the whole system can effectively 

save energy for WiFi devices.
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4 CacheKeeper: A System-wide Web 

Caching Service for Smartphones

Smartphone applications that need connectivity usually rely on certain applica­

tion layer data transmission protocols to exchange data. HTTP is one of such 

protocols that are being used by many smartphone applications. HTTP traffic is 

now the dominant type of Internet traffic [16]. With the popularity of smartphones 

and tablets, an increasing amount of HTTP traffic originates from mobile devices. 

The mobile HTTP traffic has grown 35% in under a year [17], and now accounts 

for 20% of the U.S. HTTP traffic [18]. However, we found that many smartphone 

applications incur unnecessary energy consumption by issuing redundant web 

transmissions. In this project, we analyzed the reason for the unnecessary en­

ergy consumption, designed and implemented CacheKeeper, a system-wide web 

caching service to solve the problem.

4.1 Background and related Work

4.1.1 Background

Unlike conventional PCs, where web browser is the main source of web traffic, 

smartphones have another significant source of web traffic: dedicated mobile 

apps. The popularity of the ubiquitous smartphone is partly driven these useful 

and entertaining mobile apps, all available for little or no cost. Since most mobile
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apps utilize some form of network connectivity, the network behavior of mobile 

apps is an important area of research.

An appropriate web caching implementation in mobile apps will benefit both 

users and network operators. With such an implementation, users can (a) expe­

rience a higher quality of service, since the data can be accessed faster locally,

(b) lower costs, since users may have to pay a higher fee for downloading more 

data, and (c) conserve energy by reducing unnecessary data transmissions. Net­

work operators also benefit when mobile apps implement web caching correctly 

since this reduces the congestion on the network, especially the last mile radio 

connections.

Despite the importance of web caching, large numbers of mobile apps have im­

perfect web caching, meaning that web caching is either implemented for only cer­

tain HTTP resources the apps request, or is not implemented at all. The reason is 

twofold: lack of library support and negligence from developers. For example, the 

Android platform provides two official HTTP client classes: HttpURLConnection 

and Apache HTTP C lien t [74]. Before Android 3.2 (API level 13), the HttpURLConnection 

class only provided an interface for caching implementation. Developers have to 

implement their own client-side caching mechanisms. Heavy programming bur­

den will hold developers from doing so. Later, Android added an official implemen­

tation Of client-side caching (i.e., the HttpResponseCache class) for HttpURLConnection. 

However, it still requires developers to call the library to add caching capability.

Since apps without caching or with poor caching will still have the “look-and-feel”, 

some developers will spend less time implementing and testing the caching be­

havior of their apps.

4.1.2 Related work

Measurements o f Web Usage in Smartphones. The popularity of smartphones 

and tablets has driven a growing number of works on studying web usage in smart-
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phones. Based on a dataset containing one-year-long web accessing log from 24 

iPhone users, recent work [75] studies users’ Internet accessing behaviors on 

smartphones. The study results show that dedicated mobile apps are used by 

users to visit the web much more frequently than browsers. This demonstrates 

the needs to ensure properly working web functions, including web caching, for 

mobile apps. Work [76] specifically investigates smartphone web traffic related to 

advertisements based on a large dataset collected in a major European mobile 

network. The results suggest that ad traffic is a major component of overall mo­

bile web traffic. Work [77] compares smartphone web traffic and laptop web traffic 

based on a 3-week-long wireless communication trace collected in an enterprise 

environment. As one of the findings, the authors suggest that web caching in 

smartphones is not as effective as that in laptops. Similar to [77], Qian et al. [78] 

conduct a comprehensive measurement study on web caching in smartphones. 

By examining a one-day smartphone web traffic dataset collected from a cellular 

carrier and a five-month web access trace collected from a small user base, the 

study reveals that about 2 0 % of the total web traffic examined is redundant be­

cause of poor web caching. In this work, we investigate the effectiveness of web 

caching in smartphones from a different perspective. Instead of analyzing mo­

bile web traffic collected from service provider, we inspect web caching function 

of 1300 top ranked apps downloaded from the Google Play. This way, we can 

explicitly get, rather than inferring, information about how different types of mobile 

apps perform in web caching, which we believe will be helpful for future mobile 

apps and mobile platforms design.

Reducing Web Accessing Latency in Smartphones. A considerable amount 

of efforts have been invested in reducing web accessing latency in smartphones. 

To increase the operation speed of web browsers, work [79] proposes improved 

web caching on style/layout data. Work by Wang et al. [80] also studies the causes 

of slow web mobile browsers. The authors suggest the root cause is slow con-
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tent loading. They then propose a method of speculative loading [81] to reduce 

web accessing latency when using smartphone browsers. PocketSearch [82] pro­

poses to put results of certain cloud service like web search in smartphones’ local 

storage to expedite service speed. Similarly, PocketWeb [83] proposes, using 

machine learning on a per users basis, to prefetch web pages into smartphone’s 

local storage to reduce web accessing latency. In this work, we take a different 

approach to reduce web accessing latency for smartphones. We propose to run 

web caching as a system service, so that we can compensate for the flaw of im­

perfect web caching in many mobile apps, which causes unnecessary transfers, 

increases web accessing latency and reduces battery life.

4.2 Motivation

Our approach is to reduce the burden of mobile app developers by providing a 

caching-as-a-service layer. The web caching service will provide the correct web 

caching implementation with no effort on the part of mobile app developers. De­

velopers do not need to install any additional libraries or incorporate any additional 

API calls to take advantage of CacheKeeper. There are two major observations 

that led us to believe that it is desirable to provide web caching as a system-wide 

service for smartphones: web caching imperfection in mobile apps and cross-app 

caching opportunities.

4.2.1 Web caching imperfection in mobile apps

We have conducted an extensive measurement study of top-ranked Android apps 

in Google Play to study the web caching behaviors of individual Android apps.
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Measurement setup

Apps selection. The Google Play organizes apps into 24 categories (shown in 

first column of Table 7). We downloaded the top 50 ranked free apps from each 

of category, except the “News and Magazines" category. In this category, we 

selected the top 150 ranked free apps. We paid more attention to the news apps 

because they all access web contents. In total we selected 1300 top ranked apps. 

We also inspected the selected apps to ensure no app appears in two different 

categories.

Web traffic generation. We installed and used each app on a smartphone 

running Android 4.0 to see if the app generates web traffic. To achieve automated 

testing, we developed a tool (using the adb getevent/send event utility) that can 

record and replay user inputs on the touch screen. Prior to running the auto­

mated measurement experiment, we first recorded the user inputs when we used 

an app. To ensure comprehensive app usage, we clicked all the representative 

buttons/tabs/links when recording the user inputs. During the measurement ex­

periment, we replayed the recorded user inputs to test all the 1300 apps. The 

experiment has been run twice with a one-week interval between the two execu­

tions.

Web traffic recording. During the measurement experiment, we configured 

the smartphone to access the Internet via an HTTP debugging proxy [84], through 

which we could capture all the HTTP traffic the smartphone generated. The cap­

tured HTTP traffic was saved into trace files for later processing. Among the 1300 

apps, there are 863 apps generating HTTP traffic. Table 7 column 1 .2  shows the 

number of apps with HTTP traffic for each category. To quantify how much HTTP 

traffic an app generates, we computed the per-click HTTP traffic volume for each 

app, which is the ratio of an app’s total HTTP traffic volume over the app’s total 

number of clicks. Table 7 column 1 .3 shows the average per-click HTTP traffic
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Figure 28: Correlation between per-click HTTP traffic and (a) the number of apps with 
imperfect web caching, and (b) the average inter-click redundant HTTP traffic ratio.

volume for each category.

Web caching imperfection identification. When testing an app, we exe­

cuted the app twice by replaying the user inputs twice with an short interval, and 

collected traces for the two executions. We chose a short execution interval be­

cause we wanted to ensure that the cacheable HTTP objects (defined in RFC 

2616 [85]) obtained in the first execution are still fresh when the second execu­

tion happens. If the second trace contained the same cacheable HTTP objects 

as in the first one, and the cacheable objects in the first one were still fresh when 

the second execution occurred, then the app would be identified to have imper­

fect web caching, and the corresponding HTTP transaction (i.e., the HTTP re­

quest/response pair) in the second trace would be labeled as redundant. For 

an HTTP response that does not contain expiration time or validators (e.g., ETag, 

Last-Modified time), if it neither contains the Cache-Controi: no-store directive, 

we treat it as heuristic cacheable (because in this case, according to RFC2616, 

HTTP caches can assign a heuristic expiration time to the response).

Measurement findings

App HTTP traffic and web caching imperfection. Figure 28 (a) plots, for the 

24 categories of apps, the relationship between each category’s per-click HTTP 

traffic and the category’s percentage of apps with imperfect web caching. We
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Table 7: Summary of the app measurement study.

Categories
on

Google Play

I: Setup II: Inter-click, 
redundancy

1 2 3 1 2
Apps
tested

Has HTTP 
traffic

HTTP traf. 
per-click

Apps
cnt.f

Traf.
ratiof

books & refs 50 30 42.3 KB 12| 14 0.23(0.26
business 50 23 16.0 KB 4| 15 0.06|0.26
comics 50 39 125.1 KB 12(23 0.19(0.29

communication 50 17 18.0 KB 3| 10 0.02|0.25
education 50 31 130.3 KB 9(14 0.16|0.27

entertainment 50 37 105.7 KB 18|20 0.21(0.25
finance 50 16 29.4 KB 3|4 0.14(0.19

health & fitness 50 35 74.4 KB 8 12 0.11 (0.20
libs & demos 50 29 82.7 KB 10(12 0.16(0.17

lifestyle 50 30 98.8 KB 8 | 13 0.10(0.15
media & video 50 37 122.9 KB 8(15 0.13(0.18

medical 50 33 31.1 KB 3(14 0.04|0.15
music & audio 50 28 98.6 KB 11115 0.17|0.19
news & mgzns 150 129 232.2 KB 92(106 0.45|0.50
personalization 50 34 53.5 KB 5(14 0.06|0.16
photography 50 40 47.6 KB 9(16 0.05|0.10
productivity 50 26 27.7 KB 3(13 0.01(0.07
shopping 50 34 197.7 KB 27|28 0.44|0.52

social 50 17 112.1 KB 8 12 0.20|0.24
sports 50 44 227.2 KB 34|38 0.4210.47
tools 50 40 25.6 KB 6 | 15 0.04|0.08

transportation 50 40 102.6 KB 17|23 0.19(0.26
travel & local 50 29 178.5 KB 17(22 0.31(0.40

weather 50 45 171.2 KB 27132 0.26|0.31
Overall 1300 863 121.2 KB 354|500 0.19|0.26

f: Presented in the format of a\b, where a and b are the values without and with 
heuristically redundant traffic counted respectively.

can see that the ratio of apps with imperfect web caching in a category is roughly 

proportional to the category’s average per-click HTTP traffic. We can also learn 

that almost all the (four out of five) categories whose per-click HTTP traffic is 

greater than 150 KB have more than half apps with imperfect web caching. This 

suggests that imperfect web caching is a common among apps with high HTTP 

traffic volumes.

Inter-click HTTP traffic redundancy. We label a redundant HTTP transac-

102



Table 8: Summary of the app measurement study (continued).

Categories
on

Google Play

III: Same-click 
redundancy

IV: Advertisement

1 2 1 2 3 4
Apps
cnt.f

Traf.
ratiof

Apps
cnt.

Ad
only

Ad traf. 
per-click

Cacheable 
traf. ratiof

books & refs 3|3 0.04|0.04 19 10 10.3 KB 0.77|0.87
business 1|1 0 .0 1 10.01 14 6 5.1 KB 0.92 0.93
comics 3|6 0.03|0.04 31 18 13.0 KB 0.68|0.89

communication 2 2 0 .0 1 (0.02 9 4 11.4 KB 0.6110.94
education 2|2 0.01 (0.01 24 15 13.7 KB 0.88(0.89

entertainment 3|4 0.04|0.05 29 4 32.0 KB 0.89(0.92
finance 0|0 0(0 14 7 15.7 KB 0.87(0.88

health & fitness 2 3 0.04|0.06 33 13 37.5 KB 0.86|0.94
libs & demos 4|4 0.04|0.04 24 16 19.9 KB 0.81|0.95

lifestyle 1|1 0 .0 1 10.01 24 5 12.5 KB 0.70(0.78
media & video 6 8 0.03|0.04 32 16 38.0 KB 0.94|0.97

medical 0|0 0 |0 30 20 16.6 KB 0.85(0.91
music & audio 4|5 0.04|0.04 25 6 39.0 KB 0.87(0.93
news & mgzns 41145 0 .1 2 |0 .12 94 7 39.4 KB 0.85|0.89
personalization 1|1 0 .0 1 10.01 33 16 27.9 KB 0.81|0.88
photography 1 2 0 .0 1 10.01 37 12 23.6 KB 0.9110.93
productivity 1|2 0 .0 1 10.01 22 10 12.5 KB 0.80|0.82
shopping 11(13 0.11(0.15 20 1 17.4 KB 0.94|0.97

social 1|1 0 .0 1 10.01 16 3 30.7 KB 0.87|0.95
sports 17| 18 0.09|0.09 31 3 18.1 KB 0.82|0.86
tools 0 3 0 |0.01 36 21 19.4 KB 0.78|0.84

transportation 2|2 0.03 0.03 32 7 37.0 KB 0.88)0.92
travel & local 4|5 0 .0 2 |0 .02 23 4 7.9 KB 0.6110.89

weather 11112 0.03|0.03 43 6 30.7 KB 0.76|0.83
Overall 1211143 0.03|0.04 695 230 24.2 KB 0.84|0.90

f: Presented in the format of a\b, where a and b are the values without and with 
heuristically redundant traffic counted respectively.

tion as inter-click redundant if the original transaction and the redundant trans­

action occur as results of two different clicks on the same app. Table 7 column

I I . l  shows the number of apps with inter-click redundant HTTP traffic for each 

category. We calculate the inter-click redundant traffic ratio of a category as the 

ratio of the category’s total inter-click redundant traffic over its total HTTP traffic. 

Table 7 column I I  .2  shows this value of each category. The inter-click redundant 

traffic ratio is 0.19 for all the apps tested. This number increases to 0.24 when
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No heuristic expiration 
With heuristic expiration

a. “  

EC 40

1 20 
3  ■Oe o

0.0 0.2 0.4 0.6 0.8 1.0
Same-click redundant HTTP traffic ratio

Figure 30: CCDF of the same-click HTTP redundant traffic ratio.

counting heuristically redundant traffic. Figure 28 (b) plots, for the 24 categories, 

the relationship between each category’s per-click HTTP traffic and its inter-click 

redundant traffic ratio. We can observe that those categories with high per-click 

HTTP traffic have much higher inter-click redundant traffic ratios. For example, 

the inter-click redundant traffic ratios for the top 3 categories with the most HTTP 

traffic are 0.45 (News & Magazines), 0.42 (Sports) and 0.44 (Shopping). To 

further study the distribution of the inter-click redundant traffic ratio among apps, 

we plot in Figure 29 the CCDFs of the inter-click redundant traffic ratio for the pre­

vious three categories and for all the apps tested. From the figure we can learn 

that for the top three categories with the most per-click HTTP traffic, half of the 

apps with inter-redundant traffic have a redundant ratio greater than 0.5, which 

suggests imperfect web caching is not only a common, but also a serious flaw for 

apps with high HTTP traffic volumes.
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Same-click HTTP traffic redundancy. We found that a notable amount of 

apps we tested downloaded the same resource multiple times for the same user 

click. We call those redundant HTTP transactions occur for a single click on the 

app as same-click redundant HTTP transactions. Table 8  column 111.1 and column

III.2 list, for each category, the number of apps with same-click redundant HTTP 

traffic and the same-click redundant HTTP traffic ratio. Overall, about 10% of 

the apps have same-click redundant HTTP traffic, and the average same-click 

redundant traffic ratio is 0.03. However, similar to the case of inter-click HTTP 

traffic redundancy, these two figures are much higher for those categories with 

high HTTP traffic volumes. For example, for the top three categories with the 

most HTTP traffic, more than 20% of the apps have same-click redundant HTTP 

traffic, and the traffic ratio is around 10%. We plot the CCDF of the same-click 

redundant ratio in Figure 30, which shows that about 40% of all the apps with 

same-click redundant HTTP traffic have a redundant ratio greater than 10%.

By carefully examining the web contents that involved same-click redundant 

HTTP transactions, we confirmed that those redundant downloads for the same 

click were not because the same resources needed to be displayed at several 

places on the same web page. We believe the main cause for same-click redun­

dant HTTP transactions is developer error. As an evidence, a well-known online
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Figure 32: Web caching imperfection and app rankings.

shopping and auction app had a self-redundant traffic ratio of 0.64 for the version 

we tested, and the problem was fixed in a new version when we retested the app 

several months later.

Content types of redundant HTTP traffic. By extracting the Content-Type 

field from the HTTP response headers, we identified three major types of HTTP 

resources appeared in the measurement experiment: a p p lica tio n /* , image/* 

and t e x t /* .  Figure 31 (a) shows for all the apps with redundant HTTP traffic, 

the percentage of apps neglecting to cache each type of HTTP resources. In 

the figure, all the types other than the three major types are labeled as other. 

According to our experience, many of the apps with redundant traffic on image 

resources only cache large images, but fail on caching small images like thumbnail 

images for news lists. Meanwhile, almost all the apps with redundant traffic on text 

resources fail to cache all kinds of text objects such as configuration files and data 

files. Figure 31 (b) shows the content type breakdown for the redundant HTTP 

traffic. We can learn that image resources took the most redundant traffic. In the 

meantime, text resources also account for about 10% of all the redundant HTTP 

traffic.

App ranking and web caching imperfection. We have investigated whether 

app rankings have relationship with imperfect web caching. For the top 3 cate­

gories with the most per-click HTTP traffic we tested, we divide their apps into
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three groups (i.e., high, middle and low ranked) according to the app rankings by 

on Google Play. We plot the percentage of apps with imperfect web caching and 

the average redundant HTTP traffic ratio of each group in Figure 32 (a) and (b) 

respectively. The shopping category has a much higher percentage of imperfect 

apps in the low ranked group. Meanwhile, for all the three categories, there is a 

clear increasing trend for redundant traffic ratio from the high ranked group to the 

low ranked group. Thus, we can cautiously make an conclusion that apps with 

lower ranking are more likely to have poor web caching implementation. This is 

reasonable because high ranked apps are usually developed by experienced and 

well-known developers, who are more likely to pay attention to details like web 

caching for their apps.

4.2.2 Cross-app caching opportunities

Same-app web caching reduces web accessing latency and saves bandwidth for 

an app when it access the same cacheable content more than once. Meanwhile, 

cross-app web caching can also achieve the same benefit for different apps ac­

cessing the same web content. We have identified two types of cross-app caching 

opportunities specially for mobile apps.

Opportunities by user behaviors. The first type of opportunities comes when 

a user uses different apps to access the same web content. For example, many 

top-ranking news reader apps on Google Play (such as Flipboard [8 6 ], Pulse [87] 

and Yahoo! [8 8 ]) provide a function to let users view the news they are brows­

ing on phone’s web browser. This is a useful feature because usually a web 

browser provides more full-fledged web content rendering support. With this fea­

ture, users may access the same piece of news several times with both the news 

reader app and a web browser. Another example is that when a user wants to do 

online shopping with his smartphone, he may first uses a web browser to search 

for the product and compares prices and reviews. After seeing that an online
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retailer, Amazon.com for example, provides the product for the lowest price, the 

user opens Amazon’s dedicated shopping app to complete the transaction.

Opportunities by shared libraries. The second type of opportunities comes 

when two different apps use the same shared library that regularly accesses web 

contents. Mobile advertising network SDKs are the most notable ones of such kind 

of shared library. The way that a developer puts ads in his app is to call functions 

from an ad library provided by the mobile ad network. The app will download 

(or the ad network will push) advertisements to the smartphone running the app 

dynamically when the app is being used. Mobile ads are common in free mobile 

apps. For example, among the 1300 apps in our measurement experiment, 695 

apps generate ad HTTP traffic (Table 8  column iv . l ) ;  HTTP traffic of 230 apps 

are all ad traffic (Table 8  column IV .2); and the per-click ad traffic is 24.2 KB 

(Table 8  column IV .3), which accounts for 20% of the per-click HTTP traffic. In 

the mean time, most of the ad traffic is cacheable: as shown in Table 8  column 

iv . 4, the overall cacheable ad traffic ratio is 0.84 (or 0.9 if considering heuristic 

expiration). Considering that the mobile ads market is dominated by just a few 

ad networks [76] and that the ads to be shown are usually determined based 

on the user information such as user’s location [89], it’s likely that different apps 

running on the same phone will display the same set of ads over time. According 

to our experience, even two different ads from the same ad network usually share 

common cacheable objects like configuration scripts and data files.

4.3 System design

4.3.1 Design goals and challenges

Design goals. We design CacheKeeper (CK for short) with the following goals in 

mind.
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1. CK should be able to perform standard-compliant (RFC 2616 [85]) web 

caching for all the entities (e.g., apps) making HTTP requests in the device. 

This is the fundamental goal of designing CK.

2. CK should be transparent to all the entities that it serves. In other words, 

entities making HTTP requests should be able to perform normally without 

any modifications. This is to ensure backward-compatibility for exiting apps.

3. Since CK is essentially a shared client-side cache, the design of CK should 

provide means to protect apps’ cache privacy.

4. While cache hits will bring benefits, CK should also incur low overhead on 

cache misses to ensure good usability.

5. CK should provide interfaces allowing users to configure the web caching 

services (e.g., cache size, cache location and heuristic expiration time) and 

to obtain service status.

Challenges. The design of a client-side system-wide caching service such as 

CK is different from implementing a cache in an individual app and implementing 

a proxy cache.

In particular, when compared with app-based client cache, there are two chal­

lenges: The first challenge is the ability to handle a large volume of concurrent 

HTTP transactions while incurring low overhead. This is different from caching in 

individual apps where HTTP requests are issued less frequently and usually in a 

sequential manner. The second challenge is that, unlike individual apps where 

web caching is part of the operations handled by HTTP libraries, CK is not in the 

network operations flow of the apps it serves. Thus, it is challenging to design and 

implement CK without making any modifications to the apps. For example, since 

fetching content from web cache is fast, it is designed as a synchronous operation 

in individual apps (i.e., the program execution blocks until the fetching operation
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finishes). However, fetching content from web cache cannot be designed as a 

simple synchronous operation in CK. This is because apps use asynchronous re­

quests (i.e., request-then-poll) to retrieve content from web servers. Acting as a 

transparent middle layer between apps and web servers, CK cannot serve asyn­

chronous requests from apps by using simple synchronous web cache retrieving. 

Otherwise it will be extremely inefficient and unscalable.

The differences between designs of CK and proxy cache originate from their 

operation contexts. Since CK is a system service serving apps running in the user 

space, its design focus is twofold: maintaining the transparency to the apps while 

not sacrificing caching performances, and protecting apps’ cache privacy. Unlike 

CK, a proxy cache does not need to consider apps' contexts and privacy. Since a 

proxy cache needs to serve thousands of computers on the network, the design 

focus of it is cache replacement algorithms [90], which plays less important role 

in CK’s design.

4.3.2 CacheKeeper architecture

The architecture of CK is shown in Figure 33. Cach-eKeeper is designed as an OS 

kernel space component providing web caching service to apps running in the user 

space. We choose to place CK in OS kernel space for three reasons. First, this
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approach has clear performance advantage over user space based approaches 

(e.g., user-level HTTP proxy). Second, this allows the web caching service to be 

portable across different devices running the same type of OS kernel. Third, by 

placing it in kernel space and not changing the interfaces connecting user and 

kernel spaces, we could easily achieve backward-compatibility.

CK contains the following components: the HTTP transaction handler, the 

cache manager, the configuration and status manger and the physical caches. 

Next, we give a description of each component, followed by the description of 

how the components cooperate in CK operations.

HTTP transaction handler. The HTTP transaction handler handles HTTP 

requests issued from apps and HTTP responses retrieved from network connec­

tions. The transaction handler consults the cache manager for cached responses, 

and passes incoming responses to the cache manager for caching processing.

The transaction handler uses a key data structure, outstanding requests table 

(ORT), to handle the asynchronous web content requests from apps mentioned 

previously. Each ORT entry corresponds to an HTTP request waiting to be served. 

Figure 34 (a) shows the ORT entry structure. Since CacheKe-eper needs to pro­

cess a large amount of concurrent HTTP transactions, we use socket address 

plus the requested URL to identify individual HTTP transactions. The S K  field and 

the R U  field record the socket address and the requested URL of the correspond­

ing HTTP transaction respectively. The IC H  field records if CK has a fresh cached
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response for the HTTP request. The ip  field records whether the app issuing the 

request has declared that the HTTP transaction is private and thus should not be 

cached by CK. The default values of both ICH and IP are False. If the request can 

be served by CK, the field CRA holds the address of the buffer that is prepared by 

the cache manager and stores the cached response.

Cache manager. The cache manager performs the following tasks. It accepts 

and processes queries for cached response from the transaction handler. It ac­

cepts newly coming responses from the transaction handler, caches them in a 

proper physical cache, and performs cache replacement if necessary. It accepts 

and processes configuration or status query requests from the configuration and 

status manager.

To help manage the cache entries, the cache manager maintains a key data 

structured named cache lookup table (CLT). Each CLT entry, with the entry struc­

ture shown in Figure 34 (b), corresponds to the cached HTTP transaction (i.e., a 

cached HTTP request/response pair) of a certain URL. The field RU records the 

URL of the cached transaction. The fields vce and nvce store the addresses of 

the volatile cache entry (i.e., memory-based) and the non-volatile cache entry (i.e., 

filesystem based) of the HTTP transaction respectively.

Configuration and status manager. The configuration and status manager 

provides interfaces to user space programs to configure CK and to query the run­

ning status of CK for debugging purposes.

Physical caches. CK supports two types of caching media: volatile cache 

residing in device’s memory and non-volatile cache residing in device’s filesystem. 

The volatile cache is for efficient cache lookup, and the non-volatile cache is to 

ensure persistent cache content after reboots.
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4.3.3 CacheKeeper in operation

On cache hits/misses/validations. The transaction handler handles every HTTP 

request from apps and HTTP response from the network. Upon receiving an 

HTTP request, the transaction handler creates a new ORT entry, and consults 

the cache manager to see if CK has a freshed cached response for the request. 

The cache manager looks up the CLT by comparing the URL provided by the 

transaction handler and the RU field in the CLT entries, and sends the result back 

to the transaction handler, which in turn updates the ich  field in the ORT entry 

based on the result. i f  there is a cache hit, the cache manager retrieves the 

cached response from either the memory based cache or the filesystem based 

cache based on the vce and the nvce fields in the CLT entry, and notifies the 

transaction handler about the address of the buffer storing the cached response. 

The transaction handler then records this address in the cra field of the ORT en­

try. Till now, the transaction handler has the complete ORT entry, through which 

the handler knows how to serve the later polls from the app (recall that apps use 

request-then-poll to retrieve contents from web servers). If there is a cache miss 

or the cache response is expired, the HTTP request is sent out as normal. The 

transaction handler passes the HTTP response to the cache manager for storing 

if the response is cacheable. If the cached response needs to be validated 

before it can be served to the apps, the transaction handler uses the validator 

(e.g., ETag, Last-Modified time) provided in the cached response to issue a con­

ditional request to the web server. Based on the result of the conditional request, 

the following operations are similar to the cache hit or miss situation described 

previously.

Dealing with same-click redundant requests. During the measurement ex­

periment, we observed that a notable amount of apps generated same-click re­

dundant HTTP traffic. CK will naturally eliminate same-click redundant traffic if
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it has cached the previous response for a redundant HTTP request. However, 

a deeper investigation into the same-click redundant HTTP transactions we ob­

tained shows that HTTP requests of about 20% of the same-click redundant trans­

actions were issued before the full responses of the first HTTP transactions were 

received, in which case CK would send out those redundant requests. To solve 

this problem, the transaction handler postpones sending out an HTTP request 

for a short period of time if the requested URL is found in an ORT entry. Based 

on our experience, we set the length of this period to 2 0 0  ms in our prototype 

implementation.

Declaring private HTTP transactions. As one of the design goals, CK should 

provide means to protect apps’ cache privacy. In our design, we allow apps to 

decide if they want their HTTP traffic to be cached by CK. Specifically, we provide 

an interface for apps to declare privacy for each HTTP transaction they generate. 

If an HTTP transaction is declared as private, it will not be cached by CK. We will 

present the implementation of the interface later.

4.4 System implementation

We have implemented a prototype of CK as a loadable Linux kernel module (ker­

nel version: 3.0.15).

Location in Linux kernel. Since HTTP communication usually takes place 

over TCP connections [85], the CK module intercepts TCP data flow at a loca­

tion between socket and the TCP protocol implementation (Figure 35 (a)). We 

make this choice for the following three reasons. First, running CK under the sys­

tem call interface can guarantee its backward-compatibility, since the interfaces 

between user space and kernel space remain untouched. Second, implement­

ing the caching service above the TCP layer allows us to use socket information 

to distinguish different HTTP transactions. Third, running CK at a hight level in
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Figure 35: CacheKeeper implementation: (a) location in Linux kernel; (b) the user con­
figuration interface.

kernel’s network data flow avoids the needs of considering packet fragmentation, 

which lowers implementation complexity.

The HTTP transaction handler. The transaction handler inspects every inter­

cepted TCP message, and processes those related to HTTP. Since a long HTTP 

response may be divided by web server into several shorter HTTP messages, 

the transaction handler also needs to reassemble partial HTTP response mes­

sages into a complete one. Our implementation supports reassembling for both 

messages with explicit Content-Length header field and messages using chun­

ked transfer encoding [85], The outstanding request table (ORT) is implemented 

as an array with 128 entries. According to our experience, 128 ORT entries are 

enough because the amount of concurrent HTTP requests waiting to be served 

is not a larger than 1 0 0  in all of our tests.

The Cache manager. The cache manager executes HTTP caching logic 

according to the RFC 2616 specification. Our current implementation supports 

caching with explicit expiration time, caching with validation and caching heuris­

tic expiration. To achieve efficient cache lookup, the cache lookup table (CLT) is 

implemented as a dynamic hash table indexed by the RU field. The initial number
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of CLT entries is 1024. When the CLT is 80% full, it is expanded by adding 256 

empty entries. To achieve hash table indexing and also save memory space for 

the CLT, we place a hashed URL value, instead of the actual URL (which may be 

of hundreds of bytes), in the the ru field of an CLT entry (the same implementation 

applies to ORT entries). To achieve consistent web caching between reboots, we 

write the CLT to a file before system reboots or unloading the CK module, and 

read the CLT into memory right after the CK module is loaded.

Cache replacement. If adding a new HTTP transaction to a cache (volatile 

or non-volatile) will cause the cache’s size exceeds the configured value, the 

cache manager deletes a cache entry from the cache. Our current implemen­

tation adopts the simplest replace policy: deleting the oldest cache entry. In the 

future we plan to implement different types of cache replacement algorithms, and 

evaluate how these the replacement algorithm can affect the performance of CK.

Private transaction declaration interface. To declare an HTTP transaction 

as private, an app adds a comment string “CK-Private” to the request’s User-Agent 

header field. The transaction handler marks the IP field of the corresponding ORT 

entry as “True” if the comment string is found, and will never cache the response in 

the shared cache. Since web servers will ignore comments in HTTP headers, this 

approach will not affect the app’s normal function. Please note that this method 

is used by apps to choose whether its HTTP responses can be put in a shared 

cache. This is different from the Cache-Controi: n o -sto re  directive in RFC 2616, 

which is used by the web server to declare if a response should not by stored by 

any cache.

User configuration interface. We provide an interface, by utilizing the /proc  

filesystem, for users to configure CK and to obtain CK status. Figure 35 shows the 

screenshot of a CK configuration app. The configuration options include turning 

on/off CK, setting caching location, setting sizes of caches, enabling/disabling 

heuristic caching and setting heuristic expiration time.
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4.5 Discussion

Caching HTTPS Traffic. HTTPS traffic can be cached by web clients. However, 

the result of our Android app caching measurement study did not contain statis­

tics on HTTPS traffic. This is because contents of HTTPS transactions were en­

crypted, and could not be parsed by our analysis program. However, among the 

1300 selected apps, only 10% of them generate only HTTPS traffic. The current 

design of CK does not support caching HTTPS traffic. One way to enable HTTPS 

caching is to generate a CK certificate accepted by both apps and web servers. 

This way, CK can decrypt and analyze through HTTPS traffic, perform caching 

and encrypt traffic back. We leave supporting HTTPS caching in CacheKeeper to 

our future work.

Privacy Considerations. Sharing web cache among applications brings pri­

vacy concerns. For example, sensitive objects of one app may be accessed by 

other apps. A more sophisticated case is that a malicious app could use the 

time difference of downloading certain HTTP objects to determine if the user has 

viewed certain web contents, which is similar to the timing attacks of website ac­

cesses [91]. The simplest and most effective solution is to disable shared caching 

for sensitive HTTP objects. To this end, CK allows an app to declare if an HTTP 

transaction is private to the app and should not be stored by the shared cache. 

However, this solution requires app modifications, and thus is not applicable to 

legacy applications. To better solve this problem, we are considering other so­

lutions including randomizing cache access times [91,92], and fingerprinting app 

web access patterns to detect malicious cross-app cache accessing.

Dynamic Web Content Support. The current design and implementation of 

CK adopt a “URL-indexed” cache, where URLs of HTTP requests are used as 

the keys to look up cached HTTP responses. While this solution works well as 

we will demonstrate later, it misses the caching opportunity for those dynamically
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generated web contents, where the same HTTP object may be requested by using 

two different URLs. A promising way to improve this is to use content digest as 

the cache index key of an HTTP response. We leave this improvement to our 

future work.

4.6 System evaluation

We evaluated our CK implementation in a Samsung Galaxy S2 smartphone run­

ning Android 4.0.3.

4.6.1 Case evaluation: app performance gains

We selected 10 top ranked apps with imperfect web caching from Google Play 

(listed in left part of Table 9). All these apps were ranked top 20 in their categories. 

Before performing the measurement experiments, we first used the 10 apps, each 

for three minutes, on the Samsung Galaxy S2 smartphone, and recorded the user 

inputs when using the app. We instrumented CK such that it can record different 

statistics of through HTTP traffic, including the amount of total HTTP traffic, the 

amount of HTTP traffic served by the caching service and the amount of traffic 

with different cacheability.

HTTP traffic reduction. In this experiment, we aimed to investigate how the 

10 top ranked apps can benefit from CK in terms of HTTP traffic reduction. We 

ran the 10  apps on the smartphone by replaying the recorded inputs from real 

user for every 30 minutes in one-day period. This is to simulate a user accessing 

an app every 30 minutes (note that the actual benefits achieved by CK depend on 

how often the web contents accessed by the user are updated, which is further 

determined by how often the user uses the app and how often the app updates 

its web contents, discussed later).

Table 9 presents the ratios of traffic obtained in the experiment. The third
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Table 9: HTTP traffic ratios of the 10 tested apps.

Category App Name Served 
by CK

New&
cacheable

Non­
cacheable

News
Fox News (N1) 0.1967 0.4154 0.3879
USA Today (N2) 0.4091 0.2075 0.3834

AOL (N3) 0.3528 0.1710 0.4762

Shopping
Ebay (S1) 0.5654 0.1218 0.3127

Craigslist (S2) 0.2512 0.3823 0.3665
Target (S3) 0.6098 0.0734 0.3168

Weather Weather.com (W1) 0.6035 0.0716 0.3249
AWS (W2) 0.2472 0.1363 0.6165

Local&Travel Yelp (LT) 0.5810 0.0164 0.4026
Sports Coll. Scoreboard (SP) 0.6454 0.2161 0.1384

Overall 0.4205 0.2388 0.3407
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Figure 36: Source breakdown of HTTP traffic reduction ratio for the 10 tested apps.

column is the ratio of HTTP traffic served by CK, which is also the traffic reduction 

ratio. The fourth and the fifth column of Table 9 are the ratio of those first-time 

appeared cacheable traffic and the ratio of non-cacheable traffic respectively. The 

sum of the values in these three columns is 1. In the experiment, the overall HTTP 

traffic reduction ratio is 0.42. Among the 10 apps, 5 of them enjoyed a traffic 

reduction of over 50%. The traffic reduction ratio of an app is determined by two 

factors: how well web caching is implemented in the app and how often the app 

updates its web contents. Specifically, the worse web caching performance an

by inter-click redundant traffic 
by same-click redundant traffic 
by inter-click heuristic redundant traffic 
by same-click heuristic redundant traffic
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app has, the higher traffic reduction ratio it can obtain from using CK. For example, 

the two weather apps had a similar rate regarding content update. The weather 

app 1 had a higher HTTP traffic reduction ratio than the weather app 2. This is 

because the weather app 1 has a worse web caching performance. Meanwhile, 

for two apps with similar web caching performances, the app with less frequent 

content updates enjoys more traffic reduction. For example, the three shopping 

apps perform similarly in web caching: all of them do not cache image resources. 

In the experiment, the shopping app 1 and 3 had higher traffic reduction ratios 

than the shopping app 2. This is because the shopping app 2 has a much higher 

content update rate (it is the official app of Craigslist, which is a popular classified 

advertisement website where lots new listings are posted by users every hour).

Figure 36 shows the source breakdowns of the HTTP traffic reduction ratio. 

We can see that inter-click redundant HTTP traffic was the only major contributor 

to the overall traffic reduced for 9 apps. For the shopping app 1, same-click re­

dundant traffic was another main source of traffic reduced. This suggests that it is 

worthwhile to pay special attention to same-click redundant traffic in CK’s design.

Web content rendering speedup. We evaluated how the 10 top ranked apps 

can expedite web content rendering under different connection conditions by using 

CK. In this experiment, the smartphone was connected to the Internet via our 

HTTP proxy [84], which could throttle download and upload bandwidths according 

to user configuration. We set the transmission bandwidth at the proxy according 

to a recent study on 3G/4G wireless speed [93]. This study suggests that the 

average 3G download speeds of the four major U.S. wireless service providers 

range from 0.59 Mbps to 3.84 Mbps with an average value of 2 Mbps. The average 

4G download speeds range from 2.81 Mpbs to 9.12 Mpbs with an average value 

of 6.2 Mbps. Accordingly, we chose 8  values for the download bandwidth: 0.1, 

0.5, 1, 1.5, 2, 4, 8 , 12, all in the unit of Mbps, and set the upload bandwidth to 1 

Mbps. We ran the 10 apps, with CK enabled in the smartphone, by replaying the
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Figure 37: Web content rendering speedup of the 10 tested apps under different trans­
mission bandwidths.

recorded user inputs under the 8  different download bandwidths for 2 0  rounds.

In each round, we also ran the 10 apps with CK disabled. We recorded the web

content rendering time for each user click, which was the time interval between

the first HTTP request and the last HTTP response of all the HTTP transactions of

a click. The rendering speedup was calculated as the ratio between the rendering

times with and without CK running respectively.

Figure 37 shows the average content rendering speedup of the 20 rounds

testing for the 10 apps. From the figure we can see that the content render­

ing speedup increases as the connection condition becomes worse for all the 10  

apps. The shopping app 2 and 3 are more sensitive to bandwidth changes, this is 

because the main HTTP resources requested by these two apps are mainly large 

images. The average speedup of the 10 apps under the average 3G download 

bandwidth of the four major U.S. wireless providers (2 Mbps, reported in [93]) is 

2.0. The average speedup under the average 4G download bandwidth (6.2 Mbps, 

reported in [93]) is around 1.5.
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Figure 38: Transaction times under different system loads.

4.6.2 Controlled evaluation

Effects o f High System Load. Mobile devices usually have constraint computa­

tional resources, and thus, mobile app performances are more sensitive to system 

load changes than their counterparts in PCs. Here, we wanted to investigate how 

CK can help mobile apps to improve their resilience to high system load. We de­

veloped a mobile app that can repeatedly download specified files from our own 

HTTP server with a configured interval. We used this app to download files with 

different sizes (1, 5,10, 50,100, 500 and 1000, in KB) from the server. For each 

file size, we repeated the download for 50 times with a 100 ms interval, and calcu­

lated the average time needed as the HTTP transaction duration for the file size. 

During the downloads, we imposed different background workloads on CPU so 

that we can see how transaction durations responded to system load changes.

We first performed the experiment without running CK. In this case, every 

HTTP transaction was served from network downloading. Figure 38 (a) plots 

the relationship between file sizes and transaction durations. We can see that 

transaction duration of a file increases much faster as file size increases if the 

background system load is high. This is because to transmit a large file, HTTP 

servers usually divide it into small chunks and transmit them separately. For ex­

ample, our HTTP server segmented a large file into 8  KB chunks for separated
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Figure 39: Processing time overhead.

transfers. Since frequent network transfers consume high CPU resource, down­

loading a large file needs more time under higher system load. We then performed 

the same experiment with CK running in the phone. In this case, except for the first 

download, which was served by network downloading, all the other 49 downloads 

were served by CK. Figure 38 (b) shows the experiment result. We can learn that 

when HTTP transactions were served by CK, the transaction durations were not 

only shorter than when served from network downloading (one magnitude less), 

but also more resilient to system load changes (i.e., the transaction duration for 

the same file size increases little as system load increases), which is helpful to 

offer good user experiences under high system loads. This suggests that CK is 

desirable in mobile devices with constraint resources.

Processing time overhead. We evaluated processing time overhead caused 

by CK in the case of cache miss. There are two cases for processing time over­

head on cache miss. First, if the HTTP response to the cache missed request 

is not cacheable, processing overhead by CK comes from searching the CLT for 

a matched cached response. Second, if the HTTP response is cacheable, ad­

ditional processing time overhead comes from caching the response. We per­

formed the experiment by downloading a 100 KB file from our HTTP server for 50 

times with a 100 ms interval. We first ran the experiment with CK disabled, and 

recorded the average transaction duration as the based line value. Then we ran

Without r«rhi»Kw nftr (hashing nn overhead*
Response file is not cacheable 

E S 3  Response file is cacheable, writing to memory 
frtflll Response file is cacheable, writing to filesystem
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Figure 40: Power consumption overhead.

the experiment with CK enabled while enforcing the two cases of cache misses 

respectively, and recorded the corresponding average transaction duration. For 

the first case of cache miss, we configured HTTP responses as “n o-stored ”. To 

enforce the second case of cache miss, we used different file names for each 

downloading. We also configured CK so that we could compare the difference of 

caching responses to memory and caching responses to filesystem files.

Figure 39 shows the normalized transaction durations under different scenar­

ios. When responses to cache missed requests were non-cacheable, the pro­

cessing time overhead was less than 1 %. When responses are cacheable, the 

case of writing responses to memory had an processing time overhead of 1 .1%. 

and the case of caching responses to files had an overhead of 1.8%. This result 

suggests that our implementation of CK incurs a small processing overhead on 

cache misses.

Energy overhead. In this experiment, we evaluated the energy overhead 

of CK in the case of cache miss. Similar to processing time overhead, energy 

overhead on cache miss also has two cases: the case that responses are not 

cacheable and the case that responses are cacheable. When responses are 

non-cacheable, the energy overhead is looking up the CLT for a matched cached 

response. When responses are cacheable, additional energy overhead comes 

from writing responses to memory and/or files. We performed the experiment by
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downloading files with different sizes (5,10, 50,100, in KB) from our HTTP server.

For each file size, we repeated the download for 50 times with a 100 ms interval.

We measured phone power consumption using the Monsoon power monitor [73].

To obtain the baseline power consumption, we first ran the experiment with CK 

disabled. Then we ran the experiment with CK enabled while enforcing the two 

cases of cache miss using the same methods as in the processing time overhead 

experiment.

Figure 40 (a) plots the absolute power values, and Figure 40 (b) shows the 

normalized power values for different file sizes. From the result we can learn that 

CK incurs negligible energy overhead when responses to cache-missed HTTP 

requests are non-cacheable and when cacheable response are only written to 

memory. When cacheable responses are written to files, about 15% power over­

head is incurred.

4.7 Conclusion

We propose and design CacheKeeper, an OS web caching service for smart­

phones. To motivate the work, we have performed a comprehensive measure­

ment study on web caching functionality of 1300 top ranked Android apps. The 

measurement results suggest that imperfect web caching is a common and seri­

ous flaw for Android apps generating web traffic. We have implemented CacheKeeper 

in Linux kernel, and performed extensive evaluations on Android smartphone. Our 

evaluation indicates that CacheKeeper can effectively remedy the flaw of imper­

fect web caching for mobile apps with small overhead.
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5 Achieving Accurate CPU Power Mod 

eling for Multicore Smartphones

CPU is a major source of power consumption in smartphones. Power modeling 

is a key technology to understand CPU power consumption and also an impor­

tant tool for power management in smartphones. However, we have found that 

existing CPU power models for smartphones are ill-suited for modern multicore 

CPUs: they can give high estimation errors and high estimation accuracy vari­

ation for different types of workloads on mainstream multicore smartphones. In 

this project, we tried to understand the root cause of the limitations of the existing 

CPU power models, and developed an accurate CPU power modeling approach 

that can benefit the power management service in smartphones.

5.1 Background and related work

5.1.1 Background: smartphone CPU power management

A smartphone CPU has different states: a CPU core can be either online or offline 

(i.e., powered down). An online CPU core can further work in either the operat­

ing state or an idle state. The operating system of a smartphone manages the 

states of CPU cores to reduce their total energy consumption. There are three 

CPU power management schemes used in modern smartphones: CPU perfor­

mance state management, CPU idle state management, and CPU hot-plugging.
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We briefly introduce each of them, with the emphasis placed on its implementation 

in the Android OS and the quad-core Nexus 4 smartphone.

CPU performance state management. When a CPU core works in the op­

erating state, all processor components are powered up. In the operating state, a 

CPU core may operate in different performance states (also known as “P-states” 

in the ACPI specification [94]). Practically, each P-state is associated with a fixed 

CPU operating voltage and frequency. A technique called Dynamic Voltage and 

Frequency Scaling (DVFS) is employed to adjust the operating voltage/frequency, 

and thereby switch between different P-states.

The Nexus 4 smartphone supports 12 different CPU operating frequencies, 

ranging from 348 MHz to 1,512 MHz. Operating frequencies can be indepen­

dently set in each CPU core. Choosing a proper frequency for an operating pro­

cessor core is an important task for CPU P-state management. In Android kernel 

(Linux-based), a subsystem called “CPUfreq" specifically copes with this task by 

dynamically adjusting the operating frequency according to the system load [95].

CPU idle state management. Smartphone OS may put an online CPU core 

into an idle state when there is no workload. CPU idle states are called “C-states" 

in the ACPI specification [94]. CPU in different C-states have different CPU com­

ponents switched to low power mode to reduce power consumption.

Table 10 shows that the Nexus 4 smartphone has four CPU idle power states: 

CO1, C1, C2, and C3. A CPU core in the state CO only disables most of the CPU 

clocks, while keeping the core logic powered up. A core in the state C1 has its 

logic powered down, but retains the in-core L0/L1 cache content by keeping the 

cache powered up. A core in the state C2 has more power savings than in the 

state C1, since the in-core L0/L1 cache are also flushed and disabled. Finally, 

a core in the state C3 achieves the most power savings by further disabling the

11n the ACPI specification, “CO” refers to the operating state, and “C1, C2, • • ■ ” refer to the idle 
states. Here we follow the naming convention in the Nexus 4 stock kernel source code, where the 
state CO refers to the shallowest CPU idle state.
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Table 10: CPU Idle Power States in Nexus 4.

Idle
State

Name Idle System 

Power (mW)

Latency

(MS)t

CO Wait for Interrupt 433 1

C1 Retention 390 415

C2 Power Collapse Standalone 330 1300

C3 Power Collapse 2 0 0 2 0 0 0

Without entering idle states 1,060 0

f: The data is obtained from the Nexus 4 kernel source code, 

shared L2 cache.

We have measured the idle system power of each C-state in a Nexus 4 smart­

phone. The third column of Table 10 shows the results. As a comparison, we have 

also measured the case of not entering C-states, where the idle system power is 

1,060 mW. Entering a C-state can save much power when a system is idle. It also 

shows that power consumption of different C-states varies: the power of CO is as 

much as 2.1 times of the power of C3. Consequently, entering different C-states 

may cause significantly different power savings. In old single-core smartphones, 

there are less CPU idle power states. For example, the Nexus S smartphone has 

only one idle state, which is equivalent to the CO state in Nexus 4. Therefore, CPU 

idle states do not play a critical role in CPU power consumption on old single-core 

smartphones as they do on modern multicore smartphones.

Although entering idle power states reduces power consumption when a CPU 

is idling, it comes with a price of state switching overhead: the deeper an idle state 

is, the larger the switching overhead will be. The fourth column of Table 10 shows 

the latencies of switching between the operating state and an idle state.This op­

erating/idle state switching latency has significant impact on performance of time- 

critical operations, such as video and audio decoding. In Android kernel (Linux- 

based), a subsystem named “CPUidle” is specifically designed for managing the
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CPU idle states.When the OS finds no task to schedule, it directs the control to 

the CPUidle subsystem, which then decides to put CPU into a proper idle state 

based on several factors, including the predicted length of the current idle period 

(based on the information on the kernel scheduler and timers) and the operat­

ing/idle switching latency of each individual idle state.

CPU hot-plugging. In a multicore smartphone, the OS turns a CPU core of­

fline when the CPU core has no workload for a certain period of time, and takes it 

back to online when the core is needed on the fly. This technique is known as CPU 

hot-plugging. While the CPU hot-plugging technique saves more power than the 

deepest CPU idle state, its major disadvantage is that the unplugging/re-plugging 

process requires expensive global operations, which causes a large amount of la­

tency [96]. In Nexus 4, the stock Android system uses a user space daemon called 

“mpdecision" to manage the CPU hot-plugging process. The daemon monitors 

the load on CPU cores, and turns cores online/offline through the /sys interface.

5.1.2 Related work

Existing approaches for modeling CPU power consumption can be classified into 

two categories as below.

CPU frequency/utilization based approaches. Existing approaches for mod­

eling CPU power consumption [24,25,28,29,97] on smartphones are all CPU fre­

quency and utilization based. They assume CPU frequency and utilization as two 

major factors impacting CPU power consumption. While this assumption works 

well for single-core smartphones, where CPU idle states have little impact on CPU 

power, it does not hold for multicore smartphone with multiple CPU idle states, in 

which power consumptions are significantly different.

Some existing approaches of CPU power modeling also consider CPU idle 

states [27,28]. Specifically, Koala [27] proposes a model based approach to es­

timate runtime system power. In this approach, CPU idle states are considered
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as a factor affecting system power consumption. However, Koala only considers 

the time duration of each idle state, while ignoring overheads of the operating/idle 

transitions. As we have showed before, even for two workloads with the same 

CPU frequency/utilization and the same residency of idle states, the CPU power 

consumption could have more than 20% difference. Moreover, it only reports eval­

uation results on the x8 6  architecture. Sesame [28] also considers CPU idle states 

in modeling CPU power consumption. However, it does not provide description 

about how this particular information is used in the modeling process. Similar 

to Koala, the idle states are only considered in the laptop model (x8 6 -based) in 

Sesame. In our work, we focus our attention on measuring/investigating the im­

pacts of CPU idle state on ARM-based smartphone CPUs. We also developed a 

new idle-state-aware CPU power modeling approach based on the investigation 

results.

CPU hardware events based approaches. Another way of performing CPU 

power modeling is to model the relationship between CPU power and CPU hard­

ware events [98-101]. For example, Power Containers [98] considers a linear 

model between CPU power consumption and a series of hardware events, in­

cluding retired instructions, floating point operations, last-level cache requests, 

and memory access. While the CPU hardware events based approaches work 

well for PC or server CPUs, whose ISA are mostly x8 6  based, they cannot be 

applied in current smartphones. This is because although many hardware events 

are recommended to be implemented in the hardware monitor by the ARMv7 ar­

chitecture specification [102], only very few of them are mandated. For example, 

in the CPU used by the Nexus 4 smartphone, only the hardware events of instruc­

tion rate, number of instructions retired, and branches executed and missed are 

implemented, which is not enough to support the hardware events based model­

ing.
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Figure 41: Workloads running in multicore CPU with the same CPU utilization and fre­
quency consume notably different amounts of CPU power.

5.2 Limitations of the existing smartphone CPU power 

models

The existing power models [24-29] achieve a good accuracy (e.g., more than 

90%) on single-core smartphones such as the Nexus one and Nexus S smart­

phones. Those models consider only CPU utilization and operating frequency as 

predictors in modeling [24-26], Usually, they use a linear CPU power model: for 

each CPU frequency /,  they estimate the power consumption of a CPU core as:

Pcpu = f3 x  Ucpu +  c (5.1)

where Ucjm is the CPU core utilization, and p and c are two constant parameters 

whose values are determined via linear regression during the model generation 

process.

However, the existing CPU power models are not suited for modern multicore 

CPUs. In particular, we find that CPU power consumptions in two quad-core CPU 

smartphones with different chipsets, Nexus 4 and Samsung Galaxy S42, exhibit a 

large range of variation even when both CPU frequency and utilization are fixed.

In our experiments, we first use a workload generator program that periodically

technically the Samsung Galaxy S4 smartphone has 8 CPU cores: a quad-core ARM Cortex- 
A7 and a quad-core ARM Cortex-A15. However, these two quad-core CPUs cannot run concur­
rently, since the smartphone is using the ARM big.LITTLE task migration use model [103],
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performs continuous computation followed by an idle period (see Figure 1) in a 

Nexus 4 smartphone. By controlling the ratio of the idle period to the computation 

period, the workload generator program generates workloads with different CPU 

utilizations. In the continuous computation, the program runs a busy loop of com­

puting a large prime. By changing the busy loop count, we can also control the 

length of each continuous computation period. We find that for a fixed CPU fre­

quency, when we adjust the length of the continuous computation while fixing CPU 

utilization (by adjusting the length of idle period accordingly), the power consump­

tion of a CPU core exhibits a large range of variation. For example, Figure 41(a) 

shows the power consumption of a CPU core3 of the Nexus 4 smartphone when 

the operating frequency is fixed at 384 MHz. With fixed CPU utilization, the power 

consumption of the CPU core drops while the duration of the continuous compu­

tation increases. Figure 41(b) and Figure 41(c) show the results when CPU fre­

quency is 1,026 MHz and 1,512 MHz, respectively. They show exactly the same 

trend. Figure 41 (d) further summarizes the difference of power consumption with 

the three CPU frequencies. Each value in Figure 41(d) is the percentage of the 

difference between the maximum and minimal powers over the maximum power 

for each frequency/utilization configuration. It shows that when CPU frequency 

and CPU utilization are fixed, the CPU consumption difference between different 

workloads is significant, especially when the CPU utilization is at a low level. For 

example, when frequency/utilization is fixed at 1,512 MHz/25%, the power differ­

ence can reach as high as 50%. As we will explain later, this is because the less 

a CPU core is being utilized, the more chance the CPUIdle subsystem puts the 

CPU core into a deeper idle state.

The above results suggest that using only CPU operating frequency and uti­

lization is not enough to build an accurate CPU power model for multicore smart-

3The CPU power consumption is measured as the system power when the smartphone is 
configured in a way that CPU is the only main source of power consumption. See the evaluation 
section for more details.
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Table 11: Time duration per second and number of state entries per second in two work­
loads of the same CPU utilization (50%) under the same CPU operating frequency (1,512 
Mhz).

Idle
State

Time duration (ms) # o f state entries
W1 W2 W1 W2

CO 491.85 1.08 468 1.99
C1 0 0 0 0

C2 1.18 1.43 0.1 0 .2

C3 5.12 496.86 0 .2 7.3

phones. As we introduced previously, in modern multicore smartphones like Nexus 

4, the CPU power is determined not only by the CPU frequency and utilization, 

but also by the CPU idle power states, which are not considered in the existing 

smartphone CPU power models. Modern multicore CPUs like the one of Nexus 4 

have multiple idle power states which have significantly different power consump­

tions. When utilization is fixed, prolonging the duration of continuous computation 

causes the corresponding idle period to increase accordingly. Longer idle period 

allows the OS to put the CPU core into deeper idle states more frequently, which 

in turn lowers the CPU power consumption.

To further demonstrate how CPU idle power states can affect power consump­

tions of different workloads running with the same CPU frequency/utilization, we 

list in Table 11 the statistics of the idle states of two workloads (W1 and W2) that 

were run in a Nexus 4 smartphone: the time duration per second of each state, 

and the total number of entries per second of each state. These two workloads 

were run with the same CPU frequency (1,512 MHz) and the same CPU utilization 

(50%), but they had significantly different power consumptions (644 mW for W1, 

and 499 mW for W2). The two workloads had notably different idle state transition 

statistics as shown in Table 11: with the workload W2, the CPU core stayed at the 

deepest idle state much longer than with the workload W1. This explains why W2 

consumed significantly less CPU power than W1. Note that because the stock
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Nexus 4 kernel does not enable the idle state C1, the numbers of C1 in Table 11 

are Os.

We have also performed the experiments in a Samsung Galaxy S4 smart­

phone, which is equipped with a chipset different from Nexus 4, and obtained simi­

lar observations. With the Galaxy S4 smartphone, when the CPU frequency/utilization 

are fixed at the top frequency/25%, the power consumption of a CPU core could 

exhibit up to 38% difference when we adjust the length of continuous computation 

in the workload generator program. The power difference we observe in Nexus 4 

(50%) is slight higher than in Galaxy S4 (38%). This is because Nexus 4 imple­

ments deeper idle power states than Galaxy S4 does. As an evidence, according 

to our measurement, the ratio of the power consumptions of the deepest idle state 

over the shallowest idle state in Nexus 4 is smaller than that in Galaxy S4 (0.46 

for Nexus 4, 0.51 for Galaxy S4). Since implementing deeper idle power states 

is a clear trend in future multicore smartphones (for more energy efficiency), we 

expect the possible power difference under the same CPU frequency/utilization 

setting will keep growing in future smartphones, which urges the need for devel­

oping a new CPU power modeling method that considers CPU idle power states.

5.3 Idle-state-aware CPU power model

In this section, we first present the development of our power modeling for the 

single-core case. Then, we show how the single-core power model can be ex­

tended to the multicore case. All the experiments described in this section are 

performed in a Nexus 4 smartphone.

5.3.1 Power modeling for a single CPU core

Similar to existing work, we use regression-based method to integrate the predic­

tors. To determine what statistic of CPU idle states should be used as a predictor
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Figure 42: Single-core power model development. Figures (a)-(d) show TCi, ECi, EDc,, 
and WEDCi for the four CPU idle states C0 - C3, respectively (with CPU frequency /  = 
1,512 MHz, utilization U  =  75%).

variable of the regression model, we first consider TCi, which is the total time du­

ration that a CPU core stays in the idle state Ct per second when frequency /  and 

utilization U are fixed. Suppose the total CPU idle time per second is Tidie, we 

have

Tidie = Y , TCi (5-2)
I

Figure 42(a) shows TCi for idle states C0 to C3 when we ran our workload generator 

program on a single CPU core (with /  =  1,512 MHz, U =  75%). Since the stock 

Nexus 4 kernel does not enable the idle state Cx, statistics for C\ remain zero 

in Figure 42. The figure shows that the CPU core spent more time staying in 

deeper idle states as duration of the continuous computation increased, because 

the idle period also increased accordingly. However, TCi is not a good predictor of 

CPU power consumption. For example, after the computation duration increased 

to 20 millisecond, TCi (i =  0 ,1,2,3) stayed stable, but the CPU power actually 

kept decreasing as the the computation duration increased (see Figure 41(c)). In 

fact, in our experiment, the power difference could reach 24% for the same TCi 

( i =  0 ,1 ,2 , 3) (when /  =  1,512 MHz, U=25%).

Figure 42(b) shows ECi, which is the number of entries for idle state Ct per sec­

ond, in the same experiment. For the same TCi, smaller ECi means less operat­

ing/idle transition energy overhead, and thus more energy savings. This explains 

our previous observation that CPU power kept decreasing when TCi is unchanged.
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However, ECi alone is also not a good predictor of CPU power consumption, as 

it has no direct link to energy savings by idle states.

We then look at the average entry duration for idle state Cu which is notated

as EDci'.

EDC, =  2?. (5.3)

Generally, EDCi is a good predictor of CPU power, as it involves both idle state 

duration and state transition overhead. However, EDCi could suffer from noise, 

which comes from those sporadic entries of idle state Cj when the CPU enters 

state Ci most of the time. For example, Figure 42(c) shows EDCi in the exper­

iment. We can see that EDCz was greater than EDCo when C0 is the dominant 

idle state.

To eliminate noises in EDCi, we apply a weight wu which is the portion of time 

the CPU stay at the state Ct over the whole idle period, to EDCi to form weighted 

average entry duration W EDCi‘.

T
WEDci =  u>i x EDct , where Wi =  -=^~ (5.4)

I  idle

Figure 42(d) shows W EDCi in the experiment.

Finally, we model power consumption of a single CPU core working at fre­

quency /  as

Pcore = Y ,P c t ■ W EDCi +/3u-U + C (5.5)
i

where 0Ci and are the coefficients of W EDCi and the utilization U, and c is 

a constant. For each CPU frequency /  supported by Nexus 4, we obtain the 

coefficients and the constant by running linear regression analysis on the training 

data containing different TCi and U, and the corresponding Pcore (see the system 

design and implementation later).
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Table 12: CPU power with different number of cores running (with utilization U=50%).

/=384 MHz /= 1512 MHz

Nc Pbl,nc Pcpu Pa ,core Pbl,nc Pcpu Pa ,core
(mW) (mW) (mW) (mW) (mW) (mW)

1 62 144 82 62 495 433

2 73 213 70 73 902 415

3 73 282 70 73 1,312 413
4 73 348 69 73 1,732 415

Nc: number of cores that ran the workload,
P b l ,n c : baseline CPU power with N c cores enabled.
P c p u ’- whole CPU power.
Pa ,core'- power increment per core.

5.3.2 Power modeling for multicore CPU

We further conduct an experiment to study how the single-core CPU power model 

can be extended to multicore scenario. In the experiment, we enabled different 

number of CPU cores, which are running at the same frequency, and then gener­

ated the same amount of workload on each enabled core. We measure the CPU 

power while varying the core frequencies and utilization. Table 12 presents the 

results for the cases when core frequencies are fixed at 384 MHz and 1,512 MHz, 

and the core utilization is 50%. In the table, the power increment per core is calcu­

lated as Pa ,core = Pc,',: where Nc is the number of cores enabled, PBl,nc

is the baseline CPU power when Nc cores are enabled, and PCpu is the whole 

CPU power measured. We can see that P a ,core is consistent for the same “fre­

quency/utilization” with more than one core enabled, but is notably smaller than 

the value when there is only one core running the workload. The reason is that in 

Nexus 4, when there are more than one core running, the deepest CPU idle state 

each running core can enter is state C2. The state C3, where the shared L2 cache 

is disabled, can only be entered by core-0 when no other core is online. There­

fore, PA,core for the single-core case is always greater than that for the multicore
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case.

Based on our observation, we model a multi-core CPU power consumption

P c p u  3S
N c

Pcpu =  Pbl,nc +  ,core,Ui,fi (5.6)
i

where Nc is the number of cores enabled, PBl,nc is the baseline CPU power with 

Nc enabled cores, and PA,core,utj> is power increment of core-i when it is work­

ing at frequency /* with utilization Ut. For each frequency f u Pa ,core,uj, can be 

predicted using the single-core power model developed previously, while Pbl,nc 

is a constant value that can be measured beforehand. For Nexus 4, we need to 

model Pa ,emeu,fx separately for the case when there is only one core is online and 

when there are multiple cores are online, because these two cases have different 

sets of CPU idle states.

5.4 System design and implementation

We have designed and implemented a prototype CPU power estimation system 

using our idle-state-aware CPU model on Android platform. Figure 43 shows an 

overview of the system. The system contains two parts: one runs in the ker­

nel space, and the other runs in the user space. In the kernel space, the data 

collector component collects necessary CPU usage data including the CPU fre­

quency, CPU utilization, and CPU idle state statistics. In the user space, the 

controller component controls the procedure of model generation. To generate a 

CPU power model, the controller runs a set of training programs, starts the data 

collector, and collects CPU usage data. At the same time, we measure the CPU 

power consumption using a power meter. Using the measured power data and 

the collected CPU usage data, the model generator component creates a CPU 

power model through linear regression. Although our implementation is based 

on Android platform, we expect the system design can also work on other mobile
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Figure 43: System overview.

platforms such as Windows Phone and iOS.

Collecting data in the kernel. We design a data collector to work in the kernel 

space for lightweight and efficient data collection. A design alternative is to period­

ically sample CPU utilization and CPU idle states in the user space via the high- 

latency Iproc and Isys filesystems. However, because our power model needs 

CPU statistics for each working frequency, which may change tens of times per 

second, the user space alternative would need to poll the kernel with an equally 

high frequency, which is impractical and inefficient. With our kernel-mode data 

collection approach, we can aggregate raw data, and report only the aggregated 

data to the user programs via the system call interface. Consequently, we sig­

nificantly reduce the number of user-kernel mode switching, and thus introduce 

much less system overheads in collecting the data. Moreover, running the data 

collection in the kernel allows us to obtain fresh and accurate data without the 

latency of user-kernel mode switching.

To guarantee accuracy, it is straightforward to periodically sample data in the 

kernel, with the sampling rate set to the highest possible value of frequency chang­

ing rate. However, this method would incur unnecessary system overheads, since 

it requires a high sampling rate even when the actual CPU frequency changing 

rate is low. We take a different method in our implementation. We take advan­

tage of the CPUfreq and CPUidle subsystems of the Android kernel to collect data
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Figure 44: Data structure used in the data collector.

efficiently. Specifically, we piggyback our data collecting with activities of the sub­

systems. We have instrumented the subsystems so that we know when the CPU 

frequency or CPU idle state are changed. Each frequency change in CPUfreq 

triggers a new process of data collection for the new working frequency. For each 

CPU idle state change in CPUidle, we collect new data about the previous CPU 

idle state and aggregate them to the existing data. Therefore, our data collection 

automatically adapts to CPU frequency changes, and thus avoids unnecessary 

system overheads.

Figure 44 shows the data structure used in our data collector (assuming a 

Nexus 4 smartphone is used). We collect the CPU usage data for each CPU core 

and each CPU frequency separately. Each CPU core has an array of 12 CPU 

frequencies. For each CPU frequency, we record the total CPU busy time and the 

total CPU idle time, based on which the CPU utilization can be calculated. We also 

record the CPU idle state information, including the total residency time duration 

and the total number of entries of each CPU idle state. With the data structure 

in Figure 44, we do not need to record the raw data (e.g., the CPU usage data 

of every trigger of data collection). Instead, for each trigger of data collection, we 

simply update the corresponding values in the data structure to aggregate the new 

data with the existing data. As a result, the data collector consumes a small fixed 

amount of memory, which is independent of the time duration of data collecting. 

Compared to recording the raw data, this approach also uses much less memory,
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especially when the data collecting time is long.

Generating CPU power model. To generate a CPU power model, we have 

run a set of training programs with various workloads and CPU usage patterns. 

We use the workload generator described previously to create training programs 

with various CPU frequencies, utilization, and various continuous computation du­

rations. For each CPU frequency, we train 3 CPU utilization levels (25%, 50%, 

and 75%). For each CPU utilization level, we train 8  computation durations (1 ms, 

2 ms, 4 ms, 8  ms, 20 ms, 40 ms, 80 ms, and 200 ms). For each CPU frequency, 

we also train the CPU idle case (5% utilization), and the CPU busy case (100% 

utilization), but with a fixed computation duration (100 ms). In total we have cre­

ated 312 different training programs. We first enable only one CPU core, and 

run these training programs on the CPU core to generate the single-core power 

model. Then we enable all cores, and run the training programs with an identical 

process on each core, to generate the multicore power model. The whole model 

generation procedure takes about 2 hours. It is worth noting that the ground-truth 

CPU power consumption is obtained manually by using power meter. One could 

also obtain the ground-truth value by referring to the battery interface [24,28], 

which allows for automated model generation. We opted to manual measure­

ment because we wanted to reduce the possible errors introduced by using the 

battery interface.

Applying CPU power model. We have written a user space CPU power esti­

mation C library that supports our CPU model in user space programs. The library 

gets CPU statistics from the data collector located in the kernel as shown in Figure 

43, calculates the estimated CPU power consumption, and reports information to 

user programs as requested. The interfaces provided by our C library to user pro­

grams include starting and stopping the CPU power estimation period, getting the 

estimated CPU power consumption of the estimation period, and getting different 

CPU statistics, such as CPU online information, CPU utilization, and CPU idle

141



j  70- 

£„

I
I

IM UM-1 UM-2 UM-3 UM-4 

(a) random CPU utilization

A UM-J UM-2 UM-3 UM-4

(b) 30% CPU utilization

IM UM-l UM-2 UM-3 UM-4

(c) 60% CPU utilization

IM UM-I UM-2 UM-3 UM-4

(d) 90% CPU utilization

Figure 45: Single-core model accuracy with MiBench benchmarks.

prime
buictraUi
qsoct

< - pcm

UM-2 UM-4 UM-I UM-2

(a) 30% CPU utilization (b) 60% CPU utilization

UM-3

(c) 90% CPU utilization

Figure 46: Estimation ratios of the four utilization based models (single-core).

states information.

In total, our implementation has about 3,000 lines of code (LOC) in C program­

ming language, with 1,300 LOC in kernel implementation and instrumentation, 800 

LOC in the controller component, 500 LOC in the CPU power estimation C library, 

and 300 LOC in the model generator component.

5.5 Evaluation

5.5.1 Experimental Setup

We used a Nexus 4 smartphone, which has a 1.5 GHz quad-core Qualcomm 

Snapdragon S4 Pro CPU, and runs Android 4.2. The Qualcomm Snapdragon 

S4 Pro is a representative design of symmetric smartphone multicore CPUs. It 

has been widely used on many mainstream multicore smartphones from various 

of manufacturers, such as Google Nexus 4, HTC Droid DNA, LG Optimus G, 

Sony Xperia Z, and Samsung Galaxy S4 AT&T version. Our CPU power model

142



Table 13: Benchmarks tested in the evaluation.

Benchmark Description

prime Compute a large prime.

basicmath Perform simple mathematical tasks.

qsort Quick sort over an array of strings.

susan Susan image recognition.

jpeg Encode/decode a JPEG image.
dijkstra The shortest path Dijkstra algorithm.

patricia Patricia trees of routing tables.

stringsearch Search for given words in phrases.
sha SHA secure hash algorithm.

aes Advanced Encryption Standard (AES).
crc32 32-bit Cyclic Redundancy Check (CRC).

fft Fast Fourier Transform (FFT).

pcm Pulse Cod Modulation (PCM).

should also work for these smartphones. We measured the system power con­

sumption using a Monsoon power meter [73]. Since we focus on the CPU power 

consumption, we disabled other hardware components as much as possible in­

cluding turning off the screen, network interfaces (cellular, WiFi, Bluetooth, and 

NFC), and sensors (GPS, accelerometer etc.). We also killed all the background 

services and processes that were not necessary. Note that the measured CPU 

power (i.e., the ground truth value) include power consumption by CPU, memory, 

and flash disk. Since our training programs also include memory activities, we 

expect power consumption on flash disk will incur small impact on the accuracy 

of our CPU models. Each experiment was repeated for 5 times and we report the 

average results.

Benchmarks. We used 13 benchmark programs from MiBench, which is 

a free and commercially representative embedded benchmark suite [104], As 

shown in Table 13, these benchmarks cover a diverse set of computation types 

that are widely used in networking, security, telecommunication, image process-
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ing, and many other scenarios and applications. We used our workload gen­

erator described previously, which periodically performs continuous benchmark 

computation followed by an idle period, to generate benchmark workloads with 

different CPU utilizations. To generate workloads with random CPU utilization, 

we randomly chose the length for each continuous computation and idle period. 

Depending on the computation type, the continuous computation periods ranged 

from 10 ms to 1000 ms, 250 ms on average.

Real applications. Besides the above benchmarks, we also used the follow­

ing 5 applications to evaluate our CPU power model.

• Web browsing: we used the Dolphin Browser [105] to load five web pages 

pre-downloaded from www.nytimes.com. The five pages include the home­

page and four subpages. Dolphin Browser is a popular web browser similar 

to Google’s Chrome browser, both of which are based on the WebKit engine.

We chose the Dolphin browser because it provides more control interfaces, 

which allow for automated tests.

• Map: we used Google Map to browse an offline map with operations includ­

ing zooming in/out, swiping, and moving the map. We used the tool [19] to 

capture and replay the user inputs on the touch screen, so that we could 

operate on the map with desired operations automatically.

• App loading: we launched 8  real apps including Kingsoft Office, Think- 

Free Office, Chrome browser, Firefox browser, Opera browser, Google Map, 

Baidu Map, and Ezpdf reader. We did not choose any games because (1) 

the loading processes of many CPU intensive games (e.g., Angry Birds) ter­

minate when the screen is turned off, and (2) these games usually use GPU 

for graphic processing, but GPU is not considered in our power model.

• Video decoding: we used Dolphin Player to play a MP4 video clip (30 frames/sec, 

611 kbps bitrate) for 20 seconds. We configured Dolphin Player to do video

http://www.nytimes.com


decoding in software using CPU rather than the dedicated video decoding 

hardware.

• Audio decoding: we used Google Music to play a MP3 song clip (44.1 KHz 

sample rate, 64 kbps bitrate) for 20 seconds. The Google Music decodes 

audio file with software.

Please note that the goal of conducting experiments on real applications is to 

evaluate how our power modeling approach, which focuses on estimating power 

consumption of the CPU component, works on real app workloads in addition 

to those ported from MiBench. If one wants to estimate the power consumption 

caused by a particular app, she also needs to consider power consumption gen­

erated by other hardware components (e.g., WiFi, Bluetooth) [24],

CPU power models to compare. To compare our idle-state-aware CPU 

power model (labeled as IM) with existing CPU power models, we generated 

4 utilization based CPU power models (i.e., traditional CPU power models that 

consider only CPU frequency and utilization) as follows. We used the same train­

ing programs as in our model generation process, but only considered CPU fre­

quency and utilization, ignoring the CPU idle states. The 4 utilization based mod­

els (labeled as UM-1, UM-2, UM-3 and UM-4) were generated using 4 different 

computation durations: 2 ms, 8  ms, 20 ms, and 200 ms, respectively. Once we 

generated the single-core power models, we further created the corresponding 

multicore models according to the procedure described previously. It is worth 

noting that in previous work, utilization based CPU power models were trained 

only on single-core CPUs. For fair comparison, we extended the CPU utilization 

based power models to multicore CPU case using the same method we used in 

our CPU idle state based power model.

We define the accuracy of a power model as follows:

Accuracy = 100% — ■——% (5.7)
m
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where Pe is the power estimated by the power model, and Pm is the power mea­

sured using the power meter.

5.5.2 Experimental Results

We evaluated our prototype system from two aspects: accuracy of our CPU power 

models and system overheads.

Accuracy of single-core models

We first evaluated the model accuracy when only a single CPU core was used.

Benchmark experiments results. Figure 45 (a) shows the accuracy of single­

core models with the 13 MiBench benchmarks programs when CPU utilization 

was randomly decided in the way described previously. In the figure, the bar in 

a box is the average accuracy of the model. The upper and bottom borders of a 

box represent 75 percentile and 25 percentile. The tips of the upper and bottom 

whiskers represent the max and min values. On average, our model achieved 

a high accuracy of 98%, with a small variation ranging from 94% to 100% for 

different benchmarks. The average accuracy and the range of accuracy varia­

tion of the four utilization based models were (with the variation range shown in 

the parenthesis): 89% (81%-97%), 94% (87%-99%), 95% (85%-99%), and 89% 

(78%-98%). We can see that our model significantly outperforms the utilization 

based models in terms of estimation accuracy and accuracy stability. Although 

the average accuracy of UM-2 and UM-3 were not far below that of our model, 

they exhibited a much larger range of accuracy variation for different benchmarks. 

This is because different benchmarks have different CPU usage patterns, which 

further causes different patterns of CPU idle state entries. The utilization based 

models were unable to capture the effect of these CPU idles state changes, which 

are important dynamics affecting CPU power consumption. On the contrary, our 

model can well cope with this dynamic usage pattern, since it is designed with the
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Figure 47: Single-core model accuracy with real mobile applications.

impacts of idle states in mind.

The accuracy of the existing utilization based models are also subject to CPU 

utilization. Figure 45 (b), (c) and (d) show more results when the CPU utilization 

was fixed at 30%, 60%, and 90%. We can see that the utilization based models 

gave notably high errors in some cases, especially when CPU utilization was at 

a low value. For example, when the CPU utilization was 30%, the accuracy of 

model UM-4 was only 6 6 % in the susan benchmark, and the accuracy of model 

UM-1 was only 6 8 % in the sha benchmark. This is because when CPU utilization 

was low, there were more idle time, which in turned led to more dynamic pattern 

of idle state entries.

To further study how different types of workloads and different CPU utilizations 

could affect the existing utilization based models, we show in Figure 46 the power 

estimation ratio of UM-1 to UM-4 when testing the 13 benchmarks with CPU uti­

lization fixed at 30%, 60%, and 90%, respectively. The power estimation ratio 

is the percentage of the estimated power value over the measured (i.e., ground 

truth) power value. Thus, the closer to 100%, the better is the power estimation 

ratio. Figure 46 shows that for a given benchmark at fixed CPU utilization, it is 

possible to find a CPU utilization based model to achieve a high estimation accu­

racy. However, that model would have a much lower model estimation accuracy
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in some other benchmarks and other CPU utilization levels. For example, when 

the CPU utilization is 60% (Figure 46(b)), UM-2 achieves almost 100% estimation 

ratio for benchmark stringsearch, but UM-2 would estimate about 15% more than 

the ground truth value if it is used for benchmark dijkstra. Another example is that 

UM-3 achieves an estimation ratio slightly more than 95% for benchmark susan 

when CPU utilization is 60% (Figure 46(b)). However, the estimation ratio for the 

same benchmark drops below 75% when CPU utilization is 30% (Figure 46(a)). 

In sum, it is not possible to have a single CPU utilization based model to achieve a 

high and consistent modeling accuracy in all the benchmarks and CPU utilization 

levels. On the contrary, our model, which considers CPU idle states and thus can 

adapt to variation of CPU usage pattern, is able to achieve a consistently high 

estimation accuracy in all the benchmarks and different CPU utilizations.

Real application experiments results. The similar observations can be found 

in the real application experiments as well. Figure 47 shows the single-core model 

accuracy in the five real application experiments. We can see that our model also 

achieved a high accuracy, 96% on average, with a variation ranging from 90% 

to 99% for different applications. The accuracy is slightly lower than that of the 

benchmark experiment. This is likely because the applications had more flash disk 

operations, but our model does not consider flash disk. Our model had the lowest 

accuracy of 90% in video decoding. This is probably because that the player used 

GPU which is also not considered in our model. For the utilization based mod­

els, their accuracy in the real application experiments exhibited a large range of 

variation. The average accuracy and the range of accuracy variation were: 93% 

(90%-97%), 91% (78%-96%), 85% (67%-98%), and 80% (61%-92%).

We also examined the relationship between power estimation ratio and CPU 

utilization for the real application experiments. Figure 48 shows the estimation ra­

tios of all the models when the CPU utilization was different in the Web browsing 

application. We controlled the CPU utilization by changing the time interval be-
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Figure 49: Multicore model accuracy with MiBench benchmarks.

tween loading the webpages. We can see that the CPU utilization based models 

gave a large range of accuracy variation when the CPU utilization was different. In 

particular, when the CPU utilization was low, they gave a lower model accuracy, 

which was also observed in other applications. The curve of our model is much 

flatter and the estimation ratios are consistently close to 1 0 0 %, indicating that our 

model is also able to adapt to CPU utilization changes and achieve consistent 

high estimation accuracy under different CPU utilizations.

Accuracy of multicore models

Figure 49 (a) shows the multicore model accuracy results when we ran the bench­

marks and applications with randomly decided CPU utilization using all the four 

CPU cores. Figure 49 (b), (c) and (d) show the result when CPU utilization was 

fixed at 30%, 60%, and 90% respectively. Figure 50 show the result for the real ap-
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Figure 50: Multicore model accuracy with real mobile applications.

plication experiments. We observed similar results: our model achieved a higher 

average accuracy, and a much smaller range of accuracy variation than the ex­

isting utilization based models.

Compared to the single-core case, the accuracies of the four CPU utilization 

based models are relatively higher, and the differences among the four models are 

relatively smaller. This is because the Nexus 4 smartphone allows only two CPU 

idle states (CO and C2) when multiple CPU cores are enabled. Thus, the impact 

of CPU idle states become smaller. However, we still have the same observa­

tions as in the single-core case: 1 ) our model has a consistently high accuracy in 

all the benchmarks and applications, and significantly outperforms the CPU uti­

lization based models; 2) the CPU utilization based models have a large range 

of model accuracies in different benchmarks and application, and give a lower 

accuracy when the CPU utilization is lower. As smartphone CPUs are becom­

ing increasingly powerful, smartphone CPU utilization is usually low for the most 

of time. Thus, the CPU utilization based models tend to generates high errors 

in practice. On the contrary, our idle-state-aware CPU power model is able to 

adapt to CPU usage pattern changes and utilization changes, and thus can ac­

curately estimate CPU power consumption with different workloads and different 

CPU utilizations.
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System overheads

From the 312 training programs, we chose those that cause the most frequent fre­

quency changes and idle state entries to evaluate the CPU overhead of our sys­

tem. On average, the chosen workloads incur about 40 frequency changes per 

second and about 450 entries of CPU idle states. Although our implementation 

should have the maximum system overhead when running these workloads, we 

have seen no noticeable CPU usage increase. This is because our data record­

ing and reporting process is extremely lightweight: only several variable updates 

when a frequency change or idle state entry happens, and the data are reported 

to user space only at the beginning and end of the power estimation period. As for 

the memory usage, our prototype implementation use about 8  KB kernel memory, 

with the majority consume by the data recording data structure.

5.6 Conclusion

We demonstrated that existing CPU utilization based power models are ill-suited 

for modern multicore smartphones. Without considering the impacts of CPU idle 

states, existing power models give high errors in multicore smartphones. To ad­

dress the limitations of existing power models, we developed an idle-state-aware 

CPU power model for accurate CPU power modeling in multicore smartphones.

We have designed and implemented a prototype system of our new CPU 

power modeling approach using the quad-core CPU Nexus 4 smartphones, and 

also conducted comprehensive evaluations using a diverse set of benchmarks 

and real applications. Experimental results show that our CPU power model 

achieves a high model accuracy, which significantly outperforms the existing CPU 

utilization based power models, with negligible system overheads.
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6 VProof: Lightweight and Privacy 

Preserving Vehicle Location Proofs

Location based service (LBS) application is a new and popular category of smart­

phone applications. A proper location proof scheme is critical to providing trust­

worthy location based services to smartphone users. In this project, we designed 

a lightweight and privacy-preserving location proof scheme for LBS applications 

in smartphones.

6.1 Background and related work

6.1.1 Background

Location based services is a major category of services provided by mobile ap­

plications. For example, in Intelligent Transportation Systems (ITS), popular cat­

egory of applications is that vehicles report information about the transportation 

system elements (e.g., drivers and road conditions) to the ITS system for services 

like real time traffic control and roads maintenance [31,32], Location proofs allow 

ITS operators to verify the validity of reports submitted by vehicles, and thus are 

important for deployment of such data collection applications. Otherwise a mali­

cious user (i.e., vehicle, we will use “user” and “vehicle” alternately) can launch 

an attack to the ITS system by reporting fake information about places where he 

did not actually visit. The damages of the attack are particularly serious, since
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the attacker can report fake information about numerous places by just clicking 

mouse at home.

To verify whether a vehicle’s location claims match its actual historical loca­

tions, ITS operators need a location proof scheme featuring the following prop­

erties. First, the location proof should be lightweight. This property is extremely 

important in vehicular environments, since location proof issuers may need to is­

sue location proofs to tens or hundreds of vehicles on a busy road at the same 

time. Second, the location proof needs to well preserve users’ location privacy. 

Concerns about users’ location privacy have become major considerations when 

deploying location-related services in ITS systems [106]. Car owners can sim­

ply opt out of providing any data if their privacy is threatened. Third, the location 

proof scheme needs to be able to generate fine-grained location proofs, because 

the locations reported in the user collected information (e.g., there is a pothole 

somewhere on the road) have fine granularity.

To detect malicious users who report bogus data, the conventional solution 

is to assign each vehicle with some cryptographic keys. Each vehicle will sign 

each piece of data with its secret key before uploading to the ITS system. The 

idea is that by having a means to track back users, the amount of bogus data will 

be reduced, since malicious users do not want to be caught. Similar schemes 

have also been proposed to protect the privacy of honest users to encourage 

participation [107-109], Nonetheless, these solutions all require deploying a large 

scale PKI scheme to associate specific keys with individual vehicles. While this 

may be possible in theory, for instance, a PKI administered by a local DMV, it is 

less clear if this will be done in practice, especially in a large country. We can 

point to the difficulties in getting the different states in the U.S. to standardize on 

a common driver’s license as evidence of the impracticality of a widely deployed 

PKI solution. Thus, a solution that does not rely on such large scale infrastructure 

to provide privacy protections is needed.
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The idea of location proofs has been considered by other types of applica­

tions before. The general approach is to let certain authorized entities with fixed 

geolocations perform as location proof issuers. The location proof issuers issue 

location proofs, which are unique and unforgeable, to nearby location provers, 

who need to prove their historical locations to a location verifier later. A location 

prover is believed to be in the vicinity of a proof issuer at a certain time if the prover 

possesses valid location proofs [110-112], We cannot apply the same approach 

towards vehicular environments because the location proof granularity achieved 

by the existing location proof solutions is coarse: they can only prove that at a 

certain time a user was within the communication radius of a proof issuer but not 

at a finer granularity. This allows a malicious user to statically collect the location 

proofs issued by a proof issuer and report fake information about places where he 

never visited but are within the proof issuer’s communication radius. Meanwhile, 

the existing solutions require a proof issuer to perform multiple rounds of inter­

actions with a prover to issue a location proof specifically to the prover, which is 

not scalable to vehicular environments, where lots of vehicles may be requesting 

location proofs at the same time.

6.1.2 Threat model

We consider the threat that malicious users target at disrupting ITS systems by re­

porting fake information about numerous places where they did not actually visit1. 

If there is no scheme to allow ITS operators to verify whether the reporting users 

have actually visited the places indicated in the reported data, a malicious user can 

easily generate and report bogus data about lots of places without actually visiting 

those places. The amount of the bogus data could overwhelm that of the honest 

data. Existing works for filtering abnormal data in vehicular networks [113,114]

1 We do not consider the threat that a malicious user physically presents at a place and report 
fake information about it, as we deem this threat has much less impacts than the one we are 
considering.
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do not work in this case, because they hold an assumption that the amount of 

abnormal data should not be more than that of normal data. Meanwhile, as we 

discussed previously, we prefer not to use PKI to solve the problem. Thus, we 

ask the question: without using PKI systems, can we provide a scheme to let ITS 

operators verify if a user’s historical locations are in accordance with the data he 

submits so that they can prevent the threat we just described?

We make the following assumptions about malicious users. First, malicious 

users have the same equipments as honest users, and have certain knowledge 

of the information about the RSUs in the ITS system, such as the ESSIDs and GPS 

locations of the RSUs. But they do not know any secret keys shared between the 

RSUs and the ITS system. Second, malicious users cannot control any infras­

tructure units or replicate them in exactly the same way. For example, malicious 

users cannot replicate a certain legitimate RSU by placing the same hardware 

on the same roadside pole. This prevents malicious users from obtaining similar 

profiling data as the authority does.

6.1.3 Related work

Existing location proof solutions. Location proofs have been suggested as 

a way for users to prove their past locations in location based services [110— 

112]. A typical proof construction requires a user to perform several rounds of 

interaction with the proof issuer to derive a location proof, which is later used by 

the proof verifier to verify the user’s location. Later work by [112] improves on this 

process by preventing the proof issuer from learning the user’s location. We will 

discuss the limitations of applying the existing location proof solutions in vehicular 

environments in details later.

Location privacy in vehicular networks. To prevent users from submitting 

fake information in vehicular networks, the existing solutions typically use anony­

mous authentication. Work by Xi et al [107] proposes a symmetric random key-set
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scheme, where each vehicles possesses a set of symmetric keys randomly cho­

sen from a key pool, to authenticate vehicles into vehicular networks. Scheme 

proposed by Calandriello et al. [108] addresses the problem of anonymous mes­

sage authentication using asymmetric keys and group signature in vehicular net­

works. ECPP [109] achieves anonymous message authentication under the help 

of its on-the-fly short-time anonymous keys between vehicles and RSUs.

The reasoning behind the existing approaches is that if car owners are aware 

that bogus data can be traced back to them, they will not intentionally upload 

incorrect data. However, car owners can simply opt out of providing any data if 

their privacy is threatened. Our work provides a technique to enable a user to 

prove his historical locations are in accordance with the data he reports. This 

allows ITS operators to prevent the attacks where users report information about 

places they did not visit. Our approach achieves strong user privacy protection, 

since we do not place any information regarding the user's identity nor link any 

cryptographic keys with the user, and thus there is no way users reporting data to 

the ITS systems can be traced. We argue that our approach is more suitable in 

situations where user privacy outweighs other concerns.

Concerns about users’ location privacy have become major considerations 

when deploying location-related services in ITS systems [106], Existing solutions 

use group navigation and dynamic pseudonyms [115], mix-zones and vehicular 

mix-networks [116] or group communication [117] to defend users’ location pri­

vacy. VProof also well protects users’ location privacy since we do not place any 

information regarding the user's identity nor link any cryptographic keys with the 

user.

Changing packet transmission power and measuring packet received 

signal strength. Changing wireless packet transmission power and measur­

ing the received signal strength (RSS) have recently been used in localizations 

[118,119] and rogue vehicular AP detection [120,121], All these existing works
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rely on accurate RSS measurements to determine the distance between two com­

municating wireless nodes. In our work, we do not have dependence on accurate 

RSS measurements for the following two reasons. First, changing packet trans­

mission power and measuring RSS in our solution are not to determine the dis­

tance between two wireless nodes. Instead, we use them to hide the inherent RSS 

patterns from users. Thus, our work does not need as accurate RSS readings as 

the existing works do. Second, our RSS pattern similarity comparison algorithm 

is specifically designed to cope with inaccurate RSS measurements and packet 

losses.

6.2 Motivation

6.2.1 Limitations of the current location proof solutions

Our work is motivated by the following three major limitations of the existing loca­

tion proof solutions [110 - 11 2 ] to be applied in vehicular environments.

First, the existing solutions can only be used to prove at certain time a user 

was within the communication range of the proof issuer (an RSU in our case) but 

not at a finer granularity. This critical drawback allows a malicious user to sit tight 

at a certain location within the RF range of an RSU, and legitimately report bogus 

data about other locations within the same range. The resulting damages are even 

greater in systems adopting long range wireless communication techniques. In 

our solution, if a user claims he was at a certain place when he collected some 

data, we require him to show that he has seen the correct RSS pattern of the 

packets sent by a nearby RSU that he must drive by the claimed place to obtain.

Second, the construction of a location proof in the existing solutions requires 

several rounds of interactions between the proof issuer and the user, which makes 

them impractical in vehicular environments as the contact durations between ve­

hicles and RSUs may be very short. By contrast, with VProof, no interaction be-
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Figure 51: RSS patterns of two series of packets collected at different times, (a) and (b) 
show the overall patterns of the two packet series, (c) and (d) show the center details of 
the pattern in (a) and (b) respectively.

tween the proof issuer and the user is required.

Third, the existing solutions rely on PKI systems that we are trying to avoid, 

since the deployment of a large scale PKI scheme for ITS is unlikely to be realized 

in the near future.

Through real-world measurements, we make the following two key observa­

tions that led us to design our location proof solution by utilizing RSU packets RSS 

patterns.

6.2.2 The observation on RSS patterns of RSU packets with a 

fixed transmission power

Through real-world experiments, we observe that the RSS of a series of RSU 

packets received by a vehicle when it passes an RSU, which is continuously 

broadcasting packets with a fixed power, exhibit similar patterns over time. In 

the experiments, we deployed an wireless node, which broadcast packets at a 

rate of 1 0 0  packets/s with the full transmission power, at the roadside of a down-
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Figure 52: RSS patterns of RSU two packet series under different tx powers. Packet 
series A and A' were collected in the same experiment. They were transmitted under 
different tx powers. Packet series B and B' have the same relationship as that of A and 
A', but they were obtained at a different time in another day.

town environment. We drove a car past the roadside wireless node and collected 

its packets at different times. Figure 51 shows the RSS patterns of two series of 

packets collected in the experiment, where series A were collected in the morning 

of one day when there were less cars on the road, and series B were collected 

during peak hours in the afternoon of another day. We can see that, although 

there are slight differences in RSS amplitudes and pattern shapes, which are due 

to factors like different temperatures and different moving obstacles (i.e., cars and 

trucks) on the road, the two series of packets do exhibit similar RSS patterns.

6.2.3 The observation on relatively constant RSS difference of 

packets with two different transmission powers

We also observe that the RSS difference between two packets that are transmit­

ted by the same RSU using two different powers and are received at the same 

location is roughly a constant across the RSU’s RF range over time. Figure 52 

shows the RSS of two groups of RSU packet series. Packet series A and B, which 

were transmitted using the full power, are the same as in Figure 51. Packet series 

A' and B', which were transmitted using half of the full power, were obtained at 

the same times as A and B respectively. We align the two RSU packet series 

obtained in the same experiment based on the distance between each packet’s
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reception location and a fixed starting point. We can observe that the RSS differ­

ence under two different transmission powers at the same location is roughly the 

same (around 8  dbm). We will quantify how stable this RSS difference is later in 

Section 6 .6 .

6.3 Solution

6.3.1 An overview

With the above two observations, we design a location proof scheme using RSS 

of RSU packets, which are publicly observable. Generally speaking, we let RSUs 

continuously broadcast packets that are specifically for the location proof func­

tionalities (named as “VPackets”). Each VPacket is broadcast using a randomly 

chosen transmission power. Since the transmission power is randomly selected, 

the RSS of the VPackets received by vehicles exhibit no pattern. Each VPacket 

incorporates some encrypted information including the transmission power of the 

packet. Vehicles collect the VPackets, construct location proofs based on infor­

mation in the VPackets and their own GPS readings, and submit the location 

proofs to the ITS system for verification. Using the information in the location 

proofs, specifically the transmission power of each VPacket, the ITS operators 

can restore the inherent VPacket RSS patterns, which are the RSS patterns if the 

VPackets were transmitted using the full power. The location proofs are deemed 

as valid only if they can be used to correctly restore the inherent RSS patterns of 

RSUs. Since the transmission power of each VPacket is only known by the ITS 

operators, we enforce the unforgeability of the location proofs VProof constructs.

The general operation flow of VProof is shown in Figure 53. The pre-application 

operations (i.e., the operations performed before the data collection applications 

are deployed) include:
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Figure 53: Operation flow of VProof.

• Step PRE-1: the ITS operator constructs a database that stores different 

RSUs’ VPacket RSS traces.

• Step PRE-2: for each RSU, the operator assigns it a unique secret and con­

figures it with a pre-calculated VPacket broadcast rate. The RSU secret is 

used by both the RSU and the system operator to generate/verify location 

proofs. The VPacket broadcast rate theoretically ensures a vehicle can re­

ceive a desired number of VPackets during each coherence time period.

The during-application operations (i.e., the operations performed with the data 

collection applications) include:

• Step DUR-1 (proof issuing): RSUs broadcast each VPacket at the config­

ured rate using a randomly selected transmission power.

• Step DUR-2 (proof construction): upon receiving the VPackets, vehicles 

construct location proofs by extracting relevant contents from the VPackets.

• Step DUR-3 (proof submission): when vehicles upload newly collected data 

to the backend server, they also upload all the location proofs constructed 

since the last data submission.
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Table 14: Major notations

Notation Meaning

UuUj RSU IDs
N number of traces assoc, with each trajectory in the DB

L number of VPacket transmission powers

Pj non-full transmission powers ( j =  l, • ■ ■ , L -  l)

Pf the full transmission power

RSSu^Pf^Pj average RSS difference between VPackets transmitted 
under a non-full power Pj and the full power Pf

SUi secret for U{

• Step DUR-4 (proof verification): the ITS operator verifies the location proofs 

according to the following sub-steps. First, the operator verifies if the loca­

tion proofs are constructed using authentic VPackets. Then he constructs 

a user RSS series based on the location proofs, and pre-process the user 

RSS series to smooth out the unpredictable vehicle moving patterns when 

vehicles received the VPackets, such as stops due to red lights and slow 

driving due to traffic jams. Before feeding the user RSS series into the RSS 

similarity comparison algorithm, the operator restores the inherent RSS pat­

tern (i.e., the RSS pattern if all the VPackets were transmitted using the 

full power). Finally, the operator determines if the location proofs are valid 

based on the pattern similarities between the restored user RSS series and 

the DB RSS traces.

We describe the details of each of the above steps in the following section.

6.3.2 PRE-1: VPacket RSS trace database construction

The RSS trace DB contains VPacket RSS traces of each RSU. In our design, 

there are N  RSS traces associated with each possible vehicle trajectory around 

each RSU Z7*. Each RSS trace contains an RSS series of VPackets collected 

by driving a car past Ui on the trajectory. Figure 54 shows an example of the
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Figure 54: The six possible trajectories of a “T" shape crossing.

possible trajectories around a "T" shape crossing. During the profiling process, 

Ui broadcasts VPackets using the full transmission power. In the DB, assuming 

there are L  transmission powers, U{ is also associated with average RSS differ­

ences between each non-full powers P, ( j  = l, • • • ,L  -  l)  and the full power 

Pf. RSSui,pj^pr  We will describe the experiment that obtains this average RSS 

difference in Section 6 .6 . The profiling process only needs to be done once.

6.3.3 PRE-2: RSU secrets and VPacket rate configuration

The system operator generates an RSU-specific secret sVi for each RSU Uit and 

configures it to U{. The secret sVi is for encrypting/decrypting the VPacket’s trans­

mission power, and also for generating/verifying the VPacket authentication mes­

sage (described later). For a vehicular wireless node moving in an outdoor envi­

ronment, the RSS of its received packets vary a lot. To deal with RSS instability, 

we want users to receive n  VPackets within a period of coherence time, which is 

the time duration over which the RSS is considered to be not varying. Then we 

can take the average of these n VPackets’ RSS as a data point in the RSS series. 

So the VPacket rate for an RSU Ul is calculated as — , where Tcoherence is the
c o h e re n c e

average coherence time of the road section around Ui.

6.3.4 DUR-1: VPackets broadcast (by RSU)

VPacket transmission power selection. An RSU U{ uses Algorithm 9 to se­

lect the transmission power for each VPacket when it is generated. If the timer
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Algorithm 9: VPacket transmission power selection
Data: T im er^  bounds Tx and T2 (Tcoherence < T t < T 2 ). 
Result: VPacket transmission power.

1 if T im er pur has expired then
p  =  randomly chosen from Pf , P i,--  - , PL- i ,  
dtimer — rari(lom (T i,T2),
Reset T im er^  with duration dtimer\

2

3

4

s else
6 | p =  power returned when last time call this function;
7 return p\

T im er p w r  is expired at the time when the algorithm is executed, the algorithm se­

lects the transmission power randomly from the L  power levels (line 2), with Pf  

being the full power and P i, - ■■ , PL -1  being the other L  -  l  none-full power lev­

els. Otherwise, the algorithm returns the power level given by the last random 

selection (line 6 ). To ensure VPackets are broadcast using the same power level 

during at least a period of coherence time (Tcoherence), the duration of Tim erpwr is 

set randomly between Tx and T2 (line 3), both of which are greater Tcoherence.

After the transmission power p is determined, Ui encrypts p using a symmetric- 

key algorithm SE, with the combination of sVi and time t (i.e., the time when the 

VPacket is generated) as the cryptographic key:

Cp <- S E SUi t t ( p ) .  (6.1)

VPacket authentication message generation. In order to verify if the loca­

tion proofs are constructed based on authentic VPackets, an RSU Ut generates 

a VPacket authentication message (VAM) for each VPacket as

VAM 4— H(Ui, sUvt, Cp), (6.2)

where H  is a cryptographic hash function (e.g., MD5 and SHA-1) that hases U{

(the ID of the RSU), sVi (the secret of the RSU), t (the time when the VPacket is
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generated) and Cp (the ciphertext of the transmission power p) into a single piece 

of message.

Finally, the RSU U i puts the VAM, C p and t  into the VPacket, and broadcasts 

the VPacket using power p.

6.3.5 DUR-2,3: Location proof construction and submission 

(by vehicles)

Upon receiving a VPacket, a vehicle constructs a location proof (LP) as

L P  = <  U i, VAM, t ,  RSS, C p, LOC > ,  (6.3)

where (1) Ut is the ID of the VPacket’s originating RSU, (2) VAM is the VPacket au­

thentication message, (3) t  is the time when the VPacket is generated, (4) RSS is 

the received signal strength of the VPacket, (5) Cp is the ciphertext of the VPacket 

transmission power p, and (6 ) LOC is the vehicle’s GPS location when the packet 

is received. The first five items are extracted from the VPacket, and the last one 

is obtained from the vehicle’s onboard GPS device.

When the user uploads newly collected data to the ITS system, he also up­

loads all the location proofs constructed since the last data submission to the ITS 

system.

6.3.6 DUR-4: Location proof verification (by ITS operators)

The ITS operator divides the location proofs received from the same upload con­

nection into batches such that each batch of location proofs share the same RSU 

ID. Then the operator verifies the location proofs batch by batch. A valid batch 

of location proofs with RSU ID U { indicate the proof submitter has actually driven 

past Ui at the time indicated in the location proofs.

VPacket authentication message verification. Given a batch of m loca­
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tion proofs, the ITS operator verifies the VAM contained in each location proof 

as follows. He computes the message content by using formula (6.2) with the 

parameters Uit t, Cp and sVi, where Ui: t and Cp are extracted from the location 

proof, and sUt is kept by the operator. If the computed content is different from 

the VAM contained in the location proof, the VAM is deemed as invalid. An invalid 

VAM indicates that a least one parameter of Uit t and Cp provided in the location 

proof has been tampered with. If there exists one location proof containing invalid 

VAM, the whole batch of location proofs are invalid. Note that a batch of location 

proofs with valid VAMs does not necessarily means the batch of location proofs 

are valid, because a malicious user can statically collect VPackets, obtain valid 

VAMs and present them in the location proofs.

User RSS series construction. Given a batch of m  location proofs with valid 

VAMs, the operator constructs a user RSS series Suser according to Algorithm 10. 

In the algorithm, Sraw is the sequence of RSS in the m  location proofs, Traw is 

the corresponding sequence of VPacket generation times, and Praw is the cor­

responding sequence of deciphered transmission power levels. The algorithm 

outputs the user RSS series SU3er, in which each data point is computed as the 

average RSS (line 7) of the VPackets that were transmitted under the same power 

and within a period of coherence time (line 6 ). The algorithm also outputs PsU3er, 

a sequence of deciphered transmission power levels. Each data point of PSuser 

corresponds to an RSS data point in Suser (line 8 ).

User RSS series preprocessing. The preprocessing of the user RSS series 

Suser has two goals. The first is to make Suaer location-even. In real road situations, 

users may stop on the road for a while (due to red lights), or drive with a speed 

that is far less than the speed limit (due to congested traffic). In these cases, 

SUser will contain much more data points measured around some locations than 

from other locations. Our algorithm tunes Suser by removing the redundant points 

based on the parameters of LOC  and t presented in the corresponding location
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Algorithm 10: User RSS series Suaer construction
Data: Raw RSS sequence: Sraw =  ui • • • itm;

VPacket generation time sequence: Traw = f i • • ■ tm; 
Deciphered power sequence: Praw = qx ■ ■ ■ qm. 

Result: User RSS series: Suaer =  vx ■ ■ ■ vn;
Transmission Power sequence: PSuaeT = pi - - -pn-

1 Suaer i (j), PSuser 1 (ft,
2 for i «— to m do
3

4

5
6

7

8 

9

10

11

if SU3er = =  4> then
| tim e <— ti, power 4— q{, pool <— {u ,};
else

if (U > tim e +  Tcoherence) or (^  ^  power) then 
Add average(pool) at the end of Suser',
Add power at the end of PSuser; 
tim e <— t^ power <— q{, pool «— {u,}',

else
I Add U i to pool',

12 return Suser, PSu

proofs. The second goal of the preprocessing is to identify the user's trajectory 

based on which the operator can select the corresponding RSS traces from the 

RSS DB. The trajectory identification is based on the GPS locations contained in 

the proofs.

User RSS series pattern restoration. The user RSS series Suser =  vi • • • vn

has no pattern since the VPackets were broadcast using random transmission 

powers. Therefore, before comparing the patterns of user-submitted RSS series 

and the profiled RSS series stored in the trace DB, the ITS operator needs to 

restore 5user’s inherent RSS pattern (i.e., the RSS pattern if all the VPackets were 

transmitted using the full power). This is accomplished by adding R S S u ^p ^  

(recall that this information is associated with Ui in the RSS DB) to each data 

point vk g SUser, if Pk € PsU3sr equals to Pjt where 1 < j  < L — 1 (L is the number 

of transmission power levels) and 1 < k <  n.

User RSS series validation. To validate the user RSS series 5„ser, the ITS 

operator fetches the N  RSS traces associated with the user trajectory from the 

RSS trace DB, and derives N  DB RSS series SDB,i ( i 6 [1, N]) in the same way as
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constructing Suser. The ITS operators compares the similarity between the user 

RSS series Suser and each of the N  profiled RSS traces respectively. The user 

RSS series is deemed as valid if there are enough amount of matches.

As we mentioned earlier, it is difficult to decide if two RSS series have simi­

lar patterns for the following three reasons. First, different hardwares may have 

different readings on the same received packet, because they may have differ­

ent noise floors. To address this issue, our RSS series comparison algorithm is 

designed to compare patterns of the quantized series, which are not impacted 

by amplitudes of the RSS readings. Second, RSS measurements are sensitive to 

many factors especially in an outdoor moving environment. Third, due to busy ve­

hicular wireless environment, vehicles may not received all the VPackets based 

on which the location proofs are constructed. To address the second and the 

third challenges, we designed a dynamic time warping (DTW) [122,123] based 

algorithm to compare two RSS series.

Our RSS series similarity comparison algorithm compares the user RSS series 

Suser with each of the N  DB RSS series SDB,i according to the following steps.

The first step is to quantize both the RSS series Suser and SDB,i using a K- 

number alphabet. The goal of the RSS series quantization is to, as pointed out 

previously, remove the factors that can cause different amplitudes on RSS read­

ings (e.g., hardware differences). The quantized value of each data point in a 

RSS series reflects the position of data point’s value within the value range of the 

RSS series. The quantization algorithm is given in algorithm 11. We use a simple 

example to illustrate how the quantization process works. Suppose there is an 

RSS series whose RSS values are in the range of [1,30], and we want to quantize 

them using a 3-number alphabet {0,1,2} (i.e., K  = 3). Then our algorithm con­

verts the data points in the RSS series with values from in the ranges of [l, 10], 

[11,20] and [21,30] to numbers 0 , 1 and 2  respectively.

The second step is to obtain the warped versions of the quantized RSS se-
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Algorithm 11: RSS series quantization using a /('-letter alphabet
Data: An RSS series S =  ax • • • an 
Result: Quantized version of S: Q =  b1- - b n

1 Q <— ((>',
2 max  «— m ax im u m (a i,  ■ ■ ■ , an)\
3 m in  <— m in im u m (a i,  • • • , an)\
4 for i  4-  1 to n  do

for j  < r- l to K  do 
if fli <  mm  +  then

Add j  to the end of Q\
Break the j-loop;

9 return Q\

ries. The goal of this step is to cope with inaccurate RSS measurements and 

potential missing data points due to losses of VPackets. In this step, both quan­

tized S user and quantized S d b ,% are converted to their corresponding warped ver­

sions using a dynamic time warping (DTW) based algorithm. Here we use a de­

tailed example to show how our DTW algorithm works and its benefits. Suppose 

M  = “1222221100” and N  = “1022110000" are two RSS sequences quantized 

with a 3-number alphabet {0,1,2}. We can see that the two RSS sequences 

have the similar pattern (they both change follow the l  ->• 2 -> l  -> 0 pattern). 

However, the quantized values are not exactly aligned. For example, the sec­

ond quantized value in the sequence TV is 0 instead of 1 or 2, which can happen 

due to inaccurate RSS measurements. Meanwhile, we can see that the number 

of some quantized values in a sequence is less than that in another sequence 

(for instance, M  has less 0 and N  has less 2). This can happen when there are 

VPacket losses. We use the following formula to calculate the distance between 

M  and N  as distance(M, N ) =  ^ = 1 1 -  «i|, where m{ and m are the values of 

the z-th bit in M  and N  respectively, and I is the length of both sequences. The 

distance between the original M  and iV is 6  (Figure 55 (a)). Our algorithm calcu­

lates a warping path between M  and N  by using dynamic time warping, which is 

basically a form of dynamic programming, and converts M  and N  to their warped
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M = "1222221100" 

N = “1022110000“ 

distance(M,N)=6

0
0
1
1
2
2
2
2
2
1

warped M = M '=  "1122222110000"

warped N = N '= "1022222110000" 

distance(M',N’)= l

(a) Original sequences (b) Calculating the warping path (c) Warped sequences

Figure 55: Converting the original sequences to warped sequences.

versions M ' and N ' based on the warping path (Figure 55 (b)). The distance of the 

two warped series is 1 (Figure 55 (c)). Now we can see that the DTW algorithm 

can well identify the similar pattern of two misaligned sequences. Please note 

that although in the example the two sequences have the same number of bits, 

it is not necessary that the two original sequences should have the same length. 

However, the two warped series will be equal-length, because both of them are 

constructed based on the same warping path.

In the final step, the algorithm calculates the similarity score between the two 

RSS series, based on which a conclusion is drawn. Suppose the length of the 

two equal-length quantized warped RSS series S'uaer and S'DBi is I, the similarity 

score between S'user and S'DB t is defined as

sim score  =  1
hamming-dist(S'uaer, S 'd b , t )  

I
(6.4)

where the function hamming jd ist(-) calculates the hamming distance, which is the 

number of different bits, between the two input sequences. If the score is higher 

than a threshold sthresh, the user RSS series Suser is considered to be similar to the 

i-th DB RSS series SDB,i■ We will empirically identify the suitable value of sthreSh 

later in Section 6 .6 . Within the comparisons between Suser and the N  DB RSS 

series, if there are no less than nthresh • N  matches, the batch of location proofs 

are identified as valid.
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6.4 Threat prevention analysis

VProof preserves privacy for users participating the data collection applications, 

since it does not require any information that can be related to a user’s ID. VProof 

can efficiently prevent the threat that a malicious user reports data about location 

£ ’s conditions at a certain time T  without presenting at £ at time T. Let’s consider 

the following four cases of the threat.

Case I. The malicious user did not drive past the location £  at time T. In this 

case, the malicious user cannot obtain the valid VPacket authentication message 

(VAM), which will make their location proofs rejected in the first step in the proof 

verification process.

Case II. The malicious user drove past the location £ at time V ,  and saved 

the received VPackets, based on which he constructed location proofs for another 

time T. In this case, the location proofs will be rejected, because the VAMs are not 

valid (recall that the construction of V/W depends on several parameters including 

time).

Case III. The malicious user drove past the location £ ' at time T, and saved 

the received VPackets, based on which he constructed location proofs for another 

location £, where £ and £' are covered by signals of two different RSUs respec­

tively. In this case, the location proofs will be rejected, also because the VAMs 

are not valid (they are constructed using different RSU IDs and RSU secrets).

Case IV. The malicious user statically collected VPackets at location £', where 

£ and £ ' are covered by signals of the same RSU, around time T. This is the 

case the existing location proof solutions cannot prevent. By contrast, VProof can 

easily reject those location proofs, because the restored pattern of the RSS series 

constructed from the statically collected location proofs cannot match that of the 

RSS traces stored in the RSS DB. Meanwhile, the malicious user cannot tune the 

parameter RSS contained in the location proofs so that the restored RSS pattern
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matches RSS DB’s record, since the malicious user has no knowledge about the 

VPacket transmission power, which is randomly selected and only known by the 

operator. We will empirically evaluate the case that a malicious user submits 

location proofs constructed with valid VAMs but guessed RSS in the next section.

6.5 Discussion

Privacy vs. accountability. VProof provides a new option of location proofs with 

strong user privacy protection. We realize that there is a tradeoff between privacy 

and accountability. For instance, in VProof, ITS operators cannot trace malicious 

users if there exist some, since there is no way users submitting data can be 

traced. Although this approach sacrifices the ability to trace down malicious users 

reporting fake data, it greatly protects users’ privacy, and thus encourages par­

ticipation of data collection. We argue that our solution is more suitable for the 

situations where privacy concerns outweigh any other concerns, as car owners 

can simply opt out of providing any data if their privacy is threatened.

Reporting fake information with valid location proofs. By verifying if a 

user’s historical locations match the data he submits, we prevent the threat that a 

malicious user reports fake information about numerous places he did not actually 

visit. However, our solution does not deal with the threat that malicious users 

report fake information with valid location proofs (i.e., the malicious users drive 

their cars around a certain area, collect VPackets, construct valid location proofs 

and report fake information about that area). We consider this problem to has 

less impacts than the threat we are considering for the following three reasons. 

First, this problem is equivalent to the case where honest users unintentionally 

submit data sensed by defective data collection devices. Second, compared to 

the threat of interest where the malicious users can influence as many places as 

he wants, reporting fake information with valid location proofs can only impact a
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small amount of places where the malicious users have actually visited. Third, 

the malicious users have much greater difficulties to report fake information with 

valid location proofs than to report fake information about places without actually 

visiting there, since instead of sitting somewhere statically, they need to constantly 

drive around the area of interest to launch the attack.

Attacks by offline profiling inherent RSS pattens. Another possible way 

to compromise our scheme is that malicious users first obtain RSS traces similar 

to those stored in the RSS trace DB by offline profiling, then they construct valid 

location proofs by applying RSU transmission power change histories to the pro­

filed RSS traces. To launch the suggested attack, malicious users first need to 

obtain similar RSS patterns as the system operators do, which is hard to achieve, 

because we assume malicious users cannot replicate infrastructure units (such as 

RSUs). Moreover, to launch the suggested attack, a malicious user also has to 

stay within the radio range of an RSU, and learns its transmission power change 

history. Therefore, the damage caused by the attack only covers the radio range 

of that particular RSU. Consequently, our scheme can still prevent malicious users 

from reporting fake information about a large number of places that they never vis­

ited.

Wormhole attacks. An wormhole attack is launched by two colluding attack­

ers. In this attack, an attacker drives in the communication range of an RSU, 

collects authentic VPackets from the RSU and delivers the VPackets to another 

remote attacker. Then the remote attacker reports fake information with valid lo­

cation proofs constructed from the authentic VPackets. In this case, the wormhole 

attack is equivalent to our previous discussion point (i.e., reporting fake informa­

tion with valid location proofs), as we can treat the two colluded attackers as one 

attacker.
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6.6 Evaluation

6.6.1 Implementation and experimental setup

The prototype system. Our prototype VProof system consists of an wireless ac­

cess point (Wiligear WBD-500 integrated radio board) mounted at roadside that 

serves as an RSU, a vehicular node equipped with a wireless receiver (Lenovo 

T61 + wireless card + external omni-directional antenna) that acts as ITS system 

users and a backend server (Dell T3500) that performs the operations done by 

the operator. The wireless AP runs a program that controls VPacket transmis­

sion power and broadcast rate according to the VProof scheme. The vehicular 

wireless node runs a program that constructs location proofs when VPackets ar­

rive. To study whether hardware differences at user side have impacts on our 

scheme, we have used two different wireless cards on the vehicular wireless node, 

Ubiquiti SWX-SRC and Wistron CB9-GP, both of which have an external antenna 

socket. The backend server processes the location proofs constructed by the ve­

hicular node offline. Note that in real ITS data collection applications, the sensed 

data and meta-data are not required to be uploaded to the backend server in real 

time [124-126]. Users can choose to upload the data anytime they feel appropri­

ate, for example, when the uploads will not contend with other important tasks. 

Therefore, our choice of letting the backend server process the location proofs 

offline conforms the reality.

Per-packet transmission power control. The program we ran on the wire­

less AP is able to change the transmission power for each packet. This per-packet 

power control is achieved by specifying the desired transmission power in the 

packet’s radiotap structure. With the per-packet transmission power control, it is 

possible to change VPacket’s transmission power randomly while not affecting 

the normal tasks done by the RSU (e.g., beacon broadcasting).
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Figure 56: RSS patterns comparisons of RSS series collected at the road section A.

Experimental setup. We have conducted extensive experiments on real road 

situations to evaluate our solution. The experiments were performed at three dif­

ferent locations in downtown environment with busy road traffic. We built the 

RSS DB by profiling the RSU RSS pattern (i.e., we drove car past the RSU, which 

was broadcasting VPackets using the full transmission power, and collected the 

VPackets) at the three locations in one day. We then performed experiments to 

collect user RSS traces (i.e., we drove car past the RSU, which was broadcast­

ing VPackets using randomly selected transmission powers, and collected the 

VPackets) at each location in three other days. Three RSU transmission power 

levels were used: full power, § power and half power. Note that all the three tested 

cases involved relatively straight routes. We expect our scheme works similarly 

for cases containing turnings and other irregular routes. This is because VPacket 

RSS pattern of a particular route is relatively stable as long as the surrounding 

structures remain unchanged. Furthermore, the driving speed in our experiment 

was around 20 mph to 30 mph. We expect our solution also works in high speed 

scenario. This is because VPacket rate by RSUs is adapted dynamically based 

on the average road speed, recall that VPacket rate is calculated based on the 

coherence time of the environment, which is closely related to speed limit of the 

road.
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6.6.2 Experimental results

Coherence time measurement. We measured the coherence time of the wire­

less channel at each of the three experiment locations as Camp and Knightly [127] 

did. Specifically, we let the RSU broadcast small packets (100 bytes/packet) at 

a very high packet rate (500 packets/s). Then we measured the RSS differences 

between different size of VPacket windows based on which we determined the 

coherence time of the channel. We found that the coherence times at our experi­

ment locations were around 100 ms. Thus in our experiments, we set the VPacket 

rate to 100 frames/s, as we wanted users to receive 10 VPackets per period of 

coherence time. Meanwhile, according to Algorithm 10, when constructing the 

RSS series, we computed an RSS data point as the average RSS of VPackets 

that are transmitted under the same power and within 1 0 0 ms.

Quantifying the stableness of RSS difference of VPackets with two dif­

ferent powers. To restore the inherent RSS pattern from the RSS of VPack­

ets broadcast using random transmission powers, our solution relies on the fact 

that the difference of RSS at the same location between two VPackets that are 

transmitted by the same RSU using two different powers is roughly a constant 

across the entire communication range of the RSU. We conducted an experi­

ment to quantify how stable this RSS difference is. In the experiment, we let 

the roadside wireless AP change between two transmission powers periodically 

while broadcasting the VPackets. In the first half of a coherence time period, 

the VPackets were transmitted using the full power, and in the second half, the 

VPacket transmission power was set to half of the full power. The VPacket rate 

was 100 frames/s. We drove a car past the RSU and collected the VPackets. 

We processed the received VPackets by first averaging the RSS of consecutive 

VPackets with the same transmission power. Then we calculated the RSS differ­

ence between two sets of VPackets that were transmitted with two transmission
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Figure 57: Dealing with VPacket losses and guessed series.

powers within a period of coherence time. Finally, we found that the average 

RSS difference is 8.55 dBm with a standard deviation of 2.81 dBm. As we will 

show later, this RSS difference is already stable enough that allows us to keep 

the fidelity of RSS patterns during the pattern restoration process.

RSS pattern comparisons. We have collected over 50 user traces at the 

three experiment locations, which are denoted as road section A, B and C re­

spectively. When comparing these honest user traces to their corresponding DB 

traces, we used an alphabet of four numbers (i.e., K  =  4) at the quantization 

step. Empirically, we found that the similarity scores between all the user traces 

and the corresponding DB traces are larger than 0.8. Thus in our scheme, we set 

the threshold similarity score sthresh as 0 .8 .

We show the RSS pattern comparisons for traces collected at the road section 

A. Figure 56 (a1), (b1) and (c1) show the patterns of three original RSS series 

constructed from three user traces, 51, 52 and 53, that were collected at the road 

section A. Figure 56 (a2), (b2) and (c2) show the patterns of the corresponding re­

stored RSS series. Figure 56 (d) shows the pattern of the RSS series constructed 

from the DB’s trace. We have only show the center part of the patterns for better 

illustration. The randomly selected transmission power of VPackets allows the 

RSS of VPackets received within a short range of distance exhibit no fixed pat­

tern. Therefore, we can see that the three original RSS series are all different 

(the similarity scores of any pair of the three original RSS series are less than 

0.58). However, once we restore the original RSS series to their corresponding
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Figure 58: Determining quantization alphabet size K  and comparing different similarity 
comparison methods.

full power RSS series, the three user traces do exhibit similar RSS patterns with 

the DB trace. Figure 56(e) shows the similarity scores when comparing the DB 

trace against the original RSS series and against the three restored RSS series. 

It shows that the similarity scores between each original RSS series and the DB's 

RSS series are smaller than 0.55, and the similarity scores between each restored 

RSS series and the DB's RSS series are all larger than 0.81.

Another point worth mentioning is that of the first two user traces, 51 and 52, 

and the DB trace were collected using the Ubiquiti wireless card, while the third 

user trace 53 was collected using the Wistron wireless card. Although the RSS 

readings from the Wistron card were higher, it did not prevent our solution from 

correctly accepting the honest user trace, since our similarity comparison scheme 

only depends on the pattern itself but not RSS reading amplitude.

Dealing with VPacket losses. In a busy vehicular wireless environment, ve­

hicles may not receive all the VPackets, based on which the location proofs are 

constructed. Our scheme addresses this issue by letting RSU broadcast multiple 

VPackets within a coherence time period and designing a DTW-based algorithm 

that can effectively deal with missing data points when comparing two RSS series. 

However, the VPacket losses scenario was not fully manifested in our real-world 

experiments, since we did not have a busy wireless environment on the road. To 

evaluate how our solution deals with VPacket losses, we simulated the losses by 

randomly taking VPackets out from an honest user trace based on certain prob­

ability. Then we constructed the RSS series from the user trace with missing



VPackets, and compared it with the corresponding DB RSS series. Figure 57(a) 

shows the performances of the direct distance algorithm (i.e., directly compared 

two series without performing the DTW process) and the DTW algorithm in deal­

ing with traces with missing VPackets. We can see that the DTW algorithm keeps 

the similarity score between the honest user trace with missing VPackets and the 

corresponding DB trace staying above the acceptance threshold as the VPacket 

lost probability goes up to 70%. In other words, for an honest user trace, as long 

as 3 of the 10 VPackets sent within the coherence time are received, our DTW 

algorithm can correctly mark it as valid.

Dealing with guessed RSS series. In this experiment, we considered the 

case that a malicious user submits location proofs with guessed RSS values in 

the hope that the restored RSS pattern can match the DB RSS traces. We first 

constructed an RSS series by randomly generating RSS values that are within 

the RSS range in our experiments. Then we simulated the malicious user has 

correctly guessed the value of an data point by replacing a random data point of 

this guessed series with a corresponding real data point in one of our user RSS 

series. We increased the proportion of the replacement to see how our scheme 

responds. Figure 57(b) shows the result. We can see that for a malicious user to 

get his RSS series accepted, he needs to correctly guess more than 80% of the 

data points. Since there are usually hundreds or thousands of data points in an 

RSS series (as in our experiments), we can draw a conclusion that the probability 

of a malicious user successfully makes a guessed RSS series accepted by our 

scheme is very low.

Evaluating RSS series quantization. This experiment evaluates how the 

quantization alphabet size K  affects the similarity score of two RSS series. We 

consider both the case of matched RSS series and the case of mismatched RSS 

series. For the matched case, we compared 51, 52 and 53, which are three 

user RSS traces collected at the road section A, with the DB RSS trace of road
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section A (Figure 58 (a)). For the mismatched case, we compared 51, 52 and 53 

with the DB traces of the road section A and road section B respectively (Figure 

58 (b) and (c)). We can see that when choosing 4 and 0.8 as the values for 

parameters K  and stflr(,sh, our scheme can correctly identify the RSS patterns 

of traces collected at the same location and also correctly distinguish the RSS 

patterns of traces collected at different places. According to our experimental 

results, we can develop an empirical formula to determine the value of K: K  = 

3 -f [(0.9 — Sthresh) x 10J.

Evaluating different similarity comparison methods. Our solution applies 

a DTW algorithm in the RSS series similarity comparison scheme. For a good 

similarity comparison scheme, the range of similarity scores it generates when 

comparing two similar series should be as narrow as possible, because a wide 

range of scores would make it hard to determine the similarity threshold, and it 

would likely lead to false positives or false negatives.

In this experiment, we compare three methods in terms of their ability to pro­

duce narrow score range when comparing two similar series. The first method 

dynamic time warping (DTW), where the similarity score is calculated based on 

the warped versions of the two quantized RSS series. The second method is di­

rect distance (DD), where the similarity score is calculated directly based on the 

two quantized RSS series. The third method we compare is the Discrete Fourier 

Transform (DFT) method. DFT is a classical method to compare the similarities 

between time-series [128,129], With this method, DFT is first applied to the two 

time-series to compare. Then the two series are represented by the 2 f c coeffi­

cients of the first f c frequencies of their DFT result. Here f c is called the “cutoff 

frequency”. Then the similarity is quantified as the distance between the two 2 / c- 

dimension vectors. We have tried this method as the RSS series comparison 

method for our scheme. Suppose after applying DFT, two RSS series 5 r and 52 

are presented as two 2 / c-dimension vectors < afuCoa,a fuain, ■ ■ ■ ,a fctCoa,a fC)ain >
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and < pfucosJfusin, ■ ■ ■ i fifc,cost fifc,am >, the similarity score between Si and S2 is 

computed as _________ ___________
s im s c o re  = 1 -------- -—i--------7-------------------------------------------------------------- , (0 .5)

]E ^ B I G G E R i m s ^ m s ^ i )

where mSk,i {k =  1,2,* e [1 , / c]) is the magnitude of the i-th frequency in the 

DFT result of series Sk, i.e., mSkli =  sJdlC0S + 0?ain, here ei)COS/di<ain are a iiCOS/ a Mi„ 

if k =  l, and ei<cosIOiMn are A ,«./A ,4in if fc = 2; and function BIGGER(-) that 

returns the bigger value of its parameters.

We used the three methods (DTW, DD and DFT) to compare 25 of the (hon­

est) user traces against their corresponding DB traces. The distribution of the 

computed similarity scores is plotted in Figure 58 (d). In the figure, the top/bottom 

whiskers show the maximum/minimum values of the similarity scores. The top/bottom 

of the boxes represent the upper/lower quartiles of the similarity scores, and the 

bars within the boxes represent the mean values of the scores computed by the 

three methods. Through this figure we can see that the DTW method outperforms 

the other two methods in that it produces the narrowest range of similarity scores, 

which makes it most suitable to serve as our RSS series comparison method.

6.7 Conclusion

VProof is a lightweight and privacy-preserving location proof solution that does 

not rely on PKI systems. We built a VProof prototype system and evaluated it 

with extensive experiments performed on actual road conditions. The evaluation 

results show that VProof can effectively verify if users’ location claims match their 

historic locations without harming their location privacy.
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7 Conclusion and Future Work

In this dissertation, we propose our work of providing efficient services for mo­

bile applications in smartphones. We have conducted five projects to improve the 

efficiency of three major services for smartphone applications: wireless commu­

nication service, power management service, and location reporting service. In 

this chapter, we summarize the five projects, and introduce our experience and 

lessons learned from each of the them, as well as from five of them as a whole.

We first presented the details of ETCH, which improves the efficiency of wire­

less communication service by enhancing spectrum utilization efficiency for cogni­

tive radio communications. High channel availability is the key advantage brought 

by the cognitive radio technology. Therefore, when we design algorithms or sys­

tems for cognitive radio networks, we should keep this in mind so that we can fully 

take advantage of the benefits of cognitive radios. In our ETCH project, the core 

idea is to spread the load of communication rendezvous to all the rendezvous 

channels so that the wide channel availability in cognitive radio networks can be 

fully utilized. Our evaluation shows that, by fully taking advantage of the high 

channel availability, our solution achieves better throughput, requires less time 

to rendezvous, and scales better when there was a large amount of concurrent 

communications.

For the power management service in smartphones, we presented HoWiES, 

CacheKeeper, and an accurate CPU power modeling approach for multicore smart­

phones, each of which improves the power management service from a different
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perspective. HoWiES achieves energy savings for WiFi communications in smart­

phones by exploiting low-power ZigBee radio interface. Wireless communication 

energy efficiency is one of the most important factors that affect smartphone user 

experiences, because almost every smartphone application requires some sort of 

wireless communication. Our study shows that it is promising to exploit the het­

erogeneous radio capabilities to achieve wireless communication energy saving 

in smartphones. In HoWiES, we utilize energy-efficient ZigBee radio to perform 

WiFi operations that are not forming real communications, and therefore allow 

WiFi radio to stay in low power mode to conserve energy during those WiFi oper­

ations. The key technical challenge is to build a method to enable communication 

between WiFi and ZigBee. Our WiFi-ZigBee message delivery scheme is an effort 

that addresses this challenge. Prior to our project, most works on heterogeneous 

radio coexistence were to minimize interferences between incompatible radios. 

Our work shows that the notion of facilitating communication between heteroge­

neous radios can also bring great benefits. Beside energy saving, we plan to 

exploit this notion in other scenarios like smart home applications in the future.

CacheKeeper is a system-wide HTTP caching service for reducing energy con­

sumption of web based applications. The source of the energy saving is the im­

perfect web caching we found in many smartphone applications through an ex­

tensive and systematic Android application survey. The causes of the imperfect 

web caching are twofold: lack of library support and ignorance from developers. 

To provide correct web caching for smartphone application while taking the de­

velopment burden off from developers, we propose to provide web caching as 

a system service in smartphones. CacheKeeper is a system we designed and 

implemented for this purpose. Our real-world evaluation shows that our system 

can significantly improve the performance and energy efficiency of smartphone 

applications without changing them. The lesson we learned from this project is 

that it is worthwhile to implement a solution as a system service, if the problem
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that the solution tends to solve is widespread with user space applications.

Our CPU power modeling project, to the best our knowledge, is the first ef­

fort in exploring CPU power modeling in smartphones. In this project, we have 

found that the existing approaches for modeling CPU power consumption are not 

well suited for modern multicore smartphones. The root cause is that the exist­

ing approaches do not consider the impacts of CPU idle power states. In fact, 

CPU idle power states, as we showed in our experiments, could significantly af­

fect CPU power consumption. Therefore, we designed an idle-power-state-aware 

approach to model CPU power consumption in smartphones.

For the location reporting service, we presented VProof, which is a lightweight 

and privacy preserving location proof scheme for smartphone applications in the 

context of vehicular networks. Location proof is important to the proper functioning 

of the emerging location based service (LBS) applications in smartphones. In 

this project, we have learned that the existing location proof solutions cannot well 

protect users’ location privacy, and cannot scale well to large amount of users. 

To address these limitations, we propose a scheme that utilizes received signal 

strength of wireless communication packets as location proofs, and uses dynamic 

transmission power at the APs to achieve the security and privacy guarantees.

Besides the detailed experiences that are specific to each of the projects, we 

have also learned several lessons from this dissertation work as a whole. In the 

following, we discuss two of them.

First, we learned that at the early stage of a research project, it is important 

to conduct a systematic real-world study to thoroughly understand the problem 

to tackle. On one hand, this type of study can give us deeper understanding 

about the sources of the problem, which in turn would help the problem-solving. 

For example, in the HoWiES project, our extensive measurement study helped 

us find the three scenarios for WiFi energy saving. In the CacheKeeper project, 

the large-scale Android application survey helped us understand the imperfect
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web caching problem from the perspective of individual smartphone applications. 

In the solution design of CacheKeeper, we needed to address the same-click 

redundancy that we found in the survey. On the other hand, this early stage study 

can also lead us to the foundation of the solution. For instance, in the VProof 

project, our measurement study in vehicular networks allowed us to find the two 

important observations that eventually served as the foundation of our RSS-based 

location proof scheme.

Second, we learned that it is meaningful and rewarding to reexamine the “old” 

topics in new settings (e.g., with a new application/service, with a new hard­

ware). For example, our CacheKeeper project essentially studied a decades-old 

research problem: web caching. It seemed that every aspect of web caching has 

been well studied. However, as smartphone applications are getting popular, web 

browser is no longer the single source of web content consumer in smartphones - 

applications made by different developers are also the major sources of web traf­

fic. This new trend brought a new problem on how different applications behave 

in web caching, which was the target of our Android application survey. Another 

example is in our smartphone CPU power modeling project, the problem of model­

ing CPU power consumption itself has been widely studied in the x8 6  architecture. 

Many solutions have been proposed because of that. However, as we discussed 

previously, these solutions cannot be directly applied to the ARM architecture, 

which is the dominant architecture in smartphones. Therefore, it is worthwhile to 

reexamine the CPU power modeling problem in the context of smartphones.

7.1 Future work

We plan to continue our research of providing efficient services for smartphones 

such that mobile applications can run more smoothly and consumes resources 

more effectively. Specifically, we will focus our attention on the following direc­
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tions.

First, connectivity is the key factor that enables mobile and ubiquitous comput­

ing, and also the main reason for the popularity of smartphones. Therefore, we 

would like to invest more efforts in improving the wireless communication service 

in smartphones. For example, so far our research has been focusing on improving 

communication performance between phone and phone or between phone and 

infrastructure. As wearable devices, such as smart watches and smart glasses, 

are getting popular, systems that integrate smartphones and wearable devices 

are receiving more attention. We are interested in exploring how to provide ef­

ficient communication between smartphones and wearable devices. Meanwhile, 

as cloud computing is getting mature, the desire of integrating mobile comput­

ing and cloud computing is becoming prominent. We plan to investigate improv­

ing communication efficiency between smartphones and the cloud under different 

cloud services.

Second, we plan to continue our research in improving the power management 

service for smartphones, especially for the increasingly popular multicore smart­

phones. Though power management of multicore CPUs has been studied for 

years for desktops and servers (with x8 6  architecture CPUs), the research results 

there could barely fit to mobile devices, where CPUs with fundamentally different 

architectures (e.g., ARM, MIPS) are being used. For example, as we showed 

in Chapter 5, hardware events based CPU power modeling approaches, which 

are proposed by many x8 6 -based works, cannot be applied in ARM-based CPUs, 

simply because the hardware events are not provided by ARM-based CPUs. In 

addition, recent advancements in mobile device multicore CPUs (e.g, octa-core 

design, ARM big.LITTLE technology) further allow power management in mobile 

devices with multicore CPUs to be a fertile ground for research projects.

Third, high level of security/privacy-protection is an equally important aspect 

as high energy efficiency and good performance in smartphones. Thus, offering
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security and privacy monitoring services in smartphones is in our future agenda. 

We are interested in exploiting emerging technologies in mobile computing hard­

ware in enhancing mobile/embedded system security and protecting user privacy. 

Many of these technologies may have been widely utilized for long time in ordinary 

(i.e., x8 6 -based) computer systems. The different operating systems and applica­

tion scenarios in mobile systems like smartphones still allow these technologies 

to be fairly promising in mobile system research. For example, it is timely and 

promising to study utilizing virtualization technology in detecting smartphone mal­

ware and protecting smartphone user privacy. Although the virtualization tech­

nology (x8 6 -based) has been used in PC/server malware detection for about a 

decade, in mobile system area, hardware-assisted virtualization in the ARM ar­

chitecture is available only since the unveiling of ARM Cortex-A15 MPCore on 

the year of 2013. Since smartphone operating systems (e.g., Android, iOS) have 

data/control flow design that is different from PC/server OS, there are plenty re­

search space in applying virtualization technology in improving smartphone sys­

tem security and privacy.
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