
MEC VS MCC: PERFORMANCE ANALYSIS OF
REAL-TIME APPLICATIONS

MICAEL DUARTE MARINHO SOARES
julho de 2019

MEC VS MCC:

PERFORMANCE ANALYSIS OF

REAL-TIME APPLICATIONS

Micael Duarte Marinho Soares

Departamento de Engenharia Electrotécnica

Mestrado em Engenharia Electrotécnica e de Computadores

Área de Especialização em Telecomunicações

2019

Relatório elaborado para satisfação parcial dos requisitos da Unidade Curricular de

Tese/Dissertação do Mestrado em Engenharia Electrotécnica e de Computadores

Candidato: Micael Soares, Nº 1000167, 1000167@isep.ipp.pt

Orientação científica: Prof. Doutor Jorge Mamede, jbm@isep.ipp.pt

Departamento de Engenharia Electrotécnica

Mestrado em Engenharia Electrotécnica e de Computadores

Área de Especialização em Telecomunicações

2019

To my wife Ana and my children Diogo and Leonor

i

Agradecimentos

Foremost, I would like to express my sincere gratitude to my advisor Prof. Jorge Mamede

for the continuous support of my MSc study and research, for his patience, motivation,

enthusiasm, and immense knowledge. His guidance helped me in all the time of research

and writing of this thesis.

I would also like to thank Bruno Santos for his colaboration in the developments carried out

during the first part of this thesis. Without his passionate participation and input, this work

could not have been successfully conducted.

I would also like to acknowledge the OpenEDGEComputing team, I am gratefully indebted

for their valuable comments on this thesis.

Finally, I must express my very profound gratitude to my parents, my sister, my wife and

my children for providing me with unfailing support and continuous encouragement

throughout my years of study and through the process of researching and writing this thesis.

This accomplishment would not have been possible without them. Thank you.

ii

Resumo

Hoje em dia, numerosas são as aplicações que apresentam um uso intensivo de recursos

empurrando os requisitos computacionais e a demanda de energia dos dispositivos para além

das suas capacidades. Atentando na arquitetura Mobile Cloud, que disponibiliza plataformas

funcionais e aplicações emergentes (como Realidade Aumentada (AR), Realidade Virtual

(VR), jogos online em tempo real, etc.), são evidentes estes desafios directamente

relacionados com a latência, consumo de energia, e requisitos de privacidade.

O Mobile Edge Computing (MEC) é uma tecnologia recente que aborda os obstáculos de

desempenho enfrentados pela Mobile Cloud Computing (MCC), procurando solucioná-los

O MEC aproxima as funcionalidades de computação e de armazenamento da periferia da

rede.

Neste trabalho descreve-se a arquitetura MEC assim como os principais tipos soluções para

a sua implementação. Apresenta-se a arquitetura de referência da tecnologia cloudlet e uma

comparação com o modelo de arquitetura ainda em desenvolvimento e padronização pelo

ETSI.

Um dos propósitos do MEC é permitir remover dos dispositivos tarefas intensivas das

aplicações para melhorar a computação, a capacidade de resposta e a duração da bateria dos

dispositivos móveis. O objetivo deste trabalho é estudar, comparar e avaliar o desempenho

das arquiteturas MEC e MCC para o provisionamento de tarefas intensivas de aplicações

com uso intenso de computação. Os cenários de teste foram configurados utilizando esse

tipo de aplicações em ambas as implementações de MEC e MCC. Os resultados do teste

deste estudo permitem constatar que o MEC apresenta melhor desempenho do que o MCC

relativamente à latência e à qualidade de experiência do utilizador. Além disso, os resultados

dos testes permitem quantificar o benefício efetivo tecnologia MEC.

Palavras-Chave

Mobile computing, Cloud Computing, Edge Computing, Cloudlets, Mobile Edge

Computing, máquinas virtuais (VM), provisionamento de VM, tempo de resposta, tramas

por segundo (FPS).

iii

Abstract

Numerous applications, such as Augmented Reality (AR), Virtual Reality (VR), real-time

online gaming are resource-intensive applications and consequently, are pushing the

computational requirements and energy demands of the mobile devices beyond their

capabilities. Despite the fact that mobile cloud architecture has practical and functional

platforms, these new emerging applications present several challenges regarding latency,

energy consumption, context awareness, and privacy enhancement.

Mobile Edge Computing (MEC) is a new resourceful and intermediary technology, that

addresses the performance hurdles faced by Mobile Cloud Computing (MCC), and brings

computing and storage closer to the network edge.

This work introduces the MEC architecture and some of edge computing implementations.

It presents the reference architecture of the cloudlet technology and provides a comparison

with the architecture model that is under standardization by ETSI.

MEC can offload intensive tasks from applications to enhance computation, responsiveness

and battery life of the mobile devices. The objective of this work is to study and evaluate the

performance of MEC and MCC architectures for provisioning offload intensive tasks from

compute-intensive applications. Test scenarios were set up with use cases with this kind of

applications for both MEC and MCC implementations. The test results of this study enable

to support evidence that the MEC presents better performance than cloud computing

regarding latency and user quality of experience. Moreover, the results of the tests enable to

quantify the effective benefit of the MEC approach.

Keywords

Mobile computing, Cloud Computing, Edge Computing, Cloudlets, Mobile Edge

Computing, Virtual Machines, offloading, VM provisioning, VM instances, VM overlay,

response time, FPS.

iv

Contents

AGRADECIMENTOS .. I

RESUMO ... II

ABSTRACT .. III

CONTENTS .. IV

LIST OF FIGURES ... VII

LIST OF TABLES ... X

ACRONYMS .. XI

1. INTRODUCTION ... 1

2. THEORETICAL BACKGROUND ... 3

2.1.MARKET DRIVERS ... 4

2.2.TOWARDS 5G ... 9

2.3.MOBILE COMPUTING... 11

2.4.FRAMEWORKS DEPLOYMENTS .. 19

2.5.SUMMARY .. 21

3. THE MEC AND CLOUDLETS ... 23

3.1.STANDARDIZATION .. 23

3.2.CLOUDLET .. 29

3.3.PROBLEM STATEMENT .. 31

3.4.SUMMARY .. 32

4. CLOUDLET IMPLEMENTATION ... 33

4.1.CLOUDLET ARCHITECTURE ... 34

4.2.OPENSTACK ... 37

4.3.OPENSTACK EXTENSION - OPENSTACK ++ .. 40

5. PERFORMANCE TESTS SETUP .. 49

5.1.CLOUD PLATFORM .. 50

5.2.TESTBENCH SCENARIO .. 52

5.3.USE CASE 1 - FLUID MOBILE APPLICATION.. 53

5.4.USE CASE 2 – FACESWAP MOBILE APPLICATION ... 58

v

6. ANALYSIS OF THE RESULTS .. 69

6.1.TEST RESULT USE CASE - FLUID .. 70

6.2.TEST RESULT FROM USE CASE - FACESWAP .. 77

7. CONCLUSION .. 87

REFERENCES ... 89

HISTORY ... 101

vii

List of Figures

Figure 1 - IoT architecture [5] 5

Figure 2 - Augmented Reality [5] 6

Figure 3 - Active device location tracking [5] 7

Figure 4 - Intelligent video analytics [5] 7

Figure 5 - RAN-aware content optimization [5] 8

Figure 6 - 5G requirements 9

Figure 7 - Uses cases vs speed and response time [9] 10

Figure 8 - Architecture of Mobile Edge Networks [32] 14

Figure 9 - Fog computing architecture 16

Figure 10 - Cloudlet Architecture 17

Figure 11 - Mobile Edge Computing architecture 18

Figure 12 - MEC framework 27

Figure 13 - MEC reference architecture [65] 28

Figure 14 - Cloudlet architecture 30

Figure 15 - Cloudlet framework proposed 30

Figure 16 - Cloudlet vs ETSI MEC reference architecture 31

Figure 17 - Three-tier architecture for code offload 33

Figure 18 - VM-based cloudlet architecture 34

viii

Figure 19 - VM overlay creation 35

Figure 20 - OpenStack software diagram [85] 37

Figure 21 - Conceptual OpenStack architecture 39

Figure 22 - Openstack++ cloudlet platform 40

Figure 23 - Cloudlet API call hierarchy [85] 41

Figure 24 - OpenStack++ final configuration setup 42

Figure 25 - OpenStack Dashboard 43

Figure 26 - Import Base VM Image Process 44

Figure 27 - Base VM files metadata 45

Figure 28 - Resume Base VM creation process 46

Figure 29 - Overlay creation process 47

Figure 30 - Cloudlet VM Synthesis creation process 48

Figure 31 - VM Instance Handoff setup creation 48

Figure 32 - Performance evaluation diagram 49

Figure 33 - AWS EC2 Dashboard 51

Figure 34 - Evaluation infrastructure setup 52

Figure 35 - Fluid client application 54

Figure 36 - Fluid client application running 55

Figure 37 - Communication sniffing 56

Figure 38 - VM Synthesis process 57

Figure 39 - FaceSwap android application 59

ix

Figure 40 - Server configuration 59

Figure 41 - FaceSwap Training session 60

Figure 42 - FaceSwap choose option menu 61

Figure 43 - Swap person selection 62

Figure 44 - Application client server process 63

Figure 45 - Server launching control 64

Figure 46 - Cognitive engine communications 65

Figure 47 - FaceSwap image metadata 66

Figure 48 - VM overlay metadata files 72

Figure 49 - CDF for response time and frame rate for Fluid - Cloudlet 73

Figure 50 - CDF for response time and frame rate for Fluid - Cloud 75

Figure 51 - Cloud and Cloudlet test result comparison for Fluid 76

Figure 52 - CDF for response time and Frame rate for FaceSwap - Cloudlets 80

Figure 53 - CDF for response time and frame rate for FaceSwap - Clouds 82

Figure 54 - Cloud and Cloudlet test result comparison for FaceSwap 84

Figure 55 - CPU usage while FaceSwap running 85

x

List of Tables

Table 1 - Comparison of MEC and MCC systems [23] 13

Table 2 - Comparison of Cloudlets, Fog and MEC approaches 15

Table 3 - Smartphone specification 52

Table 4 - Cloudlet specifications 53

Table 5 - Servers instance configuration type 70

Table 6 - Cloudlet test results for Fluid 74

Table 7 - Cloud test results for Fluid 74

Table 8 - Instance type configuration 78

Table 9 - Cloudlet test results for FaceSwap 78

Table 10 - Cloud test results for FaceSwap 80

xi

Acronyms

3GPP – 3rd Generation Partnership Project

5G – Fifth Generation Networks

AD – Autonomous Driving

AMI – Amazon Machine Image

AP – Access Point

API – Application Programming Interface

AR – Augmented Reality

AWS – Amazon Webservices Services

BS – Base Station

CACTSE – Cloudlet Aided Cooperative Terminals Service Environment

CPU – Communications Processor Unit

DNN – Deep Neural Network

DNS – Domain Name System

EC2 – Amazon Elastic Compute Cloud

ETSI – European Telecommunications Standards Institute

IaaS – Infrastructure-as-a-Service

ICT – Information and Communications Technology

IoT – Internet of Things

xii

ISG – Industry Specification Group

KVM – Kernel-based Virtual Machine

LCM – Lifecycle Management

LTE – Long Term Evolution

MCC – Mobile Cloud Computing

MEC – Mobile Edge Computing

MOCHA – Mobile Cloud Hybrid Architecture

NFV – Network Functions Virtualization

OEC – Open Edge Computing

OS – Operative System

PaaS – Platform as a Service

PCA – Principal Component Analysis

PoC – Proof of Concept

QoE – Quality of Experience

QoS – Quality of Service

RAN – Radio Access Network

RTT – Round Trip Time

RNC – Radio Network Controller

SDN – Software Defined Networking

SDO – Standards Developing Organizations

xiii

SM – Service Manager

SPH – Smoothed Particle Hydrodynamics

UE – User Equipment

TCP – Transmission Control Protocol

UHD – Ultra High Definition

VIM – Virtualization Infrastructure Manager

V2I – Vehicle-to-Infrastructure

V2V – Vehicle-to-Vehicle

V2X – Vehicle-to-Everything

VIM – Virtualization Infrastructure Manager

VM – Virtual Machine

VR – Virtual Reality

WAN – Wide Area Network

WAP – Wireless Access Point

xiv

1

1. INTRODUCTION

1.1 MOTIVATION

The development of telecommunication networks has led to the emergence of new

applications on mobile devices. Some applications are resource-intensive and, consequently,

push the computational requirements and energy demands of mobile devices beyond their

capabilities.

It is in this context that Mobile Cloud Computing (MCC) arises as a practical solution for

offloading mobile devices. Despite the fact that mobile cloud-based architectures provide

functional platforms, those applications present several challenges regarding latency, energy

consumption, context awareness, and privacy. Mobile Edge Computing (MEC) is a new

resourceful and intermediary technology, that addresses the performance hurdles faced by

MCC and brings the computing and storage resources closer to the network edge.

1.2 OBJECTIVE

The objective of this work is to study and evaluate the performance of MEC and MCC

architectures for provisioning offload intensive tasks from compute-intensive applications.

Test scenarios shall be defined and use cases executed with that kind of applications for both

2

MEC and MCC implementations, in order to quantify the performance achivements of each

approach.

1.3 ORGANIZATION

This thesis reports a study carried out to evaluate the performance of resource-demanding

applications in an edge and cloud-based approaches. This work is organized as follows:

 In Chapter 2, an overview of the actual scenario exposes the problem background in order

to motivate the necessity of Mobile Edge Computing. It presents also the markets drivers

which will benefit from the use of this technology, and also make an approach to the

emerging 5G technology where this new architecture will be crucial to achieving the

respective objectives. A summary presents the difference between the cloud and the edge

computing, and an analysis related to the key features of the 3 principal frameworks of

the edge computing: fog computing, cloudlets, and mobile edge computing.

 In Chapter 3, an introduction summary addresses the standard efforts made by the

community to orchestrate and normalize a reference architecture and framework.

Secondly, this thesis presents the cloudlet architecture, compares it with the reference

architecture proposed by the European Telecommunications Standards Institute (ETSI).

In conclusion of the previous elements, we present the Thesis Statement.

 Chapter 4 addresses the technical challenges of cloudlets by offloading computation

intensive part of the application and describes all processes executed by the cloudlets.

 In Chapter 5, we present the testbench scenario used to study and evaluate the

performance of MEC and cloud solutions over 2 uses cases. An analysis is made of two

use cases using compute intensive task applications. An explanation is provided for each

application regarding the client side and the server side with the offload intensive task

part.

 In Chapter 6, this thesis presents the result tests for each use cases scenarios.

 Chapter 7 concludes the dissertation through the analysis of the values obtained and

explains future work.

3

2. THEORETICAL

BACKGROUND

In the last decade, Cloud Computing has emerged as a new paradigm in computer science

delivering centralized services to end users. Cloud computing provides a shared pool of

resources available all time, as centralized computing, storage and network management in

the Cloud, Data Centers, backbone IP networks or cellular core networks [1, 2].

All kind of smart devices and sensors technology are connected, and this exponential growth

result on a challenge for Cloud computing in order to meet many new requirements in the

emerging Internet of Things (IoT).

IoT is generating a huge quantity of data that needs to be analyzed, processed, transformed,

stored and answered on an unprecedented scale and in a short time. Today clouds have

become an indispensable part of that process; however, clouds centrally deployed but

providing services on a global scale need to process an enormous amount of data. In addition,

the infrastructure uses an end-to-end topology, so all these processes are supported from the

Cloud and Data Centers to the IoT devices and end users.

As the physical distance between the Users and the Cloud increases, transmission latency

increases with it, increasing response time and stressing out the user. On top of that, the

processing rate in this environment considerably depends on the performance of the

equipment.

By 2020, an estimation states that 50 billion of smart devices connected will exist and the

volume of data will grow exponentially [3]. Traffic of 1,5 GB of data is expected per person

per day [4]. All this explosion of data cannot be send to the Cloud, because it is not affordable

to transport all this data in that timeframe. We are now at a transition point to drive an

architecture change, where all major contributors are working together in order to implement

new technologies.

4

Upon now, Mobile Cloud Computing (MCC) is mainly focused around the devices

generating data and its transmission to the cloud for storage and then compute cycles are

used to extract its value. However, the connection to a cloud does not present affordable

latencies for many type of applications, when settled thousands of kilometers from the user.

In this context, a distributed solution based on local servers placed at the network edges,

providing computation power, analytics and storage capacity so that the mobile devices have

a minimum computation effort and lower latency. Considering crucial for servers to be

located close to the user, Mobile Edge Computing (MEC) [4] has emerged as a fundamental

technology that will permit to develop the 5G vision and extract better benefits from the

Internet of Things, Tactile Internet or Internet of Me [6]. Community and researchers from

Industry and Academy, are working together to implement, test, promote, and normalize

MEC technology.

2.1. MARKET DRIVERS

This Thesis started when researchers and the European Telecommunications Standards

Institute (ETSI) were progressing in this young field and journey. It aims to present the

benefits of Edge Computing in mobile networks and a few use case of applications that are

deployable in the closer term. It also provides an overview of the MEC architecture, its

deployment options, and presents results on the deployment such applications through MEC

technology.

The initial objective of Mobile Edge Computing is to provide Cloud Computing and IT

services to the mobile environment anywhere and anytime, with data stored outside the

mobile devices [26].

Network operators and content providers can provide and exploit services to integrate across

MEC platform. The main goal is to achieve a better user experience interaction and response

by accessing faster applications through a nearby position. Moreover, information and

services can be deliver directly and do not need to rely exclusively on cloud services

anymore.

The key players in MEC are infrastructure and device manufacturers, software providers,

applications developers, Telecoms and Network Operators [31].

5

To networks operators, which are always searching for new revenues, MEC serves an

important role in improving wireless system performance and reducing the cost of operation.

They are already in the transition process through key technologies: Software Defined

Networking (SDN) and Network Functions Virtualization (NFV) [97]. For hardware and

software developers, MEC can bring new opportunities to create applications and consumer

products through to promote mobile edge platforms and virtualization infrastructure and

become innovation leaders in an otherwise fully commoditized market.

Since all community is working together in MEC definition, the standardization is moving

forward rapidly in last months. In [55], the authors present the main challenges for MEC

scenarios, such as data interoperability, resource management, orchestration, service

discovery and security.

The following section presents some use cases and scenarios that illustrate the performance

improvements provided by the utilization of MEC technology.

2.1.1. USE CASES: USER SIDE

IoT intends to connect smart devices to the Internet in order to exchange information and

data, such as identification, location, monitoring and management [56].

Figure 1 - IoT architecture [5]

IoT is a network that interconnects physical devices, sensors, actuators or electronics with

embedded software which can exchange data through wireless communication.

Consequently, it provides connections and networkings to vehicles, transport services,

community services or societies infrastructure [57].

6

There is a need to improve latency, response time and battery life time, due to various

protocols used, the amount of message sent and the analytics parts regarding the data

collected. MEC server provides the capability to solve these challenges.

By providing efficient delivery of local content, new types of applications can be promoted,

such as gaming, virtual reality and augmented reality. Indeed, the rendering could be

implemented on the mobile phone itself, but the heavy computation can overwhelm the

limited processing capability of the phone. Besides, offloading physical simulation and

artificial intelligence to a remote cloud server might incur high latency time. MEC can

provide both computation power and proximity. Augmented Reality (AR) is an example that

merges the real world’s view with some computed generated sensors, such as data, video,

sound and graphics [5]. It allows to interact dynamically with the user, since the user is able

to view the real world and to digitally manipulate some virtual objects. In order to overlay

information from the phone camera, localized content has to be rendered quickly. The

processing can be performed on the MEC server as a requirement in order to improve high

speed and low latency.

Figure 2 - Augmented Reality [5]

Connected Vehicles is a key trend market that will grow in the next years, through the

support to Vehicle-to-everything (V2X) communication. All kind of information that affect

vehicles can be collected, such as road conditions, route prediction, collision warnings. As

the number of connected vehicles increases and the technology evolves, the volume of data

will continue to increase also, so the necessity to reduce latency and maximize Quality of

Experience (QoE).

7

Figure 3 - Active device location tracking [5]

In that context, utilization of MEC technology can push applications, data and services closer

to vehicles and will result in the applications acceleration over the vehicles [55]. The MEC

application can operate as a highly distributed roadside unit that support drivers with real-

time useful information and the safety improvement of the roads, as presented in Figure 3.

2.1.2. USE CASES: PROVIDERS SIDE

In the same geographical area, many users tend to consume the same content at the same

time, such as shared larges files, high-definition videos. Therefore, all these contents can be

cached locally at the edge hosts to reduce drastically the backhaul network capacity.

Furthermore, Quality of Service (QoS) and Quality of Experience (QoE) can be improved

proactively by moving cached data to mobile edge hosts in anticipation of user movement.

In the next years, the massive influx of IoT devices may overwhelm backhaul network as all

amount data and services collected by sensors and mobile devices are sent to the remote

Cloud servers.

Figure 4 - Intelligent video analytics [5]

8

Instead of that, mobile edge hosts can process a first data aggregation and analytics and

forward only necessary information to backend servers, such example is shown in Figure 4.

Another use cases concerns the mobile media streaming with bandwidth feedback,

information provides throughput guidance to a video server. As the available capacity can

vary instantly and consistently in a mobile network, video quality of experience of user is

not optimal. Indeed, Transmission Control Protocol (TCP) is not fast enough to detect quick

variations, drastic flutuations leading to an underutilization of the radio resources. MEC

technology can inform video server of the optimal server to use the radio conditions for a

particular video stream or user.

Figure 5 - RAN-aware content optimization [5]

MEC server example presented in Figure 5 improves mobile backhaul optimization since it

can determinate or estimate the throughput, traffic and performance at the real-time Radio

Access Network (RAN) level and then be made available to the backhaul network.

Thus, the backhaul can be optimized through techniques such as application traffic shaping,

traffic routing, and capacity provisioning.

MEC provides more effective location-based services in two ways. First, from the received

signal strength and analytical techniques it allows user location tracking. Second,

applications can use the user location and behavior pattern, to give recommendations. It may

also utilize advanced machine-learning techniques and interface with big data analysis at

backend servers to further improve the accuracy and usefulness of its recommendations.

9

2.2. TOWARDS 5G

In the past decade, Wireless communications and networking evolved significantly driven

by the huge growth of mobile devices and mobile traffic. Remote data centers were allowed

to run computing services for mobile devices since wireless communication presented a high

bitrate and reliability. It resulted in the research area called Mobile Cloud Computing

(MCC).

However, there are known limitations of MCC, as latency resulting from the distance

between the end user and the remote cloud data center. New mobile application and devices

are emerging thar are latency-critical, so they will not be suitable for the MCC. In the last

years, new technologies move cloud computing closer to the user at the Edge.

The fifth generation networks (5G) is currently under development and will hit the market

at the horizon of 2020. Figure 6 presents the target of 5G, which is to reach high speed (1

Gbps), low power and latency (1 ms or less) for massive IoT, tactile internet and robotics.

Computational capacity will be deployed in many kind of edge devices, like wireless access

points (WAPs), Base Stations (BSs) or even smartphones, tablets or laptops. All these

devices will be using computation and storage resources available at network edges, which

allow a permanent mobile computing.

Figure 6 - 5G requirements

10

In 5G, systems will need to meet requirement to fully support the 4C – communications,

computing, control and content delivery. 5G networks expand broadband wireless

services beyond the advent and evolution of mobile internet, Information and

Communications Technology (ICT), IoT and critical communications segments. New

emerging application and services for 5G require specific and challenging high access

speed and low latency, such as Autonomous Driving (AD), Augmented Reality (AR),

Virtual Reality (VR), Tactile Internet, real-time online gaming and Ultra High Definition

(UHD) video streaming shown in Fig. 7 [9].

Figure 7 - Uses cases vs speed and response time [9]

 Smart mobile devices have limited resources for computing, communication and storage,

and have to rely on Clouds or edge devices for enhancing their capabilities. All community

have agreed that 5G requirements for a few milliseconds for computing and communication

makes cloud computing inadequate. The enormous quantity of data exchange between end

users and remote clouds will saturate backhaul networks, and the solution is to bring down

all these computation, communication and traffic to the network edges. The explosion of

applications for IoT, social networks and content delivery turn on the necessity that

information generated locally needs to be consumed locally as a key factor for next

generation network concept [10].

11

2.3. MOBILE COMPUTING

In the past two decades, mobile cellular networks have experienced four generations of

evolvement following the advent of the ICT and telecommunications technology. At the

same time, mobile devices are also constantly evolving but it remains that the computational

power, limited storage and low battery life are limitations that are especially critical for

resources demanding applications.

As smart devices and applications has emerged, new requirements have appeared to fulfil

end user quality of service and experience.

In the future 5G system, as the traditional Base Station (BS) cannot fulfil these requirements,

the mobile network architecture is evolving from BS to device and content network [8]. In

this section, we will explain the concept of mobile edge networks, the solutions proposed

and finally the advantages.

2.3.1. MOBILE CLOUD COMPUTING

Initially, the main concept of MCC was to provide a centralized computing, storage and

network management in the Cloud due to the limited resources available in the mobile

devices. So, remote servers executed intensive computation tasks or storage. MCC provided

many solutions like mobile learning, healthcare, searching services [11]. Nowadays, MCC

continue to offer relevant and resilient services where key characteristics have no substantial

impact in the user experience, such as mobile devices energy consumption, network

bandwidth, latency, context and location awareness. The Table 1 presents significant

differences through the comparison of some key features, as some examples are described

below.

Latency: Some parameters are crucial to provide low latency, such as distance propagation,

computation resources and bandwidth. Mobile Computing requires transmission between

end users and the Cloud, and the distance to go through to remote server can be thousands

of kilometers through different kind of technology from mobile network, to backhaul

network and internet. MCC has the advantage of offering a higher computational resource,

but more users share it.

12

MCC presents total latency between 30 and 100 ms [12], which is unacceptable for

applications, such as autonomous vehicles or real-time online gaming. These applications

need latency in order of 1 ms [13]. However, MEC has the potential to reach that time and

become the key technology for 5G applications. Compared to MCC, MEC locates at the

edge and benefits with low latency and communication free.

Energy Consumption: IoT devices have limited resources and also limited energy storage

due to the compact design. Nevertheless, low resources tasks are performed by IoT devices

in the main areas of surveillance, health monitoring or crowd-sensing [14]. The key

disadvantage of the IoT devices is the frequency to recharge or replace battery. MEC

technology is the solution that enables computation offloading at the edge, resulting in an

improvement of battery life of the IoT devices.

By offloading computation significant energy saving can be done. In [15], the authors refer

to the application eyeDentify running over a MEC architecture, that increases up to 44 times

the computation capacity. In [16]., MEC AR applications achieve a 30-50% increase of

battery life.

Context Awareness: Key factor in MEC technology due to the end users are near from edge

devices, this provide real-time information regarding location, environment and behavior,

such information can be deployed into services to end users [17] [18]. A perfect example for

AR application is the Museum Video Guide [19], that provide location awareness and

information regarding the piece of art or antiques artefact. Another application provide

traffic monitoring, navigation and routing of large number of persons through fingerprints

[20].

Privacy enhancement: MEC technology enhance privacy and security for mobile capacity.

In MCC systems, the Cloud platforms are large public data centers, such as Amazon EC2 or

Microsoft Azure, that have a huge quantity of users information resources provoking

possible attacks. In addition, there is a possibility of data leakage and data loss as ownership

and data management are separated [21]. As MEC server will not have much information,

reducing possible attacks. MEC could act as a small cloud near to the users, resolving

sensitive data communication between end users and servers. An example of that is the case

of a system administrator that sends critical information to remote data centers [22].

13

2.3.2. EDGE COMPUTING FRAMEWORKS

The core objective of mobile edge networks is to move resources closer to the network edges.

The network resources are computing, storage and caching [40].

MEC is an evolution of MCC and performs computing-intensive tasks and storing massive

amounts of data at the edge of the networks.

Table 1 - Comparison of MEC and MCC systems [23]

 MEC MCC

Server hardware Small data centers with moderate resources [5],

[24]

Large-scale data centers (each contains a large

number of highly-capable servers) [25], [26]

Server location Co-locate with wireless gateways, WiFi

routers, and LTE BSs [5]

Installed in dedicated buildings, with size of

several football fields [27], [28]

Deployment Densely deployed by telecom operators, MEC

vendors, enterprises, and home users. Require

lightweight configuration and planning [5]

Deployed by IT companies, e.g., Google and

Amazon, at a few locations over the world.

Require sophisticated configuration and

planning [25]

Distance to end

users

Small (tens to hundreds of meters) [29] Large (may across the country border) [30]

Backhaul usage
Use not frequent

Alleviate congestion [31]

Frequent use

Likely to cause congestion [31]

System

management

Hierarchical control (centralized/distributed)

[32]

Centralized control [32]

Support latency Less than tens of milliseconds [29], [33] Larger than 100 milliseconds [34], [35]

Applications Latency-critical and computation-intensive

applications, e.g., AR, automatic driving, and

interactive online gaming [5], [35].

Latency-tolerant and computation-intensive

applications, e.g., online social networking,

and mobile commerce/health/learning [36]–

[39].

14

In MEC architecture, data processing and data storage happen outside of mobile devices

[41]. However, new emerging applications represent a serious challenge to MCC in terms of

latencies, video download, traffic congestion and capacity that frustrates end users.

Businesses needs competitive, scalable and secure solutions.

The basic idea is to perform computations and running applications near the mobile user, it

reduces network congestion and get a better performance out of mobile applications. Mobile

management will reinforce the reduction of costs and presents new functionalities in the

service area, such as controlling enterprise through mobile devices, promoting security and

enforcement to the Police Department or the Municipalities maintenance teams.

Regarding congestion, IoT applications and services at the edge enable proximity, providing

ultra-low latency, higher bandwidth, real-time access to RAN information and location

awareness. Some of these challenges are listed in [41].

Figure 8 - Architecture of Mobile Edge Networks [32]

As the computing part, Edge computing allow computing capabilities at the network edge,

and also efficient and dynamic offloading, data access and context awareness. The

community composed by researchers from Industry and Academy have proposed three

15

different schemes of Edge computing: Fog Computing nodes, Mobile Edge Computing

servers and Cloudlets, as shown on Figure 8.

The Table 2 summarizes the main features of these three edge computing technologies,

which present some similarities between them.

Table 2 - Comparison of Cloudlets, Fog and MEC approaches

Properties
Cloudlets based

approach

Fog Computing

approach
MEC approach

Reduce Latency Y Y Y

Reduce Jitter Y Y Y

Multi-Tenancy Y Y Y

With Virtual IaaS Platform Y Y Y

Location Y Y Y

Geographical Distributed Y Y Y

Mobility Support Y Y Y

Inspired from Tactile Internet IoT Mobile World

Extended from Cloud Y Y May or may not

Mostly used with wireless

access

May or may not Y Y

Focus on-line analytics May or may not N Y

Located between DC and

device

Y but can directly

run on a device

Y Y

Improve user experience Y Y Y

N-tier N = 3 N = 3 or more N = 2 or 3

Y = Yes, N = No

FOG COMPUTING

The concept of Fog Computing was introduced by Cisco in 2012, and initially it was

considered as an “extension of the cloud paradigm that provides computation, storage, and

networking services between end devices and traditional cloud servers” [42].

The Open Fog Consortium has made an effort to define a distributed three-tier architecture

(end users, fog nodes and centralized Clouds) where each element communicate and interact

with each other, as shown in Figure 9. The main objective is to put data close to the end user

[43], which reduces latency, improves QoS [44] and provides support for localization,

context awareness and mobility support [45].

Fog enables the harvesting of local information analysis and the Cloud performs the

coordination and global analytics in order to meet the demands from different segments of

16

business: consumer, wearable, industrial, enterprise, automobile, healthcare, building,

energy. As the fog network architecture is heterogeneous, services can be deployed in

various locations at the network edges at a high speed data-rate and through different

wireless access technologies [46].

Figure 9 - Fog computing architecture

Originally, Fog Computing was designed to create new applications and services in the

context of Internet of Things, such as Big Data analytics systems or smart infrastructure

management system [42][47]. Recently, there is a need to extend this concept to other types

of services through several studies: augmented reality and real-time video analytics [48],

content delivery and caching approaches through Fog computing [49], vehicle systems such

as vehicle-to-vehicle (V2V) and Vehicle-to-infrastructure (V2I) and Vehicle-to-everything

(V2X) [50] or low-latency augmented interface devices [51].

CLOUDLETS

The concept of Cloudlet was developed by an academic team at Carnegie Mellon University

[12], where a prototype was developed as part of a research project called Elijah [52]. The

key features of cloudlets are the real-time provisioning of applications to edge nodes through

Wi-Fi or cellular networks. It provides also the possibility to smart devices to move through

different edge servers and continue to use applications by using handoff of virtual machine

images among edge nodes [53].

The main motivation of this solution was to handle the problem that surge from the resource

constraint on the mobile devices. The Cloudlets are designed to support applications for

17

mobile devices through the offloading of the resources due to aggressive tasks and

interactions, such as Augmented Reality applications, Cloud games, and Wearable cognitive

assistance system like Google Glass, Apple Siri or Google Now. As this solution performs

high resource intensive task and faster execution and reduces the communication latency, it

is considered as a key solution regarding the emerging of the Mobile Edge Computing

architecture and implementation.

The topology design is a third tier architecture composed by mobile devices, Cloudlets and

the Cloud, as shown in Figure 11.

In this hierarchy, the Cloudlets are the middle tier and can be considered as a local data

centre used to enable localized cloud services, offer high performance and faster access to

cloud resources to multiple users simultaneously. Moreover, it provides benefits with high

utilization cost issues, large Wide Area Network (WAN) latency and less bandwidth [54].

Open Edge Computing (OEC) was formed as new emerging open source banner from the

Carnegie Mellon University and industrial key players, such as Nokia, Intel and Vodafone.

This initiative promotes the use of Cloudlets as an enabling technology through the extension

of open source codes APIs of the OpenStack platform [55]. This initiative aims to

synchronize efforts in Standardize schemes.

Figure 10 - Cloudlet Architecture

18

MOBILE EDGE COMPUTING

ETSI [22] introduced the concept of Mobile Edge Computing in 2014, which main goal was

to standardize a MEC architecture and Application Programming Interfaces (APIs) for 3rd

party applications for all major actors of the community [40].

The MEC architecture is based on a virtualized platform that enables application running on

top of MEC servers, which can be deployed in various types of network edges. It brings

cloud computing capabilities and IT service environment at the edge of mobile network. This

infrastructure can be implemented in several virtualization servers on different locations at

the networks edge, such as Wireless Access Points (APs), LTE macro base stations

(eNodeB), the Radio Network Controller (RNC) or the Radio Access Technology

(3G/LTE/WLAN).

Deploying cloud services at the Edge of mobile networks will bring many advantages such

as ultra-low latency and high bandwidth as well as real-time access to radio network

information and location awareness. This will benefit the actual mobile infrastructure

through optimization or new implementation preparing 5G. Also, new services and

application deployment are emerging and it bring new horizon for 3rd party services

providers through IoT, augmented reality, connected cars or intelligent video acceleration

[29].

Figure 11 - Mobile Edge Computing architecture

19

The MEC architecture is based on a virtualized platform that enables application running on

top of MEC servers, which can be deployed in various types of network edges. It brings

cloud computing capabilities and IT service environment at the edge of mobile network. This

infrastructure can be implemented in several virtualization servers on different locations at

the networks edge, such as Wireless Access Points (APs), LTE macro base stations

(eNodeB), the Radio Network Controller (RNC) or the Radio Access Technology

(3G/LTE/WLAN).

Deploying cloud services at the Edge of mobile networks bring many advantages such as

ultra-low latency and high bandwidth, as well as, real-time access to radio network

information and location awareness. This will benefit the actual mobile infrastructure

through optimization or new implementation preparing 5G. Also, new services and

application deployment are emerging and it brings a new horizon for 3rd party services

providers through IoT, augmented reality, connected cars or intelligent video acceleration

[29].

For virtualized services, MEC deployment provides some key characteristic advantages like

reducing costs of implementation, a standardize management and orchestration. Besides,

MEC aims to reduce network stress by moving resources from cloud to mobile edge [40],

with a fully virtualized system infrastructure in [56].

2.4. FRAMEWORKS DEPLOYMENTS

When this thesis started, ETSI was making great efforts to standardize the Mobile Edge

technology. The first frameworks and applications were developed. Researchers from

Industry and Academy tested some use cases through frameworks and applications.

In [57], the author presents Cloudlet Aided Cooperative Terminals Service Environment

(CACTSE), a mobile content delivery service where mobile terminals are connected with

each other via Service Manager (SM), which acts like a cloudlet module to improve the user

experience.

The content is available through online or offline access, but it lacks of cache service.

20

In [58], Soyata presents an architecture based on mobile-cloudlet-cloud topology. The author

proposes a Mobile Cloud Hybrid Architecture (MOCHA) as a framework for real time face

recognition that gives the minimum response time. The author presents also CloudVision

using that framework in order to decrease response time of a face detection and recognition

task. In this framework, the Cloudlet can act as a buffer preventing heavy images to be

transferred to the Cloud. It brings little benefits but high speed connection to the cloud is

required and there is a space problem regarding number of faces to be used.In [59], the

Author presents a Cloudlet based dictionary for mobile devices with support for translation

of 6 languages, which is easily configurable and extensible. However, in order to present

fast computation requires high processing power.

Koukoumidis proposes Pocket Cloudlet [60], a cloudlet framework that analyses and

constructs a user and community behaviour model and tries to predict which data will be

download in near future. The main goal is to identify the most popular contents and then

download it to a cache storage. Data caching presents many challenges in determining

exactly the balance between the data is required, update frequency and the storage available.

In the last years, some cloudlets architectures based on Virtual Machines were deployed in

elastic cloud computing platforms like OpenStack. There exist also some differences

regarding centralized or decentralized cloudlet management, and elastic or ad-hoc resources.

Carnegie Mellon University develops the cloudlet pioneering project, named Elijah Project,

which is the initial extension to OpenStack++. This extension provide a cloudlet library

based on a modified QEMU with integration into the open source OpenStack platform. A

mesh cloud architecture is proposed in [55], which is composed of cloudlet, Internet cloud

and wireless mesh networks. An experimental framework is designed in [45], in which

private cloudlet and wireless mesh network is implemented. It is capable of establishing and

maintaining mesh connectivity among multiple nodes automatically and is featured with

adaptively and self-recovery in case of network failures.Instead of managing VMs for the

deployment of a cloudlet system, Verbelen [61] propose a finer-grained cloudlet concept

that offloads applications on the component level, without the need of sending a VM overlay.

It also suggest that Cloudlets can be formed dynamically with any device in the LAN

network that has available computing resources.

21

Abolfazli [62] proposes a dynamic cloudlet architecture consisting only of ad hoc cloudlet

nodes, all of which are administered by a central service governor, a replicated supervisory

entity that monitors and supervises computing augmentation entities.

2.5. SUMMARY

The last decade has seen a wide-range of new applications and services that require

unprecedented high access speed and low latency experience, such as real-time online

gaming, augmented reality and other cases presented in section 2.1. It drives the paradigm

shift from the centralized Mobile Cloud Computing toward to the Edge.

The section 2.2. analyzes the requirements and key challenges for materializing 5G vision.

Mobile Edge Networks are recognized as one of the key technologies necessary to reach

next generation 5G and the natural development in the evolution of mobile BSs and the

convergence of IT and telecommunication networking.

In Section 2.3., a background explains the convergence from Mobile Edge Computing to

Mobile Edge Networks principal architectures proposed. Fog computing is initiated to

address some challenges in meeting new requirements of IoTs, it provides high-performance,

interoperability, and security in a multi-vendor fog computing-based ecosystem. MEC is

recognized as one of the key technologies to meet 5G requirements, it enables an open RAN

which can host third party innovative applications and content at the edge of the network.

Cloudlets propose to address some challenges in mobile computing. Cloudlet provides new

classes of mobile applications that are both compute-intensive and latency-sensitive in an

open ecosystem based on cloudlets. In terms of comparison, the similarity between the three

technologies is openness. An analysis is made to some frameworks and architectures that

surged in the beginning of this study in order to choose the best-case scenarios under

hardware and software disponibility.

22

23

3. THE MEC AND

CLOUDLETS

The increasing improvements made in the mobile device area of sensing, connectivity,

display and sound quality or computational capacity will lead to the development of new

mobile applications. It allows a new perception of interactivity through image, voice motion

or location. However, these new applications shall extinguish rapidly the limits of the

mobiles devices. On the same way, these applications are pushing well beyond the cloud

resources regarding the user interaction, since end-to-end latencies would be almost tens of

milliseconds. This situation is not affordable and it results in the distraction or even worst

the frustration of the users.

More than ever before, users wants to use applications in real-time with high definition

characteristics everywhere and at any time. The human perception and cognition augments

through the emerging of new smart mobile devices and applications.

At the same time, efforts made by the major contributors in order to standardize the concept

of this new emerging technology, since an historical view to the framework and architecture

view.

3.1. STANDARDIZATION

Major actors of the Telecommunication's area identify MEC as a key enabler for IoT and

mission-critical, vertical solutions, and recognize as one of the key architectural concepts

and technologies. The concept of MEC was defined by ETSI as a new technology that

“provides an IT service environment and cloud-computing capabilities at the edge of the

mobile network, within the Radio Access Network (RAN) and in close proximity to mobile

subscribers” [63].

24

ETSI published a white paper on MEC, where it considered MEC as key emerging

technology to be an important component of future generation networks [5].

In this section, an introduction is made to the recent standardization intentions from the

industry. It analyzed the referenced MEC server framework as well as the technical

challenges and requirements of MEC systems. Typical use scenarios of MEC were already

discussed in Section 2.1.

3.1.1. NORMALIZATION EVOLUTION

ETSI has established an Industry Specification Group (ISG) on MEC to develop a

standardized, open environment that shall allow efficient and seamless integration of third-

party applications across multi-vendor platforms in December 2014.

Until January 2017, MEC ISG has released six specifications, one of which provides a

glossary of terms related to the conceptual, architectural and functional elements of MEC

[63]. Another specification specifies the technical requirements enabling interoperability and

deployment and describes example use cases and their technical benefits [64]. A framework

and a reference architecture was presented to enable mobile edge applications to run

efficiently and seamlessly in a mobile network [65]. Moreover, the forth specification in

MEC ISG introduces a number of service scenarios that would benefit from the MEC

technology [66]. The specification of the Proof of Concept (PoC) framework defines a

framework to coordinate and promote multi-vendor PoC projects illustrating key aspects of

MEC technology [67].

ETSI has announced six different Mobile Edge Computing Proofs of Concept (MEC PoCs)

in Sep. 2016, which were accepted in MEC World Congress in Munich and contribute to

strengthen the strategic planning and decision-making of organizations, and help to identify

which MEC solutions may be viable in the network.

The last specification describes various metrics which can be improved through deploying a

service on a MEC platform, such as latency, energy efficiency, network throughput, system

resource footprint and quality [68].

25

MEC ISG started 9 new studies related to MEC APIs, management interfaces and essential

platform functionality. In addition, the MEC in an NFV environment is emerging on an end-

to-end mobility. The NFV platform may be dedicated to MEC or shared with other network

functions or applications. MEC exploit the NFV management and orchestration entities and

interfaces as much as possible.

This confidence on MEC Technology stimulates all community and provide an acceleration

on the standardization pace. By defining and standardizing key edge computing interfaces,

ETSI ISG MEC eases the path to interoperability and removes this key obstacle towards a

broad industry adoption of edge computing. It should be noted here that ETSI ISG MEC

remains the only standardization group in this space.

Early in 2017, ETSI MEC ISG has decided that Mobile Edge Computing had to be renamed

as Multi-access Edge Computing in order to reflect the growing interest in MEC from non-

cellular operators [69]. This phase, know as MEC Phase 2, leverages on the industry

acceptance of the first phase of specifications and is aimed at strengthening the engagement

with developers and service providers, which are ultimately the stakeholders that exploit

MEC for their value added product propositions.

The 3rd Generation Partnership Project (3GPP) shows a growing interest in including MEC

into its 5G standard, and functionality supports for edge computing identified and reported

in a recent technical specification document [70].

On July 2017, EST ISG have published 5 API specifications identified in scope for Phase 1

of work. These include specifications relating to the essential functionality of the application

enablement platform (API framework), specific service-related APIs (Radio Network

Information and Location Information) and management and orchestration-related [71 – 75].

In September 2017, ETSI released standard API for User Equipment (UE) application

interface; it contains the specification for the lifecycle management of the user applications

over the UE application interface [76].

One Month later, 3 more API were published. The first one is the specification for the user

equipment-initiated operations platform management [77]. The second one specifies the

necessary API with the data model and data format for Bandwidth Management services

26

[78]. The third specification released is for End to End Mobility Aspects [79]; it focuses on

mobility support provided by MEC and presents use cases and end to end information flows

to support UE and Application mobility.

More important, Phase 2 shall expand the applicability of standards from mobile to all types

of access. Phase 2 defines also how MEC integrates with NFV and address significant new

use cases, such as connected cars.

On February 2018, ETSI published 2 new standards: UE Identity API and Deployment of

Mobile Edge Computing in an NFV environment [80, 81].

Phase 2 should also see an increased emphasis on the industry outreach with growing action

to move towards adoption of that API by the key industry groups, certification and

application developer outreach.

3.1.2. MEC FRAMEWORK

ETSI’s MEC framework and reference architecture is defined in the Group Specifications

(GS) MEC 003 [64], these group of specifications are known to be widely used as a reference

architecture for many early MEC implementations.

The MEC framework proposed in Figure 12 identifies and groups the high-level functional

entities in the system: network level, the MEC host level and the MEC system management.

The Network level entities comprising connectivity to local area networks, cellular networks

and external networks such as Internet. A major objective is to extend this capabilities to

non-cellular.

In the MEC host level, the MEC host sits along with its associated management subsystem.

The MEC host is constituted by the platform and the virtualization infrastructure where the

applications run.

In the MEC system level management retains the global view of the whole MEC system,

i.e., the collection of MEC hosts and the associated management subsystem.

27

Figure 12 - MEC framework

3.1.3. MEC REFERENCE ARCHITECTURE

The MEC reference architecture (Figure 13) highlights the system level and host level

components. Reference points in scope of MEC are represented by solid lines, while the

reference points in scope of proprietary implementation or other Standards Developing

Organizations (SDOs) are represented by dotted lines.

The MEC host is a logical construct that provides computing, storage and networking

resources to the MEC applications enhancing the MEC platform and the virtualization

infrastructure. The MEC platform send rules that are forwarded by an element inside the

virtualization infrastructure, the data plane, which is also responsible for routing the traffic

between the applications, services and the networks.

MEC host provides a virtualization infrastructure where MEC applications run as virtual

machines. The applications may use MEC services present in the MEC platform or even

provide them to the MEC platform and other applications.

The MEC platform holds essential functionalities that are required to run applications on

the MEC host, which provides necessary features to discover, communicate, add and use

MEC services.

28

Figure 13 - MEC reference architecture [65]

In the Host level, the MEC platform manager consists of the MEC platform element

management, the MEC application lifecycle management (LCM) and MEC application

policy management functions. The LCM application is responsible for starting, finishing and

relocating a MEC application instance. It provides some indications regarding events that

occur in applications to the MEC orchestrator. The LCM application encompasses

authorizations, traffic rules, DNS configurations and resolves issues when policies are in

conflict.

The Virtualization Infrastructure Manager (VIM) is responsible of managing the

virtualized resources for the MEC applications, like allocating and releasing virtualized

computing, storage and network resources, therefore it has the Mm7 reference point towards

the Virtualization Infrastructure for this purpose - OpenStack is a widely known example of

a VIM [85].

The Management level is composed by the MEC Orchestrator, the Operations Support

System and the User Application Lifecycle Management Proxy.

The MEC Orchestrator plays a central role as it has the visibility over the resources and

capabilities of the entire MEC system. It is responsible to coordinate and control the

29

instantiation or resolve resource conflicts. The MEC Orchestrator manages the MEC

applications and the associated procedures, such as integration, authentication, and

validation of the policies realted to them. It also checks if the proper requirements are set to

the respective application.

The Operations Support System (OSS) is responsible for running the MEC applications in

the proper location of the network. The Customer Facing Service portal (CFS) and the user

equipment send requests to the OSS and to the orchestrator in order to instantiante and

terminate applications. CFS provides an entry point for 3rd party services.

The User Application Lifecycle Management Proxy encompasses functions that allow the

application clients to request services related to on-boarding, instantiation and termination

of the applications.

3.2. CLOUDLET

A Cloudlet can be defined as “cloud on the box” with computing resources available for use

by mobile users. During the execution of an application, the mobile device act as a client

that offloads computation and data on the nearest cloudlet.

The specific problems that we are addressing are real time response, low latency, data

management, scalability and resiliency. One of the existing problems, concerns with the

cloud connection to remote server. To deal with that problem and achieve real-time

response and low latency, the user applications can interoperate with the nearest cloudlet.

Another problem refers to the exponential growth of IoT smart devices and systems. It may

result in the congestion of the backhaul network and scalability issues. The clouds need to

forward, process, and store massive amounts of data generated by IoT devices.

Cloudlet architectures include caching mechanisms to filter and locally store essential

information, avoiding unnecessary bandwidth consumption due to massive data transfers

between IoT devices and the cloud servers.

When applications operate in real-time, the response time of the remote cloud server can

result in application failures. The service becomes unaffordable due to the poor user

30

experience. Cloudlet architecture can be a resilient solution and offer on-premise and user

control.

Figure 14 - Cloudlet architecture

Cloudlet architectures address the previously described challenge providing scalable

deployment, management support and improved communications performance. Two types

of elements define the cloudlet architecture: cloudlet host and mobile clients.

The philosophy of Cloudlet has been followed by the ETSI, leading to the standardization

of MEC architecture [101][102][104].

Figure 15 - Cloudlet framework proposed

The Cloudlet Framework used in this project is one of the base components of the ETSI

framework, as show on Figures 15 and 16. The framework turns any network edge device in

a MEC Host, containing a virtualization infrastructure and providing a platform for

computing, storage and with network resources for MEC applications. The MEC platform

has several functionalities that enable to run services and MEC Applications in a MEC Host,

31

with specific infrastructure virtualization conditions. The management of the MEC Host is

performed through components that enable the configuration of each MEC host, platform or

applications.

In terms of comparison with the ETSI model, cloudlets differs in some aspects regarding the

virtualization infrastructure, the MEC Host level management and MEC Orchestrator, as can

be seen in Figure 15 compared to Figure 16. Regarding the virtualization infrastructure and

MEC Host level management, cloudlets only provide some basic functionalities in the MEC

Host, while the ETSI model already defines a global Virtualization Infrastructure Manager

(Open Platform for NFV - OPNFV) [97]. At last, the MEC orchestrator is not used in our

architecture because this part is dependent on the ETSI MEC standardization that was not

available at the moment of the setup of our demo implementation.

Figure 16 - Cloudlet vs ETSI MEC reference architecture

3.3. PROBLEM STATEMENT

In MEC architecture, the data management, processing and caching are performed directly

at the network edge. In that manner, the throughput is reduced to avoid traffic in the backhaul

network. Since this architecture is decentralized, the end-to-end latency is reduced and this

increases the system resiliency by providing data redundancy, high availability, better

quality of experience for the users.

32

The purpose of this work is to simulate MEC and cloud based solutions, that enable us to

evaluate and quantify the real benefits of each architectural approach. As already discussed

in the previous sections, it is claimed by several authors, that MEC leads to improvements

in communications performance, such as ultra-low latency, high bandwidth and real-time

access to radio network information and location awareness.

Furthermore, it is the main goal of ETSI [105]-[108], that MEC systems shall represent a

solution regarding the 5G vision and new emerging applications with prerequisites latency

of 1 millisecond.

This work aims to evaluate the key communication performance indicators of MEC and

Cloud architectures in different applications scenarios. For this analysis, scenarios were

considered that use real time and computing intensive task applications.

3.4. SUMMARY

Section 1 focuses on standardization efforts to develop new telecommunications

frameworks and architectures. While ETSI is under initial challenge and gets the effort to

regroup all community and purpose the first standards, this thesis aims to compare Mobile

Edge Technology and Cloud-based solution and provide experimental evidence that recent

emerging demands force a change in cloud computing architecture.

In section 2, this thesis analyzes the Cloudlet general architecture and summarizes each

component and their use. After that, a synthesis introduces the problem statement about the

use of the remote cloud servers. This project implements a solution to reduce excessive

latency and network bandwidth at the edge of the network. Finally, we compared our

proposed architecture with the model that ETSI seeks to standardize, and report the ongoing

coordination efforts among the participants in standards development.

In the next chapter, this work presents the implementation of this architecture and its

components. The purpose is to analyze the benefits of MEC through Cloudlet scenarios using

new emerging applications.

33

4. CLOUDLET

IMPLEMENTATION

The number of applications and mobile devices is increasing, and the prevision is to continue

to grow. These new emerging applications required even more computation-intensive tasks

and battery power. This obstacle prevents the achievement of the needed capabilities. Even

if mobile devices have better capabilities, they still do not process the task demand. Some

networks are often unreliable, thus the limited bandwidth can also be inconsistent.

Resuming, the time to access remote cloud servers is unaffordable.

This project presents a anlyses an architecture that challenges all these obstacles. At the

Edge, the MEC architecture proposed aims to be discoverable. Stateless servers can run one

or more Virtual Machines (VMs) on which mobile devices can offload extensive

computation, as presented in Figure 17. This architecture enhances processing capacity,

conserving battery and proven to solve the characteristic bottleneck problems related to

cloud technologies.

Figure 17 - Three-tier architecture for code offload

34

4.1. CLOUDLET ARCHITECTURE

This project offers a code offload solution at the network edge for smart mobile devices that

exploit cloudlets. Figure 18 presents the major components of the Cloudlet architecture,

which are the mobile client and the Cloudlet Host.

Figure 18 - VM-based cloudlet architecture

The Cloudlet Host used is a VM-based cloudlet architecture [12] [82] [83] [84]. There are

similarities with Cloud data centers. It’s Virtual Machines have similar requirements, such

as a wide range of computations, programming language, operative system, and dynamic

resources allocation.

The Cloudlet Host is a physical server hosting a discovery service that broadcasts the

Cloudlet IP address and port to allow mobile devices to find it. It contains the Base VM

images used to synthesize the VMs. It hosts a Cloudlet server that performs the synthesis of

the VM, handles the code offload through application overlays or starts guest VM instances.

Finally, the Cloudlet Host contains a VM manager that acts as a host for guest VM instances

and stores the computation components of mobile apps.

The Mobile client is a smart mobile device that hosts a Cloudlet client application

responsible to discover cloudlets and uploads the application overlays to the Cloudlets. It

35

also contains mobile applications that operate as clients of the Cloudlets servers. The mobile

client stores an application overlay of each Cloudlet-ready application that a user wants to

execute and for which computation offloading is appropriate. In the Cloudlet, the same Base

VM image generates each application Base VM image.

This VM-based Cloudlet architecture presents some important differences regarding the

Cloud, such as the rapid provisioning, the VM handoff, and Cloudlet discovery.

Figure 19 - VM overlay creation

First, cloud data centers have stored most of the VM images, presenting an optimization of

the provision of VMs. So, if a user launches a new image, the cloud does not meet fast launch

requirements. Cloudlet needs to be agile with VM provisioning since a mobile user needs

dynamic association and response time.

The second matter regards live VM migration across cloudlets. The user mobility across the

localization occurs if there is a transfer of offloaded services from a source cloudlet to a

destination cloudlet.

Finally, a dynamic Cloudlet discovery is essential when a mobile client needs to discover

and associate a particular cloudlet among many candidates before the provisioning.

36

4.1.1. VM SYNTHESIS

In a VM-based Cloudlet architecture, VM synthesis is crucial to provide features like rapid

provisioning and VM handover. Operating System (OS), libraries, and packages are the

principal components of a VM image. In comparison, the needed user application part is

tiny. If a Base VM already exists in the cloudlet, it is only necessary to transfer the difference

part, which is the VM overlay. The VM synthesis is the method used to provision the

cloudlets using VM overlays.

Figure 19 presents a VM overlay creation from a Base VM image. Users can generate Base

VM images from popular OS builds like Linux or Windows. When a pause occurs of the

booted image, the snapshot of the VM disk image and the memory snapshot creates the base

disk and base memory. The user needs to resume the instance, install and configure all

necessary components of the back-end server-side application. Finally, the user has to launch

the back-end server again and then pause it to perform the snapshot of the resulting disk

image and memory of the final VM image with the back-end server. The resulting

application overlay generates the final VM image and the base VM image using xdelta3 and

LZMA the compression.

The direct provision of the mobile back-end application in the Cloudlet platform performs

the VM synthesis. Also, an overlay delivery from the cloud or even from the storage on the

mobile devices can perform a VM Synthesis. In the delivery’s case of the overlay, it will

decompress in a base image to generate a launch VM that will create a VM instance. After

that, the mobile device can perform many actions with the instance.

4.1.2. LIMITATIONS

The architecture focuses on a cloudlet platform that provides a data processing system where

the application's data can be cached, processed and aggregated. Given the frame time of this

thesis project, the standardization of mobile edge computing was still a mirage and it was

still trying to regroup all the market players. The first platforms and applications developed

were still under test and the changes were constant. This work does not address the inter-

cloudlet communication and multiple cloudlet integrations with a cloud discovery service.

37

4.2. OPENSTACK

Cloudlet architecture presents different technical challenges. One of them is the cloudlet

deployment. In the previous subsections, a summary presents the composition of the

Cloudlet architecture and framework. In this subsection, we will introduce the proposed

Cloudlet platform to perform our practical analysis through the offloading of mobile

applications. OpenStack is a free and open-source cloud-computing platform that offers the

possibility to establish and test new emerging architecture or ecosystem.

OpenStack++ is a particular API extension on the OpenStack platform that implements the

deployment of the Cloudlet platform.

Figure 20 - OpenStack software diagram [85]

OpenStack is a well-known free and widely diffused open-source Infrastructure-as-a-Service

(IaaS) software platform for private or public cloud computing. As presented in Figure 20,

it provides many services that interact with each other to deliver the full feature set and to

manage computation, storage, and networking resources to supply dynamic allocation of

VMs. Users can manage this platform through a web-based dashboard, a command-line tool,

or a RESTFul API.

OpenStack is a project started in 2010 as a joint project of Rackspace Hosting and NASA

and managed by OpenStack Foundation. Since its founding, it has seen wide industry

endorsement and now numbers over one hundred supporters, including many of the

38

industry’s largest organizations, such as AT&T, Rackspace, Cisco, SUSE, IBM, Juniper,

Yahoo, HP, Intel, Red Hat, Canonical, Yahoo, Dell, Vmware.

It fulfills the cloud: massive scalability and simplicity of implementation. OpenStack is

highly configurable, i.e. the user can choose whether to implement each one of the several

services offered by the software. The application programming interface tool (API) allows

the user to configure each component easily. Therefore, OpenStack is a flexible tool able to

work along with other software.

Another reason to adopt OpenStack is that it supports different hypervisors (Xen, VMware

or kernel-based virtual machine (KVM) for instance) and several virtualization technologies

(such as bare metal or high-performance computing).

4.2.1. SERVICES

The OpenStack community has collaboratively defined the key components of the “core” of

OpenStack, which are distributed as a part of the system and officially maintained by the

OpenStack community. The conceptual OpentStack architecture is ilustrated in Figure 21.

Nova is the service responsible for computing behind OpenStack. It deploys and manages

virtual machines and other instances to handle computing tasks.

Swift is a storage system for objects and files, based on a unique identifier to refer to a file

or piece of information. OpenStack provides an easy scaling function as it decides where to

store the information and backups in case of machine or network connection failure.

Cinder is the block storage component that controls the method to access specific locations

on a disk drive. This file access method might be important in scenarios in which data access

speed is of most importantce.

39

Figure 21 - Conceptual OpenStack architecture

Neutron provides the networking capability for OpenStack and ensures that the components

can communicate with each other, quickly and efficiently.

Horizon is the dashboard behind OpenStack. This graphical interface allows developers to

access all the components of OpenStack individually through an API. The dashboard also

provides a system administrator access to monitor and manage the cloud.

Keystone provides identity services for OpenStack. It is essentially a central list of all the

users of the OpenStack cloud, mapped against all the services provided by the cloud, which

they have permission to use.

Glance is the service responsible for providing images to OpenStack.

Ceilometer provides telemetry services, which allow the cloud to provide billing services to

individual users of the cloud. It also keeps a verifiable count of each user’s system usage of

each of the various components of an OpenStack cloud. Think metering and usage reporting.

Heat is the orchestration component of OpenStack that manages the infrastructure needed

to run a cloud service. It allows developers to store the requirements of a cloud application

in a file that defines what resources are necessary for that application.

40

4.3. OPENSTACK EXTENSION - OPENSTACK ++

OpenStack++ is the open-source extension API that enables the Openstack infrastructure in

Cloudlet. The Elijah project was born at Carnegie Mellon University [53] to provide a

Cloudlet extension that specifies the MEC platform idealized by the ETSI model, as shown

in Figure 22. Elijah is a MEC-oriented extension of OpenStack with a relevant and growing

community of MEC developers working on top of it. Some of the major actors started the

Open Edge Computing Initiative (OEC) driving the development of the ecosystem around

Edge Computing. Some of such actors are: Carnegie Mellon University, Intel, Nokia, Crown

Castle, Vodafone, T-Mobile, and NTT [56].

Figure 22 - Openstack++ cloudlet platform

OpenStack++ has some functionalities similar to OpenStack, and it also offers the possibility

to add or remove certain features to the platform through the customization of the certain

files in specific APIs. Figure 23 represents the files associated with the respective OpenStack

API, which are cloudlet.py, cloudlet_api.py, cloudlet_manager.py and cloudlet_driver.py.

The Cloudlet configuration files cannot be directly changed into the respective folders, but

it requires changing the original OpenStack classes and files. OpenStack is a complex open-

source end-to-end cloud computing platform, that contains typical functionalities required

to operate cloud computing. However, as the Openstack platform frequently makes updates,

the implementation and the maintenance of this platform is not trivial.

41

4.3.1. PLATFORM SETUP

OpenStack++ implements the Cloudlet on the most OpenStack stable release version (Kilo).

Implementing the platform OpenStack Kilo and the OpenStack++ extension was the least

arduous, as much as this project was still in the beginning and suffered from constant changes

from day to day.

We deploy the installation of the Elijah project using the DevStack method, which is a set

of utilities scripts that aim to deploy quickly an OpenStack cloud from GitHub source trees

in a clean Ubuntu or Fedora environment. Therefore, we used a workstation with Operative

System Ubuntu 14.04 LTS 64 bits.

Figure 23 - Cloudlet API call hierarchy [85]

Three phases comprise the intended installation process of all platform in one

single machine: the installation of the cloudlet library, the installation of the OpenStack

platform through DevStack and at last the extension OpenStack++ [85]. The undergoing test

of this project installation process shown several implementation errors, misconfigurations

and download links failures, because the project was still in development and improvement

phase. So, many bugs, problems with libraries and transfer links were detected and solved

during the setup process. The Cloudlet installation was involved in many difficulties and

complexity.

The fabric script for the Cloudlet installation had a quirk. Before the installation, it asked for

the root password when it was designed to run as a local user.

42

Before starting the second process that installs the OpenStack cluster as a single cloudlet, it

is necessary to configure the local.conf and stacks files. We configured DevStack through

the local.conf file and changed all custom and local settings, such as services admin

password, and the cluster controller settings.

It is possible to move the network ranges away from the local network or also set the host IP

address if detection is unreliable. We configured the stackrc file with the version Kilo of

OpenStack.

Then, we proceeded with the installation of OpenStack performed through DevStack and

finally the setup of the extension part. Since many errors appeared due to:

 Different pip library versions used for each API, lead to bugs and the installation became

hazardous with many installs and uninstall during the process;

 GitHub repositories had recurrent development changes, without provision of a stable

version;

 Fatal errors during command line installation, because downloads of certain libraries from

dead links, break down the installation process.

After some weeks of intense research and active participation with Open Edge Computing

members, we finished the setup of this project platform. Figure 24 presents the last setup

part. While starting the cloudlet platform properly without error, it is also necessary to

instantiate every time:

 the authentication component Keystone;

 the Apache server to launch the dashboard;

 the volume manager Cinder that does not initialize the driver by itself;

 the shared service to manage token authentication, nova-consoleauth.

It was possible to reach the User Interface and access the Cloudlet Dashboard and all

functionalities shown in Figure 25.

Figure 24 - OpenStack++ final configuration setup

43

Figure 25 - OpenStack Dashboard

4.3.2. OPENSTACK++ FEATURES

The most relevant OpenStack++ features used in this project, are base image import, base

image resume, overlay creation, and VM synthesis.

The function “Import Base VM” allows the users to load in advance the base image into

Glance storage to build each VM. Figure 26 presents this online task. Figure 27 shows each

base image is a compressed file that contains 4 files: a base disk image with the related hash

value list and a memory snapshot with the related hash value list; is_cloudlet flag that shows

that is not a standard cloud image; libvirt configuration with the metadata that shows the

characteristics of the VM generated with the base image. The Elijah command to import a

base image is cloudlet import-base that decompresses the base image and stores it into the

Cloudlet database with the assignment of a unique identified hash.

(a) Import Base VM

44

(b) Base VM imported appearance in dashboard

Figure 26 - Import Base VM Image Process

a) Base VM disk image file metadata

45

b) Base VM memory snapshot metadata

Figure 27 - Base VM files metadata

The function Resume Base VM is still an offline operation and usually follows the import

base image, as shown in Figure 28. To resume a base image, the Cloudlet platform uses a

cloudlet hypervisor driver class, called CloudletDriver, that inherited the original

LibvirtDriver and check if the metadata associated to the virtual disk image base has the

is_cloudlet flag. Here, the driver resumes the base VM from the snapshot, rather than boots

a new VM instance. Usually, the first time it takes a long time to resume a base image, in

the order of a few minutes in relation to the hardware capability of the host, it verifies all

permission, quota or other resource availability. The offline task made in advance prepares

the MEC node before receiving the users’ requests. In this way, OpenStack++ imports the

base image into the cache of the compute node, thus, it does not slow down the system. Users

are not significantly perceiving by the users for further base image resumes. At the end of

this operation, there is a VM ready to execute the service.

46

(a) Resume Base VM Setup

(b) Resume Base VM handling process

(c) Resume Base VM final process

Figure 28 - Resume Base VM creation process

At this operation, a developer prepares a back-end server at the middleware layer and

typically this phase includes: preparing dependent libraries, downloading and setting

executable binaries, and changing OS and system configurations.

Figure 29 presents the feature Create VM Overlay aims to create a minimal VM overlay

starting from a resumed or running instance and then compress and save the VM overlay in

Glance storage for later download. VM overlay is able to create snapshots used later to

resume the VM from a specific moment, by containing the delta between the client VM and

the base image VM. It contains all the changes we need to add on the base VM to reproduce

the client VM environment at the moment of the migration. It adds this functionality with

the extensions mechanism, defining a new virtualization driver CloudletDriver class that

47

inherits nova_rpc.ComputeAPI. The Elijah command to create a customized VM based on

top of the base VM is a cloudlet overlay.

(a) Create VM overlay process – Instance Setup

(b) Create VM overlay process – Final state

Figure 29 - Overlay creation process

As previously explained, it was not possible to implement VM Handoff. The function VM

synthesis launches a new VM instance to the OpenStack cluster, a process known as VM

Provisioning. It uses an HTTP POST message with the overlay_ulr parameter and

CloudletDriver hypervisor driver handles this message and manages the VM spawning

methods to perform VM synthesis using the VM overlay and the VM base image. The

commands synthesis_server for the server invokes the synthesis mechanism and listens

locally and synthesis_client with the specification of the server IP and the overlay URL as

presented in Figure 30.

(a) VM provisioning setup

48

(b) VM provisioning final state

Figure 30 - Cloudlet VM Synthesis creation process

Figure 31 ilustrates the VM handoff interface which enables to migrate VMs between

different OpenStack nodes. Since it involves two independent nodes, it is necessary that the

user has permissions to access them and call the APIs. The command to execute the handoff

uses a Python file, called cloudlet_client, which requires the UUID of the VM to migrate

and the credentials to access both OpenStack nodes. It is possible to perform VM handoff

only if the VM is synthesized.

Figure 31 - VM Instance Handoff setup creation

49

5. PERFORMANCE TESTS

SETUP

The performance evaluation measures the latency of the system, as the time interval

between the user's request and the system response. This includes bottlenecks in the

network, wireless access colisions, optical fiber delays, hardware, and operating system

latency.

Figure 32 presents the architecture of our testing workbench. The environment defined

enables the performance measurement of the cloudlet and cloud solutions. This work

implements two use cases with several testing cycles. Finally, an analysis compares the

data collected.

Figure 32 - Performance evaluation diagram

50

5.1. CLOUD PLATFORM

In order to evaluate the difference between cloud and cloudlet regarding key features, such

as latency or user quality of experience, a cloud platform service was selected. The cloud

platforms that offer better capabilities around flexible compute, storage and networking are

Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform. They all share

the common elements of a public cloud: self-service and instant provisioning, auto-scaling,

plus security, compliance and identity management features. It is possible to

launch Virtual Machines with many types of OS, such as Windows 7, Ubuntu 14.05.

Our test scenarios were implemented on the AWS platform, which provides a range of

functionalities, a list of tools and services. Moreover, one of the our test scenarios is based

on FaceSwap application, which only has an Android server disk image on Amazon EC2.

This server application can launch instances with many configuration types, such as different

number of cores and RAM. This feature was crucial to the choice of the cloud platform.

AWS Educate is Amazon’s global initiative to provide students with the resources needed

to hands-on access to AWS technology, training resources and to test free tier experiments.

It is possible to launch AWS Virtual images freely with 1 CPU core for some considerable

timeline and data transfer. The two applications used in the scenarios have a recommended

processing of more than 1 CPU core, so several test setups with more CPU cores were also

used. Unfortunately, this configuration is only part of the test to perform and, for other testing

scenarios with extended virtual machine resources, we had to pay to perform tests that

require those conditions.

5.1.1. AWS FUNCTIONALITIES

AWS offers a Platform as a Service (PaaS), IaaS, serverless computing and much more, with

over 70 different services.

51

Amazon VPC is the Virtual Private Cloud and allows building virtualized private networks

inside of AWS, with subnets, NAT gateways, VPN connections, routing tables, security

groups.

Amazon Elastic Compute Cloud (Amazon EC2) is a web-based service that allows

businesses to run application programs in the Amazon Web Services (AWS) public cloud.

Amazon EC2 allows a developer to spin up virtual machines (VM), which provide compute

capacity for IT projects and cloud workloads that run with global AWS datacentres, as

presented in Figure 33.

The Amazon EC2 web interface provides a scalable service as it allows the user to increase

or decrease instance capacity within minutes. A developer can define auto-scaling police to

scale instances automatically or manage multiple instances at once.

Figure 33 - AWS EC2 Dashboard

To use EC2, developers create an Amazon Machine Image (AMI) containing an operating

system, application programs, and configuration settings. The Amazon Simple Storage

Service (Amazon S3) uploads the AMI and registers it with Amazon EC2, creating an AMI

identifier. Once done, the subscriber can restart virtual machines on an as-needed basis.

Data only remains on an EC2 instance while it is running, but developers can use an Amazon

Elastic Block Store volume for an extra level of durability and Amazon S3 for EC2 data

backup. VM Import/Export enables to import on-premises virtual machine images to

Amazon EC2 for launching their instances.

52

5.2. TESTBENCH SCENARIO

This work conducted all experiments using the configuration shown in Figure 34. We create

a testing workbench, which is a fixed development environment that is reproducible and

portable. This environment allows us to measure the performance of the cloudlet and the

cloud. In the two use cases, an Android client application runs on a smartphone, and servers

are run on the cloudlet and in the cloud.

Figure 34 - Evaluation infrastructure setup

The smartphone used to test the client is a Samsung S8. Table 3 presents the main

characteristics of this device [87].

Table 3 - Smartphone specification

Galaxy S8 specifications

Processor CPU: Octa-core (2.3GHz Quad + 1.7GHz Quad)

Display Size: 5.8" Quad HD+ Super AMOLED (2960x1440)

OS Android 7.0

Camera Main Camera: 12.0 MP, Front Camera: 8.0 MP

Memory RAM size: 4.0 GB, ROM size: 64.0 GB

Network/Bearer 3G, 4G

Connectivity GPS, Glonass, Wi-Fi 802.11 a/b/g/n/ac 2.4+5GHz, Bluetooth 5.0

53

Sensors Accelerometer, Fingerprint Sensor, Gyro Sensor, Geomagnetic Sensor, Light Sensor,

Proximity Sensor

Physical specification Dimension (mm) 148.9 x 68.1 x 8.0, Weight (g) 155

The smartphone uses an access point Wi-Fi connection to establish the connection to the

cloudlet or the cloud. The Cloudlet platform used in these experiments runs on a laptop

Toshiba L755-1DR, Table 4 presents the main characteristics of this equipment [88]. On a

remote AWS server run the cloud, as explained in the subsection before.

Table 4 - Cloudlet specifications

Toshiba SATELLITE L755-1DR specifications

Processor Intel® Core™ i7 -2670QM - clock speed : 2.20 / 3.10 Turbo GHz

OS Ubuntu 14.05

Memory RAM size: 8.0 GB ddr3, ROM size: 640.0 GB

Connectivity Wi-Fi 802.11 a/b/g/n 2.4+5GHz, Bluetooth 4.0

Physical specification Dimension (mm) 380.0 x 250.0 x 27.7, Weight (Kg) 2.5

5.3. USE CASE 1 - FLUID MOBILE APPLICATION

The first application is Fluid, an application used in interactive computer graphics

representative of real-time games.

5.3.1. FLUID

Fluid is a simple implementation of a liquid fluid simulation using the Smoothed Particle

Hydrodynamics (SPH) method [89]. The SPH model is a Lagrangian method used to model

fluid flow by treating each particle as a discrete element of fluid. It turns the device screen

into a container where a liquid sloshes through the movement given into the device and the

accelerometer input readings. It allows a user to interact directly with each particle.

The application backend runs on an Ubuntu OS and performs the dynamic simulation using

2218 particles. These particles slosh each side of the smartphone screen with different speed

and direction through direct user interaction. On the backend side, the application runs a

54

physic simulator based on the predictive-corrective incompressible smoothed particle

hydrodynamics [89].

(a) Cloudlet and Clouds server lists

(b) Application running

Figure 35 - Fluid client application

5.3.2. CLIENT APPLICATION

The Fluid client application is an Android application that runs on smartphones. Fluid

configuration first step consists of choosing a server from a list and requesting the creation

55

of client threads. Figure 35-a) shows a list of servers installed on a Cloudlet and on an AWS

Cloud.

After that, the particles will move around according to the speed and acceleration sensed by

the smartphone, as presented in Figure 35 b). This client application sends the realtime

readings to a graphics engine in the backend server; those readings are subject to a physics-

based simulation and are periodically rendered on the smartphone, giving the illusion of

liquid sloshing around.

The client application was configured to show the key features in the left top side of the

screen, while the simulation is running. In that way, it provides the latency value and the

output frame rate, as shown in Figure 36.

Figure 36 - Fluid client application running

5.3.3. SERVER

The cloudlet server is the main element of the architecture, it implements the compute-

intensive backend, offloaded from the smartphone to the cloudlet or the Amazon EC2 cloud.

The device movement generated by the smartphone user results on an accelerometer sensing

and the communication of the readings to a graphics engine in the backend.

Figure 37 shows the TCP communication between the client application and the server.

Figure 37 (a) represents the communication between client and server, we can observe that

the client streams the information gathered by the accelerometer, the request part is only a

few bytes. In the other way, the response data is the state of the simulated form and it has a

much larger size (1400 B), as shown in Figure 37 (b).

56

(a) Communication between client and server

(b) Frame composition

Figure 37 - Communication sniffing

5.3.4. TEST SETUP

The first experiment consisted on allowing the dynamic resource allocation on the cloudlets.

Cloud previously stores the VM images, but it does not present fast options to instantiate

new images, resulting in long waiting time over WAN networks. For that reason, Cloudlets

are expected to be much more agile in provisioning fast and dynamic solutions.

An user that needs to use a specific application shall connect to a nearby Cloudlet which

must provide fast VM instatiation through the server backend application. If nearby cloudlets

exist, the rapid provisioning enables the user a good quality of service at any place and

57

any time; and a precise VM image loads the application offloading components. Therefore,

if the Base VM already instantiated on the cloudlet, it will lack only the application and

library difference, also called the VM overlay.

To achieve fast provisioning, the Base VM and the VM overlay are two tasks done offline

and register the time of the VM synthesis.

The base VM launched has a freshly installed OS Ubuntu 14.05, with 8 GB of disk and 1

GB of memory. An image was instantiated and after that the application and the other

binaries were also configured. After that, the VM was ready to launch and create the overlay

using the difference between the launch VM and the Base VM image.

The measurement of the VM synthesis time is illustrated in the Figure 38, so after the

download of the VM overlay through Wi-Fi, decompress and instantiate on the Base VM

and it stops when the construct launch booted VM. The measurement was made 10 times to

collect the results during that period.

The second part of the experiment regards the quality of experience and interactivity to

ensure that the delay between the input and the result output should be around 100 ms. In

this scenario, the simulator runs all the 2218 particles with time steps of 20 ms, so it can

generate up to 50 frames per second.

Figure 38 - VM Synthesis process

The performance evaluation measures the response time of the system using the cloudlet in

comparison with the cloud through the workbench (Fig. 34) explained in subsection 5.2 .

The measurement starts from the moment the device sends the sensor data; then it processes

the data until the server sends back the estimated prevision feedback. One measuring cycle

58

provides the response time given by several iterations performed by the user. The

measurement process starts with a 5 minutes of interaction, generating almost 300 samples.

During that time, the user has to slosh the particles quickly from one side to the other side

of the smartphone screen. At the end of each cycle the measurements are collected.

The graphics quality determines the end-to-end latency between the sensing and display in

the front-end side and the simulation on the back-end side. The quality of the graphics

degrades and presents sudden or slow movements because of the latency increase. To get a

fluid movement of the particles, the latency should present a maximum value of 100 ms,

over wise jerky or sluggish can appear, deteriorating the user experience.

The other key feature is the output frame rate measured in frames per second (FPS), this

value is a good metric to verify the graphics quality. This value can be compared with the

value generated by the server. The server keeps generating up to 50 FPS and changes the

states of simulation according to the data received from the sensors.

The round of the experiments performed with different VM instances on both cloudlet and

cloud also allowed to analyse the influence of the server processing capacity in the system

performance. So, cloud servers were instantiated with 1, 2 and 4 cores both in cloudlet and

cloud and all the test cycles were performed, analysed the collected data and assess the

performance of the implemented cloudlet prototype against the cloud.

5.4. USE CASE 2 – FACESWAP MOBILE APPLICATION

The second application is FaceSwap, an application used in face recognition representative

of real-time face recognition. We use it to implement a use case scenario to visualize

differences cloudlet can make in reducing network latency for compute-intensive and

latency-sensitive applications.

5.4.1. FACESWAP

FaceSwap is an Android application that swaps people’s faces in real time. This application

used other applications to perform the swap, such as face tracking, face detection, and face

recognition. The server setup also needs the installation of the dependencies OpenCV,

OpenFace and Gabriel.

59

5.4.2. CLIENT APPLICATION

The FaceSwap Android Client can be download on Google Play platform [90], this

application is really user-friendly with a minimum of function or configuration, so it is easy

to get quick results from the principal screen presented in Figure 38.

The first part regards face tracking and detection, and it requires configuring the application.

The first step is to add FaceSwap Server IPs, to access this menu it is necessary to select the

option “Manage servers” inside the Menu Button on the top right corner of the principal

page. Figure 39 presents the menu used to configure and save a cloud or cloudlet server with

key features: name, IP address, server’s category: cloud or cloudlet.

Figure 39 - FaceSwap android application

Figure 40 - Server configuration

The second step is to come back to the principal screen, and the user has to select the specific

server in the top section “Select server type” from the 2 options cloud or cloudlet.

60

The third step is to start the training. The user has three different methods in the menu “Add

Trainings Images”. If the user chooses the option “Collect images” it will automatically open

the smartphone camera to collect training images. The option “From Local File” will allow

the user to load a FaceSwap dataset stored on a local directory in the smartphone. The last

option “From Google Drive” allows the user to load a FaceSwap dataset stored on Google

Drive. In this part, the user has to enter the name of the person that will perform the

experiment, as shown in Figure 40 a).

(a) Training Person Name personalization

(b) Training images collect

Figure 41 - FaceSwap Training session

61

After that, it will start the collection of the images. The person should turn the head to all

directions to take pictures of many face profiles as possible. These different snapshots will

turn the detection and recognition easier and faster.

“Choose faces to substitute” is the fourth step. The user can choose the person who will have

the face swap with a substituted image. In that section, a list of persons that perform the

training appears as shown in Figure 41 a). The user has to select the person who will have

the face swap with another one. The user will choose that person from a list of persons from

a new window as presented in Figure 41 b).

(a) List of Persons trained

(b) Swap Person Selection

Figure 42 - FaceSwap choose option menu

62

The experimental part starts from this point. The user has to select the option “Run demo”

and it begins to stream images from the smartphone to the back-end server.

Figure 43 - Swap person selection

 The key features of this experiment appear on the screen in real time. Figure 43 presents

this feature on the right top of the screen where it appears the latency value and the output

frame.

5.4.3. SERVER

The back-end server uses an Apache 2.0 license and a three-tier hierarchy based on face

tracking, face detection, and face recognition, as presented in Figure 43.

The application client is constantly transmitting images of the faces in JPEG format, with

dimension 640x480. On the back-end server, if the result of a face tracking is positive, it will

send bounding boxes with faces in JPEG formats. If it establishes face detection and

recognition, it will perform the swap of the person’s faces. The communication between the

Android client application and the server uses TCP traffic on the ports 9098 and 9101.

The FaceSwap server setup installs dependencies, such as dlib, OpenCV, OpenFace, and

Gabriel.

63

Figure 44 - Application client server process

Gabriel is the dependency responsible for the underlying communication library [91].

Gabriel is a wearable cognitive assistant for users in cognitive decline. It combines the image

capture and sensing capabilities of Google Glass devices with cloudlet processing to perform

real-time scene interpretation. This system layers on top of an OpenStack extension for

cloudlet environments.

64

Figure 45 - Server launching control

Gabriel runs the FaceSwap engine on the VM instance, at first it uses Universal Plug and

Play (UPnP) to discover control server from the ucomm server and cognitive engines, as

shown in Figure 45. If the ucomm server connects successfully to the control server, a log

message “INFO User communication module is connected” appears at the control server.

After that, it runs the cognitive engine that will prompt the message “INFO offloading engine

is connected”. Figure 46 a-) present the communication between the user application and the

server during a face detection. The user has to take several pictures to form a little database

of faces in variable angles, so the detection phase will be easier to identify the person.

(a) Training for face detection

65

(b) Face swap during faces recognition

Figure 46 - Cognitive engine communications

OpenFace is the dependency used to perform both the faces classifier training and face

recognition [92].

OpenFace’s core provides a feature extraction method to collect a low-dimensional

representation of any face. This function creates a face classifier by using a deep neural

network (DNN) model to train and use a classification model.

The comparison feature outputs the similarity between two faces, and two faces are more

likely the same person if it presents a lower score.

The face recognition application detects faces in an image and attempts to identify the face

from a pre-populated database. The Haar Cascade of classifiers collects the detection

part and the Eigenfaces method allows the identification based on the principal component

analysis (PCA) [93]. OpenCV implements image processing and computer vision

routines [94].

Our experiments only consider the recognition part on a trained system because the

classifiers train and the database population are jobs done offline. The Figure 46 b) presents

the engine communications during the swap between two faces. If the faces detected match

the faces present in the database, then a successful communication reply is sent out to enable

the swap of the faces.

66

The FaceSwap server accomplishes the setup in two manners: manually or using a pre-

packaged image. In the first approach, it is necessary to install all components and their

dependencies: OpenFace, dlib, OpenCV, Torch, Gabriel and at last FaceSwap. We tried

several times. It comes to several errors regarding the different versions of pip or the docker

installation for OpenFace.

We assume that it was preferable to use the pre-packaged image, in the qcow2 format as

shown in Figure 47, and OpenStack imports it as a volume. After that, it launches an instance

directly, and the Faceswap server already launches by itself on the start-up. The

inconvenience is that we assume that the possibility to not make an overlay because the

image comes already with the Faceswap server on it. Another interesting part is that the

Faceswap server is already part of the AWS EC2 VM instance, so it is possible to launch

with a different configuration regarding the number of cores and RAM width.

Figure 47 - FaceSwap image metadata

5.4.4. TESTBENCH SIMULATION SETUP

The main goal of the scenario implemented is to verify the crucial role that cloudlets play in

reducing end-to-end latency for computation offloading mobile applications. This test used

the FaceSwap application, that performs face tracking, detection, recognition and swap in

real time.

67

Tests shown that face tracking performs quickly, around 15ms, and that it is possible collect

data at high frame rates, making it possible to achieve a real-time response. On the other

hand, as face detection and face recognition takes a longer times, around 200ms, these tasks

are used offline, so the main goal is still attainable. When the results become available,

trackers can be updated.

The performance evaluation measures the response time of the system using the cloudlet in

comparison with the cloud through the workbench (Fig. 34) explained in subsection 5.2.

The measurement is regarding end-to-end latency, which is the time difference between the

substituted face and the original face. One measuring cycle measures the response time given

several iterations performed by a user. We start the process by launching the recommended

FaceSwap server with 4 cores and 8 GB RAM on the cloudlet and on the cloud AWS EC2

Oregon. The measurement uses an N-cycle of interaction. We use children as users because

they are always moving and we can analyze better features like face tracking. At the end of

each cycle, we collect the desired measurements.

The end-to-end latency determines the quality of the graphics. To use this application fluidly,

the latency should present a maximum value of 200 ms, however, the user experience will

deteriorate.

The other key feature is the output frame rate measured in frame per second (FPS), this value

is a good metric to verify the graphics quality and good value should be around 50 FPS.

The second round of experiments uses different VM instances on both the cloudlet and the

cloud. It was analyzed the possibility of increasing the number of cores to achieve better

results. Therefore, instances were launched with 2, 4, 6 and 7 cores on the cloudlet and with

1, 2, 4, 8, 16 and 32 cores on the cloud. The same simulation was performed and it was

analyzed, we analyze the collected data and assess the performance of our implemented

cloudlet prototype against the cloud.

68

69

6. ANALYSIS OF THE

RESULTS

Experiments occurred in a fixed environment, deploying each scenario with the same

experimental settings. From the comparison of cloud services, this work selects AWS EC2-

West (Oregon) which presents a round trip time (RTT) of 101.5 ms, a better result than the

ones measured on AWS EC2-Europe, AWS EC2-Asia, and AWS EC2-East. This value is

higher compared to the values presented by Li et al. on his study, which reports an RTT of

74 ms from 260 global vantage points to their optimal Amazon EC2 instances.

The mobile device uses 802.11n to connect to a private access point connected to the network

via Ethernet and then via the Internet to the AWS website portal. The mobile device uses

Wi-Fi 802.11n to connect to the cloudlet is on the same Ethernet network as the access

point.

The experiments evaluate end-to-end latency and user quality by implementing N-cycles of

interaction that registers different phenomena that can occur in real life, such as bandwidth

limitations, Wi-Fi saturation, and congestion, routing instability, application vendor failure.

These N-cycles enable the result presentation and comparison with a reliable interval. For

each use case, these results use Cumulative Distribution Function (CDF) that provides easily

various information in one plot, such as the median, worst-case, best-case, standard deviation

and also the percentile of response time or frame rate output in each simulation.

70

6.1. TEST RESULT USE CASE - FLUID

The aim is to verify the real-time value of the application’s offloading part at the network

edge servers. This use case uses an application representative of real-time games, which is

one target for 5G requirements.

The first experiment tests and compares the efficiency of VM synthesis on the cloudlet

against the cloud solution. It is important that it instantiates fast enough so that the user

continues with a good quality of experience.

The second experiment compares the values of the response time and the frame rate output

of similar VM instances running on both the cloudlet and the cloud. Table 5 summarizes this

comparison. On the one hand, the AWS dashboard presents a list of instances with fixed

configuration values, such as the number of cores or the RAM memory.

On the other hand, instances launched through the cloudlet present hardware limitations, so

it is not possible to launch instances with the exact number of cores and RAM.

This experiment also analyzes the possibility of decreasing the values collected before by

increasing the VM instances’ size.

Table 5 - Servers instance configuration type

Servers
Instance configuration type

1 core 2 cores 4 cores

Cloudlet 1 CPU - 1 GB RAM 2 CPU - 4 GB RAM 4 CPU - 6 GB RAM

Cloud 1 CPU - 1 GB RAM 2 CPU - 4 GB RAM 4 CPU - 16 GB RAM

6.1.1. CLOUDLET MEASUREMENTS

The first experiment regards the VM synthesis time. It is possible to perform the VM

synthesis after instantiating the Base VM and the VM overlay. Doing these offline tasks

previously enables fast provisioning.

71

The Base VM launched is a new installation of an OS Ubuntu 14.05, with 8 GB of disk and

1 GB of memory. It gathers the VM overlay after instantiating the Base VM, installing and

configuring the needed application and all necessary binaries. Figure 48 presents the overlay

collected using the difference between the launch VM and the Base VM image.

(a) VM overlay disk image file metadata

72

(b) VM overlay memory snapshot metadata

Figure 48 - VM overlay metadata files

Installed on the mobile phone, the VM overlay has a size of 2,4 MB.

The measurement of the VM synthesis time follows Figure 38. So the VM overlay needs to

be downloaded through Wi-Fi, decompress and instantiate on the Base VM and it stops when

the constructed launch VM is booted. The test measurement occurs 10 times to collect

different periods.

The VM synthesis presents an average of 29.84 seconds with a standard deviation of 0.45

seconds. These results are higher compared with the ones presented by Ha k. at el [95] on

his study, it presents an average time under 10s. However, our time is under the synthesis

time estimated as too large for good user experience between 60 and 150 seconds.

The second process launches the Fluid server on VM instances. After that, it is possible to

launch Fluid client application on the mobile smartphone. During 5 minutes of interaction,

which the user has to slosh the particles quickly from one side to the other side of the

smartphone screen, we collect the desired measurements.

73

Figure 49 - CDF for response time and frame rate for Fluid - Cloudlet

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

10 20 30 40 50 60 70 80

C
D

F
(%

)

Latency (ms)

CDF of response time Cloudet 1 CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

30 35 40 45 50

C
D

F
(%

)

Frame rate Output (FPS)

CDF of frame rate output Cloudlet 1 CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

30 35 40 45 50

C
D

F
(%

)

Frame rate Output (FPS)

CDF of frame rate output Cloudlet 2 CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

10 20 30 40 50 60 70 80

C
D

F
(%

)

Latency (ms)

CDF of response time Cloudet 2 CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

10 20 30 40 50 60 70 80

C
D

F
(%

)

Latency (ms)

CDF of response time Cloudet 4 CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

30 35 40 45 50

C
D

F
(%

)

Frame rate Output (FPS)

CDF of frame rate output Cloudlet 4 CPU

74

Figure 49 and Table 6 present the test results of the Fluid application using Cloudlet’s

instances with 1, 2 and 4 CPU.

Table 6 - Cloudlet test results for Fluid

CLOUDLET
1 core 2 cores 4 cores

Latency FPS Latency FPS Latency FPS

Median 34.0 44.7 34.0 47.2 32.0 46.5

Minimum 19.0 42.4 10.0 40.4 10.0 33.8

Maximum 76.0 48.5 91.0 49.5 68.0 49.3

Standard Deviance 9.4 0.7 8.9 0.4 7.5 0.6

6.1.2. CLOUD MEASUREMENTS

Figure 50 and Table 7 show the experiments using AWS EC2 Oregon and present the values

of CDF regarding response time and frame rate output.

Table 7 - Cloud test results for Fluid

CLOUD
1 core 2 cores 4 cores

Latency FPS Latency FPS Latency FPS

Median 145.0 8.6 126.0 22.0 124.0 21.7

Minimum 87.0 16.8 87.0 15.4 10.0 4.9

Maximum 277.0 18.7 328.0 23.8 605.0 22.6

Standard Deviance 35.6 0.3 34.1 0.9 38.6 2.1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

80 110 140 170 200 230 260

C
D

F
(%

)

Latency (ms)

CDF of response time Cloud 1 CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

16 17 18 19 20

C
D

F
(%

)

Frame rate Output (FPS)

CDF of frame rate output Cloud 1 CPU

75

Figure 50 - CDF for response time and frame rate for Fluid - Cloud

6.1.3. RESULTS

Figure 51 presents the comparison between the Cloudlet and Cloud regarding the Fluid

application’s offloading on the servers.

The quality of the graphics is much higher in Cloudlet scenario, for Cloudlet response time

median values are around 32-34 ms and for Cloud the median values are around 124-145

ms.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

80 110 140 170 200 230 260

C
D

F
(%

)

Latency (ms)

CDF of response time Cloud 2 CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

15 17 19 21 23

C
D

F
(%

)

Frame rate Output (FPS)

CDF of frame rate output Cloud 2 CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

80 110 140 170 200 230 260

C
D

F
(%

)

Latency (ms)

CDF of response time Cloud 4 CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

4 6 8 10 12 14 16 18 20 22 24

C
D

F
(%

)

Frame rate Output (FPS)

CDF of frame rate output Cloud 4 CPU

76

Figure 51 - Cloud and Cloudlet test result comparison for Fluid

Compared with Cloud AWS EC2 Oregon, Cloudlet present latency values almost lower

four times. Using the cloudlet server, the movement of the particles is more fluid and does

not degrade easily as on the cloud.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

10 60 110 160 210 260 310 360 410 460 510 560

C
D

F
(%

)

Latency (ms)

CDF of response time for Fluid application

Cloudlet 1 CPU Cloudlet 2 CPU Cloudlet 4 CPU

Cloud 1 CPU Coud 2 CPU Cloud 4 CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

2 7 12 17 22 27 32 37 42 47

C
D

F
(%

)

Frame rate Output (FPS)

CDF of frame rate output for Cloudlets

Cloudlet 1 CPU Cloudlet 2 CPU Cloudlet 4 CPU
Cloud 1 CPU Cloud 2 CPU Cloud 4 CPU

77

The other key feature analyzed is the output frame rate that present median values of 44-47

FPS for Cloudlet and 18-22 for Cloud. Using Cloudlet ensures a rate of at least two times

higher than the cloud.

This 2 features analyzed to ensure that the use of Cloudlet can have a great impact and reduce

brutally the latency and augment substantially the user quality of experience.

To use this application and verify a fluid movement of the particles, the latency should

present a maximum value under 100 ms, over wise jerky or sluggish can appear,

deteriorating the user experience [95].

The values presented by the Cloudlet successfully accomplish the application requirements.

We also noticed that the values collected by K. Ha are similar compared to the

results gathered in our experiments.

We also notice that the VM instances with a higher configuration of CPU and RAM can

achieve better performance for intensive computation tasks in the server side. For Fluid

application, and comparing the data from the VM instances with 1 CPU and 4 CPU, we

verify that the latency reduces for 6% and an increase of 4% on the frame rate output.

6.2. TEST RESULT FROM USE CASE - FACESWAP

Our aim is to confirm the real value of offloading part of the application at the edge servers.

We use the structure of this application representative of face recognition, which is one

subject for 5G requirements.

The experiment allows us to compare directly the values of the response time and the frame

rate output on our cloudlet and on AWS EC2-Oregon with similar VM instances, as

summarized in Table 8. On one hand, AWS has instances with fixed values. On the other

hand, instances launched in our cloudlet present hardware limitations, so it is not possible to

launch instances with the exact number of cores and RAM.

This experiment also verifies the possibility of increasing the values collected before by

increasing the VM instances’ size and comparing many cases to achieve better performance.

78

Table 8 - Instance type configuration

Servers
Instance Type configuration

2 cores 4 cores 6 cores 7 cores 8 cores 16 cores 32 cores

Cloudlet
2 CPU

4 GB RAM

4 CPU

6 GB RAM

6 CPU

5 GB RAM

7 CPU

6 GB RAM

Cloud
2 CPU

8 GB RAM

4 CPU

16 GB RAM
 8 CPU

32 GB RAM

16 CPU

64 GB RAM

32 CPU

132 GB

RAM

6.2.1. CLOUDLET MEASUREMENTS

The process launches FaceSwap server on VM instances after that it is possible to launch

FaceSwap client application on the mobile smartphone and choose the cloudlet server. For

the first Cloudlet instantiation, it is necessary to perform the faces training. After that, an

option enables the user to choose two persons who will have to swap their faces for 100

images.

Figure 52 and Table 9 present the Fluid application’s test results using the Cloudlet. We

launch instances with 1, 2, and 4 CPU.

Table 9 - Cloudlet test results for FaceSwap

Cloudlet
2 CPU 4 CPU 6 CPU 7 CPU

Latency

(ms)
FPS

Latency

(ms)
FPS

Latency

(ms)
FPS

Latency

(ms)
FPS

Median 37.9 21.7 40.6 19.6 43.2 18.8 42.9 19.0

Minimum 29.7 12.1 26.3 4.9 31.1 11.9 34.0 12.0

Maximum 76.3 27.2 62.5 31.2 73.1 24.9 72.8 23.0

Deviance 10.8 3.9 9.7 5.3 10.9 3.4 9.7 3.0

79

´

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

25 30 35 40 45 50 55 60 65

C
D

F
(%

)

time (ms)

CDF of response time
Cloudlet - 4 CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

4 6 8 10 12 14 16 18 20 22 24 26 28 30

C
D

F
(%

)

Frame rate (FPS)

CDF of frame output rate
Cloudlet - 4 CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

25 30 35 40 45 50 55 60 65 70 75

C
D

F
(%

)

time (ms)

CDF of response time
Cloudlet - 6 CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

11 13 15 17 19 21 23 25

C
D

F
(%

)

Frame rate (FPS)

CDF of frame output rate
Cloudlet - 6 CPU

80

Figure 52 - CDF for response time and Frame rate for FaceSwap - Cloudlets

6.2.2. CLOUD MEASUREMENTS

Figure 53 and Table 10 present the values of CDF regarding response time and frame rate

output using AWS EC2 Oregon.

Table 10 - Cloud test results for FaceSwap

Cloud

1 CPU 2 CPU 4 CPU

Latency

(ms)
FPS

Latency

(ms)
FPS

Latency

(ms)
FPS

Median 208.3 4.6 210.5 4.6 212.4 4.5

Minimum 192.9 4.2 198.3 4.1 195.1 4.3

Maximum 233.6 5.1 237.1 5.0 251.9 5.0

Standard

Deviance
10.3 0.2 10.5 0.2 8.9 0.2

Cloud

8 CPU 16 CPU 32 CPU

Latency

(ms)
FPS

Latency

(ms)
FPS

Latency

(ms)
FPS

Median 204.9 4.7 618.5 1.6 379.9 2.6

Minimum 193.7 4.3 580.9 1.5 340.0 2.4

Maximum 222.7 5.0 676.5 1.7 412.0 2.9

Standard

Deviance
7.3 0.2 27.9 0.1 17.2 0.1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

34 39 44 49 54 59 64 69 74

C
D

F
(%

)

time (ms)

CDF of response time - Cloudlet
7 CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

11 13 15 17 19 21 23 25

C
D

F
(%

)

Frame rate (FPS)

CDF of frame output rate
Cloudlet - 7 CPU

81

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

200 210 220 230

C
D

F
(%

)

time (ms)

CDF of response time - Cloud - 1 CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

4,2 4,7 5,2

C
D

F
(%

)

Frame rate (FPS)

CDF of frame output rate - Cloud - 1 CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

195 215 235

C
D

F
(%

)

time (ms)

CDF of response time - Cloud - 2 CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

4 4,2 4,4 4,6 4,8 5

C
D

F
(%

)

Frame rate (FPS)

CDF of frame output rate - Cloud - 4 CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

192 196 200 204 208 212 216 220 224

C
D

F
(%

)

time (ms)

CDF of response time - Cloud - 8 CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

4 4,2 4,4 4,6 4,8 5

C
D

F
(%

)

Frame rate (FPS)

CDF of frame output rate - Cloud - 8 CPU

82

Figure 53 - CDF for response time and frame rate for FaceSwap - Clouds

6.2.3. RESULTS

Figure 54 presents the comparison between the Cloudlet and Cloud for the offloading of part

of Fluid application on the servers. The quality of the graphics is much higher in Cloudlet

scenario, for Cloudlet response time median values are around 38-43 ms and for Cloud the

median values are around 205-618 ms. For the same VM instance types launched, 2 and 4

CPU, latency values almost lower 5 times than the values measured for Cloud AWS EC2

Oregon. Using the cloudlet server face recognition is so much faster.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

580 600 620 640 660 680

C
D

F
(%

)

time (ms)

CDF of response time - Cloud - 16 CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 1,2 1,4 1,6 1,8 2

C
D

F
(%

)

Frame rate (FPS)

CDF of frame output rate - Cloud - 16
CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

335 355 375 395 415

C
D

F
(%

)

time (ms)

CDF of response time - Cloud - 32 CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

2,3 2,5 2,7 2,9

C
D

F
(%

)

Frame rate (FPS)

CDF of frame output rate - Cloud - 32
CPU

83

We notice a bandwidth reduction and maybe some losses on AWS for experiments regarding

16 and 32 CPU cases. We tried two times this experiment with an interval of 1 hour and the

results maintained similarly.

The other key feature analyzed is the output frame rate that presents the median values of

19-22 FPS for Cloudlet and 2-5 for Cloud. Using Cloudlet ensures a rate of at least 4 times

higher than the Cloud, so it will satisfy user experience with the Cloudlet scenario.

This 2 features analyzed to ensure that the use of Cloudlet can have a great impact and reduce

brutally the latency and augment substantially the user quality of experience.

To use this application and collect an application capable of performing face swapping, the

recommended FaceSwap server should have 4 cores and 8GM RAM [96]. The values

presented by the Cloudlet successfully accomplish the application requirements. We also

noticed that the values collected by J. Wang are similar compared to the results collected in

our experiments.

Compared with some other works using the application Face [98] [99] [100], the results

obtained in our experiments presents lower response time both for Cloudlet and AWS West

solutions. In all experiments, Cloudlets present better response time values than the cloud

solutions.

84

Figure 54 - Cloud and Cloudlet test result comparison for FaceSwap

It was analyzed the performance on launching VM instance with a higher configuration of

CPU and RAM intensive computation tasks on the server side. We noticed also that for

FaceSwap application launched on VM instances with 6 and 7 CPU, the CPU of the original

workstation was surcharging and even shut down, as shown in Figure 55. The "Stealth time"

(st) stands for the amount of CPU that has been allocated by the hypervisor to the virtual

machine that is not being utilized by the virtual machine. As this value should be 0 outside

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

28 128 228 328 428 528 628

C
D

F
(%

)

time (ms)

CDF of response time - Clouds and Cloudlets

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,4 6,4 11,4 16,4 21,4 26,4 31,4 36,4

C
D

F
(%

)

Frame rate (FPS)

CDF of frame output rate - Clouds and Cloudlets

Cloud 1 CPU Cloud 2 CPU Cloud 4 CPU Cloud 8 CPU
Cloud 16 CPU Cloud 32 CPU Cloudlet 2 CPU Cloudlet 4 CPU
Cloudlet 6 CPU Cloudlet 7 CPU

85

a virtualized environment, we can assume that the issue is between the VM instantiated and

the hypervisor. Libvirt is a toolkit used for communication with the hypervisor qemu-KVM.

It seems that the VM Instantiated is reaching almost 100% of each vCPU during the phase

of face recognition as show in Figure 55.

Figure 55 - CPU usage while FaceSwap running

86

87

7. CONCLUSION

This thesis presents an emerging technology that enables the reduction of the end-to-end

latencies and the increase of the user quality when using applications with mobile devices.

MEC is not replacing but complimenting the cloud computing model. The delay sensitive

part of application can be executed on MEC server, whereas delay tolerant compute intensive

part of application can be executed on the remote cloud server. MEC aims to enable the

billions of connected mobile devices to execute the real time compute intensive applications

directly at the network edge.

We prove that a MEC server can improve user interaction and quality of experience by

offloading the processing and computation intensive on edge servers. The values measured

in both use case scenario are convincing as the latency is always under 100 ms and always

better than the ones presented on remote servers (AWS EC2-Oregon). Compared to the

remote servers (AWS EC2-Oregon), tests realized showed that a MEC solution achieves

latency of about 25% of the MCCs latency and about 2 to 5 higher frame rate than in MCC.

Its proximity to the user allows a lower response time and delivers a better user experience.

The results of the VM synthesis show that resuming an instance from an overlay is a

fast operation nearby cloudlet. New emerging applications runs on WiFi and LTE networks

will improve greatly that results and prove even more the results.

We analyzed also the performance in the response time due to the variation of the server

processing capacity. This was achieved by considering several cores at the Cloudlet. In the

two uses cases (Fluid and Faceswap), the benefits were not really significant because those

applications were implemented using a single thread aproach.

While 5G technology is already on the way, MEC has a great role to play on the mobile

ecosystem with the increase of a new application like face recognition, real-time online

games, IoT, which are interactive and compute-intensive.

88

For future work, we propose an analysis on the pertinent interactions between MEC with

RAN through the selection and the traffic control in the User Plane. An interesting analysis

can be performed through the evaluation of the services performance and continuity in a UE

mobility environment.

89

References

[1] M. Armbrust, R. G. A. Fox, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A.

Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the clouds: A berkeley view

of cloud computing,” Feb. 2012. [Online]. Available:

https://www2.eecs.berkeley.edu/Pubs/TechRpts/ 2009/EECS-2009-28.pdf 32

[2] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: State-of-theart and research

challenges,” Journal Internet Services appl., vol. 1, no. 1, pp. 7–18, 2010.

[3] “More than 50 billion connected devices,” Ericsson, February 2011. [Online].

Available: http://www.ericsson.com/res/docs/whitepapers/wp-50-billions.pdf

[4] M. Skarpness, “Keynote: Beyond the Cloud: Edge Computing”, Open Source Summit.

[5] ETSI, “Mobile-edge computing introductory technical white paper,” White Paper,

Mobile-edge Computing Industry Initiative. [Online]. Available:

https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-

_introductory_technical_white_paper_v1%2018-09-14.pdf

[6] Juniper, “Smart wireless devices and the Internet of me,” White paper, Mar. 2015.

[Online]. Available: http://itersnews.com/wp-

content/uploads/experts/2015/03/96079Smart-Wireless-Devices-and-the-Internet-of-

Me.pdf

[7] CISCO, “The Internet of Things how the next evolution of the Internet is changing

everything,” White paper, Apr. 2011. [Online]. Available:

http://www.cisco.com/c/dam/en us/about/ac79/docs/innov/IoT IBSG 0411FINAL.pdf

[8] M. Chiang and T. Zhang, “Fog and IoT: An overview of research opportunities,” IEEE

Internet Things J., vol. PP, no. 99, pp. 1–1, 2016.

[9] GSMA INTELLIGENCE, “ANALYSIS - Understanding 5G: Perspectives on future

technological advancements in mobile”, White Paper, Dec. 2014. [Online]. Available:

https://www.gsmaintelligence.com/research/?file=141208-5g.pdf&download

[10] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta and P. Popovski, “Five disruptive

technology directions for 5G," IEEE Communications Magazine, vol. 52, no. 2, pp.

74-80, Feb. 2014.

90

[11] H. T. Dinh, C. Lee, D. Niyato, P. Wang, A Survey of Mobile Cloud Computing:

Architecture, Applications, and Approaches, Wireless Communications and Mobile

Computing 13 (18) (2013) 1587–1611.doi:10.1002/wcm.1203.

[12] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for VM-based

cloudlets in mobile computing,” IEEE Pervasive Comput.,vol. 8, no. 4, pp. 14–23,

2009.

[13] G. Intelligence, “Understanding 5G: Perspectives on future technological

advancements in mobile,” London, UK, 2014.

[14] A. Somov and R. Giaffreda, “Powering IoT devices: Technologies and opportunities,”

Available: http://iot.ieee.org/newsletter/november-2015/powering-iot-devices-

technologies-and-opportunities.html.

[15] R. Kemp, N. Palmer, T. Kielmann, F. Seinstra, N. Drost, J. Maassen, and H. Bal,

“EyeDentify: Multimedia cyber foraging from a smartphone,” in Proc. IEEE Int.

Symp. Multimedia, San Diego, CA, USA, Dec. 2009, pp. 392–399.

[16] B. Shi, J. Yang, Z. Huang, and P. Hui, “Offloading guidelines for augmented reality

applications on wearable devices,” in Proc. ACM Int. Symp. Multimedia, Brisbane,

Australia, Oct. 2015, pp. 1271–1274.

[17] W. N. Schilit, “A system architecture for context-aware mobile computing,” Ph.D.

dissertation, Columbia University, 1995.

[18] S. Nunna, A. Kousaridas, M. Ibrahim, M. Dillinger, C. Thuemmler, H. Feussner, and

A. Schneider, “Enabling real-time context-aware collaboration through 5G and mobile

edge computing,” in Proc. IEEE Int. Conf. Inf. Techn. New Generations (ITNG), Las

Vegas, NV, Apr. 2015, pp. 601–605.

[19] X. Luo, “From augmented reality to augmented computing: A look at cloud-mobile

convergence,” in Proc. IEEE Int. Symp. Ubiquitous Virtual Reality, Gwangju, South

Korea, Jul. 2009, pp. 29–32.

[20] A. Thiagarajan, L. Ravindranath, H. Balakrishnan, S. Madden, and L. Girod,

“Accurate, low-energy trajectory mapping for mobile devices.” in Proc. USENIX

Symp. Networked Systems Design and Implementation (NSDI), Boston, MA, Mar.

2011, pp. 1–14.

91

[21] H. Suo, Z. Liu, J. Wan, and K. Zhou, “Security and privacy in mobile cloud

computing,” in Proc. IEEE Int. Wireless Commun. Mobile Comput. Conf. (IWCMC),

Cagliari, Italy, Jul. 2013, pp. 655–659.

[22] ETSI, “Mobile-edge computing (MEC): Service scenarios.” [Online]. Available:

http://www.etsi.org/deliver/etsi_gs/MEC-IEG/001_099/004/01.01.01_60/gs_mec-

ieg004v010101p.pdf

[23] Y. Mao, C. You, J. Zhang, K. Huang and K. Letaiefet, “A survey on mobile edge

computing: The communication perspective”. IEEE Communications Surveys &

Tutorials, 2017. 19(4): p. 2322-2358.

[24] Juniper, “White paper: Mobile edge computing use cases & deployment options.”

[Online].Available:https://www.juniper.net/assets/us/en/local/pdf/whitepapers/20006

42-en.pdf

[25] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A overview of cloud computing,”

Commun. ACM, vol. 53, no. 4, pp. 52–58, Apr. 2010.

[26] M. Othman, S. A. Madani, S. U. Khan et al., “A survey of mobile cloud computing

application models,” IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 393–413, 1st

Quater 2014.

[27] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G. Rabbani, Q.

Zhang, and M. F. Zhani, “Data center network virtualization: A survey,” IEEE

Commun. Surveys Tuts., vol. 15, no. 2, pp. 909–928, 2nd Quarter 2013.

[28] A. Ghiasi and R. Baca, “Overview of largest data centers,” IEEE 802.3bs Task Force

Interim Meeting, May 2014. [Online]. Available:

http://www.ieee802.org/3/bs/public/14_05/ghiasi_3bs_01b_0514.pdf

[29] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher and V. Young, “Mobile Edge Computing,

A Key Technology Towards 5G, " ETSI White Paper, 2015.

[30] S. Clinch, J. Harkes, A. Friday, N. Davies and M. Satyanarayanan, “How close is close

enough? Understanding the role of cloudlets in supporting display appropriation by

mobile users,” in Proc. IEEE Int. Conf. Pervasive Comput. Commun. (PerCom),

Lugano, Switzerland, Mar. 2012, pp. 122–127.

92

[31] Tuyen X Tran, Abolfazl Hajisami, Parul Pandey, and Dario Pompili. Collaborative

mobile edge com-puting in 5g networks: New paradigms, scenarios, and challenges.

IEEE Communications Magazine, 55(4):54{61, 2017.

[32] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A survey on mobile

edge networks: Convergence of computing, caching and communications,” IEEE

Access, to appear.

[33] J. Zhang, W. Xie, F. Yang, and Q. Bi, “Mobile edge computing and field trial results

for 5G low latency scenario,” China Commun., vol. 13, no. 2 (Supplement), pp. 174–

182, 2016.

[34] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and P.

Bahl, “Maui: Making smartphones last longer with code offload,” in Proc. ACM Int.

Conf. Mobile Syst. Appl. Serv. (MobiSys), San Francisco, California, USA, Jun. 2010,

pp. 49–62.

[35] 5GPPP, “5g automotive vision,” White Paper. [Online]. Available: https://5g-

ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Automotive-Vertical-

Sectors.pdf

[36] O. Khalid, M. Khan, S. Khan, and A. Zomaya, “OmniSuggest: A ubiquitous cloud

based context aware recommendation system for mobile social networks,” IEEE

Trans. Serv. Comput., vol. 7, no. 3, pp. 401–414, Dec. 2014.

[37] K. Goel and M. Goel, “Cloud computing based e-commerce model,” in Proc. IEEE

Int. Conf. Recent Trends in Electron., Info. & Commun. Techn. (RTEICT), Banglore,

India, May 2016, pp. 27–30.

[38] G. Riah, “E-learning systems based on cloud computing: A review,” ELSEVIER Proc.

Comput. Sci., vol. 62, pp. 352–359, Sep. 2015.

[39] A. Abbas and S. U. Khan, “A review on the state-of-the-art privacy preserving

approaches in the e-health clouds,” IEEE J. Biomed. Health Inform, vol. 18, no. 4, pp.

1431–1441, Apr. 2014.

[40] M. T. Beck, M. Werner, S. Feld and S. Schimper, “Mobile edge computing: A

taxonomy," in Proc. of the Sixth International Conference on Advances in Future

Internet, Citeseer, 2014, pp. 48-54

93

[41] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud computing:

architecture, applications, and approaches," Wireless communications and mobile

computing, vol. 13, no. 18, pp. 1587-1611, Dec. 2013.

[42] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog Computing and its Role in the Internet

of Things, in: Proceedings of the 1st Edition of the MCC Workshop on Mobile Cloud

Computing, 2012, pp. 13–16. doi:10.1145/2342509.2342513.

[43] Shenoy K, Bhokare P, Pai U (2015) Fog computing future of computing. Int J Sci Res

4(6):55–56

[44] Suryawanshi R, Mandlik G. Focusing on mobile users at edge and internet of things

using fog computing (2015)

[45] Aazam M, Huh E-N (2014) Fog computing and smart gateway based communication

for cloud of things. In: Future internet of things and cloud (FiCloud), 2014

international conference on. IEEE, pp 464–470

[46] F. Bonomi, R. Milito, P. Natarajan, J. Zhu, Fog Computing: A Platform for Internet of

Things and Analytics, in: N. Bessis, C. Dobre (Eds.), Big Data and Internet of Things:

A Roadmap for Smart Environments, Vol. 546 of Studies in Computational

Intelligence, Springer International Publishing, 2014, pp. 169–186. doi:10.1007/978-

3-319-05029-4_7.

[47] L. M. Vaquero, L. Rodero-Merino, Finding Your Way in the Fog: Towards a

Comprehensive Definition of Fog Computing, SIGCOMM Comput. Commun. Rev.

44 (5) (2014) 27–32. doi:10.1145/2677046.2677052.

[48] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, M. Satyanarayanan, Towards Wearable

Cognitive Assistance, in: Proceedings of the 12th Annual International Conference on

Mobile Systems, Applications, and Services (MobiSys), 2014, pp. 68–81.

doi:10.1145/2594368.2594383.

[49] S. Jingtao, L. Fuhong, Z. Xianwei, L. Xing, Steiner Tree based Optimal Resource

Caching Scheme in Fog Computing, China Communications 12 (8) (2015) 161–168.

doi:10.1109/CC.2015.7224698.

[50] O. T. T. Kim, N. D. Tri, V. D. Nguyen, N. Tran, C. S. Hong, A Shared Parking Model

in Vehicular Network using Fog and Cloud Environment, in: Proceedings of the 17th

94

Asia-Pacific Network Operations and Management Symposium (APNOMS), 2015,

pp. 321–326. doi:10.1109/APNOMS.2015.7275447.

[51] J. Zao, T. T. Gan, C. K. You, S. Rodriguez Mendez, C. E. Chung, Y. T. Wang, T.

Mullen, T. P. Jung, Augmented Brain Computer Interaction Based on Fog Computing

and Linked Data, in: Proceedings of the International Conference on Intelligent

Environments (IE), 2014, pp. 374–377. doi:10.1109/IE.2014.54.

[52] M. T. Beck, M. Maier, “Mobile edge computing: challenges for future virtual network

embedding algorithms”, in: Proc. The Eighth International Conference on Advanced

Engineering Computing and Applications in Sciences (ADVCOMP 2014)

[53] Elijah: Cloudlet-based Edge Computing. http://elijah.cs.cmu.edu/ Accessed 10 June

2018

[54] G. I. Klas, “Fog computing and mobile edge cloud gain momentum open fog

consortium etsi mec and cloudlets", 2015, [online] Available:

http://yucianga.info/?p=938.

[55] Khan KA, Wang Q, Luo C, Wang X, Grecos C (2014) Comparative study of internet

cloud and cloudlet over wireless mesh networks for real-time applications. In: SPIE

Photonics Europe. International Society for Optics and Photonics, pp 91390–91390

[56] OpenEdgeComputing. http://openedgecomputing.org/ . Accessed 19 July 2017

[57] Qing W, Zheng H, Ming W, Haifeng L (2013) Cactse: cloudlet aided cooperative

terminals service environment for mobile proximity content delivery. China Commun

10(6):47–59

[58] Soyata T, Muraleedharan R, Funai C, Kwon M, Heinzelman W (2012) Cloudvision:

real-time face recognition using a mobile-cloudlet-cloud acceleration architecture. In:

Computers and communications (ISCC), 2012 IEEE symposium on. IEEE, pp

000059–000066

[59] Achanta VS, Sureshbabu NT, Thomas V, Sahitya ML, Rao S (2012) Cloudlet-based

multi-lingual dictionaries. In: Services in Emerging Markets (ICSEM), 2012 third

international conference on. IEEE, pp 30–36

[60] Koukoumidis E, Lymberopoulos D, Strauss K, Liu J, Burger D (2011) Pocket

cloudlets. ACM SIGARCH computer architecture news. ASPLOS XVI Proceedings

95

of the sixteenth international conference on Architectural support for programming

languages and operating systems 39(1):171–184. Available:

https://dl.acm.org/citation.cfm?id=1950387

[61] Verbelen T, Simoens P, De Turck F, Dhoedt B (2012) Cloudlets: bringing the cloud

to the mobile user. In: Proceedings of the third ACM workshop on mobile cloud

computing and services. ACM, pp 29–36

[62] Abolfazli S,Sanaei Z, Ahmed E, Gani A, Buyya R., “Cloud-based augmentation for

mobile devices: motivation, taxonomies, and open challenges”. CoRR, vol.

abs/1306.4956, 2013

[63] ETSI, “Mobile-edge computing (MEC): Terminology.” [Online].Available:

http://www.etsi.org/deliver/etsi_gs/MEC/001_099/001/01.01.01_60/gs_MEC001v01

0101p.pdf 2

[64] ETSI, Mobile Edge Computing (MEC): Technical Requirements.” [Online].

Available:http://www.etsi.org/deliver/etsi_gs/MEC/001_099/002/01.01.01_60/gs_M

EC002v010101p.pdf

[65] ETSI, “Mobile-edge computing (MEC): Framework and reference architecture.”

[Online].Available:http://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/01.01.01_

60/gs_MEC003v010101p.pdf

[66] ETSI, “Mobile-edge computing (MEC): Service scenarios.” [Online]. Available:

http://www.etsi.org/deliver/etsi_gs/MEC/001_099/002/01.01.01_60/gs_MEC002v01

0101p.pdf

[67] ETSI, “Mobile Edge Computing (MEC) Proof of Concept Framework.” [Online].

Available:http://www.etsi.org/deliver/etsi_gs/MEC-

IEG/001_099/005/01.01.01_60/gs_MEC-IEG005v010101p.pdf

[68] ETSI, “Mobile Edge Computing: Market Acceleration MEC Metrics Best Practice and

Guidelines.” [Online]. Available: http://www.etsi.org/deliver/etsi_gs/MEC-

IEG/001_099/006/01.01.01_60/gs_MEC-IEG006v010101p.pdf

[69] N. Sprecher, J. Friis, R. Dolby, and J. Reister, “Edge computing prepares for a multi-

access future”, Sep.2016. [Online]. Available:

96

http://www.telecomtv.com/articles/mec/edge-computing-prepares-for-a-multi-

access-future-13986/

[70] 3GPP, “Technical specification group services and system aspects; system architecture

for the 5g systems; stage 2 (release 15),” 3GPP TS 23.501 V0.4.0, Apr.

2017.[Online].Available:https://portal.3gpp.org/desktopmodules/Specifications/Speci

ficationDetails.aspx?specificationId=3144

[71] [71] ETSI, “Mobile Edge Computing (MEC); General principles for Mobile Edge

Service APIs”. [Online].

Available:http://www.etsi.org/deliver/etsi_gs/MEC/001_099/009/01.01.01_60/gs_M

EC009v010101p.pdf

[72] ETSI, “Mobile Edge Computing (MEC); Mobile Edge Management; Part 2:

Application lifecycle, rules and requirements management” [Online]. Available:

http://www.etsi.org/deliver/etsi_gs/MEC/001_099/01002/01.01.01_60/gs_MEC0100

2v010101p.pdf

[73] ETSI, “Mobile Edge Computing (MEC); Mobile Edge Platform Application

Enablement” [Online]. Available:

http://www.etsi.org/deliver/etsi_gs/MEC/001_099/011/01.01.01_60/gs_MEC011v01

0101p.pdf

[74] TSI, “Mobile Edge Computing (MEC); Radio Network Information API”

[Online].Available:http://www.etsi.org/deliver/etsi_gs/MEC/001_099/012/01.01.01_

60/gs_MEC012v010101p.pdf

[75] ETSI, “Mobile Edge Computing (MEC); Location API” [Online]. Available:

http://www.etsi.org/deliver/etsi_gs/MEC/001_099/013/01.01.01_60/gs_MEC013v01

0101p.pdf

[76] ETSI, “Mobile Edge Computing (MEC); UE application interface” [Online].

Available:http://www.etsi.org/deliver/etsi_gs/MEC/001_099/016/01.01.01_60/gs_M

EC016v010101p.pdf

[77] ETSI, “Mobile Edge Computing (MEC); Mobile Edge Management; Part 1: System,

host and platform management” [Online]. Available:

97

http://www.etsi.org/deliver/etsi_gs/MEC/001_099/01001/01.01.01_60/gs_MEC0100

1v010101p.pdf

[78] ETSI, “Mobile Edge Computing(MEC); Bandwidth Management API” [Online].

Available:http://www.etsi.org/deliver/etsi_gs/MEC/001_099/015/01.01.01_60/gs_M

EC015v010101p.pdf

[79] ETSI, “Mobile Edge Computing (MEC); End to End Mobility Aspects” [Online].

Available:http://www.etsi.org/deliver/etsi_gr/MEC/001_099/018/01.01.01_60/gr_M

EC018v010101p.pdf

[80] ETSI, “Mobile Edge Computing (MEC); UE Identity API” [Online]. Available:

http://www.etsi.org/deliver/etsi_gs/MEC/001_099/014/01.01.01_60/gs_MEC014v01

0101p.pdf

[81] ETSI, “Mobile Edge Computing (MEC); Deployment of Mobile Edge Computing in

an NFV environment” [Online]. Available:

http://www.etsi.org/deliver/etsi_gr/MEC/001_099/017/01.01.01_60/gr_MEC017v01

0101p.pdf

[82] M. Satyanarayanan, G. Lewis, E. Morris, S. Simanta, J. Boleng and K. Ha, “The role

of cloudlets in hostile environments,” Pervasive Computing, vol. 4, pp. 40-49, 2013.

[83] S. Simanta, G. Lewis, E. Morris, K. Ha and M. Satyanarayanan, “Cloud computing at

the tactical edge,” 2012.

[84] S. Simanta, K. Ha, G. Lewis, E. Morris and M. Satyanarayanan, “A reference

architecture for mobile code offload in hostile environment,” Mobile Computing,

Applications, and Services, pp. 274-293, 2013.

[85] Open Edge Computing elijah-OpenStack, Online available:

https://libraries.io/github/OpenEdgeComputing/elijah-openstack

[86] B. Solenthaler, R. Pajarola. Predictive-corrective incompressible SPH. ACM Trans.

Graph., 28(3):40:1–40:6, July 2009. ISSN 0730-0301. doi:

10.1145/1531326.1531346. URL http://doi.acm.org/10.1145/1531326.1531346 .

[87] “Galaxy S8”, available online, https://www.samsung.com/global/galaxy/galaxy-

s8/specs/

98

[88] “Toshiba Satellite L755-1DR”, available online, http://www.toshiba.pt/discontinued-

products/satellite-l755-1dr/

[89] B. Solenthaler, R. Pajarola. Predictive-corrective incompressible SPH. ACM Trans.

Graph., 28(3):40:1–40:6, July 2009. ISSN 0730-0301. doi:

10.1145/1531326.1531346, available

online:http://doi.acm.org/10.1145/1531326.1531346.

[90] FaceSwap Android Client, available online:

https://play.google.com/store/apps/details?id=edu.cmu.cs.faceswap

[91] K. Ha, C. Z, W. Hu, W. Richter, P. Pillai and M. Satyanarayanan, “Towards wearable

cognitive assistance,” in MobiSys '14 Proceedings of the 12th annual international

conference on Mobile systems, applications, and services, New York, NY, USA, 2014.

[92] OpenFace. Available online: https://cmusatyalab.github.io/openface/demo-3-

classifier/

[93] Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal of Cognitive

Neuroscience, 3(1):71–86, 1991.

[94] OpenCV. OpenCV Wiki. http://opencv.willowgarage.com/wiki/.

[95] K. Ha, “System Infrastructure for Mobile-Cloud Convergence”. PhD thesis, Carnegie

Mellon University Pittsburgh, PA, 2016.

[96] FaceSwap Github, available Online: https://cmusatyalab.github.io/faceswap/dev-

guide/

[97] OPNFV, available Online: https://www.opnfv.org/

[98] Z. Chen, W. Hu, J. Wang, S. Zhao, B. Amos2, G. Wu, K. Ha, K. Elgazzar, P. Pillai,

R. Klatzky, D. Siewiorek, M. Satyanarayanan, An empirical study of latency in an

emerging class of edge computing applications for wearable cognitive assistance,

SEC 2017: 14:1-14:14

[99] K. Ha, P. Pillai, G. Lewis, S. Simanta, S. Clinch, N. Davies, M. Satyanarayanan, The

Impact of Mobile Multimedia Applications on Data Center Consolidation. IC2E

2013: 166-176

99

[100] W. Hu, Y. Gao, K. Ha, J. Wang, B. Amos, Z. Chen, P. Pillai, M. Satyanarayanan,

Quantifying the Impact of Edge Computing on Mobile Applications. APSys 2016:

5:1-5:8

[101] M. Satyanarayana, et al., “Cloudlets: at the Leading Edge of Mobile-Cloud

Convergence”, MobiCASE 2014.

[102] K. Dolui, S. Datta, "Comparison of edge computing implementations: Fog

computing cloudlet and mobile edge computing", GIoTS, 2017.

[103] Y. Ai, M. Peng, K. Zhang, Edge cloud computing technologies for internet ofthings:

A primer, Digital Communications and Networks (2017), doi:

10.1016/j.dcan.2017.07.001

[104] D. Sabella, A. Vaillant, P. Kuure, Pekka U. Rauschenbach, F. Giust, Fabio. Mobile-

Edge Computing Architecture: The role of MEC in the Internet of Things., 2016,

IEEE Consumer Electronics Magazine. 5. 84-91. 10.1109/MCE.2016.2590118.

[105] T. Tran, A. Hajisami, P. Pandey, D. Pompili, Dario, Collaborative Mobile Edge

Computing in 5G Networks: New Paradigms, Scenarios, and Challenges, 2017, IEEE

Communications Magazine. 55. 10.1109/MCOM.2017.1600863.

[106] J. Okwuibe, M. Liyanage, I. Ahmad, M. Ylianttila, Mika. Cloud and MEC security,

2018, 10.1002/9781119293071.ch16.

[107] ETSI, “MEC Deployments in 4Gand Evolution Towards 5G”, ETSI White Paper No.

24, [Online]. Available:

https://www.etsi.org/images/files/etsiwhitepapers/etsi_wp24_mec_deployment_in_4

g_5g_final.pdf

[108] ETSI, “MEC in 5G networks”, ETSI White Paper No. 28, [Online]. Available:

https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.

pdf

100

101

History

 5 de Setembro de 2018, Versão 1.0, mailto:1000167@isep.ipp.pt

 30 de Outubro de 2018, Versão 1.1, mailto:1000167@isep.ipp.pt

 11 de Março de 2019, Versão 1.2, mailto: 100167@isep.ipp.pt

 21 de Junho de 2019, Versão 1.7, mailto: 100167@isep.ipp.pt

 3 de Julho de 2019, Versão 1.10, mailto: 100167@isep.ipp.pt

