78 research outputs found

    Integrating the common variability language with multilanguage annotations for web engineering

    Get PDF
    Web applications development involves managing a high diversity of files and resources like code, pages or style sheets, implemented in different languages. To deal with the automatic generation of custom-made configurations of web applications, industry usually adopts annotation-based approaches even though the majority of studies encourage the use of composition-based approaches to implement Software Product Lines. Recent work tries to combine both approaches to get the complementary benefits. However, technological companies are reticent to adopt new development paradigms such as feature-oriented programming or aspect-oriented programming. Moreover, it is extremely difficult, or even impossible, to apply these programming models to web applications, mainly because of their multilingual nature, since their development involves multiple types of source code (Java, Groovy, JavaScript), templates (HTML, Markdown, XML), style sheet files (CSS and its variants, such as SCSS), and other files (JSON, YML, shell scripts). We propose to use the Common Variability Language as a composition-based approach and integrate annotations to manage fine grained variability of a Software Product Line for web applications. In this paper, we (i) show that existing composition and annotation-based approaches, including some well-known combinations, are not appropriate to model and implement the variability of web applications; and (ii) present a combined approach that effectively integrates annotations into a composition-based approach for web applications. We implement our approach and show its applicability with an industrial real-world system.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    WeaFQAs: A Software Product Line Approach for Customizing and Weaving Efficient Functional Quality Attributes

    Get PDF
    Fecha de Lectura de Tesis: 10 de julio de 2018Los atributos de calidad funcionales (FQA) son aquellos que tienen una clara implicación en la funcionalidad del sistema, es decir, existen unos componentes específicos que deben ser incorporados a la arquitectura software del sistema para satisfacer sus requisitos de atributos de calidad. Ejemplos de FQAs son seguridad, usabilidad, o persistencia. Modelar estos atributos es una tarea compleja. Por un lado, se componen de muchas características relacionadas, por ejemplo seguridad está compuesto, entre otros, por autenticación, confidencialidad y encriptación. Tienen dependencias entre ellos, por ejemplo, seguridad puede ser requerido por usabilidad o persistencia. Por otro lado, tienen muchos puntos de variabilidad: una aplicación concreta puede requerir autenticación y control de acceso mientras que otra puede necesitar sólo encriptación. Además, su funcionalidad suele estar dispersa afectando a varios componentes del sistema en desarrollo. El objetivo de esta tesis es definir una línea de productos software orientada a aspectos que permita: (1) modelar las similitudes y la variabilidad de los FQAs desde las primeras etapas del proceso de desarrollo, (2) gestionar las dependencias existentes entre los FQAs, (3) independizar el modelado de los FQAs de la arquitectura de la aplicación afectada, (4) configurar los FQAs en base a los requisitos de cada aplicación teniendo además en cuenta propiedades no funcionales como el rendimiento y el consumo energético de cada solución, (5) incorporar las configuraciones a la arquitectura de la aplicación de manera automática; y (6) gestionar la evolución de los FQAs cuando los requisitos cambien en el futuro. Como resultado se ha definido WeaFQAs, un proceso software para gestionar los FQAs que cubre todos los puntos mencionados. Se han realizado y comparado dos instanciaciones de WeaFQAs usando diferentes lenguajes de variabilidad y de modelado, además de proporcionar soporte con una herramienta basada en el lenguaje CVL

    Software product line engineering: a practical experience

    Get PDF
    The lack of mature tool support is one of the main reasons that make the industry to be reluctant to adopt Software Product Line (SPL) approaches. A number of systematic literature reviews exist that identify the main characteristics offered by existing tools and the SPL phases in which they can be applied. However, these reviews do not really help to understand if those tools are offering what is really needed to apply SPLs to complex projects. These studies are mainly based on information extracted from the tool documentation or published papers. In this paper, we follow a different approach, in which we firstly identify those characteristics that are currently essential for the development of an SPL, and secondly analyze whether the tools provide or not support for those characteristics. We focus on those tools that satisfy certain selection criteria (e.g., they can be downloaded and are ready to be used). The paper presents a state of practice with the availability and usability of the existing tools for SPL, and defines different roadmaps that allow carrying out a complete SPL process with the existing tool support.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Magic P12-TIC1814, HADAS TIN2015-64841-R (cofinanciado con fondos FEDER), MEDEA RTI2018-099213-B-I00 (cofinanciado con fondos FEDER), TASOVA MCIU-AEI TIN2017-90644-RED

    Conceptual Variability Management in Software Families with Multiple Contributors

    Get PDF
    To offer customisable software, there are two main concepts yet: software product lines that allow the product customisation based on a fixed set of variability and software ecosystems, allowing an open product customisation based on a common platform. Offering a software family that enables external developers to supply software artefacts means to offer a common platform as part of an ecosystem and to sacrifice variability control. Keeping full variability control means to offer a customisable product as a product line, but without the support for external contributors. This thesis proposes a third concept of variable software: partly open software families. They combine a customisable platform similar to product lines with controlled openness similar to ecosystems. As a major contribution of this thesis a variability modelling concept is proposed which is part of a variability management for these partly open software families. This modelling concept is based on feature models and extends them to support open variability modelling by means of interfaces, structural interface specifications and the inclusion of semantic information. Additionally, the introduction of a rights management allows multiple contributors to work with the model. This is required to enable external developers to use the model for the concrete extension development. The feasibility of the proposed model is evaluated using a prototypically developed modelling tool and by means of a case study based on a car infotainment system

    Combining Multiple Granularity Variability in a Software Product Line Approach for Web Engineering

    Get PDF
    [Abstract] Context: Web engineering involves managing a high diversity of artifacts implemented in different languages and with different levels of granularity. Technological companies usually implement variable artifacts of Software Product Lines (SPLs) using annotations, being reluctant to adopt hybrid, often complex, approaches combining composition and annotations despite their benefits. Objective: This paper proposes a combined approach to support fine and coarse-grained variability for web artifacts. The proposal allows web developers to continue using annotations to handle fine-grained variability for those artifacts whose variability is very difficult to implement with a composition-based approach, but obtaining the advantages of the composition-based approach for the coarse-grained variable artifacts. Methods: A combined approach based on feature modeling that integrates annotations into a generic composition-based approach. We propose the definition of compositional and annotative variation points with custom-defined semantics, which is resolved by a scaffolding-based derivation engine. The approach is evaluated on a real-world web-based SPL by applying a set of variability metrics, as well as discussing its quality criteria in comparison with annotations, compositional, and combined existing approaches. Results: Our approach effectively handles both fine and coarse-grained variability. The mapping between the feature model and the web artifacts promotes the traceability of the features and the uniformity of the variation points regardless of the granularity of the web artifacts. Conclusions: Using well-known techniques of SPLs from an architectural point of view, such as feature modeling, can improve the design and maintenance of variable web artifacts without the need of introducing complex approaches for implementing the underlying variability.The work of the authors from the Universidad de Málaga is supported by the projects Magic P12-TIC1814 (post-doctoral research grant), MEDEA RTI2018-099213-B-I00 (co-financed by FEDER funds), Rhea P18-FR-1081 (MCI/AEI/FEDER, UE), LEIA UMA18-FEDERIA-157, TASOVA MCIU-AEI TIN2017-90644-REDT and, European Union’s H2020 research and innovation program under grant agreement DAEMON 101017109. The work of the authors from the Universidade da Coruña has been funded by MCIN/AEI/10.13039/501100011033, NextGenerationEU/PRTR, FLATCITY-POC: PDC2021-121239-C31 ; MCIN/AEI/10.13039/501100011033 EXTRACompact: PID2020-114635RB-I00 ; GAIN/Xunta de Galicia/ERDF CEDCOVID: COV20/00604 ; Xunta de Galicia/FEDER-UE GRC: ED431C 2021/53 ; MICIU/FEDER-UE BIZDEVOPSGLOBAL: RTI-2018-098309-B-C32 ; MCIN/AEI/10.13039/501100011033 MAGIST: PID2019-105221RB-C41Junta de Andalucía; P12-TIC-1814Universidad de Málaga; UMA18-FEDERIA-157Xunta de Galicia; COV20/00604Xunta de Galicia; ED431C 2021/53Junta de Andalucía; P18-FR-108

    Optimizing mobile applications by exploiting variability models at runtime

    Get PDF
    El servicio de reconfiguración dinámica genera y despliega configuraciones de la aplicación optimizadas para el contexto de la ejecución. Para la generación eficiente de estas configuraciones se han definido los algoritmos genéticos DAGAME (mono-objetivo) y MO-DAGAME (multi-objetivo). Ambos algoritmos han sido evaluados, obteniendo buenos resultados con respecto al tiempo de ejecución y a la calidad de las configuraciones generadas. Fecha de lectura de Tesis Doctoral: 18 de diciembre 2018.Los teléfonos móviles inteligentes son una herramienta indispensable en nuestra vida cotidiana. Son dispositivos con los que podemos ejecutar aplicaciones y tareas complejas en cualquier lugar y en cualquier momento. Estas aplicaciones están fuertemente relacionadas con su contexto (e.g., localización, recursos disponibles, etc.) y los requisitos del usuario cambian cuando lo hace el contexto en el que se ejecutan. Por lo tanto, desarrollar aplicaciones que se adaptan al contexto es fundamental para satisfacer dichos requisitos y, para lograrlo, es necesario proporcionar mecanismos de reconfiguración dinámica. Un enfoque ampliamente aceptado para gestionar la variabilidad de las aplicaciones en tiempo de ejecución son las Líneas de Producto Software Dinámicas (DSPLs). Por otro lado, otro paradigma ampliamente aceptado en la comunidad de los sistemas distributidos es el de la Computación Autónoma (CA), cuyo principal objetivo es dotar a los sistemas distribuidos de capacidades de auto-gestión. Esta tesis explora la aplicación de las DSPLs y la CA al desarrollo de aplicaciones para dispositivos móviles que pueden ser reconfiguradas en tiempo de ejecución en función de su contexto. Sus contribuciones cubren tanto el diseño de la DSPL como el desarrollo de mecanismos de reconfiguración dinámica. Con respecto al diseño de la DSPL, se han propuesto dos alternativas diferentes para la especificación de la arquitectura software y la variabilidad. Por un lado, un mecanismo basado en el uso de perfiles UML y herramientas para modelos de características. Por otro lado, un mecanismo basado en el uso del lenguaje CVL para el modelado de la variabilidad. Para la adaptación de las aplicaciones en tiempo de ejecución se ha definido un middleware que incluye servicios de monitorización del contexto y de reconfiguración dinámica

    Software product lines and variability modeling : A tertiary study

    Get PDF
    Context: A software product line is a means to develop a set of products in which variability is a central phenomenon captured in variability models. The field of SPLs and variability have been topics of extensive research over the few past decades. Objective: This research characterizes systematic reviews (SRs) in the field, studies how SRs analyze and use evidence-based results, and identifies how variability is modeled. Method: We conducted a tertiary study as a form of systematic review. Results: 86 SRs were included. SRs have become a widely adopted methodology covering the field broadly otherwise except for variability realization. Numerous variability models exist that cover different development artifacts, but the evidence is insufficient in quantity and immature, and we argue for better evidence. SRs perform well in searching and selecting studies and presenting data. However, their analysis and use of the quality of and evidence in the primary studies often remains shallow, merely presenting of what kinds of evidence exist. Conclusions: There is a need for actionable, context-sensitive, and evaluated solutions rather than novel ones. Different kinds of SRs (SLRs and Maps) need to be better distinguished, and evidence and quality need to be better used in the resulting syntheses. (C) 2019 The Authors. Published by Elsevier Inc.Context: A software product line is a means to develop a set of products in which variability is a central phenomenon captured in variability models. The field of SPLs and variability have been topics of extensive research over the few past decades. Objective: This research characterizes systematic reviews (SRs) in the field, studies how SRs analyze and use evidence-based results, and identifies how variability is modeled. Method: We conducted a tertiary study as a form of systematic review. Results: 86 SRs were included. SRs have become a widely adopted methodology covering the field broadly otherwise except for variability realization. Numerous variability models exist that cover different development artifacts, but the evidence is insufficient in quantity and immature, and we argue for better evidence. SRs perform well in searching and selecting studies and presenting data. However, their analysis and use of the quality of and evidence in the primary studies often remains shallow, merely presenting of what kinds of evidence exist. Conclusions: There is a need for actionable, context-sensitive, and evaluated solutions rather than novel ones. Different kinds of SRs (SLRs and Maps) need to be better distinguished, and evidence and quality need to be better used in the resulting syntheses. (C) 2019 The Authors. Published by Elsevier Inc.Context: A software product line is a means to develop a set of products in which variability is a central phenomenon captured in variability models. The field of SPLs and variability have been topics of extensive research over the few past decades. Objective: This research characterizes systematic reviews (SRs) in the field, studies how SRs analyze and use evidence-based results, and identifies how variability is modeled. Method: We conducted a tertiary study as a form of systematic review. Results: 86 SRs were included. SRs have become a widely adopted methodology covering the field broadly otherwise except for variability realization. Numerous variability models exist that cover different development artifacts, but the evidence is insufficient in quantity and immature, and we argue for better evidence. SRs perform well in searching and selecting studies and presenting data. However, their analysis and use of the quality of and evidence in the primary studies often remains shallow, merely presenting of what kinds of evidence exist. Conclusions: There is a need for actionable, context-sensitive, and evaluated solutions rather than novel ones. Different kinds of SRs (SLRs and Maps) need to be better distinguished, and evidence and quality need to be better used in the resulting syntheses. (C) 2019 The Authors. Published by Elsevier Inc.Peer reviewe

    Automated variability injection for graphical modelling languages

    Full text link
    © ACM 2020. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in International Conference on Generative Programming: Concepts and Experiences, https://doi.org/10.1145/3425898.3426957Model-based development approaches, such as Model-Driven Engineering (MDE), heavily rely on the use of modelling languages to achieve and automate software development tasks. To enable the definition of model variants (e.g., supporting the compact description of system families), one solution is to combine MDE with Software Product Lines. However, this is technically costly as it requires adapting many MDE artefacts associated to the modelling language -- especially the meta-models and graphical environments. To alleviate this situation, we propose a method for the automated injection of variability into graphical modelling languages. Given the meta-model and graphical environment of a particular language, our approach permits configuring the allowed model variability, and the graphical environment is automatically adapted to enable creating models with variability. Our solution is implemented atop the Eclipse Modeling Framework and Sirius, and synthesizes adapted graphical editors integrated with FeatureIDEWork funded by the R&D programme of Madrid (S2018/TCS4314), the Spanish Ministry of Science (RTI2018-095255-BI00), and the Austrian Science Fund (P 30525-N31

    Composition and Self-Adaptation of Service-Based Systems with Feature Models

    Get PDF
    The adoption of mechanisms for reusing software in pervasive systems has not yet become standard practice. This is because the use of pre-existing software requires the selection, composition and adaptation of prefabricated software parts, as well as the management of some complex problems such as guaranteeing high levels of efficiency and safety in critical domains. In addition to the wide variety of services, pervasive systems are composed of many networked heterogeneous devices with embedded software. In this work, we promote the safe reuse of services in service-based systems using two complementary technologies, Service-Oriented Architecture and Software Product Lines. In order to do this, we extend both the service discovery and composition processes defined in the DAMASCo framework, which currently does not deal with the service variability that constitutes pervasive systems. We use feature models to represent the variability and to self-adapt the services during the composition in a safe way taking context changes into consideration. We illustrate our proposal with a case study related to the driving domain of an Intelligent Transportation System, handling the context information of the environment.Work partially supported by the projects TIN2008-05932, TIN2008-01942, TIN2012-35669, TIN2012-34840 and CSD2007-0004 funded by Spanish Ministry of Economy and Competitiveness and FEDER; P09-TIC-05231 and P11-TIC-7659 funded by Andalusian Government; and FP7-317731 funded by EU. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec
    corecore