16,433 research outputs found

    Pharmacogenetics : the science of predictive clinical pharmacology

    Get PDF
    The study of pharmacogenetics has expanded from what were initially casual family-based clinical drug response observations, to a fully-fledged science with direct therapeutic applications, all within a time-span of less than 60 years. A wide spectrum of polymorphisms, located within several genes, are now recognised to influence the pharmacokinetics and pharmacodynamics of the majority of drugs within our therapeutic armamentarium. This information forms the basis for the new development of pharmacogenetic genotyping tests, which can be used to predict the therapeutic and/or adverse effects of a specific drug in a particular patient. Pharmacogenetic-guided, patient targeted therapy has now become the developing fulcrum of personalized medicine, as it provides the best means to optimize benefit/risk ratio in pharmacological management.peer-reviewe

    Pharmacogenetics of ophthalmic topical β-blockers

    Get PDF
    Glaucoma is the second leading cause of blindness worldwide. The primary glaucoma risk factor is elevated intraocular pressure. Topical β-blockers are affordable and widely used to lower intraocular pressure. Genetic variability has been postulated to contribute to interpersonal differences in efficacy and safety of topical β-blockers. This review summarizes clinically significant polymorphisms that have been identified in the β-adrenergic receptors (ADRB1, ADRB2 and ADRB3). The implications of polymorphisms in CYP2D6 are also discussed. Although the candidate-gene approach has facilitated significant progress in our understanding of the genetic basis of glaucoma treatment response, most drug responses involve a large number of genes, each containing multiple polymorphisms. Genome-wide association studies may yield a more comprehensive set of polymorphisms associated with glaucoma outcomes. An understanding of the genetic mechanisms associated with variability in individual responses to topical β-blockers may advance individualized treatment at a lower cost

    Physiology-based IVIVE predictions of tramadol from in vitro metabolism data

    Get PDF
    To predict the tramadol in vivo pharmacokinetics in adults by using in vitro metabolism data and an in vitro-in vivo extrapolation (IVIVE)-linked physiologically-based pharmacokinetic (PBPK) modeling and simulation approach (SimcypA (R)). Tramadol metabolism data was gathered using metabolite formation in human liver microsomes (HLM) and recombinant enzyme systems (rCYP). Hepatic intrinsic clearance (CLint(H)) was (i) estimated from HLM corrected for specific CYP450 contributions from a chemical inhibition assay (model 1); (ii) obtained in rCYP and corrected for specific CYP450 contributions by study-specific intersystem extrapolation factor (ISEF) values (model 2); and (iii) scaled back from in vivo observed clearance values (model 3). The model-predicted clearances of these three models were evaluated against observed clearance values in terms of relative difference of their geometric means, the fold difference of their coefficients of variation, and relative CYP2D6 contribution. Model 1 underpredicted, while model 2 overpredicted the total tramadol clearance by -27 and +22%, respectively. The CYP2D6 contribution was underestimated in both models 1 and 2. Also, the variability on the clearance of those models was slightly underpredicted. Additionally, blood-to-plasma ratio and hepatic uptake factor were identified as most influential factors in the prediction of the hepatic clearance using a sensitivity analysis. IVIVE-PBPK proved to be a useful tool in combining tramadol's low turnover in vitro metabolism data with system-specific physiological information to come up with reliable PK predictions in adults

    Impaired hepatic drug and steroid metabolism in congenital adrenal hyperplasia due to P450 oxidoreductase deficiency

    Get PDF
    Objective: Patients with congenital adrenal hyperplasia due to P450 oxidoreductase (POR) deficiency(ORD) present with disordered sex development and glucocorticoid deficiency. This is due to disruption of electron transfer from mutant POR to microsomal cytochrome P450 (CYP) enzymes that play a key role in glucocorticoid and sex steroid synthesis. POR also transfers electrons to all major drugmetabolizing CYP enzymes, including CYP3A4 that inactivates glucocorticoid and oestrogens. However, whether ORD results in impairment of in vivo drug metabolism has never been studied. Design:We studied an adult patient with ORD due to homozygous POR A287P, the most frequent POR mutation in Caucasians, and her clinically unaffected, heterozygous mother. The patient had received standard dose oestrogen replacement from 17 until 37 years of age when it was stopped after she developed breast cancer. Methods: Both subjects underwent in vivo cocktail phenotyping comprising the oral administration of caffeine, tolbutamide, omeprazole, dextromethorphan hydrobromide and midazolam to assess the five major drug-metabolizing CYP enzymes. We also performed genotyping for variant CYP alleles known to affect drug metabolism. Results: Though CYP enzyme genotyping predicted normal or high enzymatic activities in both subjects, in vivo assessment showed subnormal activities of CYP1A2, CYP2C9, CYP2D6 and CYP3A4 in the patient and of CYP1A2 and CYP2C9 in her mother. Conclusions: Our results provide in vivo evidence for an important role of POR in regulating drug metabolism and detoxification. In patients with ORD, in vivo assessment of drug-metabolizing activities with subsequent tailoring of drug therapy and steroid replacement should be considered

    Pharmacogenomic testing and its future in community pharmacy

    Get PDF
    Although it is common to see pharmacogenomic testing used North America and Australia, it is not yet part of practice in the UK. With the promise of genomic screening becoming part of the NHS, pharmacists must equip themselves with a knowledge of how the process works. Source: Shutterstock.com In January 2019, the UK government unveiled its ten-year plan for NHS England and emphasised the role pharmacists can play in promoting patient self-care[1]. There was also a focus on delivering value from medicines and reducing avoidable medicines related-harm, which costs the NHS a minimum of £98.5m per year[2]. This coincides with the NHS Genomic Medicine Service, which will be rolled out across England from April 2020, meaning that the routine use of genomic screening and personalised treatments will be the new normal in the NHS[3],[4]. Pharmacists’ advice currently relies on knowledge of observable patient characteristics, such as age, weight, comorbidities and concurrent medicines, while largely disregarding genetics. However, it is estimated that genetic factors could contribute to between 25–50% of inappropriate drug responses[5]. Knowing exactly which medicine to use for a patient and which to avoid can be a challenging task in clinical practice. However, pharmacogenomics can provide the prescriber with additional information on some of the unobserved patient characteristics that affect drug response — this can assist with both drug selection and safety. Therefore, the combination of this pharmacogenomic information along with other factors influencing pharmaceutical care may provide an opportunity to deliver more ‘personalised’ medicine, facilitating better selection and reducing the need for ‘trial and error’ prescribing

    Towards the clinical implementation of pharmacogenetics in bipolar disorder.

    Get PDF
    BackgroundBipolar disorder (BD) is a psychiatric illness defined by pathological alterations between the mood states of mania and depression, causing disability, imposing healthcare costs and elevating the risk of suicide. Although effective treatments for BD exist, variability in outcomes leads to a large number of treatment failures, typically followed by a trial and error process of medication switches that can take years. Pharmacogenetic testing (PGT), by tailoring drug choice to an individual, may personalize and expedite treatment so as to identify more rapidly medications well suited to individual BD patients.DiscussionA number of associations have been made in BD between medication response phenotypes and specific genetic markers. However, to date clinical adoption of PGT has been limited, often citing questions that must be answered before it can be widely utilized. These include: What are the requirements of supporting evidence? How large is a clinically relevant effect? What degree of specificity and sensitivity are required? Does a given marker influence decision making and have clinical utility? In many cases, the answers to these questions remain unknown, and ultimately, the question of whether PGT is valid and useful must be determined empirically. Towards this aim, we have reviewed the literature and selected drug-genotype associations with the strongest evidence for utility in BD.SummaryBased upon these findings, we propose a preliminary panel for use in PGT, and a method by which the results of a PGT panel can be integrated for clinical interpretation. Finally, we argue that based on the sufficiency of accumulated evidence, PGT implementation studies are now warranted. We propose and discuss the design for a randomized clinical trial to test the use of PGT in the treatment of BD

    CYP2D6 genetic polymorphisms and phenotypes in different ethnicities of Malaysian breast cancer patients

    Get PDF
    The cytochrome P450, family 2, subfamily D, polypeptide 6 (CYP2D6) is an enzyme that is predominantly involved in the metabolism of tamoxifen. Genetic polymorphisms of the CYP2D6 gene may contribute to inter-individual variability in tamoxifen metabolism, which leads to the differences in clinical response to tamoxifen among breast cancer patients. In Malaysia, the knowledge on CYP2D6 genetic polymorphisms as well as metabolizer status in Malaysian breast cancer patients remains unknown. Hence, this study aimed to comprehensively identify CYP2D6 genetic polymorphisms among 80 Malaysian breast cancer patients. The genetic polymorphisms of all the 9 exons of CYP2D6 gene were identified using high-resolution melting analysis and confirmed by DNA sequencing. Seven CYP2D6 alleles consisting of CYP2D6*1, CYP2D6*2, CYP2D6*4, CYP2D6*10, CYP2D6*39, CYP2D6*49, and CYP2D6*75 were identified in this study. Among these alleles, CYP2D6*10 is the most common allele in both Malaysian Malay (54.8%) and Chinese (71.4%) breast cancer patients, whereas CYP2D6*4 in Malaysian Indian (28.6%) breast cancer patients. In relation to CYP2D6 genotype, CYP2D6*10/*10 is more frequently observed in both Malaysian Malay (28.9%) and Chinese (57.1%) breast cancer patients, whereas CYP2D6*4/*10 is more frequently observed in Malaysian Indian (42.8%) breast cancer patients. In terms of CYP2D6 phenotype, 61.5% of Malaysian Malay breast cancer patients are predicted as extensive metabolizers in which they are most likely to respond well to tamoxifen therapy. However, 57.1% of Chinese as well as Indian breast cancer patients are predicted as intermediate metabolizers and they are less likely to gain optimal benefit from the tamoxifen therapy. This is the first report of CYP2D6 genetic polymorphisms and phenotypes in Malaysian breast cancer patients for different ethnicities. These data may aid clinicians in selecting an optimal drug therapy for Malaysian breast cancer patients, hence improve the clinical outcome of the patients

    Differential quantification of CYP2D6 gene copy number by four different quantitative real-time PCR assays

    Get PDF
    Copy number variations (CNVs) in the CYP2D6 gene contribute to interindividual variation in drug metabolism. As the most common duplicated allele in Asian populations is the nonfunctional CYP2D6*36 allele, the goal of this study was to identify CNV assays that can differentiate between multiple copies of the CYP2D6*36 allele and multiple copies of other CYP2D6 alleles. We determined CYP2D6 gene copy numbers in 32 individuals with known CYP2D6 CNVs from the Coriell Japanese-Chinese panel using four quantitative real-time PCR assays. These assays target different regions of the CYP2D6 gene: 5'-flanking region, intron 2, intron 6, and exon 9 (Ex9). The specific target site of the Ex9 assay was verified by sequencing the PCR amplicon. Three of the CYP2D6 CNV assays (5'-flanking region, intron 2, and intron 6) estimated CYP2D6 copy numbers that were concordant for all 32 individuals. However, the Ex9 assay was concordant in only 10 of 32 samples. The 10 concordant samples did not contain any CYP2D6*36 alleles and the 22 discordant samples contained at least one CYP2D6*36 allele. In addition, the Ex9 assay accurately quantified all of the non-CYP2D6*36 alleles in all samples. Ex9 amplicon sequencing indicated that it targets a region of CYP2D6 exon 9 that undergoes partial gene-conversion in the CYP2D6*36 allele. In conclusion, CYP2D6 Ex9 CNV assay can be used to determine the copy number of non-CYP2D6*36 alleles. Selective amplification of non-CYP2D6*36 sequence by the Ex9 assay should be useful in determining the number of functional copies of CYP2D6 in Asian populations
    corecore