
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2015

Providing efficient services for smartphone applications Providing efficient services for smartphone applications

Yifan Zhang
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Zhang, Yifan, "Providing efficient services for smartphone applications" (2015). Dissertations, Theses, and
Masters Projects. Paper 1539624007.
https://dx.doi.org/doi:10.21220/s2-vftw-dr97

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539624007&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539624007&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-vftw-dr97
mailto:scholarworks@wm.edu

Providing Efficient Services for Smartphone Applications

Yifan Zhang

Liuzhou, Guangxi, China

Bachelor of Engineering, Beihang University, 2004

A Dissertation presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

The College of William and Mary
August, 2014

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Yifan Zhang

Approved by the Committee, August, 2014

Committee Chair
Associate Professor Qun Li, Computer Science

The College of William and Mary

Associate Professor Peter Kemper, Computer Science
The College of William and Mary

Professor Weizhen Mao, Computer Science
The College of William and Mary

Associate Professor Haining Wang, Computer Science
The College of William and Mary

Associate Professor Gexin Yu, Matherfiatics
The College of William and Mary

ABSTRACT

Mobile applications are becoming an indispensable part of people's lives, as they
allow access to a broad range of services when users are on the go. We present
our efforts towards enabling efficient mobile applications in smartphones. Our
goal is to improve efficiency of the underlying services, which provide essential
functionality to smartphone applications. In particular, we are interested in three
fundamental services in smartphones: wireless communication service, power
management service, and location reporting service.

For the wireless communication service, we focus on improving spectrum
utilization efficiency for cognitive radio communications. We propose ETCH, a
set of channel hopping based MAC layer protocols for communication
rendezvous in cognitive radio communications. ETCH can fully utilize spectrum
diversity in communication rendezvous by allowing all the rendezvous channels
to be utilized at the same time.

For the power management service, we improve its efficiency from three
different angles. The first angle is to reduce energy consumption of WiFi
communications. We propose HoWiES, a system for WiFi energy saving by
utilizing low-power ZigBee radio. The second angle is to reduce energy
consumption of web based smartphone applications. We propose
CacheKeeper, which is a system-wide web caching service to eliminate
unnecessary energy consumption caused by imperfect web caching in many
smartphone applications. The third angle is from the perspective of smartphone
CPUs. We found that existing CPU power models are ill-suited for modern
multicore smartphone CPUs. We present a new approach of CPU power
modeling for smartphones. This approach takes CPU idle power states into
consideration, and can significantly improve power estimation accuracy and
stability for multicore smartphones.

For the location reporting service, we aim to design an efficient location proof
solution for mobile location based applications. We propose VProof, a
lightweight and privacy-preserving location proof scheme that allows users to
construct location proofs by simply extracting unforgeable information from the
received packets.

TABLE OF CONTENTS

Acknowledgements..

D ed ica tion ...

List of T a b le s ...

List of Figures...

1 Introduction..

1.1 O verv iew ..

1.2 Problems and contributions...

1.2.1 Achieving efficient rendezvous for cognitive radio commu

nications ..

1.2.2 Gaining energy savings for WiFi communications...........

1.2.3 Reducing energy consumption for web applications...............

1.2.4 Improving CPU power modeling for multicore smartphones. .

1.2.5 Enabling lightweight and privacy preserving location proofs

for location based service applications..................................

1.3 Summary and organization...

2 ETCH: Efficient Channel Hopping Based Communication Rendezvous

for Cognitive Radio Communications...

2.1 Background and related w o rk ..

2.1.1 Background...

2.1.2 Related w o rk ..

2.2 Problem Formulation...

2.2.1 Problem setting..

2.2.2 Metrics ...

2.2.3 Assum ptions..

2.3 SYNC-ETCH..

2.3.1 Two-phase CH sequence construction..................................

i

vi

vii

viii

xi

1

1

3

3

5

6

8

10

11

13

13

13

16

18

18

20

21

21

23

2.3.2 Single-phase CH sequence construction................................ 30

2.3.3 CH sequence execution..44

2.4 ASYNC-ETCH...45

2.4.1 An overview and an exam ple... 46

2.4.2 CH sequences construction.. 47

2.4.3 Proof of rendezvous..48

2.4.4 Additional discussion ...52

2.5 Comparisons... 53

2.6 Performance Evaluation.. 55

2.6.1 Comparing ETCH to the existing CH based communication

rendezvous p ro toco ls .. 56

2.6.2 Comparing the two algorithms in SYNC-ETCH.....................59

2.7 C onclusion.. 63

HoWiES: A Holistic Approach to ZigBee Assisted WiFi Energy Savings. 64

3.1 Background and related w o rk ..64

3.1.1 WiFi power m anagement... 64

3.1.2 WiFi energy saving opportunities.. 66

3.1.3 ZigBee radio assisted WFi energy s a v in g s70

3.1.4 Related w o rk ..71

3.2 System d e s ig n ...72

3.2.1 WiFi-ZigBee message delivery sch e m e72

3.2.2 HoWiES energy saving protocols...79

3.2.3 Discussions...82

3.3 System implementation...83

3.3.1 HoWiES c l ie n t ... 84

3.3.2 HoWiES A P ...86

3.4 System evaluation... 87

3.4.1 WiFi-ZigBee message de live ry ... 87

3.4.2 Energy gain achieved by the energy saving protocols 91

3.4.3 HoWiES wakeup delay ..93

3.4.4 WiFi signal strength indicator by using ZigBee94

3.5 C onclusion..95

CacheKeeper: A System-wide Web Caching Service for Smartphones . 96

4.1 Background and related W ork... 96

4.1.1 Background.. 96

4.1.2 Related w o rk ..97

4.2 Motivation... 99

4.2.1 Web caching imperfection in mobile a p p s99

4.2.2 Cross-app caching opportunities..107

4.3 System d e s ig n .. 108

4.3.1 Design goals and challenges..108

4.3.2 CacheKeeper architecture... 110

4.3.3 CacheKeeper in operation... 113

4.4 System implementation.. 114

4.5 Discussion .. 117

4.6 System eva luation...118

4.6.1 Case evaluation: app performance g a in s118

4.6.2 Controlled evaluation ... 122

4.7 C onclusion.. 125

Achieving Accurate CPU Power Modeling for Multicore Smartphones. . 126

5.1 Background and related w o rk ..126

5.1.1 Background: smartphone CPU power m anagem ent.............126

5.1.2 Related w o rk ..129

5.2 Limitations of the existing smartphone CPU power models................131

5.3 Idle-state-aware CPU power model... 134

5.3.1 Power modeling for a single CPU co re134

5.3.2 Power modeling for multicore C P U ... 137

5.4 System design and implementation...138

5.5 Evaluation...142

5.5.1 Experimental S e tu p .. 142

5.5.2 Experimental R e s u lts ... 146

5.6 C onclusion..151

6 VProof: Lightweight and Privacy Preserving Vehicle Location Proofs . . 152

6.1 Background and related w o rk ..152

6.1.1 Background...152

6.1.2 Threat m o de l... 154

6.1.3 Related w o rk ..155

6.2 Motivation...157

6.2.1 Limitations of the current location proof so lu tions.................. 157

6.2.2 The observation on RSS patterns of RSU packets with a

fixed transmission p o w e r .. 158

6.2.3 The observation on relatively constant RSS difference of

packets with two different transmission pow ers159

6.3 S olu tion..160

6.3.1 An overview ..160

6.3.2 PRE-1: VPacket RSS trace database construction................162

6.3.3 PRE-2: RSU secrets and VPacket rate configuration 163

6.3.4 DUR-1: VPackets broadcast (by RSU)....................................163

6.3.5 DUR-2,3: Location proof construction and submission (by

vehicles) ..165

6.3.6 DUR-4: Location proof verification (by ITS operators)165

6.4 Threat prevention analysis... 171

6.5 Discussion .. 172

6.6 Evaluation... 174

iv

6.6.1 Implementation and experimental s e tu p 174

6.6.2 Experimental resu lts ..176

6.7 C onclusion ..181

7 Conclusion and Future W o rk ..182

7.1 Future w o rk ... 183

Bibliography...185

v

ACKNOWLEDGEMENTS

First of all, my sincere appreciation goes to my advisor and dissertation
committee chair, Dr. Qun Li. Qun led me into the wonderful academic world, and
has guided and inspired me every step along the way towards this dissertation.
He has always been there offering me his insightful advice and encouragement
when I needed them most. The most precious experience I learned from him is
being persistent in working hard towards our goal, which would eventually help
us sail to the destination. This six yeas’ experience of working with Qun is
invaluable to me, and will continue to influence my future career.

I would like to thank my committee members, Dr. Peter Kemper, Dr. Weizhen
Mao, Dr. Haining Wang and Dr. Gexin Yu, for their effort and advice in helping
me improve this dissertation. I would like to thank Dr. Gexin Yu, for his
tremendous help in my first research project, which set a good start of my Ph.D
study. I would like to deliver my special thanks to committee members, Dr. Peter
Kemper, Dr. Weizhen Mao and Dr. Haining Wang, as well as my internship
advisor at Microsoft Research Dr. Yunxin Liu, for their assistance in my job
search process.

I am grateful to have the experience of working with many brilliant people here at
William and Mary. I would like to thank the three senior members of the research
group, Haodong Wang, Bo Sheng, and Chiu Tan, for their help when I first
entered the program. My special thanks goes to Chiu, for the many discussions
and suggestions that helped me grow as a researcher. I would like to thank
Fengyuan Xu, Wei Wei, Hao Han, Zhengrui Qin for their support and friendship.
Being able to having them around for almost my entire Ph.D had made my work
and life much easy and enjoyable. I would also like to thank all the past and
current members of my research group, including Lei Xie, Xiaojun Zhu,
Baosheng Wang, Huda El Hag Mustafa, Ed Novak, Nancy Carter, Zijiang Hao,
Yutao Tang, Shanhe Yi and Cheng Li. It is always been my pleasure to have the
opportunity to work with them.

I appreciate the hard work of the staff in the Computer Science Department at
William and Mary. In particular, I would like to thank Vanessa Godwin, Jacqulyn
Johnson and Dale Hayes, for all their help during my Ph.D. I would like to thank
Dr. Phil Kearns and the Techie team, for their hard work of maintaining a smooth
and state-of-art work environment for us.

Finally, I would like to express my deepest gratefulness to my dear family. It is
undoubted that this dissertation would not have been possible without their firm
support over the years. I would like to especially thank my wife, Yu Peng, who
has been always at my side and helped me go through each and every tough
moment during my PhD. I would like to thank the four parents, mine and Yu’s, for
their unconditional love. This work is dedicated to my beloved family.

vi

To my beloved family, especially to my parents, Bingkun Zhang and Aimin Li.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

LIST OF TABLES

Comparisons between communication rendezvous protocols................... 54

System power consumption in WiFi scanning s ta te 66

System power consumption in WiFi standby state67

Power consumption of CC2420 and BCM4330... 69

OSes and WiFi drivers of implementation devices84

Reliability and accuracy of the implemented WiFi-ZigBee message de

livery scheme in the uncontrolled experiment....................................... 87

Summary of the app measurement study... 102

Summary of the app measurement study (continued)............................... 103

HTTP traffic ratios of the 10 tested apps.. 119

CPU Idle Power States in Nexus 4... 128

Time duration per second and number of state entries per second in

two workloads of the same CPU utilization (50%) under the same

CPU operating frequency (1,512 Mhz)..133

CPU power with different number of cores running (with utilization U -50%). 137

Benchmarks tested in the evaluation..143

Major notations.. 162

viii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

LIST OF FIGURES

Summary of the problems... 11

Rendezvous scheduling of the two-phase CH sequence construction. . 23

Rendezvous channel assignment of the two-phase CH sequence con

struction.. 24

Illustration of the single-phase CH sequence construction.........................34

Example with a DSA network that has 5 rendezvous channels................. 35

Dividing the edges of a CMCB with 3 M CBs... 40

Dividing the edges of a CMCB with n M CBs ..41

CH sequences of a DSA network with 5 rendezvous channels................. 46

ASYNC-ETCH CH sequences construction in a DSA network with 4

rendezvous channels... 53

Throughput performances of the synchronous protocols........................... 58

TTR performances of the synchronous protocols....................................... 58

Throughput and TTR of the asynchronous protocols................................. 60

Channel appearance evenness score of the two-phase CH sequence

construction algorithm. (The evenness score of the single-phase

algorithm is always 1)...60

Rendezvous miss ratio vs. channel appearance evenness score 61

WiFi power management...65

The experiment on WiFi standby time...68

WiFi packets airtime distribution..73

An example of background packet interference..77

HoWiES scanning and association operations... 80

HoWiES standby and wakeup operations...83

HoWiES implementation..84

ix

22 Reliability and accuracy of the implemented WiFi-ZigBee message de

livery scheme in the controlled experiment... 87

23 HoWiES WiFi-ZigBee message delivery overheads................................90

24 Energy gain on the WiFi scanning state...91

25 Energy gain on the WiFi standby state...92

26 Empirical HoWiES wakeup delay CDFs of a normal Galaxy S2 and a

HoWiES-enabled Galaxy S2..93

27 Accuracy of ZigBee based WiFi signal strength indicator. 94

28 Correlation between per-click HTTP traffic and (a) the number of apps

with imperfect web caching, and (b) the average inter-click redun

dant HTTP traffic ratio.. 101

29 Distribution of inter-click redundant traffic ratio: (a)-(c) show the CCDF

of the redundant ratio for the apps with inter-click redundant traffic in

the top 3 categories with the most per-click HTTP traffic; (d) shows

the same statistics for all the imperfect apps.. 104

30 CCDF of the same-click HTTP redundant traffic ratio................................104

31 Content type breakdowns for (a) number of apps and (b) redundant

HTTP traffic.. 105

32 Web caching imperfection and app rankings... 106

33 CacheKeeper architecture.. 110

34 Entry structures of ORT and CLT... 111

35 CacheKeeper implementation: (a) location in Linux kernel; (b) the user

configuration interface..115

36 Source breakdown of HTTP traffic reduction ratio for the 10 tested apps. 119

37 Web content rendering speedup of the 10 tested apps under different

transmission bandwidths..121

38 Transaction times under different system loads....................................... 122

39 Processing time overhead...123

x

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Power consumption overhead...124

Workloads running in multicore CPU with the same CPU utilization and

frequency consume notably different amounts of CPU power............. 131

Single-core power model development.. 135

System overview..139

Data structure used in the data collector... 140

Single-core model accuracy with MiBench benchmarks............................142

Estimation ratios of the four utilization based models (single-core). . . .142

Single-core model accuracy with real mobile applications.........................147

Estimation ratio vs. utilization... 149

Multicore model accuracy with MiBench benchmarks................................149

Multicore model accuracy with real mobile applications............................ 150

RSS pattern of packet series collected at different times...........................158

RSS of two RSU packet series with different tx powers.............................159

Operation flow of VProof... 161

The six possible trajectories of a “T” shape crossing................................. 163

Converting the original sequences to warped sequences......................... 170

RSS patterns comparisons of RSS series collected at the road section A. 175

Dealing with VPacket losses and guessed series...................................... 177

Determining quantization alphabet size K and comparing different sim

ilarity comparison methods..178

xi

1 Introduction

1.1 Overview

Since the emergence of smartphones, users have been able to enjoy traditional

mobile applications (e.g., phone calls and SMS) as well as many new applications

with their mobile phones. Smartphone applications are now tapping into virtually

every aspect of people’s lives, spanning from online banking to health monitoring,

from news reading to mobile gaming, and from trip planning to video streaming.

Applications that can efficiently utilize smartphone resources (e.g., CPU, battery,

and network bandwidth) are important to both smartphone owners and service

providers. Because they can not only bring better user experience (e.g., smaller

response time and longer battery life) for smartphone owners, but also lead to

more optimal resource usage (e.g., better bandwidth utilization ratio and smaller

computation overhead) for mobile service providers. Therefore, enabling efficient

mobile applications in smartphones has been an important topic in mobile com

puting research.

Smartphone applications rely on different services provided by the smartphone

operating system to offer good user experience and achieve optimal resource us

age. Each service provides a specific kind of functionality that is necessary for

many applications running in the phone. Wireless communication, battery power

management, and location dependent applications are the three most important

aspects that set smartphone based computing different from traditional PC com

1

puting. Therefore, we are interested in improving the following smartphone ser

vices that are related to these three aspects.

• Wireless communication service provides wireless connectivity for smart

phone applications. Compared to applications in PCs, the most salient fea

ture of smartphone applications is that they allow a user to access resources

in the Internet in a wireless manner or to connect to other users even when

she is on the go. Most smartphone applications need to use at least one kind

of wireless connection (e.g., cellular, WiFi and Bluetooth). A recent survey

on 856 free Android applications and 100 paid Android applications reveals

that 87% of free and 66% of paid Android applications request permissions

of accessing wireless network [1], Therefore, improving efficiency of wire

less communication service is key to enhancing efficiency of smartphone

applications.

• Power management service allows smartphone applications to use battery

power efficiently. Because smartphones are powered by batteries, the us

ability of smartphone applications is affected by one important factor, which

is not so significant in traditional PC computing - power efficiency. There

fore, improving efficiency of power management service in smartphones is

important to providing good user experience.

• Location reporting service enables location based service (LBS) applica

tions in smartphones. LBS is an important category of services enabled

by the proliferation of smartphones. LBS utilizes smartphones’ on-board

chips/sensors, such as GPS, cellular, gyroscope and accelerometer, to re

port phones' geolocations, based on which mobile applications can provide

customized services to the users. Examples of well-known LBS applica

tions on the Android platform include Google Maps [2] (which provides map

and real-time navigation services based on user's geolocations), Facebook

2

[3] and Foursquared [4] (both of which allow users to “check in" different

venues and post comments and ratings about the venues), and GasBuddy [5]

(through which users can report fuel prices they see and find the gas sta

tions providing satisfying prices based on other users’ reports). Improving

efficiency of location report service is of great benefit to these LBS mobile

applications.

In this dissertation, we present our efforts in improving efficiency of the above

three most important services that differentiate smartphone based computing from

traditional PC based computing. In the next section, we give an overview of the

problem of each effort, as well as our contribution of solving the problem.

1.2 Problems and contributions

1.2.1 Achieving efficient rendezvous for cognitive radio com

munications

Wireless communication service is critical to the proper functioning of mobile ap

plications. However, as smartphones and other mobile devices are getting pop

ular, we are facing a severe wireless spectrum deficiency problem, where the

unlicensed band are becoming too crowded to achieve good wireless communi

cation performance. Cognitive radio is a promising technology to solve this spec

trum scarcity problem. In this technology, cognitive radio transceivers can au

tomatically detects available wireless channels, and changes its transmission or

reception parameters accordingly so that more wireless communications may run

concurrently in a given spectrum band [6]. With the introduction of cognitive ra

dios and dynamic spectrum access (DSA for short) management, those previously

closed licensed spectrum, whose bandwidth is much larger than that of unlicensed

spectrum, can be opened to unlicensed wireless users without affecting the nor-

3

mal operations of the licensed users. Because of the great benefits that could

be brought by cognitive radios, we believe that smartphones will be shipped with

cognitive radios as the technology matures in the near future. Therefore, study

ing how to improve efficiency of cognitive radio communications is an important

direction of providing good wireless communication service to mobile applications

in smartphones.

In cognitive radio communications, unlicensed users (i.e., secondary users)

are granted the access to the licensed spectrum if it is not being used by the li

censed users (i.e., primary users). In the meantime, secondary users should yield

the working wireless channel if the primary user appears. The dynamic availability

of wireless spectrum requires secondary users to hop on different wireless chan

nels, rather than staying in the same channel. Therefore, for two secondary users

without knowing each other’s working channel for communication, they need to

first establish a control channel, upon which they exchange certain control infor

mation, such as communication channel and data rate, before they can start the

data communication. The process of establishing control channel for the pair of

secondary users is called communication rendezvous.

Existing solutions fall short of providing a solution for communication rendezvous

that can efficiently utilize wireless spectrum. For example, the state-of-the-art

channel hopping based solution can only guarantee one channel to be utilized

at the same time [7], To solve the problem, we propose ETCH, efficient channel

hopping based MAC-layer protocols for communication rendezvous in cognitive

radio communications [8,9], Compared to the existing solutions, ETCH fully uti

lizes spectrum diversity in communication rendezvous by allowing all the ren

dezvous channels to be utilized at the same time. We propose two protocols,

SYNC-ETCH, which is a synchronous protocol assuming secondary users can

synchronize their channel hopping processes, and ASYNC-ETCH, which is an

asynchronous protocol not relying on global clock synchronization. Our theoreti

4

cal analysis and ns-2 based evaluation show that ETCH achieves better perfor

mances of time-to-rendezvous and throughput than the existing work.

1.2.2 Gaining energy savings for WiFi communications

Wireless communication service enables connectivity between smartphones. How

ever, it is also a major source of power consumption in smartphones. An effi

cient power management service is important for prolonging battery life for smart

phones. In this effort, we aim to improve smartphone power management service

by gaining energy savings for WiFi communications.

WiFi is the one of the two most commonly used means for data transmission in

smartphones (with the other one being cellular based data transmission). WiFi in

terface consumes a considerable amount of power when it is active, and is a major

source of energy consumption affecting user experience. Therefore, studying how

to gain energy savings from WiFi communications is a crucial step towards pro

viding good power management service to mobile applications in smartphones.

We observe that there are three scenarios where a WiFi radio has to stay

active without performing any real communications.

• First, a WiFi radio has to stay active to scan for networks in the scanning

state. The power consumption for network scanning is considerably salient

for the lack of WiFi coverage in many places.

• Second, during PSM (Power Save Mode) standby, a WiFi radio needs to

constantly switch to active to receive wireless access point (AP) beacons

and check if the AP has buffered its packets. Recent work [10,11] show that

users usually leave their smartphones idle for most of the time. The long idle

time contributes to a non-negligible amount of WiFi energy consumption.

• Third, when waken up from PSM standby, a WiFi radio has to stay active

doing nothing while waiting for its turn to communicate with the AP if there

5

are multiple devices contending for the channel.

The WiFi radio power consumptions in the above scenarios are significant: our

measurements show that the power consumptions of WiFi scanning and PSM

standby in a Samsung Galaxy S2 smartphone account for 65% and 11% of the

entire system power consumption respectively, and recent work [12,13] show that

the wakeup contentions could cause up to four times more power consumption.

We propose HoWiES, a system that saves energy consumed by WiFi inter

faces in mobile devices with the assistance of ZigBee radios [14,15]. The key

idea of HoWiES is that the operations of a WiFi radio in above scenarios can be

delegated to a low power ZigBee radio. In this case, WiFi radio will be turned

off when there is no packet to transmit and receive, and the ZigBee radio is re

sponsible for discovering the presence of WiFi networks and detecting if the AP

intends for the device to communicate. This way, the significant power consump

tions on WiFi radio in those scenarios are reduced to the reasonably low power

consumptions on ZigBee radio. The core component of HoWiES is a WiFi-ZigBee

message delivery scheme that enables WiFi radios to convey different messages

to ZigBee radios in mobile devices. Based on the WiFi-ZigBee message delivery

scheme, we design three protocols that target at three WiFi energy saving op

portunities in scanning, standby and wakeup respectively. We have implemented

the HoWiES system with two mobile devices platforms and two AP platforms. Our

real-world experimental evaluation shows that our system can convey thousands

of different messages from WiFi radios to ZigBee radios with an accuracy over

98%, and our energy saving protocols, while maintaining the comparable wakeup

delay to that of the standard 802.11 power save mode, save 88% and 85% of

energy consumed in scanning state and standby state respectively.

1.2.3 Reducing energy consumption for web applications.

6

In this effort, we are trying to improve the power management service by reducing

energy consumption caused at the application layer.

Web traffic is the dominant type of Internet traffic [16], and with the popularity of

smartphones and tablets, an increasing amount of web traffic originates from mo

bile devices. The mobile web traffic has grown 35% in under a year [17], and now

accounts for 20% of the U.S. web traffic [18]. Unlike conventional PCs, where

web browser is the dominant source of web traffic, smartphones have another

significant source of web traffic: dedicated mobile apps. The dedicated apps are

getting popular because they provide users with convenient user interfaces that

are tailored according to specific tasks and smartphones' physical constraints.

The popularity of dedicated mobile apps has led online content providers to de

velop their own dedicated app to interact with their web services. Consequently,

the diversity of apps and their developers has resulted in certain apps not being

fully compliant with Internet standards or guidelines.

Among those guidelines, guideline on web caching is an important one for en

ergy consumption and performance of web based applications. This is because

an appropriate web caching implementation in mobile apps will benefit both users

and network operators. With such an implementation, users can (a) conserve en

ergy by reducing unnecessary data transmissions, (b) experience a higher quality

of service, since the data can be accessed faster locally, and (c) lower costs, since

users may have to pay a higher fee for downloading more data. Network oper

ators also benefit when mobile apps implement web caching correctly since this

reduces the congestion on the network, especially the last mile radio connections.

However, despite the importance of web caching, large numbers of mobile

apps have imperfect web caching, meaning that web caching is either imple

mented for only certain HTTP resources the apps request, or is not implemented

at all. The reason is that since apps without caching or with poor caching will still

have the “look-and-feel”, some developers will spend less time implementing and

7

testing the caching behavior of their apps.

We propose CacheKeeper, an OS web caching service transparent to mobile

apps for smartphones [19j. CacheKeeper provides the correct web caching im

plementation with no effort on the part of mobile app developers. Developers do

not need to install any additional libraries or incorporate any additional API calls to

take advantage of CacheKeeper. Furthermore, CacheKeeper is backward com

patible, meaning that existing apps can take advantage of CacheKeeper without

any modifications. We implemented a prototype of CacheKeeper in Linux kernel,

and evaluated it with extensive experiments. Our evaluation on 10 top ranked

Android apps shows that our CacheKeeper prototype can save 42% HTTP traf

fic with real user browsing behaviors and reduce web accessing latency by half

under real 3G settings.

1.2.4 Improving CPU power modeling for multicore smartphones.

CPU is a major source of power consumption in smartphones [20]. As multicore

smartphones become increasingly popular, CPU power consumption becomes

a much more significant component in the smartphone power consumption port

folio. For example, on a quad-core Samsung Galaxy S3 smartphone, the CPU

power is as high as 2,845 mW, which is 2.53 times of the maximum power of

the screen, and is 2.5 times of the maximum power of the 3G interface [21]. Ac

cording to our measurements, the CPU power consumption of the Google Nexus

series smartphones has increased significantly in the last three generations: the

CPU power consumption of a Google Nexus 4 smartphone (quad-core, the 4th

Nexus generation) could reach 4,065 mW, which is 2.03 times of the maximum

CPU power of a Galaxy Nexus smartphone (dual-core, the 3rd Nexus generation),

and is 4.51 times of that of a Nexus S smartphone (single-core, the 2nd Nexus

generation). Therefore, accurate estimation and efficient management of CPU

power consumption are among the most important issues in power management

8

of multicore smartphones.

Power modeling is a lightweight and effective approach to estimate power con

sumption of smartphone CPU. Proper and accurate power models of smartphone

components benefit both users and developers. Accurate power models help to

detect power hungry applications, and thus users get better battery life of their

smartphones [22], Accurate power models also help developers profile, and con

sequently optimize, the energy consumption of their smartphone applications [23].

Because of its importance, power modeling has been attracting an increasing

amount of research effort [24-29], In this project, we in particular study how to

build accurate models for CPU power consumption in multicore smartphones.

Existing CPU power modeling approaches for smartphones assume CPU op

erating frequency and CPU utilization are the only major factors that affect CPU

power consumption [24-26]. However, we find that this assumption does not hold

with multicore CPUs in modern smartphones: under the same frequency and CPU

utilization, two workloads with different CPU usage patterns could consume sig

nificantly different amounts of energy. Our experiments show that the difference

can reach 50% in a quad-core Google Nexus 4 smartphone. Therefore, existing

smartphone CPU power models are not suited for multicore smartphones. Our

measurements indicate that the existing CPU power models give an estimation

error as high as 34% on modern multicore smartphones. Moreover, the estimation

accuracy of existing models is also notably unstable: the same CPU power model

could generate an estimation variation larger than 30% for the different types of

workloads.

The root cause of the estimation inaccuracy and instability comes from multi

ple newly introduced CPU idle power states, which consume markedly different

amounts of power in multicore CPUs. We have carefully analyzed the impacts of

idle power states on CPU power consumption, and developed a new CPU power-

modeling method that treats CPU idle power states as a new major factor of CPU

9

power modeling [30]. As a result, the new modeling method is able to significantly

improve power estimation accuracy and stability. To the best of our knowledge,

our work is the first to target accurate CPU power modeling for multicore smart

phone CPUs.

1.2.5 Enabling lightweight and privacy preserving location proofs

for location based service applications

Location Based Service (LBS) application is a new and major category of applica

tions in smartphone applications. An important problem of providing trustworthy

LBS applications in smartphones is to enable efficient location proof schemes.

A location proof scheme allows LBS providers to verify if users’ location claims

are in accordance with their actual location history, and to exclude those falsified

ones. For example, in location based online social networks, such as Facebook

and Foursquared, users can post comments and ratings about the venues they

visited. Without proper location proof schemes, malicious users can comment

on any places without actually visiting them. Another example is in today’s In

telligent Transportation Systems (ITS), a popular category of applications is that

vehicles report information about the transportation system elements (e.g., drivers

and road conditions) to the ITS system for services like real time traffic control and

roads maintenance [31,32], Successes of recent research projects on vehicle-

based data sensing and collection [33-35] have bolstered such ITS data collec

tion applications. However, before accepting data about a location reported by a

vehicle, ITS operators need to verify if the vehicle visited the location at the time

indicated in the reported data. Failing to do so will allow malicious users to launch

an attack to the ITS system by reporting fake information about places where he

did not actually visit. The damages of the attack are particularly serious, since

the attacker can report fake information about numerous places by just clicking

mouse at home. Therefore, studying how to provide efficient location reporting

10

app appapp app

Network
communication

service
Power management service

Smartphone hardware

Location
reporting
service

Figure 1: Summary of the problems.

service is important to enable efficient LBS applications in smartphones.

We propose VProof, a vehicle location proof scheme that enables users on

vehicles to prove their location claims match their historical locations [36, 37],

With VProof, applications construct their location proofs by simply extracting rel

evant contents from the packets received from roadside units. Our scheme is

lightweight, since there is no communication required for a prover to obtain a lo

cation proof. Our scheme also well preserves users’ privacy, as we do not put

any information that can be related to a user’s ID in a location proof. We have im

plemented a prototype VProof system and evaluated it with extensive real-world

experiments. Our evaluation results show that VProof is able to reliably prove

vehicle’s locations without leaking any user privacy. Although our current design

and evaluation are performed on a vehicular basis, VProof can be extended to

other mobile scenarios (e.g., waling and bicycling) with simple modifications.

1.3 Summary and organization

This dissertation proposes to improve efficiency of smartphone applications by

improving the three fundamental services in smartphones: the wireless communi

11

cation service, the power management service, and the location reporting service.

We have conducted five projects for this purpose (summarized in Figure 1).

1. The first project (ETCH) improves the wireless communication service by

achieving efficient rendezvous for cognitive radio communications.

2. The second project (HoWiES) improves the power management service

from the perspective of WiFi communications.

3. The third project (CacheKeeper) improves the power management service

from the perspective of applications.

4. The fourth project (accurate CPU power modeling) improves the power man

agement service from the perspective of smartphone CPUs.

5. The last project (VProof) improves the location reporting service by providing

a lightweight and privacy-preserving location proof scheme.

The rest of the dissertation is organized as follows. In Chapter 2, we present

the details of ETCH. In Chapter 3, Chapter 4, and Chapter 5, we describe the three

projects for improving the power management service respectively: HoWiES,

CacheKeeper, and the accurate CPU power modeling method for multicore smart

phones. In Chapter 6, we present the details of VProof. Finally, we conclude the

dissertation and present our vision for future work in Chapter 7.

12

2 ETCH: Efficient Channel Hopping

Based Communication Rendezvous

for Cognitive Radio Communica

tions

Wireless communication is important to mobile application in smartphones. We

are facing an increasingly severe wireless spectrum scarcity problem, where the

unlicensed bands are getting overcrowded. Cognitive radio is a promising tech

nology to solve the problem, and thus is expected to shipped with future smart

phones. We studied how to achieve efficient communication rendezvous, which

is a critical step of establishing communication in cognitive radio networks.

2.1 Background and related work

2.1.1 Background

Communication rendezvous in cognitive radio (or dynamic spectrum access, DSA

for short) networks is the process of establishing a control channel between two

network nodes, over which they can exchange essential control information, be

fore the pair of nodes can communication with each other. The common control

channel approach, where a well-known channel is designated as control channel

13

for all nodes, is the most straightforward way to establish a control channel be

tween a pair of DSA nodes. However, it suffers from the channel congestion prob

lem and is vulnerable to jamming attacks [38]. Moreover, this approach cannot

be applied in DSA networks because the control channel itself may be occupied

by the primary user and hence become unavailable to the secondary users. The

channel hopping approach, by contrast, increases control channel capacity and

is immune to jamming attacks by utilizing multiple control channels. In this ap

proach, all idle network nodes hop on a set of sequences of rendezvous channels

(i.e., channels that are assigned for the purpose of control information exchange).

When two nodes wishing to communicate hop to the same channel, this channel

will serve as a control channel between the pair of nodes. The time that it takes

for a pair of nodes to establish the control channel is called "time-to-rendezvous"

or TTR for short.

To establish a control channel in DSA networks through channel hopping (ab

breviation CH), every pair of nodes should have chance to rendezvous with each

other periodically. In particular, due to the unique property of DSA networks that

the channel availability is dynamic, the control channel established between any

pair of nodes should equally likely be any one of the rendezvous channels. Other

wise, a pair of nodes would not be able to communicate if a primary user occupies

the channels on which they rendezvous, even though there may still exist some

other available channels to exchange the control information. QCH [7] is a recent

control channel establishment protocol specifically designed for DSA networks. It

utilizes the overlap property of quorums in a quorum system to develop CH se

quences such that any two CH sequences are able to rendezvous periodically.

Meanwhile, to accommodate the dynamics of the channel availability in DSA net

works, QCH guarantees that any two nodes can meet each other as long as there

are rendezvous channels not being occupied by primary users. While QCH is

more suitable for DSA networks scenario and has better performances than exist

14

ing CH-based multi-channel communication protocols, the following two concerns

motivated us to explore for a better scheme.

First, in the scenario where global clock synchronization is available for DSA

nodes to synchronize their channel hopping processes, QCH is only able to use

one rendezvous channel as control channel in each hopping slot. This approach

neglects the spectrum diversity, which is the most salient advantage brought by

the DSA technique, in control channel establishment, and thus will potentially lead

to severe traffic collision in a high probability. We propose SYNC-ETCH, a syn

chronous ETCH protocol, which efficiently exploits the spectrum diversity in a way

that every rendezvous channel can serve as a control channel in each hopping

slot. In SYNC-ETCH, while achieving the same goal, two CH sequence con

struction algorithms are proposed: two-phase CH sequence construction [8] and

single-phase sequence construction. These two algorithms are complementary

in design. The single-phase algorithm can guarantee the satisfaction of the even

use of rendezvous channels requirement, which states that all the rendezvous

channels should have the same probability to appear in each constructed CH se

quence. This requirement is important for CH based communication rendezvous

protocols, since if a CH sequence is heavily using a certain rendezvous chan

nel, the nodes hopping on this sequence will lose contact with other nodes if the

heavily relied channel is taken away by the primary user. The constraint of the

single-phase algorithm is that it requires the total amount of rendezvous chan

nels to be an odd number. The two-phase CH sequence construction algorithm

can be applied to DSA networks with an arbitrary number of rendezvous chan

nel, but it tries (cannot guarantee) to satisfy the even use of rendezvous channel

requirement. As will be showed later, both of the SYNC-ETCH CH sequence con

struction algorithms achieve the optimal average TTR under the premise that all

the rendezvous channels should be utilized as control channels in every hopping

slot.

15

Second, in the scenario where the channel hopping processes of different DSA

nodes are not synchronized, QCH only guarantees two of the rendezvous chan

nels to be used as control channels. This arrangement also does not take ad

vantage of spectrum diversity in DSA networks, and may lead to communication

outage when the primary users appear on the two channels. We propose ASYNC-

ETCH, an asynchronous ETCH protocol, which solves the problems by using all

rendezvous channels as control channels.

2.1.2 Related work

Channel hopping based rendezvous protocols in normal multi-channel wire

less networks. SSCH [39] is a well known synchronous communication ren

dezvous protocol for IEEE 802.11 network. In SSCH, each node hops on a se

quence of channels determined by multiple (channel, seed) pairs. The arrange

ment of the hopping sequence ensures that any two nodes have chance to ren

dezvous with very high probability. In very small chance that two nodes will never

meet, a parity slot with fixed channel is introduced to allow the two nodes to

communicate. CHMA [40] is another synchronous CH based rendezvous pro

tocol. It directs all nodes to hop on a common channel sequence such that any

two nodes can communicate while utilizing all the channels. These protocols for

normal multi-channel wireless networks do not take into account some important

properties of dynamic spectrum access (DSA) networks, e.g., dynamic availabil

ity of channels, and thus are not suitable to be applied in DSA networks. More

over, these protocols do not consider exploiting spectrum diversity in each hop

ping slot. DSA networks usually have much more spectrum diversity than normal

multi-channel wireless networks. Therefore, exploiting spectrum diversity in DSA

networks will bring much more performance gain.

Spectrum sharing in DSA networks. DSA network research can be divided

into the following areas [41]: spectrum sensing ([42-47]), spectrum management

16

([47,48]), spectrum mobility and spectrum sharing. Our work belongs to the area

of spectrum sharing. In this area, techniques can be categorized into two classes

based on network architecture. Techniques in the first class assume there is a

centralized entity that is responsible for the spectrum allocation for all the sec

ondary users in the network. DSAP [49] is a typical solution that belongs to this

category. The second class of spectrum sharing techniques perform the sharing

in a distributed manner. These techniques can be further divided into two groups

based on the assumption about the existence of a common control channel. Tech

niques in the first group (e.g., DOSS [50]) use common control channels that are

available to all secondary users for spectrum sharing information exchange. The

second group of techniques, which do not rely on common control channel, al

low DSA nodes rendezvous with each other and exchange spectrum sharing in

formation in a dynamic manner. Among these techniques, some are based on

channel hopping (detailed next) and some are not. HD-MAC [38] is a represen

tative distributed technique that ensure rendezvous in DSA networks not based

on channel hopping. In this scheme, secondary users self-organize into groups

based on similarity of available channels. In each of the groups, a group control

channel, elected by group members, is used to carry control information of the

group nodes. A weakness of HD-MAC is that it relies on all-channel broadcast to

spread spectrum availability information and control channel votes. Both sender

and receiver of a broadcast message need to rotate on all their available chan

nels to send or receive the message, which will take a long time in establishing

the group control channel especially when the number of channels is high.

Channel hopping based rendezvous protocols in DSA networks. Our

work, QCH [7], SeqR [51] and Jump-stay CH [52] are representative CH based

rendezvous protocols in DSA networks. QCH [7] deal with communication ren

dezvous in both the synchronous scenario and the asynchronous scenario, while

SeqR [51] and Jump-stay CH [52] only deal with the asynchronous scenario. Dif

17

ferent from the previous work, ETCH focuses on exploiting the spectrum diversity,

which is the most salient advantage of DSA networks, in designing communication

rendezvous protocols (for both scenarios).

2.2 Problem Formulation

2.2.1 Problem setting

In a DSA network, there are N (orthogonal) licensed channels labeled as Co, Ci,

C V -i that can be used for control information exchange. In other words, there

are N rendezvous channels in the DSA network. Any pair of nodes wishing to

communicate with each other should first establish a control channel between

them before data communications. We assume that there is no centralized en

tity that globally controls the allocation of communication channels, so the control

channel establishment between a pair of nodes is executed in a distributed man

ner.

In a CH-based solution, idle nodes1 periodically hop on (i.e., switch their work

ing channel according to) a CH sequence, which is a sequence of rendezvous

channels. The time during which a node stays on a channel is defined as a hop

ping slot, which is notated as a (slot-index, channel) pair. Thus, a CH sequence

S is notated as

5 = {(0, S[0]), (1, S [l]) ,..., (*, S[i]),..., (P - 1 , S \ p - 1])},

where i e [0,p - 1] is the index of a hopping slot, and S[i] e {Co, • • • , Cw_i} is

the rendezvous channel assigned to the i-th slot of the sequence S. The time

it takes for a node to hop through the entire CH sequence is called a hopping

period. When two nodes hop to the same channel, they can hear from each other

and that channel is established as their control channel. If more than two nodes

1Here idle nodes refer to nodes waiting to initiate a communication with other nodes and nodes
waiting others to connect to them.

18

hop to the same rendezvous channel at the same time, they use existing collision

avoidance mechanisms (e.g. RTS/CTS) or retransmission to establish pairwise

control channels between them.

A CH-based solution should take account of the following requirements in its

design.

• Overlap requirement. This requirement requires that any two CH sequences

must overlap at a certain slot to ensure the rendezvous between the two

nodes. Formally, given two CH sequences S0 and Si, they overlap if there

exists a slot («,50[*]) € SQ and a slot (*,5i[i]) e Si such that 5b[*] = Sx\i].

This slot is called an overlapping slot between SQ and Si, and the rendezvous

channel 50[i] (50[*] e {Co, • • • , CV-i}) is called an overlapping channel be

tween So and Si. If a rendezvous channel serves as an overlapping channel

between a pair of CH sequences in the *-th slot, we say that the rendezvous

channel is utilized (as a control channel) in the i-th slot.

• Full utilization of rendezvous channels. This requirement requires that

any pair of nodes should be able to utilize every rendezvous channel as

their control channel. This is to ensure the nodes have an opportunity to

communicate with each other even if some of (but not all) the rendezvous

channels are occupied by primary users.

• Even use of rendezvous channels. This requirement requires that all the

rendezvous channels should have the same probability to appear in each

CH sequence. If a CH sequence heavily relies on a certain channel (i.e.,

the channel is assigned to most of the slots of the CH sequence), nodes

that hop on this CH sequence will lose contact with most of other nodes

when the heavily relied channel is occupied by the primary user.

19

2.2.2 Metrics

We use the following three metrics in our numerical analysis for the proposed

ETCH scheme.

• Average rendezvous channel load. This metric measures the average

fraction of nodes that meet in the same rendezvous channel among all the

nodes. Given a DSA network with M nodes and an average rendezvous

channel load a (0 < a < 1), there are on average M a nodes rendezvous

in the same channel. A light rendezvous channel load alleviates traffic col

lisions and increases the communication throughput.

• Average time-to-rendezvous. This is the average number of hopping slots

that two nodes need to wait before they can rendezvous. A smaller aver

age time-to-rendezvous (TTR) allows nodes to rendezvous and establish a

communication link more quickly.

• Rendezvous channel utilization ratio. This is the ratio of the number of

rendezvous channels that can be utilized as control channels in a hopping

slot to the total number of rendezvous channels. It measures, in a given

hopping slot, the extent that a communication rendezvous protocol utilizes

the spectrum diversity in establishing control channels. A high rendezvous

channel utilization ratio is helpful to reduce collision and improve the network

capacity at the communication setup stage. This metric does not apply to the

asynchronous case in which the hopping slot boundaries are not necessarily

aligned.

We also use two other metrics, traffic throughput and actual time-to-rendezvous,

to evaluate the practical performance of a communication rendezvous protocol.

We will show that ETCH outperforms the existing solutions through mathematical

analysis and simulations in §2.5 and §2.6 respectively.

20

2.2.3 Assumptions

We have the following assumptions regarding DSA networks and the node hard

ware.

• All the rendezvous channels are known to all the nodes. Information about

rendezvous channels of a DSA network can be announced by regulation

authorities such that all secondary users wishing to join the network will have

this information.

• Each node is equipped with a single transceiver, which means a node cannot

communicate in multiple channels at the same time. This assumption is in

accordance with the ability of most commodity wireless devices.

• The channel switching overhead is negligible. This assumption is valid be

cause most wireless hardware manufacturers claim that the channel switch

ing delay is of the order of 80-90 ps [53], This delay is negligible compared

to the length of a slot in a hopping sequence, which is in the magnitude of

10ms.

2.3 SYNC-ETCH

SYNC-ETCH assumes that there exists a synchronization mechanism to achieve

global clock synchronization among DSA nodes, so that two nodes wishing to

communicate with each other can start channel hopping at the same time.

A newly joined node execute the SYNC-ETCH protocol in following two steps.

In the first step, the node constructs a set of CH sequences by using either the

two-phase CH sequence construction algorithm (§2.3.1) or the single-phase CH

sequence construction algorithm (§2.3.2). The two-phase algorithm can be ap

plied to scenarios with arbitrary numbers of rendezvous channels. It satisfies the

overlap requirement in the first phase, and tries to fulfill the requirement of even

21

use of rendezvous channels in the second phase. The single-phase algorithm

guarantees the satisfaction of both requirements in an integral design. Both of

the algorithms achieve the optimal average TTR under the premise that all the

rendezvous channels should be utilized as control channels in every hopping slot.

The key design goal of both CH sequence construction algorithms is to fully utilize

all the rendezvous channels in every hopping slot.

Theorem 1. In a DSA network with N rendezvous channels, for any CH based

synchronous communication rendezvous protocols where all the rendezvous chan

nels are utilized in each hopping slot, the minimum number of hopping slots of

each CH sequence is 2N - l, and the average TTR is

Proof. To let all the N rendezvous channels be fully utilized in each CH time slot,

we must arrange at least 2N CH sequences in a way that N pairs of CH sequences

rendezvous at N different channels. We also must arrange at least 2iV - 1 hopping

slots for each of the 2N CH sequences to allow each sequence to rendezvous

with the rest 2N - l CH sequences (for the overlap requirement). Considering

that the rendezvous time of two randomly selected CH sequences (from the 2N

sequences) is uniformly distributed between slot one and slot 2N -1 , the average

TTR is □

Theorem 1 reveals that, to fully utilize all the N rendezvous channels in each

hopping slot, there are at least 2N - 1 hopping slots in each CH sequence. As we

will show later, both CH sequence construction algorithms in SYNC-ETCH can

achieve such optimal length of CH sequences.

In the second step, the node starts the CH sequence execution process (§2.3.3)

in a way that the full utilization of rendezvous channels requirement is satisfied.

We introduce the CH sequence construction algorithms and the CH sequence

execution algorithm in the rest of this section.

22

u-slphi-t)i

D^USo, Ss),(S „SM S 2,S3)) So

D,={(S0, S,),(S„S4), (S„S5)} S‘
52

D2=[(S0,S2),(S„S5),(S3,S4)}
53

Dj={(So,S3),(S„S2)AS4,S5)} ^

Dj={(S0,S4),(Sl ,S3),{S2.Ss)} S5

(a)

Figure 2: Phase 1 of the two-phase CH sequence construction - rendezvous schedul
ing. This figure shows the 5 rendezvous schedules (D0 to DA) of a DSA network with 3
rendezvous channels (i.e., N = 3). In this network, 6 CH sequences (S0 to S5) are con
structed. Each CH sequence has 5 hopping slots. Rendezvous schedule £>*(0 < i < 4)
specifies how nodes following two different CH sequences rendezvous in the slot-i. For
instance, in slot-0, the nodes hopping on CH sequence So meet the nodes on S5 in one
of the 3 rendezvous channels, the nodes on Si meet the nodes on 54 in a different ren
dezvous channel, and the nodes on S2 meet the nodes on S3 in the remaining channel.

2.3.1 Two-phase CH sequence construction

To simplify the presentation of the two-phase CH sequence construction algo

rithm, we first give an overview and an example of the construction process. Then,

we provide the formalized algorithm.

An overview and an example

The two-phase CH sequence construction algorithm constructs a set of CH se

quences in two phases. The first phase is called the rendezvous scheduling

phase. In this phase, the algorithm creates a set of rendezvous schedules, each

of which instruct how nodes with different CH sequences meet with each other in

a hopping slot. Given a DSA network with N rendezvous channels, to fully utilize

spectrum diversity, an ideal rendezvous schedule allows N pairs of nodes to ren

dezvous at N different channels in a hopping slot, which is equivalent to arrange

for 2N CH sequences (each of which is used by one participating node) to overlap

at different N channels in a slot. Meanwhile, the rendezvous schedules should

/ / / a v / m m v m
V / / A V//A-

W / A / / / A
m z

EZZZE
(b)

23

slot-0 <--------------- slot-4
4--------------- »

$ 0 C 0 C , c2 C 0 c2
C , C , C 0 C 2 C q

c2 C 0 C 2 C 2 C l

C 2 C 2 C , C 0 C 0

C , C 0 C , c, C 2

C 0 C 2 C 0 C l C l

Figure 3: Phase 2 of the two-phase CH sequence construction - rendezvous channel
assignment. This figure shows the 6 final CH sequences of a DSA network with 3 ren
dezvous channels C 0 , C \ and C 2 (i.e., N = 3). A greedy algorithm is used to assign the
3 rendezvous channels to each slot (slot-0 to slot-5) of all the 6 CH sequences (So to
S5) based on the rendezvous schedules output by the rendezvous scheduling phase.
For instance, nodes following the CH sequence S0 hop on a sequence of channels
C o —► C \ —̂ C 2 —► C o —̂ C i periodically.

ensure the satisfaction of the overlap requirement, i.e., any pair of nodes hopping

on different CH sequences can meet at least once within a hopping period.

The second phase is called the rendezvous channel assignment phase. In this

phase, the algorithm fills the rendezvous channels in the 2N CH sequences based

on the rendezvous schedules generated in the previous phase. This phase tries

to satisfy the design requirement of even use of rendezvous channels by using a

greedy algorithm. At the end of the rendezvous channel assignment phase, 2N

CH sequences are constructed.

Figure 2 and Figure 3 illustrate an example of the two-phase CH sequence

construction in a DSA network with three (N = 3) rendezvous channels. Fig

ure 2(a) shows the five rendezvous schedules D 0 , D 1 , . . . , D 4 generated in the ren

dezvous scheduling phase. Each rendezvous schedule corresponds one of the

five (2N - 1) hopping slots of the six (2N) the CH sequences S0, S i, ..., S5. As we

can see, in each of the five hopping slots, six nodes (selecting different CH se

quences) are supported to rendezvous in three different channels. For example,

in the first slot (i.e., slot-0), where the rendezvous schedule D 0 is used to arrange

24

rendezvous, the node selecting CH sequence SQ is arranged to rendezvous with

the node selecting CH sequence S5 on one rendezvous channel, while the node

selecting Si meets with the node selecting S4 on a different rendezvous chan

nel, and the node selecting S2 meets with the node selecting S3 on the remaining

rendezvous channel. Figure 2(b) shows the overall effect of how the six node

selecting different CH sequences rendezvous in different hopping slot. In each

hopping slot in Figure 2(b), a pair of nodes whose CH sequences have the same

type of shade will meet on the same rendezvous channel. Please note that the

detailed arrangement about rendezvous channels on which pairs of nodes ren

dezvous has not yet been determined in this phase, and is left to the next phase.

As will be presented shortly, our algorithm schedules the 2N CH sequences to

meet in the N different rendezvous channels in a hopping slot as follows. It se

lects 2N - 2 out of the first 2iV - l CH sequences (i.e., S0, • • • , S2N- 2) to form

N - 1 CH sequences pairs, where each sequence is scheduled to meet the other

sequence from the same pair in the slot -si, such that the index sum of each pair

of CH sequences is congruent to si modulo 2N - 1. The remaining CH sequence

(within S0,--- ,S2N- 2) and S 2n - 1 form the last pair of CH sequences (shown in

blue color in Fig 2(a)) that are scheduled to meet in the slot -si.

Figure 3 shows an example of rendezvous channel assignment once the schedul

ing is determined. From the example we can see that all the rendezvous chan

nels are utilized for communication in each of the hopping slots, and that each

rendezvous channel appears in each of the CH sequences with roughly the same

probability.

Phase 1: rendezvous scheduling

We now formalize the problem of rendezvous scheduling, the first phase of the

two-phase CH sequence construction process, as follows. Given a set of 2N

CH sequences U = {50, Si-- - , S2N- 1}, Dsl = {do, dx,--- , dN„ 1} is called a ren-

25

Algorithm 1: Rendezvous Scheduling
Data: U = {So, • • • , A v -i}: a set of 2N empty CH sequences, each of

which has 2N - 1 slots;
Result: T> = { A , A , ■ ■ • , A jv - 2}: 2N - l different rendezvous schedules

of U.
1 Initialize A , A , - - , A jv - 2 to be empty;
2 for si <- 0 to 2N - 2 do
3 V < - £ / \ { 5 2iv - i} ;
4 for i <r- 0 to N - 1 do
5 a < - the sm allest subscript in V
6 \t a < si then
7 | b <r- si — a;
8 else
9 | b 1— 2N — 1 + si — a;

10 if a = = b then
11 | b < - 2 N - l \
12 di <— { A , Sb}',
13 D si D si U {d j};
14 v ^ v \ { s a,sby,
18 return A , A , - - - , A y v -2;

dezvous schedule for the hopping slot indexed in si if \J Dsi = doUdi u • • -u d ^ - i =

U, where d* = {Sa, S6} (0 < i < N - l) is a pair of CH sequences that are sched

uled to rendezvous in the slot-sf.

According to theorem 1, the optimal rendezvous scheduling algorithm must

construct 2N - 1 different rendezvous schedules, each of which corresponds to a

hopping slot, such that each CH sequence is able to rendezvous with all the other

2N — 1 CH sequences in 2N - 1 hopping slots. SYNC-ETCH uses Algorithm 1 to

construct the schedules.

In Algorithm 1, rendezvous schedule Dsl (0 < si < 2N - 2), which is the

rendezvous schedule for the slot -si, is constructed as follows. Within the CH

sequences set V = {5 0, • ■ • , S 2n - 2 }, Sa and Sb are scheduled to rendezvous in

the slot -si (i.e., {5^, S'b} e A ;) if a + b = sl(mod(2N - 1)) and a ^ b. For the

CH sequence Sa e V that satisfies 2a = sl(mod(2N - 1)), it is scheduled to

rendezvous with the CH sequence SW-i in the slot -si (i.e., {A S W - i} e A;)-

We prove the correctness of Algorithm 1 as follows.

26

Theorem 2. Algorithm 1 constructs 27V - l rendezvous schedules of U, and all

these 27V - l rendezvous schedules are different.

Proof. In order to prove Algorithm 1 constructs 27V - 1 rendezvous schedules, we

need to prove given an integer si (0 < si < 27V - 2), D sl is a rendezvous schedule

of U. To prove this, we need to prove

(1) there is only a number x e [0,27V - 2] such that 2x = si (mod (27V - 1)), and

(2) V a, b, c, d e [0,27V - 2] that satisfy a + b = si (mod (27V - 1)) and c + d =

si (mod (27V - l)) , if a j ^ c then b ^ d .

By proving (l) we can guarantee that the CH sequence S2n- i only exists in only

a CH sequence pair d* (0 < i < TV - l) within rendezvous schedule Dsl. From

(l) , (2) and the strategy that we always choose the first CH sequence of dt (0 <

i < TV — 1) from a set of CH sequences that have never been chosen (i.e. set V

in Algorithm 1)(line 5), we can ensure that (J Dsl = do u dx u • ■ • u dN -1 = U (i.e.

Dsi is a rendezvous schedule of U).

We prove both (l) and (2) by contradiction. For (l) , suppose there are two

different number m and n that satisfy 0 < m < n < 2 N - 2 , 2 m = sl (mod (27V -

1)) and 2n = si (mod (27V - 1)), then we can have 2m = si and 2n = 27V - 1 + si.

A contradiction is found that si is an even number because 2m = si, and si is

an odd number because 2n = 27V - l + si. For (2), without loss of generality,

we suppose a < c. If b = d, then we have a + b = si and c + d - 27V - l + si.

By subtracting these two equations we get c - a = 27V - l which is impossible

because 0 < a < c < 2 7 V - 2 .

In order to prove Vp,q e [0,27V - 2] (p ± q), rendezvous schedule Dp and

schedule Dq are different, we need to prove Vdj e Dp(0 < i < TV - l) and Vef, e

Dq(0 < j < TV - l), di ± dj. We prove this by contradiction. Suppose there

exist di € Dp and dj e Dq such that di = djt which means di and dj contain

the same pair of CH sequences. Suppose these two sequences are Su and Sv,

where 0 < u, v < 27V - l. Then we have u + v = p (mod (27V - l)) and u + v =

27

q (mod (2N - 1)), where p , q e [0,2N - 2] and p ± q, which is impossible. □

Phase 2: rendezvous channel assignment

In the second phase of the two-phase CH sequence construction process, we as

sign rendezvous channels to each of the 2TV CH sequences according to the ren

dezvous schedules generated in the previous phase. The goal of the rendezvous

channel assignment phase is two-fold. First, to fully exploit the frequency diversity

of a DSA network in establishing control channels, all the rendezvous channels

should be utilized in each hopping slot. Second, the assignment tries to satisfy the

even use of rendezvous channels requirement presented in §2.2.1 by an arrange

ment that allows each rendezvous channel to have a roughly equal probability to

appear in each CH sequence.

We employ a greedy algorithm (shown in Algorithm 2) to achieve the goals

of rendezvous channel assignment. In Algorithm 2, rendezvous channels are as

signed to CH sequences round by round (lines 3-18). In the si-th (0 < si < 2JV-2)

round, the rendezvous channels are assigned to the slot -si of all the CH se

quences based on the slot’s rendezvous schedule, D si, constructed in the pre

vious phase. For each hopping slot, the algorithm needs to guarantee that every

rendezvous channel is assigned to a pair of CH sequences (to achieve the first

goal of rendezvous channel assignment). To keep track of the channel assign

ment for each slot, the variable slotOC is used to record the outstanding ren

dezvous channels of the current slot, i.e., the rendezvous channels that have not

been assigned to the slot. At the beginning of each round of channel assignment,

slotOC is reset to the whole set of rendezvous channels (line 4). The algorithm

also tries to make all the rendezvous channels appear in each CH sequence with

a roughly equal probability (to achieve the second goal of rendezvous channel as

signment). To keep track of the channel assignment for each CH sequence, the

variable seqOC[i} (0 < i < 2N - 1) is used to record the outstanding rendezvous

28

Algorithm 2: Rendezvous Channel Assignment
Data: C = {Co, Cu • • • , C jv - i} : N rend, channels; V = {D 0, D u ■ ■ ■ , £>2^ - 2}:

27V - 1 rendezvous schedules returned by Algorithm 1.
Result: S0, Su ■ ■ ■, S 2n - 1 ' 27V final CH sequences.

1 for i <- 0 to 27V - 1 do
seqOC[i] <- {C0, Ci, ■ ■ ■ , Cw_i}; /*Initializing the outstanding channels of
the CH sequence Si. */

3 for si < - 0 to 2iV - 2 do

9

10

11

12

13

14

15

16

17

18

slotOC 1- {Co, C i, • ■ ■ , C/v-n}; /* Initializing the outstanding channels of
the slot-sl. */
for n 4- 0 to N - 1 do
| Mark CH sequence pair dn e Dal as unassigned]
while slotOC ^ (j> do

Pick dn = {Si, Sj} from the unassigned CH sequence pairs in Dsl such
that seqOC[i] + seqOC\j] is the greatest (if multiple choices exist, pick
the pair that contains the CH sequence with the smallest index);
k <r- seqOC[i] > seqOC[j} ? i : j]
if slotOC D seqOC[k] 7 ̂<fr then

c <r- the channel in slotOC n seqOC[k\ with the smallest index;
seqOC[k] 1— seqOC[k]\{c}]

else
c 4- the channel in slotOC that appears the fewest times in Sk (if
multiple choices exist, pick the one with the smallest index);

Si ^ Si u (sl,c);
Sj <— Sj u (s/,c);
Mark dn = {St, Sj} as assigned;
slotOC <— s lo tO C\{c };

19 re tu r n SQ,S i , - - - , S'2̂ v-1;

channels of the CH sequence 5i(i.e., the rendezvous channels that have not

been assigned to the CH sequence SV The variables seqOC[i} are initialized to

the whole set of rendezvous channels (lines 1-2).

Before the si-th round of rendezvous channel assignment (i.e., the round that

assign channels to slot-si of all the CH sequences), all the CH sequence pairs

in D ai are initially marked as “unassigned" (lines 5-6). In the si-th round of ren

dezvous channel assignment, the algorithm checks all the unassigned CH se

quence pairs in Dsi, and selects the pair {Si, Sj} such that the sum of outstanding

channels of St and Sj is greatest compared to other unscheduled CH sequence

pairs in D al. If there are multiple pairs that produce the same greatest outstand

29

ing channels sum, the pair that contains the smallest indexed CH sequence is

selected (line 8). Then the algorithm chooses a rendezvous channel to assign

to the slot-si of both S< and Sj (lines 9-16). This rendezvous channel is selected

as follows. Within the CH sequences Si and Sjt the one with more outstanding

channels is notated as Sk (line 9). The rendezvous channel is first selected from

the intersection of the slot-s/’s outstanding channels (recorded in slotOC) and Sk's

outstanding channels (recorded in seqOC[k]) (line 11). If the intersection is empty,

the channel is selected from the slot-sf s outstanding channel that appears fewest

times in Sk (line 14). Then this rendezvous channel is assigned to the slot-si of

both CH sequences of Si and Sj (lines 15-16), and the CH sequence pair {Su Sj}

is marked as “assigned” (line 17). The selected rendezvous channel is removed

from the current slot’s outstanding channels set (line 18). It is also removed from

Sfc’s outstanding channels if has not been assigned to Sk before the assignment

(line 12).

Figure 3 shows the result of rendezvous channel assignment in a DSA network

with 3 rendezvous channels, Co, C\ and C2. CH sequences SQ to S5 are the final

CH sequences constructed by the two-phase CH sequence construction process.

From the example we can see that all the rendezvous channels are utilized for

communication in each of the hopping slots, and that each rendezvous channel

appears in each of the CH sequences with roughly the same probability.

2.3.2 Single-phase CH sequence construction

Similar to the presentation of the two-phase CH sequence construction process,

we provide an overview and an example of the single-phase CH sequence con

struction process, followed by the formalized algorithm.

30

An overview and an example

In a DSA network with N rendezvous channels, similar to the two-phase algo

rithm, the single-phase CH sequence construction algorithm constructs 2N CH

sequences, each of which has 2N - 1 hopping slots, such that the following two

requirements are satisfied. First, every CH sequence meets with all the other

2JV - l CH sequences each at a time in a hopping slot. Second, all the ren

dezvous channels are utilized for CH sequence rendezvous in every hopping slot.

The improvement of the single-phase algorithm over the two-phase algorithm is

that it can guarantee to satisfy a third requirement that every rendezvous channel

has the same probability to appear in each CH sequence (i.e., the even use of

rendezvous channels requirement). For instance, in a DSA network with three

rendezvous channels, the even use of rendezvous channels requirement expects

there are two rendezvous channels appearing twice and the remaining channel

appearing once in the five hopping slots of every CH sequence. However, in the

six CH sequences constructed by the two-phase algorithm (shown in Figure 3),

channel C2 and C i appear three times in the CH sequence S2 and S4 respec

tively. By contrast, the single-phase algorithm can guarantee the even use of

rendezvous channels requirement.

The single-phase CH sequence construction algorithm views the rendezvous

among the CH sequences within a hopping period as a colored graph G. To sat

isfy the three requirements above, the colored graph G should have the following

properties. First, there are 2N vertices in G:

\V(G)\ = 2N, (1)

where V(G) denotes the vertex set of the graph G. Each vertex corresponds to

one of the 2N CH sequences. Second, the edges in G have N different colors:

C(G) = {c0, ..., cjv_i}, (2)

31

where C(G) denotes the color set on edges in the graph G. Each color corre

sponds to a rendezvous channel. If two CH sequences rendezvous in a certain

channel, the corresponding pair of vertices in G are connected by an edge with the

corresponding color. Third, since every CH sequence should rendezvous with all

the other 2 N - 1 sequences exactly once in a hopping period, the graph G should

satisfy

Vv £ V(G),d(v) = 2N - 1, (3)

where d(v) denotes the degree of vertex v. In other words, the graph G should

be a 2iV-vertex complete graph K 2n ■ Fourth, since all the rendezvous channels

should appear in every CH sequence, the color degree of each vertex, which is

the number of colors on the edges incident to the vertex, should be N:

Vv<EV{G),S{v) = N, (4)

where 6(v) is the number of colors on edges incident to the vertex v. Fifth, since

each of the N rendezvous channel should have the same probability to appear

in every CH sequence (i.e., the even use of rendezvous channels requirement),

among the N different colors on the 2JV — l edges incident to a vertex v, there

should be one color to appear once and the remaining N - l colors to appear

twice, which is the best scenario satisfying the even use of rendezvous channels

requirement:

Vt> 6 V(G) (3^ € C(G) (Sc.(v) = 1&&<5C» - 2, Vj e [0 , N - l] , j ? i)), (5)

where 6Ci(v) is the number of edges colored with c< that are incident to the vertex v.

Figure 5(a) shows an example of the graph G for a DSA network with 5 rendezvous

channels (i.e., N = 5). The graph G in the example is a 5-colored 10-vertex

complete graph K w . In this graph, each of the 5 colors has an even probability

to appear on the 9 edges that are incident to each vertex (i.e., one color appears

once and each of the rest four colors appear twice), which is the best case of

satisfying the even use of rendezvous channels requirement.

32

The graph G with the properties (1) to (5) tells how each of the 2N CH se

quence meets with each other in the N rendezvous channels within a hopping

period. The single-phase CH sequence construction algorithm needs to further

specify how the CH sequences rendezvous with each other in each of the 2N - 1

hopping slots. To fully exploit the spectrum diversity, our algorithm ensures that all

the rendezvous channels can be utilized as control channel in every hopping slot.

This is achieved by decomposing the graph G into 2N - 1 different perfect rain

bow matchings, each of which instructs how the 2N CH sequences rendezvous

in a hopping slot. In graph theory, a matching in a graph G is a set of edges of

G without common vertices, a perfect matching in G is a matching that covers all

the vertices of the graph G [54], and a rainbow matching in G is a matching where

edges have distinct colors [55], Therefore, in our case, a perfect rainbow match

ing (notated as PRM) in a N -colored 2iV-vertex complete graph G is an edge set

that contains N disjoint edges of G colored with the N distinct colors:

PRM = {E I V(E) = V(G) && Ve* G E (Vu € V{e{) {v <£ VfoJ.Ve,- G E, j ? *))

&& Ve*, ej e E , (C(eO ± C(ej))} (6)

where V(E) denotes the set of vertices of the edge set E, V(ei) denotes the two

vertices on the edge eit and C'(ej) denotes the color on the edge e{. Given two

perfect rainbow matching PRMi and PRMjt they are different if and only if the

there is no common edges in them:

PRMi and PRMj are different i f f Ve* g E(PRMi),ej e E(PRMj) (e* ^ ej), (7)

where E(PRMi) denotes the edge set in the perfect rainbow matching PRM{.

In our example, the 5-colored 10-vertex complete graph G shown in Figure 5(a)

can be decomposed into 9 different PRMs shown in Figure 4(1), Figure 4(6a-

1) to (6a-4), and Figure 4 (6b-1) to (6b-4) respectively. Each of these PRMs is

the rendezvous schedule for one hopping slot within a hopping period. The final

33

Figure 4: The six steps of the intuitive description of the single-phase CH sequence con
struction algorithm for a DSA network with 5 rendezvous channels (i.e., N - 5). (0) is
the initial state of the graph G; (1) shows how the the first PRM is formed in the step
#1; (2) shows how the graph G is shrank to K5 in the step #2 based on the first PRM\
(3a) and (3b) are the two 2-factors of K5 obtained in the step #3; (4a) and (4b) show the
rainbow-coloring of the two 2-factors of K 5 in the step #4; (5a) and (5b) show how the two
rainbow-colored 2-factors of K5 are expanded back to the two 4-factors in K w in the step
#5; (6a-1) to (6a-4) and (6b-1) to (6b-4) are respectively the final 4 PRMs decomposed
from the two rainbow-colored 4-factors of K l0.

CH sequences (shown in Figure 5(b)) are constructed based on these 9 different

PRMs.

In the following, we will show that, for a DSA network with N rendezvous chan

nels, where N is an odd number greater than two, our single-phase CH sequence

construction algorithm can form a graph G with the properties of (1) to (5), and

decompose the graph G into 2JV - l different perfect rainbow matchings (i.e.,

properties of (6) and (7)).

An intuitive description of the algorithm

For a DSA network with N rendezvous channels, where N is an odd number

greater than two, the single-phase CH sequence construction algorithm constructs

T o
^1 5<,|C<|C,|C,|Cf|C,|C0|CJlCJ|C<fl|

(a) (b)

Figure 5: For a DSA network with 5 rendezvous channels (i.e., N = 5), (a) is the N-
colored 2/V-vertex complete graph G that shows how the 2N CH sequence rendezvous
with each other within a hopping period, and (b) shows the final 2N CH sequences.

the 2N CH sequences as follows.

The initial state: We treat the 2N CH sequences to be constructed as 2N

vertices in a graph G, and assign different colors to each of the N rendezvous

channels. Initially, the graph G only contains the 2 N vertices and no edges. Our

goal is to add colored edges to G to make it an iV-colored 2 iV-vertex complete

graph K 2N with the properties (1) to (5), and then decompose the K 2N into 2N - 1

different perfect rainbow matchings (i.e., properties (6) and (7)).

In the following, we notate the 2 N CH sequences as S0 ■ ■ ■ S 2n - i. and the N

rendezvous channels as C0, • • • , CV-i- We will take a DSA networks with 5 ren

dezvous channels (i.e., N = 5) as an example throughout this subsection. Figure

4(0) shows the initial state of the graph G in the example.

Step #1 - forming the first perfect rainbow matching of K 2N: In the first

step, we form the first P R M by connecting vertex St with vertex Si+i by using

an edge with the color of channel C i, where i is an even number in the range

of [0,2N -1 } . The P R M tells how the 2N CH sequences rendezvous with each

other in the hopping slot-0. In our example, Figure 4(1) shows the state of the

graph G after the step #1 is applied. It is a P R M of a 2iV-vertex complete graph

Algorithm 3: 2-factorization of complete graph K,N
Data: K N formed after step #2, the TV vertices of K N are

{'S'o.l, • • • ! S 2N - 2 ,2N -l}',
iV-1Result: 2-factors of K N: TFU ■ ■ • , TF n_±.

1 for d <- l to do
TFd <- 0;
for eac/7 edge (Siii+u Sjd+l) e E (K N) do

if ^-j \ °/oN = = d then
| Add edge (SM+i, 5jJ+i) and its vertices to TFd,

2

3

4

5

6 return T F i, • • • , T F n- i ;
2

F 2/v, which specifies that in the hopping slot-0, CH sequences S0 and Si, S2 and

S3, S4 and S5, S6 and S7, S7 and S8 rendezvous in channel C0 to C4 respectively.

Step #2 - shrinking the 2TV vertex graph G to K N: In the second step, we

shrink the 27V-vertex graph G to an TV-vertex TV-colored complete graph K N as

follows. First, we combine every connected vertex pair in the first P R M of K 2N

(i.e., {Si, Si+i}, where i = 2a, a e [0, TV - l]) into a new vertex (notated as SM+1),

and connect the new vertices to each other to form a TV-vertex complete graph

K n . Second, we give each vertex \n K N the color of the edge connecting the

corresponding vertex pair in the first P R M of K 2N. Figure 4(2) shows the state of

the graph G after the step #2 is applied.

Step #3 - decomposing K N into different 2-factors: In graph theory, a

2-factor of a graph G is spanning subgraph of G, where the degree of each vertex

in the subgraph is 2. Algorithm 3 decomposes K N into - 1 2-factors. In the algo

rithm, each edge of K N and its vertices are put into graphs, T F \, • • • , TFn- 1,

depending on the subscript difference between the two vertices: given an edge

e = (Siii+i,S j j+i) e E (K n), where i < j , the edge e and its vertices are put into

the graph TFd (1 < d < - 1) if either or iAr2*~ j equals to d (line 5). We prove

in Theorem 3 that each graph TFd (1 < d < ^) decomposed from K N using

Algorithm 3 is a 2-factor of the complete graph K N. It is obvious that the ~

2-factors are different, since each edge of K N can only belong to one 2-factor. In

36

Algorithm 4: Rainbow-coloring a 2-factor of K N
Data: A 2-factor TF obtained in step #3;
Result: Rainbow-coloring the 2-factor such that every edge's color is

different from the colors of its two vertices.
1 for each edge e = (SM+i, SjJ+i) e TF do
2 if is an even number then
3 I Put the color of vertex S±±± i± i,, on the edge e;I 2 ’ 2 '
4 else
s | Put the color of vertex Si+i+™a/„ „ ti+i+2N„ 2„ , 1 on the edge e;

our example, Figure 4(3a) and Figure 4(3b) are the two 2-factors of the complete

graph K5 obtained after the step #2. They are both Hamiltonian cycles of K5.

Theorem 3. Each graph TFd (l < d < - 1) decomposed from KN using Algo

rithm 3 is a 2-factor of the complete graph KN.

Proof. In the algorithm, among all the edges that are incident to each S 2«,2i+i £

V(Kn) (0 < i < N — 1), only the edge (S2t,2i+i> £(2(t+d))%2N,(2{i+d)+i)%2Jv) and the

edge (S2i}2i+u S{2{i„ d))%2Nt{2ii„ d)+1)%2N) and their associated vertices are added to

the graph TFd. Since d ± 0 and d ± f , we have (2 (i + d))%2N ± (2 (i - d))%2N,

which means the two edges added to TFd are different. Therefore, V{TFd) equals

to V (K n), and the degree of each vertex in TFd is 2. Thus, TFd is a 2-factor of

the complete graph KN.

Simple calculation can easily confirm that the 2-factor TFd is either a Hamilto

nian cycle of K n if d and N is coprime, or GCD(N , d) disjoint GĈ {Nd)-cycles (i.e.,

cycles with cc5(W"d) ed9es). where GCD(N, d) is the greatest common divisor of

N and d, otherwise. □

Step #4 - rainbow-coloring 2-factors of KN: In the fourth step, we color each

of K n 's 2-factors using all the N colors such that each edge will have a different

color, which is a process called “rainbow-coloring”.

Algorithm 4 shows the rainbow-coloring algorithm. In this algorithm, the color

to put on a edge is the color of another vertex that is different from the two

37

vertices of the edge. Specifically, the color to put on the edge (SM+1,SjJ+ i) is

the color of either the vertex Si±i <±2.1 (if is an even number) or the vertex2*2 1
Sj+j+2N0/ojv,i+'i+2Ny.g.y 11 (if ^ is an odd number). We have the following two theo

rems about the rainbow-coloring algorithm.

Theorem 4. The coloring process is a rainbow-coloring process (i.e., after the

coloring process, the colors on the N edges of each 2-factor are different).

Proof. Prove by contradiction. Suppose there exist two different edges ex =

(Si,i+i, Sj<j+1) and e2 - (Sm,m+l,S„,„+i) in the the 2-factor TFd (d e [l, £=i]) that

have the same color. Since ex and e2 are not the same, without loss of generality,

let us assume and m > n.

Since ex and e2 have the same color, they correspond to the same vertex in

K n . Without loss of generality, let us assume is an even number, then we

have = a±s (*).

Meanwhile, since ex and e2 belong to the same 2-factor T F d, we have ^ =

^ = d(**).

From (*) and (**) we have i = m, which is contradictory to i ^ m . Therefore,

all the colors on the edges in the 2-factor T F d are different. □

Theorem 5. Put the 2-factor together (which forms the complete graph K N),

the colors on the N - 1 edges incident to a vertex Shl+1 are different, and these

colors are also different from the color of the vertex SiMX.

Proof. Prove by contradiction. Suppose among the N - 1 edges that are incident

to the vertex there exist two edges that have the same color, and these two

edges are ex = (Sid+l, SjJ+1) and e2 = (Siti+x,SkMX). Because ex and e2 have

the same color, they correspond to the same vertex. Without loss of generality,

let us assume ^ is an even number. Then we have ^ ^ =» j = k, which is

impossible since ex and e2 are not the same. Therefore, the colors on the N - l

edges that are incident to the vertex Sid+X are all different. □

38

In our example, Figure 4(4a) and Figure 4(4b) show the rainbow-coloring for

the two 2-factors of K 5.

Step #5 - expanding the rainbow-colored 2-factors of K N back to 4-factors

of K 2N: Here we expand each 2-factor of K N back to a 4-factor of the 27V-vertex

complete graph K 2N• For each edge e = {SiA+i,S j}j+i) in a 2-factor of K N, we

expand it to a monochromatic complete bipartite graph K 2;2\

MCBij = (Vi + Vj, Eij), (8)

where V and Vj are the vertex pairs {Si,Sm } and {Sj,Sj+ 1} in the original 2N-

vertex graph G, and is the edge set of K 2,2. Additionally, we give all the 4

edges in the same color as that on the edge e = (Si4+1, Sjtj+ i) in K N. After

this process, every 2-factor in K N is expanded to a 4-factor in K 2N. Since the ^

2-factors of K N are different, we have obtained ~ different 4-factors of K 2N. We

prove in Theorem 6 that the different 4-factors of K 2N together with the first

PRM obtained in the step #2 form the JV-colored 2iV-vertex complete graph K 2N

that has the properties of (1) to (5).

In our example, Figure 4(5a) and Figure 4(5b) show the two 4-factors of K w

that are converted from the two 2-factors of K h. These two 4-factors and the first

PRM obtained in the step #2 (i.e., Figure 4(2)) together form the complete graph

K w with the properties of (1) to (5) (Figure 5(a)).

Theorem 6. The different 4-factors of K 2N together with the first PRM ob

tained in the step #2 form the N-colored 2N-vertex complete graph K 2N that has

the properties of (1) to (5).

Proof. For the reasons that 1) the ~ 4-factors are obtained by expanding each

edge of the 2-factors of K N to a complete bipartite graph K 2<2 and 2) each

pair of unconnected vertices in a K 2,2 will be connected by an edge in the first

PRM obtained in the step #1, we can conclude that the 4-factors together

39

i : o u [o] , M O]) , (u iU 2 [o]) , a 2 [iU o m)
2: (X o [0],X i[l]) , (X itO],X2[l]) ,(A .2 [0],X o [l])
3: a o [l] ,X i [0]) ,a i [l] ,X 2 [l]) , a : [0] ,X o [0])
4: a o [u , x . [i]) , a i [0] , H O]) , a 2 t i] A o [0])

Figure 6: Dividing the edges of a CMCB that contains 3 MCBs, i.e., CMCB =
{A0, Ai, A2}, into four groups such that all the edges in each group have no common
vertex.

with the first P R M form a 2iV-vertex complete graph K 2N (i.e., the properties (1)

and (3)).

For the reasons that 1) the coloring process of the 2-factors of K N is a rainbow

coloring process (i.e., Theorem 4) and 2) the color of each monochromatic com

plete bipartite graph (M C B) is taken from the corresponding edge of the 2-factor

of K n , we can conclude that all the N colors appear on K 2n (i.e., the property

(2)).

For the reasons that 1) the colors on the N - 1 edges incident to a vertex Siii+ 1

of K n are different (i.e., Theorem 5), 2) these colors are also different from the

color of the vertex Siti+i (i.e., Theorem 5) and 3) the color of the vertex Si|i+1 is

the same as the color on the edge (Si,5i+1) of K 2N (i.e., the step #2), we can

conclude that all the N colors appear on the 2N - 1 edges that are incident to the

vertex Sf (which is also true for Sj)(i.e., the property (4)).

For the reasons that 1) the colors on the N - 1 edges incident to a vertex Siii+i

of K n are different (i.e., Theorem 5) and 2) each edge in K N is expanded to two

edges in K 2N, we can conclude that each of the N - 1 colors appears twice on the

edges that are incident to the vertex Si (also true for Si+1). Furthermore, for the

reasons that 1) the color on the vertex Si>i+1 is different from the previous N - l

colors (i.e., Theorem 5) and 2) the color of the vertex SM+1 is the same as the

color on the edge (Si,Si+1) of K 2N (i.e., the step #2), we can conclude that the

color on 5^+1 appear once on the edges that are incident to the vertex Si (also

true for Si+1). Therefore, the property (5) is satisfied. □

Step #6 - decomposing the 4-factors of K 2N into perfect rainbow match-

40

1: ao[OU,[OD, (A.i[l]»MO]), (A.2[1], A.3[1]),
2: (MO],MU)> (M0],M1])>(MO],A.s[l]).
3: (M U, MO]), (M U, MU), (MO], MO]),
4: (M 1], Xi[1]), a . [0], MO]), (M 1], MO]),

:(M0], MO]), (M iU iU]).••■. & M O L M p M W iL M 'i]) !
i(Moj,Mi'ij;'(X4[oi:x5iiD,;..., rô fo}'; r l t
i(X j[i l, M io i)V (M f i i, X5f6i)V...,

Figure 7: Dividing the edges of a CMCB = {A0, • • •, An_!, A0}, where n is the number of
MCBs in the CMCB and n is greater than 3, into four groups such that all the edges in
each group have no common vertex.

ings in K 2N: Finally, we decompose each of the 4-factors of K 2n obtained in the

step #5 into 4 different PRM s such that the properties (6) and (7) are satisfied.

In the previous step, each edge (5i)i+1, Sjij+i) in a 2-factor TFd (d e [1, ^ f 1}) of

K n is expanded to a monochromatic complete bipartite graph M CBitj. Further

more, recall that TFd is either a Hamiltonian cycle of K N (when GCD(N,d) = 1)

or a set of GCD(N, d) disjoint -cycles (when GCD(N, d) ^ l), where

GCD(N, d) is the greatest common divisor of N and d. Therefore, the 4-factor FFd

of K2N, which is expanded from the 2-factor TFd of K N, is a spanning graph of K 2N

consisting of either one chained monochromatic complete bipartite graph (notated

as CMCB) (when GCD(N , d) = l) or a set of GCD(N, d) disjoint CMCBs (when

GCD(N, d) ± 1).

Since a monochromatic complete bipartite graph M C B ij connects two pairs

of unconnected vertices {S^Sj+i} and {Sj,Sj+1}, each C M C B in the 4-factor

FFd (de [l, of K2N can be expressed as

< Aq, Aj, ■ • • , An_i, Aq >, (9)

where n N is the number of MCBs contained in the C M C B , and Ap (p gG C D (N ,d) ,w ~

[0, n - 1]) is the p-th unconnected vertex pair in the C M C B : {S2pcP/a2N, S(2pd+i)%2N}.

For example, for the first 4-factor FFV of K m shown in Figure 4(5a), we have

A0 = {50,5i}, Ax = (52, S3 }, A2 = {54,5 5}, A3 = {56,5 7} and A4 = {58,5 9}.

Meanwhile, for the second 4-factor FF2 of K m shown in Figure 4(5b), we have

Ao = {So,S\}, Ai = {54,55}, A2 = {58,59}, A3 = {52,5 3} and A4 = {56,57}.

Given a CMCB in a 4-factor expressed in formula (9), we divide the edges of

the CM CB into 4 groups as follows. For the 4 edges of each M C B , we put them

41

into 4 groups respectively such that edges in the same group share no common

vertex. Figure 6 and Figure 7 show the way we divide the edges. Figure 6 shows

the case that the CMCB has 3 MCBs, and Figure 7 shows the case that the

CMCB has more than 3 MCBs. In these two figures, Ap[0] and Ap[l] are the first

and the second vertex of the vertex pair Ap (p e [0,1]) respectively.

If a 4-factor of K2N contains one CMCB (when GCD(N , d) = 1), the four edge

groups obtained by using the dividing method shown in Figure 7 are the 4 different

PRMs. If the 4-factor contains several disjoint CMCBs (when GCD(N, d) ^ 1),

we put the i-th (1 < i < 4) edge group of each CMCB into the same group to

form a PRM. Therefore, each 4-factor of K 2n leads to 4 different PRMs, and the

different 4-factors of K 2N produce 27V - 2 different PRMs. Adding the first

PRM obtained in the step #1, we now have 27V - 1 different PRMs of K 2N. Each

of these PRMs instructs the 27V CH sequences rendezvous in one of the 27V - l

hopping slots of a hopping period.

Since the edges in the same PRM share no common vertex and the colors

of the K 2N's M C Bs are different, the property (6) is satisfied. Meanwhile, since

each edge is assigned to only one PRM, the 27V - 1 PRMs are different (i.e., the

property (7) is satisfied).

In our 5-rendezvous channel network example (i.e., TV = 5), using the dividing

method in Figure 7, the first 4-factor of K 10 (Figure 4(5a)) is decomposed into four

different PRMs shown in Figure 4 (6a-1) to (6a-4), and the second 4-factor of K w

(Figure 4(5b)) is decomposed into another four different PRMs shown in Figure 4

(6b-1) to (6b-4). Based on the 9 PRMs (i.e., Figure 4(2), Figure 4 (6a-1) to (6a-4)

and Figure 4 (6b-1) to (6b-4)), we construct the final 27V CH sequences shown in

Figure 5(b).

42

Algorithm 5: Single-phase CH sequence construction
Data: N rendezvous channels Co, ■■ ■ , CN i , where N is an odd number;
Result: 2 N CH sequence So, • , S2 n - i . each of which has 2N - 1 slots.

1 So, • • • ,S 2N - 1 4 - <t>\
2 for i <- 0 to N - 1 do
3 5*2i &2i U (0, C i) \
4 S2i+ l SWi u (0,Cj);
S fo r d 4- 1 to — :- do
6 si 4- 1 + 4 (d - 1);
7 fo r a 4 - 0 to G C D (N , d) - 1 do
6 1 1— 2a;
9 fo r c 0 to i d o

10 if (S even n um t

11 u (f+(i+2d)%2/V.

12 else
, + (<+2d)«2JV+2JV% N

13 * < ----------------- s -----------------:
14 If c = = 0 then
16 AddSlot(i, d, u ,0 ,0, sl);
16 AddSlot(t,d, u, 0, l ,s l + 1);
17 AddSlot(i, d, u, 1,0, sl + 2);
18 AddSiot (i,d , u, 1,1, si + 3);
19 e lse If c = = 1 then
20 AddSlotfi, d, u, 1,0, sl);
21 AddSlotfi, d, u, 0 ,1 , si + 1);
22 AddSlot(i, d, u, 1,1, sl + 2);
23 AddSlotfi, d, u, 0 ,0 , sl + 3);
24 e lse If c = = 2 then
26 AddSlotfi, d, u, 1,1, sl);
26 AddSlot(i, d, u, 0 ,1 , sl + 1)|
27 AddSiot (t, d, u, 0 ,0 , si + 2);
26 AddSlot(i, d ,u , 1,0, sl + 3);
29 e lse If c is an odd number then
30 AddSlot(t, d, u , 0 ,0 , sl);
31 AddSlot(i, d, u ,0 ,1, si + 1);
32 AddSlot(t,d, u, 1,1, si + 2);
33 AddSiot (i,d , u, 1,0, sl + 3);
34 e lse
36 AddSlot(i,d, u, 1,1, si);
36 AddSlot(t, d, u, 0 ,1 , sl + 1);
37 AddSlotfi, d, u, 0 ,0 , sl + 2);
38 AddSlot(i, d, u, 1,0, si + 3);
39 i 4 - (i + 2d)%2JV;
40 re tu rn S o , S2n - i >

Algorithm 6: Subfunction AddSlotO of Alg. 5
1 void AddSlot(i, d, u, a, b, sl) {
2 *§i-(-a i S i+ a U (S i , C u) ,

3 S(i+2d)%2N+b S(i+2d)%2N+b U (si, Cu)\
4 }

The complete algorithm

The complete single-phase CH sequence construction algorithm is given in Algo

rithm 5 with its subfunction AddSiot () shown in Algorithm 6. Given a DSA network

with N rendezvous channels, the algorithm outputs 2N CH sequences, each with

43

27V — l hopping slots, such that the following three conditions are satisfied. First,

within the 27V-1 hopping slots, every CH sequence meets with all the other 27V-1

sequence each at a time in a hopping slot. Second, there are exactly two CH se

quences hopping to the same rendezvous channel in a hopping slot. Third, in a

CH sequence, each of the TV rendezvous channels has the same probability to

appear in the 27V - l hopping slots.

The algorithm essentially integrates the six intuitive steps described previously.

Lines 2 to 4 of the algorithm schedule how the 27V CH sequences meet with each

other in the slot-0, which is equivalent to forming the first PRM in step #1. Each

iteration of the for-loop (lines 6 to 39) outputs rendezvous schedules for 4 hopping

slots, which correspond to the 4 PRM s decomposed from a 4-factor of K 2N. Each

iteration of the for loop (lines 8 to line 39) correspond to dividing the edges of

a CMCB into 4 groups (i.e., step #6). Lines 10 to 13 decides the channel to

assigned, which correspond to the rainbow-coloring of 2-factors of K N in step #4.

2.3.3 CH sequence execution

At the completion of constructing CH sequences by using either the two-phase CH

sequence construction algorithm or the single-phase CH sequence construction

algorithm, the newly joined node obtains a set of CH sequences, which are the

same as those that any other nodes construct. Then the node synchronizes to

the existing nodes using the global synchronization mechanism, and starts the

channel hopping process described as follows. The node randomly selects a CH

sequence to hop on. After hopping through all the slots, it performs the random CH

sequence selection again and starts hopping on the newly chosen CH sequence.

The node repeats this process while it is idle. The reason for the node to re-select

a CH sequence after a hopping period is to make sure that any pair of nodes are

able to rendezvous in different rendezvous channels. Since the selection of CH

sequence is random, the requirement of full utilization of rendezvous channels

44

is satisfied. When a rendezvous channel’s primary user appears, the nodes on

that channel should yield using the channel, wait until a hopping slot, in which the

rendezvous channel is available, is reached, and resume the hopping process.

2.4 ASYNC-ETCH

Our study of the communication rendezvous so far is based on the assumption

that there exists a global synchronization mechanism to synchronize the hopping

processes of the nodes. In this section, we investigate the design of CH based

communication rendezvous without leveraging the synchronization mechanism.

Without synchronization, a pair of nodes wishing to communicate with each other

start channel hopping at a random time. Consequently, their CH sequences are

most probably misaligned and SYNC-ETCH cannot guarantee channel overlap for

rendezvous. We develop an asynchronous scheme, ASYNC-ETCH, to address

the issue.

ASYNC-ETCH follows the similar steps: the CH sequence construction and

CH sequence execution. ASYNC-ETCH constructs the CH sequences in a similar

fashion as SeqR [51] but employs a novel enhancement: it constructs multiple CH

sequences rather than only one as in SeqR. The arrangement of having multiple

sequences brings two benefits. First, multiple sequences reduce the chance that

two nodes select the same CH sequence. As we will show later, it takes less time

for two nodes to rendezvous when they select different sequences. Second, with

multiple sequences, participating nodes have more chances to rendezvous with

each other within a hopping period. We show that a pair of nodes using ASYNC-

ETCH that select two different CH sequences are guaranteed to rendezvous in N

slots (where N is the number of rendezvous channels) within a hopping period no

matter how the hopping processes of the pair of nodes are misaligned.

45

^ 0 0 1 2 3 4 subseq-0 Co C, C2 C3 C4

A, 0 2 4 1 3 subseq-1 C0 c 2 c 4 C, C3

A: 0 3 1 4 2 subseq-2 C0 C3 C, C4 C2

a 3 0 4 3 2 I subseq-3 c 0 c 4 C3 C2 C,

a frame (2N+1 slots)
 W=5)......*

So Co subseq-0 \ subseq-0 C, subseq-0 \subseq-0 C l subseq-01 subseq-0 C3 subseq-01 subseq-0 C4 subseq-0 \subseq-0

S, Co subseq-1 \ subseq-1 C l subseq-1 \subseq-l C4 subseq-1 \subseq-1 C , subseq-1\subseq-1 C3 subseq-1|subseq-1

Sl Co subseq-2 J subseq-2 C3 subseq-2 * subseq-2 C, subseq-2 j subseq-2 C4 subseq-2 \ subseq-2 C l subseq-2 \subseq-2

S, c0subseq-3 \ subseq-3 c4subseq-3 | subseq-3 C s subseq-3 J subseq-3 C l subseq-3 J subseq-3 C , subseq-3 jsubseq-3

Figure 8: CH sequences of a DSA network with 5 rendezvous channels.

2.4.1 An overview and an example

In a DSA network with five (N) rendezvous channel, the nodes first construct a

set of four (N - 1) CH sequences, 50,5 i,5 2 and S3, as shown in Figure 8. As

we can see from the lower part of the figure, each CH sequence consists of five

(N) frames, each of which contains 11 (2N + l) slots: a pilot slot followed by two

five-slot (JV-slot) subsequences. The arrangement of the pilot slots is displayed

in the the upper left part of the figure where pilot slot sequences A0,A U A2, A3 are

used in CH sequences 50,51,52 and 53, respectively. The arrangements for A0

to A3 are derived by the method of addition modulo the prime number five (N)

with different addends from one to four respectively. The construction of the four

subsequences (shown in the upper right part of the figure) also follows the channel

assignment order determined in A0 to A3. As we will prove later, the above CH

sequence construction guarantees that any pair of nodes (selecting two different

sequences) rendezvous in N slots within a hopping period regardless how much

channel hopping misalignment between the two nodes. Each ASYNC-ETCH CH

sequence has 55 slots (N * (2N + 1)).

After finishing the CH sequences construction, the nodes start the same CH

hopping execution as in SYNC-ETCH: each of them randomly selects a CH se

quence to start, and randomly reselects another one to continue after hopping on

46

Algorithm 7: Async. CH sequence Construction
Data: C = {Co, • • • .CW-i}: TV rendezvous channels (TV is prime).
Result: S0, ■ ■ ■, SN- 2: TV - 1 final CH sequences.

1 for * 4- 0 to TV - 2 do
2 At[0] 4— 0;
3 fo r j 4- 1 to TV - 1 do
4 I Ai[j] 4- (Ai [0] + j (i + 1)) mod TV;
s for i 4- 0 to TV - 2 do

for j 4- 0 to N - 1 do
| subSeqi[j] 4- CAiyy,

6
7

8 for i <r- 0 to iV - 2 do
9

10

11

12

13

14

15

k 4— 0 ,

fo r j 4-0 to 2iV2 + iV - l do
if j mod (27V + 1) = = 0 then
I Si 4 - Si U (j, subSeqiljjt—})] / / p ilo t Slot

else
Si 4- Si u (j , subSeqi [A:]); / / normal slot
k 4r- (k + 1) mod TV;

16 return S0,S U --- ,SN- 2

the old one for a hopping period. By doing this, we ensure that any pair of nodes

can rendezvous in different channels, which satisfies the requirement of full uti

lization of rendezvous channels. This arrangement also eliminates the unfairness

that nodes selecting the same CH sequence have less chance to rendezvous than

nodes selecting different CH sequences.

2.4.2 CH sequences construction

Algorithm 7 describes the construction of the TV - l CH sequences in ASYNC-

ETCH. To ease our presentation, we assume the number of rendezvous channels,

TV, is a prime number. We hold the discussion of a general case (where TV is not

prime) till §2.4.4.

Given TV rendezvous channels, ASYNC-ETCH first derives TV - l integer se

quences A 0 through A N_2 (which will be used as indices for later channel as

signment) by applying addition modulo the prime number TV (lines 1 to 4). Note

that all the integer sequences are derived with different addends. In lines 5 to 7,

47

the algorithm constructs N - 1 CH sub-sequences, subSeq0 to subSeqN- 2. whose

channel indices are the same as the integer sequences A 0 through A N- 2 respec

tively. Next, the algorithm constructs the CH sequence S((0 < i < N - 2) by

concatenating five frames of St together (line 8 to 15). Each frame of 5* consists

of a pilot slot followed by a pair of subSeqi. Slots in subSeqi are referred as normal

slots. The channels in Si’s pilot slots, combined together, are exactly channels

appearing in subSeqi in the same order. From Algorithm 7, it is easy to see that

ASYNC-ETCH fulfills the requirement of even use of the rendezvous channels.

2.4.3 Proof of rendezvous

In ASYNC-ETCH, the TTR between a pair of nodes is related to the fact that

whether the two nodes select the same CH sequence or two different ones. Here

we provide the theoretical analysis to determine the TTR performance in the above

two situations. In particular, we prove that the two nodes have at least one over

lapped CH slot within a hopping period in the former case, and they can ren

dezvous at least N times in the latter one.

Let us first rewrite the definition of rotation closure property from QCH [7] as

follows.

Definition 1. Given a CH sequence S with p slots and a non-negative integer d,

7l(S , d) = {(*, 7l(S, d)\i}) | TZ(S, d)\i] = S[(i + d) mod p\} is called a rotation ofS

with distance d.

Definition 2. A CH sequence S with p slots is said to have the rotation closure

property with a degree of overlapping m if 'id e [0,p - 1], | S n TZ(S, d)\ > m .

For instance, considering a CH sequence with three hopping slots, S = {(0, Co),

(1, Co), (2, C i)} , the two possible rotations are 72.(5, 1) = {(0 ,C o) , (l ,C 1), (2,C0)}

and 71(5,2) = { (0 ,C i) , (l ,C o),(2 ,C o)}. It is obvious that 5 has the rotation closure

property with a degree of overlapping 1.

48

Different from the prior work in SeqR [51], ASYNC-ETCH constructs multiple

CH sequence rather than a single one. We provide the following definition to

distinguish one CH sequence from another.

Definition 3. Two CH sequences, S0 and Si, each with p slots, are said be different

if W e [0 ,p - 1], S i^ K (S 0,d).

It is obvious that the TV - 1 CH sequences constructed by Algorithm 7 are differ

ent, since the subsequences, which are the building blocks of the CH sequences,

are different.

We first analyze the case that two nodes select the same CH sequence.

Lemma 1. For two nodes periodically hopping on a CH sequence that has the

closure property with a degree of overlapping m, they can rendezvous in at least

f slots within a hopping period no matter how their hopping processes are mis

aligned.

Proof. This lemma has been proved in QCH [7], □

Theorem 7. For two nodes that select the same CH sequence constructed by

Algorithm 7, they can rendezvous in at least 1 slot within a hopping period no

matter how their hopping processes are misaligned.

Proof. We need to prove that for any CH sequence S{ (0 < i < TV - 2) returned

by Algorithm 7, S* has the rotation closure property with a degree of overlapping

2, which combined with Lemma 1 can lead to this theorem. Specifically, we need

to prove Vd e [i,p - l], 3a b e [0,p - l] such that Sf[a] = Tl{Si,d)[a] and

Si[b\ = H (S i, d)[b], where p = 27V2 + TV is the number of slots of S

If d mod (27V + l) = 0 (i.e., the 0-th slot of both 7Z(Si, d) and are both pilot

slots), then all subSeq, in both S, and 7l(S i, d) are aligned, there are 27V2 different

overlappings.

If d mod (27V + l) ^ 0 (i.e., the 0-th slot in 7l(S i,d) is a normal slot while the

0-th slot in Si is a pilot slot), then we find the 2 overlappings as follows.

49

First, Vm,n G [0, AT — 1] (m ^ n), we have S'i [m(2./V + 1)] ± 5i [n(2Ar + 1)]

(since the 0-th slot in S'* is a pilot slot) =» (J,S,i [p(2iV-M)] = {Co, •• • ,Cjv_i}. where

p = 0,• • • , iV — 1, and W(5i,d)[m(2iV-|-l)] = H (S u d)[n(2N + l)] G {C0,--- ,C'^_1}

(since the 0-th slot in n(Su d) is a normal slot). Then there must exist a p g

[0, AT - l] such that Si\p(2N + 1)] = 'Jl(Si ,d)\p(2N + l)].

Second, for k = 2N + 1 - d mod (2N + 1), the fc-th slot in K (S i,d) is a pilot

slot while the fc-th slot in S* is a normal slot. Similar to the previous case, we

can conclude that there exits an p g [0, N - l] such that Si\p{2N + 1) + k] =

TZ{Sh d)\p{2N + l) + k\. □

To determine the rendezvous performance when two nodes select two different

CH sequences, we first give the definition of integer sequences derived by the

method of addition modulo a prime number with different addends, and prove its

overlap property.

Definition 4. Two integer sequences, A = {a0, ■ • ■ , aN- i } and B = {60, • ■ ■ , bN- 1}

where N is a prime number, are said to be derived by the method of addition

modulo the prime number N with different addends m and n i fa{ = (oq + im) mod

N, bi = (bQ + in) mod N, where 0 < a0, b0 < N - l, l < i < N - 1 and 1 < m ±

n < N — 1.

Lemma 2. Given two integer sequences derived by the method of addition modulo

a prime number with different addends m and n, A = {a0, • • • ,aN- 1} and B =

(60, • • ■ , bN-\}, there must exist an integer t e [0, • • • , N - 1] such that at = 6t.

Proof. Prove by contradiction. Suppose Vf g [0, ■ • • ,N - 1], at bt. Construct

a integers sequence C = {co, • • • , c^_i}, where c< = a* - bi (0 < t < N - l). It

is easy to see that Vq,Cj g C (0 < i / j < N - l), c{ ^ cjt othenwise we can

get a0 - b0 + i(m - n) = aQ - bQ + j(m - n) (modiV) =» m - n is multiple times

of N, which is impossible since \ < m ^ n < N - l . Because at ± bt Vt g

50

[0, ■ • • , N - l], C contains N different integers that are in the range of [1, N - 1],

which is a contradiction. □

Theorem 8. For two nodes that select two different CH sequence constructed

by Algorithm 1, there must be at least N overlapping slots within a hopping pe

riod between the two CH sequences no matter how their hopping processes are

misaligned.

Proof. Suppose Si and Sj are two different CH sequences selected by the two

nodes, we prove this theorem in the following two cases.

(1) The slot boundaries of Si and Sj are aligned during the hopping processes

of the two nodes. In this case, we have two further sub-cases as follows.

First, pilot slots in S', overlap with pilot slots in Sj. In this case, all subSeqi in St

exactly overlap with all subSeqj in Sj. Since integer sequences {A[0], • • • , At[N -

1]} and {A,-[0], ,A j[N - 1]}, which are the subscript sequences of subSeqi

and subSeqj respectively, are derived by the method of addition modulo the prime

number N with different addends, there exists one overlapping between a sub

sequence pair by Lemma 2. So there are 2N overlapping slots between Si and

Sj within a hopping period.

Second, pilot slots in St do not overlap with pilot slots in Sj. If the 0-th slot in

Si (a pilot slot) is aligned with the k-th (0 < k < N - 1) slot of the first subSeqj in a

frame of Sj, then the first subSeq, in all the frames of St overlap with N contiguous

normal slots in Sj. If the 0-th slot in S* (a pilot slot) is aligned with the fc-th (0 <

k < N - 1) slot of the second subSeqj in a frame of Sj, then the first subSeqj in

all the frames of Sj overlap with N contiguous normal slots in S<. In either case,

there exists at least one overlapping slot in each frame of both Si and Sj because

of Lemma 2 and the fact that the sequences of normal slots in Si and Sj are

developed by addition modulo prime the number N with different addends. So

there are at least N overlapping slots between S{ and Sj within a hopping period.

51

(2) The slot boundaries of St and S, are misaligned during the hopping pro

cesses of the two nodes. Suppose the first /3 (0 < /3 < l) portion of the 0-th slot in

Sj overlaps with the /-th slot (0 < I < 2N 2 + N) in St, then the rest 1 -/3 portion of

the 0-th slot in Sj overlaps with the /'-th slot in Su where /' = (/+1) mod (2N 2+N).

Suppose the m-th slot in each frame of Sj is an overlapping slot if the boundaries

of the 0-th slot in Sj and the /-th slot in St were aligned, and the n-th slot in each

frame of Sj is an overlapping slot if the boundaries of the 0-th slot in Sj and the /'-th

slot in Si were aligned, then in each frame of Sjt Sj overlaps with Si in the first /3

portion of the m-th slot and in the last 1-/3 portion of the n-th slot. In other words,

there is at least one overlapping slot in each frame of both 5, and Sj. So there are

at least N overlapping slots between St and Sj within a hopping period. □

2.4.4 Additional discussion

Our previous analysis is based on the assumption that N is a prime number. To

address the practical issue when N is not a prime number in a certain DSA net

work, we can make the following adjustment to easily remove the assumption.

ASYNC-ETCH picks the smallest prime number that is greater than the number

of rendezvous channels as the parameter N for Algorithm 7, and maps the ex

cessive rendezvous channels down to the actual rendezvous channels. Figure

9 demonstrates an example of ASYNC-ETCH CH sequences construction in a

DSA network with 4 rendezvous channels C0 to C3. ASYNC-ETCH first con

structs 4 integer sequences A0 to A3 using addition modulo a prime number 5

with addends 1 to 4 respectively. Then it converts the integer sequences A{ to

A[(0 < i < 3) by replacing number 4 with number 0 in A{ (0 < i < 3). Then

the ASYNC-ETCH CH sub-sequences will be constructed according to integer

sequences A't (0 < i < 3). The drawback of this method is that some rendezvous

channels are assigned more times to the CH sequences. Therefore, for DSA net

works using ASYNC-ETCH, we recommend to assign a prime number of channels

52

0 1 2 3 4 A ’o 0 1 2 3 0 subseq-0 C0 c , C2 C3 Co

0 2 4 1 3 A', 0 2 Q I 3 subseq-l C0 c 2 Co C, Cj

0 3 1 4 2 A ’2 0 3 1 Q. 2 subseq-2 C0 c 3 C, C0 C2

0 4 3 2 1 A '3 0 0 3 2 I subseq-3 C0 Co C3 C2 C,

Figure 9: ASYNC-ETCH CH sequences construction in a DSA network with 4 rendezvous
channels.

for control information exchange.

2.5 Comparisons

In this section, we theoretically compare ETCH with QCH [7] and SeqR [51], which

are two existing CH based solutions for communication rendezvous in DSA net

works.

In QCH, three versions of communication rendezvous protocols are designed.

M-QCH and L-QCH are two synchronous versions that assume clocks are syn

chronized between nodes, and A-QCH is the asynchronous version that is used

without such an assumption. The design goal of M-QCH is to minimize time-to-

rendezvous between two CH sequences, while L-QCH’s goal is to minimize the

number of nodes that rendezvous in the same channel. SeqR is a DSA network

communication rendezvous protocol without assuming global clock synchroniza

tion. SeqR does not have a synchronous version. We divide the comparisons into

two group. In the first group, we compare SYNC-ETCH with M-QCH and L-QCH,

all of which assume the existence of global clock synchronization. In the second

group, we compare three asynchronous protocols: ASYNC-ETCH, A-QCH and

SeqR.

We compare the two groups of communication rendezvous protocols on the

three metrics introduced in §2.2.2: average rendezvous channel load, average

TTR and rendezvous channels utilization ratio. Note that the choice of the CH

sequence construction algorithm in the SYNC-ETCH protocol, i.e., the two-phase

53

Table 1: Comparisons between communication rendezvous protocols.

Avg. Rend. Average Rend, channels
channel load TTR utilization ratio

M-QCH 2
3

3
2

i
N

L-QCH ~ 1 2 N -1 1
‘ J 2 N - 1 2 N

SYNC-ETCH 1
N

22V—1
2 1

A-QCH 1
2 > 1 N/A

SeqR 1
N

n 2+ n
2 N/A

ASYNC-ETCH 1
N

2 N 2+ N ^ n AT
N - 1 ~ N/A

algorithm or the single-phase algorithm, makes no difference on the protocol's

theoretical performances on the three metrics, because we do not consider the

impacts of the appearances of primary users in these theoretical comparisons.

We will evaluate how the appearances of primary users have impacts on the per

formances of the SYNC-ETCH protocol using different CH construction algorithms

later in §2.6.2.

Table 1 summarizes the comparison results, where N is the number of ren

dezvous channels of the DSA network. In the synchronous protocols group, we

pick parameters for L-QCH such that it produces the same number of CH se

quences as SYNC-ETCH for the purpose of fair comparison. SYNC-ETCH out

performs M-QCH and L-QCH on the metrics of average rendezvous channel load

and rendezvous channels utilization ratio, because in every hopping slot it ef

ficiently utilizes all rendezvous channels in establishing control channels, while

there is only one channel can be used as control channel in each hopping slot

with M-QCH and L-QCH. Thus theoretically, SYNC-ETCH experiences less traf

fic collisions and achieves higher throughput than QCH. For the metric of average

TTR, M-QCH achieves the best theoretical performance. However, it has a very

large average load on each rendezvous channel (| of all the network nodes use

the same rendezvous channel), which will cause a high probability of traffic col

lisions and further make the time-to-rendezvous performance of M-QCH worse

54

than its theoretical value in practice.

In the asynchronous protocols group, A-QCH has the worst performance in

terms of average rendezvous channel load, because it only ensures two of the

rendezvous channels can be used as control channels while both ASYNC-ETCH

and SeqR utilize all the rendezvous channels in control channel establishment.

Moreover, A-QCH cannot provide a bounded TTR. SeqR, which constructs only

one CH sequence, can only guarantee one overlapping slot in a hopping period.

So the average TTR for SeqR is half of the number of slots in the CH sequence

(i.e., For ASYNC-ETCH’s performance on the metric of average TTR, we

make the following analysis: we proved in §2.4.3 that for the cases that when

two nodes select the same CH sequence and when they select two different CH

sequences, they are respectively guaranteed to meet in at least 1 slot and at least

N slot within a hopping period. Since ASYNC-ETCH generates N - 1 different

CH sequences and the CH sequence selection is random, on average there are

_ i_ + {Nr 9 N - n _ i guaranteed overlapping slots in a hopping period. So the

average TTR for ASYNC-ETCH is « 2N.

2.6 Performance Evaluation

We evaluate ETCH’S performance by simulation experiments. In §2.6.1, we com

pare ETCH with the existing CH based communication rendezvous protocols. In

§2.6.2, we compare the two algorithms of SYNC-ETCH for CH sequence con

struction, i.e., the two-phase algorithm and the single-phase algorithm.

55

2.6.1 Comparing ETCH to the existing CH based communica

tion rendezvous protocols

Methodology

We evaluate ETCH by comparing it to QCH and SeqR in the ns-2 simulator. We

divide the evaluation into two portions based on the assumption about the exis

tence of global clock synchronization. In §2.6.1, we compare the performances

of SYNC-ETCH (using the two-phase algorithm for CH sequence construction),

M-QCH and L-QCH. In §2.6.1, we compare the performances of ASYNC-ETCH

with A-QCH and SeqR.

In the evaluation, we modify the ns-2 simulator to make it be able to perform

multi-channel wireless communication simulations based on the Hyacinth project

[56]. In our simulations, there are a varying number of nodes in a 500m x 500m

area, where each of the nodes is in all other nodes’ communication ranges. The

length of a hopping slot is set to 100 ms. We establish Constant Bit Rate (CBR)

flows, where the packet size is set to 800 bytes and the packet rate is 125 pack

ets/sec, from each node to all other nodes. These flows are started and stopped

randomly during the simulation such that there is no more than one flow from

the same node is activated simultaneously (because there is only one transceiver

equipped with each node). Hyacinth’s manual routing protocol is used in routing

packets between the nodes. We disable the RTS/CTS function in the simulator,

and rely on the retransmission mechanism to deal with packet collisions. In the

simulations, the DSA network has 5 rendezvous channels (i.e., N = 5), each of

which can possibly be used by the primary user. To simplify the simulation, we

suppose all the secondary users are within the communication range of the pri

mary user. The appearances of the primary user is simulated as follows. We first

decide whether the primary user shows or not by flipping a coin. If the primary

user appears, we randomly disable a rendezvous channel for a random period

56

of time. Otherwise all the rendezvous channels are made to be available to the

nodes also for a random period of time. We repeat this process during the entire

simulation.

Synchronous communication rendezvous protocols

We conduct two simulation experiments to study the performances of the syn

chronous protocols on traffic throughput and actual time-to-rendezvous (TTR). In

each experiment, we run the simulation for ten rounds with different number of

secondary users (from 5 to 50 with a step length of 5) in each round.

Figure 10 shows the traffic throughput performances of the three synchronous

protocols. Part (a) of this figure shows the actual throughput while part (b) illus

trates the improvement ratio curves of SYNC-ETCH over L-QCH and M-QCH.

SYNC-ETCH has a lower throughput than L-QCH and M-QCH when there are

5 secondary users in the network. This is because in CH sequences of L-QCH

and M-QCH, rendezvous channels are randomly assigned to those non-frame-

channel-slots, which may give a pair of nodes using L-QCH or M-QCH extra slots

to rendezvous in other than the frame-channel-slot. And this is also because

there are no or little collisions in this case. However, when the number of sec

ondary users is equal or greater than 10, SYNC-ETCH achieves higher traffic

throughput than L-QCH and M-QCH, especially when the nodes-channels ratio is

in the range of 3 to 6 (i.e. when there are 15 to 30 nodes in the DSA network).

In this case, traffic collision dominates the factors that influence the throughput

performance. With both L-QCH and M-QCH, nodes are always compete for one

rendezvous channel as control channel leaving all other rendezvous channels un

used in a hopping frame, which causes a high probability of collisions when the

nodes-channels ratio is bigger than 1. On the contrary, SYNC-ETCH schedules

rendezvous among its CH sequences such that all the rendezvous channels can

be utilized in every hopping slot. This approach greatly reduces traffic collisions

57

9000

8000

7000^
1
'H 6000

5000

4000

3000

“1 “IF
X '-

- % — i r

x .

V . -a - D.- a- - Q- 4
r / V . B ' •a' ^ J*-•. ."v, *"0 SYNC-ETCH •-«■

_j i i L. _ i_
10 15 20 25 30 35 40

Number of users
45 50

2.2
2

0 18
1
| 1.4
I* 1.2

I 1
0.8 j
0.6
0.4

•S.□ • -q - • -a

x--* x •' • X..

l l j w - w m - m ■ ,*
X - -<y

(a) Traffic throughput

10 15 20 25 30 35
Number of users

(b) Throughput ratio

40 45 50

Figure 10: Throughput performances of the synchronous protocols.

5 10 15 20 25 30 35 40 45 50
Number of users

20 25 30 35
Number of users

(a) Actual time-to-rendezvous (TTR) (b) Actual TTR ratio

Figure 11: TTR performances of the synchronous protocols.

and hence increases throughput. Furthermore, it can be also noticed in Fig 10

that the throughput performance of the three synchronous protocols converges

as the nodes-channels ratio approaches 10. This is because collisions dominate

traffics in each rendezvous channel with all the synchronous protocols. In this

case, it is suggested to assign more rendezvous channels to accommodate such

a high number of secondary users.

Figure 11 part (a) shows the TTR performances of the three synchronous pro

tocols, and part (b) demonstrates the TTR ratios of SYNC-ETCH over L-QCH

and M-QCH. The TTRs of the three protocols increase as the number of sec

ondary users grows because of the increasing traffic collisions. Although M-QCH

achieves the best TTR performance among the three as analyzed in §2.5, it does

not get the theoretical TTR performance boost over SYNC-ETCH as analyzed in

§2.5. Theoretically, M-QCH performs 3 times better than SYNC-ETCH in TTR,

because it has an average TTR of 1.5 while SYNC-ETCH’s value is 4.5. How-

58

ever, the simulation results shows that SYNC-ETCH’s actual TTR is only 1.5 times

of M-QCH’s actual TTR on average. The reason of M-QCH’s TTR performance

degradation in the simulation experiment is because the nodes using M-QCH ex

perience more severe traffic collisions that those using SYNC-ETCH.

From the above two simulations it can be seen that SYNC-ETCH achieves the

best balance between traffic throughput and TTR among the three synchronous

protocols.

Asynchronous communication rendezvous protocols

In this subsection, we compare the throughput and the TTR performances be

tween the three asynchronous protocols: ASYNC-ETCH, A-QCH and SeqR.

Figure 12 shows the performances of the three asynchronous protocols. In

Figure 12 part (a), the traffic throughput performances are shown. ASYNC-ETCH

performs constantly better than the other two protocols in this metric. This is

because ASYNC-ETCH is able to utilize all the rendezvous channels as control

channels while A-QCH uses only two of them. Meanwhile, ASYNC-ETCH im

proves on SeqR such that it achieves a shorter average TTR, which contributes

to the throughput performance boost over SeqR. Figure 12 part (b) shows the

actual TTR performances of the three protocols. It is not surprised that ASYNC-

ETCH performance better than SeqR, because ASYNC-ETCH’s average TTR is

shorter than that of SeqR (see Table 1 for details). For A-QCH, we construct CH

sequences such that they have an average TTR of 4.5, which is the best that A-

QCH is able to achieve. Even so, ASYNC-ETCH still performs better than A-QCH.

2.6.2 Comparing the two algorithms in SYNC-ETCH

In the SYNC-ETCH protocol, we have proposed two algorithms for CH sequence

construction. The two-phase algorithm can be applicable to DSA networks with

an arbitrary number of rendezvous channels. However, it is unable to guarantee

59

20000
18000fi 6000
6000

S. 5500 a 4000
g 12000

10000

* 4000

15 20 25 30 35
Number of users

(a) Traffic throughput

40 45 10 15 20 25 30 35 40 45 50
Number of users

(b) Actual time-to~rendezvous

Figure 12: Throughput and TTR of the asynchronous protocols.

10 20 30 40 50 60 70 80 90 100
Number of rendezvous channels (i.e., N)

I f 1*1 I I t

10 20 30 40 50 60 70 80 90 100
a Number of rendezvous channels (i.e., N)

Figure 13: Channel appearance evenness score of the two-phase CH sequence con
struction algorithm. (The evenness score of the single-phase algorithm is always 1).

the even use of rendezvous channels requirement. The single-phase algorithm

improves on its two-phase counterpart in that it guarantees, under the premise

that N (i.e., the number of the rendezvous channels) is an odd number, all the

rendezvous channels appear in each constructed CH sequence with the same

probability.

To quantize how even the N rendezvous channels (i.e., C0, ■ ■ ■ , Cy_0 appear

in a CH sequence S, we define the “evenness score” of S regarding rendezvous

channel appearance probability as

£s N

60

0.56

0 0.51
1
8 0.46
1
3 0.41 o
NJ „ , ,
% 0.36
u
* 0.31

Figure 14: Rendezvous miss ratio vs. channel appearance evenness score.

where |S| is the number of hopping slots of S, and a{ is the number of hopping

slots of S in which channel Q appears. We further convert ss into a normalized

score N (e s), which is the range of [0,1] and can be expresses as

N (e s) = 1 - £ s ~ £best .
£ w o rs t £best

In N(es), £best and e WOTSt are the evenness scores of the best case and the worst

case of fulfilling the even use of rendezvous channels requirement respectively.

In the best case, each of the N rendezvous channels appears in S with the

same the same probability, while in the worst case, a single channel appears

in all the hopping slots of S. For instance, with the SYNC-ETCH protocol where

there are 2N - 1 hopping slots in a CH sequence, the best case that a CH se

quence S satisfies the even use of rendezvous channels requirement is that a

rendezvous channels appears once in S while each of the remaining N - 1 chan

nels appears twice in S. The evenness score of the best case is calculated as

ebe3t = |n the worst case, all the 2 N -1 slots is assigned

with the same CH sequence. Accordingly, the evenness score of the worst case

IS calculated as e w o rs t = \J - ----------— — - — Ci- L .

Low normalized evenness score of a CH sequence S indicates that S uses

one or several rendezvous channels more than the remaining channels, which

causes the nodes selecting S to have higher probability to experience communi-

1
0

...... 1’""I................ -------------- T

0
0 . -

* -o
000

- 0 -
0

0
oo.

0
O-Q

0
o.

o o
o .

1 1 i 1 [
o

88 0.9 0.92 0.94 0.96 0.98
Formalized evenness score Fits)

61

cation outages if the primary users of those heavily relied channels show up. In

SYNC-ETCH, every CH sequence constructed by the single-phase algorithm has

a normalized evenness score of 1 , which is the optimal case of fulfilling the even

use of rendezvous channels requirement. To evaluate how well the two-phase

algorithm satisfies this requirement, we calculate the average value and the cor

responding standard deviation of the evenness scores of the 2N CH sequences

constructed by the two-phase algorithm. Figure 13 shows the results of the cases

where the value of N ranges from 3 to 99. The top graph of Figure 13 plots the av

erage value of the evenness scores, and the bottom graph plots the corresponding

standard deviations. We can see from the results that the two-phase algorithm

still achieves an average normalized evenness score that is larger than 0.9 when

N is greater than 10, and that the averaged score increases as N increases.

We further perform an experiment to evaluate how the normalized evenness

scores of CH sequences affect the performances of the communication rendezvous

protocol. In the experiment, we let a node A that is stick to a fixed CH sequence

Si rendezvous with another node B for 2JV - l times, where the node B selects

a different CH sequence Sj (j / i) at each time. We disable 7 (0 < 7 < l) of

the rendezvous channels that are used most frequently in Sf. The node A fails to

rendezvous with the node B at a time if the overlapping channel between Si and

Sj is disable. We then calculate “rendezvous miss ratio” of the CH sequence St

as the ratio between the number of times when a rendezvous attempt fails and

the total number of rendezvous attempts (i.e., 2 N - 1). Figure 14 (b) plots the re

lationship between the normalized evenness score and the rendezvous miss ratio

of a CH sequence constructed by the two-phase algorithm S when N = 33 and

7 = 0.3. Under the same settings, the rendezvous miss ratio of a CH sequence

constructed by the single-phase algorithm is 0.27.

62

2.7 Conclusion

ETCH is a set of efficient channel hopping based communication rendezvous

protocols for CR networks. ETCH protocols include SYNC-ETCH and ASYNC-

ETCH. SYNC-ETCH, which assumes global clock synchronization, efficiently uti

lizes all the rendezvous channels in establishing control channels all the time.

ASYNC-ETCH is able to make a pair of nodes rendezvous without being syn

chronized. Using a combination of theoretical analysis and simulations, we show

that ETCH protocols perform better than the existing solutions for communication

rendezvous in CR networks.

63

3 HoWiES: A Holistic Approach to

ZigBee Assisted WiFi Energy Sav

ings

Wireless communication service provides wireless connectivity to smartphone ap

plications, However, it is also a major source of power consumption in smart

phones. To provide efficient power management service in smartphones, we first

studied how to reduce energy consumption for one of the most common wireless

communication interfaces in smartphones: WiFi interface.

3.1 Background and related work

3.1.1 WiFi power management

The power management mode of WiFi stations1 can be either CAM (Constantly

Awake Mode) or PSM (Power Save Mode).

CAM stations keep their WiFi radio active all the time. Figure 15 (a) shows

the operating states of CAM stations. After detecting and associating with a WiFi

network, CAM stations switch their working states between “rx/tx” and “standby”

(transitions between CS3 and CS4 in Figure 15 (a)): stations in the rx/tx state

1 Mobile devices operating as stations in a infrastructure WiFi network as specified in the IEEE
802.11 standards.

64

Has packets
to rx/tx

WiFi network
detected

No packet
to rx/tx

Outgoing
packet^,.

Has packets
to rx/tx

WiFi network
detected I No more

ja c k e t to rx/txOutgoing
/incoming

packe t}^
No packet
to rx/tx

Incoming
packets ITime to

wake up

/ No more
packet to rx/tx

S hq packet
indicated in the

beacon

Packet indicated in the
- h e a r n n -----

(b)

Figure 15: Operating state diagrams of CAM (a) and PSM (b) stations. Shaded states
have room for energy savings.

are actively receiving and transmitting packets, while standby stations overhear

all the packets in the air. Since the WiFi radio is active all the time, batteries in

CAM stations drain at a rapid speed.

To save energy wasted in the CAM standby state, 802.11 power save mode

is introduced [57]. Figure 15 (b) depicts the operating states of PSM stations.

Similar to CAM stations, PSM stations also switch their working states between

“rx/tx" and “standby” during operations. The difference is that PSM stations do not

always keep their WiFi radios active in the standby state. Instead, PSM stations

make their WiFi radios sleep (state PS4 in Figure 15 (b)) most of the time during

standby. In the sleep state, WiFi radios consumes very low power but is not able

to receive to transmit. PSM stations in sleep state switch to “rx/tx" state whenever

they have outgoing packets (transition PS4 to PS3). To receive incoming pack

ets, a sleeping PSM station needs to periodically switch its WiFi radio to active

(transition PS4 to PS5, usually right before each beacon arrives) to receive its

AP’s beacons, through which the AP advertises buffered packets for its sleeping

clients. If there is no packet indicated in the beacon for the PSM station, the sta

tion simply goes back to the PSM sleep state (transition PS5 to PS4). Otherwise,

the station stays active and waits for its incoming packets from the AP (transition

65

Table 2: System power consumption in WiFi scanning state

with WiFi scanning with WiFi off scanning/overall pert.

Galaxy S2 766 mW 265 mW 65.4%

T400 14498 mW 12732 mW 1 2 .2 %

PS5 to PS6). Then the station further switches to the "rx/tx” state on receiving the

first incoming packet from its AP (transition PS6 to PS3). Upon completion of the

receptions/transmissions, depending on detailed implementation, the station goes

back to the sleep state either immediately or after a fixed amount of time without

incoming or outgoing packets (transition PS3 to PS4). The default power man

agement mode (i.e., CAM or PSM) of a station depends on the implementation of

the WiFi driver. For example, ath5k and ath9k (i.e., the official Linux WiFi drivers

for 802.11g and 802.11 n Atheros chipset based stations respectively) [58,59] con

figure CAM as the default power management mode. Users can use the iw [60]

utility to switch the power management mode between CAM and PSM. Drivers for

Broadcom wireless chipsets being widely used in smartphones (e.g., BCM4329

chipset and BCM4330 chipset) configure PSM as the default power management

mode.

3.1.2 WiFi energy saving opportunities

We observe that there are multiple significant energy saving opportunities for WiFi

stations (i.e., mobile devices operating as stations in a infrastructure WiFi network

as specified in the IEEE 802.11 standards.) in several of their working states,

which are detailed as follows.

Opportunity 1 - scanning state: The first significant WiFi energy opportunity

lies in the scanning state. Stations in scanning state constantly iterate through all

the channels to search available WiFi networks. We have measured the system

power consumption of two mobile platforms, a Samsung Galaxy S2 smartphone

66

Table 3: System power consumption in WiFi standby state

with WiFi standby with WiFi off standby/overall pert.

Galaxy S2 298 mW 265 mW 1 1 .1 %
T400 14078 mW 12732 mW 9.6%

and a Lenovo T400 laptop, in the WiFi radio scanning state. From the measure

ment results (Table 2), we can see that about 65% and 12% of the system power

consumption are spent in WiFi scanning for the Galaxy S2 smartphone and the

Lenovo T400 laptop respectively. Moreover, recent research shows that people

spend only half of their daily life in areas with WiFi signal coverages [61], which

means their WiFi devices would spend about 12 hours a day in the high-power

scanning state if they do not turn off WiFi radio when they are outside of WiFi

coverages. Therefore, we are motivated to find an energy efficient way for mobile

devices to discover WiFi networks instead of using power-hungry WiFi radios.

Opportunity 2 - standby state: The power management mode of WiFi sta

tions can be either CAM (Constantly Awake Mode) or PSM (Power Save Mode).

The difference between these two modes lies in when WiFi stations are in standby:

a CAM station keeps its WiFi radio on all the time; a PSM station puts its WiFi ra

dio into sleep (i.e., stay in a low-power state) for most of the time when there is

no traffic, and periodically wakes up the radio to receive and check AP beacons,

through which the AP informs the PSM stations about their packets buffered at

the AP.

Table 3 presents the measurement results of the standby state power con

sumption of a Galaxy S2 smartphone and a T400 laptop, which are by default

configured as PSM and CAM stations respectively by the device drivers. The

Galaxy S2 smartphone consumes 33 mW more power, which accounts for about

11% of the overall system power, in the WiFi standby state than when the WiFi

radio is turned off. This power overhead mainly comes from the periodic wakeup

to check beacons, because when we increased the smartphone’s wakeup inter-

67

0.90.9

0.7
0.6
0.5
0.4
0.3
0.2

0.7
u. 06e 05
u 0.4

0.3
0.2

5 1015 20 25 30 35 40 45 50 55 60 65 70 75
Lengths of WiFi activity sessions (minutes) Percentage of WiFi standby (%)

(a) (b)

Figure 16: The experiment on WiFi standby time: (a) is the CDF of WiFi connection
lengths, (b) is the CDF of the WiFi standby percentages in the corresponding WiFi con
nection sessions.

val, the power overhead decreased accordingly. The T400 laptop also consumes

about 10 percent of its system power in the standby state. Recent works [10,11]

show that smartphone users usually leave their phones idle for most of the time,

which makes the standby power consumption of WiFi radios even salient regard

ing saving energies for mobile devices. Ideally, WiFi radios should sleep without

periodic wakeup or be completely turned off as long as there is no WiFi activities.

Meanwhile, it must be possible to wake up the WiFi radios if there are incoming

packets for them.

To study how much time stations spend in the standby state during WiFi con

nection sessions, we developed and deployed a WiFi activity recorder in our office

building and in the college’s library, both of which are heavy WiFi usage spots. The

recorder sniffed all the WiFi packets and recorded their MAC addresses, packet

types (e.g., data, management or control), packet sizes, data rates, received sig

nal strength (RSS) and the packet reception times. To process the data, we first

identified WiFi stations based on MAC addresses and packet types, and filtered

out those stations whose packets have low RSS values, as the recorder may miss

some of their packets because of low SNR. Then we analyzed the WiFi packets

of the remaining stations to study how much time they were idle during WiFi con

nection sessions. Based on the 15 hours of WiFi activity data collected in 5 days,

we identified 151 unique stations in 218 WiFi connection sessions. Figure 16 (a)

68

Table 4: Power consumption of CC2420 and BCM4330.

CC2420 (ZigBee) BCM4330 (WiFi) ZigBee/WiFi ratio

Rx/Tx 56 mW 435 mW 0.129

Idle/Standby 1.2 mW 33 mW 0.036

plots the CDF of WiFi connection lengths, and (b) plots the CDF of the standby

percentages in the corresponding WiFi connection sessions. If the reception time

difference between two consecutive packets from the same station is larger than

5 seconds, we marked the interval between the two reception times as a WiFi

standby duration of that station. Finally we concluded that in our measurement,

over 70% of stations spent more than 60% of their time in standby during their

WiFi sessions.

The notable standby power overhead (about 10%) and the large proportion of

WiFi standby time over the entire WiFi session motivate us to design an energy-

efficient way for WiFi standby. Ideally, WiFi radios should sleep without periodic

wakeup or be completely off as long as there is no WiFi activities. Meanwhile, it

must be still possible to wake up the WiFi radios if there are incoming packets for

the WiFi radios.

Opportunity 3 - energy waste due to wakeup contention: When multiple

PSM stations working at the same channel and associated either with the same

AP [12] or with multiple co-located APs [13], are waken up to receive buffered

packets at the same time, the contention between these stations will make them

stay awake but without performing any communication tasks, which further causes

about up to 4 times more energy consumption. Motivated by these research re

sults, we want our approach to wake up standby WiFi radios to avoid these energy-

expensive wakeup contentions.

69

3.1.3 ZigBee radio assisted WiFi energy savings

Compared with WiFi radios, ZigBee radios are more power efficient. Table 4 lists

the power consumptions we measured of ZigBee radio CC2420 and WiFi radio

BCM4330 in different operating modes. Since ZigBee is able to work at the same

frequency band as WiFi while consumes significantly less energy, it would provide

great assistance in saving WiFi energy for mobile devices if we could make Zig

Bee radios communicate with WiFi radios. Esense [62] is the first effort to enable

communications between a WiFi radio and a ZigBee radio. The idea is using Zig

Bee radio to continuously sample the background energy in the air. Once there

is a WiFi packet being transmitted, the sampling ZigBee radio will generate sev

eral consecutive samples whose energy readings are above a certain threshold,

which we call positive samples. Esense studies how the number of consecutive

positive samples (denoted as distributes when sampling WiFi packets re

played from several public WiFi traces. Esense proposes that each of those rarely

occurring #+nsec when sampling the public WiFi traces can be used to convey a

certain message from WiFi to ZigBee. The experimental results of Esense show

that it is able to deliver up to 100 different messages from WiFi to ZigBee.

The message capacity achieved by Esense is far from enough for being appli

cable to WiFi energy savings in mobile devices, since there could be up to 2007

stations associated with an AP [57], Therefore, we are motivated to study how

to extend the WiFi-ZigBee message capacity by using combinations of different

Bconsecto represent a message. Based on our new WiFi-ZigBee message delivery

scheme, we design and implement three protocols that exploit the three opportu

nities to save WiFi energies for mobile devices.

70

3.1.4 Related work

Energy saving in WiFi scanning. To save the energy spent in scanning WiFi

networks, several projects have considered, without turning on WiFi radios, pre

dicting WiFi networks availability by using different context information [61], track

ing and learning user movements [63], or collecting information about bluetooth

devices and cell towers [64]. Turducken [65] proposes a heterogeneous devices

architecture where a WiFi detector is used to detect whether WiFi signals are

present. Similar to our solution, ZiFi [6 6] discovers WiFi networks with the assis

tance of ZigBee radios. The idea of ZiFi is using ZigBee to detect WiFi beacon

patterns, which indicate the existence of WiFi networks. HoWiES takes a differ

ent approach: we enable APs to advertise themselves by broadcasting messages

that are understandable by ZigBee radios. Thus, an advantage of our solution is

that with FloWiES, mobile devices are able to selectively wake up and associate

to the APs.

Energy saving in WiFi standby. To save the energy spent in WiFi standby,

researchers have proposed to turn off WiFi radios when they are idle, and wake

them up through a low-power non-WiFi channel when there are incoming WiFi

activities. Wake-on-wireless [67] establishes the low-power channel by attaching

a additional device to both APs and WiFi clients. Cell2Notify [6 8] considers using

cellular channel to wakeup WiFi radios for VOIP calls. In our system, we establish

the low-power channel directly between APs and devices’ ZigBee radios through

which APs can wake up standby devices selectively.

Energy saving in WiFi wakeup. Recent works have shown and addressed

the energy waste problems caused by wakeup contentions between WiFi clients

that belong to the same AP [12] or multiple interfering APs [13]. In our system,

our solution naturally solves the problem of wakeup contentions between clients

associated with the same AP by waking up WiFi clients one at a time. To alleviate

71

wakeup contention between clients associated with different APs, we coordinate

APs such that there are not two interfering APs wake up their client at the same

time.

3.2 System design

3.2.1 WiFi-ZigBee message delivery scheme

The high level idea. Let us assume the messages that WiFi radios can deliver to

ZigBee radios correspond to different numbers. A WiFi radio encodes the number

that it wants to convey to a ZigBee radio by sending a sequence of WiFi packets

(called WiFi-ZigBee message packets), whose sizes are chosen from a group

of predefined values, using a fixed transmission rate. These predefined packets

sizes form the alphabet of our message delivery scheme. The ZigBee radio de

termines the size of each packet by sampling background energy, and obtains

the number that the WiFi radio wants to convey by interpreting the combination of

packet sizes.

Alphabet construction. The alphabet A is a set of b packet sizes: A =

{Si, • • • , Sb}, where Si <■■■< Sb. In order to ensure that ZigBee radios can

detect a WiFi-ZigBee message (abbreviated to "message” in later descriptions),

we need to make message packets be distinguishable from normal WiFi packets.

To this end, we carefully choose the predefined sizes for message packets and

select the message packets transmission rate such that the air time of a message

packet is longer than those of normal WiFi packets.

To study the air times of normal WiFi packets, we deployed WiFi sniffers in

our office building and the university’s library, both of which are heavy WiFi usage

spots, and sniffed WiFi packets for three days. By looking at the sizes and the

transmission rates of the sniffed packets, we observed that WiFi packets transmit

ted using low transmission rates were small in size (these packets were usually

72

0.9
0.8

0.7
0.6

0.4
0.3
0.2

0 200 400 600 800 1000 12001400160018002000 2200
W iFi packet air time (microseconds)

Figure 17: WiFi packets airtime distribution.

802.11 management/control frames like beacons and ACKs), and packets that

were large in size were usually transmitted using high transmission rates (these

packets were usually for massive data transmission like video streaming). Figure

17 shows the CDF of the sniffed packet airtime. From this figure we can observe

that over 95% of all the sniffed packets had an air time less than 1 millisecond.

Therefore, we ensure the air time of a message packet to be longer than those

of normal WiFi packets by selecting large sizes for massage packets and send

ing them at the lowest transmission rate. Meanwhile, the difference between two

adjacent predefined message packet sizes should be set appropriately to ensure

ZigBee will not generate the same number of energy samples for message pack

ets with different sizes. We will detail our choices of the predefined packet sizes

for the alphabet later in §3.3.

WiFi-ZigBee message encoding: A WiFi radio encodes a WiFi-ZigBee mes

sage M by sending a sequence of I message packets, whose size are chosen

from the alphabet A, using the transmission rate R. Here we call I the length of

the message. The value of the message is calculated as

t=i
v(M) = - l) 6l- x (3.1)

i—1

where b is the size of the alphabet A, Pi represents the *-th of the I message

73

packets and IPiiA is the index of the packet p/s size in the alphabets, for example,

U,a = j if the size of packet p* is Sj (Sj e A, l < j < b). Then the capacity of a

message delivery scheme, which is the total amount of numbers that the scheme

can encode, is bl . Here R,l,b and A are fixed and shared between WiFi and

ZigBee radios.

For instance, for a WiFi-ZigBee message delivery scheme where WiFi radios

encode each message by transmitting 3 WiFi packets with sizes chosen from

100 and 200 bytes, the alphabet A is { 100 ,2 0 0 }, the size of the alphabet b is

2 and the message length I is 3. The total number of messages that an WiFi

radio can convey to a ZigBee radio is 23 = 8 (i.e., the capacity of the scheme is

8). If a WiFi radio encodes a message by sending a sequence of 3 packets with

200B, 100B and 200B respectively, essentially it sends out 3 digits with values

of 1, 0 and 1 in that order, and the message is interpreted as number 5 (i.e.,

1 x 2° + 0 x 21 + 1 x 22 = 5).

Parameters selection: To ensure that ZigBee radios can distinguish WiFi-

ZigBee message packets from background packets, we ensure the air time of

message packets longer than the maximum packet air time of normal WiFi pack

ets2. Suppose in a WiFi network the base transmission rate is Rw, then a WiFi-

ZigBee message delivery scheme should choose its message packet transmis

sion rate R and the smallest message packet size Si such that they satisfy ^ >

where 1500 is the Ethernet MTU [69]. Meanwhile, to guarantee ZigBee ra

dios will not have the same energy sampling count for two message packets with

different sizes, the difference between two adjacent message packet sizes should

be at least where H is the background energy sampling frequency of ZigBee

radios.

WiFi-ZigBee message detection and decoding: Algorithm 8 presents the al

gorithm that ZigBee radios use to detect and decode WiFi-ZigBee messages. Zig-

2The maximum air time of ZigBee packets are smaller than that of WiFi packets.

74

Algorithm 8: WiFi-ZigBee message detection/decoding
Data: R, I, b, H, P and .4 = {& , • • • , Sb}.
Result: Report message value M once a message is detected.
PC, IC, i <- 0; state <- WAITING MSG]
while ZigBee listening is enable do

Sample background energy, store the reading in e;
if (state == WAITING-MSG) then

if (e > E) /*on positive sample*/ then
| PC «- 1; state PKTJN-PROGRESS]

else if (state == WAITING-PKT) then
if (e > E) /*on positive sample*/ then
| PC «— 1; state PKTJN.PROGRESS]
else

IC++]
if (IC > INTERVAL-TIME-OUT) then
I PC, IC , i f - 0; State <- WAITING-MSG]

else if (state == PKTJN-PROGRESS) then
if (e > E) /*on positive sample*/ then
| PC++;
else

if (P C > - ^ i) /*message packet detected*/ then
i++]

if P C - L ^ J < 2 ;
if (i = = i) /*message detected*/ then

Report M = D ! : ‘i(/ i - l) 6i- 1;
PC, IC , i <- 0; state WAITING-MSG]

else
I IC < - l] PC ^ 0] state <- WAITING-PKT]

else
if i ===== 0 /*no message packet has been detected*/ then
| PC, IC , i <- 0; state <- WAITING-MSG]
else

JC <- /C + PC;
if (/C > INTERVAL-TIME-OUT) then
j PC, IC , i <- 0; state WAITING-MSG]
else
I P C «- 0; state <- WAITING-PKT]

1

2

3

4

5
6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Bee radios detect WiFi-ZigBee messages by continuously sampling background

energy with a frequency H. If a sample’s energy reading is greater than a thresh

old E, the sample is a “positive” sample, otherwise it is a “negative” sample. In the

algorithm, the variable PC (positive sample counter) records the number of the

75

most recent consecutive positive energy readings that ZigBee radios have sam

pled, and the variable IC (message packet interval counter) records the time since

the last message packet in terms of energy sample count. There are three work

ing states in the algorithm. In the waiting message (WAITING-MSG) state (line

4-6), a ZigBee radio is waiting for a new WiFi-ZigBee message. Upon obtaining

a positive sample it switches to the packet receiving (PKT_IN_PROGRESS) state

(line 6). In the PKT_IN_PROGRESS state, the ZigBee radio keeps incrementing

PC as it continuously gets positive samples (line 16). Upon receiving a negative

sample, it decides whether the consecutive positive samples just observed come

from a message packet or from a normal packet. If they come from a message

packet (line 18-25), the ZigBee radio increments the message packet counter (line

19) and records the index of the packet’s size in the alphabet (line 20). If all the

message packets have been detected, it reports the message value based on the

formula (3.1) (line 22), resets counters and switches back to the WAITING-MSG

state (line 23). If there are message packets pending, it switches to the waiting

message packet (WAITING-PKT) state (line 25). In the case that the consecu

tive positive samples come from a normal packet (line 27-34), the ZigBee radio

switches back to the WAITING-MSG state directly if no message packet has been

detected (line 28); otherwise, it counts the consecutive positive samples just ob

served into message packet interval (line 30). If the message packet interval is

greater than a threshold, it switches back to the WAITING-MSG state (line 32).

Otherwise, it goes to the WAITING_PKT state (line 34). In the WAITING_PKT

state, the ZigBee radio keeps counting the message packet interval as they ob

tains negative samples (line 11), and ceases the decoding process if the interval

is greater than the threshold (line 13). It goes to the PKT_IN_PROGRESS state

once it obtains a positive sample (line 9).

Self-correcting message encoding/decoding. Without considering hidden

terminals’ effects, which is a case we will discuss at the end of this section, mes-

76

Background Background

Normal packet packet
--------------►— ►

&T/me
Message \ Mess!*e.."K'"'V''

Message Sender packet HI ■ - packet #2 ■ ------------------------ a

wrong correct 6 Time

Message Receiver Q ^ t 1 _____| D fl C| |___ |___ |___ Ll_D___ I___ D___ >
(zigBee)

Figure 18: An example of background packet interference.

sage packets will not overlap with normal packets in time domain because of the

802.11 CSMA/CA scheme. However, since ZigBee radio cannot sample with an

interval smaller than the IEEE 802.11 short interframe space (SIFS) (802.11 SIFS

is 10 /is while the ZigBee standard [70] mandates that the energy reporting inter

val should be at least a symbol period (16 ps)), it is possible that a ZigBee radio

obtains the same number of energy samples for two message packets with dif

ferent sizes if there are two packets sent with an interval smaller than the ZigBee

radio’s sampling interval. Figure 18 shows an example: A WiFi radio sends out

two WiFi-ZigBee message packets on which a ZigBee radio normally will gener

ate 2-3 and 4-5 energy samples respectively. However, before the ZigBee radio

could get the first sample after the first packet is transmitted, the channel is taken

by another normal WiFi client, which transmits a packet causing the ZigBee radio

to generate 2 positive samples on it. Then the positive samples of the first mes

sage packets is mistakenly counted as 5 instead of 3, which makes the ZigBee

radio believe it has detected two message digits with the same value. We call this

kind of problem background (packet) interference.

To address the above issue, we design a self-correcting message encod

ing/decoding algorithm, which extends the base encoding/decoding algorithm.

With the self-correcting scheme, ZigBee radios can still extract the correct value of

a message with high possibility even if background interferences exist. The fun

damental observation supporting the self-correcting scheme is that when back

ground interference happens, it only affects a minority amount of all the mes

77

sage packets of a WiFi-ZigBee message. Thus, we can utilize the majority of

correctly detected message packet sizes to help correcting those wrongly de

tected message packet sizes. With the self-correcting scheme, the alphabet a =

{su - , s b} is divided into p sub-alphabets as Al={Si,Sp+i,S2p+l — }, ^ 2 = { S 2 ,S p + 2,S'2p+2,"' },

, A p= {s p,s2p, - s b}. To encode a message, a WiFi radio uses packet sizes in one

randomly chosen sub-alphabet. To decode a message, a ZigBee radio gets the

sizes of all the message packets using Algorithm 8 . If all the sizes are from the

same sub-alphabet, the ZigBee radio can calculate the message value directly.

Otherwise, it indicates that there were background interferences happened to the

message packets. In this case, the ZigBee radio first identify the correct sub

alphabet (notated as A c) as the sub-alphabet to which the majority packet sizes

belong. Then it converts each of those packet sizes that are not in A c to the value

in A c that is immediately smaller than the current wrong size. This approach ex

tends the difference between two adjacent predefined packet sizes in the alphabet

by a factor of p, which makes it possible to tolerate multiple interfering background

packets. Meanwhile, the capacity of the message delivery scheme is shrunk from

bl tob^py - \

For instance, suppose there is a message delivery scheme where the alphabet

is A = {100,200,300,400} and message length is 3. An self-correcting scheme

with two sub-alphabet (i.e., p = 2) allows WiFi radios to send a WiFi-ZigBee

message by transmitting 3 packets with sizes chosen from one of the two sub

alphabets: A i = {100,300} and A 2 = {200,400}. If a ZigBee radio detects that

the sizes of the three message packets are 300B, 100B and 300B, which are

from the same sub-alphabet, it can directly conclude that the message value is

1 x 2° + 0 x 21 + 1 x 22 = 5. If the packet sizes are 300B, 200B and 100B respec

tively, it indicates that A i is the correct sub-alphabet as there are two packet sizes

chosen from A i, and that the second packet (whose size is 200B) was affected by

background interference. In this case, the ZigBee radio replaces the size 200B in

78

Ai with size 10OB in A \ , and reports the message value as 1 x 2°+0 x 21+0 x 22 = 1.

3.2.2 HoWiES energy saving protocols

Based on the WiFi-ZigBee message delivery scheme, we design three HoWiES

energy saving protocols that save energy consumed in WiFi scanning, standby

and wakeup respectively. At the mobile device side, three components relate to

HoWiES operations: The WiFi component performs the ordinary 802.11 opera

tions. The ZigBee component acts as a receiver in the WiFi-ZigBee message

delivery scheme. The HoWiES manager is a software component that connects

the components of WiFi and ZigBee and performs all the HoWiES management

operations. At the AP side, each AP has a pool of WiFi-ZigBee message num

bers, each of which is assigned to deliver a certain piece of information from WiFi

to ZigBee as specified in the following protocol descriptions.

HoWiES scanning and association. The HoWiES scanning and association

protocol establishes a connection between APs and HoWiES-capable mobile de

vices. Figure 19 shows the protocol. With this protocol, mobile devices trying to

search and join a HoWiES-enable WiFi network keep their WiFi radios off while

using the ZigBee radio to detect WiFi network advertisement messages broadcast

regularly by HoWiES-enabled APs (Op.1). Among all the WiFi-ZigBee message

numbers, APs use a set of common numbers to advertise their networks (in the

HoWiES scanning protocol) and to indicate buffered broadcast/multicast pack

ets (in the HoWiES wakeup protocol). During the scanning process, a HoWiES

client turn on its WiFi radio and associate to an AP based on the numbers en

coded in the WiFi-ZigBee messages received. For example, a system operator

can configure open APs to encode "1” in their network advertisement WiFi-ZigBee

messages, and configure encrypted APs to encode “2”. Then mobile devices can

selectively turn on their WiFi radios based on whether the encountered networks

is encrypted. Upon detecting an advertisement message (Op.2), the ZigBee com-

79

Mobile device

1: searching WiFi network
advertisement

2: advertisement
WiFi-ZigBee message

WiFi
OFF 3: WiFi available

+ signal strength scale4: turn on
WiFi radio

5 :beacon

________6: assoc, req.

7: assoc, resp + HoWiES IDWiFi
ON

8: HoWiES ID
9; HoWiES ID

HoWiES
manager

ZigBee
Comp.

WiFi
Comp.

AP

Figure 19: HoWiES scanning and association operations.

ponent notifies the HoWiES manager about the presence of a WiFi network and

the scale of the WiFi signal strength calculated based on the energy samples of

the message (Op.3). The HoWiES manager turns on the WiFi radio if the WiFi

network meets the device’s needs (Op.4). The WiFi radio sends an association

request, indicating that the request issuer is HoWiES-capable, to the AP based

on the information in the WiFi beacons (Op.5 and 6). If the association succeeds,

the AP chooses a number from its message number pool to assign to the newly

associated client as its HoWiES ID, and puts this ID in the association response

(Op.7). Finally, the WiFi component extracts the ID from the association response

and send it to the ZigBee radio via the HoWiES manager (Op.8-9).

HoWiES standby. This protocol puts mobile devices into HoWiES standby by

turning off the WiFi radio and informing AP about the status change on the mobile

devices. The upper half of Figure 20 shows the protocol. The HoWiES manager

keeps monitoring the WiFi traffic on the mobile device (Op.1). On detecting that

the WiFi radio has been idle for a certain amount of time, the HoWiES manager

notifies the WiFi radio to go into HoWiES standby state (Op.2). Then the WiFi

radio informs the AP that it will switch to the HoWiES standby state and then

turns itself off for energy savings (Op.3). Right after notifying the WiFi component

80

to switch to HoWiES standby, the HoWiES manager turns on the ZigBee radio for

WiFi-ZigBee message listening during standby (Op.2'). With this protocol, WiFi

radios in HoWiES standby devices do not need to switch to active periodically to

check beacons for buffered packets. Instead, they can just sleep all the time till

the ZigBee radio detects wakeup messages sent from the AP.

In the above design, we let both CAM devices and PSM devices switch to

HoWiES standby only when their HoWiES managers predict that the durations of

inactivities are longer than a threshold. The purpose of this rule for CAM devices

is obvious: we want to reduce the performance impact to CAM devices brought

by standby wakeup delays as performance has higher priority in CAM devices.

For PSM devices, this rule will greatly reduce the overheads generated by WiFi-

ZigBee messages on both network throughput and AP performances. As we will

see later, the message delivery scheme we have implemented has a negligible

amount of overheads on network throughput and AP performances when the mes

sage sending frequency is less than 10 (i.e., 10 messages per second). However,

when the sending frequency is larger than 1 0 , the overheads increase linearly as

the message sending frequency increases. Therefore, putting a PSM station into

HoWiES standby only when the HoWiES manager predicts that the station will

stay idle for a long duration will significantly reduce the overheads. The WiFi in

activity prediction could be achieved by combining statistical WiFi traffic history

analysis [71] and user WiFi usage pattern learning. We leave the design of the

inactivity prediction to the future work.

HoWiES wakeup. The bottom half of Figure 20 shows the HoWiES wakeup

operations. During standby, the ZigBee component keeps listening for WiFi-

ZigBee messages encoding the device’s HoWiES ID (Op.4). Once the AP has

buffered incoming packets for a HoWiES standby client, it wakes up the client by

sending out a WiFi-ZigBee message that encodes the HoWiES ID assigned to

the client in the association process (Op.5). If the buffered packets are broad

81

cast/multicast packets, a common number, instead of the HoWiES ID, is encoded

in the message. If there are multiple clients that have buffered packets, the AP

wakes them up one by one in a FIFO manner. The ZigBee component informs

the HoWiES manager about the buffered packets if it detects the number encoded

by a WiFi-ZigBee message matches the device’s HoWiES ID (Op.6). Then the

HoWiES manager turns on the WiFi radio (Op.7), which in turn gets the buffered

packets from the AP (Op. 8-9).

Since APs wake up its HoWiES standby clients one at a time, this approach

naturally solves the wakeup contention problem causing by waking up multiple

WiFi clients associated with the same AP. However, if multiple interfering APs

(i.e., APs that can hear each other) wake up their own clients at the same time,

the awake times of the clients due to the wakeup contentions could be extended

by a factor of 5 [13]. To solve the problem, we let each AP exclusively occupies

a repeated wakeup period, during which it can wake up its clients to get their

buffered packets, such that wakeup periods of any two interfering APs do not

overlap. An AP’s wakeup period starts at the beginning of each of its beacon

period (i.e., right after a beacon is sent out), and lasts a duration of Tdur. The value

of TdUT is determined in the same way as the length of a fair share is determined in

[13]. Interfering APs coordinate their beacon periods [13] to ensure their wakeup

periods do not overlap with each other.

3.2.3 Discussions

Dealing with hidden terminals. In designing the self-correcting message encod

ing/decoding scheme, we assume that two WiFi packets will not overlap in time

domain due to 802.11 CSMA/CA. However, if there are two hidden nodes trans

mitting without knowing each other, their packets could be concatenated in time

domain at a certain place between them. In this case, the concatenated packet

may have an airtime equal to a WiFi-ZigBee message packet, causing a sampling

82

Mobile device

1: idle detectionWiFi
ON 2: HoWiES standby

3: device in
HoWiES standby

2': start msg listenini
standby

operations

wakeup
operations

4: listen for its
HoWiES IDWiFi

OFF 5: HoWiES ID via
WiFi-ZigBee msgI 6: incoming

J paket pending 8: get buffered
packets

7: turn on WiFi l»

WiFi
ON 9:buffered packets

HoWiES
manager APZigBee

Comp.
WiFi

Comp.

Figure 20: HoWiES standby and wakeup operations.

ZigBee radio to have wrong detections. Similar to the existing solutions dealing

with the hidden terminal problems, we address this issue by using retransmis

sions: when an AP sends a message encoding a client’s HoWiES-ID to wake up

the client, it will keep sending the message with a certain interval until the client

wakes up and fetches the buffered packets.

Variable message length. In our current design, all WiFi-ZigBee messages

have the same length (i.e., use the same number of packets to encode different

messages). A promising way to increase the efficiency of the message delivery

scheme is to use less packets to encode those frequently used messages and

more packets to encode those rarely used messages (which is an idea similar to

Huffman coding). We leave this exciting improvement to our future work.

3.3 System implementation

We have implemented the HoWiES system with the devices shown in Figure 21.

The system consists of two types of entities: HoWiES clients and HoWiES APs.

HoWiES clients are implemented in two mobile platforms: a smartphone platform

(Samsung Galaxy S2) and a laptop platform (Lenovo T400). We enable ZigBee

83

Table 5: OSes and WiFi drivers of implementation devices

Device Operating System Driver

Samsung Galaxy S2 Android 2.3 (Linux 2.6.35) DHD

Lenovo T400 Ubuntu 10.04 (Linux 2.6.32) ath9k

Dell Latitude D820 Ubuntu 10.04 (Linux 2.6.32) madwifi

Wiligear WBD-500 OpenWrt 8.09 (Linux 2.6.26) madwifi

Figure 21: (a) HoWiES client implemented in a Samsung Galaxy S2 smartphone, (b)
HoWiES client implemented in a Lenovo T400 laptop, (c) HoWiES APs implemented in
Dell Latitude D620/D820 laptops, (d) HoWiES APs implemented in the Willigear WBD-
500 integrated radio platform.

in both mobile platforms by integrating each of them with a TelosB mote that has

a CC2420 ZigBee radio via USB interface. HoWiES APs are implemented in two

AP platforms: a laptop platform (Dell Latitude D620/D820) and a standalone AP

platform (Wiligear WBD-500 integrated radio platform). Table 5 lists the OS and

the WiFi driver used in each device.

3.3.1 HoWiES client

A HoWiES client has three major components: the WiFi component (consisting

of the WiFi radio and the WiFi driver), the ZigBee component (consisting of the

CC2420 ZigBee radio and the message detection/decoding TinyOS module) and

the HoWiES manager.

84

Background energy detection: The CC2420 ZigBee radio has an RSSI reg

ister that records the RSS averaged over 8 symbol periods. The TinyOS provides

an interface for programs to read the value of the RSSI register. However, ac

cording to our experience, the native TinyOS interface needs around 500 fis to

get an RSS reading from the register. To increase the RSS sampling rate (so as

to have more packet sizes for the alphabet), we have managed to reduce the RSS

reading interval to about 150 ^s. In our implementation, we set the ZigBee RSS

reading interval to 180 ^s (i.e., H = 5 5 5 5) for stable performances.

Message detection/decoding: The ZigBee component continuously detects

and decodes all WiFi-ZigBee messages by running Algorithm 8 , and notifies the

HoWiES manager about the messages that are related to the hosting mobile de

vice (e.g., WiFi network advertisements and the device’s HoWiES ID).

Duty cycling ZigBee radio: According to our measurement, the power con

sumption that a TelosB mote has when it is sampling background energy is about

60 mW, which is higher than the standby WiFi power overheads in Galaxy S2 (33

mW). To solve this issue, we adopted a solution similar to [72], where the sen

sor is put to sleep periodically for energy savings. We have reduced the energy

sampling power consumption of TelosB mote to 5 mW by duty cycling the ZigBee

radio. In our implementation, a ZigBee radio samples background energy only

during the wakeup period of the AP that its hosting device is associated with. To

synchronize ZigBee radios with the corresponding APs’ wakeup periods, we let

APs broadcast the durations of their current wakeup periods (i.e., Tdur) via bea

cons. Then the HoWiES manager enables ZigBee energy sampling only in the

first Tdur of time of the corresponding AP's beacon period (recall that each AP's

wakeup period starts at the beginning of its beacon period). Before an AP has

to adjust its beacon period (because of topology changes of interfering APs), it

wakes up all its HoWiES standby clients to let them be able to re-synchronize to

its new wakeup period.

85

The HoWiES manager: The HoWiES manager is implemented as a Linux

kernel module in the mobile device’s OS. It is responsible for turning on/off WiFi

radios as specified in the protocols, controlling background energy sensing in Zig-

Bee radio and relaying information between the WiFi and the ZigBee components.

The HoWiES manager communicate with the ZigBee component via USB serial

connection.

3.3.2 HoWiES AP

WiFi-ZigBee message parameters selection: In our implementation, HoWiES

APs send out a WiFi-ZigBee message by transmitting 3 packets (i.e., I = 3) with a

transmission rate of 1 Mb/s (i.e., R = l Mb/s). We experimentally quantified how

stable the CC2420 radio generates energy samples in sampling packets with a

fixed length. We found that the CC2420 radio we used can produces 4 different

numbers of energy samples for the same WiFi packet size. Therefore, to ensure

ZigBee will not generate the same number of energy samples for two message

packets with different sizes, we set the difference between two adjacent packet

sizes in the alphabet to 90 bytes (i.e. *$), which gives us 14 packet sizes for the

alphabet: A = {300,390, • • • , 1470}. Thus, the smallest air time for the message

packet is 2.4 millisecond, which is larger than the air times of all the sniffed WiFi

packets obtained in our experiment described in the "Alphabet construction" sub

section.

WiFi-ZigBee message packets transmission: HoWiES APs transmit mes

sage packets using a user space packet sending program implemented with the

libpcap library. The user space program and the WiFi driver located in kernel

space are connected by using the Linux usermode-helper API.

86

Table 6 : Reliability and accuracy of the implemented WiFi-ZigBee message delivery
scheme in the uncontrolled experiment.

Reliability Accuracy
Total msg

detected/sent
Correct msg/detected
(w/o self-correction)

Correct msg/detected
(w/ self-correction)

19,904/20,000 19,223/19,904 19,737/19,904

99.5% 96.6% 99.2%

£ 100*
r w
2 98a 97

96
95
94
93
92
91
90

§
8.Co■a

6 9 12 15 18 21 24 27 30
Background traffic rate (Mb/s)

(a)

100
99
98
97
%
95
94
93
92
91
90

with sejf-correctjve enc./deco. ■ -0 ...
vitftout pelf-forreptive pnc./peco., x ;

6 9 12 15 18 21 24 27 30
Background traffic rate (Mb/s)

(b)

Figure 22: Reliability and accuracy of the implemented WiFi-ZigBee message delivery
scheme in the controlled experiment, (a) shows the reliability performance: the message
detection percentage vs. different background traffic bandwidth, (b) shows the accuracy
performance: the correctly decoded message percentage vs. different background traffic
bandwidth.

3.4 System evaluation

3.4.1 WiFi-ZigBee message delivery

Reliability and accuracy. The message delivery scheme needs to be reliable,

which means HoWiES clients should reliably detect WiFi-ZigBee messages sent

by HoWiES AP without firing any false alarms (i.e., reporting messages when

there is none). Meanwhile, the message delivery scheme needs to be accurate,

which means HoWiES clients should be able to correctly decode the detected

messages.

We have performed an uncontrolled experiment to evaluate the reliability and

the accuracy performances of the implemented message delivery scheme in real

87

WiFi environments. We deployed a HoWiES AP and client pair in the university’s

library, and performed the experiment from 8 PM to 10 PM, a time section during

which the library are full of students surfing web and watching online videos, in

several days. In the experiment, the AP sent different numbers to the client in

different rounds. In each round, the HoWiES AP randomly chose a number from

1 to 2744, encoded the number into a WiFi-ZigBee message and transmitted the

message for 100 times with an interval of 100 ms. The chosen number is recorded

such that we can use it as ground truth when deciding if the client has correctly

decoded the messages. The HoWiES client detected and decoded the messages

using the base message encoding/decoding algorithm (i.e., without using the self-

correcting scheme), and output the results to a data file for analysis. We ran the

experiment for 200 rounds. Table 6 shows the results. For the total 20,000 WiFi-

ZigBee messages, 99.5% of them were detected by the HoWiES client. Within

all the detected messages, the HoWiES client correctly decoded 96.6% of them.

We then examined all the wrongly decoded messages as follows. We marked

an wrongly decoded message as correctable using the self-correcting scheme

with 2 sub-alphabets (i.e., p = 2), if the following conditions are satisfied. First,

there is only one message packet whose size is wrongly detected (since we use

I = 3, one is the maximum minority number). Second, the wrong size’s index in

the alphabet is greater than the actual size’s index in the alphabet by 1 (if using

p = 3, this value is 2). We found that after using the self-correcting algorithm,

the accuracy of the message decoding increased to 99.2%. We further examined

what caused the rest uncorrectable messages. There are two reasons. The first

reason is that some messages have more than one message packet whose size

is wrongly detected. The second reasons is that although there is only one wrong

message packet size, the energy samples count for that packet is less than the

expected value. This might be because of the imperfection of CC2420 hardware

implementation of energy detection.

88

We also conducted a controlled experiment to study how the message deliv

ery reliability and accuracy performances respond to the changes of background

traffic. In this experiment, we produced background traffic by establishing a direct

iperf UDP connection between two 802.11g WiFi nodes (UDP packet size was

1500 bytes). We varied the connection bandwidth between the two nodes and

observed how our message delivery scheme responded to that. We have tested

background traffic bandwidth from 1 Mb/s to the saturated bandwidth (30 Mb/s)

with a step length of 3 Mb/s. Similar to the uncontrolled experiment, the HoWiES

AP transmitted messages encoding a randomly selected number, without using

the self-correcting algorithm, for 100 times in each round. With each background

traffic bandwidth, we performed the test for 100 rounds. Figure 22 (a) presents

the message delivery’s reliability performance. For all the tested background traf

fic bandwidths, our scheme can correctly detect at least 99% of them. Figure 22

(b) shows the accuracy performance. Without using the self-correcting encod

ing/decoding algorithm, the accuracy ratio decreased as the background traffic

bandwidth increased. For the saturated background traffic bandwidths, the accu

racy percentage was 92%. Similar to the uncontrolled experiment, we analyzed

all the wrongly decoded messages and marked those that were correctable. After

applying the self-correcting algorithm, the accuracy percentages for all the back

ground traffic bandwidths increased to at least 98%.

Message delivery overheads. To evaluate the message delivery overheads

imposed on network throughput, we tested the iperf UDP bandwidth between two

directly connected WiFi nodes while a HoWiES AP was sending WiFi-ZigBee

messages with different frequencies in vicinity. We have tested the message

sending frequencies (Hz) of 0.5, 1, 2, 5, 10, 20, • ■ ■, 60, 80 and 100. Figure 23

(a) shows the experiment result. With the message sending frequencies (Hz) of

0.5, 1, and 2, there were only a negligible amount of throughput degradation on

network throughput. With the sending frequencies of 5 and 10, the tested iperf

89

aj=wa

100
90
80
70
60
50
40
30
20

Ifc"
..B .O ...

' T 1---------- 1” “ 1----------1-----------I---------- 1-

s
&M)
§

10 20 30 40 50 60 70 80 90 100
WiFi-ZigBee Message frequency

(a)

100
90
80
70
60
50
40
30
20
10
0

„r~--- 1----- 1—— r-

' • □ . - <3-.----
' C].

• • 'X '. ' □ .
x • • . .

_i 1------ 1------ /—
10 20 30 40 50 60 70 80 90 100

WiFi-ZigBee Message frequency

(b)

Figure 23: HoWiES WiFi-ZigBee message delivery overheads, (a) shows the message
delivery overheads on network throughput, (b) shows the message delivery overheads
on performances of two different AP platforms: Latitude D820 laptop and WBD-500 stan
dalone AP.

connection still had 90% of its bandwidth. Then the network bandwidth decreased

approximately in linear as the message sending frequency increased.

To evaluate the overheads imposed on AP performances, we established an

iperf UDP connection between two WiFi node via a HoWiES AP. Then we tested

the bandwidth between the two WiFi nodes while the HoWiES AP varied the WiFi-

ZigBee sending frequencies in the same way as in the previous network overhead

experiment. We tested our implementation on two different AP platforms: the Dell

Latitude D820 laptop and the Wiligear WBD-500 standalone AP. Figure 23 (b)

shows the experiment result. Similar to the network overhead experiment, both

AP platforms has a small amount of throughput degradation when the message

sending frequency is smaller than 10. When the sending frequency is higher than

1 0 , the throughputs on both platforms decreased linearly as the message send

ing frequency increased. The WBD-500 standalone AP had a faster performance

drop than the Dell laptop. This is because the standalone AP has more con

strained computational resources.

From the two experiments we learn that our message delivery scheme has a

negligible amount of overheads on both network throughput and AP performance

when the message sending frequency is less than 10 (i.e., 1 0 messages per sec-

90

| 280
S 240
"§ 200
| 160
| 120

53 u.?
- % 0.8

g. 0.7
Galaxy S2 c (X5

— — ' ' I 0.4

T400

o
0.9

normal
HoWiES-enablea tzzza

g so
HoWiES client' % oil

........... y.............- Q

30 60 90 120 150 180
Time (seconds)

(a)

T-400

(b)

Galaxy S2

Figure 24: Energy gain on the WiFi scanning state, (a) is the energy generated by the
WiFi scanning operation as the time elapses, (b) is the scanning power consumption com
parisons between the two types of HoWiES clients and corresponding normal devices.

ond). When the sending frequency is higher than 10, the overheads increase

linearly as the frequency increases.

3.4.2 Energy gain achieved by the energy saving protocols

Power measurement setup and methodology. To measure the power con

sumption in the T400 laptop, we use the smart battery interface come with the

operating system. According to [28], the smart battery interface is highly accu

rate when the battery interface reading rate is low. Since we are only interested

in long term energy consumptions, the smart battery interface satisfies our re

quirements. To measure the power consumption in the smartphone, we use the

Monsoon power monitor [73], which provides accurate power readings for hand

held mobile devices. When we measure the power of a device, we turn off all the

unnecessary applications and services, and shut down the power-hungry LED

screen. To get the power consumption value for a WiFi operation (e.g., scanning

or standby) in a device, we first measure the baseline system power consumption

(i.e., system power consumption without running any WiFi operations). Then we

measure the system power when the device is continuously performing the tar

geted WiFi operation. Finally, the difference between the two values is the power

consumption for the WiFi operation.

91

Normal Galaxy S2

HoWiES-enabled Galaxy S2

S 0.5

60 90 120
Time (seconds)

(a)

Normal HoWiES-enabled
Galaxy S2 Galaxy S2

(b)

Figure 25: Energy gain on the WiFi standby state, (a) is the energy generated during
standby as the time elapses, (b) is the power consumption comparison between the
HoWiES-enabled Galaxy S2 smartphone and the original device.

Energy gain in WiFi scanning. We measured the WiFi scanning power con

sumptions of three devices: a normal T400 laptop, a normal Galaxy S2 smart

phone and a HoWiES client. Our measurement shows that the T400 laptop, the

Galaxy S2 smartphone and the HoWiES client spend 1740 mW, 501 mW and 61

mW for WiFi scanning respectively. Figure 24 (a) shows the energy generated by

the WiFi scanning operation as the time elapses in a 3 minutes duration. Figure

24 (b) shows the percentages of WiFi scanning power reduction of the HoWiES

client when compared to the normal mobile devices. From the result we can con

clude that our scheme can effectively reduce power consumptions for the WiFi

operation in mobile devices.

Energy gain in WiFi standby. To evaluate the power savings achieved in

the WiFi standby state, we compared a Galaxy S2 smartphone and its HoWiES-

enabled version. Our measurement shows that the normal Galaxy S2 and the

HoWiES-enabled Galaxy S2 consumes 33 mW and 5 mW in the standby state

respectively. Figure 25 (a) shows the energy generated during standby as the

time elapses in a 3 minutes duration. Figure 25 (b) compares the standby power

consumption between the two subjects. Although the absolute value of power

consumption gain is small at the first glance, it is still quite meaningful considering

that users usually leave the WiFi radios in their mobile devices idle most of the

92

802.11 PSM sleep
HoWiES standby0.9

0.8
0.7

fc 06
8 05
U 0.4

0.3
0.2

Wakeup delay (microseconds)

Figure 26: Empirical HoWiES wakeup delay CDFs of a normal Galaxy S2 and a HoWiES-
enabled Galaxy S2.

time.

3.4.3 HoWiES wakeup delay

We evaluate the delay performance of our implemented system in terms of wak

ing up a standby client. To do the evaluation, we instrumented the WiFi device

driver in AP to record the times that a 802.11 PSM standby client and a HoWiES-

standby client needs to wake up and get their buffered packets: when the first

incoming packet of a standby client is enqueued, the AP records the packet en

queue time Ta and wakes up the standby client to get its packets (through either

standard 802.11 PSM wakeup operation or HoWiES wakeup operation). The AP

records the time Te when the client notifies the AP that it is ready to receive the

buffered packets. The time that the client used to perform the wakeup operation

is calculated as Te - Ts. On the clients side, the wakeup interval of the normal

Galaxy S2 is set to a beacon period, which is the default setting used by the WiFi

driver. For the HoWiES-enabled Galaxy S2, it goes to sleeping state once it en

ters HoWiES standby, and keeps sleeping until it is waken up by a WiFi-ZigBee

message. Figure 26 shows the empirical CDF of time that a normal Galaxy S2

and a HoWiES-enabled Galaxy S2 needs to wake up. Through the figure we can

see that the wakeup delay of our implemented system is already comparable to

that of a normal 802.11 PSM client. Actually there is still room to improve the

93

20 40 60 80 100 120 140 160 180 £
WiFi-ZigBee message index

(a)

20 40 60 80 100 120 140 160 180
WiFi-ZigBee message index

(b)

Figure 27: Accuracy of ZigBee based WiFi signal strength indicator.

wakeup latency in our implementation. For example, currently an AP is using a

user space program to transmit message packets. This will incur some extra time

in the kernel-user space communication. Moreover, the user space program can

not set its packets to have higher transmission priority than other packets, which

may cause more extra time between two message packets.

3.4.4 WiFi signal strength indicator by using ZigBee

When a HoWiES client in scanning state detects a WiFi network advertisement

WiFi-ZigBee message, the HoWiES manager uses the signal strength indicator

(SSI) generated by the ZigBee radio to determine the signal quality of the WiFi

network. In this experiment, we evaluate how accurate the WiFi SSIs generated

by ZigBee radios are when compared to SSIs that are generated by a WiFi ra

dio. In the experiment, we let a HoWiES AP transmit WiFi-ZigBee messages

continuously with an interval of 1 second. Then we walked further away from the

HoWiES AP carrying a HoWiES client, which ran a program that captured all the

WiFi-ZigBee message packets using a WiFi sniffer while the ZigBee radio was

continuously detecting, decoding and recording messages. To process the data,

we first correlated the 3 WiFi packets (recall that each WiFi-ZigBee messages is

encoded by 3 WiFi packets) with the corresponding WiFi-ZigBee message. The

SSI of each WiFi-ZigBee message generated by the ZigBee radio is calculated as

94

the average of all the positive energy samples of the message, and the SSI gen

erated by the WiFi radio is the average of the 3 corresponding WiFi packet’s SSI.

We plot the SSI values generated for each message by both radios in Figure 27

(a), and plot the accuracy percentage of each SSI generated by the ZigBee radio

compared to the corresponding WiFi generated SSI. From the figure we can see

that ZigBee generated SSI can accurately reflect the actual WiFi signal strength.

3.5 Conclusion

HoWiES is a Wifi energy saving system that achieves WiFi energy savings in three

different aspects: scanning energy saving, standby energy saving and standby

wakeup contention reduction. The foundation of the HoWiES system is a novel

WiFi-ZigBee message delivery scheme that enables WiFi radios to deliver differ

ent information to ZigBee radios. Our extensive evaluations show that our im

plementation of the WiFi-ZigBee message delivery scheme works accurately and

reliably with reasonable overheads, and that the whole system can effectively

save energy for WiFi devices.

95

4 CacheKeeper: A System-wide Web

Caching Service for Smartphones

Smartphone applications that need connectivity usually rely on certain applica

tion layer data transmission protocols to exchange data. HTTP is one of such

protocols that are being used by many smartphone applications. HTTP traffic is

now the dominant type of Internet traffic [16]. With the popularity of smartphones

and tablets, an increasing amount of HTTP traffic originates from mobile devices.

The mobile HTTP traffic has grown 35% in under a year [17], and now accounts

for 20% of the U.S. HTTP traffic [18]. However, we found that many smartphone

applications incur unnecessary energy consumption by issuing redundant web

transmissions. In this project, we analyzed the reason for the unnecessary en

ergy consumption, designed and implemented CacheKeeper, a system-wide web

caching service to solve the problem.

4.1 Background and related Work

4.1.1 Background

Unlike conventional PCs, where web browser is the main source of web traffic,

smartphones have another significant source of web traffic: dedicated mobile

apps. The popularity of the ubiquitous smartphone is partly driven these useful

and entertaining mobile apps, all available for little or no cost. Since most mobile

96

apps utilize some form of network connectivity, the network behavior of mobile

apps is an important area of research.

An appropriate web caching implementation in mobile apps will benefit both

users and network operators. With such an implementation, users can (a) expe

rience a higher quality of service, since the data can be accessed faster locally,

(b) lower costs, since users may have to pay a higher fee for downloading more

data, and (c) conserve energy by reducing unnecessary data transmissions. Net

work operators also benefit when mobile apps implement web caching correctly

since this reduces the congestion on the network, especially the last mile radio

connections.

Despite the importance of web caching, large numbers of mobile apps have im

perfect web caching, meaning that web caching is either implemented for only cer

tain HTTP resources the apps request, or is not implemented at all. The reason is

twofold: lack of library support and negligence from developers. For example, the

Android platform provides two official HTTP client classes: HttpURLConnection

and Apache HTTP C lien t [74]. Before Android 3.2 (API level 13), the HttpURLConnection

class only provided an interface for caching implementation. Developers have to

implement their own client-side caching mechanisms. Heavy programming bur

den will hold developers from doing so. Later, Android added an official implemen

tation Of client-side caching (i.e., the HttpResponseCache class) for HttpURLConnection.

However, it still requires developers to call the library to add caching capability.

Since apps without caching or with poor caching will still have the “look-and-feel”,

some developers will spend less time implementing and testing the caching be

havior of their apps.

4.1.2 Related work

Measurements o f Web Usage in Smartphones. The popularity of smartphones

and tablets has driven a growing number of works on studying web usage in smart-

97

phones. Based on a dataset containing one-year-long web accessing log from 24

iPhone users, recent work [75] studies users’ Internet accessing behaviors on

smartphones. The study results show that dedicated mobile apps are used by

users to visit the web much more frequently than browsers. This demonstrates

the needs to ensure properly working web functions, including web caching, for

mobile apps. Work [76] specifically investigates smartphone web traffic related to

advertisements based on a large dataset collected in a major European mobile

network. The results suggest that ad traffic is a major component of overall mo

bile web traffic. Work [77] compares smartphone web traffic and laptop web traffic

based on a 3-week-long wireless communication trace collected in an enterprise

environment. As one of the findings, the authors suggest that web caching in

smartphones is not as effective as that in laptops. Similar to [77], Qian et al. [78]

conduct a comprehensive measurement study on web caching in smartphones.

By examining a one-day smartphone web traffic dataset collected from a cellular

carrier and a five-month web access trace collected from a small user base, the

study reveals that about 2 0 % of the total web traffic examined is redundant be

cause of poor web caching. In this work, we investigate the effectiveness of web

caching in smartphones from a different perspective. Instead of analyzing mo

bile web traffic collected from service provider, we inspect web caching function

of 1300 top ranked apps downloaded from the Google Play. This way, we can

explicitly get, rather than inferring, information about how different types of mobile

apps perform in web caching, which we believe will be helpful for future mobile

apps and mobile platforms design.

Reducing Web Accessing Latency in Smartphones. A considerable amount

of efforts have been invested in reducing web accessing latency in smartphones.

To increase the operation speed of web browsers, work [79] proposes improved

web caching on style/layout data. Work by Wang et al. [80] also studies the causes

of slow web mobile browsers. The authors suggest the root cause is slow con-

98

tent loading. They then propose a method of speculative loading [81] to reduce

web accessing latency when using smartphone browsers. PocketSearch [82] pro

poses to put results of certain cloud service like web search in smartphones’ local

storage to expedite service speed. Similarly, PocketWeb [83] proposes, using

machine learning on a per users basis, to prefetch web pages into smartphone’s

local storage to reduce web accessing latency. In this work, we take a different

approach to reduce web accessing latency for smartphones. We propose to run

web caching as a system service, so that we can compensate for the flaw of im

perfect web caching in many mobile apps, which causes unnecessary transfers,

increases web accessing latency and reduces battery life.

4.2 Motivation

Our approach is to reduce the burden of mobile app developers by providing a

caching-as-a-service layer. The web caching service will provide the correct web

caching implementation with no effort on the part of mobile app developers. De

velopers do not need to install any additional libraries or incorporate any additional

API calls to take advantage of CacheKeeper. There are two major observations

that led us to believe that it is desirable to provide web caching as a system-wide

service for smartphones: web caching imperfection in mobile apps and cross-app

caching opportunities.

4.2.1 Web caching imperfection in mobile apps

We have conducted an extensive measurement study of top-ranked Android apps

in Google Play to study the web caching behaviors of individual Android apps.

99

Measurement setup

Apps selection. The Google Play organizes apps into 24 categories (shown in

first column of Table 7). We downloaded the top 50 ranked free apps from each

of category, except the “News and Magazines" category. In this category, we

selected the top 150 ranked free apps. We paid more attention to the news apps

because they all access web contents. In total we selected 1300 top ranked apps.

We also inspected the selected apps to ensure no app appears in two different

categories.

Web traffic generation. We installed and used each app on a smartphone

running Android 4.0 to see if the app generates web traffic. To achieve automated

testing, we developed a tool (using the adb getevent/send event utility) that can

record and replay user inputs on the touch screen. Prior to running the auto

mated measurement experiment, we first recorded the user inputs when we used

an app. To ensure comprehensive app usage, we clicked all the representative

buttons/tabs/links when recording the user inputs. During the measurement ex

periment, we replayed the recorded user inputs to test all the 1300 apps. The

experiment has been run twice with a one-week interval between the two execu

tions.

Web traffic recording. During the measurement experiment, we configured

the smartphone to access the Internet via an HTTP debugging proxy [84], through

which we could capture all the HTTP traffic the smartphone generated. The cap

tured HTTP traffic was saved into trace files for later processing. Among the 1300

apps, there are 863 apps generating HTTP traffic. Table 7 column 1 .2 shows the

number of apps with HTTP traffic for each category. To quantify how much HTTP

traffic an app generates, we computed the per-click HTTP traffic volume for each

app, which is the ratio of an app’s total HTTP traffic volume over the app’s total

number of clicks. Table 7 column 1 .3 shows the average per-click HTTP traffic

100

gQ __________ .___________
O No heuristic expiration

^ 70-1 A With heuristic expiration
A .2 0.5
A a

O No heuristic expiration
A With heuristic expiration

0 50 100 150 200 250
Per-click HTTP traffic (KB)

&

0 50 100 150 200 250
Per-click HTTP traffic (KB)

(a) (b)

Figure 28: Correlation between per-click HTTP traffic and (a) the number of apps with
imperfect web caching, and (b) the average inter-click redundant HTTP traffic ratio.

volume for each category.

Web caching imperfection identification. When testing an app, we exe

cuted the app twice by replaying the user inputs twice with an short interval, and

collected traces for the two executions. We chose a short execution interval be

cause we wanted to ensure that the cacheable HTTP objects (defined in RFC

2616 [85]) obtained in the first execution are still fresh when the second execu

tion happens. If the second trace contained the same cacheable HTTP objects

as in the first one, and the cacheable objects in the first one were still fresh when

the second execution occurred, then the app would be identified to have imper

fect web caching, and the corresponding HTTP transaction (i.e., the HTTP re

quest/response pair) in the second trace would be labeled as redundant. For

an HTTP response that does not contain expiration time or validators (e.g., ETag,

Last-Modified time), if it neither contains the Cache-Controi: no-store directive,

we treat it as heuristic cacheable (because in this case, according to RFC2616,

HTTP caches can assign a heuristic expiration time to the response).

Measurement findings

App HTTP traffic and web caching imperfection. Figure 28 (a) plots, for the

24 categories of apps, the relationship between each category’s per-click HTTP

traffic and the category’s percentage of apps with imperfect web caching. We

101

Table 7: Summary of the app measurement study.

Categories
on

Google Play

I: Setup II: Inter-click,
redundancy

1 2 3 1 2
Apps
tested

Has HTTP
traffic

HTTP traf.
per-click

Apps
cnt.f

Traf.
ratiof

books & refs 50 30 42.3 KB 12| 14 0.23(0.26
business 50 23 16.0 KB 4| 15 0.06|0.26
comics 50 39 125.1 KB 12(23 0.19(0.29

communication 50 17 18.0 KB 3| 10 0.02|0.25
education 50 31 130.3 KB 9(14 0.16|0.27

entertainment 50 37 105.7 KB 18|20 0.21(0.25
finance 50 16 29.4 KB 3|4 0.14(0.19

health & fitness 50 35 74.4 KB 8 12 0.11 (0.20
libs & demos 50 29 82.7 KB 10(12 0.16(0.17

lifestyle 50 30 98.8 KB 8 | 13 0.10(0.15
media & video 50 37 122.9 KB 8(15 0.13(0.18

medical 50 33 31.1 KB 3(14 0.04|0.15
music & audio 50 28 98.6 KB 11115 0.17|0.19
news & mgzns 150 129 232.2 KB 92(106 0.45|0.50
personalization 50 34 53.5 KB 5(14 0.06|0.16
photography 50 40 47.6 KB 9(16 0.05|0.10
productivity 50 26 27.7 KB 3(13 0.01(0.07
shopping 50 34 197.7 KB 27|28 0.44|0.52

social 50 17 112.1 KB 8 12 0.20|0.24
sports 50 44 227.2 KB 34|38 0.4210.47
tools 50 40 25.6 KB 6 | 15 0.04|0.08

transportation 50 40 102.6 KB 17|23 0.19(0.26
travel & local 50 29 178.5 KB 17(22 0.31(0.40

weather 50 45 171.2 KB 27132 0.26|0.31
Overall 1300 863 121.2 KB 354|500 0.19|0.26

f: Presented in the format of a\b, where a and b are the values without and with
heuristically redundant traffic counted respectively.

can see that the ratio of apps with imperfect web caching in a category is roughly

proportional to the category’s average per-click HTTP traffic. We can also learn

that almost all the (four out of five) categories whose per-click HTTP traffic is

greater than 150 KB have more than half apps with imperfect web caching. This

suggests that imperfect web caching is a common among apps with high HTTP

traffic volumes.

Inter-click HTTP traffic redundancy. We label a redundant HTTP transac-

102

Table 8: Summary of the app measurement study (continued).

Categories
on

Google Play

III: Same-click
redundancy

IV: Advertisement

1 2 1 2 3 4
Apps
cnt.f

Traf.
ratiof

Apps
cnt.

Ad
only

Ad traf.
per-click

Cacheable
traf. ratiof

books & refs 3|3 0.04|0.04 19 10 10.3 KB 0.77|0.87
business 1|1 0 .0 1 10.01 14 6 5.1 KB 0.92 0.93
comics 3|6 0.03|0.04 31 18 13.0 KB 0.68|0.89

communication 2 2 0 .0 1 (0.02 9 4 11.4 KB 0.6110.94
education 2|2 0.01 (0.01 24 15 13.7 KB 0.88(0.89

entertainment 3|4 0.04|0.05 29 4 32.0 KB 0.89(0.92
finance 0|0 0(0 14 7 15.7 KB 0.87(0.88

health & fitness 2 3 0.04|0.06 33 13 37.5 KB 0.86|0.94
libs & demos 4|4 0.04|0.04 24 16 19.9 KB 0.81|0.95

lifestyle 1|1 0 .0 1 10.01 24 5 12.5 KB 0.70(0.78
media & video 6 8 0.03|0.04 32 16 38.0 KB 0.94|0.97

medical 0|0 0 |0 30 20 16.6 KB 0.85(0.91
music & audio 4|5 0.04|0.04 25 6 39.0 KB 0.87(0.93
news & mgzns 41145 0 .1 2 |0 .12 94 7 39.4 KB 0.85|0.89
personalization 1|1 0 .0 1 10.01 33 16 27.9 KB 0.81|0.88
photography 1 2 0 .0 1 10.01 37 12 23.6 KB 0.9110.93
productivity 1|2 0 .0 1 10.01 22 10 12.5 KB 0.80|0.82
shopping 11(13 0.11(0.15 20 1 17.4 KB 0.94|0.97

social 1|1 0 .0 1 10.01 16 3 30.7 KB 0.87|0.95
sports 17| 18 0.09|0.09 31 3 18.1 KB 0.82|0.86
tools 0 3 0 |0.01 36 21 19.4 KB 0.78|0.84

transportation 2|2 0.03 0.03 32 7 37.0 KB 0.88)0.92
travel & local 4|5 0 .0 2 |0 .02 23 4 7.9 KB 0.6110.89

weather 11112 0.03|0.03 43 6 30.7 KB 0.76|0.83
Overall 1211143 0.03|0.04 695 230 24.2 KB 0.84|0.90

f: Presented in the format of a\b, where a and b are the values without and with
heuristically redundant traffic counted respectively.

tion as inter-click redundant if the original transaction and the redundant trans

action occur as results of two different clicks on the same app. Table 7 column

I I . l shows the number of apps with inter-click redundant HTTP traffic for each

category. We calculate the inter-click redundant traffic ratio of a category as the

ratio of the category’s total inter-click redundant traffic over its total HTTP traffic.

Table 7 column I I .2 shows this value of each category. The inter-click redundant

traffic ratio is 0.19 for all the apps tested. This number increases to 0.24 when

103

■M *
M 1
i ! 'S t

J l ®

— NoliMrittfceipirHwa
W*fa hearintc e«pr»«gi M j

I I

—No hear«»iic e«|wumn |(tf.
■ With hwriilic ciywuwi I ^ >~‘ w '

I « 80 S £
- ^ 60

0.0 0.2 0.4 06 0.8 1.0
loier-ciick redundant HTTP traffic redo

(a) "news & magazines" category
0.0 02 0.4 0.6 0.8 1.0
Inter-click redradant HTTP traffic ratio

(b) ’'sports" category

£g

0.0 0.2 0.4 06 0.8 1.0
tm er-d ick redundant HTTP traffic ratio

0.0 0.2 0.4
In ter-dick redundant

0.6 0.8 1.0
H TTP traffic ratio

(c) "shopping" category (d) overall

Figure 29: Distribution of inter-click redundant traffic ratio: (a)-(c) show the CCDF of the
redundant ratio for the apps with inter-click redundant traffic in the top 3 categories with
the most per-click HTTP traffic; (d) shows the same statistics for all the imperfect apps.

No heuristic expiration
With heuristic expiration

a. “

EC 40

1 20
3 ■Oe o

0.0 0.2 0.4 0.6 0.8 1.0
Same-click redundant HTTP traffic ratio

Figure 30: CCDF of the same-click HTTP redundant traffic ratio.

counting heuristically redundant traffic. Figure 28 (b) plots, for the 24 categories,

the relationship between each category’s per-click HTTP traffic and its inter-click

redundant traffic ratio. We can observe that those categories with high per-click

HTTP traffic have much higher inter-click redundant traffic ratios. For example,

the inter-click redundant traffic ratios for the top 3 categories with the most HTTP

traffic are 0.45 (News & Magazines), 0.42 (Sports) and 0.44 (Shopping). To

further study the distribution of the inter-click redundant traffic ratio among apps,

we plot in Figure 29 the CCDFs of the inter-click redundant traffic ratio for the pre

vious three categories and for all the apps tested. From the figure we can learn

that for the top three categories with the most per-click HTTP traffic, half of the

apps with inter-redundant traffic have a redundant ratio greater than 0.5, which

suggests imperfect web caching is not only a common, but also a serious flaw for

apps with high HTTP traffic volumes.

104

80-, [B22 implication/'
amae/*

70* E23«*</*

application/*
imp/*

rrrm ie*i/*

Inter*clickApps with inter-click Apps with same-click
redundant traffic redundant traffic redundant traffic redundant traffic

(a) (b)

Figure 31: Content type breakdowns for (a) number of apps and (b) redundant HTTP
traffic.

Same-click HTTP traffic redundancy. We found that a notable amount of

apps we tested downloaded the same resource multiple times for the same user

click. We call those redundant HTTP transactions occur for a single click on the

app as same-click redundant HTTP transactions. Table 8 column 111.1 and column

III.2 list, for each category, the number of apps with same-click redundant HTTP

traffic and the same-click redundant HTTP traffic ratio. Overall, about 10% of

the apps have same-click redundant HTTP traffic, and the average same-click

redundant traffic ratio is 0.03. However, similar to the case of inter-click HTTP

traffic redundancy, these two figures are much higher for those categories with

high HTTP traffic volumes. For example, for the top three categories with the

most HTTP traffic, more than 20% of the apps have same-click redundant HTTP

traffic, and the traffic ratio is around 10%. We plot the CCDF of the same-click

redundant ratio in Figure 30, which shows that about 40% of all the apps with

same-click redundant HTTP traffic have a redundant ratio greater than 10%.

By carefully examining the web contents that involved same-click redundant

HTTP transactions, we confirmed that those redundant downloads for the same

click were not because the same resources needed to be displayed at several

places on the same web page. We believe the main cause for same-click redun

dant HTTP transactions is developer error. As an evidence, a well-known online

105

o 0.60
WWX High ranked

Middle ranked
Low ranked

V ///X High ranked
Middle ranked
Low ranked

a 0.55

* .5 60

ST* .O
"* £>40

§ 0.40T3

< 0.25
news &

shopping
magazines

news &
magazines

shopping

Figure 32: Web caching imperfection and app rankings.

shopping and auction app had a self-redundant traffic ratio of 0.64 for the version

we tested, and the problem was fixed in a new version when we retested the app

several months later.

Content types of redundant HTTP traffic. By extracting the Content-Type

field from the HTTP response headers, we identified three major types of HTTP

resources appeared in the measurement experiment: a p p lica tio n /* , image/*

and t e x t /* . Figure 31 (a) shows for all the apps with redundant HTTP traffic,

the percentage of apps neglecting to cache each type of HTTP resources. In

the figure, all the types other than the three major types are labeled as other.

According to our experience, many of the apps with redundant traffic on image

resources only cache large images, but fail on caching small images like thumbnail

images for news lists. Meanwhile, almost all the apps with redundant traffic on text

resources fail to cache all kinds of text objects such as configuration files and data

files. Figure 31 (b) shows the content type breakdown for the redundant HTTP

traffic. We can learn that image resources took the most redundant traffic. In the

meantime, text resources also account for about 10% of all the redundant HTTP

traffic.

App ranking and web caching imperfection. We have investigated whether

app rankings have relationship with imperfect web caching. For the top 3 cate

gories with the most per-click HTTP traffic we tested, we divide their apps into

106

three groups (i.e., high, middle and low ranked) according to the app rankings by

on Google Play. We plot the percentage of apps with imperfect web caching and

the average redundant HTTP traffic ratio of each group in Figure 32 (a) and (b)

respectively. The shopping category has a much higher percentage of imperfect

apps in the low ranked group. Meanwhile, for all the three categories, there is a

clear increasing trend for redundant traffic ratio from the high ranked group to the

low ranked group. Thus, we can cautiously make an conclusion that apps with

lower ranking are more likely to have poor web caching implementation. This is

reasonable because high ranked apps are usually developed by experienced and

well-known developers, who are more likely to pay attention to details like web

caching for their apps.

4.2.2 Cross-app caching opportunities

Same-app web caching reduces web accessing latency and saves bandwidth for

an app when it access the same cacheable content more than once. Meanwhile,

cross-app web caching can also achieve the same benefit for different apps ac

cessing the same web content. We have identified two types of cross-app caching

opportunities specially for mobile apps.

Opportunities by user behaviors. The first type of opportunities comes when

a user uses different apps to access the same web content. For example, many

top-ranking news reader apps on Google Play (such as Flipboard [8 6], Pulse [87]

and Yahoo! [8 8]) provide a function to let users view the news they are brows

ing on phone’s web browser. This is a useful feature because usually a web

browser provides more full-fledged web content rendering support. With this fea

ture, users may access the same piece of news several times with both the news

reader app and a web browser. Another example is that when a user wants to do

online shopping with his smartphone, he may first uses a web browser to search

for the product and compares prices and reviews. After seeing that an online

107

retailer, Amazon.com for example, provides the product for the lowest price, the

user opens Amazon’s dedicated shopping app to complete the transaction.

Opportunities by shared libraries. The second type of opportunities comes

when two different apps use the same shared library that regularly accesses web

contents. Mobile advertising network SDKs are the most notable ones of such kind

of shared library. The way that a developer puts ads in his app is to call functions

from an ad library provided by the mobile ad network. The app will download

(or the ad network will push) advertisements to the smartphone running the app

dynamically when the app is being used. Mobile ads are common in free mobile

apps. For example, among the 1300 apps in our measurement experiment, 695

apps generate ad HTTP traffic (Table 8 column iv . l) ; HTTP traffic of 230 apps

are all ad traffic (Table 8 column IV .2); and the per-click ad traffic is 24.2 KB

(Table 8 column IV .3), which accounts for 20% of the per-click HTTP traffic. In

the mean time, most of the ad traffic is cacheable: as shown in Table 8 column

iv . 4, the overall cacheable ad traffic ratio is 0.84 (or 0.9 if considering heuristic

expiration). Considering that the mobile ads market is dominated by just a few

ad networks [76] and that the ads to be shown are usually determined based

on the user information such as user’s location [89], it’s likely that different apps

running on the same phone will display the same set of ads over time. According

to our experience, even two different ads from the same ad network usually share

common cacheable objects like configuration scripts and data files.

4.3 System design

4.3.1 Design goals and challenges

Design goals. We design CacheKeeper (CK for short) with the following goals in

mind.

108

1. CK should be able to perform standard-compliant (RFC 2616 [85]) web

caching for all the entities (e.g., apps) making HTTP requests in the device.

This is the fundamental goal of designing CK.

2. CK should be transparent to all the entities that it serves. In other words,

entities making HTTP requests should be able to perform normally without

any modifications. This is to ensure backward-compatibility for exiting apps.

3. Since CK is essentially a shared client-side cache, the design of CK should

provide means to protect apps’ cache privacy.

4. While cache hits will bring benefits, CK should also incur low overhead on

cache misses to ensure good usability.

5. CK should provide interfaces allowing users to configure the web caching

services (e.g., cache size, cache location and heuristic expiration time) and

to obtain service status.

Challenges. The design of a client-side system-wide caching service such as

CK is different from implementing a cache in an individual app and implementing

a proxy cache.

In particular, when compared with app-based client cache, there are two chal

lenges: The first challenge is the ability to handle a large volume of concurrent

HTTP transactions while incurring low overhead. This is different from caching in

individual apps where HTTP requests are issued less frequently and usually in a

sequential manner. The second challenge is that, unlike individual apps where

web caching is part of the operations handled by HTTP libraries, CK is not in the

network operations flow of the apps it serves. Thus, it is challenging to design and

implement CK without making any modifications to the apps. For example, since

fetching content from web cache is fast, it is designed as a synchronous operation

in individual apps (i.e., the program execution blocks until the fetching operation

109

< = > data configuration and status info

Configuration
and Status
Manager O

VbUdtecache
(memory-toed)

Cache Manager

Q
o

os
user space

Non-votadk cache
(Owyiaana-baHd).

ORT«■
“ am

diet m
■ ■ III ■*

HTTPTVanaactlon
Handler

OS
kernel
space

NIC
Hardware

layer

[*] CLT: Cache Lookup Ihble
[#] ORT: Outstanding Request Thble CacheKeeper

Figure 33: CacheKeeper architecture.

finishes). However, fetching content from web cache cannot be designed as a

simple synchronous operation in CK. This is because apps use asynchronous re

quests (i.e., request-then-poll) to retrieve content from web servers. Acting as a

transparent middle layer between apps and web servers, CK cannot serve asyn

chronous requests from apps by using simple synchronous web cache retrieving.

Otherwise it will be extremely inefficient and unscalable.

The differences between designs of CK and proxy cache originate from their

operation contexts. Since CK is a system service serving apps running in the user

space, its design focus is twofold: maintaining the transparency to the apps while

not sacrificing caching performances, and protecting apps’ cache privacy. Unlike

CK, a proxy cache does not need to consider apps' contexts and privacy. Since a

proxy cache needs to serve thousands of computers on the network, the design

focus of it is cache replacement algorithms [90], which plays less important role

in CK’s design.

4.3.2 CacheKeeper architecture

The architecture of CK is shown in Figure 33. Cach-eKeeper is designed as an OS

kernel space component providing web caching service to apps running in the user

space. We choose to place CK in OS kernel space for three reasons. First, this

110

SK: socket of the HTTP transaction RU: requested JJRL
ICH: is cache-hit (False by default) IP: is private (False by default)

CRA: cached response address

SK RU ICH IP CRA
(a) Entry of the outstanding requests table (ORT)

RU: requested URL VCE: yolatile-cache entry
NVCE: jion-yolatile-cache entry

R U V C E N V C E

(b) Entry of the cache lookup table (CLT)

Figure 34: Entry structures of ORT and CLT.

approach has clear performance advantage over user space based approaches

(e.g., user-level HTTP proxy). Second, this allows the web caching service to be

portable across different devices running the same type of OS kernel. Third, by

placing it in kernel space and not changing the interfaces connecting user and

kernel spaces, we could easily achieve backward-compatibility.

CK contains the following components: the HTTP transaction handler, the

cache manager, the configuration and status manger and the physical caches.

Next, we give a description of each component, followed by the description of

how the components cooperate in CK operations.

HTTP transaction handler. The HTTP transaction handler handles HTTP

requests issued from apps and HTTP responses retrieved from network connec

tions. The transaction handler consults the cache manager for cached responses,

and passes incoming responses to the cache manager for caching processing.

The transaction handler uses a key data structure, outstanding requests table

(ORT), to handle the asynchronous web content requests from apps mentioned

previously. Each ORT entry corresponds to an HTTP request waiting to be served.

Figure 34 (a) shows the ORT entry structure. Since CacheKe-eper needs to pro

cess a large amount of concurrent HTTP transactions, we use socket address

plus the requested URL to identify individual HTTP transactions. The S K field and

the R U field record the socket address and the requested URL of the correspond

ing HTTP transaction respectively. The IC H field records if CK has a fresh cached

111

response for the HTTP request. The ip field records whether the app issuing the

request has declared that the HTTP transaction is private and thus should not be

cached by CK. The default values of both ICH and IP are False. If the request can

be served by CK, the field CRA holds the address of the buffer that is prepared by

the cache manager and stores the cached response.

Cache manager. The cache manager performs the following tasks. It accepts

and processes queries for cached response from the transaction handler. It ac

cepts newly coming responses from the transaction handler, caches them in a

proper physical cache, and performs cache replacement if necessary. It accepts

and processes configuration or status query requests from the configuration and

status manager.

To help manage the cache entries, the cache manager maintains a key data

structured named cache lookup table (CLT). Each CLT entry, with the entry struc

ture shown in Figure 34 (b), corresponds to the cached HTTP transaction (i.e., a

cached HTTP request/response pair) of a certain URL. The field RU records the

URL of the cached transaction. The fields vce and nvce store the addresses of

the volatile cache entry (i.e., memory-based) and the non-volatile cache entry (i.e.,

filesystem based) of the HTTP transaction respectively.

Configuration and status manager. The configuration and status manager

provides interfaces to user space programs to configure CK and to query the run

ning status of CK for debugging purposes.

Physical caches. CK supports two types of caching media: volatile cache

residing in device’s memory and non-volatile cache residing in device’s filesystem.

The volatile cache is for efficient cache lookup, and the non-volatile cache is to

ensure persistent cache content after reboots.

112

4.3.3 CacheKeeper in operation

On cache hits/misses/validations. The transaction handler handles every HTTP

request from apps and HTTP response from the network. Upon receiving an

HTTP request, the transaction handler creates a new ORT entry, and consults

the cache manager to see if CK has a freshed cached response for the request.

The cache manager looks up the CLT by comparing the URL provided by the

transaction handler and the RU field in the CLT entries, and sends the result back

to the transaction handler, which in turn updates the ich field in the ORT entry

based on the result. i f there is a cache hit, the cache manager retrieves the

cached response from either the memory based cache or the filesystem based

cache based on the vce and the nvce fields in the CLT entry, and notifies the

transaction handler about the address of the buffer storing the cached response.

The transaction handler then records this address in the cra field of the ORT en

try. Till now, the transaction handler has the complete ORT entry, through which

the handler knows how to serve the later polls from the app (recall that apps use

request-then-poll to retrieve contents from web servers). If there is a cache miss

or the cache response is expired, the HTTP request is sent out as normal. The

transaction handler passes the HTTP response to the cache manager for storing

if the response is cacheable. If the cached response needs to be validated

before it can be served to the apps, the transaction handler uses the validator

(e.g., ETag, Last-Modified time) provided in the cached response to issue a con

ditional request to the web server. Based on the result of the conditional request,

the following operations are similar to the cache hit or miss situation described

previously.

Dealing with same-click redundant requests. During the measurement ex

periment, we observed that a notable amount of apps generated same-click re

dundant HTTP traffic. CK will naturally eliminate same-click redundant traffic if

113

it has cached the previous response for a redundant HTTP request. However,

a deeper investigation into the same-click redundant HTTP transactions we ob

tained shows that HTTP requests of about 20% of the same-click redundant trans

actions were issued before the full responses of the first HTTP transactions were

received, in which case CK would send out those redundant requests. To solve

this problem, the transaction handler postpones sending out an HTTP request

for a short period of time if the requested URL is found in an ORT entry. Based

on our experience, we set the length of this period to 2 0 0 ms in our prototype

implementation.

Declaring private HTTP transactions. As one of the design goals, CK should

provide means to protect apps’ cache privacy. In our design, we allow apps to

decide if they want their HTTP traffic to be cached by CK. Specifically, we provide

an interface for apps to declare privacy for each HTTP transaction they generate.

If an HTTP transaction is declared as private, it will not be cached by CK. We will

present the implementation of the interface later.

4.4 System implementation

We have implemented a prototype of CK as a loadable Linux kernel module (ker

nel version: 3.0.15).

Location in Linux kernel. Since HTTP communication usually takes place

over TCP connections [85], the CK module intercepts TCP data flow at a loca

tion between socket and the TCP protocol implementation (Figure 35 (a)). We

make this choice for the following three reasons. First, running CK under the sys

tem call interface can guarantee its backward-compatibility, since the interfaces

between user space and kernel space remain untouched. Second, implement

ing the caching service above the TCP layer allows us to use socket information

to distinguish different HTTP transactions. Third, running CK at a hight level in

114

APPs

1 t I"
System call

interface

 ITU

User
space

Linux
kernel
space

socket
implementation

I
T r ~ ~ L

TCP
—cz

UDP

—I—
ICMP

I
RAW

IP

X
network drivers

(a) (b)

Figure 35: CacheKeeper implementation: (a) location in Linux kernel; (b) the user con
figuration interface.

kernel’s network data flow avoids the needs of considering packet fragmentation,

which lowers implementation complexity.

The HTTP transaction handler. The transaction handler inspects every inter

cepted TCP message, and processes those related to HTTP. Since a long HTTP

response may be divided by web server into several shorter HTTP messages,

the transaction handler also needs to reassemble partial HTTP response mes

sages into a complete one. Our implementation supports reassembling for both

messages with explicit Content-Length header field and messages using chun

ked transfer encoding [85], The outstanding request table (ORT) is implemented

as an array with 128 entries. According to our experience, 128 ORT entries are

enough because the amount of concurrent HTTP requests waiting to be served

is not a larger than 1 0 0 in all of our tests.

The Cache manager. The cache manager executes HTTP caching logic

according to the RFC 2616 specification. Our current implementation supports

caching with explicit expiration time, caching with validation and caching heuris

tic expiration. To achieve efficient cache lookup, the cache lookup table (CLT) is

implemented as a dynamic hash table indexed by the RU field. The initial number

115

of CLT entries is 1024. When the CLT is 80% full, it is expanded by adding 256

empty entries. To achieve hash table indexing and also save memory space for

the CLT, we place a hashed URL value, instead of the actual URL (which may be

of hundreds of bytes), in the the ru field of an CLT entry (the same implementation

applies to ORT entries). To achieve consistent web caching between reboots, we

write the CLT to a file before system reboots or unloading the CK module, and

read the CLT into memory right after the CK module is loaded.

Cache replacement. If adding a new HTTP transaction to a cache (volatile

or non-volatile) will cause the cache’s size exceeds the configured value, the

cache manager deletes a cache entry from the cache. Our current implemen

tation adopts the simplest replace policy: deleting the oldest cache entry. In the

future we plan to implement different types of cache replacement algorithms, and

evaluate how these the replacement algorithm can affect the performance of CK.

Private transaction declaration interface. To declare an HTTP transaction

as private, an app adds a comment string “CK-Private” to the request’s User-Agent

header field. The transaction handler marks the IP field of the corresponding ORT

entry as “True” if the comment string is found, and will never cache the response in

the shared cache. Since web servers will ignore comments in HTTP headers, this

approach will not affect the app’s normal function. Please note that this method

is used by apps to choose whether its HTTP responses can be put in a shared

cache. This is different from the Cache-Controi: n o -sto re directive in RFC 2616,

which is used by the web server to declare if a response should not by stored by

any cache.

User configuration interface. We provide an interface, by utilizing the /proc

filesystem, for users to configure CK and to obtain CK status. Figure 35 shows the

screenshot of a CK configuration app. The configuration options include turning

on/off CK, setting caching location, setting sizes of caches, enabling/disabling

heuristic caching and setting heuristic expiration time.

116

4.5 Discussion

Caching HTTPS Traffic. HTTPS traffic can be cached by web clients. However,

the result of our Android app caching measurement study did not contain statis

tics on HTTPS traffic. This is because contents of HTTPS transactions were en

crypted, and could not be parsed by our analysis program. However, among the

1300 selected apps, only 10% of them generate only HTTPS traffic. The current

design of CK does not support caching HTTPS traffic. One way to enable HTTPS

caching is to generate a CK certificate accepted by both apps and web servers.

This way, CK can decrypt and analyze through HTTPS traffic, perform caching

and encrypt traffic back. We leave supporting HTTPS caching in CacheKeeper to

our future work.

Privacy Considerations. Sharing web cache among applications brings pri

vacy concerns. For example, sensitive objects of one app may be accessed by

other apps. A more sophisticated case is that a malicious app could use the

time difference of downloading certain HTTP objects to determine if the user has

viewed certain web contents, which is similar to the timing attacks of website ac

cesses [91]. The simplest and most effective solution is to disable shared caching

for sensitive HTTP objects. To this end, CK allows an app to declare if an HTTP

transaction is private to the app and should not be stored by the shared cache.

However, this solution requires app modifications, and thus is not applicable to

legacy applications. To better solve this problem, we are considering other so

lutions including randomizing cache access times [91,92], and fingerprinting app

web access patterns to detect malicious cross-app cache accessing.

Dynamic Web Content Support. The current design and implementation of

CK adopt a “URL-indexed” cache, where URLs of HTTP requests are used as

the keys to look up cached HTTP responses. While this solution works well as

we will demonstrate later, it misses the caching opportunity for those dynamically

117

generated web contents, where the same HTTP object may be requested by using

two different URLs. A promising way to improve this is to use content digest as

the cache index key of an HTTP response. We leave this improvement to our

future work.

4.6 System evaluation

We evaluated our CK implementation in a Samsung Galaxy S2 smartphone run

ning Android 4.0.3.

4.6.1 Case evaluation: app performance gains

We selected 10 top ranked apps with imperfect web caching from Google Play

(listed in left part of Table 9). All these apps were ranked top 20 in their categories.

Before performing the measurement experiments, we first used the 10 apps, each

for three minutes, on the Samsung Galaxy S2 smartphone, and recorded the user

inputs when using the app. We instrumented CK such that it can record different

statistics of through HTTP traffic, including the amount of total HTTP traffic, the

amount of HTTP traffic served by the caching service and the amount of traffic

with different cacheability.

HTTP traffic reduction. In this experiment, we aimed to investigate how the

10 top ranked apps can benefit from CK in terms of HTTP traffic reduction. We

ran the 10 apps on the smartphone by replaying the recorded inputs from real

user for every 30 minutes in one-day period. This is to simulate a user accessing

an app every 30 minutes (note that the actual benefits achieved by CK depend on

how often the web contents accessed by the user are updated, which is further

determined by how often the user uses the app and how often the app updates

its web contents, discussed later).

Table 9 presents the ratios of traffic obtained in the experiment. The third

118

Table 9: HTTP traffic ratios of the 10 tested apps.

Category App Name Served
by CK

New&
cacheable

Non
cacheable

News
Fox News (N1) 0.1967 0.4154 0.3879
USA Today (N2) 0.4091 0.2075 0.3834

AOL (N3) 0.3528 0.1710 0.4762

Shopping
Ebay (S1) 0.5654 0.1218 0.3127

Craigslist (S2) 0.2512 0.3823 0.3665
Target (S3) 0.6098 0.0734 0.3168

Weather Weather.com (W1) 0.6035 0.0716 0.3249
AWS (W2) 0.2472 0.1363 0.6165

Local&Travel Yelp (LT) 0.5810 0.0164 0.4026
Sports Coll. Scoreboard (SP) 0.6454 0.2161 0.1384

Overall 0.4205 0.2388 0.3407

0.7-

•2 0.6 -
&
e 0.5-

1 o , :
T3
2 0.3-

0.0
N1 N2 N3 SI S2 S3 W1 W 2 L T SP

Figure 36: Source breakdown of HTTP traffic reduction ratio for the 10 tested apps.

column is the ratio of HTTP traffic served by CK, which is also the traffic reduction

ratio. The fourth and the fifth column of Table 9 are the ratio of those first-time

appeared cacheable traffic and the ratio of non-cacheable traffic respectively. The

sum of the values in these three columns is 1. In the experiment, the overall HTTP

traffic reduction ratio is 0.42. Among the 10 apps, 5 of them enjoyed a traffic

reduction of over 50%. The traffic reduction ratio of an app is determined by two

factors: how well web caching is implemented in the app and how often the app

updates its web contents. Specifically, the worse web caching performance an

by inter-click redundant traffic
by same-click redundant traffic
by inter-click heuristic redundant traffic
by same-click heuristic redundant traffic

119

app has, the higher traffic reduction ratio it can obtain from using CK. For example,

the two weather apps had a similar rate regarding content update. The weather

app 1 had a higher HTTP traffic reduction ratio than the weather app 2. This is

because the weather app 1 has a worse web caching performance. Meanwhile,

for two apps with similar web caching performances, the app with less frequent

content updates enjoys more traffic reduction. For example, the three shopping

apps perform similarly in web caching: all of them do not cache image resources.

In the experiment, the shopping app 1 and 3 had higher traffic reduction ratios

than the shopping app 2. This is because the shopping app 2 has a much higher

content update rate (it is the official app of Craigslist, which is a popular classified

advertisement website where lots new listings are posted by users every hour).

Figure 36 shows the source breakdowns of the HTTP traffic reduction ratio.

We can see that inter-click redundant HTTP traffic was the only major contributor

to the overall traffic reduced for 9 apps. For the shopping app 1, same-click re

dundant traffic was another main source of traffic reduced. This suggests that it is

worthwhile to pay special attention to same-click redundant traffic in CK’s design.

Web content rendering speedup. We evaluated how the 10 top ranked apps

can expedite web content rendering under different connection conditions by using

CK. In this experiment, the smartphone was connected to the Internet via our

HTTP proxy [84], which could throttle download and upload bandwidths according

to user configuration. We set the transmission bandwidth at the proxy according

to a recent study on 3G/4G wireless speed [93]. This study suggests that the

average 3G download speeds of the four major U.S. wireless service providers

range from 0.59 Mbps to 3.84 Mbps with an average value of 2 Mbps. The average

4G download speeds range from 2.81 Mpbs to 9.12 Mpbs with an average value

of 6.2 Mbps. Accordingly, we chose 8 values for the download bandwidth: 0.1,

0.5, 1, 1.5, 2, 4, 8 , 12, all in the unit of Mbps, and set the upload bandwidth to 1

Mbps. We ran the 10 apps, with CK enabled in the smartphone, by replaying the

120

— I— News-1
X News-2

■■■■* — News-3
□ Shopping-1

—A — Shopping-2
V ' Shopping-3

 <3 Weather-1
— Weather-2
—©— Local&Travel

O Sports______

0.1 0.5 1.0 1.5 2.0 4.0 8.0 12.0
Available bandwidth (Mbps)

Figure 37: Web content rendering speedup of the 10 tested apps under different trans
mission bandwidths.

recorded user inputs under the 8 different download bandwidths for 2 0 rounds.

In each round, we also ran the 10 apps with CK disabled. We recorded the web

content rendering time for each user click, which was the time interval between

the first HTTP request and the last HTTP response of all the HTTP transactions of

a click. The rendering speedup was calculated as the ratio between the rendering

times with and without CK running respectively.

Figure 37 shows the average content rendering speedup of the 20 rounds

testing for the 10 apps. From the figure we can see that the content render

ing speedup increases as the connection condition becomes worse for all the 10

apps. The shopping app 2 and 3 are more sensitive to bandwidth changes, this is

because the main HTTP resources requested by these two apps are mainly large

images. The average speedup of the 10 apps under the average 3G download

bandwidth of the four major U.S. wireless providers (2 Mbps, reported in [93]) is

2.0. The average speedup under the average 4G download bandwidth (6.2 Mbps,

reported in [93]) is around 1.5.

121

4000- —O " No CP(J u(i(iz*Uon imposed
v . -O — 25% CPU utilization imposed
[3500- — 50% CPU utilization inposed

—̂ ■*75% CPU utilization iimxwed11/VW ------------------- x---1

« 0 “ No CPU utilization imposed
— 25% CPU utilization imposed
— 50% CPU utilization imposed
-0 -7 5 % CPU utilization imposed

400

200 400 600 800 1000 0 200 400 600 800 1000
HTTP file size (KB)

(b) Serving HTTP transactions
from local cache

HTTP file size (KB)

(a) Serving HTTP transactions
from network downloading

Figure 38: Transaction times under different system loads.

4.6.2 Controlled evaluation

Effects o f High System Load. Mobile devices usually have constraint computa

tional resources, and thus, mobile app performances are more sensitive to system

load changes than their counterparts in PCs. Here, we wanted to investigate how

CK can help mobile apps to improve their resilience to high system load. We de

veloped a mobile app that can repeatedly download specified files from our own

HTTP server with a configured interval. We used this app to download files with

different sizes (1, 5,10, 50,100, 500 and 1000, in KB) from the server. For each

file size, we repeated the download for 50 times with a 100 ms interval, and calcu

lated the average time needed as the HTTP transaction duration for the file size.

During the downloads, we imposed different background workloads on CPU so

that we can see how transaction durations responded to system load changes.

We first performed the experiment without running CK. In this case, every

HTTP transaction was served from network downloading. Figure 38 (a) plots

the relationship between file sizes and transaction durations. We can see that

transaction duration of a file increases much faster as file size increases if the

background system load is high. This is because to transmit a large file, HTTP

servers usually divide it into small chunks and transmit them separately. For ex

ample, our HTTP server segmented a large file into 8 KB chunks for separated

122

Z 0.90s
0.85

0.80

Figure 39: Processing time overhead.

transfers. Since frequent network transfers consume high CPU resource, down

loading a large file needs more time under higher system load. We then performed

the same experiment with CK running in the phone. In this case, except for the first

download, which was served by network downloading, all the other 49 downloads

were served by CK. Figure 38 (b) shows the experiment result. We can learn that

when HTTP transactions were served by CK, the transaction durations were not

only shorter than when served from network downloading (one magnitude less),

but also more resilient to system load changes (i.e., the transaction duration for

the same file size increases little as system load increases), which is helpful to

offer good user experiences under high system loads. This suggests that CK is

desirable in mobile devices with constraint resources.

Processing time overhead. We evaluated processing time overhead caused

by CK in the case of cache miss. There are two cases for processing time over

head on cache miss. First, if the HTTP response to the cache missed request

is not cacheable, processing overhead by CK comes from searching the CLT for

a matched cached response. Second, if the HTTP response is cacheable, ad

ditional processing time overhead comes from caching the response. We per

formed the experiment by downloading a 100 KB file from our HTTP server for 50

times with a 100 ms interval. We first ran the experiment with CK disabled, and

recorded the average transaction duration as the based line value. Then we ran

Without r«rhi»Kw nftr (hashing nn overhead*
Response file is not cacheable

E S 3 Response file is cacheable, writing to memory
frtflll Response file is cacheable, writing to filesystem

123

—<£>— Without CacheKeeper (bisehnc)
—V - Respon* file is not cacheable
- O - Response file is cacheable. writing to memory
-Q » Response file is ochcabk. writing to filesystem

a .0
I 1200 o a.

1000

EZ3 Without CichcKecpex (baseline)
Response file is not cacheable

^ 9 Response file is cacheable. writing to memory
B Response file b cacheable. writing to filesystem

0 20 40 60 80 100 5 10 50 100
HTTP file size (KB) HTTP file size (KB)

(a) Absolute power values for (b) Normalized power values for
downloading files with differet sizes downloading Files with differet sizes

Figure 40: Power consumption overhead.

the experiment with CK enabled while enforcing the two cases of cache misses

respectively, and recorded the corresponding average transaction duration. For

the first case of cache miss, we configured HTTP responses as “n o-stored ”. To

enforce the second case of cache miss, we used different file names for each

downloading. We also configured CK so that we could compare the difference of

caching responses to memory and caching responses to filesystem files.

Figure 39 shows the normalized transaction durations under different scenar

ios. When responses to cache missed requests were non-cacheable, the pro

cessing time overhead was less than 1 %. When responses are cacheable, the

case of writing responses to memory had an processing time overhead of 1 .1%.

and the case of caching responses to files had an overhead of 1.8%. This result

suggests that our implementation of CK incurs a small processing overhead on

cache misses.

Energy overhead. In this experiment, we evaluated the energy overhead

of CK in the case of cache miss. Similar to processing time overhead, energy

overhead on cache miss also has two cases: the case that responses are not

cacheable and the case that responses are cacheable. When responses are

non-cacheable, the energy overhead is looking up the CLT for a matched cached

response. When responses are cacheable, additional energy overhead comes

from writing responses to memory and/or files. We performed the experiment by

124

downloading files with different sizes (5,10, 50,100, in KB) from our HTTP server.

For each file size, we repeated the download for 50 times with a 100 ms interval.

We measured phone power consumption using the Monsoon power monitor [73].

To obtain the baseline power consumption, we first ran the experiment with CK

disabled. Then we ran the experiment with CK enabled while enforcing the two

cases of cache miss using the same methods as in the processing time overhead

experiment.

Figure 40 (a) plots the absolute power values, and Figure 40 (b) shows the

normalized power values for different file sizes. From the result we can learn that

CK incurs negligible energy overhead when responses to cache-missed HTTP

requests are non-cacheable and when cacheable response are only written to

memory. When cacheable responses are written to files, about 15% power over

head is incurred.

4.7 Conclusion

We propose and design CacheKeeper, an OS web caching service for smart

phones. To motivate the work, we have performed a comprehensive measure

ment study on web caching functionality of 1300 top ranked Android apps. The

measurement results suggest that imperfect web caching is a common and seri

ous flaw for Android apps generating web traffic. We have implemented CacheKeeper

in Linux kernel, and performed extensive evaluations on Android smartphone. Our

evaluation indicates that CacheKeeper can effectively remedy the flaw of imper

fect web caching for mobile apps with small overhead.

125

5 Achieving Accurate CPU Power Mod

eling for Multicore Smartphones

CPU is a major source of power consumption in smartphones. Power modeling

is a key technology to understand CPU power consumption and also an impor

tant tool for power management in smartphones. However, we have found that

existing CPU power models for smartphones are ill-suited for modern multicore

CPUs: they can give high estimation errors and high estimation accuracy vari

ation for different types of workloads on mainstream multicore smartphones. In

this project, we tried to understand the root cause of the limitations of the existing

CPU power models, and developed an accurate CPU power modeling approach

that can benefit the power management service in smartphones.

5.1 Background and related work

5.1.1 Background: smartphone CPU power management

A smartphone CPU has different states: a CPU core can be either online or offline

(i.e., powered down). An online CPU core can further work in either the operat

ing state or an idle state. The operating system of a smartphone manages the

states of CPU cores to reduce their total energy consumption. There are three

CPU power management schemes used in modern smartphones: CPU perfor

mance state management, CPU idle state management, and CPU hot-plugging.

126

We briefly introduce each of them, with the emphasis placed on its implementation

in the Android OS and the quad-core Nexus 4 smartphone.

CPU performance state management. When a CPU core works in the op

erating state, all processor components are powered up. In the operating state, a

CPU core may operate in different performance states (also known as “P-states”

in the ACPI specification [94]). Practically, each P-state is associated with a fixed

CPU operating voltage and frequency. A technique called Dynamic Voltage and

Frequency Scaling (DVFS) is employed to adjust the operating voltage/frequency,

and thereby switch between different P-states.

The Nexus 4 smartphone supports 12 different CPU operating frequencies,

ranging from 348 MHz to 1,512 MHz. Operating frequencies can be indepen

dently set in each CPU core. Choosing a proper frequency for an operating pro

cessor core is an important task for CPU P-state management. In Android kernel

(Linux-based), a subsystem called “CPUfreq" specifically copes with this task by

dynamically adjusting the operating frequency according to the system load [95].

CPU idle state management. Smartphone OS may put an online CPU core

into an idle state when there is no workload. CPU idle states are called “C-states"

in the ACPI specification [94]. CPU in different C-states have different CPU com

ponents switched to low power mode to reduce power consumption.

Table 10 shows that the Nexus 4 smartphone has four CPU idle power states:

CO1, C1, C2, and C3. A CPU core in the state CO only disables most of the CPU

clocks, while keeping the core logic powered up. A core in the state C1 has its

logic powered down, but retains the in-core L0/L1 cache content by keeping the

cache powered up. A core in the state C2 has more power savings than in the

state C1, since the in-core L0/L1 cache are also flushed and disabled. Finally,

a core in the state C3 achieves the most power savings by further disabling the

11n the ACPI specification, “CO” refers to the operating state, and “C1, C2, • • ■ ” refer to the idle
states. Here we follow the naming convention in the Nexus 4 stock kernel source code, where the
state CO refers to the shallowest CPU idle state.

127

Table 10: CPU Idle Power States in Nexus 4.

Idle
State

Name Idle System

Power (mW)

Latency

(MS)t

CO Wait for Interrupt 433 1

C1 Retention 390 415

C2 Power Collapse Standalone 330 1300

C3 Power Collapse 2 0 0 2 0 0 0

Without entering idle states 1,060 0

f: The data is obtained from the Nexus 4 kernel source code,

shared L2 cache.

We have measured the idle system power of each C-state in a Nexus 4 smart

phone. The third column of Table 10 shows the results. As a comparison, we have

also measured the case of not entering C-states, where the idle system power is

1,060 mW. Entering a C-state can save much power when a system is idle. It also

shows that power consumption of different C-states varies: the power of CO is as

much as 2.1 times of the power of C3. Consequently, entering different C-states

may cause significantly different power savings. In old single-core smartphones,

there are less CPU idle power states. For example, the Nexus S smartphone has

only one idle state, which is equivalent to the CO state in Nexus 4. Therefore, CPU

idle states do not play a critical role in CPU power consumption on old single-core

smartphones as they do on modern multicore smartphones.

Although entering idle power states reduces power consumption when a CPU

is idling, it comes with a price of state switching overhead: the deeper an idle state

is, the larger the switching overhead will be. The fourth column of Table 10 shows

the latencies of switching between the operating state and an idle state.This op

erating/idle state switching latency has significant impact on performance of time-

critical operations, such as video and audio decoding. In Android kernel (Linux-

based), a subsystem named “CPUidle” is specifically designed for managing the

128

CPU idle states.When the OS finds no task to schedule, it directs the control to

the CPUidle subsystem, which then decides to put CPU into a proper idle state

based on several factors, including the predicted length of the current idle period

(based on the information on the kernel scheduler and timers) and the operat

ing/idle switching latency of each individual idle state.

CPU hot-plugging. In a multicore smartphone, the OS turns a CPU core of

fline when the CPU core has no workload for a certain period of time, and takes it

back to online when the core is needed on the fly. This technique is known as CPU

hot-plugging. While the CPU hot-plugging technique saves more power than the

deepest CPU idle state, its major disadvantage is that the unplugging/re-plugging

process requires expensive global operations, which causes a large amount of la

tency [96]. In Nexus 4, the stock Android system uses a user space daemon called

“mpdecision" to manage the CPU hot-plugging process. The daemon monitors

the load on CPU cores, and turns cores online/offline through the /sys interface.

5.1.2 Related work

Existing approaches for modeling CPU power consumption can be classified into

two categories as below.

CPU frequency/utilization based approaches. Existing approaches for mod

eling CPU power consumption [24,25,28,29,97] on smartphones are all CPU fre

quency and utilization based. They assume CPU frequency and utilization as two

major factors impacting CPU power consumption. While this assumption works

well for single-core smartphones, where CPU idle states have little impact on CPU

power, it does not hold for multicore smartphone with multiple CPU idle states, in

which power consumptions are significantly different.

Some existing approaches of CPU power modeling also consider CPU idle

states [27,28]. Specifically, Koala [27] proposes a model based approach to es

timate runtime system power. In this approach, CPU idle states are considered

129

as a factor affecting system power consumption. However, Koala only considers

the time duration of each idle state, while ignoring overheads of the operating/idle

transitions. As we have showed before, even for two workloads with the same

CPU frequency/utilization and the same residency of idle states, the CPU power

consumption could have more than 20% difference. Moreover, it only reports eval

uation results on the x8 6 architecture. Sesame [28] also considers CPU idle states

in modeling CPU power consumption. However, it does not provide description

about how this particular information is used in the modeling process. Similar

to Koala, the idle states are only considered in the laptop model (x8 6 -based) in

Sesame. In our work, we focus our attention on measuring/investigating the im

pacts of CPU idle state on ARM-based smartphone CPUs. We also developed a

new idle-state-aware CPU power modeling approach based on the investigation

results.

CPU hardware events based approaches. Another way of performing CPU

power modeling is to model the relationship between CPU power and CPU hard

ware events [98-101]. For example, Power Containers [98] considers a linear

model between CPU power consumption and a series of hardware events, in

cluding retired instructions, floating point operations, last-level cache requests,

and memory access. While the CPU hardware events based approaches work

well for PC or server CPUs, whose ISA are mostly x8 6 based, they cannot be

applied in current smartphones. This is because although many hardware events

are recommended to be implemented in the hardware monitor by the ARMv7 ar

chitecture specification [102], only very few of them are mandated. For example,

in the CPU used by the Nexus 4 smartphone, only the hardware events of instruc

tion rate, number of instructions retired, and branches executed and missed are

implemented, which is not enough to support the hardware events based model

ing.

130

22 0 -

£ 200-

I '80i>«-
§ 140

duo.
JlOO-

- 0 - 7 5 * CPU utilization
50 * CPU utiUztion

—A —2 5 * CPU utilization

0 200 400 600 800 1000
Computation duration (mu)

(384 MHz)

(a)

£ 450- S
~ 400'

1 350'

| 300'
s 250

| 200

* 150
100

—O - 75% CPU utilization
50% CPU utilization

- A - 25%' CPU utilization

0 200 400 600 800 1000
Computation duration (mi)

(1026 MHz)

(b)

|800

§700

|« 00

1 500o
8*00
£300

200

- 0 - 7 5 % CPU utilization
- O - 50% CPU utilization
- A - 25% CPU utilization

0 200 400 600 800 1000
Computation duration (ms)

(1512MHz)

(C)

- 50 £45
|4 0

I 35
1 30
X 25
5 20

6 15
"2 10

I 5 * 0

25% CPU uUnzalHM
50% CPU uBUzttion
75% CPU uUlizatioo

4 MHz 1026 MHz I
CPU frequency

(d)

Figure 41: Workloads running in multicore CPU with the same CPU utilization and fre
quency consume notably different amounts of CPU power.

5.2 Limitations of the existing smartphone CPU power

models

The existing power models [24-29] achieve a good accuracy (e.g., more than

90%) on single-core smartphones such as the Nexus one and Nexus S smart

phones. Those models consider only CPU utilization and operating frequency as

predictors in modeling [24-26], Usually, they use a linear CPU power model: for

each CPU frequency /, they estimate the power consumption of a CPU core as:

Pcpu = f3 x Ucpu + c (5.1)

where Ucjm is the CPU core utilization, and p and c are two constant parameters

whose values are determined via linear regression during the model generation

process.

However, the existing CPU power models are not suited for modern multicore

CPUs. In particular, we find that CPU power consumptions in two quad-core CPU

smartphones with different chipsets, Nexus 4 and Samsung Galaxy S42, exhibit a

large range of variation even when both CPU frequency and utilization are fixed.

In our experiments, we first use a workload generator program that periodically

technically the Samsung Galaxy S4 smartphone has 8 CPU cores: a quad-core ARM Cortex-
A7 and a quad-core ARM Cortex-A15. However, these two quad-core CPUs cannot run concur
rently, since the smartphone is using the ARM big.LITTLE task migration use model [103],

131

performs continuous computation followed by an idle period (see Figure 1) in a

Nexus 4 smartphone. By controlling the ratio of the idle period to the computation

period, the workload generator program generates workloads with different CPU

utilizations. In the continuous computation, the program runs a busy loop of com

puting a large prime. By changing the busy loop count, we can also control the

length of each continuous computation period. We find that for a fixed CPU fre

quency, when we adjust the length of the continuous computation while fixing CPU

utilization (by adjusting the length of idle period accordingly), the power consump

tion of a CPU core exhibits a large range of variation. For example, Figure 41(a)

shows the power consumption of a CPU core3 of the Nexus 4 smartphone when

the operating frequency is fixed at 384 MHz. With fixed CPU utilization, the power

consumption of the CPU core drops while the duration of the continuous compu

tation increases. Figure 41(b) and Figure 41(c) show the results when CPU fre

quency is 1,026 MHz and 1,512 MHz, respectively. They show exactly the same

trend. Figure 41 (d) further summarizes the difference of power consumption with

the three CPU frequencies. Each value in Figure 41(d) is the percentage of the

difference between the maximum and minimal powers over the maximum power

for each frequency/utilization configuration. It shows that when CPU frequency

and CPU utilization are fixed, the CPU consumption difference between different

workloads is significant, especially when the CPU utilization is at a low level. For

example, when frequency/utilization is fixed at 1,512 MHz/25%, the power differ

ence can reach as high as 50%. As we will explain later, this is because the less

a CPU core is being utilized, the more chance the CPUIdle subsystem puts the

CPU core into a deeper idle state.

The above results suggest that using only CPU operating frequency and uti

lization is not enough to build an accurate CPU power model for multicore smart-

3The CPU power consumption is measured as the system power when the smartphone is
configured in a way that CPU is the only main source of power consumption. See the evaluation
section for more details.

132

Table 11: Time duration per second and number of state entries per second in two work
loads of the same CPU utilization (50%) under the same CPU operating frequency (1,512
Mhz).

Idle
State

Time duration (ms) # o f state entries
W1 W2 W1 W2

CO 491.85 1.08 468 1.99
C1 0 0 0 0

C2 1.18 1.43 0.1 0 .2

C3 5.12 496.86 0 .2 7.3

phones. As we introduced previously, in modern multicore smartphones like Nexus

4, the CPU power is determined not only by the CPU frequency and utilization,

but also by the CPU idle power states, which are not considered in the existing

smartphone CPU power models. Modern multicore CPUs like the one of Nexus 4

have multiple idle power states which have significantly different power consump

tions. When utilization is fixed, prolonging the duration of continuous computation

causes the corresponding idle period to increase accordingly. Longer idle period

allows the OS to put the CPU core into deeper idle states more frequently, which

in turn lowers the CPU power consumption.

To further demonstrate how CPU idle power states can affect power consump

tions of different workloads running with the same CPU frequency/utilization, we

list in Table 11 the statistics of the idle states of two workloads (W1 and W2) that

were run in a Nexus 4 smartphone: the time duration per second of each state,

and the total number of entries per second of each state. These two workloads

were run with the same CPU frequency (1,512 MHz) and the same CPU utilization

(50%), but they had significantly different power consumptions (644 mW for W1,

and 499 mW for W2). The two workloads had notably different idle state transition

statistics as shown in Table 11: with the workload W2, the CPU core stayed at the

deepest idle state much longer than with the workload W1. This explains why W2

consumed significantly less CPU power than W1. Note that because the stock

133

Nexus 4 kernel does not enable the idle state C1, the numbers of C1 in Table 11

are Os.

We have also performed the experiments in a Samsung Galaxy S4 smart

phone, which is equipped with a chipset different from Nexus 4, and obtained simi

lar observations. With the Galaxy S4 smartphone, when the CPU frequency/utilization

are fixed at the top frequency/25%, the power consumption of a CPU core could

exhibit up to 38% difference when we adjust the length of continuous computation

in the workload generator program. The power difference we observe in Nexus 4

(50%) is slight higher than in Galaxy S4 (38%). This is because Nexus 4 imple

ments deeper idle power states than Galaxy S4 does. As an evidence, according

to our measurement, the ratio of the power consumptions of the deepest idle state

over the shallowest idle state in Nexus 4 is smaller than that in Galaxy S4 (0.46

for Nexus 4, 0.51 for Galaxy S4). Since implementing deeper idle power states

is a clear trend in future multicore smartphones (for more energy efficiency), we

expect the possible power difference under the same CPU frequency/utilization

setting will keep growing in future smartphones, which urges the need for devel

oping a new CPU power modeling method that considers CPU idle power states.

5.3 Idle-state-aware CPU power model

In this section, we first present the development of our power modeling for the

single-core case. Then, we show how the single-core power model can be ex

tended to the multicore case. All the experiments described in this section are

performed in a Nexus 4 smartphone.

5.3.1 Power modeling for a single CPU core

Similar to existing work, we use regression-based method to integrate the predic

tors. To determine what statistic of CPU idle states should be used as a predictor

134

Computation duration (ms)Computation duration (ms) Computation duration (ms)Computation duration (ms)

(a) (b) (c) (d)

Figure 42: Single-core power model development. Figures (a)-(d) show TCi, ECi, EDc,,
and WEDCi for the four CPU idle states C0 - C3, respectively (with CPU frequency / =
1,512 MHz, utilization U = 75%).

variable of the regression model, we first consider TCi, which is the total time du

ration that a CPU core stays in the idle state Ct per second when frequency / and

utilization U are fixed. Suppose the total CPU idle time per second is Tidie, we

have

Tidie = Y , TCi (5-2)
I

Figure 42(a) shows TCi for idle states C0 to C3 when we ran our workload generator

program on a single CPU core (with / = 1,512 MHz, U = 75%). Since the stock

Nexus 4 kernel does not enable the idle state Cx, statistics for C\ remain zero

in Figure 42. The figure shows that the CPU core spent more time staying in

deeper idle states as duration of the continuous computation increased, because

the idle period also increased accordingly. However, TCi is not a good predictor of

CPU power consumption. For example, after the computation duration increased

to 20 millisecond, TCi (i = 0 ,1,2,3) stayed stable, but the CPU power actually

kept decreasing as the the computation duration increased (see Figure 41(c)). In

fact, in our experiment, the power difference could reach 24% for the same TCi

(i = 0 ,1 ,2 , 3) (when / = 1,512 MHz, U=25%).

Figure 42(b) shows ECi, which is the number of entries for idle state Ct per sec

ond, in the same experiment. For the same TCi, smaller ECi means less operat

ing/idle transition energy overhead, and thus more energy savings. This explains

our previous observation that CPU power kept decreasing when TCi is unchanged.

135

However, ECi alone is also not a good predictor of CPU power consumption, as

it has no direct link to energy savings by idle states.

We then look at the average entry duration for idle state Cu which is notated

as EDci'.

EDC, = 2?. (5.3)

Generally, EDCi is a good predictor of CPU power, as it involves both idle state

duration and state transition overhead. However, EDCi could suffer from noise,

which comes from those sporadic entries of idle state Cj when the CPU enters

state Ci most of the time. For example, Figure 42(c) shows EDCi in the exper

iment. We can see that EDCz was greater than EDCo when C0 is the dominant

idle state.

To eliminate noises in EDCi, we apply a weight wu which is the portion of time

the CPU stay at the state Ct over the whole idle period, to EDCi to form weighted

average entry duration W EDCi‘.

T
WEDci = u>i x EDct , where Wi = -=^~ (5.4)

I idle

Figure 42(d) shows W EDCi in the experiment.

Finally, we model power consumption of a single CPU core working at fre

quency / as

Pcore = Y ,P c t ■ W EDCi +/3u-U + C (5.5)
i

where 0Ci and are the coefficients of W EDCi and the utilization U, and c is

a constant. For each CPU frequency / supported by Nexus 4, we obtain the

coefficients and the constant by running linear regression analysis on the training

data containing different TCi and U, and the corresponding Pcore (see the system

design and implementation later).

136

Table 12: CPU power with different number of cores running (with utilization U=50%).

/=384 MHz /= 1512 MHz

Nc Pbl,nc Pcpu Pa ,core Pbl,nc Pcpu Pa ,core
(mW) (mW) (mW) (mW) (mW) (mW)

1 62 144 82 62 495 433

2 73 213 70 73 902 415

3 73 282 70 73 1,312 413
4 73 348 69 73 1,732 415

Nc: number of cores that ran the workload,
P b l ,n c : baseline CPU power with N c cores enabled.
P c p u ’- whole CPU power.
Pa ,core'- power increment per core.

5.3.2 Power modeling for multicore CPU

We further conduct an experiment to study how the single-core CPU power model

can be extended to multicore scenario. In the experiment, we enabled different

number of CPU cores, which are running at the same frequency, and then gener

ated the same amount of workload on each enabled core. We measure the CPU

power while varying the core frequencies and utilization. Table 12 presents the

results for the cases when core frequencies are fixed at 384 MHz and 1,512 MHz,

and the core utilization is 50%. In the table, the power increment per core is calcu

lated as Pa ,core = Pc,',: where Nc is the number of cores enabled, PBl,nc

is the baseline CPU power when Nc cores are enabled, and PCpu is the whole

CPU power measured. We can see that P a ,core is consistent for the same “fre

quency/utilization” with more than one core enabled, but is notably smaller than

the value when there is only one core running the workload. The reason is that in

Nexus 4, when there are more than one core running, the deepest CPU idle state

each running core can enter is state C2. The state C3, where the shared L2 cache

is disabled, can only be entered by core-0 when no other core is online. There

fore, PA,core for the single-core case is always greater than that for the multicore

137

case.

Based on our observation, we model a multi-core CPU power consumption

P c p u 3S
N c

Pcpu = Pbl,nc + ,core,Ui,fi (5.6)
i

where Nc is the number of cores enabled, PBl,nc is the baseline CPU power with

Nc enabled cores, and PA,core,utj> is power increment of core-i when it is work

ing at frequency /* with utilization Ut. For each frequency f u Pa ,core,uj, can be

predicted using the single-core power model developed previously, while Pbl,nc

is a constant value that can be measured beforehand. For Nexus 4, we need to

model Pa ,emeu,fx separately for the case when there is only one core is online and

when there are multiple cores are online, because these two cases have different

sets of CPU idle states.

5.4 System design and implementation

We have designed and implemented a prototype CPU power estimation system

using our idle-state-aware CPU model on Android platform. Figure 43 shows an

overview of the system. The system contains two parts: one runs in the ker

nel space, and the other runs in the user space. In the kernel space, the data

collector component collects necessary CPU usage data including the CPU fre

quency, CPU utilization, and CPU idle state statistics. In the user space, the

controller component controls the procedure of model generation. To generate a

CPU power model, the controller runs a set of training programs, starts the data

collector, and collects CPU usage data. At the same time, we measure the CPU

power consumption using a power meter. Using the measured power data and

the collected CPU usage data, the model generator component creates a CPU

power model through linear regression. Although our implementation is based

on Android platform, we expect the system design can also work on other mobile

138

f N / \
Model

r
Measuredf

2
-

8!
2

2
H-

Q J«- Controller generator power data
User Space

CPUfreq

Data collector
• CPU frequency
• CPU utilization
1 Idle state statistics

Kernel Space

CPUidle

Figure 43: System overview.

platforms such as Windows Phone and iOS.

Collecting data in the kernel. We design a data collector to work in the kernel

space for lightweight and efficient data collection. A design alternative is to period

ically sample CPU utilization and CPU idle states in the user space via the high-

latency Iproc and Isys filesystems. However, because our power model needs

CPU statistics for each working frequency, which may change tens of times per

second, the user space alternative would need to poll the kernel with an equally

high frequency, which is impractical and inefficient. With our kernel-mode data

collection approach, we can aggregate raw data, and report only the aggregated

data to the user programs via the system call interface. Consequently, we sig

nificantly reduce the number of user-kernel mode switching, and thus introduce

much less system overheads in collecting the data. Moreover, running the data

collection in the kernel allows us to obtain fresh and accurate data without the

latency of user-kernel mode switching.

To guarantee accuracy, it is straightforward to periodically sample data in the

kernel, with the sampling rate set to the highest possible value of frequency chang

ing rate. However, this method would incur unnecessary system overheads, since

it requires a high sampling rate even when the actual CPU frequency changing

rate is low. We take a different method in our implementation. We take advan

tage of the CPUfreq and CPUidle subsystems of the Android kernel to collect data

139

CoreO — » Freq. 0 — ► CPU busy time

Core 1 Freq. 1 CPU idle time
Core 2 Idle state 0 — » Total time duration

Core 3 idle state 1 Number of entries

Idle state 2

Idle state 3

Freq. 11

Figure 44: Data structure used in the data collector.

efficiently. Specifically, we piggyback our data collecting with activities of the sub

systems. We have instrumented the subsystems so that we know when the CPU

frequency or CPU idle state are changed. Each frequency change in CPUfreq

triggers a new process of data collection for the new working frequency. For each

CPU idle state change in CPUidle, we collect new data about the previous CPU

idle state and aggregate them to the existing data. Therefore, our data collection

automatically adapts to CPU frequency changes, and thus avoids unnecessary

system overheads.

Figure 44 shows the data structure used in our data collector (assuming a

Nexus 4 smartphone is used). We collect the CPU usage data for each CPU core

and each CPU frequency separately. Each CPU core has an array of 12 CPU

frequencies. For each CPU frequency, we record the total CPU busy time and the

total CPU idle time, based on which the CPU utilization can be calculated. We also

record the CPU idle state information, including the total residency time duration

and the total number of entries of each CPU idle state. With the data structure

in Figure 44, we do not need to record the raw data (e.g., the CPU usage data

of every trigger of data collection). Instead, for each trigger of data collection, we

simply update the corresponding values in the data structure to aggregate the new

data with the existing data. As a result, the data collector consumes a small fixed

amount of memory, which is independent of the time duration of data collecting.

Compared to recording the raw data, this approach also uses much less memory,

140

especially when the data collecting time is long.

Generating CPU power model. To generate a CPU power model, we have

run a set of training programs with various workloads and CPU usage patterns.

We use the workload generator described previously to create training programs

with various CPU frequencies, utilization, and various continuous computation du

rations. For each CPU frequency, we train 3 CPU utilization levels (25%, 50%,

and 75%). For each CPU utilization level, we train 8 computation durations (1 ms,

2 ms, 4 ms, 8 ms, 20 ms, 40 ms, 80 ms, and 200 ms). For each CPU frequency,

we also train the CPU idle case (5% utilization), and the CPU busy case (100%

utilization), but with a fixed computation duration (100 ms). In total we have cre

ated 312 different training programs. We first enable only one CPU core, and

run these training programs on the CPU core to generate the single-core power

model. Then we enable all cores, and run the training programs with an identical

process on each core, to generate the multicore power model. The whole model

generation procedure takes about 2 hours. It is worth noting that the ground-truth

CPU power consumption is obtained manually by using power meter. One could

also obtain the ground-truth value by referring to the battery interface [24,28],

which allows for automated model generation. We opted to manual measure

ment because we wanted to reduce the possible errors introduced by using the

battery interface.

Applying CPU power model. We have written a user space CPU power esti

mation C library that supports our CPU model in user space programs. The library

gets CPU statistics from the data collector located in the kernel as shown in Figure

43, calculates the estimated CPU power consumption, and reports information to

user programs as requested. The interfaces provided by our C library to user pro

grams include starting and stopping the CPU power estimation period, getting the

estimated CPU power consumption of the estimation period, and getting different

CPU statistics, such as CPU online information, CPU utilization, and CPU idle

141

j 70-

£„

I
I

IM UM-1 UM-2 UM-3 UM-4

(a) random CPU utilization

A UM-J UM-2 UM-3 UM-4

(b) 30% CPU utilization

IM UM-l UM-2 UM-3 UM-4

(c) 60% CPU utilization

IM UM-I UM-2 UM-3 UM-4

(d) 90% CPU utilization

Figure 45: Single-core model accuracy with MiBench benchmarks.

prime
buictraUi
qsoct

< - pcm

UM-2 UM-4 UM-I UM-2

(a) 30% CPU utilization (b) 60% CPU utilization

UM-3

(c) 90% CPU utilization

Figure 46: Estimation ratios of the four utilization based models (single-core).

states information.

In total, our implementation has about 3,000 lines of code (LOC) in C program

ming language, with 1,300 LOC in kernel implementation and instrumentation, 800

LOC in the controller component, 500 LOC in the CPU power estimation C library,

and 300 LOC in the model generator component.

5.5 Evaluation

5.5.1 Experimental Setup

We used a Nexus 4 smartphone, which has a 1.5 GHz quad-core Qualcomm

Snapdragon S4 Pro CPU, and runs Android 4.2. The Qualcomm Snapdragon

S4 Pro is a representative design of symmetric smartphone multicore CPUs. It

has been widely used on many mainstream multicore smartphones from various

of manufacturers, such as Google Nexus 4, HTC Droid DNA, LG Optimus G,

Sony Xperia Z, and Samsung Galaxy S4 AT&T version. Our CPU power model

142

Table 13: Benchmarks tested in the evaluation.

Benchmark Description

prime Compute a large prime.

basicmath Perform simple mathematical tasks.

qsort Quick sort over an array of strings.

susan Susan image recognition.

jpeg Encode/decode a JPEG image.
dijkstra The shortest path Dijkstra algorithm.

patricia Patricia trees of routing tables.

stringsearch Search for given words in phrases.
sha SHA secure hash algorithm.

aes Advanced Encryption Standard (AES).
crc32 32-bit Cyclic Redundancy Check (CRC).

fft Fast Fourier Transform (FFT).

pcm Pulse Cod Modulation (PCM).

should also work for these smartphones. We measured the system power con

sumption using a Monsoon power meter [73]. Since we focus on the CPU power

consumption, we disabled other hardware components as much as possible in

cluding turning off the screen, network interfaces (cellular, WiFi, Bluetooth, and

NFC), and sensors (GPS, accelerometer etc.). We also killed all the background

services and processes that were not necessary. Note that the measured CPU

power (i.e., the ground truth value) include power consumption by CPU, memory,

and flash disk. Since our training programs also include memory activities, we

expect power consumption on flash disk will incur small impact on the accuracy

of our CPU models. Each experiment was repeated for 5 times and we report the

average results.

Benchmarks. We used 13 benchmark programs from MiBench, which is

a free and commercially representative embedded benchmark suite [104], As

shown in Table 13, these benchmarks cover a diverse set of computation types

that are widely used in networking, security, telecommunication, image process-

143

ing, and many other scenarios and applications. We used our workload gen

erator described previously, which periodically performs continuous benchmark

computation followed by an idle period, to generate benchmark workloads with

different CPU utilizations. To generate workloads with random CPU utilization,

we randomly chose the length for each continuous computation and idle period.

Depending on the computation type, the continuous computation periods ranged

from 10 ms to 1000 ms, 250 ms on average.

Real applications. Besides the above benchmarks, we also used the follow

ing 5 applications to evaluate our CPU power model.

• Web browsing: we used the Dolphin Browser [105] to load five web pages

pre-downloaded from www.nytimes.com. The five pages include the home

page and four subpages. Dolphin Browser is a popular web browser similar

to Google’s Chrome browser, both of which are based on the WebKit engine.

We chose the Dolphin browser because it provides more control interfaces,

which allow for automated tests.

• Map: we used Google Map to browse an offline map with operations includ

ing zooming in/out, swiping, and moving the map. We used the tool [19] to

capture and replay the user inputs on the touch screen, so that we could

operate on the map with desired operations automatically.

• App loading: we launched 8 real apps including Kingsoft Office, Think-

Free Office, Chrome browser, Firefox browser, Opera browser, Google Map,

Baidu Map, and Ezpdf reader. We did not choose any games because (1)

the loading processes of many CPU intensive games (e.g., Angry Birds) ter

minate when the screen is turned off, and (2) these games usually use GPU

for graphic processing, but GPU is not considered in our power model.

• Video decoding: we used Dolphin Player to play a MP4 video clip (30 frames/sec,

611 kbps bitrate) for 20 seconds. We configured Dolphin Player to do video

http://www.nytimes.com

decoding in software using CPU rather than the dedicated video decoding

hardware.

• Audio decoding: we used Google Music to play a MP3 song clip (44.1 KHz

sample rate, 64 kbps bitrate) for 20 seconds. The Google Music decodes

audio file with software.

Please note that the goal of conducting experiments on real applications is to

evaluate how our power modeling approach, which focuses on estimating power

consumption of the CPU component, works on real app workloads in addition

to those ported from MiBench. If one wants to estimate the power consumption

caused by a particular app, she also needs to consider power consumption gen

erated by other hardware components (e.g., WiFi, Bluetooth) [24],

CPU power models to compare. To compare our idle-state-aware CPU

power model (labeled as IM) with existing CPU power models, we generated

4 utilization based CPU power models (i.e., traditional CPU power models that

consider only CPU frequency and utilization) as follows. We used the same train

ing programs as in our model generation process, but only considered CPU fre

quency and utilization, ignoring the CPU idle states. The 4 utilization based mod

els (labeled as UM-1, UM-2, UM-3 and UM-4) were generated using 4 different

computation durations: 2 ms, 8 ms, 20 ms, and 200 ms, respectively. Once we

generated the single-core power models, we further created the corresponding

multicore models according to the procedure described previously. It is worth

noting that in previous work, utilization based CPU power models were trained

only on single-core CPUs. For fair comparison, we extended the CPU utilization

based power models to multicore CPU case using the same method we used in

our CPU idle state based power model.

We define the accuracy of a power model as follows:

Accuracy = 100% — ■——% (5.7)
m

145

where Pe is the power estimated by the power model, and Pm is the power mea

sured using the power meter.

5.5.2 Experimental Results

We evaluated our prototype system from two aspects: accuracy of our CPU power

models and system overheads.

Accuracy of single-core models

We first evaluated the model accuracy when only a single CPU core was used.

Benchmark experiments results. Figure 45 (a) shows the accuracy of single

core models with the 13 MiBench benchmarks programs when CPU utilization

was randomly decided in the way described previously. In the figure, the bar in

a box is the average accuracy of the model. The upper and bottom borders of a

box represent 75 percentile and 25 percentile. The tips of the upper and bottom

whiskers represent the max and min values. On average, our model achieved

a high accuracy of 98%, with a small variation ranging from 94% to 100% for

different benchmarks. The average accuracy and the range of accuracy varia

tion of the four utilization based models were (with the variation range shown in

the parenthesis): 89% (81%-97%), 94% (87%-99%), 95% (85%-99%), and 89%

(78%-98%). We can see that our model significantly outperforms the utilization

based models in terms of estimation accuracy and accuracy stability. Although

the average accuracy of UM-2 and UM-3 were not far below that of our model,

they exhibited a much larger range of accuracy variation for different benchmarks.

This is because different benchmarks have different CPU usage patterns, which

further causes different patterns of CPU idle state entries. The utilization based

models were unable to capture the effect of these CPU idles state changes, which

are important dynamics affecting CPU power consumption. On the contrary, our

model can well cope with this dynamic usage pattern, since it is designed with the

146

* * ^ ^ *>5'°

Figure 47: Single-core model accuracy with real mobile applications.

impacts of idle states in mind.

The accuracy of the existing utilization based models are also subject to CPU

utilization. Figure 45 (b), (c) and (d) show more results when the CPU utilization

was fixed at 30%, 60%, and 90%. We can see that the utilization based models

gave notably high errors in some cases, especially when CPU utilization was at

a low value. For example, when the CPU utilization was 30%, the accuracy of

model UM-4 was only 6 6 % in the susan benchmark, and the accuracy of model

UM-1 was only 6 8 % in the sha benchmark. This is because when CPU utilization

was low, there were more idle time, which in turned led to more dynamic pattern

of idle state entries.

To further study how different types of workloads and different CPU utilizations

could affect the existing utilization based models, we show in Figure 46 the power

estimation ratio of UM-1 to UM-4 when testing the 13 benchmarks with CPU uti

lization fixed at 30%, 60%, and 90%, respectively. The power estimation ratio

is the percentage of the estimated power value over the measured (i.e., ground

truth) power value. Thus, the closer to 100%, the better is the power estimation

ratio. Figure 46 shows that for a given benchmark at fixed CPU utilization, it is

possible to find a CPU utilization based model to achieve a high estimation accu

racy. However, that model would have a much lower model estimation accuracy

147

in some other benchmarks and other CPU utilization levels. For example, when

the CPU utilization is 60% (Figure 46(b)), UM-2 achieves almost 100% estimation

ratio for benchmark stringsearch, but UM-2 would estimate about 15% more than

the ground truth value if it is used for benchmark dijkstra. Another example is that

UM-3 achieves an estimation ratio slightly more than 95% for benchmark susan

when CPU utilization is 60% (Figure 46(b)). However, the estimation ratio for the

same benchmark drops below 75% when CPU utilization is 30% (Figure 46(a)).

In sum, it is not possible to have a single CPU utilization based model to achieve a

high and consistent modeling accuracy in all the benchmarks and CPU utilization

levels. On the contrary, our model, which considers CPU idle states and thus can

adapt to variation of CPU usage pattern, is able to achieve a consistently high

estimation accuracy in all the benchmarks and different CPU utilizations.

Real application experiments results. The similar observations can be found

in the real application experiments as well. Figure 47 shows the single-core model

accuracy in the five real application experiments. We can see that our model also

achieved a high accuracy, 96% on average, with a variation ranging from 90%

to 99% for different applications. The accuracy is slightly lower than that of the

benchmark experiment. This is likely because the applications had more flash disk

operations, but our model does not consider flash disk. Our model had the lowest

accuracy of 90% in video decoding. This is probably because that the player used

GPU which is also not considered in our model. For the utilization based mod

els, their accuracy in the real application experiments exhibited a large range of

variation. The average accuracy and the range of accuracy variation were: 93%

(90%-97%), 91% (78%-96%), 85% (67%-98%), and 80% (61%-92%).

We also examined the relationship between power estimation ratio and CPU

utilization for the real application experiments. Figure 48 shows the estimation ra

tios of all the models when the CPU utilization was different in the Web browsing

application. We controlled the CPU utilization by changing the time interval be-

148

105-o
2

ea

I I 90-

—Q— IM
—O — UM-1
- A - UM-2
-^V^-UM-S
—Q — UM-4

~ 80
0.8 1.00.2 0.4 0.6

CPU utilization

Figure 48: Estimation ratio vs. utilization.

IM UM-1 UM-2 UM-3 UM-4

(a) random CPU utilization (b) 30% CPU utilization (c) 60% CPU utilization (d) 90% CPU utilization

Figure 49: Multicore model accuracy with MiBench benchmarks.

tween loading the webpages. We can see that the CPU utilization based models

gave a large range of accuracy variation when the CPU utilization was different. In

particular, when the CPU utilization was low, they gave a lower model accuracy,

which was also observed in other applications. The curve of our model is much

flatter and the estimation ratios are consistently close to 1 0 0 %, indicating that our

model is also able to adapt to CPU utilization changes and achieve consistent

high estimation accuracy under different CPU utilizations.

Accuracy of multicore models

Figure 49 (a) shows the multicore model accuracy results when we ran the bench

marks and applications with randomly decided CPU utilization using all the four

CPU cores. Figure 49 (b), (c) and (d) show the result when CPU utilization was

fixed at 30%, 60%, and 90% respectively. Figure 50 show the result for the real ap-

149

Figure 50: Multicore model accuracy with real mobile applications.

plication experiments. We observed similar results: our model achieved a higher

average accuracy, and a much smaller range of accuracy variation than the ex

isting utilization based models.

Compared to the single-core case, the accuracies of the four CPU utilization

based models are relatively higher, and the differences among the four models are

relatively smaller. This is because the Nexus 4 smartphone allows only two CPU

idle states (CO and C2) when multiple CPU cores are enabled. Thus, the impact

of CPU idle states become smaller. However, we still have the same observa

tions as in the single-core case: 1) our model has a consistently high accuracy in

all the benchmarks and applications, and significantly outperforms the CPU uti

lization based models; 2) the CPU utilization based models have a large range

of model accuracies in different benchmarks and application, and give a lower

accuracy when the CPU utilization is lower. As smartphone CPUs are becom

ing increasingly powerful, smartphone CPU utilization is usually low for the most

of time. Thus, the CPU utilization based models tend to generates high errors

in practice. On the contrary, our idle-state-aware CPU power model is able to

adapt to CPU usage pattern changes and utilization changes, and thus can ac

curately estimate CPU power consumption with different workloads and different

CPU utilizations.

150

System overheads

From the 312 training programs, we chose those that cause the most frequent fre

quency changes and idle state entries to evaluate the CPU overhead of our sys

tem. On average, the chosen workloads incur about 40 frequency changes per

second and about 450 entries of CPU idle states. Although our implementation

should have the maximum system overhead when running these workloads, we

have seen no noticeable CPU usage increase. This is because our data record

ing and reporting process is extremely lightweight: only several variable updates

when a frequency change or idle state entry happens, and the data are reported

to user space only at the beginning and end of the power estimation period. As for

the memory usage, our prototype implementation use about 8 KB kernel memory,

with the majority consume by the data recording data structure.

5.6 Conclusion

We demonstrated that existing CPU utilization based power models are ill-suited

for modern multicore smartphones. Without considering the impacts of CPU idle

states, existing power models give high errors in multicore smartphones. To ad

dress the limitations of existing power models, we developed an idle-state-aware

CPU power model for accurate CPU power modeling in multicore smartphones.

We have designed and implemented a prototype system of our new CPU

power modeling approach using the quad-core CPU Nexus 4 smartphones, and

also conducted comprehensive evaluations using a diverse set of benchmarks

and real applications. Experimental results show that our CPU power model

achieves a high model accuracy, which significantly outperforms the existing CPU

utilization based power models, with negligible system overheads.

151

6 VProof: Lightweight and Privacy

Preserving Vehicle Location Proofs

Location based service (LBS) application is a new and popular category of smart

phone applications. A proper location proof scheme is critical to providing trust

worthy location based services to smartphone users. In this project, we designed

a lightweight and privacy-preserving location proof scheme for LBS applications

in smartphones.

6.1 Background and related work

6.1.1 Background

Location based services is a major category of services provided by mobile ap

plications. For example, in Intelligent Transportation Systems (ITS), popular cat

egory of applications is that vehicles report information about the transportation

system elements (e.g., drivers and road conditions) to the ITS system for services

like real time traffic control and roads maintenance [31,32], Location proofs allow

ITS operators to verify the validity of reports submitted by vehicles, and thus are

important for deployment of such data collection applications. Otherwise a mali

cious user (i.e., vehicle, we will use “user” and “vehicle” alternately) can launch

an attack to the ITS system by reporting fake information about places where he

did not actually visit. The damages of the attack are particularly serious, since

152

the attacker can report fake information about numerous places by just clicking

mouse at home.

To verify whether a vehicle’s location claims match its actual historical loca

tions, ITS operators need a location proof scheme featuring the following prop

erties. First, the location proof should be lightweight. This property is extremely

important in vehicular environments, since location proof issuers may need to is

sue location proofs to tens or hundreds of vehicles on a busy road at the same

time. Second, the location proof needs to well preserve users’ location privacy.

Concerns about users’ location privacy have become major considerations when

deploying location-related services in ITS systems [106]. Car owners can sim

ply opt out of providing any data if their privacy is threatened. Third, the location

proof scheme needs to be able to generate fine-grained location proofs, because

the locations reported in the user collected information (e.g., there is a pothole

somewhere on the road) have fine granularity.

To detect malicious users who report bogus data, the conventional solution

is to assign each vehicle with some cryptographic keys. Each vehicle will sign

each piece of data with its secret key before uploading to the ITS system. The

idea is that by having a means to track back users, the amount of bogus data will

be reduced, since malicious users do not want to be caught. Similar schemes

have also been proposed to protect the privacy of honest users to encourage

participation [107-109], Nonetheless, these solutions all require deploying a large

scale PKI scheme to associate specific keys with individual vehicles. While this

may be possible in theory, for instance, a PKI administered by a local DMV, it is

less clear if this will be done in practice, especially in a large country. We can

point to the difficulties in getting the different states in the U.S. to standardize on

a common driver’s license as evidence of the impracticality of a widely deployed

PKI solution. Thus, a solution that does not rely on such large scale infrastructure

to provide privacy protections is needed.

153

The idea of location proofs has been considered by other types of applica

tions before. The general approach is to let certain authorized entities with fixed

geolocations perform as location proof issuers. The location proof issuers issue

location proofs, which are unique and unforgeable, to nearby location provers,

who need to prove their historical locations to a location verifier later. A location

prover is believed to be in the vicinity of a proof issuer at a certain time if the prover

possesses valid location proofs [110-112], We cannot apply the same approach

towards vehicular environments because the location proof granularity achieved

by the existing location proof solutions is coarse: they can only prove that at a

certain time a user was within the communication radius of a proof issuer but not

at a finer granularity. This allows a malicious user to statically collect the location

proofs issued by a proof issuer and report fake information about places where he

never visited but are within the proof issuer’s communication radius. Meanwhile,

the existing solutions require a proof issuer to perform multiple rounds of inter

actions with a prover to issue a location proof specifically to the prover, which is

not scalable to vehicular environments, where lots of vehicles may be requesting

location proofs at the same time.

6.1.2 Threat model

We consider the threat that malicious users target at disrupting ITS systems by re

porting fake information about numerous places where they did not actually visit1.

If there is no scheme to allow ITS operators to verify whether the reporting users

have actually visited the places indicated in the reported data, a malicious user can

easily generate and report bogus data about lots of places without actually visiting

those places. The amount of the bogus data could overwhelm that of the honest

data. Existing works for filtering abnormal data in vehicular networks [113,114]

1 We do not consider the threat that a malicious user physically presents at a place and report
fake information about it, as we deem this threat has much less impacts than the one we are
considering.

154

do not work in this case, because they hold an assumption that the amount of

abnormal data should not be more than that of normal data. Meanwhile, as we

discussed previously, we prefer not to use PKI to solve the problem. Thus, we

ask the question: without using PKI systems, can we provide a scheme to let ITS

operators verify if a user’s historical locations are in accordance with the data he

submits so that they can prevent the threat we just described?

We make the following assumptions about malicious users. First, malicious

users have the same equipments as honest users, and have certain knowledge

of the information about the RSUs in the ITS system, such as the ESSIDs and GPS

locations of the RSUs. But they do not know any secret keys shared between the

RSUs and the ITS system. Second, malicious users cannot control any infras

tructure units or replicate them in exactly the same way. For example, malicious

users cannot replicate a certain legitimate RSU by placing the same hardware

on the same roadside pole. This prevents malicious users from obtaining similar

profiling data as the authority does.

6.1.3 Related work

Existing location proof solutions. Location proofs have been suggested as

a way for users to prove their past locations in location based services [110—

112]. A typical proof construction requires a user to perform several rounds of

interaction with the proof issuer to derive a location proof, which is later used by

the proof verifier to verify the user’s location. Later work by [112] improves on this

process by preventing the proof issuer from learning the user’s location. We will

discuss the limitations of applying the existing location proof solutions in vehicular

environments in details later.

Location privacy in vehicular networks. To prevent users from submitting

fake information in vehicular networks, the existing solutions typically use anony

mous authentication. Work by Xi et al [107] proposes a symmetric random key-set

155

scheme, where each vehicles possesses a set of symmetric keys randomly cho

sen from a key pool, to authenticate vehicles into vehicular networks. Scheme

proposed by Calandriello et al. [108] addresses the problem of anonymous mes

sage authentication using asymmetric keys and group signature in vehicular net

works. ECPP [109] achieves anonymous message authentication under the help

of its on-the-fly short-time anonymous keys between vehicles and RSUs.

The reasoning behind the existing approaches is that if car owners are aware

that bogus data can be traced back to them, they will not intentionally upload

incorrect data. However, car owners can simply opt out of providing any data if

their privacy is threatened. Our work provides a technique to enable a user to

prove his historical locations are in accordance with the data he reports. This

allows ITS operators to prevent the attacks where users report information about

places they did not visit. Our approach achieves strong user privacy protection,

since we do not place any information regarding the user's identity nor link any

cryptographic keys with the user, and thus there is no way users reporting data to

the ITS systems can be traced. We argue that our approach is more suitable in

situations where user privacy outweighs other concerns.

Concerns about users’ location privacy have become major considerations

when deploying location-related services in ITS systems [106], Existing solutions

use group navigation and dynamic pseudonyms [115], mix-zones and vehicular

mix-networks [116] or group communication [117] to defend users’ location pri

vacy. VProof also well protects users’ location privacy since we do not place any

information regarding the user's identity nor link any cryptographic keys with the

user.

Changing packet transmission power and measuring packet received

signal strength. Changing wireless packet transmission power and measur

ing the received signal strength (RSS) have recently been used in localizations

[118,119] and rogue vehicular AP detection [120,121], All these existing works

156

rely on accurate RSS measurements to determine the distance between two com

municating wireless nodes. In our work, we do not have dependence on accurate

RSS measurements for the following two reasons. First, changing packet trans

mission power and measuring RSS in our solution are not to determine the dis

tance between two wireless nodes. Instead, we use them to hide the inherent RSS

patterns from users. Thus, our work does not need as accurate RSS readings as

the existing works do. Second, our RSS pattern similarity comparison algorithm

is specifically designed to cope with inaccurate RSS measurements and packet

losses.

6.2 Motivation

6.2.1 Limitations of the current location proof solutions

Our work is motivated by the following three major limitations of the existing loca

tion proof solutions [110 - 11 2] to be applied in vehicular environments.

First, the existing solutions can only be used to prove at certain time a user

was within the communication range of the proof issuer (an RSU in our case) but

not at a finer granularity. This critical drawback allows a malicious user to sit tight

at a certain location within the RF range of an RSU, and legitimately report bogus

data about other locations within the same range. The resulting damages are even

greater in systems adopting long range wireless communication techniques. In

our solution, if a user claims he was at a certain place when he collected some

data, we require him to show that he has seen the correct RSS pattern of the

packets sent by a nearby RSU that he must drive by the claimed place to obtain.

Second, the construction of a location proof in the existing solutions requires

several rounds of interactions between the proof issuer and the user, which makes

them impractical in vehicular environments as the contact durations between ve

hicles and RSUs may be very short. By contrast, with VProof, no interaction be-

157

45
40
35
30

So 25
& 20

15
10
5
0

50 100 150 200 250 300 350
packet index

(a) RSS pattern of packet series A

45
40
35
30
25
20
15
10
5
0

packet index
(b) RSS pattern of packet series B

to 25
at, 20

200
packet index

(c) Center details of the packet series A’s
RSS pattern

200 :
packet index

(d) Center details of the packet series B's
RSS pattern

Figure 51: RSS patterns of two series of packets collected at different times, (a) and (b)
show the overall patterns of the two packet series, (c) and (d) show the center details of
the pattern in (a) and (b) respectively.

tween the proof issuer and the user is required.

Third, the existing solutions rely on PKI systems that we are trying to avoid,

since the deployment of a large scale PKI scheme for ITS is unlikely to be realized

in the near future.

Through real-world measurements, we make the following two key observa

tions that led us to design our location proof solution by utilizing RSU packets RSS

patterns.

6.2.2 The observation on RSS patterns of RSU packets with a

fixed transmission power

Through real-world experiments, we observe that the RSS of a series of RSU

packets received by a vehicle when it passes an RSU, which is continuously

broadcasting packets with a fixed power, exhibit similar patterns over time. In

the experiments, we deployed an wireless node, which broadcast packets at a

rate of 1 0 0 packets/s with the full transmission power, at the roadside of a down-

158

100 120 140 160 180 200 220 240 260 280 300 320 100 120 140 160 180 200 220 240 260 280 300 320
distance to the starting point (meters)

(a) RSS patterns of packet series A and A ’

distance to the starting point (meters)

(b) RSS patterns of packet series B and B*

Figure 52: RSS patterns of RSU two packet series under different tx powers. Packet
series A and A' were collected in the same experiment. They were transmitted under
different tx powers. Packet series B and B' have the same relationship as that of A and
A', but they were obtained at a different time in another day.

town environment. We drove a car past the roadside wireless node and collected

its packets at different times. Figure 51 shows the RSS patterns of two series of

packets collected in the experiment, where series A were collected in the morning

of one day when there were less cars on the road, and series B were collected

during peak hours in the afternoon of another day. We can see that, although

there are slight differences in RSS amplitudes and pattern shapes, which are due

to factors like different temperatures and different moving obstacles (i.e., cars and

trucks) on the road, the two series of packets do exhibit similar RSS patterns.

6.2.3 The observation on relatively constant RSS difference of

packets with two different transmission powers

We also observe that the RSS difference between two packets that are transmit

ted by the same RSU using two different powers and are received at the same

location is roughly a constant across the RSU’s RF range over time. Figure 52

shows the RSS of two groups of RSU packet series. Packet series A and B, which

were transmitted using the full power, are the same as in Figure 51. Packet series

A' and B', which were transmitted using half of the full power, were obtained at

the same times as A and B respectively. We align the two RSU packet series

obtained in the same experiment based on the distance between each packet’s

159

reception location and a fixed starting point. We can observe that the RSS differ

ence under two different transmission powers at the same location is roughly the

same (around 8 dbm). We will quantify how stable this RSS difference is later in

Section 6 .6 .

6.3 Solution

6.3.1 An overview

With the above two observations, we design a location proof scheme using RSS

of RSU packets, which are publicly observable. Generally speaking, we let RSUs

continuously broadcast packets that are specifically for the location proof func

tionalities (named as “VPackets”). Each VPacket is broadcast using a randomly

chosen transmission power. Since the transmission power is randomly selected,

the RSS of the VPackets received by vehicles exhibit no pattern. Each VPacket

incorporates some encrypted information including the transmission power of the

packet. Vehicles collect the VPackets, construct location proofs based on infor

mation in the VPackets and their own GPS readings, and submit the location

proofs to the ITS system for verification. Using the information in the location

proofs, specifically the transmission power of each VPacket, the ITS operators

can restore the inherent VPacket RSS patterns, which are the RSS patterns if the

VPackets were transmitted using the full power. The location proofs are deemed

as valid only if they can be used to correctly restore the inherent RSS patterns of

RSUs. Since the transmission power of each VPacket is only known by the ITS

operators, we enforce the unforgeability of the location proofs VProof constructs.

The general operation flow of VProof is shown in Figure 53. The pre-application

operations (i.e., the operations performed before the data collection applications

are deployed) include:

160

ITS operator

RSS Trace DB

PRE-I: VPacket RSS trace L
DB construction . I «

pre-application |
operations I

PRE-2: RSU secrets and
VPacket rate configuration

dI iR 1:RSU "f !
VPacket broadcast I !

during-application
operations

| DUR-2: location { i
[proof construction! j

■I I

I i

J .J
DUR*3:|data + location proofs

RSU RSS traces request

RSU RSS traces

j _______________r
DUR-4: location
proof verification

Figure 53: Operation flow of VProof.

• Step PRE-1: the ITS operator constructs a database that stores different

RSUs’ VPacket RSS traces.

• Step PRE-2: for each RSU, the operator assigns it a unique secret and con

figures it with a pre-calculated VPacket broadcast rate. The RSU secret is

used by both the RSU and the system operator to generate/verify location

proofs. The VPacket broadcast rate theoretically ensures a vehicle can re

ceive a desired number of VPackets during each coherence time period.

The during-application operations (i.e., the operations performed with the data

collection applications) include:

• Step DUR-1 (proof issuing): RSUs broadcast each VPacket at the config

ured rate using a randomly selected transmission power.

• Step DUR-2 (proof construction): upon receiving the VPackets, vehicles

construct location proofs by extracting relevant contents from the VPackets.

• Step DUR-3 (proof submission): when vehicles upload newly collected data

to the backend server, they also upload all the location proofs constructed

since the last data submission.

161

Table 14: Major notations

Notation Meaning

UuUj RSU IDs
N number of traces assoc, with each trajectory in the DB

L number of VPacket transmission powers

Pj non-full transmission powers (j = l, • ■ ■ , L - l)

Pf the full transmission power

RSSu^Pf^Pj average RSS difference between VPackets transmitted
under a non-full power Pj and the full power Pf

SUi secret for U{

• Step DUR-4 (proof verification): the ITS operator verifies the location proofs

according to the following sub-steps. First, the operator verifies if the loca

tion proofs are constructed using authentic VPackets. Then he constructs

a user RSS series based on the location proofs, and pre-process the user

RSS series to smooth out the unpredictable vehicle moving patterns when

vehicles received the VPackets, such as stops due to red lights and slow

driving due to traffic jams. Before feeding the user RSS series into the RSS

similarity comparison algorithm, the operator restores the inherent RSS pat

tern (i.e., the RSS pattern if all the VPackets were transmitted using the

full power). Finally, the operator determines if the location proofs are valid

based on the pattern similarities between the restored user RSS series and

the DB RSS traces.

We describe the details of each of the above steps in the following section.

6.3.2 PRE-1: VPacket RSS trace database construction

The RSS trace DB contains VPacket RSS traces of each RSU. In our design,

there are N RSS traces associated with each possible vehicle trajectory around

each RSU Z7*. Each RSS trace contains an RSS series of VPackets collected

by driving a car past Ui on the trajectory. Figure 54 shows an example of the

162

Figure 54: The six possible trajectories of a “T" shape crossing.

possible trajectories around a "T" shape crossing. During the profiling process,

Ui broadcasts VPackets using the full transmission power. In the DB, assuming

there are L transmission powers, U{ is also associated with average RSS differ

ences between each non-full powers P, (j = l, • • • ,L - l) and the full power

Pf. RSSui,pj^pr We will describe the experiment that obtains this average RSS

difference in Section 6 .6 . The profiling process only needs to be done once.

6.3.3 PRE-2: RSU secrets and VPacket rate configuration

The system operator generates an RSU-specific secret sVi for each RSU Uit and

configures it to U{. The secret sVi is for encrypting/decrypting the VPacket’s trans

mission power, and also for generating/verifying the VPacket authentication mes

sage (described later). For a vehicular wireless node moving in an outdoor envi

ronment, the RSS of its received packets vary a lot. To deal with RSS instability,

we want users to receive n VPackets within a period of coherence time, which is

the time duration over which the RSS is considered to be not varying. Then we

can take the average of these n VPackets’ RSS as a data point in the RSS series.

So the VPacket rate for an RSU Ul is calculated as — , where Tcoherence is the
c o h e re n c e

average coherence time of the road section around Ui.

6.3.4 DUR-1: VPackets broadcast (by RSU)

VPacket transmission power selection. An RSU U{ uses Algorithm 9 to se

lect the transmission power for each VPacket when it is generated. If the timer

163

Algorithm 9: VPacket transmission power selection
Data: T im er^ bounds Tx and T2 (Tcoherence < T t < T 2).
Result: VPacket transmission power.

1 if T im er pur has expired then
p = randomly chosen from Pf , P i,-- - , PL- i ,
dtimer — rari(lom (T i,T2),
Reset T im er^ with duration dtimer\

2

3

4

s else
6 | p = power returned when last time call this function;
7 return p\

T im er p w r is expired at the time when the algorithm is executed, the algorithm se

lects the transmission power randomly from the L power levels (line 2), with Pf

being the full power and P i, - ■■ , PL -1 being the other L - l none-full power lev

els. Otherwise, the algorithm returns the power level given by the last random

selection (line 6). To ensure VPackets are broadcast using the same power level

during at least a period of coherence time (Tcoherence), the duration of Tim erpwr is

set randomly between Tx and T2 (line 3), both of which are greater Tcoherence.

After the transmission power p is determined, Ui encrypts p using a symmetric-

key algorithm SE, with the combination of sVi and time t (i.e., the time when the

VPacket is generated) as the cryptographic key:

Cp <- S E SUi t t (p) . (6.1)

VPacket authentication message generation. In order to verify if the loca

tion proofs are constructed based on authentic VPackets, an RSU Ut generates

a VPacket authentication message (VAM) for each VPacket as

VAM 4— H(Ui, sUvt, Cp), (6.2)

where H is a cryptographic hash function (e.g., MD5 and SHA-1) that hases U{

(the ID of the RSU), sVi (the secret of the RSU), t (the time when the VPacket is

164

generated) and Cp (the ciphertext of the transmission power p) into a single piece

of message.

Finally, the RSU U i puts the VAM, C p and t into the VPacket, and broadcasts

the VPacket using power p.

6.3.5 DUR-2,3: Location proof construction and submission

(by vehicles)

Upon receiving a VPacket, a vehicle constructs a location proof (LP) as

L P = < U i, VAM, t , RSS, C p, LOC > , (6.3)

where (1) Ut is the ID of the VPacket’s originating RSU, (2) VAM is the VPacket au

thentication message, (3) t is the time when the VPacket is generated, (4) RSS is

the received signal strength of the VPacket, (5) Cp is the ciphertext of the VPacket

transmission power p, and (6) LOC is the vehicle’s GPS location when the packet

is received. The first five items are extracted from the VPacket, and the last one

is obtained from the vehicle’s onboard GPS device.

When the user uploads newly collected data to the ITS system, he also up

loads all the location proofs constructed since the last data submission to the ITS

system.

6.3.6 DUR-4: Location proof verification (by ITS operators)

The ITS operator divides the location proofs received from the same upload con

nection into batches such that each batch of location proofs share the same RSU

ID. Then the operator verifies the location proofs batch by batch. A valid batch

of location proofs with RSU ID U { indicate the proof submitter has actually driven

past Ui at the time indicated in the location proofs.

VPacket authentication message verification. Given a batch of m loca

165

tion proofs, the ITS operator verifies the VAM contained in each location proof

as follows. He computes the message content by using formula (6.2) with the

parameters Uit t, Cp and sVi, where Ui: t and Cp are extracted from the location

proof, and sUt is kept by the operator. If the computed content is different from

the VAM contained in the location proof, the VAM is deemed as invalid. An invalid

VAM indicates that a least one parameter of Uit t and Cp provided in the location

proof has been tampered with. If there exists one location proof containing invalid

VAM, the whole batch of location proofs are invalid. Note that a batch of location

proofs with valid VAMs does not necessarily means the batch of location proofs

are valid, because a malicious user can statically collect VPackets, obtain valid

VAMs and present them in the location proofs.

User RSS series construction. Given a batch of m location proofs with valid

VAMs, the operator constructs a user RSS series Suser according to Algorithm 10.

In the algorithm, Sraw is the sequence of RSS in the m location proofs, Traw is

the corresponding sequence of VPacket generation times, and Praw is the cor

responding sequence of deciphered transmission power levels. The algorithm

outputs the user RSS series SU3er, in which each data point is computed as the

average RSS (line 7) of the VPackets that were transmitted under the same power

and within a period of coherence time (line 6). The algorithm also outputs PsU3er,

a sequence of deciphered transmission power levels. Each data point of PSuser

corresponds to an RSS data point in Suser (line 8).

User RSS series preprocessing. The preprocessing of the user RSS series

Suser has two goals. The first is to make Suaer location-even. In real road situations,

users may stop on the road for a while (due to red lights), or drive with a speed

that is far less than the speed limit (due to congested traffic). In these cases,

SUser will contain much more data points measured around some locations than

from other locations. Our algorithm tunes Suser by removing the redundant points

based on the parameters of LOC and t presented in the corresponding location

166

Algorithm 10: User RSS series Suaer construction
Data: Raw RSS sequence: Sraw = ui • • • itm;

VPacket generation time sequence: Traw = f i • • ■ tm;
Deciphered power sequence: Praw = qx ■ ■ ■ qm.

Result: User RSS series: Suaer = vx ■ ■ ■ vn;
Transmission Power sequence: PSuaeT = pi - - -pn-

1 Suaer i (j), PSuser 1 (ft,
2 for i «— to m do
3

4

5
6

7

8

9

10

11

if SU3er = = 4> then
| tim e <— ti, power 4— q{, pool <— {u ,};
else

if (U > tim e + Tcoherence) or (^ ^ power) then
Add average(pool) at the end of Suser',
Add power at the end of PSuser;
tim e <— t^ power <— q{, pool «— {u,}',

else
I Add U i to pool',

12 return Suser, PSu

proofs. The second goal of the preprocessing is to identify the user's trajectory

based on which the operator can select the corresponding RSS traces from the

RSS DB. The trajectory identification is based on the GPS locations contained in

the proofs.

User RSS series pattern restoration. The user RSS series Suser = vi • • • vn

has no pattern since the VPackets were broadcast using random transmission

powers. Therefore, before comparing the patterns of user-submitted RSS series

and the profiled RSS series stored in the trace DB, the ITS operator needs to

restore 5user’s inherent RSS pattern (i.e., the RSS pattern if all the VPackets were

transmitted using the full power). This is accomplished by adding R S S u ^p ^

(recall that this information is associated with Ui in the RSS DB) to each data

point vk g SUser, if Pk € PsU3sr equals to Pjt where 1 < j < L — 1 (L is the number

of transmission power levels) and 1 < k < n.

User RSS series validation. To validate the user RSS series 5„ser, the ITS

operator fetches the N RSS traces associated with the user trajectory from the

RSS trace DB, and derives N DB RSS series SDB,i (i 6 [1, N]) in the same way as

167

constructing Suser. The ITS operators compares the similarity between the user

RSS series Suser and each of the N profiled RSS traces respectively. The user

RSS series is deemed as valid if there are enough amount of matches.

As we mentioned earlier, it is difficult to decide if two RSS series have simi

lar patterns for the following three reasons. First, different hardwares may have

different readings on the same received packet, because they may have differ

ent noise floors. To address this issue, our RSS series comparison algorithm is

designed to compare patterns of the quantized series, which are not impacted

by amplitudes of the RSS readings. Second, RSS measurements are sensitive to

many factors especially in an outdoor moving environment. Third, due to busy ve

hicular wireless environment, vehicles may not received all the VPackets based

on which the location proofs are constructed. To address the second and the

third challenges, we designed a dynamic time warping (DTW) [122,123] based

algorithm to compare two RSS series.

Our RSS series similarity comparison algorithm compares the user RSS series

Suser with each of the N DB RSS series SDB,i according to the following steps.

The first step is to quantize both the RSS series Suser and SDB,i using a K-

number alphabet. The goal of the RSS series quantization is to, as pointed out

previously, remove the factors that can cause different amplitudes on RSS read

ings (e.g., hardware differences). The quantized value of each data point in a

RSS series reflects the position of data point’s value within the value range of the

RSS series. The quantization algorithm is given in algorithm 11. We use a simple

example to illustrate how the quantization process works. Suppose there is an

RSS series whose RSS values are in the range of [1,30], and we want to quantize

them using a 3-number alphabet {0,1,2} (i.e., K = 3). Then our algorithm con

verts the data points in the RSS series with values from in the ranges of [l, 10],

[11,20] and [21,30] to numbers 0 , 1 and 2 respectively.

The second step is to obtain the warped versions of the quantized RSS se-

168

Algorithm 11: RSS series quantization using a /('-letter alphabet
Data: An RSS series S = ax • • • an
Result: Quantized version of S: Q = b1- - b n

1 Q <— ((>',
2 max «— m ax im u m (a i, ■ ■ ■ , an)\
3 m in <— m in im u m (a i, • • • , an)\
4 for i 4- 1 to n do

for j < r- l to K do
if fli < mm + then

Add j to the end of Q\
Break the j-loop;

9 return Q\

ries. The goal of this step is to cope with inaccurate RSS measurements and

potential missing data points due to losses of VPackets. In this step, both quan

tized S user and quantized S d b ,% are converted to their corresponding warped ver

sions using a dynamic time warping (DTW) based algorithm. Here we use a de

tailed example to show how our DTW algorithm works and its benefits. Suppose

M = “1222221100” and N = “1022110000" are two RSS sequences quantized

with a 3-number alphabet {0,1,2}. We can see that the two RSS sequences

have the similar pattern (they both change follow the l ->• 2 -> l -> 0 pattern).

However, the quantized values are not exactly aligned. For example, the sec

ond quantized value in the sequence TV is 0 instead of 1 or 2, which can happen

due to inaccurate RSS measurements. Meanwhile, we can see that the number

of some quantized values in a sequence is less than that in another sequence

(for instance, M has less 0 and N has less 2). This can happen when there are

VPacket losses. We use the following formula to calculate the distance between

M and N as distance(M, N) = ^ = 1 1 - «i|, where m{ and m are the values of

the z-th bit in M and N respectively, and I is the length of both sequences. The

distance between the original M and iV is 6 (Figure 55 (a)). Our algorithm calcu

lates a warping path between M and N by using dynamic time warping, which is

basically a form of dynamic programming, and converts M and N to their warped

169

M = "1222221100"

N = “1022110000“

distance(M,N)=6

0
0
1
1
2
2
2
2
2
1

warped M = M '= "1122222110000"

warped N = N '= "1022222110000"

distance(M',N’)= l

(a) Original sequences (b) Calculating the warping path (c) Warped sequences

Figure 55: Converting the original sequences to warped sequences.

versions M ' and N ' based on the warping path (Figure 55 (b)). The distance of the

two warped series is 1 (Figure 55 (c)). Now we can see that the DTW algorithm

can well identify the similar pattern of two misaligned sequences. Please note

that although in the example the two sequences have the same number of bits,

it is not necessary that the two original sequences should have the same length.

However, the two warped series will be equal-length, because both of them are

constructed based on the same warping path.

In the final step, the algorithm calculates the similarity score between the two

RSS series, based on which a conclusion is drawn. Suppose the length of the

two equal-length quantized warped RSS series S'uaer and S'DBi is I, the similarity

score between S'user and S'DB t is defined as

sim score = 1
hamming-dist(S'uaer, S 'd b , t)

I
(6.4)

where the function hamming jd ist(-) calculates the hamming distance, which is the

number of different bits, between the two input sequences. If the score is higher

than a threshold sthresh, the user RSS series Suser is considered to be similar to the

i-th DB RSS series SDB,i■ We will empirically identify the suitable value of sthreSh

later in Section 6 .6 . Within the comparisons between Suser and the N DB RSS

series, if there are no less than nthresh • N matches, the batch of location proofs

are identified as valid.

170

6.4 Threat prevention analysis

VProof preserves privacy for users participating the data collection applications,

since it does not require any information that can be related to a user’s ID. VProof

can efficiently prevent the threat that a malicious user reports data about location

£ ’s conditions at a certain time T without presenting at £ at time T. Let’s consider

the following four cases of the threat.

Case I. The malicious user did not drive past the location £ at time T. In this

case, the malicious user cannot obtain the valid VPacket authentication message

(VAM), which will make their location proofs rejected in the first step in the proof

verification process.

Case II. The malicious user drove past the location £ at time V , and saved

the received VPackets, based on which he constructed location proofs for another

time T. In this case, the location proofs will be rejected, because the VAMs are not

valid (recall that the construction of V/W depends on several parameters including

time).

Case III. The malicious user drove past the location £ ' at time T, and saved

the received VPackets, based on which he constructed location proofs for another

location £, where £ and £' are covered by signals of two different RSUs respec

tively. In this case, the location proofs will be rejected, also because the VAMs

are not valid (they are constructed using different RSU IDs and RSU secrets).

Case IV. The malicious user statically collected VPackets at location £', where

£ and £ ' are covered by signals of the same RSU, around time T. This is the

case the existing location proof solutions cannot prevent. By contrast, VProof can

easily reject those location proofs, because the restored pattern of the RSS series

constructed from the statically collected location proofs cannot match that of the

RSS traces stored in the RSS DB. Meanwhile, the malicious user cannot tune the

parameter RSS contained in the location proofs so that the restored RSS pattern

171

matches RSS DB’s record, since the malicious user has no knowledge about the

VPacket transmission power, which is randomly selected and only known by the

operator. We will empirically evaluate the case that a malicious user submits

location proofs constructed with valid VAMs but guessed RSS in the next section.

6.5 Discussion

Privacy vs. accountability. VProof provides a new option of location proofs with

strong user privacy protection. We realize that there is a tradeoff between privacy

and accountability. For instance, in VProof, ITS operators cannot trace malicious

users if there exist some, since there is no way users submitting data can be

traced. Although this approach sacrifices the ability to trace down malicious users

reporting fake data, it greatly protects users’ privacy, and thus encourages par

ticipation of data collection. We argue that our solution is more suitable for the

situations where privacy concerns outweigh any other concerns, as car owners

can simply opt out of providing any data if their privacy is threatened.

Reporting fake information with valid location proofs. By verifying if a

user’s historical locations match the data he submits, we prevent the threat that a

malicious user reports fake information about numerous places he did not actually

visit. However, our solution does not deal with the threat that malicious users

report fake information with valid location proofs (i.e., the malicious users drive

their cars around a certain area, collect VPackets, construct valid location proofs

and report fake information about that area). We consider this problem to has

less impacts than the threat we are considering for the following three reasons.

First, this problem is equivalent to the case where honest users unintentionally

submit data sensed by defective data collection devices. Second, compared to

the threat of interest where the malicious users can influence as many places as

he wants, reporting fake information with valid location proofs can only impact a

172

small amount of places where the malicious users have actually visited. Third,

the malicious users have much greater difficulties to report fake information with

valid location proofs than to report fake information about places without actually

visiting there, since instead of sitting somewhere statically, they need to constantly

drive around the area of interest to launch the attack.

Attacks by offline profiling inherent RSS pattens. Another possible way

to compromise our scheme is that malicious users first obtain RSS traces similar

to those stored in the RSS trace DB by offline profiling, then they construct valid

location proofs by applying RSU transmission power change histories to the pro

filed RSS traces. To launch the suggested attack, malicious users first need to

obtain similar RSS patterns as the system operators do, which is hard to achieve,

because we assume malicious users cannot replicate infrastructure units (such as

RSUs). Moreover, to launch the suggested attack, a malicious user also has to

stay within the radio range of an RSU, and learns its transmission power change

history. Therefore, the damage caused by the attack only covers the radio range

of that particular RSU. Consequently, our scheme can still prevent malicious users

from reporting fake information about a large number of places that they never vis

ited.

Wormhole attacks. An wormhole attack is launched by two colluding attack

ers. In this attack, an attacker drives in the communication range of an RSU,

collects authentic VPackets from the RSU and delivers the VPackets to another

remote attacker. Then the remote attacker reports fake information with valid lo

cation proofs constructed from the authentic VPackets. In this case, the wormhole

attack is equivalent to our previous discussion point (i.e., reporting fake informa

tion with valid location proofs), as we can treat the two colluded attackers as one

attacker.

173

6.6 Evaluation

6.6.1 Implementation and experimental setup

The prototype system. Our prototype VProof system consists of an wireless ac

cess point (Wiligear WBD-500 integrated radio board) mounted at roadside that

serves as an RSU, a vehicular node equipped with a wireless receiver (Lenovo

T61 + wireless card + external omni-directional antenna) that acts as ITS system

users and a backend server (Dell T3500) that performs the operations done by

the operator. The wireless AP runs a program that controls VPacket transmis

sion power and broadcast rate according to the VProof scheme. The vehicular

wireless node runs a program that constructs location proofs when VPackets ar

rive. To study whether hardware differences at user side have impacts on our

scheme, we have used two different wireless cards on the vehicular wireless node,

Ubiquiti SWX-SRC and Wistron CB9-GP, both of which have an external antenna

socket. The backend server processes the location proofs constructed by the ve

hicular node offline. Note that in real ITS data collection applications, the sensed

data and meta-data are not required to be uploaded to the backend server in real

time [124-126]. Users can choose to upload the data anytime they feel appropri

ate, for example, when the uploads will not contend with other important tasks.

Therefore, our choice of letting the backend server process the location proofs

offline conforms the reality.

Per-packet transmission power control. The program we ran on the wire

less AP is able to change the transmission power for each packet. This per-packet

power control is achieved by specifying the desired transmission power in the

packet’s radiotap structure. With the per-packet transmission power control, it is

possible to change VPacket’s transmission power randomly while not affecting

the normal tasks done by the RSU (e.g., beacon broadcasting).

174

Sft ^ \.av •FV»¥ ^ J
l ! i? V v slv>'i*'','/ N .w *

ioo no 120 i n t«o iso i«o no no i
MS 4*a puaat into*

(»1) Original RSS Krienof user tncc SI (b I) Origins! RSS series o f user usee S2 <c I) Original RSS series o f user trace S3 <d) RSS scries o f the corresponding DB nee

^ V !§^
(s2) Reamed RSS aeries o f user trace SI

too no 120 no iso no iso ito

(b2) Restored RSS series o f user trace S2

bZ
SMS

<c2) RcMnred RSS aeries o f user trace S3

user trace Si uter trace S2 uacr tract S3

te) Similarity acmes o f user traces vs. die DB trace

Figure 56: RSS patterns comparisons of RSS series collected at the road section A.

Experimental setup. We have conducted extensive experiments on real road

situations to evaluate our solution. The experiments were performed at three dif

ferent locations in downtown environment with busy road traffic. We built the

RSS DB by profiling the RSU RSS pattern (i.e., we drove car past the RSU, which

was broadcasting VPackets using the full transmission power, and collected the

VPackets) at the three locations in one day. We then performed experiments to

collect user RSS traces (i.e., we drove car past the RSU, which was broadcast

ing VPackets using randomly selected transmission powers, and collected the

VPackets) at each location in three other days. Three RSU transmission power

levels were used: full power, § power and half power. Note that all the three tested

cases involved relatively straight routes. We expect our scheme works similarly

for cases containing turnings and other irregular routes. This is because VPacket

RSS pattern of a particular route is relatively stable as long as the surrounding

structures remain unchanged. Furthermore, the driving speed in our experiment

was around 20 mph to 30 mph. We expect our solution also works in high speed

scenario. This is because VPacket rate by RSUs is adapted dynamically based

on the average road speed, recall that VPacket rate is calculated based on the

coherence time of the environment, which is closely related to speed limit of the

road.

175

6.6.2 Experimental results

Coherence time measurement. We measured the coherence time of the wire

less channel at each of the three experiment locations as Camp and Knightly [127]

did. Specifically, we let the RSU broadcast small packets (100 bytes/packet) at

a very high packet rate (500 packets/s). Then we measured the RSS differences

between different size of VPacket windows based on which we determined the

coherence time of the channel. We found that the coherence times at our experi

ment locations were around 100 ms. Thus in our experiments, we set the VPacket

rate to 100 frames/s, as we wanted users to receive 10 VPackets per period of

coherence time. Meanwhile, according to Algorithm 10, when constructing the

RSS series, we computed an RSS data point as the average RSS of VPackets

that are transmitted under the same power and within 1 0 0 ms.

Quantifying the stableness of RSS difference of VPackets with two dif

ferent powers. To restore the inherent RSS pattern from the RSS of VPack

ets broadcast using random transmission powers, our solution relies on the fact

that the difference of RSS at the same location between two VPackets that are

transmitted by the same RSU using two different powers is roughly a constant

across the entire communication range of the RSU. We conducted an experi

ment to quantify how stable this RSS difference is. In the experiment, we let

the roadside wireless AP change between two transmission powers periodically

while broadcasting the VPackets. In the first half of a coherence time period,

the VPackets were transmitted using the full power, and in the second half, the

VPacket transmission power was set to half of the full power. The VPacket rate

was 100 frames/s. We drove a car past the RSU and collected the VPackets.

We processed the received VPackets by first averaging the RSS of consecutive

VPackets with the same transmission power. Then we calculated the RSS differ

ence between two sets of VPackets that were transmitted with two transmission

176

I
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

1........» 1 ■ 7 1 i i i
i C d ^ - O - o 0 - 0 0 - 0 O - O - o - O O o
' J * ' * - *

0.9
0.8
0.7

° ° 'i

1 ...
o ° ° * - *

■ * * *

* ' k '
■M ■

f
0.6
0.5
0.4

0 - 0 o - 0 ° j , - * ' *

* ■ * *
1 0 °

O'
55 0.3 j

0?.J
- M - *

.. direct.distanoe
d̂ stanpe w(th D JW ; <► , 0.1

0

directdistance
djstanpe wiih DXW , « ;

10 20 30 40 50 60 70 80 90
VPacket lost probability (%)

<»)

0 10 20 30 40 50 60 70 80 90
Portion of RSS data points guessed correctly (%)

(b)

Figure 57: Dealing with VPacket losses and guessed series.

powers within a period of coherence time. Finally, we found that the average

RSS difference is 8.55 dBm with a standard deviation of 2.81 dBm. As we will

show later, this RSS difference is already stable enough that allows us to keep

the fidelity of RSS patterns during the pattern restoration process.

RSS pattern comparisons. We have collected over 50 user traces at the

three experiment locations, which are denoted as road section A, B and C re

spectively. When comparing these honest user traces to their corresponding DB

traces, we used an alphabet of four numbers (i.e., K = 4) at the quantization

step. Empirically, we found that the similarity scores between all the user traces

and the corresponding DB traces are larger than 0.8. Thus in our scheme, we set

the threshold similarity score sthresh as 0 .8 .

We show the RSS pattern comparisons for traces collected at the road section

A. Figure 56 (a1), (b1) and (c1) show the patterns of three original RSS series

constructed from three user traces, 51, 52 and 53, that were collected at the road

section A. Figure 56 (a2), (b2) and (c2) show the patterns of the corresponding re

stored RSS series. Figure 56 (d) shows the pattern of the RSS series constructed

from the DB’s trace. We have only show the center part of the patterns for better

illustration. The randomly selected transmission power of VPackets allows the

RSS of VPackets received within a short range of distance exhibit no fixed pat

tern. Therefore, we can see that the three original RSS series are all different

(the similarity scores of any pair of the three original RSS series are less than

0.58). However, once we restore the original RSS series to their corresponding

177

uteruacc

K (t iw o f the quantizztion alphabet)

(b) Compared three uter trace* S I. S2 and S3

82

2 3 4 5 6 7 8 9
K (lize o f the quantization alphabet)

DPT Direct-diauncc DTW

(a) Compared three uaer trace* S I, S2 and S3
collected at tbe road aectkn A with

read K c tira A ’ * DB trace
collected at the road tectioo A with

(c) Compared three uaer traces S I. S2 and S3
collected at the read tectioo A with

road section B i DB trace

(d) Score diithbutioo o f tbe three
similarity cnnpariion method*

Figure 58: Determining quantization alphabet size K and comparing different similarity
comparison methods.

full power RSS series, the three user traces do exhibit similar RSS patterns with

the DB trace. Figure 56(e) shows the similarity scores when comparing the DB

trace against the original RSS series and against the three restored RSS series.

It shows that the similarity scores between each original RSS series and the DB's

RSS series are smaller than 0.55, and the similarity scores between each restored

RSS series and the DB's RSS series are all larger than 0.81.

Another point worth mentioning is that of the first two user traces, 51 and 52,

and the DB trace were collected using the Ubiquiti wireless card, while the third

user trace 53 was collected using the Wistron wireless card. Although the RSS

readings from the Wistron card were higher, it did not prevent our solution from

correctly accepting the honest user trace, since our similarity comparison scheme

only depends on the pattern itself but not RSS reading amplitude.

Dealing with VPacket losses. In a busy vehicular wireless environment, ve

hicles may not receive all the VPackets, based on which the location proofs are

constructed. Our scheme addresses this issue by letting RSU broadcast multiple

VPackets within a coherence time period and designing a DTW-based algorithm

that can effectively deal with missing data points when comparing two RSS series.

However, the VPacket losses scenario was not fully manifested in our real-world

experiments, since we did not have a busy wireless environment on the road. To

evaluate how our solution deals with VPacket losses, we simulated the losses by

randomly taking VPackets out from an honest user trace based on certain prob

ability. Then we constructed the RSS series from the user trace with missing

VPackets, and compared it with the corresponding DB RSS series. Figure 57(a)

shows the performances of the direct distance algorithm (i.e., directly compared

two series without performing the DTW process) and the DTW algorithm in deal

ing with traces with missing VPackets. We can see that the DTW algorithm keeps

the similarity score between the honest user trace with missing VPackets and the

corresponding DB trace staying above the acceptance threshold as the VPacket

lost probability goes up to 70%. In other words, for an honest user trace, as long

as 3 of the 10 VPackets sent within the coherence time are received, our DTW

algorithm can correctly mark it as valid.

Dealing with guessed RSS series. In this experiment, we considered the

case that a malicious user submits location proofs with guessed RSS values in

the hope that the restored RSS pattern can match the DB RSS traces. We first

constructed an RSS series by randomly generating RSS values that are within

the RSS range in our experiments. Then we simulated the malicious user has

correctly guessed the value of an data point by replacing a random data point of

this guessed series with a corresponding real data point in one of our user RSS

series. We increased the proportion of the replacement to see how our scheme

responds. Figure 57(b) shows the result. We can see that for a malicious user to

get his RSS series accepted, he needs to correctly guess more than 80% of the

data points. Since there are usually hundreds or thousands of data points in an

RSS series (as in our experiments), we can draw a conclusion that the probability

of a malicious user successfully makes a guessed RSS series accepted by our

scheme is very low.

Evaluating RSS series quantization. This experiment evaluates how the

quantization alphabet size K affects the similarity score of two RSS series. We

consider both the case of matched RSS series and the case of mismatched RSS

series. For the matched case, we compared 51, 52 and 53, which are three

user RSS traces collected at the road section A, with the DB RSS trace of road

179

section A (Figure 58 (a)). For the mismatched case, we compared 51, 52 and 53

with the DB traces of the road section A and road section B respectively (Figure

58 (b) and (c)). We can see that when choosing 4 and 0.8 as the values for

parameters K and stflr(,sh, our scheme can correctly identify the RSS patterns

of traces collected at the same location and also correctly distinguish the RSS

patterns of traces collected at different places. According to our experimental

results, we can develop an empirical formula to determine the value of K: K =

3 -f [(0.9 — Sthresh) x 10J.

Evaluating different similarity comparison methods. Our solution applies

a DTW algorithm in the RSS series similarity comparison scheme. For a good

similarity comparison scheme, the range of similarity scores it generates when

comparing two similar series should be as narrow as possible, because a wide

range of scores would make it hard to determine the similarity threshold, and it

would likely lead to false positives or false negatives.

In this experiment, we compare three methods in terms of their ability to pro

duce narrow score range when comparing two similar series. The first method

dynamic time warping (DTW), where the similarity score is calculated based on

the warped versions of the two quantized RSS series. The second method is di

rect distance (DD), where the similarity score is calculated directly based on the

two quantized RSS series. The third method we compare is the Discrete Fourier

Transform (DFT) method. DFT is a classical method to compare the similarities

between time-series [128,129], With this method, DFT is first applied to the two

time-series to compare. Then the two series are represented by the 2 f c coeffi

cients of the first f c frequencies of their DFT result. Here f c is called the “cutoff

frequency”. Then the similarity is quantified as the distance between the two 2 / c-

dimension vectors. We have tried this method as the RSS series comparison

method for our scheme. Suppose after applying DFT, two RSS series 5 r and 52

are presented as two 2 / c-dimension vectors < afuCoa,a fuain, ■ ■ ■ ,a fctCoa,a fC)ain >

180

and < pfucosJfusin, ■ ■ ■ i fifc,cost fifc,am >, the similarity score between Si and S2 is

computed as _________ ___________
s im s c o re = 1 -------- -—i--------7-- , (0 .5)

]E ^ B I G G E R i m s ^ m s ^ i)

where mSk,i {k = 1,2,* e [1 , / c]) is the magnitude of the i-th frequency in the

DFT result of series Sk, i.e., mSkli = sJdlC0S + 0?ain, here ei)COS/di<ain are a iiCOS/ a Mi„

if k = l, and ei<cosIOiMn are A ,«./A ,4in if fc = 2; and function BIGGER(-) that

returns the bigger value of its parameters.

We used the three methods (DTW, DD and DFT) to compare 25 of the (hon

est) user traces against their corresponding DB traces. The distribution of the

computed similarity scores is plotted in Figure 58 (d). In the figure, the top/bottom

whiskers show the maximum/minimum values of the similarity scores. The top/bottom

of the boxes represent the upper/lower quartiles of the similarity scores, and the

bars within the boxes represent the mean values of the scores computed by the

three methods. Through this figure we can see that the DTW method outperforms

the other two methods in that it produces the narrowest range of similarity scores,

which makes it most suitable to serve as our RSS series comparison method.

6.7 Conclusion

VProof is a lightweight and privacy-preserving location proof solution that does

not rely on PKI systems. We built a VProof prototype system and evaluated it

with extensive experiments performed on actual road conditions. The evaluation

results show that VProof can effectively verify if users’ location claims match their

historic locations without harming their location privacy.

181

7 Conclusion and Future Work

In this dissertation, we propose our work of providing efficient services for mo

bile applications in smartphones. We have conducted five projects to improve the

efficiency of three major services for smartphone applications: wireless commu

nication service, power management service, and location reporting service. In

this chapter, we summarize the five projects, and introduce our experience and

lessons learned from each of the them, as well as from five of them as a whole.

We first presented the details of ETCH, which improves the efficiency of wire

less communication service by enhancing spectrum utilization efficiency for cogni

tive radio communications. High channel availability is the key advantage brought

by the cognitive radio technology. Therefore, when we design algorithms or sys

tems for cognitive radio networks, we should keep this in mind so that we can fully

take advantage of the benefits of cognitive radios. In our ETCH project, the core

idea is to spread the load of communication rendezvous to all the rendezvous

channels so that the wide channel availability in cognitive radio networks can be

fully utilized. Our evaluation shows that, by fully taking advantage of the high

channel availability, our solution achieves better throughput, requires less time

to rendezvous, and scales better when there was a large amount of concurrent

communications.

For the power management service in smartphones, we presented HoWiES,

CacheKeeper, and an accurate CPU power modeling approach for multicore smart

phones, each of which improves the power management service from a different

182

perspective. HoWiES achieves energy savings for WiFi communications in smart

phones by exploiting low-power ZigBee radio interface. Wireless communication

energy efficiency is one of the most important factors that affect smartphone user

experiences, because almost every smartphone application requires some sort of

wireless communication. Our study shows that it is promising to exploit the het

erogeneous radio capabilities to achieve wireless communication energy saving

in smartphones. In HoWiES, we utilize energy-efficient ZigBee radio to perform

WiFi operations that are not forming real communications, and therefore allow

WiFi radio to stay in low power mode to conserve energy during those WiFi oper

ations. The key technical challenge is to build a method to enable communication

between WiFi and ZigBee. Our WiFi-ZigBee message delivery scheme is an effort

that addresses this challenge. Prior to our project, most works on heterogeneous

radio coexistence were to minimize interferences between incompatible radios.

Our work shows that the notion of facilitating communication between heteroge

neous radios can also bring great benefits. Beside energy saving, we plan to

exploit this notion in other scenarios like smart home applications in the future.

CacheKeeper is a system-wide HTTP caching service for reducing energy con

sumption of web based applications. The source of the energy saving is the im

perfect web caching we found in many smartphone applications through an ex

tensive and systematic Android application survey. The causes of the imperfect

web caching are twofold: lack of library support and ignorance from developers.

To provide correct web caching for smartphone application while taking the de

velopment burden off from developers, we propose to provide web caching as

a system service in smartphones. CacheKeeper is a system we designed and

implemented for this purpose. Our real-world evaluation shows that our system

can significantly improve the performance and energy efficiency of smartphone

applications without changing them. The lesson we learned from this project is

that it is worthwhile to implement a solution as a system service, if the problem

183

that the solution tends to solve is widespread with user space applications.

Our CPU power modeling project, to the best our knowledge, is the first ef

fort in exploring CPU power modeling in smartphones. In this project, we have

found that the existing approaches for modeling CPU power consumption are not

well suited for modern multicore smartphones. The root cause is that the exist

ing approaches do not consider the impacts of CPU idle power states. In fact,

CPU idle power states, as we showed in our experiments, could significantly af

fect CPU power consumption. Therefore, we designed an idle-power-state-aware

approach to model CPU power consumption in smartphones.

For the location reporting service, we presented VProof, which is a lightweight

and privacy preserving location proof scheme for smartphone applications in the

context of vehicular networks. Location proof is important to the proper functioning

of the emerging location based service (LBS) applications in smartphones. In

this project, we have learned that the existing location proof solutions cannot well

protect users’ location privacy, and cannot scale well to large amount of users.

To address these limitations, we propose a scheme that utilizes received signal

strength of wireless communication packets as location proofs, and uses dynamic

transmission power at the APs to achieve the security and privacy guarantees.

Besides the detailed experiences that are specific to each of the projects, we

have also learned several lessons from this dissertation work as a whole. In the

following, we discuss two of them.

First, we learned that at the early stage of a research project, it is important

to conduct a systematic real-world study to thoroughly understand the problem

to tackle. On one hand, this type of study can give us deeper understanding

about the sources of the problem, which in turn would help the problem-solving.

For example, in the HoWiES project, our extensive measurement study helped

us find the three scenarios for WiFi energy saving. In the CacheKeeper project,

the large-scale Android application survey helped us understand the imperfect

184

web caching problem from the perspective of individual smartphone applications.

In the solution design of CacheKeeper, we needed to address the same-click

redundancy that we found in the survey. On the other hand, this early stage study

can also lead us to the foundation of the solution. For instance, in the VProof

project, our measurement study in vehicular networks allowed us to find the two

important observations that eventually served as the foundation of our RSS-based

location proof scheme.

Second, we learned that it is meaningful and rewarding to reexamine the “old”

topics in new settings (e.g., with a new application/service, with a new hard

ware). For example, our CacheKeeper project essentially studied a decades-old

research problem: web caching. It seemed that every aspect of web caching has

been well studied. However, as smartphone applications are getting popular, web

browser is no longer the single source of web content consumer in smartphones -

applications made by different developers are also the major sources of web traf

fic. This new trend brought a new problem on how different applications behave

in web caching, which was the target of our Android application survey. Another

example is in our smartphone CPU power modeling project, the problem of model

ing CPU power consumption itself has been widely studied in the x8 6 architecture.

Many solutions have been proposed because of that. However, as we discussed

previously, these solutions cannot be directly applied to the ARM architecture,

which is the dominant architecture in smartphones. Therefore, it is worthwhile to

reexamine the CPU power modeling problem in the context of smartphones.

7.1 Future work

We plan to continue our research of providing efficient services for smartphones

such that mobile applications can run more smoothly and consumes resources

more effectively. Specifically, we will focus our attention on the following direc

185

tions.

First, connectivity is the key factor that enables mobile and ubiquitous comput

ing, and also the main reason for the popularity of smartphones. Therefore, we

would like to invest more efforts in improving the wireless communication service

in smartphones. For example, so far our research has been focusing on improving

communication performance between phone and phone or between phone and

infrastructure. As wearable devices, such as smart watches and smart glasses,

are getting popular, systems that integrate smartphones and wearable devices

are receiving more attention. We are interested in exploring how to provide ef

ficient communication between smartphones and wearable devices. Meanwhile,

as cloud computing is getting mature, the desire of integrating mobile comput

ing and cloud computing is becoming prominent. We plan to investigate improv

ing communication efficiency between smartphones and the cloud under different

cloud services.

Second, we plan to continue our research in improving the power management

service for smartphones, especially for the increasingly popular multicore smart

phones. Though power management of multicore CPUs has been studied for

years for desktops and servers (with x8 6 architecture CPUs), the research results

there could barely fit to mobile devices, where CPUs with fundamentally different

architectures (e.g., ARM, MIPS) are being used. For example, as we showed

in Chapter 5, hardware events based CPU power modeling approaches, which

are proposed by many x8 6 -based works, cannot be applied in ARM-based CPUs,

simply because the hardware events are not provided by ARM-based CPUs. In

addition, recent advancements in mobile device multicore CPUs (e.g, octa-core

design, ARM big.LITTLE technology) further allow power management in mobile

devices with multicore CPUs to be a fertile ground for research projects.

Third, high level of security/privacy-protection is an equally important aspect

as high energy efficiency and good performance in smartphones. Thus, offering

186

security and privacy monitoring services in smartphones is in our future agenda.

We are interested in exploiting emerging technologies in mobile computing hard

ware in enhancing mobile/embedded system security and protecting user privacy.

Many of these technologies may have been widely utilized for long time in ordinary

(i.e., x8 6 -based) computer systems. The different operating systems and applica

tion scenarios in mobile systems like smartphones still allow these technologies

to be fairly promising in mobile system research. For example, it is timely and

promising to study utilizing virtualization technology in detecting smartphone mal

ware and protecting smartphone user privacy. Although the virtualization tech

nology (x8 6 -based) has been used in PC/server malware detection for about a

decade, in mobile system area, hardware-assisted virtualization in the ARM ar

chitecture is available only since the unveiling of ARM Cortex-A15 MPCore on

the year of 2013. Since smartphone operating systems (e.g., Android, iOS) have

data/control flow design that is different from PC/server OS, there are plenty re

search space in applying virtualization technology in improving smartphone sys

tem security and privacy.

187

Bibliography

[1] A. P. Felt, K. Greenwood, and D. Wagner, “The effectiveness of application per
missions,” in Proceedings of the 2nd USENIX conference on Web application de
velopment, WebApps’11, 2011.

[2] “Google Maps.” https://play.google.com /store/apps/details?id=com .
google.android.apps.maps.

[3] “Facebook.” h ttp s://p la y .google. com/store/apps/details?id=com.
facebook.katana.

[4] “Foursquared." h ttp s: / /p la y . google. com/store/apps/details?id=com .
joelapenna.foursquared.

[5] “GasBuudy.” h ttp s ://p la y .g o o g le .com /store/apps/details?id=gbis.
gbandroid.

[6] Wikipedia, “Cognitive Radio." http://en.w ikipedia.org/w iki/C ognitive_
radio.

[7] K. Bian, J. Park, and R. Chen, “A quorum-based framework for establishing control
channels in dynamic spectrum access networks," in ACM Mobicom, June 2009.

[8] Y. Zhang, Q. Li, G. Yu, and B. Wang, “ETCH: Efficient Channel Hopping for commu
nication rendezvous in dynamic spectrum access networks,” in INFOCOM, 2011.

[9] Y. Zhang, G. Yu, Q. Li, H. Wang, X. Zhu, and B. Wang, “Channel-hopping-based
communication rendezvous in cognitive radio networks," Networking, IEEE/ACM
Transactions on, vol. 22, pp. 889-902, June 2014.

[10] H. Falaki et al., "Diversity in smartphone usage,” in MobiSys, 2010.

[11] A. Shye et al., “Characterizing and modeling user activity on smartphones: sum
mary,” in SIGMETRICS, 2010.

[12] E. Rozner et al., “NAPman: network-assisted power management for wifi devices,"
in MobiSys, 2010.

[13] J. Manweiler and R. R. Choudhury, “Avoiding the rush hours: WiFi energy man
agement via traffic isolation," in MobiSys, 2011.

[14] Y. Zhang and Q. Li, “Howies: A holistic approach to zigbee assisted wifi energy
savings in mobile devices,” in INFOCOM, 2013.

[15] Y. Zhang and Q. Li, “Exploiting zigbee in reducing wifi power consumption for mobile
devices,” IEEE Transactions on Mobile Computing, 2014.

188

https://play.google.com/store/apps/details?id=com
https://play.google.com/store/apps/details?id=com
https://play.google.com/store/apps/details?id=gbis
http://en.wikipedia.org/wiki/Cognitive_

[16] J. Erman, A. Gerber, M. T. Hajiaghayi, D. Pei, S. Sen, and O. Spatscheck, “To
Cache or Not to Cache: The 3G Case," IEEE Internet Computing, vol. 15, no. 2,
2011.

[17] “Study: Mobile Web Traffic Up 35% in Under a Year; PC Web Usage Peaks
Early Morning.” http://insights.chitika.com/2012/study-mobile-web-traffic-up-35-in-
under-a-year-pc-web-usage-peaks-early-moming.

[18] “Mobile Devices Now Make Up About 20 Percent of U.S. Web Traffic.”
http://allthingsd.com/20120525/mobile-devices-now-make-up-about-20-percent-
of-u-s-web-traffic.

[19] Y. Zhang, C. Tan, and Q. Li, “CacheKeeper: a system-wide web caching service
for smartphones,” in UBICOM, 2013.

[20] A. Carroll and G. Heiser, “An analysis of power consumption in a smartphone,” in
USENIXATC, 2010.

[21] A. Carroll and G. Heiser, “The System Hacker’s Guide to the Galaxy Energy Usage
in a Modem Smartphone," in APSys, 2013.

[22] “Antutu Battery Saver.” https://play.google.com/store/apps/
details?id=com.antutu.powersaver&feature=searchreult#?t=
W251bGwsMSwxLDEsImNvbS5hbnRldHUucG93ZXJz YXZlciJd.

[23] R. Mittalz, A. Kansaly, and R. Chandray, “Empowering Developers to Estimate App
Energy Consumption," in MobiCom, 2012.

[24] F. Xu, Y. Liu, Q. Li, and Y. Zhang, “V-edge: Fast Self-constructive Power Modeling
of Smartphones Based on Battery Voltage Dynamics,” in USENIX NSDI, 2013.

[25] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and L. Yang, “Accu
rate Online Power Estimation and Automatic Battery Behavior Based Power Model
Generation for Smartphones,” in CODES+ISSS, 2010.

[26] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, “AppScope: Application Energy
Metering Framework for Android Smartphone Using Kernel Activity Monitoring,” in
USENIXATC, 2012.

[27] D. C. Snowdon, E. L. Sueur, S. M. Petters, and G. Heiser, “Koala: A Platform for
OS-Level Power Management,” in EuroSys, 2009.

[28] M. Dong and L. Zhong, “Self-constructive high-rate system energy modeling for
battery-powered mobile systems," in MobiSys, 2011.

[29] W. Jung, C. Kang, C. Yoon, D. Kim, and H. Cha, “DevScope: A Nonintru-
sive and Online Power Analysis Tool for Smartphone Hardware Components,” in
CODES+ISSS, 2012.

[30] Y. Zhang, X. Wang, X. Liu, Y. Liu, L. Zhuang, and F. Zhao, "Towards Better CPU
Power Management on Multicore Smartphones,” in Hotpower, 2013.

[31] Research and Innovative Technology Administration, US DOT, IntelliDriveSM.
http://www.its.dot.gov/press/2010/vii2intellidrive.htm.

189

http://insights.chitika.com/2012/study-mobile-web-traffic-up-35-in-
http://allthingsd.com/20120525/mobile-devices-now-make-up-about-20-percent-
https://play.google.com/store/apps/
http://www.its.dot.gov/press/2010/vii2intellidrive.htm

[32] CVIS: Cooperative Vehicle-infrastructure Systems, www.cvisproject.org.

[33] J. Eriksson, L. Girod, B. Hull, R. Newto, S. Madden, and H. Balakrishnan, “The
Pothole Patrol: Using a Mobile Sensor Network for Road Surface Monitoring,” in
Mobisys, 2008.

[34] B. Hull, V. Bychkovsky, Y. Zhang, and K. C. M. Goraczko, “CarTel: A Distributed
Mobile Sensor Computing System," in Sensys, 2006.

[35] U. Lee, E. Magistretti, B. Zhou, M. Gerla, P. Bellavista, and A. Corradi, “MobEyes:
Smart Mobs for Urban Monitoring with a Vehicular Sensor Network," in IEEE Wire
less Communications, 2006.

[36] Y. Zhang, C. C. Tan, F. Xu, H. Han, and Q. Li, “Vproof: Lightweight privacy-
preserving vehicle location proofs,” IEEE Transactions on Vehicular Technology,
2014.

[37] Y. Zhang, C. C. Tan, F. Xu, H. Han, and Q. Li, "Lightweight and privacy-preserving
location proofs for intelligent transportation systems,” WM CS Technical Reposrt,
WM-CS-2014-05, 2014.

[38] J. Zhao, H. Zheng, and G. H. Yang, “Distributed coordination in dynamic spectrum
allocation networks,” in IEEE DySPAN, December 2005.

[39] P. Bahl, R. Chandra, and J. Dunagan, “SSCH: slotted seeded channel hopping for
capacity improvement in IEEE 802.11 ad hoc wireless networks,” in ACM Mobicom,
September 2004.

[40] A. Tzamaloukas and J. J. Garcia-Luna-Aceves, “Channel-Hopping Multiple Ac
cess,” in IEEE ICC 2000, 2000.

[41] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “NeXt generation/dynamic
spectrum access/cognitive Radio Wireless Networks: A Survey,” COMPUTER
NETWORKS JOURNAL (ELSEVIER), 2006.

[42] A. Sahai, N. Hoven, and R. Tandra, “Some Fundamental Limits on Cognitive Radio,”
in Allerton Conference on Communication, Control, and Computing, 2004.

[43] D. Cabric, S. M. Mishra, and R. W. Brodersen, “Implementation issues in spectrum
sensing for cognitive radios,” in Asilomar Conference on Signals, Systems, and
Computers, 2004.

[44] A. Fehske, J. Gaeddert, and J. Reed, “A new approach to signal classification using
spectral correlation and neural networks,” in IEEE DySPAN, 2005.

[45] A. Ghasemi and E. Sousa, “Collaborative spectrum sensing for opportunistic ac
cess in fading environments," in IEEE DySPAN, 2005.

[46] S. Shankar, “Spectrum Agile Radios: Utilization and Sensing Architectures,” in
IEEE DySPAN, 2005.

[47] B. Wild and K. Ramchandran, “Detecting Primary Receivers for Cognitive Radio
Applications,” in IEEE DySPAN, 2005.

190

http://www.cvisproject.org

[48] H. Zheng and L.Cao, “Device-centric Spectrum Management,” in IEEE DySPAN,
2005.

[49] V. Brik, E. Rozner, S. Banarjee, and P. Bahl, “DSAP: a protocol for coordinated
spectrum access,” in IEEE DySPAN, 2005.

[50] L. Ma, X. Han, and C. Shen, “Dynamic open spectrum sharing MAC protocol for
wireless ad hoc networks,” in IEEE DySPAN, 2005.

[51] L. A. DaSilva and I. Guerreiro, “Sequence-Based Rendezvous for Dynamic Spec
trum Access,” in IEEE DySPAN, October 2008.

[52] Z. Lin, H. Liu, X. Chu, and Y.-W. Leung, “Jump-stay based channel-hopping al
gorithm with guaranteed rendezvous for cognitive radio networks," in INFOCOM,
2011.

[53] Maxim Integrated Products, Maxim 2.4GHz 802.11b Zero-IF Transceivers.

[54] Wikipedia, Matching (graph theory). http://en.wikipedia.org/wiki/Matching_
(graph_theory).

[55] T. D. LeSaulnier, C. Stocker, P. S. Wenger, and D. B. West, “Rainbow Matching in
Edge-Colored Graphs," Electr. J. Comb., 2010.

[56] “Hyacinth: An IEEE 802.11-based Multi-channel Wireless Mesh Network,"
http://www. ecsl. cs. sunysb.edu/multichannel/.

[57] IEEE-SA, IEEE Std 802.11-2007.

[58] ath5k wireless driver, http: //linuxwireless. org/en/users/Drivers/ath5k.

[59] ath9k wireless driver, http: //linuxwireless. org/en/users/Drivers/ath9k.

[60] iw configuration utility. http://linuxwireless.org/en/users/Documentation/
iw.

[61] A. Rahmati and L. Zhong, “Context-for-wireless: context-sensitive energy-efficient
wireless data transfer,” in MobiSys, 2007.

[62] K. Chebrolu and A. Dhekne, “Esense: communication through energy sensing,” in
MOBICOM, 2009.

[63] A. J. Nicholson and B. D. Noble, “Breadcrumbs: forecasting mobile connectivity,"
in MobiCom, 2008.

[64] G. Ananthanarayanan and I. Stoica, “Blue-Fi: enhancing Wi-Fi performance using
bluetooth signals,” in MobiSys, 2009.

[65] J. Sorber et al., “Turducken: hierarchical power management for mobile devices,”
in MobiSys, 2005.

[6 6] R. Zhou et al., “ZiFi: wireless LAN discovery via ZigBee interference signatures,”
in MobiCom, 2010.

[67] E. Shih et al., “Wake on wireless: : an event driven energy saving strategy for
battery operated devices,” in MobiCom, 2002.

191

http://en.wikipedia.org/wiki/Matching_
http://www
http://linuxwireless.org/en/users/Documentation/

[6 8] Y. Agarwal et al., “Wireless wakeups revisited: energy management for VOIP over
WiFi smartphones,” in MobiSys, 2007.

[69] IETF Network Working Group, RFC-1191.

[70] IEEE-SA, IEEE Std 802.15.4-2006.

[71] J. Liu and L. Zhong, “Micro power management of active 802.11 interfaces," in
MobiSys, 2008.

[72] S. Ren, Q. Li, H. Wbng, X. Chen, and X. Zhang, “Analyzing Object Detection Quality
Under Probabilistic Coverage in Sensor Networks,” in IWQoS, 2005.

[73] Monsoon Solutions. http://www.msoon.com/LabEquipment/PowerMonitor.

[74] “Android’s HTTP Clients.” http://android-developers.blogspot.com/2011 /09/androids-
http-clients.html.

[75] C. Tossell, P. T. Kortum, A. Rahmati, C. Shepard, and L. Zhong, “Characterizing
web use on smartphones,” in CHI, 2012.

[76] N. Vallina-Rodriguez, J. Shah, A. Finamore, Y. Grunenberger, K. Papagiannaki,
H. Haddadi, and J. Crowcroft, “Breaking for commercials: characterizing mobile
advertising," in IMC, 2012.

[77] I. Papapanagiotou, E. M. Nahum, and V. Pappas, “Smartphones vs. laptops: com
paring web browsing behavior and the implications for caching," in SIGMETRICS,
2012.

[78] F. Qian, K. S. Quah, J. Huang, J. Erman, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck, “Web caching on smartphones: ideal vs. reality," in MobiSys, 2012.

[79] K. Zhang, L. Wang, A. Pan, and B. B. Zhu, “Smart caching for web browsers,” in
WWW, 2010.

[80] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie, “Why are web browsers slow on
smartphones?," in HotMobile, 2011.

[81] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie, “How far can client-only solutions go
for mobile browser speed?,” in WWW, 2012.

[82] E. Koukoumidis, D. Lymberopoulos, K. Strauss, J. Liu, and D. Burger, “Pocket
cloudlets,” in ASPLOS.

[83] D. Lymberopoulos, O. Riva, K. Strauss, A. Mittal, and A. Ntoulas, “PocketWeb:
instant web browsing for mobile devices,” in ASPLOS, 2012.

[84] “Charles Web Debugging Proxy.” http://www.charlesproxy.com.

[85] Fielding, et al, “RFC 2616 - Hypertext Transfer Protocol - HTTP/1.1."

[86] “Flipboard." https://play.google.com/store/apps/details?id=flipboard.app&hl=en.

[87] “Pulse News.” https://play.google.com/store/apps/details?id=com.alphonso.pulse&hl=en.

[88] “Yahoo!.” https://play.google.com/store/apps/details?id=com.yahoo.mobile.client.
android ,yahoo&hl=en.

192

http://www.msoon.com/LabEquipment/PowerMonitor
http://android-developers.blogspot.com/2011
http://www.charlesproxy.com
https://play.google.com/store/apps/details?id=flipboard.app&hl=en
https://play.google.com/store/apps/details?id=com.alphonso.pulse&hl=en
https://play.google.com/store/apps/details?id=com.yahoo.mobile.client

[89] S. Guha, M. Jain, and V. Padmanabhan, “Koi: A Location-Privacy Platform for
Smartphone Apps," in NSDI, 2012.

[90] J. Shim, P. Scheuermann, and R. Vingralek, “Proxy Cache Algorithms: Design,
Implementation, and Performance," IEEE Trans. Knowl. Data Eng., vol. 11, no. 4,
1999.

[91] E. W. Felten and M. A. Schneider, “Timing attacks on Web privacy,” in ACM CCS,
2000.

[92] A. Bortz and D. Boneh, “Exposing private information by timing web applications,”
in WWW, 2007.

[93] “3G and 4G Wireless Speed Showdown: Which Networks Are Fastest?.”
http://www.pcworid.com/article/253808/3g_and-4g-wireless_speed-showdown.which
_networks_are_fastest_. html.

[94] Hewlett-Packard and Intel and Microsoft and Phoenix Technologies and Toshiba,
“Advanced Configuration and Power Interface Specification, revision 5.0,” 2011.

[95] S. Kim, H. Kim, J. Kim, J. Lee, and E. Seo, “Empirical Analysis of Power Manage
ment Schemes for Multi-core Smartphones,” in ICUIMC, 2013.

[96] S. Panneerselvam and M. M. Swift, “Chameleon: Operating System Support for
Dynamic Processors,” in ASPLOS, 2012.

[97] A. Shye, B. Scholbrock, and G. Memik, “Into the Wild: Studying Real User Activity
Patterns to Guide Power Optimizations for Mobile Architectures,” in MICRO, 2009.

[98] K. Shen, Arrvindh, Shriraman, S. Dwarkadas, X. Zhang, and Z. Chen, “Power Con
tainers: An OS Facility for Fine-Grained Power and Energy Management on Multi
core Servers,” in ASPLOS, 2013.

[99] F. Bellosa, “The Benefits of Event-driven Energy Accounting in Power-sensitive
Systems,” in ACM SIGOPS European Workshop, 2000.

[100] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade, “Decompos
able and Responsive Power Models for Multicore Processors using Performance
Counters," in ICS, 2010.

[101] C. Isci and M. Martonosi, “Phase Characterization for Power: Evaluating Control-
flow-based and Event-counter-based Techniques," in HPCA, 2006.

[102] ARM, “ARM Architecture Reference Manual - ARMv7-A and ARMv7-R edition,
ARM DDI0406C.b,”

[103] Peter Greenhalgh, “ARM White Paper: big.LITTLE Processing with ARM Cortex-
A15 & Cortex-A7," 2011.

[104] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown,
“MiBench: A free, commercially representative embedded benchmark suite," in
IEEE 4th Annual Workshop on Workload Characterization, 2001.

[105] “The Dolphin Browser.” https://play.google.com/store/apps/details?id=
mobi.mgeek.TunnyBrowser.

193

http://www.pcworid.com/article/253808/3g_and-4g-wireless_speed-showdown.which
https://play.google.com/store/apps/details?id=

[106] R. A. Popa, H. Balakrishnan, and A. J. Blumberg, “VPriv: Protecting Privacy in
Location-Based Vehicular Services,” in USENIX Security, 2009.

[107] Y. Xi, K. Sha, W. Shi, L. Schwiebert, and T. Zhang, “Enforcing Privacy Using Sym
metric Random Key-Set in Vehicular Networks,” in ISADS, 2007.

[108] G. Calandriello, P. Papadimitratos, J.-P. Hubaux, and A. Lioy, “Efficient and robust
pseudonymous authentication in VANET,” in VANET, 2007.

[109] R. Lu, X. Lin, H. Zhu, P.-H. Ho, and X. Shen, “ECPP: Efficient Conditional Privacy
Preservation Protocol for Secure Vehicular Communications,” in INFOCOM, 2008.

[110] V. Lenders, E. Koukoumidis, P. Zhang, and M. Martonosi, “Location-based trust for
mobile user-generated content: applications, challenges and implementations,” in
HotMobile, 2008.

[111] S. Saroiu and A. Wolman, “Enabling new mobile applications with location proofs,”
in HotMobile, 2009.

[112] W. Luo and U. Hengartner, “Proving your location without giving up your privacy,”
in HotMobile, 2010.

[113] B. Ostermaier, F. Dotzer, and M. Strassberger, “Enhancing the Security of Local
Danger Warnings in VANETs - A Simulative Analysis of Voting Schemes," in ARES,
2007.

[114] M. Raya, P. Papadimitratos, V. D. Gligor, and J.-P. Hubaux, “On Data-Centric Trust
Establishment in Ephemeral Ad Hoc Networks,” in IEEE Infocom, 2008.

[115] K. Sampigethaya, L. Huang, M. Li, R. Poovendran, K. Matsuura, and K. Sezaki,
“CARAVAN: Providing Location Privacy for VANET," in ESCAR, 2005.

[116] J. Freudiger, M. Raya, M. F6 legyh£zi, P. Papadimitratos, and J.-P. Hubaux, “Mix-
Zones for Location Privacy in Vehicular Networks,” in WiN-ITS, 2007.

[117] A. Wasef and X. Shen, “REP: Location Privacy for VANETs Using Random Encryp
tion Periods,” in Mobile Networks and Applications, 2010.

[118] Y. Zhang, Z. Li, and W. Trappe, “Power-Modulated Challenge-Response Schemes
for Verifying Location Claims,” in GLOBECOM, 2007.

[119] X. Zheng, H. Liu, J. Yang, Y. Chen, J.-A. Francisco, R. P. Martin, and X. Li, “Char
acterizing the impact of multi-frequency and multi-power on localization accuracy,"
in MASS, 2010.

[120] H. Han, F. Xu, C. C. Tan, Y. Zhang, and Q. Li, “Defending against vehicular rogue
APs," in INFOCOM, 2011.

[121] H. Han, F. Xu, C. C. Tan, Y. Zhang, and Q. Li, “VR-Defender: Self-Defense against
Vehicular Rogue APs for Drive-thru Internet," IEEE Transactions on Vehicular Tech
nology, 2014.

[122] D. J. Bemdt and J. Clifford, “Using Dynamic Time Warping to Find Patterns in Time
Series,” in KDD Workshop, 1994.

194

[123] E. J. Keogh, “Exact indexing of dynamic time warping,” in VLDB, 2002.

[124] U.S. Department of Transportation, “IntelliDrive Data Capture and Management
Program: Transforming the Federal Role,” 2010.

[125] C. Manasseh and R. Sengupta, “Middleware for Cooperative Vehicle-lnfrastructure
Systems," California PATH Research Report UCB-ITS-PRR-2008-2, 2008.

[126] P. Hu, B. Boundy, T. Truett, E. Chang, and S. Gordon, “Cross-Cutting Studies and
State-of-the-Practice Reviews: Archive and Use of ITS-Generated Data,” 2002.

[127] J. Camp and E. W. Knightly, “Modulation rate adaptation in urban and vehicular en
vironments: cross-layer implementation and experimental evaluation," in Mobicom,
2008.

[128] R. Agrawal, C. Faloutsos, and A. N. Swami, “Efficient Similarity Search In Sequence
Databases," in FODO, 1993.

[129] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast Subsequence Matching
in Time-Series Databases," in SIGMOD Conference, 1994.

195

	Providing efficient services for smartphone applications
	Recommended Citation

	00001.tif

