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Resumo 

Hoje em dia, numerosas são as aplicações que apresentam um uso intensivo de recursos 

empurrando os requisitos computacionais e a demanda de energia dos dispositivos para além 

das suas capacidades. Atentando  na arquitetura Mobile Cloud, que disponibiliza plataformas 

funcionais e aplicações emergentes (como Realidade Aumentada (AR), Realidade Virtual 

(VR), jogos online em tempo real, etc.), são evidentes estes desafios directamente 

relacionados com a latência, consumo de energia, e requisitos de privacidade. 

O Mobile Edge Computing (MEC) é uma tecnologia recente que aborda os obstáculos de 

desempenho enfrentados pela Mobile Cloud Computing (MCC), procurando solucioná-los 

O MEC aproxima as funcionalidades de computação e de armazenamento da periferia da 

rede.  

Neste trabalho descreve-se a arquitetura MEC assim como os principais tipos soluções para 

a sua implementação. Apresenta-se a arquitetura de referência da tecnologia cloudlet e uma 

comparação com o modelo de arquitetura ainda em desenvolvimento e padronização pelo 

ETSI.  

Um dos propósitos do MEC é permitir remover dos dispositivos tarefas intensivas das 

aplicações para melhorar a computação, a capacidade de resposta e a duração da bateria dos 

dispositivos móveis. O objetivo deste trabalho é estudar, comparar e avaliar o desempenho 

das arquiteturas MEC e MCC para o provisionamento de tarefas intensivas de aplicações 

com uso intenso de computação. Os cenários de teste foram configurados utilizando esse 

tipo de aplicações em ambas as implementações de MEC e MCC. Os resultados do teste 

deste estudo permitem constatar que o MEC apresenta melhor desempenho do que o MCC 

relativamente à latência e à qualidade de experiência do utilizador. Além disso, os resultados 

dos testes permitem quantificar o benefício efetivo tecnologia MEC. 

Palavras-Chave 

Mobile computing, Cloud Computing, Edge Computing, Cloudlets, Mobile Edge 

Computing, máquinas virtuais (VM), provisionamento de VM, tempo de resposta, tramas 

por segundo (FPS). 
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Abstract 

Numerous applications, such as Augmented Reality (AR), Virtual Reality (VR), real-time 

online gaming are resource-intensive applications and consequently, are pushing the 

computational requirements and energy demands of the mobile devices beyond their 

capabilities. Despite the fact that mobile cloud architecture has practical and functional 

platforms, these new emerging applications present several challenges regarding latency, 

energy consumption, context awareness, and privacy enhancement.  

Mobile Edge Computing (MEC) is a new resourceful and intermediary technology, that 

addresses the performance hurdles faced by Mobile Cloud Computing (MCC), and brings 

computing and storage closer to the network edge.  

This work introduces the MEC architecture and some of edge computing implementations. 

It presents the reference architecture of the cloudlet technology and provides a comparison 

with the architecture model that is under standardization by ETSI.  

MEC can offload intensive tasks from applications to enhance computation, responsiveness 

and battery life of the mobile devices. The objective of this work is to study and evaluate the 

performance of MEC and MCC architectures for provisioning offload intensive tasks from 

compute-intensive applications. Test scenarios were set up with use cases with this kind of 

applications for both MEC and MCC implementations. The test results of this study enable 

to support evidence that the MEC presents better performance than cloud computing 

regarding latency and user quality of experience. Moreover, the results of the tests enable to 

quantify the effective benefit of the MEC approach.  

Keywords 

Mobile computing, Cloud Computing, Edge Computing, Cloudlets, Mobile Edge 

Computing, Virtual Machines, offloading, VM provisioning, VM instances, VM overlay, 

response time, FPS. 
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1. INTRODUCTION 

1.1 MOTIVATION 

The development of telecommunication networks has led to the emergence of new 

applications on mobile devices. Some applications are resource-intensive and, consequently, 

push the computational requirements and energy demands of mobile devices beyond their 

capabilities.  

It is in this context that Mobile Cloud Computing (MCC) arises as a practical solution for 

offloading mobile devices. Despite the fact that mobile cloud-based architectures provide 

functional platforms, those applications present several challenges regarding latency, energy 

consumption, context awareness, and privacy. Mobile Edge Computing (MEC) is a new 

resourceful and intermediary technology, that addresses the performance hurdles faced by 

MCC and brings the computing and storage resources closer to the network edge.  

1.2 OBJECTIVE 

The objective of this work is to study and evaluate the performance of MEC and MCC 

architectures for provisioning offload intensive tasks from compute-intensive applications. 

Test scenarios shall be defined and use cases executed with that kind of applications for both 
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MEC and MCC implementations, in order to quantify the performance achivements of each 

approach. 

1.3 ORGANIZATION 

This thesis reports a study carried out to evaluate the performance of resource-demanding 

applications in an edge and cloud-based approaches. This work  is organized as follows: 

 In Chapter 2, an overview of the actual scenario exposes the problem background in order 

to motivate the necessity of Mobile Edge Computing. It presents also the markets drivers 

which will benefit from the use of this technology, and also make an approach to the 

emerging 5G technology where this new architecture will be crucial to achieving the 

respective objectives. A summary presents the difference between the cloud and the edge 

computing, and an analysis related to the key features of the 3 principal frameworks of 

the edge computing: fog computing, cloudlets, and mobile edge computing.  

 In Chapter 3, an introduction summary addresses the standard efforts made by the 

community to orchestrate and normalize a reference architecture and framework. 

Secondly, this thesis presents the cloudlet architecture, compares it with the reference 

architecture proposed by the European Telecommunications Standards Institute (ETSI). 

In conclusion of the previous elements, we present the Thesis Statement. 

 Chapter 4 addresses the technical challenges of cloudlets by offloading computation 

intensive part of the application and describes all processes executed by the cloudlets.  

 In Chapter 5, we present the testbench scenario used to study and evaluate the 

performance of MEC and cloud solutions over 2 uses cases. An analysis is made of two 

use cases using compute intensive task applications. An explanation is provided for each 

application regarding the client side and the server side with the offload intensive task 

part. 

 In Chapter 6, this thesis presents the result tests for each use cases scenarios. 

 Chapter 7 concludes the dissertation through the analysis of the values obtained and 

explains future work. 
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2. THEORETICAL 

BACKGROUND 

In the last decade, Cloud Computing has emerged as a new paradigm in computer science 

delivering centralized services to end users. Cloud computing provides a shared pool of 

resources available all time, as centralized computing, storage and network management in 

the Cloud, Data Centers, backbone IP networks or cellular core networks [1, 2]. 

All kind of smart devices and sensors technology are connected, and this exponential growth 

result on a challenge for Cloud computing in order to meet many new requirements in the 

emerging Internet of Things (IoT).  

IoT is generating a huge quantity of data that needs to be analyzed, processed, transformed, 

stored and answered on an unprecedented scale and in a short time. Today clouds have 

become an indispensable part of that process; however, clouds centrally deployed but 

providing services on a global scale need to process an enormous amount of data. In addition, 

the infrastructure uses an end-to-end topology, so all these processes are supported from the 

Cloud and Data Centers to the IoT devices and end users.  

As the physical distance between the Users and the Cloud increases, transmission latency 

increases with it, increasing response time and stressing out the user. On top of that, the 

processing rate in this environment considerably depends on the performance of the 

equipment.  

By 2020, an estimation states that 50 billion of smart devices connected will exist and the 

volume of data will grow exponentially [3]. Traffic of 1,5 GB of data is expected per person 

per day [4]. All this explosion of data cannot be send to the Cloud, because it is not affordable 

to transport all this data in that timeframe. We are now at a transition point to drive an 

architecture change, where all major contributors are working together in order to implement 

new technologies.  
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Upon now, Mobile Cloud Computing (MCC) is mainly focused around the devices 

generating data and its transmission to the cloud for storage and then compute cycles are 

used to extract its value. However, the connection to a cloud does not present affordable 

latencies for many type of applications, when settled thousands of kilometers from the user. 

In this context, a distributed solution based on local servers placed at the network edges, 

providing computation power, analytics and storage capacity so that the mobile devices have 

a minimum computation effort and lower latency. Considering crucial for servers to be 

located close to the user, Mobile Edge Computing (MEC) [4] has emerged as a fundamental 

technology that will permit to develop the 5G vision and extract better benefits from the 

Internet of Things, Tactile Internet or Internet of Me [6]. Community and researchers from 

Industry and Academy, are working together to implement, test, promote, and normalize 

MEC technology.  

2.1. MARKET DRIVERS 

This Thesis started when researchers and the European Telecommunications Standards 

Institute (ETSI) were progressing in this young field and journey. It aims to present the 

benefits of Edge Computing in mobile networks and a few use case of applications that are 

deployable in the closer term. It also provides an overview of the MEC architecture, its 

deployment options, and presents results on the deployment such applications through MEC 

technology. 

The initial objective of Mobile Edge Computing is to provide Cloud Computing and IT 

services to the mobile environment anywhere and anytime, with data stored outside the 

mobile devices [26].  

Network operators and content providers can provide and exploit services to integrate across 

MEC platform. The main goal is to achieve a better user experience interaction and response 

by accessing faster applications through a nearby position. Moreover, information and 

services can be deliver directly and do not need to rely exclusively on cloud services 

anymore.  

The key players in MEC are infrastructure and device manufacturers, software providers, 

applications developers, Telecoms and Network Operators [31].  
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To networks operators, which are always searching for new revenues, MEC serves an 

important role in improving wireless system performance and reducing the cost of operation. 

They are already in the transition process through key technologies: Software Defined 

Networking (SDN) and Network Functions Virtualization (NFV) [97]. For hardware and 

software developers, MEC can bring new opportunities to create applications and consumer 

products through to promote mobile edge platforms and virtualization infrastructure and 

become innovation leaders in an otherwise fully commoditized market. 

Since all community is working together in MEC definition, the standardization is moving 

forward rapidly in last months. In [55], the authors present the main challenges for MEC 

scenarios, such as data interoperability, resource management, orchestration, service 

discovery and security.  

The following section presents some use cases and scenarios that illustrate the performance 

improvements provided by the utilization of MEC technology. 

2.1.1. USE CASES: USER SIDE 

IoT intends to connect smart devices to the Internet in order to exchange information and 

data, such as identification, location, monitoring and management [56]. 

 

Figure 1 - IoT architecture [5] 

IoT is a network that interconnects physical devices, sensors, actuators or electronics with 

embedded software which can exchange data through wireless communication. 

Consequently, it provides connections and networkings to vehicles, transport services, 

community services or societies infrastructure [57].  
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There is a need to improve latency, response time and battery life time, due to various 

protocols used, the amount of message sent and the analytics parts regarding the data 

collected. MEC server provides the capability to solve these challenges. 

By providing efficient delivery of local content, new types of applications can be promoted, 

such as gaming, virtual reality and augmented reality. Indeed, the rendering could be 

implemented on the mobile phone itself, but the heavy computation can overwhelm the 

limited processing capability of the phone. Besides, offloading physical simulation and 

artificial intelligence to a remote cloud server might incur high latency time. MEC can 

provide both computation power and proximity. Augmented Reality (AR) is an example that 

merges the real world’s view with some computed generated sensors, such as data, video, 

sound and graphics [5]. It allows to interact dynamically with the user, since the user is able 

to view the real world and to digitally manipulate some virtual objects. In order to overlay 

information from the phone camera, localized content has to be rendered quickly. The 

processing can be performed on the MEC server as a requirement in order to improve high 

speed and low latency.  

 

Figure 2 - Augmented Reality [5] 

Connected Vehicles is a key trend market that will grow in the next years, through the 

support to Vehicle-to-everything (V2X) communication. All kind of information that affect 

vehicles can be collected, such as road conditions, route prediction, collision warnings. As 

the number of connected vehicles increases and the technology evolves, the volume of data 

will continue to increase also, so the necessity to reduce latency and maximize Quality of 

Experience (QoE).  
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Figure 3 - Active device location tracking [5] 

In that context, utilization of MEC technology can push applications, data and services closer 

to vehicles and will result in the applications acceleration over the vehicles [55]. The MEC 

application can operate as a highly distributed roadside unit that support drivers with real-

time useful information and the safety improvement of the roads, as presented in Figure 3. 

2.1.2. USE CASES: PROVIDERS SIDE  

In the same geographical area, many users tend to consume the same content at the same 

time, such as shared larges files, high-definition videos. Therefore, all these contents can be 

cached locally at the edge hosts to reduce drastically the backhaul network capacity. 

Furthermore, Quality of Service (QoS) and Quality of Experience (QoE) can be improved 

proactively by moving cached data to mobile edge hosts in anticipation of user movement. 

In the next years, the massive influx of IoT devices may overwhelm backhaul network as all 

amount data and services collected by sensors and mobile devices are sent to the remote 

Cloud servers.  

 

Figure 4 - Intelligent video analytics [5] 
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Instead of that, mobile edge hosts can process a first data aggregation and analytics and 

forward only necessary information to backend servers, such example is shown in Figure 4. 

Another use cases concerns the mobile media streaming with bandwidth feedback, 

information provides throughput guidance to a video server. As the available capacity can 

vary instantly and consistently in a mobile network, video quality of experience of user is 

not optimal. Indeed, Transmission Control Protocol (TCP) is not fast enough to detect quick 

variations, drastic flutuations leading to an underutilization of the radio resources. MEC 

technology can inform video server of the optimal server to use the radio conditions for a 

particular video stream or user.  

 

Figure 5 - RAN-aware content optimization [5] 

MEC server example presented in Figure 5 improves mobile backhaul optimization since it 

can determinate or estimate the throughput, traffic and performance at the real-time Radio   

Access Network (RAN) level and then be made available to the backhaul network.  

Thus, the backhaul can be optimized through techniques such as application traffic shaping, 

traffic routing, and capacity provisioning. 

MEC provides more effective location-based services in two ways. First, from the received 

signal strength and analytical techniques it allows user location tracking. Second, 

applications can use the user location and behavior pattern, to give recommendations. It may 

also utilize advanced machine-learning techniques and interface with big data analysis at 

backend servers to further improve the accuracy and usefulness of its recommendations.  
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2.2. TOWARDS 5G 

In the past decade, Wireless communications and networking evolved significantly driven 

by the huge growth of mobile devices and mobile traffic. Remote data centers were allowed 

to run computing services for mobile devices since wireless communication presented a high 

bitrate and reliability. It resulted in the research area called Mobile Cloud Computing 

(MCC).  

However, there are known limitations of MCC, as latency resulting from the distance 

between the end user and the remote cloud data center. New mobile application and devices 

are emerging thar are latency-critical, so they will not be suitable for the MCC. In the last 

years, new technologies move cloud computing closer to the user at the Edge. 

The fifth generation networks (5G) is currently under development and will hit the market 

at the horizon of 2020. Figure 6 presents the target of 5G, which is to reach high speed (1 

Gbps), low power and latency (1 ms or less) for massive IoT, tactile internet and robotics. 

Computational capacity will be deployed in many kind of edge devices, like wireless access 

points (WAPs), Base Stations (BSs) or even smartphones, tablets or laptops. All these 

devices will be using computation and storage resources available at network edges, which 

allow a permanent mobile computing.  

 

Figure 6 - 5G requirements 
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In 5G, systems will need to meet requirement to fully support the 4C – communications, 

computing, control and content delivery. 5G networks expand broadband wireless 

services beyond the advent and evolution of mobile internet, Information and 

Communications Technology (ICT), IoT and critical communications segments. New 

emerging application and services for 5G require specific and challenging high access 

speed and low latency, such as Autonomous Driving (AD), Augmented Reality (AR), 

Virtual Reality (VR), Tactile Internet, real-time online gaming and Ultra High Definition 

(UHD) video streaming shown in Fig. 7 [9]. 

 

Figure 7 - Uses cases vs speed and response time [9] 

 Smart mobile devices have limited resources for computing, communication and storage, 

and have to rely on Clouds or edge devices for enhancing their capabilities. All community 

have agreed that 5G requirements for a few milliseconds for computing and communication 

makes cloud computing inadequate. The enormous quantity of data exchange between end 

users and remote clouds will saturate backhaul networks, and the solution is to bring down 

all these computation, communication and traffic to the network edges. The explosion of 

applications for IoT, social networks and content delivery turn on the necessity that 

information generated locally needs to be consumed locally as a key factor for next 

generation network concept [10]. 
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2.3. MOBILE COMPUTING  

In the past two decades, mobile cellular networks have experienced four generations of 

evolvement following the advent of the ICT and telecommunications technology. At the 

same time, mobile devices are also constantly evolving but it remains that the computational 

power, limited storage and low battery life are limitations that are especially critical for 

resources demanding applications.  

As smart devices and applications has emerged, new requirements have appeared to fulfil 

end user quality of service and experience.  

In the future 5G system, as the traditional Base Station (BS) cannot fulfil these requirements, 

the mobile network architecture is evolving from BS to device and content network [8]. In 

this section, we will explain the concept of mobile edge networks, the solutions proposed 

and finally the advantages. 

2.3.1. MOBILE CLOUD COMPUTING 

Initially, the main concept of MCC was to provide a centralized computing, storage and 

network management in the Cloud due to the limited resources available in the mobile 

devices. So, remote servers executed intensive computation tasks or storage. MCC provided 

many solutions like mobile learning, healthcare, searching services [11]. Nowadays, MCC 

continue to offer relevant and resilient services where key characteristics have no substantial 

impact in the user experience, such as mobile devices energy consumption, network 

bandwidth, latency, context and location awareness. The Table 1 presents significant 

differences through the comparison of some key features, as some examples are described 

below. 

Latency: Some parameters are crucial to provide low latency, such as distance propagation, 

computation resources and bandwidth. Mobile Computing requires transmission between 

end users and the Cloud, and the distance to go through to remote server can be thousands 

of kilometers through different kind of technology from mobile network, to backhaul 

network and internet. MCC has the advantage of offering a higher computational resource, 

but more users share it.  
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MCC presents total latency between 30 and 100 ms [12], which is unacceptable for 

applications, such as autonomous vehicles or real-time online gaming. These applications 

need latency in order of 1 ms [13]. However, MEC has the potential to reach that time and 

become the key technology for 5G applications. Compared to MCC, MEC locates at the 

edge and benefits with low latency and communication free. 

Energy Consumption: IoT devices have limited resources and also limited energy storage 

due to the compact design. Nevertheless, low resources tasks are performed by IoT devices 

in the main areas of surveillance, health monitoring or crowd-sensing [14]. The key 

disadvantage of the IoT devices is the frequency to recharge or replace battery. MEC 

technology is the solution that enables computation offloading at the edge, resulting in an 

improvement of battery life of the IoT devices. 

By offloading computation significant energy saving can be done. In [15], the authors refer 

to the application eyeDentify running over a MEC architecture, that increases up to 44 times 

the computation capacity. In [16]., MEC AR applications achieve a 30-50% increase of 

battery life. 

Context Awareness: Key factor in MEC technology due to the end users are near from edge 

devices, this provide real-time information regarding location, environment and behavior, 

such information can be deployed into services to end users [17] [18]. A perfect example for 

AR application is the Museum Video Guide [19], that provide location awareness and 

information regarding the piece of art or antiques artefact. Another application provide 

traffic monitoring, navigation and routing of large number of persons through fingerprints 

[20]. 

Privacy enhancement: MEC technology enhance privacy and security for mobile capacity. 

In MCC systems, the Cloud platforms are large public data centers, such as Amazon EC2 or 

Microsoft Azure, that have a huge quantity of users information resources provoking 

possible attacks. In addition, there is a possibility of data leakage and data loss as ownership 

and data management are separated [21]. As MEC server will not have much information, 

reducing possible attacks. MEC could act as a small cloud near to the users, resolving 

sensitive data communication between end users and servers. An example of that is the case 

of a system administrator that sends critical information to remote data centers [22]. 
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2.3.2. EDGE COMPUTING FRAMEWORKS 

The core objective of mobile edge networks is to move resources closer to the network edges. 

The network resources are computing, storage and caching [40]. 

MEC is an evolution of MCC and performs computing-intensive tasks and storing massive 

amounts of data at the edge of the networks. 

Table 1 - Comparison of MEC and MCC systems [23] 

 MEC MCC 

Server hardware Small data centers with moderate resources [5], 

[24] 

Large-scale data centers (each contains a large 

number of highly-capable servers) [25], [26] 

Server location Co-locate with wireless gateways, WiFi 

routers, and LTE BSs [5]  

Installed in dedicated buildings, with size of 

several football fields [27], [28] 

Deployment Densely deployed by telecom operators, MEC 

vendors, enterprises, and home users. Require 

lightweight configuration and planning [5] 

Deployed by IT companies, e.g., Google and 

Amazon, at a few locations over the world. 

Require sophisticated configuration and 

planning [25] 

Distance to end 

users 

Small (tens to hundreds of meters) [29]  Large (may across the country border) [30] 

Backhaul usage 
Use not frequent  

Alleviate congestion [31]  

Frequent use  

Likely to cause congestion [31] 

System 

management 

Hierarchical control (centralized/distributed) 

[32] 

Centralized control [32] 

Support latency Less than tens of milliseconds [29], [33]  Larger than 100 milliseconds [34], [35] 

Applications Latency-critical and computation-intensive 

applications, e.g., AR, automatic driving, and 

interactive online gaming [5], [35]. 

Latency-tolerant and computation-intensive 

applications, e.g., online social networking, 

and mobile commerce/health/learning [36]–

[39]. 
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In MEC architecture, data processing and data storage happen outside of mobile devices 

[41]. However, new emerging applications represent a serious challenge to MCC in terms of 

latencies, video download, traffic congestion and capacity that frustrates end users. 

Businesses needs competitive, scalable and secure solutions. 

The basic idea is to perform computations and running applications near the mobile user, it 

reduces network congestion and get a better performance out of mobile applications. Mobile 

management will reinforce the reduction of costs and presents new functionalities in the 

service area, such as controlling enterprise through mobile devices, promoting security and 

enforcement to the Police Department or the Municipalities maintenance teams. 

Regarding congestion, IoT applications and services at the edge enable proximity, providing 

ultra-low latency, higher bandwidth, real-time access to RAN information and location 

awareness. Some of these challenges are listed in [41]. 

 

Figure 8 - Architecture of Mobile Edge Networks [32] 

As the computing part, Edge computing allow computing capabilities at the network edge, 

and also efficient and dynamic offloading, data access and context awareness. The 

community composed by researchers from Industry and Academy have proposed three 
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different schemes of Edge computing: Fog Computing nodes, Mobile Edge Computing 

servers and Cloudlets, as shown on Figure 8.  

The Table 2 summarizes the main features of these three edge computing technologies, 

which present some similarities between them.  

Table 2 - Comparison of Cloudlets, Fog and MEC approaches 

Properties 
Cloudlets based 

approach 

Fog Computing 

approach 
MEC approach 

Reduce Latency Y Y Y 

Reduce Jitter Y Y Y 

Multi-Tenancy Y Y Y 

With Virtual IaaS Platform Y Y Y 

Location Y Y Y 

Geographical Distributed Y Y Y 

Mobility Support Y Y Y 

Inspired from Tactile Internet IoT Mobile World 

Extended from Cloud Y Y May or may not 

Mostly used with wireless 

access 

May or may not Y Y 

Focus on-line analytics May or may not N Y 

Located between DC and 

device 

Y but can directly 

run on a device 

Y Y 

Improve user experience Y Y Y 

N-tier N = 3 N = 3 or more N = 2 or 3 

Y = Yes, N = No 

FOG COMPUTING 

The concept of Fog Computing was introduced by Cisco in 2012, and initially it was 

considered as an “extension of the cloud paradigm that provides computation, storage, and 

networking services between end devices and traditional cloud servers” [42].  

The Open Fog Consortium has made an effort to define a distributed three-tier architecture 

(end users, fog nodes and centralized Clouds) where each element communicate and interact 

with each other, as shown in Figure 9. The main objective is to put data close to the end user 

[43], which reduces latency, improves QoS [44] and provides support for localization, 

context awareness and mobility support [45].  

Fog enables the harvesting of local information analysis and the Cloud performs the 

coordination and global analytics in order to meet the demands from different segments of 
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business: consumer, wearable, industrial, enterprise, automobile, healthcare, building, 

energy. As the fog network architecture is heterogeneous, services can be deployed in 

various locations at the network edges at a high speed data-rate and through different 

wireless access technologies [46]. 

 

Figure 9 - Fog computing architecture  

Originally, Fog Computing was designed to create new applications and services in the 

context of Internet of Things, such as Big Data analytics systems or smart infrastructure 

management system [42][47]. Recently, there is a need to extend this concept to other types 

of services through several studies: augmented reality and real-time video analytics [48], 

content delivery and caching approaches through Fog computing [49], vehicle systems such 

as vehicle-to-vehicle (V2V) and Vehicle-to-infrastructure (V2I) and Vehicle-to-everything 

(V2X) [50] or low-latency augmented interface devices [51]. 

CLOUDLETS 

The concept of Cloudlet was developed by an academic team at Carnegie Mellon University 

[12], where a prototype was developed as part of a research project called Elijah [52]. The 

key features of cloudlets are the real-time provisioning of applications to edge nodes through 

Wi-Fi or cellular networks. It provides also the possibility to smart devices to move through 

different edge servers and continue to use applications by using handoff of virtual machine 

images among edge nodes [53]. 

The main motivation of this solution was to handle the problem that surge from the resource 

constraint on the mobile devices. The Cloudlets are designed to support applications for 
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mobile devices through the offloading of the resources due to aggressive tasks and 

interactions, such as Augmented Reality applications, Cloud games, and Wearable cognitive 

assistance system like Google Glass, Apple Siri or Google Now. As this solution performs 

high resource intensive task and faster execution and reduces the communication latency, it 

is considered as a key solution regarding the emerging of the Mobile Edge Computing 

architecture and implementation. 

The topology design is a third tier architecture composed by mobile devices, Cloudlets and 

the Cloud, as shown in Figure 11. 

In this hierarchy, the Cloudlets are the middle tier and can be considered as a local data 

centre used to enable localized cloud services, offer high performance and faster access to 

cloud resources to multiple users simultaneously. Moreover, it provides benefits with high 

utilization cost issues, large Wide Area Network (WAN) latency and less bandwidth [54]. 

Open Edge Computing (OEC) was formed as new emerging open source banner from the 

Carnegie Mellon University and industrial key players, such as Nokia, Intel and Vodafone. 

This initiative promotes the use of Cloudlets as an enabling technology through the extension 

of open source codes APIs of the OpenStack platform [55].  This initiative aims to 

synchronize efforts in Standardize schemes. 

  

Figure 10 - Cloudlet Architecture  
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MOBILE EDGE COMPUTING 

ETSI [22] introduced the concept of Mobile Edge Computing in 2014, which main goal was 

to standardize a MEC architecture and Application Programming Interfaces (APIs) for 3rd 

party applications for all major actors of the community [40].  

The MEC architecture is based on a virtualized platform that enables application running on 

top of MEC servers, which can be deployed in various types of network edges. It brings 

cloud computing capabilities and IT service environment at the edge of mobile network. This 

infrastructure can be implemented in several virtualization servers on different locations at 

the networks edge, such as Wireless Access Points (APs), LTE macro base stations 

(eNodeB), the Radio Network Controller (RNC) or the Radio Access Technology 

(3G/LTE/WLAN). 

Deploying cloud services at the Edge of mobile networks will bring many advantages such 

as ultra-low latency and high bandwidth as well as real-time access to radio network 

information and location awareness. This will benefit the actual mobile infrastructure 

through optimization or new implementation preparing 5G. Also, new services and 

application deployment are emerging and it bring new horizon for 3rd party services 

providers through IoT, augmented reality, connected cars or intelligent video acceleration 

[29]. 

 

  

Figure 11 - Mobile Edge Computing architecture 
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The MEC architecture is based on a virtualized platform that enables application running on 

top of MEC servers, which can be deployed in various types of network edges. It brings 

cloud computing capabilities and IT service environment at the edge of mobile network. This 

infrastructure can be implemented in several virtualization servers on different locations at 

the networks edge, such as Wireless Access Points (APs), LTE macro base stations 

(eNodeB), the Radio Network Controller (RNC) or the Radio Access Technology 

(3G/LTE/WLAN). 

Deploying cloud services at the Edge of mobile networks bring many advantages such as 

ultra-low latency and high bandwidth, as well as, real-time access to radio network 

information and location awareness.  This will benefit the actual mobile infrastructure 

through optimization or new implementation preparing 5G. Also, new services and 

application deployment are emerging and it brings a new horizon for 3rd party services 

providers through IoT, augmented reality, connected cars or intelligent video acceleration 

[29]. 

For virtualized services, MEC deployment provides some key characteristic advantages like 

reducing costs of implementation, a standardize management and orchestration. Besides, 

MEC aims to reduce network stress by moving resources from cloud to mobile edge [40], 

with a fully virtualized system infrastructure in [56]. 

2.4. FRAMEWORKS DEPLOYMENTS  

When this thesis started, ETSI was making great efforts to standardize the Mobile Edge 

technology. The first frameworks and applications were developed. Researchers from 

Industry and Academy tested some use cases through frameworks and applications.  

In [57], the author presents Cloudlet Aided Cooperative Terminals Service Environment 

(CACTSE), a mobile content delivery service where mobile terminals are connected with 

each other via Service Manager (SM), which acts like a cloudlet module to improve the user 

experience.  

The content is available through online or offline access, but it lacks of cache service. 
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In [58], Soyata presents an architecture based on mobile-cloudlet-cloud topology. The author 

proposes a Mobile Cloud Hybrid Architecture (MOCHA) as a framework for real time face 

recognition that gives the minimum response time. The author presents also CloudVision 

using that framework in order to decrease response time of a face detection and recognition 

task. In this framework, the Cloudlet can act as a buffer preventing heavy images to be 

transferred to the Cloud. It brings little benefits but high speed connection to the cloud is 

required and there is a space problem regarding number of faces to be used.In [59], the 

Author presents a Cloudlet based dictionary for mobile devices with support for translation 

of 6 languages, which is easily configurable and extensible. However, in order to present 

fast computation requires high processing power. 

Koukoumidis proposes Pocket Cloudlet [60], a cloudlet framework that analyses and 

constructs a user and community behaviour model and tries to predict which data will be 

download in near future. The main goal is to identify the most popular contents and then 

download it to a cache storage. Data caching presents many challenges in determining 

exactly the balance between the data is required, update frequency and the storage available. 

In the last years, some cloudlets architectures based on Virtual Machines were deployed in 

elastic cloud computing platforms like OpenStack. There exist also some differences 

regarding centralized or decentralized cloudlet management, and elastic or ad-hoc resources.  

Carnegie Mellon University develops the cloudlet pioneering project, named Elijah Project, 

which is the initial extension to OpenStack++. This extension provide a cloudlet library 

based on a modified QEMU with integration into the open source OpenStack platform. A 

mesh cloud architecture is proposed in [55], which is composed of cloudlet, Internet cloud 

and wireless mesh networks. An experimental framework is designed in [45], in which 

private cloudlet and wireless mesh network is implemented. It is capable of establishing and 

maintaining mesh connectivity among multiple nodes automatically and is featured with 

adaptively and self-recovery in case of network failures.Instead of managing VMs for the 

deployment of a cloudlet system, Verbelen [61] propose a finer-grained cloudlet concept 

that offloads applications on the component level, without the need of sending a VM overlay. 

It also suggest that Cloudlets can be formed dynamically with any device in the LAN 

network that has available computing resources. 
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Abolfazli [62] proposes a dynamic cloudlet architecture consisting only of ad hoc cloudlet 

nodes, all of which are administered by a central service governor, a replicated supervisory 

entity that monitors and supervises computing augmentation entities. 

2.5. SUMMARY 

The last decade has seen a wide-range of new applications and services that require 

unprecedented high access speed and low latency experience, such as real-time online 

gaming, augmented reality and other cases presented in section 2.1. It drives the paradigm 

shift from the centralized Mobile Cloud Computing toward to the Edge.   

The section 2.2. analyzes the requirements and key challenges for materializing 5G vision. 

Mobile Edge Networks are recognized as one of the key technologies necessary to reach 

next generation 5G and the natural development in the evolution of mobile BSs and the 

convergence of IT and telecommunication networking. 

In Section 2.3., a background explains the convergence from Mobile Edge Computing to 

Mobile Edge Networks principal architectures proposed. Fog computing is initiated to 

address some challenges in meeting new requirements of IoTs, it provides high-performance, 

interoperability, and security in a multi-vendor fog computing-based ecosystem. MEC is 

recognized as one of the key technologies to meet 5G requirements, it enables an open RAN 

which can host third party innovative applications and content at the edge of the network. 

Cloudlets propose to address some challenges in mobile computing. Cloudlet provides new 

classes of mobile applications that are both compute-intensive and latency-sensitive in an 

open ecosystem based on cloudlets. In terms of comparison, the similarity between the three 

technologies is openness. An analysis is made to some frameworks and architectures that 

surged in the beginning of this study in order to choose the best-case scenarios under 

hardware and software disponibility. 
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3. THE MEC AND 

CLOUDLETS 

The increasing improvements made in the mobile device area of sensing, connectivity, 

display and sound quality or computational capacity will lead to the development of new 

mobile applications. It allows  a new perception of interactivity through image, voice motion 

or location. However, these new applications shall extinguish rapidly the limits of the 

mobiles devices. On the same way, these applications are pushing well beyond the cloud 

resources regarding the user interaction, since end-to-end latencies would be almost tens of 

milliseconds. This situation is not affordable and it results in the distraction or even worst 

the frustration of the users. 

More than ever before, users wants to use applications in real-time with high definition 

characteristics everywhere and at any time. The human perception and cognition augments 

through the emerging of new smart mobile devices and applications. 

At the same time, efforts made by the major contributors in order to standardize the concept 

of this new emerging technology, since an historical view to the framework and architecture 

view. 

3.1. STANDARDIZATION 

Major actors of the Telecommunication's area identify MEC as a key enabler for IoT and 

mission-critical, vertical solutions, and recognize as one of the key architectural concepts 

and technologies. The concept of MEC was defined by ETSI as a new technology that 

“provides an IT service environment and cloud-computing capabilities at the edge of the 

mobile network, within the Radio Access Network (RAN) and in close proximity to mobile 

subscribers” [63].  
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ETSI published a white paper on MEC, where it considered MEC as key emerging 

technology to be an important component of future generation networks [5]. 

In this section, an introduction is made to the recent standardization intentions from the 

industry.  It analyzed the referenced MEC server framework as well as the technical 

challenges and requirements of MEC systems. Typical use scenarios of MEC were already 

discussed in Section 2.1.  

3.1.1. NORMALIZATION EVOLUTION 

ETSI has established an Industry Specification Group (ISG) on MEC to develop a 

standardized, open environment that shall allow efficient and seamless integration of third-

party applications across multi-vendor platforms in December 2014.  

Until January 2017, MEC ISG has released six specifications, one of which provides a 

glossary of terms related to the conceptual, architectural and functional elements of MEC 

[63]. Another specification specifies the technical requirements enabling interoperability and 

deployment and describes example use cases and their technical benefits [64]. A framework 

and a reference architecture was presented to enable mobile edge applications to run 

efficiently and seamlessly in a mobile network [65]. Moreover, the forth specification in 

MEC ISG introduces a number of service scenarios that would benefit from the MEC 

technology [66]. The specification of the Proof of Concept (PoC) framework defines a 

framework to coordinate and promote multi-vendor PoC projects illustrating key aspects of 

MEC technology [67].  

ETSI has announced six different Mobile Edge Computing Proofs of Concept (MEC PoCs) 

in Sep. 2016, which were accepted in MEC World Congress in Munich and contribute to 

strengthen the strategic planning and decision-making of organizations, and help to identify 

which MEC solutions may be viable in the network.  

The last specification describes various metrics which can be improved through deploying a 

service on a MEC platform, such as latency, energy efficiency, network throughput, system 

resource footprint and quality [68].  
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MEC ISG started 9 new studies related to MEC APIs, management interfaces and essential 

platform functionality. In addition, the MEC in an NFV environment is emerging on an end-

to-end mobility. The NFV platform may be dedicated to MEC or shared with other network 

functions or applications. MEC exploit the NFV management and orchestration entities and 

interfaces as much as possible. 

This confidence on MEC Technology stimulates all community and provide an acceleration 

on the standardization pace. By defining and standardizing key edge computing interfaces, 

ETSI ISG MEC eases the path to interoperability and removes this key obstacle towards a 

broad industry adoption of edge computing. It should be noted here that ETSI ISG MEC 

remains the only standardization group in this space. 

Early in 2017, ETSI MEC ISG has decided that Mobile Edge Computing had to be renamed 

as Multi-access Edge Computing in order to reflect the growing interest in MEC from non-

cellular operators [69]. This phase, know as MEC Phase 2, leverages on the industry 

acceptance of the first phase of specifications and is aimed at strengthening the engagement 

with developers and service providers, which are ultimately the stakeholders that exploit 

MEC for their value added product propositions. 

The 3rd Generation Partnership Project (3GPP) shows a growing interest in including MEC 

into its 5G standard, and functionality supports for edge computing identified and reported 

in a recent technical specification document [70]. 

On July 2017, EST ISG have published 5 API specifications identified in scope for Phase 1 

of work. These include specifications relating to the essential functionality of the application 

enablement platform (API framework), specific service-related APIs (Radio Network 

Information and Location Information) and management and orchestration-related [71 – 75]. 

In September 2017, ETSI released standard API for User Equipment (UE) application 

interface; it contains the specification for the lifecycle management of the user applications 

over the UE application interface [76].  

One Month later, 3 more API were published. The first one is the specification for the user 

equipment-initiated operations platform management [77]. The second one specifies the 

necessary API with the data model and data format for Bandwidth Management services 
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[78]. The third specification released is for End to End Mobility Aspects [79]; it focuses on 

mobility support provided by MEC and presents use cases and end to end information flows 

to support UE and Application mobility. 

More important, Phase 2 shall expand the applicability of standards from mobile to all types 

of access.  Phase 2 defines also how MEC integrates with NFV and address significant new 

use cases, such as connected cars. 

On February 2018, ETSI published 2 new standards: UE Identity API and Deployment of 

Mobile Edge Computing in an NFV environment [80, 81].  

Phase 2 should also see an increased emphasis on the industry outreach with growing action 

to move towards adoption of that API by the key industry groups, certification and 

application developer outreach. 

3.1.2. MEC FRAMEWORK 

ETSI’s MEC framework and reference architecture is defined in the Group Specifications 

(GS) MEC 003 [64], these group of specifications are known to be widely used as a reference 

architecture for many early MEC implementations. 

The MEC framework proposed in Figure 12 identifies and groups the high-level functional 

entities in the system: network level, the MEC host level and the MEC system management.  

The Network level entities comprising connectivity to local area networks, cellular networks 

and external networks such as Internet. A major objective is to extend this capabilities to 

non-cellular. 

In the MEC host level, the MEC host sits along with its associated management subsystem. 

The MEC host is constituted by the platform and the virtualization infrastructure where the 

applications run. 

In the MEC system level management retains the global view of the whole MEC system, 

i.e., the collection of MEC hosts and the associated management subsystem. 
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Figure 12 - MEC framework 

3.1.3. MEC REFERENCE ARCHITECTURE 

The MEC reference architecture (Figure 13) highlights the system level and host level 

components. Reference points in scope of MEC are represented by solid lines, while the 

reference points in scope of proprietary implementation or other Standards Developing 

Organizations (SDOs) are represented by dotted lines. 

The MEC host is a logical construct that provides computing, storage and networking 

resources to the MEC applications enhancing the MEC platform and the virtualization 

infrastructure.  The MEC platform send rules that are forwarded by an element inside the 

virtualization infrastructure, the data plane, which is also responsible for routing the traffic 

between the applications, services and the networks. 

MEC host provides a virtualization infrastructure where MEC applications run as virtual 

machines. The applications may use MEC services present in the MEC platform or even 

provide them to the MEC platform and other applications. 

The MEC platform holds essential functionalities that are required to run applications on 

the MEC host, which provides necessary features to discover, communicate, add and use 

MEC services. 
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Figure 13 - MEC reference architecture [65] 

In the Host level, the MEC platform manager consists of the MEC platform element 

management, the MEC application lifecycle management (LCM) and MEC application 

policy management functions. The LCM application is responsible for starting, finishing and 

relocating a MEC application instance. It provides some indications regarding events that 

occur in applications to the MEC orchestrator. The LCM application encompasses 

authorizations, traffic rules, DNS configurations and resolves issues when policies are in 

conflict. 

The Virtualization Infrastructure Manager (VIM) is responsible of managing the 

virtualized resources for the MEC applications, like allocating and releasing virtualized 

computing, storage and network resources, therefore it has the Mm7 reference point towards 

the Virtualization Infrastructure for this purpose - OpenStack is a widely known example of 

a VIM [85]. 

The Management level is composed by the MEC Orchestrator, the Operations Support 

System and the User Application Lifecycle Management Proxy. 

The MEC Orchestrator plays a central role as it has the visibility over the resources and 

capabilities of the entire MEC system. It is responsible to coordinate and control the 
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instantiation or resolve resource conflicts. The MEC Orchestrator manages the MEC 

applications and the associated procedures, such as integration, authentication, and 

validation of the policies realted to them. It also checks if the proper requirements are set to 

the respective application. 

The Operations Support System (OSS) is responsible for running the MEC applications in 

the proper location of the network. The Customer Facing Service portal (CFS) and the user 

equipment send requests to the OSS and to the orchestrator in order to instantiante and 

terminate applications. CFS provides an entry point for 3rd party services.  

The User Application Lifecycle Management Proxy encompasses functions that allow the 

application clients to request services related to on-boarding, instantiation and termination 

of the applications.  

3.2. CLOUDLET 

A Cloudlet can be defined as “cloud on the box” with computing resources available for use 

by mobile users. During the execution of an application, the mobile device act as a client 

that offloads computation and data on the nearest cloudlet.  

The specific problems that we are addressing are real time response, low latency, data 

management, scalability and resiliency. One of the existing problems, concerns with the 

cloud  connection  to remote server. To deal with that problem and achieve real-time 

response and low latency, the user applications can interoperate with the nearest cloudlet.  

Another problem refers to the exponential growth of IoT smart devices and systems. It may 

result in the congestion of the backhaul network and scalability issues. The clouds need to 

forward, process, and store massive amounts of data generated by IoT devices.  

Cloudlet architectures include caching mechanisms to filter and locally store essential 

information, avoiding unnecessary bandwidth consumption due to massive data transfers 

between IoT devices and the cloud servers. 

When applications operate in real-time, the response time of the remote cloud server can 

result in application failures. The service becomes unaffordable due to the poor user 
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experience. Cloudlet architecture can be a resilient solution and offer on-premise and user 

control. 

 

Figure 14 - Cloudlet architecture 

Cloudlet architectures address the previously described challenge providing scalable 

deployment, management support and improved communications performance. Two types 

of elements define the cloudlet architecture: cloudlet host and mobile clients. 

The philosophy of Cloudlet has been followed by the ETSI, leading to the standardization 

of MEC architecture [101][102][104].  

 

Figure 15 - Cloudlet framework proposed 

The Cloudlet Framework used in this project is one of the base components of the ETSI 

framework, as show on Figures 15 and 16. The framework turns any network edge device in 

a MEC Host, containing a virtualization infrastructure and providing a platform for 

computing, storage and with network resources for MEC applications. The MEC platform 

has several functionalities that enable to run services and MEC Applications in a MEC Host, 
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with specific infrastructure virtualization conditions. The management of the MEC Host is 

performed through components that enable the configuration of each MEC host, platform or 

applications. 

In terms of comparison with the ETSI model, cloudlets differs in some aspects regarding the 

virtualization infrastructure, the MEC Host level management and MEC Orchestrator, as can 

be seen in Figure 15 compared to Figure 16. Regarding the virtualization infrastructure and 

MEC Host level management, cloudlets only provide some basic functionalities in the MEC 

Host, while the ETSI model already defines a global Virtualization Infrastructure Manager 

(Open Platform for NFV - OPNFV) [97]. At last, the MEC orchestrator is not used in our 

architecture because this part is dependent on the ETSI MEC standardization that was not 

available at the moment of the setup of our demo implementation. 

 

Figure 16 - Cloudlet vs ETSI MEC reference architecture  

3.3. PROBLEM STATEMENT  

In MEC architecture, the data management, processing and caching are performed directly 

at the network edge. In that manner, the throughput is reduced to avoid traffic in the backhaul 

network. Since this architecture is decentralized, the end-to-end latency is reduced and this 

increases the system resiliency by providing data redundancy, high availability, better 

quality of experience for the users. 
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The purpose of this work is to simulate MEC and cloud based solutions, that enable us to 

evaluate and quantify the real benefits of each architectural approach. As already discussed 

in the previous sections, it is claimed by several authors, that MEC leads to improvements 

in communications performance, such as ultra-low latency, high bandwidth and real-time 

access to radio network information and location awareness.  

Furthermore, it is the main goal of ETSI [105]-[108], that MEC systems shall represent a 

solution regarding the 5G vision and new emerging applications with prerequisites latency 

of 1 millisecond. 

This work aims to evaluate the key communication performance indicators of MEC and 

Cloud architectures in different applications scenarios. For this analysis, scenarios were 

considered that use real time and computing intensive task applications. 

3.4. SUMMARY 

Section 1 focuses on standardization efforts to develop new telecommunications  

frameworks and architectures. While ETSI is under initial challenge and gets the effort to 

regroup all community and purpose the first standards, this thesis aims to compare Mobile 

Edge Technology and Cloud-based solution and provide experimental evidence that recent 

emerging demands force a change in cloud computing architecture.  

In section 2, this thesis analyzes the Cloudlet general architecture and summarizes each 

component and their use. After that, a synthesis introduces the problem statement about the 

use of the remote cloud servers. This project implements a solution to reduce excessive 

latency and network bandwidth at the edge of the network. Finally, we compared our 

proposed architecture with the model that ETSI seeks to standardize, and report the ongoing 

coordination efforts among the participants in standards development.  

In the next chapter, this work presents the implementation of this architecture and its 

components. The purpose is to analyze the benefits of MEC through Cloudlet scenarios using 

new emerging applications. 
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4.  CLOUDLET  

IMPLEMENTATION 

The number of applications and mobile devices is increasing, and the prevision is to continue 

to grow. These new emerging applications required even more computation-intensive tasks 

and battery power. This obstacle prevents the achievement of the needed capabilities. Even 

if mobile devices have better capabilities, they still do not process the task demand. Some 

networks are often unreliable, thus the limited bandwidth can also be inconsistent. 

Resuming, the time to access remote cloud servers is unaffordable. 

This project presents a anlyses an architecture that challenges all these obstacles. At the 

Edge, the MEC architecture proposed aims to be discoverable. Stateless servers can run one 

or more Virtual Machines (VMs) on which mobile devices can offload extensive 

computation, as presented in Figure 17. This architecture enhances processing capacity, 

conserving battery and proven to solve the characteristic bottleneck problems related to 

cloud technologies.     

 

 

Figure 17 - Three-tier architecture for code offload 
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4.1. CLOUDLET ARCHITECTURE 

This project offers a code offload solution at the network edge for smart mobile devices that 

exploit cloudlets. Figure 18 presents the major components of the Cloudlet architecture, 

which are the mobile client and the Cloudlet Host. 

 

Figure 18 - VM-based cloudlet architecture 

The Cloudlet Host used is a VM-based cloudlet architecture [12] [82] [83] [84]. There are 

similarities with Cloud data centers. It’s Virtual Machines have similar requirements, such 

as a wide range of computations, programming language, operative system, and dynamic 

resources allocation. 

The Cloudlet Host is a physical server hosting a discovery service that broadcasts the 

Cloudlet IP address and port to allow mobile devices to find it. It contains the Base VM 

images used to synthesize the VMs. It hosts a Cloudlet server that performs the synthesis of 

the VM, handles the code offload through application overlays or starts guest VM instances. 

Finally, the Cloudlet Host contains a VM manager that acts as a host for guest VM instances 

and stores the computation components of mobile apps.  

The Mobile client is a smart mobile device that hosts a Cloudlet client application 

responsible to discover cloudlets and uploads the application overlays to the Cloudlets. It 
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also contains mobile applications that operate as clients of the Cloudlets servers. The mobile 

client stores an application overlay of each Cloudlet-ready application that a user wants to 

execute and for which computation offloading is appropriate. In the Cloudlet, the same Base 

VM image generates each application Base VM image. 

This VM-based Cloudlet architecture presents some important differences regarding the 

Cloud, such as the rapid provisioning, the VM handoff, and Cloudlet discovery.   

 

Figure 19 - VM overlay creation 

First, cloud data centers have stored most of the VM images, presenting an optimization of 

the provision of VMs. So, if a user launches a new image, the cloud does not meet fast launch 

requirements. Cloudlet needs to be agile with VM provisioning since a mobile user needs 

dynamic association and response time. 

The second matter regards live VM migration across cloudlets. The user mobility across the 

localization occurs if there is a transfer of offloaded services from a source cloudlet to a 

destination cloudlet.  

Finally, a dynamic Cloudlet discovery is essential when a mobile client needs to discover 

and associate a particular cloudlet among many candidates before the provisioning. 
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4.1.1. VM SYNTHESIS 

In a VM-based Cloudlet architecture, VM synthesis is crucial to provide features like rapid 

provisioning and VM handover. Operating System (OS), libraries, and packages are the 

principal components of a VM image. In comparison, the needed user application part is 

tiny. If a Base VM already exists in the cloudlet, it is only necessary to transfer the difference 

part, which is the VM overlay. The VM synthesis is the method used to provision the 

cloudlets using VM overlays.  

Figure 19 presents a VM overlay creation from a Base VM image. Users can generate Base 

VM images from popular OS builds like Linux or Windows. When a pause occurs of the 

booted image, the snapshot of the VM disk image and the memory snapshot creates the base 

disk and base memory. The user needs to resume the instance, install and configure all 

necessary components of the back-end server-side application. Finally, the user has to launch 

the back-end server again and then pause it to perform the snapshot of the resulting disk 

image and memory of the final VM image with the back-end server. The resulting 

application overlay generates the final VM image and the base VM image using xdelta3 and 

LZMA the compression. 

The direct provision of the mobile back-end application in the Cloudlet platform performs 

the VM synthesis. Also, an overlay delivery from the cloud or even from the storage on the 

mobile devices can perform a VM Synthesis. In the delivery’s case of the overlay, it will 

decompress in a base image to generate a launch VM that will create a VM instance. After 

that, the mobile device can perform many actions with the instance.  

4.1.2. LIMITATIONS 

The architecture focuses on a cloudlet platform that provides a data processing system where 

the application's data can be cached, processed and aggregated. Given the frame time of this 

thesis project, the standardization of mobile edge computing was still a mirage and it was 

still trying to regroup all the market players. The first platforms and applications developed 

were still under test and the changes were constant. This work does not address the inter-

cloudlet communication and multiple cloudlet integrations with a cloud discovery service. 
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4.2. OPENSTACK  

Cloudlet architecture presents different technical challenges. One of them is the cloudlet 

deployment. In the previous subsections, a summary presents the composition of the 

Cloudlet architecture and framework. In this subsection, we will introduce the proposed 

Cloudlet platform to perform our practical analysis through the offloading of mobile 

applications. OpenStack is a free and open-source cloud-computing platform that offers the 

possibility to establish and test new emerging architecture or ecosystem.  

OpenStack++ is a particular API extension on the OpenStack platform that implements the 

deployment of the Cloudlet platform.  

 

Figure 20 - OpenStack software diagram [85] 

OpenStack is a well-known free and widely diffused open-source Infrastructure-as-a-Service 

(IaaS) software platform for private or public cloud computing. As presented in Figure 20, 

it provides many services that interact with each other to deliver the full feature set and to 

manage computation, storage, and networking resources to supply dynamic allocation of 

VMs. Users can manage this platform through a web-based dashboard, a command-line tool, 

or a RESTFul API.  

OpenStack is a project started in 2010 as a joint project of Rackspace Hosting and NASA 

and managed by OpenStack Foundation. Since its founding, it has seen wide industry 

endorsement and now numbers over one hundred supporters, including many of the 
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industry’s largest organizations, such as AT&T, Rackspace, Cisco, SUSE, IBM, Juniper, 

Yahoo, HP, Intel, Red Hat, Canonical, Yahoo, Dell, Vmware. 

It fulfills the cloud: massive scalability and simplicity of implementation. OpenStack is 

highly configurable, i.e. the user can choose whether to implement each one of the several 

services offered by the software. The application programming interface tool (API) allows 

the user to configure each component easily. Therefore, OpenStack is a flexible tool able to 

work along with other software.  

Another reason to adopt OpenStack is that it supports different hypervisors (Xen, VMware 

or kernel-based virtual machine (KVM) for instance) and several virtualization technologies 

(such as bare metal or high-performance computing). 

4.2.1. SERVICES 

The OpenStack community has collaboratively defined the key components of the “core” of 

OpenStack, which are distributed as a part of the system and officially maintained by the 

OpenStack community. The conceptual OpentStack architecture is ilustrated in Figure 21. 

Nova is the service responsible for computing behind OpenStack. It deploys and manages 

virtual machines and other instances to handle computing tasks. 

Swift is a storage system for objects and files, based on a unique identifier to refer to a file 

or piece of information. OpenStack provides an easy scaling function as it decides where to 

store the information and backups in case of machine or network connection failure. 

Cinder is the block storage component that controls the method to access specific locations 

on a disk drive. This file access method might be important in scenarios in which data access 

speed is of most importantce. 
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Figure 21 - Conceptual OpenStack architecture 

Neutron provides the networking capability for OpenStack and ensures that the components 

can communicate with each other, quickly and efficiently. 

Horizon is the dashboard behind OpenStack. This graphical interface allows developers to 

access all the components of OpenStack individually through an API. The dashboard also 

provides a system administrator access to monitor and manage the cloud. 

Keystone provides identity services for OpenStack. It is essentially a central list of all the 

users of the OpenStack cloud, mapped against all the services provided by the cloud, which 

they have permission to use.  

Glance is the service responsible for providing images to OpenStack. 

Ceilometer provides telemetry services, which allow the cloud to provide billing services to 

individual users of the cloud. It also keeps a verifiable count of each user’s system usage of 

each of the various components of an OpenStack cloud. Think metering and usage reporting. 

Heat is the orchestration component of OpenStack that manages the infrastructure needed 

to run a cloud service. It allows developers to store the requirements of a cloud application 

in a file that defines what resources are necessary for that application. 
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4.3. OPENSTACK EXTENSION - OPENSTACK ++ 

OpenStack++ is the open-source extension API that enables the  Openstack infrastructure in 

Cloudlet. The Elijah project was born at Carnegie Mellon University [53] to provide a 

Cloudlet extension that specifies the MEC platform idealized by the ETSI model, as shown 

in Figure 22. Elijah is a MEC-oriented extension of OpenStack with a relevant and growing 

community of MEC developers working on top of it. Some of the major actors started the 

Open Edge Computing Initiative (OEC) driving the development of the ecosystem around 

Edge Computing. Some of such actors are: Carnegie Mellon University, Intel, Nokia, Crown 

Castle, Vodafone, T-Mobile, and NTT [56]. 

 

Figure 22 - Openstack++ cloudlet platform 

OpenStack++ has some functionalities similar to OpenStack, and it also offers the possibility 

to add or remove certain features to the platform through the customization of the certain 

files in specific APIs. Figure 23 represents the files associated with the respective OpenStack 

API, which are cloudlet.py, cloudlet_api.py, cloudlet_manager.py and cloudlet_driver.py. 

The Cloudlet configuration files cannot be directly changed into the respective folders, but 

it requires changing the original OpenStack classes and files. OpenStack is a complex open-

source end-to-end cloud computing platform, that contains typical functionalities required 

to operate cloud computing. However, as the Openstack platform frequently makes updates, 

the implementation and the maintenance of this platform is not trivial.   
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4.3.1. PLATFORM SETUP 

OpenStack++ implements the Cloudlet on the most OpenStack stable release version (Kilo). 

Implementing the platform OpenStack Kilo and the OpenStack++ extension was the least 

arduous, as much as this project was still in the beginning and suffered from constant changes 

from day to day.  

We deploy the installation of the Elijah project using the DevStack method, which is a set 

of utilities scripts that aim to deploy quickly an OpenStack cloud from GitHub source trees 

in a clean Ubuntu or Fedora environment. Therefore, we used a workstation with Operative 

System Ubuntu 14.04 LTS 64 bits. 

 

Figure 23 - Cloudlet API call hierarchy [85] 

Three phases comprise the intended installation process of all platform in one 

single machine: the installation of the cloudlet library, the installation of the OpenStack 

platform through DevStack and at last the extension OpenStack++ [85]. The undergoing test 

of this project installation process shown several implementation errors, misconfigurations 

and download links failures, because the project was still in development and improvement 

phase. So, many bugs, problems with libraries and transfer links were detected and solved 

during the setup process. The Cloudlet installation was involved in many difficulties and 

complexity.  

The fabric script for the Cloudlet installation had a quirk. Before the installation, it asked for 

the root password when it was designed to run as a local user. 
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Before starting the second process that installs the OpenStack cluster as a single cloudlet, it 

is necessary to configure the local.conf and stacks files. We configured DevStack through 

the local.conf file and changed all custom and local settings, such as services admin 

password, and the cluster controller settings.  

It is possible to move the network ranges away from the local network or also set the host IP 

address if detection is unreliable. We configured the stackrc file with the version Kilo of 

OpenStack. 

Then, we proceeded with the installation of OpenStack performed through DevStack and 

finally the setup of the extension part. Since many errors appeared due to: 

 Different pip library versions used for each API, lead to bugs and the installation became 

hazardous with many installs and uninstall during the process; 

 GitHub repositories had recurrent development changes, without provision of a stable 

version; 

 Fatal errors during command line installation, because downloads of certain libraries from 

dead links, break down the installation process. 

After some weeks of intense research and active participation with Open Edge Computing 

members, we finished the setup of this project platform. Figure 24 presents the last setup 

part. While starting the cloudlet platform properly without error, it is also necessary to 

instantiate every time: 

 the authentication component Keystone; 

 the Apache server to launch the dashboard; 

 the volume manager Cinder that does not initialize the driver by itself; 

 the shared service to manage token authentication, nova-consoleauth. 

It was possible to reach the User Interface and access the Cloudlet Dashboard and all 

functionalities shown in Figure 25. 

 

Figure 24 - OpenStack++ final configuration setup 
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Figure 25 - OpenStack Dashboard 

4.3.2. OPENSTACK++ FEATURES 

The most relevant OpenStack++ features used in this project, are base image import, base 

image resume, overlay creation, and VM synthesis. 

The function “Import Base VM” allows the users to load in advance the base image into 

Glance storage to build each VM. Figure 26 presents this online task. Figure 27 shows each 

base image is a compressed file that contains 4 files: a base disk image with the related hash 

value list and a memory snapshot with the related hash value list; is_cloudlet flag that shows 

that is not a standard cloud image; libvirt configuration with the metadata that shows the 

characteristics of the VM generated with the base image. The Elijah command to import a 

base image is cloudlet import-base that decompresses the base image and stores it into the 

Cloudlet database with the assignment of a unique identified hash. 

 

 

 

 

 

(a) Import Base VM 
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(b) Base VM imported appearance in dashboard 

 

Figure 26 - Import Base VM Image Process 

 

 

 

a) Base VM disk image file metadata 
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b) Base VM memory snapshot metadata 

Figure 27 - Base VM files metadata 

The function Resume Base VM is still an offline operation and usually follows the import 

base image, as shown in Figure 28. To resume a base image, the Cloudlet platform uses a 

cloudlet hypervisor driver class, called CloudletDriver, that inherited the original 

LibvirtDriver and check if the metadata associated to the virtual disk image base has the 

is_cloudlet flag. Here, the driver resumes the base VM from the snapshot, rather than boots 

a new VM instance. Usually, the first time it takes a long time to resume a base image, in 

the order of a few minutes in relation to the hardware capability of the host, it verifies all 

permission, quota or other resource availability. The offline task made in advance prepares 

the MEC node before receiving the users’ requests. In this way, OpenStack++ imports the 

base image into the cache of the compute node, thus, it does not slow down the system. Users 

are not significantly perceiving by the users for further base image resumes. At the end of 

this operation, there is a VM ready to execute the service. 
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(a) Resume Base VM Setup 

 

(b) Resume Base VM handling process 

 

 

(c) Resume Base VM final process  

Figure 28 - Resume Base VM creation process  

At this operation, a developer prepares a back-end server at the middleware layer and 

typically this phase includes: preparing dependent libraries, downloading and setting 

executable binaries, and changing OS and system configurations. 

Figure 29 presents the feature Create VM Overlay aims to create a minimal VM overlay 

starting from a resumed or running instance and then compress and save the VM overlay in 

Glance storage for later download. VM overlay is able to create snapshots used later to 

resume the VM from a specific moment, by containing the delta between the client VM and 

the base image VM. It contains all the changes we need to add on the base VM to reproduce 

the client VM environment at the moment of the migration. It adds this functionality with 

the extensions mechanism, defining a new virtualization driver CloudletDriver class that 
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inherits nova_rpc.ComputeAPI. The Elijah command to create a customized VM based on 

top of the base VM is a cloudlet overlay. 

 

(a) Create VM overlay process – Instance Setup 

 

(b) Create VM overlay process – Final state 

Figure 29 - Overlay creation process 

As previously explained, it was not possible to implement VM Handoff. The function VM 

synthesis launches a new VM instance to the OpenStack cluster, a process known as VM 

Provisioning. It uses an HTTP POST message with the overlay_ulr parameter and 

CloudletDriver hypervisor driver handles this message and manages the VM spawning 

methods to perform VM synthesis using the VM overlay and the VM base image. The 

commands synthesis_server for the server invokes the synthesis mechanism and listens 

locally and synthesis_client with the specification of the server IP and the overlay URL as 

presented in Figure 30.  

 

(a) VM provisioning setup 
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(b) VM provisioning final state 

Figure 30 - Cloudlet VM Synthesis creation process 

Figure 31 ilustrates the VM handoff interface which enables to migrate VMs between 

different OpenStack nodes. Since it involves two independent nodes, it is necessary that the 

user has permissions to access them and call the APIs. The command to execute the handoff 

uses a Python file, called cloudlet_client, which requires the UUID of the VM to migrate 

and the credentials to access both OpenStack nodes. It is possible to perform VM handoff 

only if the VM is synthesized.  

 

Figure 31 - VM Instance Handoff setup creation 
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5. PERFORMANCE TESTS 

SETUP 

The performance evaluation measures the latency of the system, as the time interval 

between the user's request and the system response. This includes bottlenecks in the 

network, wireless access colisions, optical fiber delays, hardware, and operating system 

latency. 

Figure 32 presents the architecture of our testing workbench. The environment defined 

enables the performance measurement of the cloudlet and cloud solutions. This work 

implements two use cases with several testing cycles. Finally, an analysis compares the 

data collected. 

 

Figure 32 - Performance evaluation diagram 
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5.1. CLOUD PLATFORM 

In order to evaluate the difference between cloud and cloudlet regarding key features, such 

as latency or user quality of experience, a cloud platform service was selected. The cloud 

platforms that offer better capabilities around flexible compute, storage and networking are 

Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform. They all share 

the common elements of a public cloud: self-service and instant provisioning, auto-scaling, 

plus security, compliance and identity management features. It is possible to 

launch Virtual Machines with many types of OS, such as Windows 7, Ubuntu 14.05.  

Our test scenarios were implemented on the AWS platform, which provides a range of 

functionalities, a list of tools and services. Moreover, one of the our test scenarios is based 

on FaceSwap application, which only has an Android server disk image on Amazon EC2. 

This server application can launch instances with many configuration types, such as different 

number of cores and RAM. This feature was crucial to the choice of the cloud platform. 

AWS Educate is Amazon’s global initiative to provide students with the resources needed 

to hands-on access to AWS technology, training resources and to test free tier experiments. 

It is possible to launch AWS Virtual images freely with 1 CPU core for some considerable 

timeline and data transfer. The two applications used in the scenarios have a recommended 

processing of more than 1 CPU core, so several test setups with more CPU cores were also 

used. Unfortunately, this configuration is only part of the test to perform and, for other testing 

scenarios with extended virtual machine resources, we had to pay to perform tests that 

require those conditions. 

 

5.1.1. AWS FUNCTIONALITIES 

AWS offers a Platform as a Service (PaaS), IaaS, serverless computing and much more, with 

over 70 different services. 
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Amazon VPC is the Virtual Private Cloud and allows building virtualized private networks 

inside of AWS, with subnets, NAT gateways, VPN connections, routing tables, security 

groups. 

Amazon Elastic Compute Cloud (Amazon EC2) is a web-based service that allows 

businesses to run application programs in the Amazon Web Services (AWS) public cloud. 

Amazon EC2 allows a developer to spin up virtual machines (VM), which provide compute 

capacity for IT projects and cloud workloads that run with global AWS datacentres, as 

presented in Figure 33.  

The Amazon EC2 web interface provides a scalable service as it allows the user to increase 

or decrease instance capacity within minutes. A developer can define auto-scaling police to 

scale instances automatically or manage multiple instances at once. 

 

Figure 33 - AWS EC2 Dashboard 

To use EC2, developers create an Amazon Machine Image (AMI) containing an operating 

system, application programs, and configuration settings. The Amazon Simple Storage 

Service (Amazon S3) uploads the AMI and registers it with Amazon EC2, creating an AMI 

identifier. Once done, the subscriber can restart virtual machines on an as-needed basis. 

Data only remains on an EC2 instance while it is running, but developers can use an Amazon 

Elastic Block Store volume for an extra level of durability and Amazon S3 for EC2 data 

backup. VM Import/Export enables to import on-premises virtual machine images to 

Amazon EC2 for launching their instances. 
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5.2. TESTBENCH SCENARIO 

This work conducted all experiments using the configuration shown in Figure 34. We create 

a testing workbench, which is a fixed development environment that is reproducible and 

portable. This environment allows us to measure the performance of the cloudlet and the 

cloud. In the two use cases, an Android client application runs on a smartphone, and servers 

are run on the cloudlet and in the cloud. 

 

Figure 34 - Evaluation infrastructure setup 

The smartphone used to test the client is a Samsung S8. Table 3 presents the main 

characteristics of this device [87].  

Table 3 - Smartphone specification 

Galaxy S8 specifications 

Processor CPU: Octa-core (2.3GHz Quad + 1.7GHz Quad) 

Display Size: 5.8" Quad HD+ Super AMOLED (2960x1440) 

OS Android 7.0 

Camera Main Camera: 12.0 MP, Front Camera: 8.0 MP 

Memory RAM size: 4.0 GB, ROM size: 64.0 GB 

Network/Bearer 3G, 4G 

Connectivity GPS, Glonass, Wi-Fi 802.11 a/b/g/n/ac 2.4+5GHz, Bluetooth 5.0 
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Sensors Accelerometer, Fingerprint Sensor, Gyro Sensor, Geomagnetic Sensor, Light Sensor, 

Proximity Sensor 

Physical specification Dimension (mm) 148.9 x 68.1 x 8.0, Weight (g) 155 

The smartphone uses an access point Wi-Fi connection to establish the connection to the 

cloudlet or the cloud. The Cloudlet platform used in these experiments runs on a laptop 

Toshiba L755-1DR, Table 4 presents the main characteristics of this equipment [88]. On a 

remote AWS server run the cloud, as explained in the subsection before. 

Table 4 - Cloudlet specifications 

Toshiba SATELLITE L755-1DR  specifications 

Processor Intel® Core™ i7 -2670QM - clock speed : 2.20 / 3.10 Turbo GHz 

OS Ubuntu 14.05 

Memory RAM size: 8.0 GB ddr3, ROM size: 640.0 GB 

Connectivity Wi-Fi 802.11 a/b/g/n 2.4+5GHz, Bluetooth 4.0 

Physical specification Dimension (mm) 380.0 x 250.0 x 27.7, Weight (Kg) 2.5  

5.3. USE CASE 1 - FLUID MOBILE APPLICATION 

The first application is Fluid, an application used in interactive computer graphics 

representative of real-time games. 

5.3.1. FLUID 

Fluid is a simple implementation of a liquid fluid simulation using the Smoothed Particle 

Hydrodynamics (SPH) method [89]. The SPH model is a Lagrangian method used to model 

fluid flow by treating each particle as a discrete element of fluid. It turns the device screen 

into a container where a liquid sloshes through the movement given into the device and the 

accelerometer input readings. It allows a user to interact directly with each particle. 

The application backend runs on an Ubuntu OS and performs the dynamic simulation using 

2218 particles. These particles slosh each side of the smartphone screen with different speed 

and direction through direct user interaction. On the backend side, the application runs a 
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physic simulator based on the predictive-corrective incompressible smoothed particle 

hydrodynamics [89]. 

 

(a) Cloudlet and  Clouds server lists            

 

(b) Application running 

Figure 35 - Fluid client application 

5.3.2. CLIENT APPLICATION  

The Fluid client application is an Android application that runs on smartphones. Fluid 

configuration first step consists of choosing a server from a list and requesting the creation 
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of client threads. Figure 35-a) shows a list of servers installed on a Cloudlet and on an AWS 

Cloud.    

After that, the particles will move around according to the speed and acceleration sensed by 

the smartphone, as presented in Figure 35 b). This client application sends the realtime 

readings to a graphics engine in the backend server; those readings are subject to a physics-

based simulation and are periodically rendered on the smartphone, giving the illusion of 

liquid sloshing around.  

The client application was configured to show the key features in the left top side of the 

screen, while the simulation is running. In that way, it provides the latency value and the 

output frame rate, as shown in Figure 36. 

 

Figure 36 - Fluid client application running 

5.3.3. SERVER   

The cloudlet server is the main element of the architecture, it implements the compute-

intensive backend, offloaded from the smartphone to the cloudlet or the Amazon EC2 cloud. 

The device movement generated by the smartphone user results on an accelerometer sensing 

and the communication of the readings to a graphics engine in the backend.   

Figure 37 shows the TCP communication between the client application and the server. 

Figure 37 (a) represents the communication between client and server, we can observe that 

the client streams the information gathered by the accelerometer, the request part is only a 

few bytes. In the other way, the response data is the state of the simulated form and it has a 

much larger size (1400 B), as shown in Figure 37 (b). 



56 

  

  

(a) Communication between client and server 

 

(b) Frame composition 

Figure 37 - Communication sniffing 

5.3.4. TEST SETUP 

The first experiment consisted on allowing the dynamic resource allocation on the cloudlets. 

Cloud previously stores the VM images, but it does not present fast options to instantiate 

new images, resulting in long waiting time over WAN networks. For that reason, Cloudlets 

are expected to be much more agile in provisioning fast and dynamic solutions.  

An user that needs to use a specific application shall connect to a nearby Cloudlet which 

must provide fast VM instatiation through the server backend application. If nearby cloudlets 

exist, the rapid provisioning enables the user a good quality of service at any place and 
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any time; and a precise VM image loads the application offloading components. Therefore, 

if the Base VM already instantiated on the cloudlet, it will lack only the application and 

library difference, also called the VM overlay.   

To achieve fast provisioning, the Base VM and the VM overlay are two tasks done offline 

and register the time of the VM synthesis.   

The base VM launched has a freshly installed OS Ubuntu 14.05, with 8 GB of disk and 1 

GB of memory. An image was instantiated and after that the application and the other 

binaries were also configured. After that, the VM was ready to launch and create the overlay 

using the difference between the launch VM and the Base VM image.   

The measurement of the VM synthesis time is illustrated in the Figure 38, so after the 

download of the VM overlay through Wi-Fi, decompress and instantiate on the Base VM 

and it stops when the construct launch booted VM. The measurement was made 10 times to 

collect the results during that period. 

The second part of the experiment regards the quality of experience and interactivity to 

ensure that the delay between the input and the result output should be around 100 ms. In 

this scenario, the simulator runs all the 2218 particles with time steps of 20 ms, so it can 

generate up to 50 frames per second.   

 

Figure 38 - VM Synthesis process 

The performance evaluation measures the response time of the system using the cloudlet in 

comparison with the cloud through the workbench (Fig. 34) explained in subsection 5.2 .   

The measurement starts from the moment the device sends the sensor data; then it processes 

the data until the server sends back the estimated prevision feedback. One measuring cycle 
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provides the response time given by several iterations performed by the user. The 

measurement process starts with a 5 minutes of interaction, generating almost 300 samples. 

During that time, the user has to slosh the particles quickly from one side to the other side 

of the smartphone screen.  At the end of each cycle the measurements are collected.  

The graphics quality determines the end-to-end latency between the sensing and display in 

the front-end side and the simulation on the back-end side. The quality of the graphics 

degrades and presents sudden or slow movements because of the latency increase. To get a 

fluid movement of the particles, the latency should present a maximum value of 100 ms, 

over wise jerky or sluggish can appear, deteriorating the user experience.  

The other key feature is the output frame rate measured in frames per second (FPS), this 

value is a good metric to verify the graphics quality. This value can be compared with the 

value generated by the server. The server keeps generating up to 50 FPS and changes the 

states of simulation according to the data received from the sensors. 

The round of the experiments performed with different VM instances on both cloudlet and 

cloud also allowed to analyse the influence of the server processing capacity in the system 

performance. So, cloud servers were instantiated with 1, 2 and 4 cores both in cloudlet and 

cloud and all the test cycles were performed, analysed the collected data and assess the 

performance of the implemented cloudlet prototype against the cloud.  

5.4. USE CASE 2 – FACESWAP MOBILE APPLICATION 

The second application is FaceSwap, an application used in face recognition representative 

of real-time face recognition. We use it to implement a use case scenario to visualize 

differences cloudlet can make in reducing network latency for compute-intensive and 

latency-sensitive applications. 

5.4.1. FACESWAP 

FaceSwap is an Android application that swaps people’s faces in real time. This application 

used other applications to perform the swap, such as face tracking, face detection, and face 

recognition. The server setup also needs the installation of the dependencies OpenCV, 

OpenFace and Gabriel.  
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5.4.2. CLIENT APPLICATION 

The FaceSwap Android Client can be download on Google Play platform [90], this 

application is really user-friendly with a minimum of function or configuration, so it is easy 

to get quick results from the principal screen presented in Figure 38.  

The first part regards face tracking and detection, and it requires configuring the application. 

The first step is to add FaceSwap Server IPs, to access this menu it is necessary to select the 

option “Manage servers” inside the Menu Button on the top right corner of the principal 

page. Figure 39 presents the menu used to configure and save a cloud or cloudlet server with 

key features: name, IP address, server’s category: cloud or cloudlet. 

 

Figure 39 - FaceSwap android application 

 

Figure 40 - Server configuration 

The second step is to come back to the principal screen, and the user has to select the specific 

server in the top section “Select server type” from the 2 options cloud or cloudlet.  
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The third step is to start the training. The user has three different methods in the menu “Add 

Trainings Images”. If the user chooses the option “Collect images” it will automatically open 

the smartphone camera to collect training images. The option “From Local File” will allow 

the user to load a FaceSwap dataset stored on a local directory in the smartphone. The last 

option “From Google Drive” allows the user to load a FaceSwap dataset stored on Google 

Drive. In this part, the user has to enter the name of the person that will perform the 

experiment, as shown in Figure 40 a). 

 

 

(a) Training Person Name personalization 

 

(b) Training images collect 

Figure 41 - FaceSwap Training session 
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After that, it will start the collection of the images. The person should turn the head to all 

directions to take pictures of many face profiles as possible. These different snapshots will 

turn the detection and recognition easier and faster.  

“Choose faces to substitute” is the fourth step. The user can choose the person who will have 

the face swap with a substituted image. In that section, a list of persons that perform the 

training appears as shown in Figure 41 a). The user has to select the person who will have 

the face swap with another one. The user will choose that person from a list of persons from 

a new window as presented in Figure 41 b).  

 

(a) List of Persons trained 

 

(b) Swap Person Selection 

Figure 42 - FaceSwap choose option menu 
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The experimental part starts from this point. The user has to select the option “Run demo” 

and it begins to stream images from the smartphone to the back-end server.  

 

Figure 43 - Swap person selection 

 The key features of this experiment appear on the screen in real time. Figure 43 presents 

this feature on the right top of the screen where it appears the latency value and the output 

frame. 

5.4.3. SERVER 

The back-end server uses an Apache 2.0 license and a three-tier hierarchy based on face 

tracking, face detection, and face recognition, as presented in Figure 43.  

The application client is constantly transmitting images of the faces in JPEG format, with 

dimension 640x480. On the back-end server, if the result of a face tracking is positive, it will 

send bounding boxes with faces in JPEG formats. If it establishes face detection and 

recognition, it will perform the swap of the person’s faces. The communication between the 

Android client application and the server uses TCP traffic on the ports 9098 and 9101.   

The FaceSwap server setup installs dependencies, such as dlib, OpenCV, OpenFace, and 

Gabriel. 
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Figure 44 - Application client server process 

Gabriel is the dependency responsible for the underlying communication library [91]. 

Gabriel is a wearable cognitive assistant for users in cognitive decline. It combines the image 

capture and sensing capabilities of Google Glass devices with cloudlet processing to perform 

real-time scene interpretation. This system layers on top of an OpenStack extension for 

cloudlet environments.  
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Figure 45 - Server launching control 

Gabriel runs the FaceSwap engine on the VM instance, at first it uses Universal Plug and 

Play (UPnP) to discover control server from the ucomm server and cognitive engines, as 

shown in Figure 45. If the ucomm server connects successfully to the control server, a log 

message “INFO User communication module is connected” appears at the control server. 

After that, it runs the cognitive engine that will prompt the message “INFO offloading engine 

is connected”. Figure 46 a-) present the communication between the user application and the 

server during a face detection. The user has to take several pictures to form a little database 

of faces in variable angles, so the detection phase will be easier to identify the person. 

 

(a) Training for face detection 
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(b) Face swap during faces recognition 

Figure 46 - Cognitive engine communications 

OpenFace is the dependency used to perform both the faces classifier training and face 

recognition [92].   

OpenFace’s core provides a feature extraction method to collect a low-dimensional 

representation of any face. This function creates a face classifier by using a deep neural 

network (DNN) model to train and use a classification model.   

The comparison feature outputs the similarity between two faces, and two faces are more 

likely the same person if it presents a lower score.  

The face recognition application detects faces in an image and attempts to identify the face 

from a pre-populated database. The Haar Cascade of classifiers collects the detection 

part and the Eigenfaces method allows the identification based on the principal component 

analysis (PCA) [93]. OpenCV implements image processing and computer vision 

routines [94].   

Our experiments only consider the recognition part on a trained system because the 

classifiers train and the database population are jobs done offline. The Figure 46 b) presents 

the engine communications during the swap between two faces. If the faces detected match 

the faces present in the database, then a successful communication reply is sent out to enable 

the swap of the faces.   



66 

  

The FaceSwap server accomplishes the setup in two manners: manually or using a pre-

packaged image. In the first approach, it is necessary to install all components and their 

dependencies: OpenFace, dlib, OpenCV, Torch, Gabriel and at last FaceSwap. We tried 

several times. It comes to several errors regarding the different versions of pip or the docker 

installation for OpenFace.   

We assume that it was preferable to use the pre-packaged image, in the qcow2 format as 

shown in Figure 47, and OpenStack imports it as a volume. After that, it launches an instance 

directly, and the Faceswap server already launches by itself on the start-up. The 

inconvenience is that we assume that the possibility to not make an overlay because the 

image comes already with the Faceswap server on it. Another interesting part is that the 

Faceswap server is already part of the AWS EC2 VM instance, so it is possible to launch 

with a different configuration regarding the number of cores and RAM width.         

 

Figure 47 - FaceSwap image metadata 

5.4.4. TESTBENCH SIMULATION SETUP 

The main goal of the scenario implemented is to verify the crucial role that cloudlets play in 

reducing end-to-end latency for computation offloading mobile applications. This test used 

the FaceSwap application, that performs face tracking, detection, recognition and swap in 

real time. 
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Tests shown that face tracking performs quickly, around 15ms, and that it is possible collect 

data at high frame rates, making it possible to achieve a real-time response. On the other 

hand, as face detection and face recognition takes a longer times, around 200ms, these tasks 

are used offline, so the main goal is still attainable. When the results become available, 

trackers can be updated.  

The performance evaluation measures the response time of the system using the cloudlet in 

comparison with the cloud through the workbench (Fig. 34) explained in subsection 5.2.   

The measurement is regarding end-to-end latency, which is the time difference between the 

substituted face and the original face. One measuring cycle measures the response time given 

several iterations performed by a user. We start the process by launching the recommended 

FaceSwap server with 4 cores and 8 GB RAM on the cloudlet and on the cloud AWS EC2 

Oregon. The measurement uses an N-cycle of interaction. We use children as users because 

they are always moving and we can analyze better features like face tracking. At the end of 

each cycle, we collect the desired measurements.   

The end-to-end latency determines the quality of the graphics. To use this application fluidly, 

the latency should present a maximum value of 200 ms, however, the user experience will 

deteriorate.  

The other key feature is the output frame rate measured in frame per second (FPS), this value 

is a good metric to verify the graphics quality and good value should be around 50 FPS.  

The second round of experiments uses different VM instances on both the cloudlet and the 

cloud. It was analyzed the possibility of increasing the number of cores to achieve better 

results. Therefore, instances were launched with 2, 4, 6 and 7 cores on the cloudlet and with 

1, 2, 4, 8, 16 and 32 cores on the cloud. The same simulation was performed and it was 

analyzed, we analyze the collected data and assess the performance of our implemented 

cloudlet prototype against the cloud.  
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6. ANALYSIS OF THE 

RESULTS 

 

Experiments occurred in a fixed environment, deploying each scenario with the same 

experimental settings. From the comparison of cloud services, this work selects AWS EC2-

West (Oregon) which presents a round trip time (RTT) of 101.5 ms, a better result than the 

ones measured on AWS EC2-Europe, AWS EC2-Asia, and AWS EC2-East. This value is 

higher compared to the values presented by Li et al. on his study, which reports an RTT of 

74 ms from 260 global vantage points to their optimal Amazon EC2 instances.   

The mobile device uses 802.11n to connect to a private access point connected to the network 

via Ethernet and then via the Internet to the AWS website portal. The mobile device uses 

Wi-Fi 802.11n to connect to the cloudlet is on the same Ethernet network as the access 

point.   

The experiments evaluate end-to-end latency and user quality by implementing N-cycles of 

interaction that registers different phenomena that can occur in real life, such as bandwidth 

limitations, Wi-Fi saturation, and congestion, routing instability, application vendor failure. 

These N-cycles enable the result presentation and comparison with a reliable interval. For 

each use case, these results use Cumulative Distribution Function (CDF) that provides easily 

various information in one plot, such as the median, worst-case, best-case, standard deviation 

and also the percentile of response time or frame rate output in each simulation. 
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6.1. TEST RESULT USE CASE - FLUID 

The aim is to verify the real-time value of the application’s offloading part at the network 

edge servers. This use case uses an application representative of real-time games, which is 

one target for 5G requirements.  

The first experiment tests and compares the efficiency of VM synthesis on the cloudlet 

against the cloud solution. It is important that it instantiates fast enough so that the user 

continues with a good quality of experience.  

The second experiment compares the values of the response time and the frame rate output 

of similar VM instances running on both the cloudlet and the cloud. Table 5 summarizes this 

comparison. On the one hand, the AWS dashboard presents a list of instances with fixed 

configuration values, such as the number of cores or the RAM memory.     

On the other hand, instances launched through the cloudlet present hardware limitations, so 

it is not possible to launch instances with the exact number of cores and RAM.  

This experiment also analyzes the possibility of decreasing the values collected before by 

increasing the VM instances’ size.  

 

Table 5 - Servers instance configuration type 

Servers 
Instance configuration type 

1 core 2 cores 4 cores 

Cloudlet  1 CPU - 1 GB RAM 2 CPU - 4 GB RAM 4 CPU - 6 GB RAM 

Cloud 1 CPU - 1 GB RAM 2 CPU - 4 GB RAM 4 CPU - 16 GB RAM 

 

6.1.1. CLOUDLET MEASUREMENTS 

The first experiment regards the VM synthesis time. It is possible to perform the VM 

synthesis after instantiating the Base VM and the VM overlay. Doing these offline tasks 

previously enables fast provisioning.   
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The Base VM launched is a new installation of an OS Ubuntu 14.05, with 8 GB of disk and 

1 GB of memory. It gathers the VM overlay after instantiating the Base VM, installing and 

configuring the needed application and all necessary binaries. Figure 48 presents the overlay 

collected using the difference between the launch VM and the Base VM image.   

 

 

 

(a) VM overlay disk image file metadata 
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(b) VM overlay memory snapshot metadata 

Figure 48 - VM overlay metadata files 

Installed on the mobile phone, the VM overlay has a size of 2,4 MB. 

The measurement of the VM synthesis time follows Figure 38. So the VM overlay needs to 

be downloaded through Wi-Fi, decompress and instantiate on the Base VM and it stops when 

the constructed launch VM is booted. The test measurement occurs 10 times to collect 

different periods.   

The VM synthesis presents an average of 29.84 seconds with a standard deviation of 0.45 

seconds. These results are higher compared with the ones presented by Ha k. at el [95] on 

his study, it presents an average time under 10s. However, our time is under the synthesis 

time estimated as too large for good user experience between 60 and 150 seconds.  

The second process launches the Fluid server on VM instances. After that, it is possible to 

launch Fluid client application on the mobile smartphone. During 5 minutes of interaction, 

which the user has to slosh the particles quickly from one side to the other side of the 

smartphone screen, we collect the desired measurements. 
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Figure 49 - CDF for response time and frame rate for Fluid - Cloudlet 
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Figure 49 and Table 6 present the test results of the Fluid application using Cloudlet’s 

instances with 1, 2 and 4 CPU.   

Table 6 - Cloudlet test results for Fluid 

CLOUDLET 
1 core 2 cores 4 cores 

Latency FPS Latency FPS Latency FPS 

Median 34.0 44.7 34.0 47.2 32.0 46.5 

Minimum 19.0 42.4 10.0 40.4 10.0 33.8 

Maximum 76.0 48.5 91.0 49.5 68.0 49.3 

Standard Deviance 9.4 0.7 8.9 0.4 7.5 0.6 

6.1.2. CLOUD MEASUREMENTS 

Figure 50 and Table 7 show the experiments using AWS EC2 Oregon and present the values 

of CDF regarding response time and frame rate output. 

Table 7 - Cloud test results for Fluid 

CLOUD 
1 core 2 cores 4 cores 

Latency FPS Latency FPS Latency FPS 

Median 145.0 8.6 126.0 22.0 124.0 21.7 

Minimum 87.0 16.8 87.0 15.4 10.0 4.9 

Maximum 277.0 18.7 328.0 23.8 605.0 22.6 

Standard Deviance 35.6 0.3 34.1 0.9 38.6 2.1 
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Figure 50 - CDF for response time and frame rate for Fluid - Cloud 

6.1.3. RESULTS 

Figure 51 presents the comparison between the Cloudlet and Cloud regarding the Fluid 

application’s offloading on the servers.  

The quality of the graphics is much higher in Cloudlet scenario, for Cloudlet response time 

median values are around 32-34 ms and for Cloud the median values are around 124-145 

ms.  
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Figure 51 - Cloud and Cloudlet test result comparison for Fluid 

Compared with Cloud AWS EC2 Oregon, Cloudlet present latency values almost lower 

four times. Using the cloudlet server, the movement of the particles is more fluid and does 

not degrade easily as on the cloud.    
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The other key feature analyzed is the output frame rate that present median values of 44-47 

FPS for Cloudlet and 18-22 for Cloud. Using Cloudlet ensures a rate of at least two times 

higher than the cloud.  

This 2 features analyzed to ensure that the use of Cloudlet can have a great impact and reduce 

brutally the latency and augment substantially the user quality of experience.  

To use this application and verify a fluid movement of the particles, the latency should 

present a maximum value under 100 ms, over wise jerky or sluggish can appear, 

deteriorating the user experience [95].   

The values presented by the Cloudlet successfully accomplish the application requirements. 

We also noticed that the values collected by K. Ha are similar compared to the 

results gathered in our experiments.   

We also notice that the VM instances with a higher configuration of CPU and RAM can 

achieve better performance for intensive computation tasks in the server side. For Fluid 

application, and comparing the data from the VM instances with 1 CPU and 4 CPU, we 

verify that the latency reduces for 6% and an increase of 4% on the frame rate output.  

6.2. TEST RESULT FROM USE CASE - FACESWAP 

Our aim is to confirm the real value of offloading part of the application at the edge servers. 

We use the structure of this application representative of face recognition, which is one 

subject for 5G requirements.  

The experiment allows us to compare directly the values of the response time and the frame 

rate output on our cloudlet and on AWS EC2-Oregon with similar VM instances, as 

summarized in Table 8. On one hand, AWS has instances with fixed values. On the other 

hand, instances launched in our cloudlet present hardware limitations, so it is not possible to 

launch instances with the exact number of cores and RAM.  

This experiment also verifies the possibility of increasing the values collected before by 

increasing the VM instances’ size and comparing many cases to achieve better performance.  
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Table 8 - Instance type configuration 

Servers 
Instance Type configuration 

2 cores 4 cores 6 cores 7 cores 8 cores 16 cores 32 cores 

Cloudlet  
2 CPU  

4 GB RAM 

4 CPU  

6 GB RAM 

6 CPU  

5 GB RAM 

7 CPU  

6 GB RAM       

Cloud 
2 CPU 

8 GB RAM 

4 CPU 

16 GB RAM 
  8 CPU 

32 GB RAM 

16 CPU 

64 GB RAM 

32 CPU 

132 GB 

RAM 

6.2.1. CLOUDLET MEASUREMENTS 

The process launches FaceSwap server on VM instances after that it is possible to launch 

FaceSwap client application on the mobile smartphone and choose the cloudlet server. For 

the first Cloudlet instantiation, it is necessary to perform the faces training. After that, an 

option enables the user to choose two persons who will have to swap their faces for 100 

images.   

Figure 52 and Table 9 present the Fluid application’s test results using the Cloudlet. We 

launch instances with 1, 2, and 4 CPU.  

Table 9 - Cloudlet test results for FaceSwap 

Cloudlet 
2 CPU 4 CPU 6 CPU 7 CPU 

Latency 

(ms) 
FPS 

Latency 

(ms) 
FPS 

Latency 

(ms) 
FPS 

Latency 

(ms) 
FPS 

Median 37.9 21.7 40.6 19.6 43.2 18.8 42.9 19.0 

Minimum 29.7 12.1 26.3 4.9 31.1 11.9 34.0 12.0 

Maximum 76.3 27.2 62.5 31.2 73.1 24.9 72.8 23.0 

Deviance 10.8 3.9 9.7 5.3 10.9 3.4 9.7 3.0 
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Figure 52 - CDF for response time and Frame rate for FaceSwap - Cloudlets 

6.2.2. CLOUD MEASUREMENTS 

Figure 53 and Table 10 present the values of CDF regarding response time and frame rate 

output using AWS EC2 Oregon. 

Table 10 - Cloud test results for FaceSwap 

Cloud 

1 CPU 2 CPU 4 CPU 

Latency 

(ms) 
FPS 

Latency 

(ms) 
FPS 

Latency 

(ms) 
FPS 

Median 208.3 4.6 210.5 4.6 212.4 4.5 

Minimum 192.9 4.2 198.3 4.1 195.1 4.3 

Maximum 233.6 5.1 237.1 5.0 251.9 5.0 

Standard 

Deviance 
10.3 0.2 10.5 0.2 8.9 0.2 

 

Cloud 
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Latency 
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Latency 

(ms) 
FPS 

Latency 

(ms) 
FPS 

Median 204.9 4.7 618.5 1.6 379.9 2.6 

Minimum 193.7 4.3 580.9 1.5 340.0 2.4 

Maximum 222.7 5.0 676.5 1.7 412.0 2.9 

Standard 

Deviance 
7.3 0.2 27.9 0.1 17.2 0.1 
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Figure 53 - CDF for response time and frame rate for FaceSwap - Clouds 

 

6.2.3. RESULTS 

Figure 54 presents the comparison between the Cloudlet and Cloud for the offloading of part 

of Fluid application on the servers. The quality of the graphics is much higher in Cloudlet 

scenario, for Cloudlet response time median values are around 38-43 ms and for Cloud the 

median values are around 205-618 ms. For the same VM instance types launched, 2 and 4 

CPU, latency values almost lower 5 times than the values measured for Cloud AWS EC2 

Oregon. Using the cloudlet server face recognition is so much faster.  

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

580 600 620 640 660 680

C
D

F 
(%

)

time (ms)

CDF of response time - Cloud - 16 CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 1,2 1,4 1,6 1,8 2

C
D

F 
(%

)

Frame rate (FPS)

CDF of frame output rate - Cloud - 16 
CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

335 355 375 395 415

C
D

F 
(%

)

time (ms)

CDF of response time - Cloud - 32 CPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

2,3 2,5 2,7 2,9

C
D

F 
(%

)

Frame rate (FPS)

CDF of frame output rate - Cloud - 32 
CPU



83 

  

We notice a bandwidth reduction and maybe some losses on AWS for experiments regarding 

16 and 32 CPU cases. We tried two times this experiment with an interval of 1 hour and the 

results maintained similarly.  

The other key feature analyzed is the output frame rate that presents the median values of 

19-22 FPS for Cloudlet and 2-5 for Cloud. Using Cloudlet ensures a rate of at least 4 times 

higher than the Cloud, so it will satisfy user experience with the Cloudlet scenario.  

This 2 features analyzed to ensure that the use of Cloudlet can have a great impact and reduce 

brutally the latency and augment substantially the user quality of experience.  

To use this application and collect an application capable of performing face swapping, the 

recommended FaceSwap server should have 4 cores and 8GM RAM [96]. The values 

presented by the Cloudlet successfully accomplish the application requirements. We also 

noticed that the values collected by J. Wang are similar compared to the results collected in 

our experiments.  

Compared with some other works using the application Face [98] [99] [100], the results 

obtained in our experiments presents lower response time both for Cloudlet and AWS West 

solutions. In all experiments, Cloudlets present better response time values than the cloud 

solutions.  
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Figure 54 - Cloud and Cloudlet test result comparison for FaceSwap 

It was analyzed the performance on launching VM instance with a higher configuration of 

CPU and RAM intensive computation tasks on the server side. We noticed also that for 

FaceSwap application launched on VM instances with 6 and 7 CPU, the CPU of the original 

workstation was surcharging and even shut down, as shown in Figure 55. The "Stealth time" 

(st) stands for the amount of CPU that has been allocated by the hypervisor to the virtual 
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a virtualized environment, we can assume that the issue is between the VM instantiated and 

the hypervisor. Libvirt is a toolkit used for communication with the hypervisor qemu-KVM. 

It seems that the VM Instantiated is reaching almost 100% of each vCPU during the phase 

of face recognition as show in Figure 55. 

 

Figure 55 - CPU usage while FaceSwap running 
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7. CONCLUSION 

This thesis presents an emerging technology that enables the reduction of the end-to-end 

latencies and the increase of the user quality when using applications with mobile devices. 

MEC is not replacing but complimenting the cloud computing model. The delay sensitive 

part of application can be executed on MEC server, whereas delay tolerant compute intensive 

part of application can be executed on the remote cloud server. MEC aims to enable the 

billions of connected mobile devices to execute the real time compute intensive applications 

directly at the network edge. 

We prove that a MEC server can improve user interaction and quality of experience by 

offloading the processing and computation intensive on edge servers.  The values measured 

in both use case scenario are convincing as the latency is always under 100 ms and always 

better than the ones presented on remote servers (AWS EC2-Oregon). Compared to the 

remote servers (AWS EC2-Oregon), tests realized showed that a MEC solution achieves  

latency of about 25% of the MCCs latency and about 2 to 5 higher frame rate than in MCC. 

Its proximity to the user allows a lower response time and delivers a better user experience.   

The results of the VM synthesis show that resuming an instance from an overlay is a 

fast operation nearby cloudlet. New emerging applications runs on WiFi and LTE networks 

will improve greatly that results and prove even more the results. 

We analyzed also the performance in the response time due to the variation of the server 

processing capacity. This was achieved by considering several cores at the Cloudlet. In the 

two uses cases (Fluid and Faceswap), the benefits were not really significant because those 

applications were implemented using a single thread aproach.    

While 5G technology is already on the way, MEC has a great role to play on the mobile 

ecosystem with the increase of a new application like face recognition, real-time online 

games, IoT, which are interactive and compute-intensive.  
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For future work, we propose an analysis on the pertinent interactions between MEC with 

RAN through the selection and the traffic control in the User Plane. An interesting analysis 

can be performed through the evaluation of the services performance and continuity in a UE 

mobility environment. 
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