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Abstract
To offer customisable software, there are two main concepts yet: software product lines that
allow the product customisation based on a fixed set of variability and software ecosystems,
allowing an open product customisation based on a common platform.
Offering a software family that enables external developers to supply software artefacts means

to offer a common platform as part of an ecosystem and to sacrifice variability control. Keeping
full variability control means to offer a customisable product as a product line, but without the
support for external contributors.
This thesis proposes a third concept of variable software: partly open software families. They

combine a customisable platform similar to product lines with controlled openness similar to
ecosystems.
As a major contribution of this thesis a variability modelling concept is proposed which is part

of a variability management for these partly open software families. This modelling concept is
based on feature models and extends them to support open variability modelling by means of
interfaces, structural interface specifications and the inclusion of semantic information. Addi-
tionally, the introduction of a rights management allows multiple contributors to work with the
model. This is required to enable external developers to use the model for the concrete extension
development.
The feasibility of the proposed model is evaluated using a prototypically developed modelling

tool and by means of a case study based on a car infotainment system.
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1 Introduction

1.1 Motivation

Customisable software is an ongoing trend in many fields of computer industry. It combines the
advantages of both individually developed software for one specific customer as well as standard
commercial off-the-shelf software. Whereas individually ordered and developed software fits the
customer’s needs best, the monetary effort is relatively high. On the other hand, the price of
standard software is low or at least more affordable, but the offered system does not fit the
actual customer’s requirements ideally as individual software could. Customisable software is
a tradeoff in between as it offers to fit the customer’s needs better but can still be sold for a
reasonable price. [PBL05, p. 13] The advantages reflect onto the vendor’s side as the customer
base is potentially large, which results in a better Return on Investment (ROI). [BKP04, p. 3]
The trend of customisable software – from a customer’s perspective – appears particularly

in the field of business software as an alternative to expensive individual software. For in-
stance, SAP offers highly customisable solutions to realise business processes. Business software
is mostly related to specific business procedures and workflows, which leads to defined func-
tional and non-functional requirements in that area. In consequence, the demand for highly
customisable software results from the necessity of implementing appropriate software – even
if the available implementation budget is low. Consumers took over that trend rapidly as they
began to demand customised software solutions as well. Smartphones serve as a proving exam-
ple for this. They offer a very high degree of variability as apps offer the concrete functionality
that can be added and removed conveniently. Assuming the release of the first Apple iPhone in
2007 [App07] as the trend’s starting point, it is a proof for this trend to see that today in 2015 –
only eight years later – regarding the selling numbers, smartphones nearly became a must-have
gadget for everyone. For instance, Apple sold 11.63 million iPhones in 2008 and increased this
number to 169.22 million in 2014 [App15].
The umbrella term to describe customisable software is software family. A software family

can be seen as a set of concrete software products that share a reasonable amount of conceptual
design and code while offering distinctive differences.
Software Product Lines (SPLs) and Software Ecosystems (SECOs) are two traditional rep-

resentatives of software families. Both concepts describe software comprising commonalities,
which are shared throughout the whole software family, and customisability by allowing vari-
ability. Variability of SPLs is offered by the vendor, and the concrete software product can be
configured by the customer similar to buying a new car. On the other hand, a SECO offers an
open variability approach similar to the apps concept found in smartphones. A SECO usually
offers a product platform and allows community-driven supplements. [Bos09]
The relation between both concepts – SPL and SECO – has been topic of numerous publi-

cations (cf. [Bos09], [Sch13], [Ber+14]). In most cases, the transition from an SPL to a SECO
is discussed and handled as an evolutionary step. These transitions are interpreted as evolving
from a closed system to an open one. However, there actually does not seem to exist anything
in between both concepts, though a mixture of a closed and open variability approach makes a
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1 Introduction

SPL

Partly Open Software Family (POSF)

? SECO

closed 
centralised

open 
decentralised

Figure 1.1 – Venn diagram visualisation of SPLs, SECOs and POSFs

promising first impression. A general visualisation is given by the Venn diagram of Figure 1.1
as it shows a combination of “closed world” and “open world” characteristics.
Software families that are a mixture of an open software family similar to a SECO and a closed

software family comparable to an SPL can be considered as partly open. Therefore, these kinds
of software families will be called Partly Open Software Families (POSFs) in the following. A
concrete definition is given in Chapter 2.
The promising impression that arises regarding POSFs are motivated by some particular

advantages, which are anticipated to result in designing a family of software products as partly
closed and partly open.

• The POSF concept shall allow a seamless collaborative development.

• The development process can be more flexible as it supports closed parts of a system that
are under complete control of one developer/software vendor, and it supports open parts
to enable others to contribute to the system.

• The software value is supposed to increase as customers get an individually configured
product (as known from SPLs) but with even higher flexibility (as known from SECOs).
This could result in better sales rates, too.

Basically, a POSF allows to open up a lineup of software products to external devel-
opers while keeping full control over the system.

The major problem when creating a POSF is the not yet existing feasible variability man-
agement methodology including an appropriate variability modelling concept. Such a modelling
concept basically

• has to respect the existence of multiple contributors,

• should consider the change impact caused by these different contributors and

• supports some kind of rights management to define the closed and open parts of a software
family.

As preliminary findings and concepts in this research field do not offer a feasible solution here,
it shall be the major goal of this thesis to propose a solution.

2



1.2 Research Question and Goals

1.2 Research Question and Goals
The discussed research question of this thesis is the following:

What variability modelling concept can be used to allow variability management of
Partly Open Software Families as a concept placed between Software Product Lines
and Software Ecosystems?

To answer this question, it is necessary to define the term Partly Open Software Family (POSF)
in detail, which will be done in Section 2.2. This allows the derivation of specific requirements
for a feasible variability modelling concept. Furthermore, there already are existing modelling
concepts that are applied in the context of SPLs as well as SECOs. These concepts may serve as
a basis to build a feasible concept. Moreover, it is conceivable to support building an appropriate
modelling concept by combining parts of already existing ones.
Taking this as a starting point, five concrete goals can be defined by which the research

question can be answered.

Comparison of SPLs and SECOs. To support a later definition of what a POSF is, it is
necessary to know the exact commonalities, similarities and differences of SPLs and SECOs.
These two concepts are the foundation to create POSFs as a concept in between. Therefore, a
clear definition of both concepts is required. A major opportunity POSFs are supposed to offer
is an improved collaboration of multiple contributing parties. With that in mind, the focus of
this comparison is on the way contribution is handled and performed in SPL and SECO software
families. The aim is to analyse which aspect of both software family types is desired to be part
of a POSF conception, too.

Defining the concept between SPL and SECO. The intent of this goal is to define a founda-
tional concept to work with. This concept of a POSF shall be derived from SPLs and SECOs as
an intersystem type of software family – comprising the desired and avoiding the undesired (or
even contradictory) characteristics of SPLs and SECOs. In consequence, specific requirements
can be elaborated to find a feasible and appropriate variability modelling method. POSFs shall
in some cases offer advantages over implementing an SPL or a SECO. This should be justified
exemplarily.

Analyse existing variability modelling methodologies. After the clarification of what a POSF
is and the derivation of specific requirements for a suitable variability modelling concept, existing
techniques can be examined for promising approaches. Ideally, one existing modelling method
serves as a basis for a new concept. Such a modelling method would only need some modifications
to become feasible for POSF modelling. The purpose of fulfilling this goal is to be able to draft
a particular mechanism for POSF modelling.

Creation of a feasible variability modelling concept. The creation of a feasible POSF vari-
ability modelling concept represents the main part of this thesis to answer the research question.
Accomplishing this goal means to concretely create a suitable variability modelling concept. To
prove its suitability and feasibility, a prototypical implementation of a modelling tool shall be
developed first. Afterwards, this tool can be used to perform a case study, which actually proves
the desired feasibility. The results need to be discussed as well.

3
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Change impact analysis. A good model offers a useful and as-realistic-as-possible representa-
tion of the “real world”, though it helps to keep the overview even of complex systems. This
means making local changes to the model should have a limited impact on the model as a whole.
Regarding models with multiple contributors and limited access rights for each contributor, this
criterion of a good model can be ensured by avoiding interfering impacts on other contributors
while editing the model. According to this scenario, a change impact analysis shall be performed
for the proposed modelling concept. This analysis helps identifying ways to reduce or avoid the
above mentioned undesired change impact.

1.3 Thesis Structure
This thesis is structured as follows:

Chapter 1 serves as an introduction to the topic in general and formulates the concrete research
question with its derived goals this thesis should accomplish.

Chapter 2 presents the concept of POSFs by determining a viable sweet spot between both
SPLs and SECOs as software family concepts.

Chapter 3 prepares for creating a feasible variability modelling concept by means of evalu-
ating existing modelling methodologies and concepts. This analysis should be helpful to find
appropriate solutions or parts of a solution, which can be reused within that new concept for
variability modelling of POSFs.

Chapter 4 comprises the creation of a feasible variability modelling concept. Additionally,
the development of a prototypically implemented software modelling tool is presented in this
chapter.

Chapter 5 answers the question of how changes to the model that are performed by one
contributor will or could affect other contributors directly or indirectly. Ideally, contributors are
unable to interfere with others, such that they are entirely independent.

Chapter 6 discusses the modelling concept presented in Chapter 4 using the implemented tool
and a case study. The feasibility according to the former stated POSF requirements gets special
attention.

Chapter 7 concludes the thesis by summarising its content and discussing the presented results
according to the defined goals. Furthermore, this chapter provides an outlook for future work.

4



2 Partly Open Software Families

Chapter 1 provided an overview and a motivation of this thesis’ context as well as specific goals
to accomplish. The aim of this chapter is to achieve the first two goals described in Section 1.2
by giving reasonable definitions of the terms this thesis and further work relies on.
To create a contextual frame for the further work, the bordering concepts are introduced

and specified in the first part of this chapter. This clarification focusses on the distinction
between SPLs and SECOs, which allows deriving POSF characteristics and requirements from
the mentioned bordering concepts. In consequence, a concrete definition of POSFs is assembled
in the later part of this chapter followed by a justification of this new tradeoff concept showing
chances and opportunities this new type of software family potentially delivers. To serve as a
reference for the further work of this thesis, concrete POSF modelling requirements are given,
as well.

2.1 Software Families
The general field this thesis is situated in, is the field of variable software systems. The concepts
of SPL and SECOs as presented in Chapter 1 share one conceptual commonality: the existence of
common and differential software artefacts. In consequence, each of the shown types of variable
software systems actually describes a set of concrete software products that are derivable out of
this software system.
The umbrella term of these different types of variable software systems is software families.

Each member of a family differs from each other (variability), but there still are some specific
commonalities among each and every family member.
Software families combine the advantages of both monolithic standard software systems and

per-customer developed individual software systems to a tradeoff to steer clear of the otherwise
common drawbacks. In contrast to individual software, standard software is more affordable
while potentially not exactly meeting the requirements of each customer. Individual software,
on the other hand, fits the specific customer requirements while accepting a higher monetary
effort. The aim is to build a software system that fits the customer’s needs and requirements as
effectively as possible while reducing the development effort compared to individually developed
software, leading to a cost (and price) reduction. From a developer’s perspective, van der Linden
et al. stated the main reasons to design a software family in contrast to standard or individual
software systems as follows:

“The main arguments for introducing software product family engineering are to in-
crease productivity, improve predictability, decrease the time to market, and increase
quality (dependability).” [Lin+04, p. 110]

Even though single standard software and individual software each have their right to exist,
it can be stated that variable software systems serve a promising market with a high demand
for well-fitting and affordable software.

5



2 Partly Open Software Families

Giving a general definition of the term software family is a challenging task as the term itself is
blurry. Such a definition requires to find a certain degree of commonalities that are necessary to
call a set of software programmes a family, but a single number for that degree is not sufficient.
Parnas [Par76] took up the assumption that the commonalities among a software family are more
than the amount of variability. This makes software family engineering advantageous compared
to the separate development of different software products, because common design decisions
can be made on early development stages which leads to cost reduction at development time
and during maintenance. That idea seems promising on the one hand, but can be questioned
on the other considering the following example: Given a smartphone operating system such as
Android, iOS or Windows Phone as the common platform of a software family and the installable
apps as variability, there is no constraint which limits the maximum number of installed apps
per phone. This would lead to a denial of considering a phone with installed apps to be a
member of the software family in case a specific number of installed apps is reached so that the
amount of apps/variability is “more software” than the operating system/commonality. That is
why building a definition for software families founding on that commonality-variability-relation
could be error-prone.
To introduce a general and abstract definition of software families, the following Definition 2.1

is proposed:

Definition 2.1: Software Family

A software family is a set of software programmes whose aggregate of properties comprises
a common proper subset throughout all programmes of that software family. The larger the
cardinality of that subset, the more related are the programmes in that family.

Instead of giving a fixed percentage or number of common software properties that defines
whether a programme belongs to a software family or not, this definition introduces a gradual
approach. The more common properties a set of programmes shares, the stronger is the rela-
tionship between these programmes to confidently call this set a software family. However, in
practise, the exact measurement of common software properties is less important, as software
families are usually seen as software derivates out of one common development lifecycle. For
instance, different variants of a software are usually seen as a software family, e. g. Autodesk Au-
toCAD LT, AutoCAD Architecture and AutoCAD Electrical as three variants of the AutoCAD
product portfolio from Autodesk1.
For the sake of completeness, the often cited Definition 2.2 of software families by Parnas

should not be left out, but is less focused on the structure of a software family than the priority
of common and differentiating properties.

Definition 2.2: Software Family (acc. to Parnas)

“Program families are defined (analogously to hardware families) as a set of programs whose
common properties are so extensive that it is advantageous to study the common properties
of the programs before analyzing individual members.” [Par76]

2.1.1 Variability
This thesis mainly deals with variable software systems under the umbrella term of software
families. Section 2.1 already presented the idea of software families and software family engi-

1More information regarding the AutoCAD product palette: http://www.autodesk.com/products/all-autocad
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2.1 Software Families

neering in general. What is missing yet, is a clear definition of what variability exactly is in
terms of software. While commonalities – as used in Section 2.1 – describe all software properties
that are (mandatorily) shared across one software family, variability means everything that is
supposed to vary, hence, is not common to each and every software programme of one family.
Pohl et al. differentiates between two parts of variability: variability subjects and variability

objects. Definitions 2.3 and 2.4 are given accordingly.

Definition 2.3: Variability Subject

“A variability subject is a variable item of the real world or a variable property of such an
item.” [PBL05, p. 60]

Definition 2.4: Variability Object

“A variability object is a particular instance of a variability subject.” [PBL05, p. 60]

In conjunction, both of these terms define variability as it is used in this thesis. To illustrate
both terms exemplarily, the content of a glass can be seen as a variability subject, while the
possible content, e. g. apple juice, black tea or lemonade, is the variability object. In terms of
software, a variability subject could be – for instance – a mail inbox protocol and an appropriate
object could be the Post Office Protocol (POP) or the Internet Message Access Protocol (IMAP).
One concrete member of a software family can be referred to as variant, which means that

the software programme comprises all of the commonalities defined by the family, and each
variability subject is configured to match a variability object. Regarding the drinking glass
example, binding the black tea as a variability object to the content subject means that black
tea is actually in one specific glass.

2.1.2 Software Product Lines
One manifestation of software families is the concept of Software Product Lines (SPLs). The
introduction in Chapter 1 characterised SPLs as a software family that allows the derivation
of concrete software products by combining the common parts of the family with a selection of
variable parts out of a closed set of options. This describes the fundamentals of an SPL very
abstractly and in a generalised way. To elevate this into a more conceivable context, Pohl et
al. [PBL05] defined Software Product Line Engineering (SPLE) by means of the terms platform
and mass customisation, which can be seen as the essence of the purpose SPLs serve.
In the sense of software, a platform is the common structure or system, further software can

run on to serve the user’s needs and requirements. Pohl et al. define platforms as given in
Definition 2.5 as a base technology. In the context of an SPL this forms the commonality.

Definition 2.5: Platform

“A platform is any base of technologies on which other technologies or processes are built.”
[PBL05, p. 6]

For a broad customer base, there often is no one-fits-all solution. Assuming there is just one
solution available, this often just partly solves the customer’s individual problem. To get a
better fitting solution, the customer needs an individual one, but the (monetary) effort is much

7



2 Partly Open Software Families

higher compared to standard solutions. That is why companies in many fields offer a range of
similar yet different products to keep the effort (development cost and sales price) moderate but
the offered solution better-fitting. This idea can be seen as a tradeoff between mass production
and customisation alias tailoring – or mass customisation for short. Pohl et al. used the mass
customisation term originally coined by Stanley Davis in 1987 and similar to the definition by
Tseng and Jiao [TJM96]. To use within this thesis, Definition 2.6 is proposed to describe the
term. In the context of an SPL this enables variability.

Definition 2.6: Mass Customisation

“Mass customization aims to provide customer satisfaction with increasing variety and cus-
tomization without a corresponding increase in cost and lead time.” [TJM96, p. 153] Hence,
mass customisation allows the production of goods and offering services that meet the cus-
tomer’s individual requirements with almost mass production efficiency.

Combining both ideas, platforms and mass customisation, it is possible to formulate a defini-
tion of SPLE as Pohl et al. do in Definition 2.7.

Definition 2.7: Software Product Line (Engineering)

“Software product line engineering is a paradigm to develop software applications (software-
intensive systems and software products) using platforms and mass customisation.” [PBL05,
p. 14]

An industry that massively performs product line engineering in different abstractions is the
automotive sector. Multiple car models of one manufacturer can share one single common
platform with just a few modifications. From a customer’s perspective, there are many different
individualisation options available when buying a new car. For instance, it is usual to choose
from a variety of different motorisation options, between manual or automatic gear shifting as
well as a set of different infotainment options such as radio and navigation combinations.
When taking a look at the software industry, a typical example for SPLE is the enterprise

software SAP Business ByDesign2. Business ByDesign is a customisable Enterprise Resource
Planning (ERP) software solution that is offered in the form of a Software as a Service (SaaS)
application. Figure 2.1 shows the online configurator, which can be used to create an individual
variant of the product. The configurator provides a set of features that can either be selected or
deselected. For example, the feature Sales Quotation magnified in Figure 2.1 adds, if selected,
functionality to the product instance that allows creating and managing quotations.
Typical for the development procedure of an SPL is following the two-lifecycle process as

shown in Figure 2.2. This model comprises two interrelated lifecycles: the domain engineering
lifecycle and the application engineering lifecycle. During the domain engineering process, all
of the required software artefacts are developed, which includes the common and all variable
parts. The application engineering process, on the other hand, focusses on using the prepared
artefacts to build up a concrete variant of the product family.
Both lifecyles include the usual development phases known from the waterfall model: analysis,

design, implementation and testing. The key difference to the waterfall model is the intention of
each phase. During the domain engineering cycle, these phases generate the later used artefacts
(shown in the centre part of Figure 2.2). The domain analysis phase leads to a set of require-
ments, the domain design generates design artefacts, the domain implementation delivers the

2SAP Business ByDesign product information at http://go.sap.com/product/erp/business-bydesign.html
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2.1 Software Families

Figure 2.1 – SAP Business ByDesign configurator that allows the product individualisation, screen-
shot from https://www.sapconfigurator.com/

actual software artefacts and, finally, the domain testing phase produces reusable tests. On the
other hand, the application engineering cycle’s attempt is to use these artefacts for the final
product variant.
One important characteristic of SPLs to mention here is that the actual contribution to an SPL

can be done by providing artefacts during the domain engineering process, which is controlled
by the product management. In consequence, there necessarily is one centralised controlling
instance with the exclusive right to influence the product line. Figure 2.3 visualises that as a
supplier network. The integrator in the middle represents the product management instance as
mentioned above. The actual software parts are delivered by one or more suppliers (left part
of the figure), which can be an internal development team or external (e. g. sub-contracted)
contributors. The integrator assembles the actual product line that, finally, allows customers to
get an individual variant (right side).

Application Engineering

Product 
analysis

Product 
design

Product 
implementation

Product 
testing Product

Domain-specific (reusable) artefacts

Requirements Design Implementation Reusable tests

Domain Engineering

Domain 
analysis

Domain 
design

Domain 
implementation

Domain 
testing

Product 
Management

Figure 2.2 – Two-lifecycle process of SPLE, cf. [SS13, p. 25; Lin07, p. 7]
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Supplier n

...

Supplier 1

Integrator

implementation 
by Integrator

Customer n

...
Customer 1

Figure 2.3 – SPL supplier network based on [Lan+08, p. 3]

In case of the former mentioned AutoCAD example, Autodesk serves as an integrator of the
different features the offered products comprise. Regarding the AutoCAD suppliers: Whether
the full developmental effort is done internally or if there are additional external (sub-contracted)
contributors is not visible to the customer. He may only choose between different offered variants
of the AutoCAD lineup of products with or without a domain focus (e. g. architecture, maps
and electrical systems).

2.1.3 Software Ecosystems

Software Ecosystems (SECOs) are another concept of software families that appears as a con-
trasting concept to product lines. On the one hand, an SPL comprises a system to allow the
derivation of multiple product variations with the aim of reducing the developmental effort com-
pared to the individual development of each product. This allows a software vendor to offer
better fitting solutions to his customers’ problems.
On the other hand, another approach to create customised software solutions is to open up

the development process to external contributors. The idea is to separate the distribution of
product commonalities and variability of one software family. Therefore, there is one party that
provides the software family’s commonalities in form of a platform in the sense of Definition 2.5.
This platform offers opportunities to customise the software by supplying variability subjects in
the sense of Definition 2.3. The variability according to Definition 2.4 can, finally, be offered by
external vendors.
Well-known examples of SECOs are the prevailing smartphone operating systems iOS from

Apple and Android from Google in conjunction with their apps. Apple iOS is technologically
based on the desktop operating system Apple OS X (i. e. its Darwin foundation), which is a
UNIX based system. Apple uses iOS on their own smartphone and tablet computer systems.
Android from Google is an open-source variant of the Linux operating system and is used by
many different smartphone and tablet computer manufacturers. On both platforms, variability
is realised by installing so called apps onto the user’s device. An app usually implements a few
functionalities that extends the capabilities of the device it is installed on.
Another popular example of a SECO in the area of software development and programming

is the Eclipse Integrated Development Environment (IDE). Eclipse comprises a comprehensive
framework that allows flexible extension with new functionalities. Therefore, a large community
within the Eclipse ecosystem has been developed over time, which supplies a large amount of
plugins.
This thesis uses the following Definition 2.8 to define the term Software Ecosystem.
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2.1 Software Families

Definition 2.8: Software Ecosystem (SECO)

A Software Ecosystem is a software family with platform and extension contributors. Plat-
form contributors supply a common fundamental technology that is shared by each software
family’s member. Extension contributors deliver variable software parts that are based on
the shared platform and allow the creation of distinct software family members (variants).
There is no centralised software (product) management, thus, each contributor can act
mostly autonomously.

Supplier n

...
Supplier 1

Distribution 
Channel

Platform 
Supplier

Customer n

...
Customer 1

Figure 2.4 – SECO supplier network in contrast to Figure 2.3

Figure 2.4 visualises the supplier network of a SECO in contrast to Figure 2.3 for SPLs. The
key difference to an SPL is the decentralised development approach that is realisable here. The
common platform is delivered by one dedicated platform supplier (outer left side of the figure).
He delivers the necessary software family’s commonalities, which are part of every software
variant, to all customers. The variable part is contributed by external suppliers (outer right side
of the figure). The way how suppliers distribute their software parts is not restricted by the
definition of SECOs, but may be defined by the platform supplier. For instance, in case of the
Apple iOS platform, the contribution of apps is only possible through Apple’s own App Store
(despite some exceptions). In contrast, in case of Google’s Android mobile platform, apps can
either be distributed using Google’s own Play Store (which is their pendant to the App Store
form Apple) or using any other distribution channel such as a website. The distributed apps are
contributed by external developers.

2.1.4 Commonalities and Differences of SPLs and SECOs
The basic comparison of both software family concepts, SPL and SECO, leads to the overview
given in Table 2.1. The commonalities of both concepts mainly refer to the characteristics of
software families in general. Thus, both concepts offer the opportunity to create variable software
systems with shared commonalities (called platform). That is why both concepts belong to the
category of standard software as the opposite of individual software. Standard software is more
affordable than individual software as the development expenses can be spread over a large
number of customers, whereas individual software has only one or a few customers, so that the
per-customer costs are significantly higher. The downside of standard software compared to
individual software is a deficiency in matching the customer’s requirements.

Variability Management. A main difference between SPLs and SECOs is the contribution
concept. Whereas all contributions to an SPL are channelled to one single management instance
(called Integrator in Figure 2.3), contributions to SECOs can usually be managed autonomously.
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Table 2.1 – Comparison of SPLs and SECOs
Software Product	Lines Software Ecosystems

Commonalities

• Standard	software	(no	individual software)
• Software	 families
• Comprise commonalities	(shared	platform)	and	variability
• Realisation	of	individualised	software products

Differences

Variability	Management
→	Variant Space

Centralised
(closed	variant space)

Decentralised
(open	variant	space)

Lifecycles • One domain	engineering	 lifecycle
• An	application	engineering	 lifecycle	

for	each	derived	product	variant

• One	platform	lifecycle
• An	extension	lifecycle	 for	each	

extension
• An	application	lifecycle	for	each	variant

Direct	Contributors One	(may	be	external, sub-contracted	
suppliers)

Many	(at least	one platform	supplier,	
extension	suppliers)

Business	Model	(Generalised) • The	vendor	sells	a	product	that	can	
be	customised	to	some	extent.

• The	platform	vendor	earns	money	by	
offering	a	platform	(e.g.	by	selling	 it	or	
by	offering	a	commission-based	
extension	distribution	channel,	i.e.	App	
Store).

• Extension	vendors	sell	their	platform	
extensions	to	customers	using	an	
appropriate	distribution	channel.

Constraint Model	(Change	
Impact)

Variability	constraints	can	be	set	across	
the	entire	product	line.	Potentially	high	
change	impact.

Tendency	 to	avoid	constraints	across	
extensions.	Potentially	lower	change	
impact.

Only contributions to the software platform are organised in a centralised way comparable to
SPLs, because there is only one platform vendor per ecosystem visible to the customer. If there
are multiple parties, which contribute to the software platform, they need to be closely related
similar to the contributors of SPLs. Hence, there is one single platform leader, who acts similar
to the integrator of an SPL. Worth to mention here: The assembling process of a specific
software variant differs between SPL and SECO based software. In case of a product line, the
customer gets access to a closed set of variable elements he may choose from until a final, valid
variant has been created. In contrast, inside of an ecosystem, the customer gets access to the
platform first and, afterwards, is able to obtain variable software parts through a distribution
channel.

Variant Space. Closely related to the centralised or decentralised variability management ap-
proach is the openness of the variant space. The centralised variability management leads to a
variant configuration process that is based on a fixed set of variable software parts. Hence, at
the moment of variant creation, all possible variants are hypothetically known in advance. In
contrast, the decentralised variability management of SECOs leads to a more dynamic variant
creation process. The customer begins to create his variant based on the platform by adding
variable software parts supplied by external vendors. Thus, the set of available variable software
parts is not fixed but open. In consequence, it is impossible to know all possible variants of the
ecosystem-based software family in advance.
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2.1 Software Families

To resume that argumentation, the centralised variability management of SPLs leads to a
closed variant space. On the contrary, the decentralised variability management of SECOs
derives an open variant space.

Lifecycle. SPLs have a centralised variability management. Hence, the whole development
effort that has to be done to create a product line can be organised by the integrator/vendor
within one domain engineering lifecycle. That lifecycle, therefore, comprises the development
of common and variable software parts at the same time. The domain engineering lifecycle is
shown in the upper part of Figure 2.2. On the other hand, this is not a model that can be
applied to ecosystems because of its immanent decentralised approach. This decentralisation
requires splitting the domain engineering lifecycle known from product lines into multiple per-
contributor lifecycles. As a result, there is one platform lifecycle and one for each externally
contributed extension.
Next to the domain-based lifecycles, there exists one lifecycle for each specific variant called

application engineering lifecycle. According to an SPL, this lifecycle is shown in the lower part
of Figure 2.2.

Direct Contributors. In case of a product line, there is only one direct contributor. There may
be more than one indirect contributor, who is external or sub-contracted by the main software
developer (integrator). Concerning SECOs, there can be many direct contributors but at least
one for the platform and some that contribute the variable software parts.

Business Model. Although this is not a technological difference, the distinction of underpinned
business models is worth to mention. Especially, when it comes to practicability and feasibility
in real world projects, the economical perspective shows off as a key aspect.

Definition 2.9: Return on Investment (ROI)

“[Return on investment is a] profitability measure that evaluates the performance of a busi-
ness by dividing net profit by net worth. Return on investment, or ROI, is the most common
profitability ratio. There are several ways to determine ROI, but the most frequently used
method is to divide net profit by total assets.” [Ent15]

The first and foremost goal of a company that sells a software product is to maximise monetary
profit and Return on Investment (ROI) (cf. Definition 2.9). In every case of standard software,
this can be done by a growth in customer base. That is why a software should fit the needs
and requirements of as many potential customers as possible. Compared to monolithic standard
software, often referred to as Commercial Off-The-Shelf (COTS) software, variable software
systems offer the opportunity to address more potential customers by means of being able to
serve the requirements of each customer better. Apart from that, the actual source of getting
profit out of a software family may differ.
Earning money by offering an SPL is similar to the way this is done with COTS software.

Selling concrete products generates revenue. A SECO offers more flexible business models to
generate revenue for each contributing party. A platform vendor may sell his platform to earn
money and/or he can offer an extension distribution channel as a commission-based marketplace.
Such a marketplace enables external contributors to sell their software parts. For instance, the
latter is usual in the area of smartphone operating systems. Additionally, external variability
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contributors may earn money directly by offering their software to end-users in contrast to the
indirect model implied by Figure 2.3.

Constraint Model. Regarding the change impact, the difference in the constraint model is cru-
cial. A high degree in interrelation of the offered software parts can lead to a high change impact
that makes it difficult and expensive to maintain a software family. Particular constraint re-
strictions might be useful to lower the change impact. Regarding SECOs, variability constraints
are tendentially contributor-internal. Hence, avoiding constraints between multiple extensions
lowers the change impact significantly over the non-restrictive constraint model in SPLE. Nev-
ertheless, there is no conceptually forced constraint restriction in ecosystems. The ecosystem
of the Eclipse IDE proofs that, because there are many inter-extensional constraints. For in-
stance, an extension for file versioning (Subclipse3) requires another extension as an Apache
Subversion (SVN) driver.
To sum up this comparison of SPLs and SECOs, it is crucial to recognise that in both cases

software products are customisable, but the process of customisation is done differently. Es-
pecially the time the customisation takes place differs significantly. Referring to Figure 2.3, in
case of an SPL, the customisation is done by configuring a product variant on the vendor’s side.
Hence, the vendor offers the possible variability options to the customer from which he is allowed
to choose from. Apart from that, there is no configuration process on the vendor’s side regarding
a SECO. Referring to Figure 2.4, the individualisation of the customer’s product is done after
retrieving the platform and by means of adding a selection of software fragments (referred to as
extensions) obtained through a distribution channel and offered by external software suppliers.

2.2 Partly Open Software Families
The key difference between both software family concepts, SPL and SECO, is the variability
behaviour and structure. While a product line is

• managed by one vendor,

• based on a centralised approach and

• created with a closed variant space,

an ecosystem is

• managed by its multiple contributors (although the platform vendor has a key role herein),

• based on a decentralised approach and

• created with an open variant space.

Both types of software families have their advantages over the other. For instance, an SPL
allows a developer to keep full control over the offered product variants. There is no external
software dependency. In contrast, a SECO comprises a community that supplies functionali-
ties to a platform, which indirectly increases the usefulness or attractiveness to customers of
a platform without the vendor’s direct effort. Additionally, the customers’ requirements can
potentially be matched more accurately.

3Further information regarding Subclipse: https://marketplace.eclipse.org/content/subclipse
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2.2 Partly Open Software Families

One underlying question of this thesis is, whether it is possible to design a kind of software
family that combines the advantages of both prevailing types. This means to have a software
family which is designed in a way similar to a product line and similar to an ecosystem, as well.

POSFSECOSPL

Variability (open)

Commonalities

Variability (closed)

Variability (open)

Commonalities

Variability (closed)

Figure 2.5 – Pie chart visualisation of SPLs, SECOs and POSFs

Designing a concept of software families that combines characteristics of SPLs and SECOs
means to cope with the centralised and decentralised variability management approach at the
same time. Hence, a resulting concept encompasses closed and open variability assets equally.
To get an idea of this concept, Figure 2.5 serves as a highly generalised visualisation of the
mentioned software family types. Each software family concept is displayed as a layered pie
chart. The inner part or the core represents the common software parts that each software
family includes. This is common to each software family.
The two pie charts to the left represent the two prevailing software family concepts as described

in Section 2.1.2 and 2.1.3. In case of the SPL, the outer layer has a solid outline, which stands
for the closed variability assets. In contrast to this, the SECO pie chart has an outer layer with
a dashed outline, which shows the open variability approach.
The idea of a new kind of software family combining the closed and open variability approach

is displayed as the right pie chart. The outer layer is separated into a closed and an open
variability partition. That means, the software family is partly closed and partly open according
to its variability assets. The relative amount of closed and open variability does not need to be
balanced as the even partitioning in the figure suggests. This concept of software families will
be called Partly Open Software Family (POSF) throughout this thesis. Definition 2.10 proposes
a concrete definition of this new software family concept, which serves as the foundation for
further argumentation within this thesis.

Definition 2.10: Partly Open Software Family (POSF)

A Partly Open Software Family (POSF) is a software family with a variable platform and ex-
tensions provided by multiple contributors. The variable platform comprises a common part
that is shared throughout all members of the software family and a variable part that allows
the derivation of multiple variants of that platform. Extension contributors deliver variable
software parts that are based on the variable platform. The combination of variable plat-
form and extensions allow the creation of distinct software family members (variants). The
platform development is based on a centralised software (product) management, whereas
the extension contributors can act mostly autonomously.

To identify the involved parties including their interconnection, Figure 2.6 shows the cor-
responding POSF supplier network. This figure is basically a combination of both the SPL
supplier network given in Figure 2.3 and the SECO supplier network given in Figure 2.4.
The customer with his variant of the software family is shown in the middle and is supplied

with software parts from the left and right hand side. The right part equals the extension
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Figure 2.6 – POSF supplier network as a junction of the SPL and SECO supplier networks shown
in Figure 2.3 and 2.4

distribution of the SECO supplier network. The left part replaces the platform supplier of
Figure 2.4 by a complete product line similar to Figure 2.3. To distinct the involved software
parts out of the closed or open pools, the (fixed/closed) SPL-based parts are purple-coloured
whereas the (open) SECO-based parts are blue-coloured.
To imagine the application of that concept in practise, a combination of the former mentioned

example of Autodesk AutoCAD and the possibility to install external extensions that implement
supplemental functionalities could be considered. Autodesk delivers the platform in different
variations (with or without domain focus) and customers are able to install extensions after
purchasing an AutoCAD variant (the platform).

Table 2.2 – Characteristics of POSFs as extension to Table 2.1
Partly	Open	Software	Families

Commonalities	 (of	all	software	families)

• Standard	software	(no	individual software)
• Software	 families
• Comprises commonalities	(shared	platform)	and	variability
• Realisation	of	individualised	software products

Differentiation	Criteria

Variability	Management
→	Variant Space

Partly	centralised,	partly	decentralised
(open	variant	space,	although	closed	platform	variant	space)

Lifecycles • One platform	domain	engineering	 lifecycle
• An	extension	lifecycle	 for	each	extension
• An	application	engineering	 lifecycle	 for	each	derived	variant

Direct	Contributors Many	(one	platform	supplier with	optional	external	or	sub-contracted	platform	
suppliers,	multiple	extension	suppliers)

Business	Model	(Generalised) • The	platform	vendor	sells	a	variable	platform	that	can	be	customised	to	a	certain	
extent.

• Additionally,	the	platform	vendor	might	offer	a	commission-based	extension	
distribution	channel.

• Extension	vendors	sell	their	platform	extensions	to	customers	using	an	appropriate	
distribution	channel

Constraint Model	(Change	
Impact)

Variability	constraints	can	be	set	across	the	entire	variable	platform.	Potentially	high	
change	impact	in	that	part	of	the	software	family.	Regarding	 the	extensions,	there	 is	
the	tendency	to	avoid	constraints	across	extensions	to	lower	the	potential	change	
impact.
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In accordance to Table 2.1, the characteristics of POSFs have to be described here. Table 2.2
serves as a direct extension to this former table. It comprises the same commonalities part and
the distinctive criteria as a combination of the product line and ecosystem characteristics.
One brief example for a potentially interesting business model should be presented here to

point out the strengths of Partly Open Software Families. This shall be a car vendor that
offers an infotainment system within their cars, which is developed as a POSF. Accordingly, the
customer chooses different forms and functions in advance to placing the car order. Furthermore,
the car vendor offers an extension mechanism to add certain features to the infotainment system
on site, meaning after car delivery. This extension mechanism relies on a software distribution
channel he set up similar to an App Store known from the smartphone domain. This distribution
channel allows external developers to implement and offer car infotainment extensions to the
customer. There are three potential points in that structure, which offer an opportunity to the
car vendor to generate direct revenue. At first, selling a car generates profit. In addition to that,
offering external developers to distribute their software may be a potential source of profit, too,
and finally, each fulfilled trade via that distribution channel may be used to generate revenue.
Regarding the external extension developer, he is able to sell his own developed software. In
addition to that, the high degree of customisability leads to potentially attractive cars, which
can lead to a broader customer base.

2.2.1 Requirements for the POSF Modelling Concept

Referring to the research question given in Section 1.2, a variability modelling technique for
POSFs is what this thesis is looking for. Whereas variability management of SECOs does not
necessarily require advanced modelling mechanisms because of the decentralised development
approach, SPLs do have a centralised product management and – hence – require an appropriate
modelling technique.
The variable platform can be seen as one product line, which requires the application of a

modelling method as part of the variability management. As a POSF is not entirely closed but
partly open similar to an ecosystem, the applied modelling method has to support that openness
in a satisfactory way.

Modelling closed and 
open variability at 

the same time

Specification of 
extension interfaces

Compatibility with 
existing modelling 

strategies

Low change impact

Allow decentralised 
extension development

Allow multiple 
contributors to modify 

the model

Rights management 
for multiple 
contributors

Human readable and 
computable

graphical

textual

Figure 2.7 – Requirements for a modelling strategy for POSFs

Finding a feasible modelling mechanism involves defining specific requirements for that mech-
anism. Figure 2.7 lists the requirements derived from the software family concept shown in
Section 2.2. They will be described in detail in the following.
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Modelling closed and open variability at the same time. Because a POSF comprises both
closed and open variability simultaneously, it is not sufficient to model either the closed or the
open part. Thus, the model has to encompass both variability modelling approaches.

Specification of extension interfaces. Interconnected with the first requirement, there is the
need for an extension specification. Regarding SECOs, the connection between platform and
extensions is defined as an interface. For instance, a mobile operating system offers several
Software Development Kits (SDKs) that form a framework of functionalities usable by the
extensions or apps. An interface defines, in that case, what an extension is permitted and
able to do. More generally speaking, an interface forms the platform-sided expectations for the
extensions. Such an expectation should be formulated and included into a POSF model.

Compatibility with existing modelling strategies. Keeping a solution compatible with existing
strategies and methodologies is advantageous for its feasibility in real projects. As there already
are modelling methods for software families, it makes sense to derive the new POSF modelling
concept from an existing kind of model.
When interpreting these first requirements in total, a process can be derived that leads to

an appropriate modelling solution. As a consequence, a modification of a prevailing modelling
technique is required, which supports the specification of extension interfaces to encompass
closed and open variability modelling.

Low change impact. Within working scenarios with more than one contributor a good co-
ordination is required to avoid unwanted disruptions and interference. Working on a shared
model should be possible with a low level of change impact. Hence, if one contributor performs
and arbitrary change to the model, another contributor, working simultaneously on the model,
ideally should not be affected.

Allow decentralised extension development. While a product line has a centralised manage-
ment, ecosystems do not. Furthermore, an extension developer within an ecosystem mostly
works autonomously, which explicitly requires to have no centralised software management. For
designing a POSF, this means that it is crucial to allow the decentralised extension development,
as well, to keep those contributors autonomous. This requirement is interconnected with the
demand for a low change impact. In case of a high change impact, meaning that changes of
one contributor directly affect the work of another, some kind of moderation is required which
leads, in consequence, to a centralised managing approach.

Allow multiple contributors to modify the model. As implied by the former two requirements,
it should be possible for more than one party to contribute to the software family’s model. This
can be derived from the ecosystem approach as it is crucial for an ecosystem to have multiple
(independently working) extension contributors.

Rights management for multiple contributors. The demand for a low change impact requires
contribution rules. Hence, there needs to be some kind of rights management that permits/denies
changes to the model depending on the contributor’s role. This can be done in accordance to
the supplier network shown in Figure 2.6.
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Human readable and computable. The resulting modelling concept should support a com-
putable (e. g. textual) as well as human readable (e. g. graphical) notation.

Modelling Challenges

The named requirements for the POSF modelling derive some explicit challenges, which have to
be tackled within this thesis. They should be emphasised here.
The first challenge is to design a model that includes concrete variability, which is the closed

part as well as interfaces to allow openness. Usually, open world scenarios are designed using
ontologies, whereas closed world scenarios can be designed explicitly. The combination of an
explicit design and an ontology does not seem to lead to a feasible solution as both approaches
follow opposite principles. Hence, a modelling notation is required that encompasses closeness
and openness in a satisfactory way.
The next challenge is the support for multiple contributors working on one model simul-

taneously. Not every contributor should be permitted to modify the entire model. There are
restrictions that have to be applied somehow. Furthermore, the contributors should not interfere
with each other when working on the model (requirement for a low change impact).
Finally, allowing extension developers to work autonomously is a challenge to cope with. Thus,

their changes to the model need to be independent from the rest of the model.

2.2.2 Chances and Opportunities of POSFs over SPLs and SECOs
The application of a software family concept other than SPL or SECO only makes sense if there
are specific advantages compared to the both mentioned. According to the POSF concept, the
following chances and opportunities can be identified.

• Increased flexibility in developing a software family as there is no need to decide between
a closed and open variability management, because both can be implemented in parallel.

• POSFs offer economic opportunities as it is possible to apply a conjunction of the usual
business models known from the SPL or SECO concepts.

• Managing suppliers of a software product can be done more dynamically. Whereas the
integration of a new platform supplier can be an effortful task, adding an external supplier
is straightforward.

• The variability management can be highly dynamic as it can be selectively closed or
opened.

• A POSF may allow to open an existing SPL without performing the switch to a SECO
that might not be intended.

One field in which such a concept seems to be a promising approach is the area of in-car
software. Today, it is usual that a customer is able to configure the functionality offered by the
finally ordered car in the sense of an SPL. As cars offer a constantly and rapidly increasing
amount of functionality out of the “digital world” – such as e-mailing, messaging and surfing the
web – the introduction of apps as known from smartphones and tablets could open new horizons.
Car vendors such as BMW or Mercedes-Benz have taken first steps in that direction, but their
concepts are based on a limited variety of apps (BMW) or third-party-dependent implementa-
tions (Mercedes-Benz and others implement Apple Car Play or Android Auto). Moving to a
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partly-open system by implementing principles known from SECOs into traditional SPLs could
help to cope with the differently timed lifecycles of cars and electronic gadgets.
At the moment, the existing solutions for such in-car infotainment solutions are rather in-

flexible. Regarding the closed approach similar to the BMW apps, there is no possibility for
the customer to extend the set of offered functionalities after buying the car. As mentioned
above, the SPL configuration process is done on the vendor’s side only. On the other hand, in
case of the iOS or Android car integration, there is no way for a car manufacturer to influence
the offered functionality. The car manufacturer only has the choice to support this smartphone
integration in his cars or not. This is an insufficient solution as, for instance, the car manufac-
turer Porsche decided not to support Google’s Android Auto solution due to data privacy issues
recently [DPA15]. Nevertheless, these smartphone integration systems offer the opportunity to
customers to individualise the functionalities offered by the car infotainment system. The solu-
tion could be a mixture of both mentioned concepts, above described as POSFs. POSFs allow
customisation on the vendor’s side as well as afterwards on the customer’s side while keeping
the control of the offered customisation possibilities to the vendor or developer.

2.3 Summary
This chapter served as a background introduction in the first part and presented the idea of
POSFs next to SPLs and SECOs as a software family concept in the second part.
The key aspect while elaborating the POSF approach is the mixture of a closed and an open

variant space as known from the prevailing software family concepts. The closed variant space
results from the centralised variability management applied when engineering product lines. In
contrast, the open variant space results from the decentralised variability management as known
from ecosystems.
Furthermore, this chapter derived eight specific requirements for a feasible POSF modelling

concept. These requirements are the foundation for the next two chapters. The following
Chapter 3 will analyse existing modelling concepts to determine in how far they could serve
as a basis for a new POSF modelling concept. The actual new concept will be elaborated in
Chapter 4.
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3 Analysis of Existing Variability Modelling
Methodologies

The previous Chapter 2 introduced the concept of Partly Open Software Families (POSFs).
The aim of this thesis is the creation of a feasible modelling technique for POSF variability.
Therefore, it is useful to evaluate existing modelling techniques for structuring and formalising
variability. Ideally, one of these techniques can serve as a basis to create a feasible concept for
POSFs.
The first part of this chapter introduces a selection of widely used variability modelling meth-

ods. The second part evaluates the presented models regarding their feasibility to serve as a
foundation for a POSF-compatible modelling technique. One of the given models is chosen for
the later concept elaboration in Chapter 4. Therefore, the necessary model modifications are
worked out at the end of this chapter.

3.1 Variability Modelling Methodologies
Modelling variability is not bound to a specific modelling method or visual representation. Thus,
there are various modelling strategies that can be applied for variability modelling. Neverthe-
less, there are some methodologies that are widely used and very common to the product line
community.
To develop a feasible modelling concept for Partly Open Software Families, it is useful to take

a look at existing and commonly used models that could serve as a foundation for the newly
intended model.
The following subsections will present a selection of four different variability modelling strate-

gies that follow distinct approaches:

• Feature models

• Decision models

• Orthogonal variability models

• Common variability language

To keep the presentation of each modelling method comparable, a common scheme is applied
here. Figure 3.1 shows the presented aspects.

1. Relevance – Why is it relevant to take a look at this specific modelling method?

2. Notation principles – What are the notation elements used for modelling?

3. Basic modelling process – How does modelling by means of this modelling method work?

4. Application scenarios – When is it useful to apply this modelling method?
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Variability Modelling Technique

Relevance

Application scenariosBasic modelling process

Notation principles Derivations

Unique characteristics

Figure 3.1 – Model presentation aspects

5. Derivations – Do relevant/widely used/important derivations of this model exist? If yes,
they will be presented briefly.

6. Unique characteristics – What differentiates this modelling technique from the other mod-
els mentioned? (The unique characteristics of each presented model are presented at once
after the presentation of the aspects above.)

3.1.1 Feature Models
Relevance. Feature models are widely used in the area of SPLE as they are able to represent
the hierarchical structure of a product line, including all commonalities and variabilities at the
same time. As software architectures are built hierarchically, feature models offer a way to carry
over that architecture into the variability modelling process. Furthermore, modelling tools exist
to apply feature models in real world scenarios. One of those tools is the FeatureIDE, offered as
an Eclipse plugin by the Magdeburg University1.

Implication/ 
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Adjunction 
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HUD Instruments 
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Controls

Panel Armrest Touch Steering 
Wheel

Functions
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FM DAB

Nav Phone Car Info

Figure 3.2 – Exemplary feature model for a car infotainment system; Kang et al. notation elements
for feature models introduced within the FODA Report [Kan+90] and [CE00, p. 87 ff.]

Notation principles. Figure 3.2 shows the basic notation elements introduced by Kang et al.,
basically in their FODA Report from 1990 [Kan+90] as well as Czarnecki and Eisenecker [CE00,
p. 87 ff.].

1Further information regarding the FeatureIDE can be found at http://wwwiti.cs.uni-magdeburg.de/iti_
db/research/featureide/
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The figure shows a feature model representing a car infotainment system. This system com-
prises a display unit, some input control elements and certain functionalities. As a display unit,
the customer should have the choice between a panel display on top of the middle console of the
car, an instruments display located behind the steering wheel and a Head-Up Display (HUD).
Regarding the panel display, the customer may choose between a small, large or even touch-
supported version. The infotainment system can be controlled using some buttons in the middle
panel area and at the armrest. Optionally, the customer can choose to have touch input as well
and some controlling elements directly at the steering wheel. From a functional perspective, the
system comprises radio (analogous Frequency Modulation (FM) and Digital Audio Broadcast-
ing (DAB) radio can be chosen) and car information functionalities. If desired by the customer,
the system may offer a navigation system and phone capabilities, too.
The diagram in the figure models the described system. Hence, it shows one root feature called

Car Infotainment on top, which contains three mandatory child features (Display, Controls and
Functions). This means, all three sub-features are required to be selected during the variant
configuration process. The Controls top-level feature contains optional features (Touch and
Steering Wheel) next to two mandatory features. This means, as soon as the Controls feature
is selected, the two mandatory features need to be selected, too, whereas the optional features
are allowed to be selected.
The features Display, Panel Display and Radio contain group relations. In case of an adjunc-

tion group (Display and Radio) the selection of at least one feature of that group is required. In
case of a non-equivalence group (Panel Display), the selection of at most one feature is required.
To demonstrate cross-tree constraints, the model contains two implications.

Touch → touch

Nav → PanelDisplay

Those constraints contain format logic expressions, a concrete software configuration has to
satisfy. Regarding the example, whenever the left part of each implication is true, the right has
to be true as well. Hence, if the Nav feature is selected, the Panel Display has to be selected,
too. An exclusion would indicate that the expression on both sides of that exclusion are required
not to be true at the same time.
This car infotainment example serves as the foundation to further examples given in this

chapter.

Basic modelling process. The process of building a feature model comprises

1. the creation of a hierarchical structure of all existing software artefacts (called features) of
one product line,

2. the introduction of parent-child-relations within the feature tree and

3. the definition of cross-tree constraints.

The order of these steps is neither fixed, nor necessarily sequential but shows one possible
workflow to create a model that is based on the feature modelling meta model as shown in
Figure 3.3. The shown meta model consists of the basic feature modelling meta model plus
two extensions (allowing attributes and cardinalities) that are discussed in the later derivations
section.
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0..*1

1

Figure 3.3 – Feature modelling meta model, cf. [RBR09]

The basic feature model comprises one root feature as a starting point. Each feature may
aggregate some relations to child-features. If there are child-features, there might be one or
multiple binary-related child-features or there is a group of features. The feature relations
express the constraints that need to be fulfilled in order to derive a concrete software product
from one SPL. Hence, they describe configuration rules – whether a feature has to be selected
or not – in one product line. The selection rules apply as presented above.

Application scenarios. Feature models can be applied to model all artefacts of a product line
in a tree-structured way. This includes constraints between artefacts beyond the tree-structure
inherited through the parent-child-relation. These constraints are called cross-tree constraints.
One advantage over other variability modelling techniques is the easily readable structure,

which can be used to express the customer’s options to support the configuration process using
– for instance – a top-to-bottom approach starting with the root feature.

Derivations. Feature models are widely discussed in the area of Product Line Engineering
(PLE). This is why there are numerous extensions available, which support the representation
of further information inside a feature model or enable increased flexibility during the modelling
process.
One of those extensions is the substitution of the OR and XOR groups by using groups with

annotated cardinalities. This substitution has already been respected by the meta model of
Figure 3.3. Each group gets its minimum and maximum amount of sub-features that a customer
has to select. To substitute an XOR group, the cardinality [1..1] is used so that exactly one
sub-feature has to be selected. An OR group can be replaced by the cardinality [1..n], whereas
n is the number of available sub-features, so that at least one sub-feature has to be selected.
The car infotainment example of Figure 3.2 can be replaced by the cardinality-based feature
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Figure 3.4 – Exemplary cardinality-based feature model showing the car infotainment system in-
troduced in Figure 3.2
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model shown in Figure 3.4. Each OR and XOR group has been substituted by its cardinality-
based pendant. Additionally, cardinality-based feature models allow more flexibility during
modelling as it is possible to formulate more specific constraints. For instance, it would be
possible to restrict the number of selectable displays to at least/at most or exactly two out of
the three available options ([2..3], [1..2], [2..2] respectively).
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LegendControls
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Name: Price 
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Name: Price 
Domain: Currency 
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Figure 3.5 – Exemplary attributed feature model fraction showing a part of the car infotainment
system introduced in Figure 3.2

Another extension that is already respected by the meta model of Figure 3.3 is the support
of attributes. Attributes allow the annotation of additional feature-related information directly
into the feature model. Each attribute has a name, a domain and a concrete value. These
attributes may be used to annotate arbitrary data such as pricing information, efficiency data
or code specifications. Figure 3.5 shows a fraction of the car infotainment feature model of
Figure 3.2 with pricing annotations. In this case, the Armrest and Touch control input elements
cost 250,00 each; the Panel and Steering Wheel control elements cost 150,00 each. The concrete
currency is not specified here.
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Figure 3.6 – Exemplary hyper feature model fraction showing a part of the car infotainment system
introduced in Figure 3.2 based on the notation introduced by Seidl et al. [SSA14]

One extension to feature models that introduces a new perspective onto the underpinning
product line is the introduction of Hyper Feature Models (HFMs) by Seidl et al. [SSA14]. An
HFM supports capturing evolutionary aspects of SPLs, as there may be multiple versions of
one feature available, which have been created over time. Those evolutionary processes cannot
be represented by one single ordinary feature model. The extension allows adding a version
history for selectable versions to each feature in the model. Figure 3.6 shows a fraction of the
car infotainment example of Figure 3.2 as a HFM with versions. This would allow a customer
to choose between different available and compatible versions of each feature. For instance, the
customer could choose between version 1.0 and 2.0 when selecting the navigation system (Nav)
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3 Analysis of Existing Variability Modelling Methodologies

of desire. An appropriate application scenario for that could be a car fleet manager that wants
all his cars equipped with the same navigation system, so that the actual users of the cars feel
comfortable in each of the cars. Therefore, the fleet manager will order cars with Nav in version
1.0, regardless of the fact that a newer version became available in the meantime.

3.1.2 Decision Models
Relevance. When it comes to integrate variability into product lines, building a concrete vari-
ant of a product line means to perform multiple decisions. In conjunction with this, decision
models offer a modelling technique to perform these decisions.
Similar to a feature model, decision models represent the valid variant space. A valid product

of a product line has to obey the rules given by the underlying model. Decision models show
consequences (referred to as decisions) of a set of possible given situations. In contrast to the
other presented modelling techniques, decision models focus on the decision making process
rather than the variability structure.

Collect 
application data

Decide 
routing

Offer 
product

Decline 
customer

Routing = 
ACCEPT

Routing = 
DECLINE

Routing

Application risk Eligibility

Application

Application risk 
score model

Application risk 
category table

Eligibility rules

Eligibility rules

P Employment+status Country Age Eligibility+
(INELIGIBLE,+ELIGIBLE)

1 UNEMPOLYED C C INELIGIBLE

2 C not(UK) C INELIGIBLE

3 C C <+18 INELIGIBLE

4 C C C ELIGIBLE

Figure 3.7 – Exemplary DMN model showing the basic notation elements and the relation to
BPMN, cf. [Obj14]

Notation principles. To visualise the modelling process, Figure 3.7 shows the basic decision
model elements within a brief example. To present the basic elements in short, the example is
based on the exemplary description of the Decision Model and Notation (DMN) by the Object
Management Group Inc. (OMG)[Obj14, p. 22]. The car-infotainment-related example is given
afterwards.
The left part of Figure 3.7 shows an optionally underlying Business Process Modelling Notation

(BPMN). This BPMN models a simple workflow that decides whether to offer products to a
customer or not. This workflow requires a decision process that decides, whether a customer
should be accepted or declined by the system.
The right part of the figure models this decision making process. The root decision here is

Routing, which is separated into the two sub-decisions Application risk and Eligibility. The
input for each decision element of the model is an Application. The “intelligence” of the decision
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model is offered by decision logic that controls the decisions. In the given example, the logic
elements Application risk score model, Application risk category table and Eligibility rules control
the decision making process.
The logic input element Eligibility rules is presented in detail. This logic element comprises

a decision table as shown in the lower part of the figure. This logic element presents different
situations or cases (form 1 to 4) with their characteristics regarding employment status, country
and age. For each case, the decision table leads to a consequence (referred to as decision) as
shown in the last column eligibility. The example shows three cases that lead to a customer’s
ineligibility. The customer is ineligible if he is unemployed, does not live in the United Kingdom
or is under the age of 18. In every other case, the customer is considered eligible.

Table 3.1 – Example of a decision model based on the car infotainment example
Decision	Name Description Type Range Cardinality Rule

Display Which	display shall	be	
used? Enum

HUD	|	
Instruments	|	
Panel

1:3 IF Display.contains(“Panel”)	THEN
PanelDisplay.isEmpty()	== false;

Panel	Display Which	panel	display? Enum small	|	large	 |
touch 1:1

Touch Touch	controls	
desired? Bool true |	 false

IF Touch.getValue ==	 true	THEN {
Display.addValue(“Panel”);	
Panel.setValue(“touch”;	}

Steering Wheel Steering	wheel	
controls	desired? Bool true	|	 false

Radio Which	radio	band	
shall be	supported? Enum FM	|	DAB 1:2

Nav Navigation	system	
inside? Bool true	|	 false IF Nav.getValue ==	 true	THEN

Display.addValue(“Panel”);

Phone Phone	support	
desired? Bool true	|	 false

An example based on the prior introduced car infotainment system shall be given, too. Ta-
ble 3.1 represents the decision options and rules equally to the feature model of Figure 3.2. This
example does not comprise a structured decision process, but models all variability assets of
the proposed infotainment system. Selection relations of the feature model are mapped to rules
(right column).
To carry over decision models into the field of software variability, the given input (in the

example of Figure 3.7 the employment status, country and age) would represent a customer’s
choice over a variable set of options (e. g. software features) and the decision making process
would result in a concrete decision of how to assemble the specific software variant that fits the
customer’s choices.

Basic modelling process. The modelling process can be done complementary to a business
process model to formally define decision processes. To model variability in software families,
an underpinned BPMN is not required. Every variability point of a software family can be
modelled as a DMN model.
The modelling process itself comprises building a tree-structured decision process. Hence,

there is one root decision to be made relying on sub-decisions. Each decision has input elements
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that lead to the actual decision. Decision logic is the main part of the decision making process
and can be specified as a decision table.

Application scenarios. Decision models are defined as DMN by the OMG[Obj14]. The DMN
specification has been developed to seamlessly work together with the BPMN, which is an OMG
standard as well. BPMNs are models to visualise business workflows in conjunction with business
rules. Those workflows can be part of a software system as well. Some parts of those workflows
require a systematic decision making, which can be modelled using a decision model as discussed
here.
In terms of variability modelling for software families, decision models help to specify the

available options and constraints to decide for or against the specified options.

3.1.3 Orthogonal Variability Models
Relevance. The Orthogonal Variability Model (OVM) provides the structure of variation
points of a software and constraints between multiple variation points. These models ignore
commonalities of a software application but focus exclusively on the variability. Modelling each
variation point solely offers the opportunity to model orthogonal variability such as the choice
between a messaging service (e. g. Short Message Service (SMS) and Multimedia Messaging
Service (MMS)) or the choice between phone operating systems (e. g. Google Android and Ap-
ple iOS). Feature models that contain these aspects inside of a monolithic model would grow
exponentially when inserting an additional variability dimension.
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Figure 3.8 – OVM notation elements based on [RBR09, p. 6]

Notation principles. To create a model based on the proposition of Pohl et al. [PBL05; PM06],
Figure 3.8 shows the available notation elements. Each variation point is represented by one
flat (two-layered) tree-structure. The top element of this structure specifies the variation point
of interest. This element is displayed as a triangle with a VP marker and the name of the
variation point. Variation points that are mandatory for a software application have a solid
border, whereas optional variation points have a dashed border.
The available options for each variation point, the variants, are listed as sub-elements of a

rectangular shape in each VP-tree. A variant is marked with a upper-left V and contains the
variant name.
The connections between the root node and the available sub-nodes in each tree specify the

selection constraints for each variation point. Solid connection lines visualise mandatory selection
elements, dashed connections represent optionally selectable variants. If there are restrictions
regarding the number of selectable variants, this is marked using annotated cardinality that
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defines the restriction. Implications and exclusions are modelled similar to those in feature
models.
The exemplary Figure 3.8 shows all of these elements exemplarily.
The left tree shows the mandatory variation point Messaging with its variants SMS and MMS.

The angle signalises that at least one of both options needs to be selected, but it is possible to
choose both options as well. The implication from MMS to SMS forms a dependency between
both variants. Hence, if MMS is chosen, SMS has to be selected, too.
The tree in the middle shows the optional variation point OS with its optional variants iOS

and Android. There is no explicit selection restriction given but the exclusion between both
offered variants indicate that iOS and Android cannot be chosen at the same time.
The right tree shows the mandatory variation point Network with its variants Cellular and

WiFi. As there is a mandatory connection to Cellular, this variant has to be part of the software
application. The WiFi variant can be chosen additionally.
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Figure 3.9 – Exemplary OVM model representing the car infotainment system introduced in Fig-
ure 3.2

Figure 3.9 shows an OVM representation of the car infotainment example of Figure 3.2. As
the features Display, Controls and Functions are mandatory, these three features are mandatory
variation points of the shown OVM.
The sub-trees of the original feature model at Panel Display and Radio are represented in sep-

arate, optional variation points inside the OVM. These optional variation points are connected
to the other variation points using implications. The two implications of the original feature
model are carried over analogously onto the OVM.

Basic modelling process. The modelling process comprises the following steps:

1. List all variation points of a software application.

2. Decide, which variation points are mandatory for the software application. The other
variation points are optional but may be required by specific choices of mandatory variation
points.

3. Enumerate all possible variants for each variation point.
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4. Define the selection constraints for each group of variants.

5. Define the constraints between multiple variants and variation points (implications, exclu-
sions).

Application scenarios. OVMs can be used to model every variation point of a software family
with its possible variants and the constraints between multiple variants and variation points.
If the software structure should not be modelled within one single tree-structure, an OVM

could be an effective modelling strategy. Modelling orthogonal variability subjects would lead
to an exponential blow-up in case of creating a feature model. In those scenarios, OVMs are
advantageous.

3.1.4 Common Variability Language
Relevance. The Common Variability Language (CVL) is a modelling strategy proposed by
Haugen et al. [Hau+08] to introduce a universally applicable standard for variability modelling
within any desired realisation model. This versatile approach shall help to support modelling
variability as part of the realisation process of an SPL.

Notation principles. A Variability Specification (VSpec) tree comprises the same elements as a
feature model does: Singular features (tree leafs) are called options, whereas features with child-
features are called groups. Cardinality information and mandatory as well as optional binary
relations allow to define selection constraints in that variability model. Cross-tree constraints
are visualised as logic expressions connected to the root element of the model.
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Figure 3.10 – CVL notation elements, cf. [HW12, p. 8]

Figure 3.10 shows the mentioned elements as their visual representation. Groups, options
and constraints are distinguished by their shape. Groups are displayed as rectangles, whereas
options are visualised as ellipses or rectangles with round corners. To differentiate both elements
better, Figure 3.10 shows groups as black boxes. Constraints are displayed as parallelograms
with their logical expression inside.
Mandatory and optional selection constraints are displayed similar to those used in OVMs.

Mandatory relations are displayed as a solid line, whereas optional relations are displayed as
dashed lines.
Groups and their cardinalities are visualised as a small triangle below the group shape with

its cardinality information aside.
To give a brief example of how a complete VSpec tree may look, the car infotainment example

of Figure 3.2 can be transferred to a CVL-compliant VSpec tree. Figure 3.11 shows that model.
The major difference between these two models is the way cross-tree constraints are displayed
inside the model.
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Figure 3.11 – CVL example showing the car infotainment system introduced in Figure 3.2

Basic modelling process. The variability modelling process for CVL models partly relies on
the software modelling strategy, as VSpecs are formulated during this modelling process.
The VSpec formulation is similar to the definition of an variation point within OVMs as illus-

trated in Section 3.1.3. Each variation point is modelled as one single VSpec. The corresponding
constraints are part of this specification as well.
A complete variability model can be compiled by assembling all defined VSpecs to a VSpec

tree that may be structured very similar to feature models.

Application scenarios. The CVL is intended to be used to model variability directly in con-
junction with realisation models, which are generated during the design phase of the software
family development project. Variability information can be added as an annotated VSpec in
form of an overlay into an existing model such as an Unified Modelling Language (UML) class
diagram or similar.

3.1.5 Unique Characteristics of the Presented Modelling Methods
Unique feature modelling characteristics. The approach of representing a whole product line
with its common and variable parts is characteristic for feature models compared to other
variability modelling techniques. This representation is done using one tree-structured hierarchy
which offers the opportunity to model the tree similar to the actual software to built.

Unique DMN characteristics. The DMN focusses on the process of choosing between options
that are offered by means of software variability. The software structure does not play a signif-
icant role in those models. This clear focus on the process instead of the structure distinguishes
DMNs from the other models presented in this chapter.

Unique OVM characteristics. The unique characteristic of the OVM modelling technique is
the pure focus on variability modelling. Each variation point is modelled in a flat tree-structured
way. The interconnection of the VP-trees is loose and explicitly non-hierarchical.

Unique CVL characteristics. CVL models follow a composite approach that makes it easy to
integrate variability information inside of other software design models as an overlay such as
UML models. The actual variability model is a composition of all variability information overlays
that were integrated into other realisation models. The composite approach is comparable to
the one shown with OVMs, but the intention differs. While OVMs follow a loose composition of
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variation points to avoid a model blow-up when modelling orthogonal software properties, the
CVL is designed compositionally to support the direct underpinning of variability information
to the according elements inside the realisation model. Hence, the interconnection of multiple
variation points within OVMs is done directly using implication and exclusion arrows. On the
other hand, constraints are annotated in a decentralised logical expression on each VSpec.

3.1.6 Brief Summary of the Presented Modelling Methods

Table 3.2 – Brief summary of the presented modelling methodologies
Model Brief	Description

Feature	Model

• Comprises	commonalities	and	variability
• Displayed	as	one	monolithic	model
• Widely	used	in	the	area	of	SPLE
• Multiple	derivations	and	extensions	available

Decision	Model and	Notation

• Designed	to	work	in	conjunction with	business	
processes	(BPMN)

• Focus	on	the	process	of	decision	making	
ignoring	software	structure	information

Orthogonal Variability	 Model

• Focus	on	variability information	ignoring	
software	structure

• Loosely	interconnected	variation	points	(via	
constraints)	with	dedicated	options	and	
selection	constraints	for	each	variation	point

Common	Variability	 Language

• Designed	to	integrate variability	 information	
into	arbitrary	 realisation	models	such	as	UML

• Decentralised	variability	 specification	(VSpecs)	
as	overlay	 in	other	models

• Variability	model	as	a	composited	VSpec tree

To allow getting an overview of the described four basic modelling methods, Table 3.2 lists
the major differences and philosophies the modelling strategies are based on.
Basically, feature models can be used to model a software family with its common and variable

software parts as a whole. The monolithic, tree-structured approach and wide use in the area
of PLE makes it unique to the other models.
Decision models in a variability context concentrate on the derivation process of concrete

products out of a product line. The underlying software structure is mainly irrelevant for these
models.
Orthogonal Variability Models allow the variability modelling of orthogonal variability di-

mensions. This tackles the problem of exponential growth of feature models when considering
multiple variability dimensions.
The Common Variability Language allows the integration of the variability modelling pro-

cess into other modelling steps such as the design of class diagrams using UML. Variability
information can be integrated as decentralised Variability Specifications (VSpecs). The whole
variability model is a composition of all VSpecs.
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3.2 Feasibility Analysis for Partly Open Software Families
The goal of the next step is to determine a foundation for a POSF variability modelling technique.
Ideally, one of the modelling methods presented in Section 3.1 will serve as the foundation.
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Figure 3.12 – Workflow for the models’ feasibility analysis

To determine whether a modelling strategy is appropriate to be used in a POSF context or not,
each model has to be analysed in regard to the derived POSF requirements. These requirements
were presented in Section 2.2.1. Figure 3.12 visualises the analysis workflow.

3.2.1 Feasibility of Feature Models
Modelling closed and open variability at the same time. Feature models in their basic form
do not support open variability. Such models premise on the existence of all software artefacts
or features in advance. This set of features is closed and the feature model adds selection
constraints by means of a tree-structure and cross-tree constraints according to that feature set.
Nevertheless, the concept ofMulti Software Product Lines (MSPLs) [RS10] introduces a way to

implement an open world concept by adding the opportunity to compose multiple product lines
(represented by feature models) to one bigger product line. The composed product line is called
Multi Product Line (MPL) or – within the context of software – an MSPL. A compositional
approach allows variability, because the composed product lines can be exchanged. Hence,
feature models can be exchanged to add open variability.
Finally, feature models do not support open variability out of the box. However, feasible

extensions can be designed to enable closed and open variability modelling at the same time.
The idea of MSPLs might serve as a prototypical concept.

Specification of extension interfaces. Because of the missing openness of feature models, there
is a lack of interfaces. Thus, there is no specification for extension interfaces available.
This is a lack within the concept of MSPLs, too, as there is no formal, conceptual specification

available by means of which feature models or product lines could be composed. The composition

33
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using MSPLs is done by flagging features of the parent model to require a child-feature-model
with a specific name. There is no further specification or semantics-based approach available.

Compatibility with existing modelling strategies. There are many extensions for feature mod-
els available. Modifications that have to be done to fully support POSFs would require another
extension, which ideally does not interfere with the basic feature model and further extensions.

Low change impact. Usually, feature models cannot guarantee a low level of change impact.
Even small changes could lead to a configuration deadlock or invalidation that reduces the
variant space of a product line. A low change impact level can be forced by the encapsulation of
model parts by forbidding cross-tree constraints outside of that encapsulation. Unfortunately,
feature models do not support this yet.

Allow decentralised extension development. As there is no openness supported by feature
models yet, developing extensions for such models requires access to the whole model. On
the other hand, the concept of MSPLs allows the named, decentralised, autonomous extension
development to some extent. The major limitation is the insufficiency of interfaces, because they
require complete domain knowledge yet.

Human readable and computable. Whereas the human readability of visual models can be
assumed, the computability is not sure in every case of a model. In case of feature models, this
computability is given, because of their tree-structure with added constraints. Constraints are
logical expressions that can be computed by a Satisfiability (SAT) solver. Tree-structures are
graphs and, thus, can be computed using graph algorithms.
Additionally, there are proofs that show the computability of feature models. For instance,

the extFM2 project performs calculations over feature models. For example, quality assurance
measurements can be performed using this tooling project [Gol13].

Allow multiple contributors to modify the model. The contribution to a feature model by
multiple parties is not conceptually respected yet. Nevertheless, MSPLs do allow an interference-
free co-operative work on a feature model because of the model separation. This concept could
be adapted for POSFs as well.

Rights management for multiple contributors. There is no rights management for feature
models yet, as the contribution by multiple parties is conceptually not respected. However, to
support rights management, a restriction needs to be added, that permits groups of selected
users to view or modify a fraction of the whole model only.
Table 3.3 summarises the feasibility analysis for feature models as a POSF modelling strategy.

3.2.2 Feasibility of Decision Models
Modelling closed and open variability at the same time. Decision models can be designed
both ways, closed and open. The closed approach has a fixed set of possible decisions that
guarantee a variability selection. In this case, decision tables (or other forms of decision logic)
are complete. Open decision models cannot guarantee a decision as not every premised situation
is respected. Hence, there is room for extensions that fill this premise gap.

2extFM website on GitHub: https://github.com/extFM
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Table 3.3 – Feasibility overview of feature models; tick: passed/supported, cross: failed/not sup-
ported, circle: partly passed/limited support
Requirement Passed Comment

Modelling	closed	and open	variability	at	the	same	time ◎ Partly as	Multi	SPL

Specification	of	extension	interfaces ✕

Compatibility	with	existing	modelling	strategies ✔

Low	change	impact ✕

Allow	decentralised	extension	development ◎ Partly	as	Multi	SPL

Human	readable	and	computable ✔

Allow	multiple contributors	to	modify	the	model ◎ Partly	as	Multi	SPL

Rights	management for	multiple	contributors ✕

Specification of extension interfaces. The extension of a decision model is limited to filling
the decision logic gaps. Hence, there is some kind of restriction that forms an extension interface.
The fillable gaps can be specified.

Compatibility with existing modelling strategies. Using open decision models harms the de-
cision guarantee that might be required by the underlying product line. In consequence, com-
patibility with existing modelling strategies could be affected. The modelling approach itself is
compatible with closed decision models, as there have not been made any conceptual changes.

Low change impact. The change impact within decision models is potentially high, because
the model’s focus is the process of decision making in a variable environment. The actual impact
of one decision is complex to evaluate by analysing the decision model. Hence, changes that
affect a decision can hardly be estimated.

Allow decentralised extension development. Decision modelling relies on the knowledge of
existing premises and possible consequences. The decision logic that connects the premises with
corresponding consequences is modelled within the decision model. A decentralised extension
development would require knowledge of the premises, consequences and the existing logic re-
garding these premises and consequences. Hence, if these information is provided, a decentralised
extension development is supported. In any other case, decentralisation is not feasible.

Human readable and computable. Similar to feature models, visual models such as a decision
model can be assumed as human readable. Decision models are computable as well, because a
complete conversion to logical expressions is possible. This can be computed using a SAT solver.

Allow multiple contributors to modify the model. Plus: Rights management for multiple
contributors. As a decentralised development is only feasible to a limited extent and a low
change impact cannot be guaranteed, the contribution by multiple parties is limited, too. This
corresponds to the need of a rights management. Access can only be limited to the reasonable
extent an external co-worker would need to contribute.
Table 3.4 summarises the feasibility analysis for decision models as a POSF modelling strategy.
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Table 3.4 – Feasibility overview of decision models; tick: passed/supported, cross: failed/not sup-
ported, circle: partly passed/limited support

Requirement Passed Comment

Modelling	closed	and open	variability	at	the	same	time ✔

Specification	of	extension	interfaces ◎ By means	of	logic	restrictions

Compatibility	with	existing	modelling	strategies ✕

Low	change	impact ✕

Allow	decentralised	extension	development ✕ Full	knowledge	 is	required

Human	readable	and	computable ✔

Allow	multiple contributors	to	modify	the	model ✕

Rights	management for	multiple	contributors ✕

3.2.3 Feasibility of Orthogonal Variability Models

Modelling closed and open variability at the same time. One key characteristic of OVMs is
the ability to visualise multiple orthogonal variability assets at the same time and within one
model. This is realised by their open structure without the necessity to cross-reference each
single variation point diagram with each other to format one whole model or graph. This open
structure allows a certain degree of openness of the offered variability. New variation points can
be added without respecting the existing structure.
In consequence, modelling open variability is possible in a way, so that the model does not

forbid adding additional variability. Hence, the modelled variability cannot be assumed as closed
and fixed.

Specification of extension interfaces. Besides the fact that openness can be modelled as
described above, there are no notation elements available to model extension interfaces. One
possible attempt to get to some sort of interface would be the introduction of open implications
and exclusions. This leads to the introduction of relations between existing variation points and
not yet existing ones. This concept is similar to the composition principle of MSPLs.

Compatibility with existing modelling strategies. As OVMs allow adding supplemental vari-
ation points, these models already support to model open variability. Nevertheless, to support
all of the enumerated requirements, modifications to the model are required. From this per-
spective, those changes should not require fundamental conceptual changes. That is why the
compatibility of an open OVM with a finite OVM can be assumed. Compatibility with other
models are not necessarily given. For instance, while finite OVMs can be transformed to feature
models and vice versa (similar to the car infotainment example above), this might not be feasible
with open OVMs.

Low change impact. The assumable change impact can be analysed from two perspectives.
First, the impact of a model change on the referred software. Second, the impact of a model
change on the model itself.
An OVM allows modelling orthogonal variable assets with a reduced modelling effort compared

to other models, such as feature models. Thus, adding variability means adding an additional
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variation point to the model. Those orthogonal variability assets may have a massive impact on
the actual software, whereas the impact on the model is low.
The low change impact that is required to work with POSFs focusses on the model’s change

impact. Hence, modelling variation points in an OVM has a low change impact as long as
cross-references (implications and exclusions) are not involved. Model changes that affect those
references have an impact on the referenced model elements.

Allow decentralised extension development. Extending an OVM externally is possible as far
as no cross-references are involved. Otherwise, a decentralised extension development requires
additional notation elements for an OVM to introduce extension interfaces.

Human readable and computable. An OVM can be considered a set of (via cross-references
partly interconnected) variation points. Each variation point is a two-layered tree-structured
graph. These tree-structures can be computed using existing graph algorithms similar to the
computability of feature models. Assuming a transformation method to generate a feature
model from an OVM would allow the same computability as that of feature models. Such
a transformation may require the introduction of additional abstract features to mount each
variation point tree into the common feature tree.

Allow multiple contributors to modify the model. Allowing multiple contributors to mod-
ify the model requires the support for decentralised modifications and calls for a low change
impact. Both is given with OVMs under certain circumstances that were named beforehand.
Basically, OVMs support a decentralised modelling approach and a low change impact regarding
the model, but cross-references, such as implications and exclusions, may interfere with that.
Finally, allowing multiple parties to contribute to one model requires restrictions regarding
cross-references.

Rights management for multiple contributors. As this is the case with all the presented
modelling approaches, OVMs do not support a user rights management out of the box. To
implement a rights management for OVMs, a per-variation-point access approach could be used.
Therefore, a model can be interpreted as set of variation points. For each user, a subset could
be defined that describes which variation point may be viewed or edited by the user.
Table 3.5 summarises the feasibility analysis for Orthogonal Variability Models as a POSF

modelling strategy.

3.2.4 Feasibility of the Common Variability Language
Modelling closed and open variability at the same time. The Common Variability Language
is used to integrate variability modelling into software realisation models such as UML. The
CVL offers model elements that are called Variability Specification (VSpec). These specifications
allow the partial integration of variable elements into other models. For instance, VSpecs can
be added to a UML class hierarchy to add variability information referred to that part of the
software that is modelled by the base class diagram.
As those VSpecs directly refer to the modelled software part, the variability refers to a closed

set of features. Openness cannot be visualised using this part of the CVL concept.
The variability model as a whole is the composition of VSpec trees to a VSpec tree set. Each

VSpec is decoupled from other VSpecs. Only logic elements that could implement implications
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Table 3.5 – Feasibility overview of orthogonal variability models; tick: passed/supported, cross:
failed/not supported, circle: partly passed/limited support

Requirement Passed Comment

Modelling	closed	and open	variability	at	the	same	time ✔

Specification	of	extension	interfaces ✕

Compatibility	with	existing	modelling	strategies ✔

Low	change	impact ✕

Allow	decentralised	extension	development ✔ If	cross-references	are	not	involved

Human	readable	and	computable ✔

Allow	multiple contributors	to	modify	the	model ◎ Based	on	the	involvement	of	cross-references

Rights	management for	multiple	contributors ✕

and exclusions interconnect the available Variability Specifications with each other. Hence,
additional VSpecs can be added retrospectively. Regarding this, CVL models allow openness.

Specification of extension interfaces. There are no notation elements that allow the specifi-
cation of interfaces. The openness of CVL models is limited to the possibility of adding VSpecs
retrospectively. Interface specifications would require model changes. Developing such an exten-
sion could be challenging, because the variability model is formed loosely based on the existing
(non-open) VSpecs. Thus, interface specifications require elements next to those VSpecs. The
idea behind CVL to allow the integration of variability into other models, such as UML dia-
grams, should be kept. Hence, the new model elements have to be embeddable into existing
base realisation models.

Compatibility with existing modelling strategies. The CVL is designed to get implemented
within other models. Thus, these models are made to be compatible with other existing mod-
elling strategies. This design concept guarantees the cross-model compatibility. When adding
extensions that support an open interface specification the possibility to integrate CVL diagrams
into other models must not be harmed. In consequence, the compatibility should be kept, too.

Low change impact. The impact of changes within a CVL model relies on the constraint
expressions that are part of the VSpec trees. In case these logic expressions remain unchanged,
a low change impact is given by means of the decentralised modelling concept. Otherwise, the
change impact is potentially high.

Allow decentralised extension development. The external extension development in the CVL
case is coupled with the modelling opportunities of the underlying model. If this model supports
an external extension development, the CVL supports adding variability externally, too. This
is only limited by the structural dependencies formed by the logical expressions or constraints
within the VSpecs.

Human readable and computable. The variability model as a whole is formed as a set of
VSpecs. Each VSpec may encompass constraints as logical expressions. Similar to feature
models, each VSpec can be visualised as a tree-shaped graph. Thus, graph algorithms can be
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applied to compute VSpecs. Logical expressions can be computed using SAT solver systems.
Furthermore, the constraints form relations between the VSpec trees. Hence, the interconnected
trees can be interpreted as a larger graph, where graph algorithms apply, too.

Allow multiple contributors to modify the model. The decentralised extension development
is supported as described above if the underlying realisation model supports it. That allows
multiple contributors to add extensions to the model. The lack of interface specifications limits
that collaboration attempt.

Rights management for multiple contributors. There is no rights management supported via
the CVL concept. If the underlying model supports rights management, the VSpec trees may
be covered by that, too.

Table 3.6 – Feasibility overview of the Common Variability Language; tick: passed/supported,
cross: failed/not supported, circle: partly passed/limited support

Requirement Passed Comment

Modelling	closed	and open	variability	at	the	same	time ✕

Specification	of	extension	interfaces ✕

Compatibility	with	existing	modelling	strategies ✔

Low	change	impact ✕

Allow	decentralised	extension	development ◎ Depends	on	the	underlying model

Human	readable	and	computable ✔ As a	set	of	VSpecs

Allow	multiple contributors	to	modify	the	model ◎ Depends	on	the	underlying model

Rights	management for	multiple	contributors ◎ Depends	on	the	underlying model

Table 3.6 summarises the feasibility analysis for CVL models as a POSF modelling strategy.

3.2.5 Feasibility Analysis Verdict
Based on the given analysis for each modelling method presented in this chapter, a conclusion
should summarise the results and extract a design decision for Chapter 4. In this next chapter,
a concrete, feasible modelling concept shall be built regarding variability modelling for Partly
Open Software Families.
To formulate a conclusion of the preceding analysis, a brief and objectively comparable

overview is given in Table 3.7. This table consolidates the analysis results of Table 3.3 to
3.6. A first look at this consolidated table shows that none of the presented modelling methods
fulfill all defined POSF requirements of Figure 2.7. This is the first conclusion:

None of the presented variability modelling techniques fulfill all given requirements.

The bottom line of the table counts all ticks, circles and crosses per column or model. A tick
means the model satisfies the given requirement, whereas a cross is given if the model does not
support the required characteristic or behaviour. The circle indicates that the analysed model
satisfies the requirement in a limited way. Either there is an indirect way to support the desired
behaviour or characteristic, or the requirement is fulfilled under specific circumstances.
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Table 3.7 – Consolidated feasibility overview for all presented modelling techniques; tick: passed/-
supported, cross: failed/not supported, circle: partly passed/limited support

Requirement Feature	
Model

Decision	
Model

Orthogonal	
VM

Common	
VL

Modelling	closed	and open	variability	at	the	same	time ◎ ✔ ✔ ✕

Specification	of	extension	interfaces ✕ ◎ ✕ ✕

Compatibility	with	existing	modelling	strategies ✔ ✕ ✔ ✔

Low	change	impact ✕ ✕ ✕ ✕

Allow	decentralised	extension	development ◎ ✕ ✔ ◎

Human	readable	and	computable ✔ ✔ ✔ ✔

Allow	multiple contributors	to	modify	the	model ◎ ✕ ◎ ◎

Rights	management for	multiple	contributors ✕ ✕ ✕ ◎

2x	✔
3x	◎
3x	✕

2x	✔
1x	◎
5x	✕

4x	✔
1x	◎
3x	✕

2x	✔
3x	◎
3x	✕

Based on these symbol counts, decision models lose that comparison with five failed require-
ments and three passed or partly passed requirements. All other models only have three failed
requirements versus five fulfilled or partly fulfilled criteria. The best match is the OVM method
with four passed criteria and just one partly passed criterion. Nevertheless, a final decision
requires a more detailed look at the results. Thus, the second conclusion is:

Decision models have the worst match of fulfilled and partly fulfilled requirements
versus failed requirements. The other models have a significantly better ratio.

This second conclusion brings feature models, OVMs and CVLs into the focus. It would be
ideal to select one of the named models to serve as a foundation to a modelling technique that
can be used to model the variability of POSFs. In consequence, it is important to estimate
the effort to modify an existing model to support all required characteristics and behavioural
aspects.
Feature models do not support the specification of extension interfaces, do not guarantee a low

change impact and offer no rights management yet. Furthermore, modelling open variability is
just offered by the MSPL concept that introduces the composition of multiple feature models.
This compositional concept is as well the reason for the partly satisfied requirement of a support
for decentralised extension development and the model modification by multiple contributors.
To match the missing requirements, a compositional approach similar to MSPLs could be in-

troduced and new notation elements are required to model interfaces and interface specifications.
These specifications open the demand for a semantics specification next to the pure structural
assets available in feature diagrams. Rights management is necessary to allow multiple different
parties to contribute to a model by adding concrete extensions to the specified interfaces. The
rights management could be realised as a per-feature attribute. The change impact has to be
reduced as far as possible, for instance by adding conceptual rules to limit cross-tree constraints.
Those constraints can be seen as the major issue regarding the level of change impact.
Orthogonal Variability Models lack the support for interface specifications, the low change

impact and a rights management, too. Similar to feature models, there are new notation elements
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necessary to implement interfaces. The support for semantic interface specifications is required,
too. Besides the non-monolithic approach of OVMs, allowing multiple contributors to modify
the model requires restrictive rules according to the cross-references. The challenging aspect is
the high reliance on these cross-references. Whereas relations of feature models are separated in
parent-child relations and cross-tree constraints, OVMs only support the named cross-references.
Parent-child relations are restricted to the tree-structure of a feature diagram and allow an easier
to determine change impact, while cross-tree constraints and OVM’s cross-references are not
restricted per default.
The Common Variability Language supports an integrated variability modelling within soft-

ware realisation models such as UML class diagrams. That is why the necessary modifications
to support POSFs rely on the base model. Especially the decentralised modelling is supported
due to the loose binding of VSpecs but, finally, depends on the compositional opportunities of
the base model. This makes it rather vague to estimate the modification effort for CVL models
to satisfy all POSF criteria.
This leads to the third conclusion:

Feature models and Orthogonal Variability Models have a similar modification effort
to create a modelling method that satisfies all POSF requirements. For CVL models,
this estimation is vague due to the reliance on a base model.

Based on these three conclusions, feature models and OVMs can be used to serve as a foun-
dation to create a feasible POSF variability modelling strategy. The estimated effort is similar.
Whereas feature models additionally require the introduction of a compositional approach sim-
ilar to MSPLs, achieving a low change impact in OVMs may be challenging because of the flat
referencing system compared to the more divers referencing supported within the tree structure
of feature models.
As a verdict based on the analysis above, feature models can be considered the best option to

serve as a POSF modelling basis. Additionally, feature models are widely used in the context of
Software Product Lines.

3.3 Summary
Four modelling strategies were inspected in this chapter: feature models, decision models,
Orthogonal Variability Models (OVMs) and models based on the Common Variability Lan-
guage (CVL). Each of these models were presented in detail according to the scheme shown in
Figure 3.1. Especially the basic modelling process and the notation principles are important to
allow a feasibility analysis against the POSF requirements defined in Chapter 2.
A brief summary of all presented modelling methods allowed a first comparative view on the

models according to their suitability for a use in the context of POSFs. The feasibility analysis
in Section 3.2 examined each of the four models regarding the former defined requirements. The
results were summarised into tables using symbols to show whether a requirement is fulfilled,
partly fulfilled or failed.
The given verdict consolidated the single analysis results and evaluated them to extract a

design suggestion for the next chapter. The extracted suggestion is to use feature models as a
foundation to develop a new modelling concept. A rights management has to be introduced, a
compositional approach similar to that of MSPLs shall be introduced and elements should be
included that allow a viable interface specification to support multiple, external model contrib-
utors.
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Chapter 4 will use this suggestion and the results of the former chapters to build a variability
modelling concept for Partly Open Software Families that suffices the defined requirements.
Additionally, a prototypical tool implementation will be given supporting modelling variability
for POSFs based on the introduced modelling concept. The intention of this tool is to proof
feasibility of the modelling concept and allow further evaluation by means of a case study later
in this thesis.
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4 Creation of a Feasible Concept
The former chapter presented four different variability modelling techniques and extracted the
suggestion to use feature models as the foundation to create a new modelling concept for Partly
Open Software Families. This suggestion is based on the analysis of the presented models
regarding their support for POSF requirements. These criteria were elaborated in Chapter 2.
This chapter combines the results of the chapters above to create a new and feasible variability

modelling concept for POSFs. Therefore, Section 4.1 presents the necessary modifications of
feature models to support POSFs.
Furthermore, this chapter describes the conception and implementation of a prototypical tool

that shall proof the feasibility of the created model in Section 4.2.

4.1 Creation of a Feasible Variability Modelling Concept
The intention of the former chapters was to seek for an existing modelling strategy that can
be extended to support the design of POSFs. The major advantages of this approach are the
avoidance of unnecessary redundancy and the usage of a modelling mechanism that already
exists and is used in practise. A completely new model would have to proof itself in practise,
for which there is no evidence yet.
Chapter 3 proposed to use feature models as a foundation to develop modelling extensions

to support POSF specifics. Taking this suggestion into account, according to Table 3.3, the
following changes to the model are required:

1. There is no sufficient way to model an open software structure using feature models yet. To
enable this, new notation elements that support the introduction of interfaces are required.
Section 4.1.1 tackles this issue.

2. An interface usually comprises a specification of requirements new extensions shall satisfy.
Therefore, the notion of structural specifications needs to be defined. Ideally, a graphical
representation of the model supports adding concrete extensions based on the interface
specification as well. This is useful for external contributors to model extensions. Further-
more, the support for concrete extensions inside of the model allows the transformation
of a POSF feature model into a normal feature model – e. g. for compatibility reasons.
Section 4.1.2 introduces a way to support both structural specifications and concrete ex-
tensions.

3. In contrast to MSPLs, interface specifications should comprise semantics information, too.
Feature models follow a structural approach, which does not allow the inclusion of explicit
semantics information. Section 4.1.3 proposes ways to solve this issue.

4. One of the key aspects of POSFs is the possibility to collaborate in building a software.
The allowed openness is one aspect that enables this. The second is the need of rules for
regulating of what each collaborator is allowed to see and permitted to modify. Thus, an
appropriate rights management is required, which will be introduced in Section 4.1.4.
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4.1.1 Introduction of Interface Notation Elements to Feature Models
To tackle the first issue – the lack of openness support – a new type of parent-child relation is
introduced. Until yet, feature models support the following types of parent-child relations:

• Binary relation
– …for mandatory features
– …for optional features

• Group or set relation
– …as an OR group (at least one feature has to be selected)
– …as an XOR group (exactly one feature has to be selected)
– or as a group with lower and upper bound values to regulate the cardinality

Interfaces that enable openness can be introduced as another type of parent-child relation in
addition to the above mentioned ones. To do so, a feature can be turned into an interface or
open feature by adding a dock connection onto it. This connection specifies that this feature
supports the hooking of concrete extensions to that interface. The interface specification and
the hooking of concrete extensions is subject to the next section.

Feature m..n

Feature ∞

Feature ∞

Feature

Feature FeatureOpen Single Interface, 1 object required Extension Object

Closed Single Interface, 1 object allowed

Open Interface, 1 object required, many allowed

Closed Interface, many allowed

Restricted Interface, m required, n allowed

Figure 4.1 – Proposed POSF notation elements as an extension to the FODA notation for feature
models

Figure 4.1 shows a proposal of how such a dock connector could be denoted. The basic notation
is inspired by the interface notation used in conjunction with components in UML diagrams.
The semantics of this element in UML and POSF feature models should not be mixed up,
but the common intention of interfaces and hooks leads to this design decision. Furthermore,
the proposed dock connector (lollipop notation) can easily be distinguished from the remaining
parent-child relations. It is crucial to know that there is no actual relation between the UML
component interfaces and feature model interfaces. Whereas these interfaces in UML are used
to model communication processes, the proposed interface notation in feature models is used to
model software structure.
The dock connector as proposed can be annotated with cardinality information of how many

extensions are allowed to be hooked. Thus, it could be necessary to specify that exactly one
extension is required to be installed. To serve an example, a data management application could
need a data source provider, which could be a database or files in a filesystem. The data source
provider can be realised as an interface-extension relation. As the application may need just one
particular provider to work, this is one case where requiring an explicit number of extensions is
useful and necessary. Thus, there should be a general support for cardinalities with a lower and
an upper bound. The proposed notation for cardinality is given by Figure 4.1.
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The default case (without further cardinality information in the model) describes that exactly
one specific extension is required to implement the interface. This is denoted as a half circle. To
mark an interface as optional, a “blocking” line is proposed. To allow infinitely many extensions
respectively remove upper bound cardinality restrictions, the cardinality can be denoted using
the ∞ symbol. In any other case with specific lower and upper cardinality bounds, this can be
denoted using the usual notation [m..n].
The interface specification is given by a hook for the dock connector (lollipop notation). This

is shown by the Extension Object element in the figure. The dashed half circle is proposed to
avoid possible confusion with the mandatory feature relation. The interface specification starts
with the same root feature name as the name of the interface feature. During the concrete
modelling of extensions, the name of this extension root feature can be exchanged, e. g. by the
extension’s name.

4.1.2 Differentiation of Interface Specifications and Concrete Extensions

Modelling openness inside a feature model means – on the one side – to allow the notation of
interfaces and their specifications. On the other side, the graphical notation of a feature model
should allow the integration of concrete extensions that are hooked into a model. This comes
across as the realisation of an abstract interface into a concrete extension. Especially during the
modelling process of external extensions, it could be useful to integrate them directly into the
underpinned feature model basis. Additionally, supporting the inclusion of concrete extensions
into a model allows the transformation of a POSF feature model (with open variability) into a
usual feature model (without open variability).
To allow modelling both interface specifications and concrete extensions inside of one model,

an explicit distinction is required. To do so, the interface relation is proposed to be realised as
a specification relation or as a set relation of concrete extensions.
While interface specifications use the lollipop notation, concrete extensions are proposed to

use an arrow that points to the implemented interface feature.

Specification of an Interface. In addition to modelling an interface feature by using a docking
connector, the interface has to be specified in its structure and semantics. The semantics shall be
handled by one of the possible solutions given in Section 4.1.3. The structure shall be modelled
similar to an ordinary feature model. Hence, there is an extension’s root feature which comprises
child features with modelled binary and group relations. Cross-tree constraints are allowed, too.
The name of the extension’s root feature equals the parent interface feature. This name may
change while modelling a concrete extension. The modelled interface specification serves as a
basis for a concrete extension. Thus, it acts as a stem for further modelling work. To distinguish
an interface specification from concrete features of the model inside the graphical notation, it is
useful to use a dashed rectangle instead of a solid border.

Notation of Concrete Extensions. The set of concrete extensions potentially contains in-
finitely many concrete extensions. To differentiate each extension from others, unique names
(denoted as the extension’s root feature name) should be used here. During a configuration
process, on whose end there is a concrete product configuration, the cardinality given in the
interface specification has to be obeyed to keep the model valid. In consequence, disrespecting
the cardinality invalidates the model. A valid extension has to carry over the feature stem given
by the specification. However, additional features are explicitly supported!
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Figure 4.2 – Notation of interface specifications and concrete extensions

Figure 4.2 shows a notation example for the mentioned interface specifications and concrete
extensions.

4.1.3 Addition of Semantic Information to Interface Specifications
Feature models natively only support the integration of structural information. One distin-
guishing characteristic of POSF-supported feature models in contrast to MSPLs shall be the
possibility to validly specify extension interfaces. However, to support adding semantic infor-
mation, a requirement specification has to be annotatable inside the structural feature model.
The formalisation of the requirements is done using a predefined methodology.
To realise this requirements specification, there is no one-fits-all solution available. A “perfect”

specification could be done using formal logics. However, logical formalisation of requirements
is coupled with a relatively high effort, which may be infeasible in practise. Apart from that,
limiting the interface specification to a pure name matching of the feature names of the model
structure is too loose in its level of detail and there is no real semantics information included at
all.
In consequence, there is no feasible alternative to a tradeoff decision. A requirements specifi-

cation is needed that can be formalised with a moderate effort and with a level of specification
detail that is sufficient to ensure that developing an extension against an interface leads to a
valid extension.
There are multiple levels of specification detail for those semantics formalisation methods.

of 31Conceptual Variability Mgt. in Sw. Families with Multiple ContributorsDresden, 17.09.2015

POSF Variability Modelling — Interface Semantics

‣ no one-fits-all solution, but multiple levels of detail 

- formal semantics 

- component-based interfaces and typing 

- structured text requirements formulation, OCL 

- SMART requirements and acceptance checks 
(specific, measurable, achievable, relevant, time-bound) 

- purely textual requirements formulation 

- purely textual formulation without formal reference 

- name matching (no interface semantics)

1Figure 4.3 – Levels of different semantics notation approaches
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Figure 4.3 visualises a range of different methods as a scale from the mentioned formal semantics
as the highest level of detail to name matching as the lowest level. Pure textual requirements
formulations with or without formal references to the actual software and measurable criteria are
difficult to evaluate reliably. That means, the determination whether a requirement is fulfilled
or not could depend on subjective interpretation. Formal semantics specification, on the other
hand, often is too expensive to realise. Hence, a balance between specification effort and level
of specification detail is required.
A reliable and feasible requirements specification can be considered sufficient if it allows an

exact interpretation of what the described software should be able to accomplish and if it allows
a clear determination of fulfillment – meaning that it is unambiguous to determine, whether a
requirement is satisfied or not.

SMART Requirements and Acceptance Checks. The least formal but still sufficient method
of Figure 4.3 to specify an interface semantically is the formulation of requirements using the
Specific, Measurable, Achievable, Relevant and Time-Bound (SMART) rule. There are sev-
eral similar interpretations of the acronym SMART in this context, but basically, this can be
interpreted in the following way based on the goal formulation rules by [Bog05]:

• Specific: A specific goal/requirement is formulated as exact and explicit as possible. It
should be unmistakable and clear what is meant in an effective way. Ideally, the formula-
tion is as short as possible. Instead of “a sufficiently short boot-up time”, the goal should
be “to ensure a boot-up time from cold start to login screen in at most ten seconds by
loading the user interface with the highest computing priority”.

• Measurable: A measurable goal guarantees the reliable determination, whether a require-
ment is satisfied or failed. The given boot-up time example demonstrates that. It is not
determined, what a “sufficiently short time” is, but ten seconds can be measured.

• Achievable: Achievable goals ensure that a requirement can be realistically fulfilled, which
is necessary to provide valid extensions to a POSF. Unachievable requirements could
potentially invalidate a POSF model completely.

• Relevant: If a goal or requirement is relevant, it is worth satisfying. This is less important
to requirements specifications rather than to project goals, but – nevertheless – they could
lead to motivation for developers to satisfy or even overfulfill a requirement.

• Time-Bound: Time-bound goals are necessary to specify the latest moment of goal mea-
surement to decide, whether the goal is fulfilled or not. In terms of requirements for a
software interface, this element of the SMART rules is less relevant. However, the above
specified boot-up time is some kind of time-binding, but not every requirement needs
performance assertions.

The key of formulating requirements using the SMART rule is to build unmistakable and valid
requirements that can be measured using an acceptance check. Definition 4.1 serves an explicit
description of what acceptance checks are.
Acceptance checks allow an at least mostly automated requirements check. The goal is to

describe the semantics of a software interface using measurable requirements that can be im-
plemented into automated test cases, which are able to determine the level of fulfillment of the
interface.
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Definition 4.1: Acceptance or Conformance Check

“Acceptance testing is about validating the software product against user requirements.
Acceptance test models are generated from the user requirement specifications. There are
two steps in acceptance testing: Alpha & Beta. They usually consist of the same set of
test cases, but they are applied at different locations and times. Alpha is performed on the
development platform before the deployment of the product; while Beta is executed on the
target platform at the user site during the deployment of the product and mostly performed
by the user.”[MK14]

Structured Text (Constrained Natural Language) Formulation of Requirements and OCL.
The method of formulating requirements using the SMART criteria and acceptance checks can be
lifted to a more formal notation. Instead of a free prose formulation of a requirement, structured
language and patterns can be used to normalise the formulations. Based on this, the Object
Constraint Language (OCL) can be used to parse these requirements formally on the model
level. The OCL is used to introduce constraints into models that are beyond the expressiveness
of the UML realisation model. While UML models – similar to feature models – only express
structural software information, semantic data can be added by means of those OCL constraints.
Thus, they can be used to introduce measurable requirements to a structural model, which is
not limited to UML models. [RG99]
Constraints based on the OCL allow to express the following elements:

• Invariants: conditions that are required to be steadily valid.

• Pre and post conditions: constraints that are valid before or after a specific behaviour.

• Initial and derived values: constraints for initial states of a software and resulting values.

• Guards: constraints that specify, whether an operation can be performed or not as they
need to be valid or true first.

These elements can express the (semantic) requirements alongside the concrete behaviour of
a software operation.
To realise an automated checking process, more detailed information about the realisation of

extensions is necessary, which – finally – leads to some kind of acceptance checks again. Thus,
conformance checks can be written based on the modelled OCL constraints to automatically
check a concrete extension against the interface specification.

Component-Based Interfaces. A methodology that is near the realisation modelling is to se-
mantically specify interfaces of POSF models similar to interfaces of Component-Based Software
Engineering (CBSE). CBSE is a programming paradigm next to – for instance – Object-Oriented
Programming (OOP). Different software components interact with each other using interfaces,
while the actual realisation of each component is black-boxed and, thus, invisible to other de-
velopers. The interfaces include the complete interaction information that is necessary for an
implementation. This comprises semantics information as well.
To formulate the interface specifications, an Interface Description Language (IDL) is used.

There are various kinds of IDLs which are related to a specific context or domain. Just to name
a few: When developing for Android, for instance, the IDL called AIDL is used, which is a
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language based on Java. In the context of web applications, the Web IDL can be used. A rather
independent solution is to use the OMG IDL proposed by the Object Management Group Inc.
or the slightly extended Microsoft Interface Definition Language (MIDL) from Microsoft.
The commonality of all of these IDLs is the formal formulation of interface requirements, often

including a strong typing support. This facilitates the conformance checking of extensions and
ensures that concrete extensions are designed as intended.

When to Use One of the Presented Semantic Specification Methods? The major difference
between the presented semantic description methods is the level of detail each of the methods
can deliver. The more detailed a description is, the closer it is to the actual realisation level.
The component-based approach utilises a programming-specific IDL. In contrast to this, the
formulation of SMART requirements is not specific to any realisation strategy.
There is no restriction to decide for only one method to formulate an interface specification.

They may be mixed depending on the required level of detail for each interface. Generally, the
highest level of specification detail is desirable, but the effort to do this specification work has
to be estimated and considered when deciding for a strategy.
As a rule of thumb, this thesis suggests to use SMART requirements whenever an interface

can be sufficiently specified using this method, because it delivers a balanced tradeoff between
specification detail and effort.

4.1.4 Introduction of a Rights Management
One of the key intentions of Partly Open Software Families is the support for multiple contrib-
utors. Hence, there has to be a controlling layer that implements a rights management using
access rules. This rights management shall specify who is able to modify the model, which part
of the model is modifiable and what is visible but immutable by a user. Limiting visibility can
be desired due to potential business secrets.
To implement such a rights management system, the following three components are necessary:

1. A user management system is required to uniquely identify different contributors.

2. To define what users shall be able to see or modify inside the model, certain rules are
necessary. They specify the actual effect as soon as a user is permitted to see or modify
an element of the model.

3. Finally, a user-feature mapping is required that assigns users to features to grant them
access.

Additionally, but separately from the list above, a controlling software is required to implement
these components by holding the user management, observing the user-feature mapping and
ensuring that the given rules are obeyed.
The realisation of such a rights management can be done in a similar way as it is known

from filesystems. Thus, managing users can be done by keeping users organised in user groups
and alongside with the access credentials inside of a data base. A user identification (log-in) is
required to access the model from each user’s perspective. Managing users in groups has the
advantage of granting rights in a group-wise way. For instance, to allow some users full access
to the model, a model maintainers group is supposed to be added, such that the group gets the
permission rights. Adding a new model maintainer just requires to add a new user to this model
maintainers group. There is no need to update the user-feature mapping afterwards.
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The user-feature mapping is an assignment of users or user groups to features. It has to be
possible to assign multiple users and user groups to a feature without any restrictions. To avoid
rights conflicts, the defined user rules have to be designed as opt-in rules, which grants access
permissions instead of denying them.
The rules state what a user or user group assignment to a feature causes. As just mentioned,

by default, the whole model is invisible and immutable to a user, except there is a user-feature
assignment and a rule that grants permission to make parts of a model visible or modifiable
(opt-in principle). Assignments can be done to features. Thus, the rules have to specify, which
part of a model, relative to this assignment feature, shall be visible or modifiable. Therefore,
the following rules are proposed:

1. The visibility rules state what part of the model is visible and modifiable to all explicitly
assigned users and to users of assigned user groups.

2. The feature, the user/user group is assigned to (assignment feature), is visible but im-
mutable as well.

3. All parent features of the assignment feature are visible but immutable, meaning the path
to the root feature is visible, including the parent-child relations.

4. Considering the assignment feature as a root feature of a sub-tree structure of the whole
feature tree, this sub-tree is entirely visible including all sub-features and parent-child
relations.

5. All cross-tree constraints are visible that contain a reference to at least one feature that
is visible according to the rules above. The modification of cross-tree constraints is only
allowed if all referenced features are modifiable to the user. An exception are implications,
such that in this case the condition (left expression of the implication) exclusively has to
comprise only features the user has modification rights to.

6. Modifying the model is solely permitted according to the sub-tree of the assignment feature.
The assignment feature itself is immutable.
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Figure 4.4 – Visualisation of the rights management rules; blue features are visible to the users of
the user group, grey features are invisible. The orange bordered feature is the assign-
ment feature. All child-features of the assignment feature are modifiable. Everything
else is immutable.
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Figure 4.4 illustrates the effect of these rights management rules. The user group is assigned to
the feature Panel Display. Hence, each user of this user group is allowed to see that Panel Display
feature as well as the path features to the root (Display and Car Infotainment). Furthermore,
the sub-tree of the assignment feature is visible (Panel Display specification, small, large and
touch). If there are any cross-tree constraints that affect one of the visible features, they are
visible, too.

4.1.5 POSF Modelling Requirements Check

Table 4.1 – Fulfillment of the POSF requirements – comparison of feature models and the new
POSF-enabled feature models

Requirement Feature	
Model

POSF-
enabled	FM

Modelling	closed	and open	variability	at	the	same	time ◎ ✔

Specification	of	extension	interfaces ✕ ✔

Compatibility	with	existing	modelling	strategies ✔ ✔

Low	change	impact ✕ ✕

Allow	decentralised	extension	development ◎ ✔

Human	readable	and	computable ✔ ✔

Allow	multiple contributors	to	modify	the	model ◎ ✔

Rights	management for	multiple	contributors ✕ ✔

2x	✔
3x	◎
3x	✕

7x	✔
0x	◎
1x	✕

To evaluate whether the above mentioned changes are sufficient to be used as a POSF mod-
elling strategy, the new model should be checked against the former stated model requirements.
Therefore, Table 4.1 serves as an overview. Additionally, the results of Table 3.3 are integrated
to allow a direct comparison of the original feature model and the new POSF-enabled feature
model.
The introduction of interfaces now fully allows modelling open next to closed variability in

one model. The MSPL approach of feature models is not sufficient here.
An extension specification alongside with the interfaces is not supported in the original feature

model. The introduction of structural and semantic interface specifications helps to satisfy this
requirement.
Allowing multiple parties to work with one model requires some controlling elements inside

the model. Especially a sufficient rights management can help to fulfill these requirements. In
consequence, the new POSF-enabled feature models allow a decentralised extension development
(using the interface specifications and user access rules) and, based on that, allow multiple
contributors to work with one model simultaneously.
What is missing yet is a low change impact. Originally, feature models cannot guarantee a low

change impact, as cross-tree constraints may lead to an unexpected impact on the whole model
even when performing minor changes only. The worst case would be an entire invalidation of
the model as a modification could cause a “deadlock” during the configuration process to derive
a concrete product of a product line. This problem has not been tackled yet by the new model
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proposal. Hence, even minor changes to a POSF model could lead to a potentially high impact
on other parts of the model. This problem is tackled in Chapter 5 including a full change impact
analysis and deriving measurements to reduce the change impact.

4.1.6 Model Overview and Example
To summarise the proposed modelling technique, this section gives an overview using an exam-
ple in Figure 4.5. This example shows the car infotainment example introduced in Chapter 3.
To demonstrate open variability, the panel display of this system shall be modelled as an ex-
changeable component. This could be useful if there are multiple panel display vendors available
and the car should support a variety of them. Therefore, the interface requires the integration
of exactly one panel display extension. The original feature model offered three panel display
options to a customer: a small panel, a large one and one with touch support. When opening up
the model by allowing external contributions, it should be ensured that each developed exten-
sion to that model supports the same richness in features as before. Thus, an extension has to
offer the choice between small, large and touch as well. In consequence, this forms the interface
specification a concrete extension has to satisfy. Additionally, the display interface should be
managed by the user display developer. To demonstrate the extensibility of the infotainment
system, the example includes a concrete extension that satisfies the specification as well.

Implication/ 
Exclusion

Group with 
Cardinality

[1..3]

Mandatory/
Optional Feature

Featurefeat

Legend

Interface and its 
Specification; 
Extension

Car Infotainment

Display

HUD Instruments 
Display

Panel 
Display

Panel 
Display

small large touch

[1..1]

Advanced  
Panel

small large

Single ScreenSplit Screen

touch

[1..1]

[1..2]

[1..3]
Controls

Panel Armrest Touch 
Input

Steering 
Wheel

Functions

Radio

FM DAB

[1..2]

Nav Phone Car Info

display developer

Figure 4.5 – Exemplary overview: POSF modelling based on the car infotainment example with
cardinalities (cf. Figure 3.4)

In addition to Figure 4.5, the following two cross-tree constraints are given. There are two
features called touch in the model. As a result of the unique name assumption of feature models,
there is no need for a differentiation. The constraint’s reference to touch refers to both features.

• Nav → PanelDisplay

• TouchInput → touch

To introduce interface semantics to each of the features given in the structural specification,
the following specific and measurable requirements description (according to SMART) is given:

Panel Display The panel display offers an Liquid-Crystal Display (LCD) flat screen on top of
the car’s middle console. The screen has to be visible directly to the driver.
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small The small screen option has a diagonally seven inches large display with an aspect ratio
of 4:3 and a resolution of 640 to 480.

large The large screen option has a diagonally ten inches large display with an aspect ratio of
16:9 and a resolution of 848 to 480.

touch The touch screen option has a diagonally ten inches large display with an aspect ratio of
16:9 and a resolution of 1696 to 960, and it allows single touch point-and-click input.

One remark according to these specifications: There is no restriction to formulate distinct
specifications. Nevertheless, the formulation of distinct specifications avoids potential confusion.
For instance, if the display resolution in these specifications would not be fixed but a minimum
resolution, each touch display would be a large display, too. This could be undesired and
potentially leads to confusion and realisation conflicts.
The proposed example extends the car infotainment example of Figure 3.4. The Panel Display

feature is modelled as an interface which requires exactly one extension (implicit cardinality
[1..1]). The structural specification is given right below and contains the choice between a
small, large and touch display.
A concrete extension is shown, too, called Advanced Panel. This panel extension obeys the

specification by integrating a small, large and touch display and extends the large panel option
by a Split Screen and Single Screen view.
To illustrate the user management system, there is a user assignment to the Panel Display

interface feature. The user is called display developer. Due to this assignment, the highlighted
part of the model is visible to the user including the given cross-tree constraints and the semantics
specification. Additionally, he is allowed to modify the interface specification as he is assigned
to the interface feature (the upper Panel Display) instead of the specification feature (the lower
Panel Display).

4.2 Development of a Prototypical Tool
To prove the feasibility of the proposed modelling concept, a prototypical tooling implementation
is required to perform an evaluation using a case study. The case study and evaluation is
subject to Chapter 6. The following part of this chapter is used to describe the conception and
implementation of the mentioned prototype.

4.2.1 Conception
The conception of a prototypical modelling tool comprises a fixation of use cases the tool shall
support to perform. Furthermore, a data structure for the model has to be drafted and the user
interface for the tooling has to be designed as a mockup draft. Afterwards, the technological
foundation to build the tooling on should be determined, before the actual implementation can
be done.

Use Case Conception. The prototypical tooling should enable a user to create a POSF model
as proposed in Section 4.1. Therefore, the tool has to be capable of handling models of the
proposed structure including interfaces and interface specifications. Furthermore, there should
be a way to model the structure of concrete extensions. To allow collaboration, the tooling
should support working in different user perspectives. Thus, the rights management should
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be implemented in a way that shows how the stated rules are applied. The decentralised and
external contribution to the model shall be realisable in a way, such that parts of the model (i. e.
the extensions) can be exported and imported into another model.

Figure 4.6 – Use cases for the prototype (UML use case diagram)

Figure 4.6 shows a use case diagram that formalises the mentioned scenarios the prototype
shall be able to perform.
A Maintainer of the model shall be able to open, modify and store a POSF model. Further-

more, he should be able to import externally supplied extensions into the existing model.
An external Contributor has to be able to open the model by obeying the correct visibility and

modifiability rules by respecting the rights management. Once the model is opened correctly,
he has the chance to edit the permitted parts of the model, which comprises creating and
editing concrete extensions. Furthermore, there has to be the opportunity to export a concrete
extension, so that it can be imported into another model by its maintainer.

Data Structure Conception. The prototype has to handle POSF models. Therefore, a meta
model is required to describe the structure of such a model.
The proposed model is based on a regular feature model and is extended by certain additional

elements. That is why the data structure for the prototype is based on the feature modelling
meta model shown in Figure 3.3 in Chapter 3. Figure 4.7 shows a rough UML class diagram
structure of the proposed meta model.
The different aspects of that model are colour-coded. The central part of the model is the

root class FeatureModel that comprises the data structure to handle. Furthermore, the Feature
class is obviously crucial for modelling feature models.
The lower-left blue section of the figure models the parent-child relations of the model to

realise the model’s tree-structure. A relation could be binary (Mandatory or Optional), a group
relation (Set) or describes an interface.

• Specification representing an interface specification and

• ExtensionSet comprising a set of concrete extensions

The upper-right violet part models cross-tree constraints as implications (Imply) and exclu-
sions (Exclude). They comprise a logical expression, whereas the logical expression is tree-
structured itself with feature references (FeatureRef) as leaf nodes.
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Figure 4.7 – Data structure abstraction for POSF feature models (UML class diagram)

Finally, the green upper-left part is used to implement the rights management and especially
models the user management by the class UserGroup and its contained User class.

User Interface Conception. The modelling tooling needs some kind of user interface. Thus, a
Graphical User Interface (GUI) is proposed to perform the modelling steps. As it is a prototype,
it is sufficient to offer only basic functionalities and representation concepts by means of this
GUI.
During the conceptual phase of the tooling, the GUI mockup shown in Figure 4.8 has been

created. This mockup basically comprises a toolbar that allows basic loading and storing capabil-
ities and a model area, separated into modelling of features and extensions, cross-tree constraints
and user management. The actions that can be performed regarding the model are shown by
means of a vertical toolbar and inside of drop-down menus. The model itself is visualised as a
tree structure using the same controls filesystem browsers use.

Implementation Conception. Finally, the implementation has to be planned. Especially tech-
nological aspects need to be defined. The use of the Java programming language and Eclipse

55



4 Creation of a Feasible Concept
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Figure 4.8 – GUI mockup for the prototype; representing the use cases of Figure 4.6

as IDE has been set at the beginning of the conception phase, because this potentially allows
an easy integration of the implementation results into other academic projects of the Software
Technology Group at the TU Dresden. This includes the use of the Eclipse Modeling Frame-
work (EMF) as well. Additionally, the EMF Client Platform (ECP) can be used to generate a
GUI based on the underpinned data structure. The support for a rights management has to be
implemented by overriding the generated Java source code.

4.2.2 Implementation
The implementation of the prototype comprises the following steps:

1. Setting up the development environment to implement the prototype according to the
conception

2. Modelling the data structure as Ecore model

3. Generating code from the Ecore model

4. Setting up the run configuration to initially implement a GUI

5. Modifying the Ecore model to realise all use cases by means of the used ECP

6. Overriding code to improve the GUI output

7. Manually implement the rights management
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The IDE setup is part of the implementation as running the prototype requires a properly
configured instance of the Eclipse IDE. Therefore, the Eclipse Modeling Framework has to be
installed as well as the EMF Client Platform to support auto-generated GUIs.
The creation of an appropriate Ecore model is crucial to create a well-functioning prototype.

Therefore, Figure 4.9 shows the graphical representation of the implemented Ecore model. In a
first step, the Ecore model has been designed exactly the way Figure 4.7 intended. Some minor
changes were necessary to perform all modelling steps properly using the given ECP GUI. For
instance, adding cross-tree constraints is allowed in the form of child-elements of interfaces to
include created constraints regarding an extension into an exportable sub-tree of the model.
This is necessary due to a lack of multiple selectable items when exporting parts of the model
from within the ECP application.
The code generation comprises the generation of the model code and the edit code. Hence,

not all code generation processes offered by EMF are necessary to run the prototype using ECP.
To execute the prototype, a proper run configuration is required that explicitly invokes the

ECP libraries and includes the needed features. Further information on how to set up the run
configuration can be found in Appendix B, which is a user guide with detailed instructions on
how to install and use the prototype.
The manually implemented code comprises appearance-related code and code that is necessary

to implement the intended rights management. The prototypical rights management implemen-
tation shows how to obey the visibility rules by crossing out all model elements that are invisible
to the currently selected user.
Figure 4.10 shows the final user interface of the prototype comprising the model in the left

part of the screen and editing space on the right to modify element properties for each node in
the left-hand tree.
Adding and removing elements can be performed via the elements’ context menu within the

model. Modifications such as user assignments, renaming and adding semantics information can
be performed within the edit pane on the right. Further information on how the prototype looks
and how to work with it can be found in Appendix B.

4.3 Summary

This chapter took up the results of the former chapters to extend feature models to support
the open approach of POSFs. Therefore, the necessary steps were determined, which have to be
performed to fulfill the in advance stated requirements for a sufficient POSF modelling strategy.
These steps were performed successively in the Sections 4.1.1 until 4.1.4 to move towards a
sufficient model.
Within these steps an interface notation and specification method has been proposed. Fur-

thermore, different ways were presented to integrate semantic information to those interfaces
as feature models only support modelling structural information. Finally, a possible rights
management approach has been presented to allow modelling access restrictions for multiple
contributors.
What is missing yet is a strategy to reduce the change impact level of this model. This is

the goal of the next chapter. Starting with a change impact analysis first, it will conclude with
possible rules guaranteeing a low change impact level.
To evaluate the new proposed model, a case study and evaluation will be performed in the

chapter after the following. Therefore, a prototypical modelling tool has been implemented
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4 Creation of a Feasible Concept
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Figure 4.9 – Graphical representation of the underlying Ecore model based on the data structure
of Figure 4.7
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4.3 Summary

Figure 4.10 – Final GUI of the prototype

within Section 4.2 of this chapter. The conceptual and realisation phases were described there.
A user guide on how to handle the tool can be found in the appendix of this thesis.
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5 Analysis of the Change Impact

The former chapter proposed a new modelling method that supports variability modelling for
Partly Open Software Families. This new model sufficies all stated requirements as proposed in
Figure 2.7 of Chapter 2 but lacks one: the low change impact.
To tackle that issue, a change impact analysis is necessary to determine, which changes can be

made to a model and with what potential impact. This is the task to fulfill within Section 5.1.
A definition for the term change impact analysis is proposed in Definition 5.1. The results shall
be used to derive rules that limit the permitted changes to reduce the change impact. This is
the task of Section 5.2.

Definition 5.1: Change Impact Analysis

“Software change impact analysis, or impact analysis for short, estimates what will be af-
fected in software and related documentation if a proposed software change is made.”[BA96]

5.1 Change Impact Analysis
The purpose of a software change management and, thus, the actual impact analysis, is to derive
answers to the following questions (based on [Chu03]):

• Who is affected by the changes?

• Where in the source code do changes need to be made?

• What else is affected by these changes?

• Why do we need to make all of these changes?

• When should all of the changes be made?

According to these questions, Figure 5.1 visualises the process of a change impact analysis in
the software field. Within a first step, the changes that shall be made have to be determined
(change set), an effect estimation based on this change set will be created (estimated impact set)
and finally, the change will be implemented and the actual impact set can be derived from it.
The change impact analysis regarding the presented POSF-supported feature modelling is

based on the first two steps of the above described analysis process. At first, the realisable
changes will be identified and the potential change impact will be analysed afterwards. This
helps to determine, which of the changes have potentially unwanted effects and where it is
advisable to limit the permitted changes by modelling rules with the intention to reduce the
change impact.
Regarding the above mentioned questions, the following questions can be derived from them

as relevant for the afterwards following analysis:
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5 Analysis of the Change Impact

Figure 5.1 – Process visualisation of the change impact analysis, cf. [Li+13, p. 4]

• Does a change potentially affect other contributors supposing that external contributors
mainly work with interfaces and extensions, while the main model (the model without
considering the interfaces) is only modifiable by model maintainers (internal contributors)?

• What actual changes shall be performed?

• What is the potential effect of a change?

5.1.1 Possible Changes

The second of the above mentioned relevant questions (What actual changes shall be performed?)
marks the first step of the analysis. All potential model changes have to be derived from the
model. The systematic procedure comprises the following steps:

1. Identification of all model elements

2. What can be done to this element to change the model?

3. Are there distinguishable areas of the model that require a separate consideration?

What are the elements of a POSF model? A model comprises features, relations and con-
straints. Changes to the user management (how users are stored) are not relevant for this
analysis. Thus, they will be left out here. Relations have to be separated in binary relations
(mandatory and optional relation), set relations (groups) and interface relations (interface spec-
ification and concrete extension sets).

What changes can be done to these model elements? Features can be added and removed
as well as changed, whereas “changed” means renaming or changing related underpinned source
code. For a model-related change impact analysis, changing code does not have an effect on the
model itself.
Relations can be changed in the following ways:

• A binary relation can be toggled from mandatory to optional and vice versa.
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5.1 Change Impact Analysis

• A group relation can be changed by modifying the assigned upper and lower bound cardi-
nality.

• A binary relation may be replaced by a group or vice versa.

• Changing interface relations is not relevant from this perspective except changes to the
extension cardinality, which could lead to the invalidation of existing variants of a feature
model. The validity of the model itself is not affected here. Other changes cannot be
performed.

Constraints can be added or removed. Changing a constraint may be interpreted as an atomic
constraint removal and addition.

What are model areas that require a separate consideration? It might be useful to analyse
the “closed” and “open” aspect of a model separately. Thus, changes to the main model are
analysed in a first step, while interface-related changes will be considers afterwards.

Figure 5.2 – Graph of potential model changes

Figure 5.2 visualises the mentioned changes as a diagram. The lighter-coloured top part of
the diagram shows the considerable areas of the model. The bottom part of the model shows
the model elements and their performable changes to analyse.

5.1.2 Identification of the Influence Scope
The next step of the analysis is to identify the potential impact of each beforehand mentioned
changes. A special focus is to identify whether other model contributors may be affected or not.
The assumption, therefore, is that there are model maintainers that access the “closed” part of
the model and extension contributors that limit their work to accessing interfaces respectively
the “open” part of the model.
Additionally, if contributors are affected by a change, the rights management allows an identi-

fication of which users are affected. This can be done by tracing the path of an affected feature
up to the root feature. According to the user-feature mapping, all users can be identified that
have modification rights to a feature. These users are potentially affected by a change. This
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5 Analysis of the Change Impact

is an important advantage of POSF modelling compared to other modelling strategies without
any user and rights management.

Changes Regarding the Main Model

The main model comprises the whole feature model except the interfaces (specifications and
extension sets).

Feature Modification – Change a Feature Renaming a feature is a local change that only
affects the feature itself. Performing this within the root model has no effect on other features
and, thus, on other contributors.

Feature Modification – Add a Feature Adding a feature potentially increases the variant
space. The step of adding a feature comprises the addition of a new relation, too. However,
none of these relations could lead to an actual reduction of the variant space as no former allowed
configuration could be invalidated. There is only one exception to that: the special case of a
mandatory relation. In this case, each former allowed configuration that contains the parent
feature of the added one has to contain the new feature, too. Otherwise, this variant would be
invalidated. Nevertheless, this has no impact on the cardinality of the variant space, further
parts of the model and other contributors.

Feature Modification – Remove a Feature Removing a feature reduces the variant space if
there were valid variants that contained the removed feature. Removing a feature removes the
relation to its parent as well and leads to the removal of the by the removed feature defined sub-
tree of the model. Hence, this change is potentially invasive. If there were implication cross-tree
constraints with the removed feature as consequence, the removal leads to an invalidation of the
model. The premise part of the implication indicates the affected area of the model. This may
affect external contributors if the sub-tree contained an interface, or the mentioned implication
contained a feature of an extension in its premise. Other constraints could have a similar effect.

Relation Modification – Toggle a Binary Relation Toggling a binary relation from mandatory
to optional has no effect on other parts of the model as the possible variant space is not reduced
by this. The feature may still be selected. On the other hand, this feature is not required
anymore, which may lead to an increased variant space. Other contributors are not affected at
all. If a relation is turned from optional to mandatory, the variant space may be reduced. In
consequence, even other contributors may be affected here in case a cross-tree constraint leads
to invalidity of an interface if the – now mandatory – feature is selected.

Relation Modification – Change the Group Cardinality Changing the upper or lower bound
cardinality of a group relation may lead to a change of variant space’s size. If the lower bound is
increased or the upper bound decreased, the variant space will potentially be reduced as a more
limited amount of sub-features has to be selected to derive a valid variant. If the lower bound
is decreased or the upper bound increased, this may lead to a larger variant space as no former
valid variant will become invalid. If both values are increased or decreased, the actual effect
cannot be estimated in advance. In each case of variant space reduction other contributors are
affected whenever an interface requires features that cannot be selected from now on. Consider
an XOR group with two features A and B. If there is a feature X that is mandatory to each
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5.1 Change Impact Analysis

variant and that implies feature A, there is no chance to get feature B as part of any valid
configuration. If this unreachable feature B is required by an interface or contains an interface,
the contributors of those interfaces are affected by invalidation in form of unreachability of their
extensions.

Relation Modification – Change a Binary Relation Into a Group Changing binary to group
relations and vice versa may change the set of selectable features of the related parent feature.
If this reduces the variant space, the case is identical to the change of the group cardinality. In
any case of variant space increase or an unchanged variant space, this change would not have
any effect on other contributors.

Constraint Modification – Add a New Constraint Constraints reduce the variant space. They
could lead to model invalidation, too. The above mentioned example of features A, B and X
with added implication X → A illustrates this. This is the case for exclusions as well. This
may affect other contributors the same way as described in the change of a group cardinality.
Additionally, constraints may exist across the main model, interface specifications and concrete
extensions. These constraints affect other contributors directly.

Constraint Modification – Remove a Constraint The removal of a constraint increases the
variant space and, thus, does not affect other contributors or other parts of the model.

Changes Regarding an Interface Specification

The following part of the analysis is limited to interface specifications. Changes of the interface
cardinality potentially lead to the invalidation of existing variants if the cardinality is more
restrictive.

Feature Modification – Change a Feature Changes to the interface specification always affect
all contributors who develop extensions for this interface. Thus, even renaming a feature in this
specification leads to the invalidation of existing concrete extensions. However, the regarding
features of the concrete extensions simply need to adapt the renaming to regain validity. Thus,
the change is minimal. Constraints that contain a feature reference to that changed feature need
to adapt the new name as well. Else, there would be an unsatisfiable constraint, which could
lead to a variant space reduction.

Feature Modification – Add a Feature Adding features to an interface specification leads to
a more specific interface description. Hence, concrete extensions are affected here, because they
need to adapt the changes to stay valid. Thus, the developers of these extensions are affected
by this change.

Feature Modification – Remove a Feature Removing a feature out of an interface specification
leads to a less detailed specification. This does not invalidate existing concrete extensions. Thus,
there is no direct negative impact on other contributors.

65



5 Analysis of the Change Impact

Relation Modification – Toggle a Binary Relation, Change the Group Cardinality, Change
a Binary Relation Into a Group Changing a relation inside of an interface specification has
to be carried over by existing concrete extensions. These changes affect the other extension
developers directly in a similar way as the same changes to the main model do.

Constraint Modification – Add a New Constraint Adding a constraint to an interface speci-
fication is similar to that for main models if these constraints refer to features across the whole
tree (i. e. outside of the interface). Additionally, the constraint has to be carried over by the ex-
isting concrete extensions to keep their validity. Hence, all contributors regarding that interface
are affected again.

Constraint Modification – Remove a Constraint Removing a constraint does not reduce the
variant space and is not required to be carried over to the existing concrete extensions. Thus,
this has no affect to other contributors of the model in general.

Changes Regarding a Concrete Extension

The following last part of the scope analysis is limited to the extension sets of interfaces. Changes
to the extension set (adding and removing extensions) are not considered here as these changes
are no real model contributions but rather relevant for configuration purposes. The extension
set is always variable.

Feature Modification – Change a Feature Renaming a feature of a concrete extension only
has an effect if the feature is part of the interface specification. If so, this change would invalidate
the extension. Else, the change has no effect.

Feature Modification – Add a Feature Adding a feature is explicitly allowed and has no effect
on other contributors or on the model.

Feature Modification – Remove a Feature Removing a feature is as invasive as the removal
of features of the main model. The consequences are equal. Other contributors are potentially
affected if there is an implication constraint that becomes unsatisfiable by that removal. As
there is no restriction to nested interfaces, other contributors regarding interfaces inside of the
extension are affected here. One special case: If the removed feature is part of the interface
specification, the extension becomes invalid immediately.

Relation Modification – Toggle a Binary Relation, Change the Group Cardinality, Change
a Binary Relation Into a Group Changing relations leads to invalidity if the relation is part
of the interface specification. In every other case, the effects are the same as relation changes
inside of the main model. Thus, if the variant space is reduced, other contributors may be
affected (through cross-tree constraints or nested interfaces). Else, there is no effect on other
contributors of the model.

Constraint Modification – Add a New Constraint Adding constraints with feature references
that only affect features of the extension does not have any effect on other contributors or
the model as a whole. But they may reduce the variant space added by the extension itself.
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5.1 Change Impact Analysis

If a constraint is added that encompasses feature references across the whole feature model
(including the main model), the whole model and all contributors are potentially affected.

Constraint Modification – Remove a Constraint The removal of a constraint cannot reduce
the variant space and, thus, should have no effect on other contributors.

5.1.3 Potential Overlap with Other Contributors

All changes to a feature model do have an impact on the model. In most cases, these changes
lead to an increase or a reduction of the variant space, which is the set of all valid variants of the
feature model. An increase is no problem in most cases. A reduction is potentially “dangerous”,
because this could lead to an invalidation of parts of the model or even the entire model. In
consequence, desired variants cannot be validly derived.
However, those changes are immanent for feature models and it is possible to check the model

for undesired effects. A concrete problem arises whenever other model contributors are affected
by changes. For the presented POSF models this is the case whenever the variant space is
potentially reduced by a change, and the reduction comprises interfaces or a subset of the by
means of an extension derived variant space.
According to the analysis of Section 5.1.2, the following changes have to be considered as

potentially affecting other contributors:

• Changes regarding the main model

– Feature Modification – Remove a Feature

– Relation Modification – Toggle a Binary Relation

– Relation Modification – Change the Group Cardinality

– Relation Modification – Change a Binary Relation Into a Group

– Constraint Modification – Add a New Constraint

• Changes regarding interface specifications

– Feature Modification – Change a Feature

– Feature Modification – Add a Feature

– Relation Modification – Toggle a Binary Relation, Change the Group Cardinality,
Change a Binary Relation Into a Group

– Constraint Modification – Add a New Constraint

• Changes regarding concrete extensions

– Feature Modification – Remove a Feature

– Relation Modification – Toggle a Binary Relation, Change the Group Cardinality,
Change a Binary Relation Into a Group

– Constraint Modification – Add a New Constraint
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5 Analysis of the Change Impact

5.2 Minimisation of Unwanted Impact

Section 5.1.3 shows that nearly every possible model change could potentially affect other model
contributors. The introduction of a modelling rule similar to the following is infeasible, although
this rule seems natural.

Every change is permitted as long as no other model contributor is affected by a
variant space reduction.

Especially changes to the main model would be denied in many cases, for instance if a feature
is intended to be removed by a maintainer. That is why unwanted impact cannot be ruled out
entirely by means of the introduction of a modelling rule. However, a rule seems to be more
feasible when focussing on the risky changes that do not allow a reliable impact estimation.
That is of vital concernment.
This is the case whenever external extensions influence the variant space implied by the main

model. This is caused by cross-tree constraints that are introduced by concrete interfaces and
that encompass feature references over the whole model. To avoid those critical changes, the
following rule should be introduced:

Concrete extensions are not allowed to introduce cross-tree constraints that contain
feature references to features outside of the extension. If there is a constraint be-
tween features of extensions and features of the main model necessary, this has to be
introduced by the interface specification.

The introduction of this modelling rule helps to avoid changes that are entirely unpredictable.
It requires cross-tree constraints to remain inside of the main model and the interface specifica-
tions or remain inside of one concrete extension.
On the other hand, this rule may be too restrictive as constraints between an extension and

the main model are required in. Thüm et al. [TBK09] presented a way to classify feature model
changes in one of the following categories:

• Refactoring (no variant is added nor removed from the variant space)

• Generalisation (variants are added but not removed from the variant space)

• Specialisation (no variants are added but removed from the variant space)

• Arbitrary edit (variants are added and removed from the variant space)

Changes that belong to the first two categories can be performed without affecting any con-
tributor or invalidating variants. Changes that belong to one of the other two categories lead to
an invasive change to the variant space. In consequence, contributors may be affected. In case
such a change has to be performed, the affected contributors should be notified in advance. To
do this, the model’s rights management supports the identification of the affected users. This
method is proposed as a more liberal alternative to avoiding cross-tree constraints that refer to
extensions and the main model as stated above.
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5.3 Summary

5.3 Summary
This chapter performed a systematic change impact analysis by identifying the possible changes
that have to be considered, determined the impact scope of each change and especially deter-
mined whether a change may affect other model contributors and which of them. Finally, the
potentially critical changes were named and a modelling rule is introduced that leads to an iso-
lation of cross-tree constraints to an uncritical model area. As an alternative tradeoff, findings
from Thüm et al. were used to identify uncritical model changes that can be performed. In any
critical case, the affected contributors have to be identified and notified in advance of the actual
change.
The next chapter will take up the proposed POSF model and especially the developed proto-

type and will perform an evaluation using a case study based on a car infotainment system that
is built on the 2015 BMW 7 series as an example.
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6 Evaluation and Case Study
This chapter evaluates the POSF modelling concept using a case study based on the structure
of a car infotainment system. To do this, the actual case study is developed in a first phase. The
second phase comprises the accomplishment of all six use cases as stated in Figure 4.6. Each of
the performed use cases is discussed afterwards based on the defined modelling requirements.

6.1 Conception
Before an evaluation can be performed, a case study has to be built. Therefore, a data basis is
required to construct a potential software family as a POSF. One motivation to introduce the
POSF concept is the idea of a customisable car software system. Thus, a car (and especially
its software related parts) can be configured as usual when buying a new car at the vendor’s
side which follows the product line approach. But additionally, the customer should have the
opportunity to add, exchange and remove certain functionalities of the software-related parts
afterwards on the customer’s side. For instance, a list of online radio stations could be extended
this way or navigation maps could be exchanged, updated or extended. The installation of
additional software to support proprietary smartphone protocols could be possible, too. These
functionalities are developed by external developers similar to apps for smartphones. This open
approach is known from ecosystems. Finally, such a car should be developed as a mixture of
a product line and an ecosystem, leading to a customisable platform with interfaces to plug
extensions in.
The car infotainment system has been used as a running example in former chapters. The

case study shall be built on that idea but comprise a realistic set of features and interfaces.
Thus, the configurable part of a real car’s infotainment is used as a foundation. Furthermore,
some features need to be added that are necessary for an infotainment system, but which are
not visible to customers during the configuration process. Finally, to introduce openness, some
points of the model are chosen to introduce interfaces, which support the required openness.
Appendix C shows the composition process of features and functionalities to a tree-structured
model with indication of the source each of the included features is taken from.
For the basis of a real car, the 2015 BMW 7 series is chosen as it comprises a variety of different

infotainment system-related functionalities and features. [BMW15a; BMW15b; BMW14]
The created model comprises twelve top-level features as children of the root feature. These

are shown in Figure 6.1. These features can be seen as categories of the features, which are
modelled as shown in the Figures 6.2 until 6.13. The following numbers can be derived from
this model:

• There is 1 root feature (BMW 730d Car Infotainment).

• There are 12 top-level features.

• There are 90 features and 9 interfaces in total.
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Figure 6.1 – Case study structure – top-level structure

• Communication (Figure 6.2) describes
multiple mobile (online) services and con-
tains

– 9 features
– 1 interface (support for additional

web browsers)

• Entertainment (Figure 6.3) describes
multimedia features such as radio and tv
as well as apps such as a Facebook and
Twitter app. The feature contains

– 12 features
– 2 interfaces (allow adding online ra-

dio stations and online apps)

• Connections (Figure 6.4) describes com-
munication protocols such as WiFi and
Bluetooth and contains

– 10 features
– 1 interface (support for new commu-

nication protocols)

• Dash Power Supply (Figure 6.5) describes
electric power settings and contains

– 2 features

• Navigation (Figure 6.6) describes all com-
ponents of the navigation system and
contains

– 11 features
– 2 interfaces (support to add exter-

nal maps and online real-time traffic
services)

• Controls (Figure 6.7) describes the differ-
ent controlling elements to interact with
the infotainment system. This feature
contains

– 5 features
– 1 interface (allow adding additional

controlling gestures)

• Parking (Figure 6.8) contains the park-
ing assistant functionalities and, there-
fore, contains

– 5 features

• Comfort (Figure 6.9) describes in-car cli-
mate comfort features and contains

– 5 features

• Driving (Figure 6.10) describes features
related to the driving comfort and, there-
fore, contains

– 4 features

• Phone (Figure 6.11) describes the phone
integration features and contains

– 6 features
– 2 interfaces (support for specific

bluetooth and Universal Serial Bus
(USB)-connected phones)

• Display (Figure 6.12) describes the GUI
related features and contains

– 5 features
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6.1 Conception

• Audio (Figure 6.13) contains the available speaker systems and comprises three options as

– 3 features

Table 6.1 – Case study – cross-tree constraints
Type Constraint

Implication

𝑇𝑉𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 → 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡
𝑂𝑛𝑙𝑖𝑛𝑒𝐸𝑛𝑡𝑒𝑟𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 → 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡
𝑂𝑛𝑙𝑖𝑛𝑒𝑅𝑎𝑑𝑖𝑜 → 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡
𝑂𝑛𝑙𝑖𝑛𝑒𝑇𝑟𝑎𝑓𝑓𝑖𝑐𝑆𝑒𝑟𝑣𝑖𝑐𝑒 → 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡
𝑃ℎ𝑜𝑛𝑒 → 𝐵𝑙𝑢𝑒𝑡𝑜𝑜𝑡ℎ∧ 𝑈𝑆𝐵
𝑊𝑖𝐹𝑖𝐻𝑜𝑡𝑠𝑝𝑜𝑡 → 𝑊𝑖𝐹𝑖 ∧ 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡
𝑅𝑒𝑚𝑜𝑡𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠 → 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡
𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡 → 𝐷𝑖𝑠𝑝𝑙𝑎𝑦
𝐿𝑎𝑟𝑔𝑒𝐷𝑖𝑠𝑝𝑙𝑎𝑦𝑊𝑖𝑡ℎ𝑇𝑜𝑢𝑐ℎ → 𝐵𝑀𝑊𝑇𝑜𝑢𝑐ℎ𝐶𝑜𝑚𝑚𝑎𝑛𝑑
𝐵𝑀𝑊𝑇𝑜𝑢𝑐ℎ𝐶𝑜𝑚𝑚𝑎𝑛𝑑→ 𝐿𝑎𝑟𝑔𝑒𝐷𝑖𝑠𝑝𝑙𝑎𝑦𝑊𝑖𝑡ℎ𝑇𝑜𝑢𝑐ℎ
𝑃𝑙𝑎𝑛𝑒𝑙𝐷𝑖𝑠𝑝𝑙𝑎𝑦 → 100𝑊
𝐵𝑜𝑤𝑒𝑟&𝑊𝑖𝑙𝑘𝑖𝑛𝑠𝐷𝑖𝑎𝑚𝑜𝑛𝑑𝑆𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑆𝑜𝑢𝑛𝑑𝑆𝑦𝑠𝑡𝑒𝑚 → 100𝑊
𝐻𝑎𝑟𝑚𝑎𝑛𝐾𝑎𝑟𝑑𝑜𝑛𝑆𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑆𝑜𝑢𝑛𝑑𝑆𝑦𝑠𝑡𝑒𝑚 → 100𝑊
𝐴𝑐𝑡𝑖𝑣𝑒𝐵𝑎𝑐𝑘𝑆𝑒𝑎𝑡𝑉𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛 → 𝐴𝑐𝑡𝑖𝑣𝑒𝐹𝑟𝑜𝑛𝑡𝑆𝑒𝑎𝑡𝑉𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛

Exclusion 𝑅𝑒𝑎𝑟𝑉𝑖𝑒𝑤𝐶𝑎𝑚𝑒𝑟𝑎 ↔ 𝑆𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑉𝑖𝑒𝑤𝐶𝑎𝑚𝑒𝑟𝑎
𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝐴𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑡 ↔𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝐴𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑡𝑃𝑙𝑢𝑠

In addition to the tree-structure of the integrated features, 16 cross-tree constraints are given
(cf. Table 6.1). For instance, if the WiFi Hotspot feature is selected, the features WiFi and
Internet have to be selected too. Furthermore, there could either be the Driving Assistant or
the Driving Assistant Plus selected but not both. Selection in this context means that a feature
will be part of a concrete variant. Analogously, if a feature is not selected, it is not part of the
variant.

Table 6.2 – Case study – users and user groups
Admins

Feature(s):
BMW	
  730d	
  Car	
  
Infotainment

Navigation	
   Group App	
  Developer	
  Group

Feature(s):
Online	
  App,
Browser,
Gestures

Radio	
  Station	
  Group

Feature(s):
Station

Peripherals	
  Group

Feature(s):
Peripherals	
  Protocol,
Bluetooth	
  Phone,
USB Phone

Administrator Map	
  Contributor

Feature(s):
Additional	
  Map

One	
  External	
  App	
  
Developer

Station	
  Distributor Some	
  Peripherals	
  
Supplier

Online	
  Traffic	
  Service	
  
Contributor

Feature(s):
Online	
  Traffic	
  Service

Second	
  External	
  App	
  
Developer

Phone	
  Manufacturer

To evaluate the rights management, some users and user groups are integrated into the model.
Table 6.2 gives an overview of them. This case study comprises five user groups.
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Admins Each user of this group shall be able to see the entire model. Thus, there is a feature
assignment of the root feature to this group.

Navigation Group This group comprises all users that contribute to the navigation system. The
user Map Contributor may see the Additional Map interface to add extensions. The user
Online Traffic Service Contributor is permitted to see the Online Traffic Service interface
to develop a new service extension here.

App Developer Group This group is a set of all contributors that shall be allowed to extend
the functionality of online apps. Therefore, all users of this group are permitted to see the
Online App, Browser and Gestures interfaces to develop extensions there.

Radio Station Group Online radio stations can be included as extensions to the car infotain-
ment system. The Radio Station Group represents the set of station contributors. They
all are permitted to see the Station interface to distribute extensions to that.

Peripherals Group Hardware manufacturers (especially smartphone manufacturers) may pro-
duce peripherals that can interact with the car. To implement device-specific features,
these manufacturers are allowed to access the model as a user of the Peripherals Group.
Thus, those contributors are permitted to access the Peripherals Protocol, Bluetooth Phone
and USB Phone interfaces.

Based on this case study construction, the case study can be performed by doing the actual
modelling using the prototypically developed tool and by exemplarily modelling an extension to
that car infotainment system.

6.2 Perform the Case Study by Means of the Developed Tool

Conducting of the above presented case study comprises the realisation of the model using the
prototypical tool including the feature structure, cross-tree constraints, user groups and users.
Additionally, an extension shall be modelled exemplarily.
All of these steps are structured using the prior defined use cases of the prototype (cf. Fig-

ure 4.6). After this conduct, Section 6.3 checks whether the stated POSF requirements are
satisfied or not. The case study performance comprises the following tasks:

1. Model the case study construction.

a) The creation of a new model project within the prototype.

b) The feature structure realisation given in Figure 6.2 until Figure 6.13.

c) The modelling of cross-tree constraints based on Table 6.1.

2. The interface modelling based on the structure given in Figure 6.2 until Figure 6.13.

3. The creation of user groups, users and feature assignments based on Table 6.2.

4. The modelling process of a concrete extension using one of the modelled interfaces.
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∞

Figure 6.2 – Case study – derived feature model part: Communication

∞

∞

Figure 6.3 – Case study – derived feature model part: Entertainment
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∞

Figure 6.4 – Case study – derived feature model part: Connections

Figure 6.5 – Case study – derived feature model part: Dash Power Supply

∞

[1..3]

Figure 6.6 – Case study – derived feature model part: Navigation
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∞

Figure 6.7 – Case study – derived feature model part: Controls

Figure 6.8 – Case study – derived feature model part: Parking

Figure 6.9 – Case study – derived feature model part: Comfort

Figure 6.10 – Case study – derived feature model part: Driving
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∞ ∞

Figure 6.11 – Case study – derived feature model part: Phone

Figure 6.12 – Case study – derived feature model part: Display

Figure 6.13 – Case study – derived feature model part: Audio
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6.2 Perform the Case Study by Means of the Developed Tool

6.2.1 Model the Case Study Construction (Open, Store and Edit Model)
The first step of performing the case study comprises the creation of a new modelling project,
modelling the feature structure as well as cross-tree constraints. To perform these steps using
the prototypical tooling, the first part of Appendix B have to be followed.
The creation of a new modelling project within the prototype comprises the creation of a

project root element of type Feature Model. The child-elements of this project root are the actual
feature model’s root element called BMW 730d Car Infotainment, the cross-tree constraints
based on Table 6.1 as well as the user groups as described below in Section 6.2.3.
Modelling the feature structure is based on the models shown in Figure 6.2 to Figure 6.13,

except modelling the interfaces. The interface modelling is done in the following Section 6.2.2.

6.2.2 Model the Interfaces (Edit Model)
Modelling the interfaces comprises the inclusion of all interface specifications given in Figure 6.2
until 6.13. This includes the following nine interfaces and their structural specifics:

• Browser (which has to support a panel and rear display for the console and fond (rear
seat) entertainment system)

• Station (to support online radio stations with a low and high speed connection audio
stream)

• Online App (which supports multiple displays inside the car and supports an online and
offline mode depending on the online service availability)

• Peripherals Protocol (to support proprietary hardware communication protocols)

• Additional Map (for the navigation system)

• Online Traffic Service (to get traffic information inside the navigation system)

• Gestures (to support additional gestures for the BMW Gesture Control)

• Bluetooth Phone and

• USB Phone (to support specific phone hardware at least for calling and with contact
management capabilities)

This modelling process leads to adding an Interface Specification relation as child element to
the parent interface feature. The cardinality has to be set to [0..*] for each of the interfaces;
except the interface Online Traffic Service has to be set to [1..1] as there is one extension
required if the Real-Time Traffic Information feature is selected inside a concrete variant of the
infotainment system.
Additionally to the structural specification of these interfaces, semantics information can be

added, too. As there is no one-fits-all solution for the semantics description, a feasible procedure
for describing semantics has do be determined in a real world software project. Within this case
study, a brief SMART-oriented semantics description shall be proposed for the online radio
station:

Station The station extension comprises one entry for the list of online radio stations. This
station has to display a station name and a station logo inside of that list. Additional
programme-related textual information is allowed but not required to be displayed, too.
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Low Speed The low speed option contains a weblink to the radio station audio steam. This
audio stream has to be available in MP3 format and with a bitrate of 64 kbps.

High Speed The high speed option contains a weblink to the radio station audio steam. This
audio stream has to be available in MP3 format and with a bitrate of 128 kbps.

6.2.3 Create Users and Assign Features (Edit Model and Open Model as User)
Users are organised inside of user groups. Therefore, the user groups are modelled as child nodes
of the project root element. Based on Table 6.2, the following groups are created: Admins,
Navigation Group, App Developer Group, Radio Station Group, Peripherals Group. According
to the mentioned table, users are created inside these groups.
Each user, except the Administrator (who shall be able to access the whole model ), shall

exclusively be able to develop concrete extensions for each interface. Therefore, each user or
user group gets the appropriate feature assignment for its specific purpose. Hence, the Map
Contributor gets access permissions to the Additional Map interface to add a new map extension
to the navigation system.
In this case study, a concrete extension is created using the Station interface. This should be

done from the Station Distributor’s perspective. That user is part of the Radio Station Group,
which has access to the Station interface only.

6.2.4 Model a Concrete Extension (Edit Model, Store and Import Extension)
To evaluate the extension modelling as a crucial part of POSFs, an exemplary concrete extension
is created. Therefore, the extension adds an online radio station to the system. The interface
specifies that a station has to comprise two audio streams in different audio qualities (for low
speed connections and high speed connections).
To model this extension, the modelling user has to have access to the Station interface. In this

case study, the user Station Distributor shall provide that extension. As this user is member of
the Radio Station Group, he has the required permission. He is permitted to see the interface,
its specification, the path to the model’s root feature and he has the permission to model a
concrete extension to the Station interface. To switch the prototype perspective to the desired
user’s perspective, the user has to be assigned to the project root element. After closing and
reopening the modelling project, the perspective switches to the Station Distributor’s view.
Figure 6.14 demonstrates the visible part of the model (except the interface specification) and

shows an exemplary concrete extension called ExampleFM (blue highlighted features), which
comprises – as required by means of the interface – a mandatory Low Speed option and an
optional High Speed option. The constraint

OnlineRadio → Internet

is visible too because of the visible feature Online Radio.
To model the extension using the prototype, an Extension Set element has to be created as

an interface child and next to the Interface Specification element. This extension set includes
the concrete extension with its extension root feature ExampleFM and the structure of the blue
highlighted part of Figure 6.14. Figure 6.15 shows the concrete extension inside the navigation
view of the modelling tool. This extension may be exported to an *.xmi file using the partly
model export function at the extension’s root feature as shown in Section B.4 and imported into
another model’s Station extension set using the import functionality as described in Section B.6.
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Figure 6.14 – Case study – concrete extension to the Station interface

6.3 Results and Discussion
The result of Section 6.2 is the model realisation of the car infotainment system as constructed
in Section 6.1 using the prototype developed in the second part of Chapter 4. Additionally, a
concrete extension has been integrated as a specific user in Section 6.2.4.
The evaluation of this case study comprises a requirements check to determine, whether the

POSF requirements as stated in Section 2.2.1 are satisfied or not.

Modelling closed and open variability at the same time. The “closed” variability modelling
describes the modelling process similar to SPLs, which comprises the definition of a fixed set
of features and structuring them inside of a feature model. In this case study, Section 6.2.1
describes that part.
Modelling “open” variability describes the modelling process of interfaces and their specifi-

cation that supports further model extension afterwards (referred to as open modelling). Sec-
tion 6.2.2 describes the interface modelling phase of this case study.
As both of these processes are performed inside one single model based on the principles of

Chapter 4, this proofs that it is possible to model closed and open variability at the same time.
Hence, this requirement is satisfied.

Specification of extension interfaces. In conjunction with the open variability modelling of
the above mentioned requirement, the specification of interfaces is already shown as part of this
process. Hence, the specification of extension interfaces is possible (cf. Section 6.2.2) and this
requirement is considered as fulfilled.

Allow decentralised extension development. It shall be possible to develop extensions exter-
nally, thus, in a decentralised way. This requirement contains two elements: The capability to
model an extension and the portability of this modelling part to perform this externally and
integrate the results into another model afterwards.

81



6 Evaluation and Case Study

Figure 6.15 – Modelling a concrete online radio station extension using the prototype

Section 6.2.4 demonstrates both aspects using the developed prototype. Therefore, a con-
crete extension (an online radio station) is modelled, exported and re-imported into the model.
The modelling process includes adding a concrete Extension Set element next to the Interface
Specification, which allows the addition of concrete features or extensions to the model. The
modelled extension can be exported, the project closed, re-opened and finally, the extension
can be re-imported to the concrete set of extensions. Hence, the modelling procedure can be
performed externally and following a decentralised approach. This requirement is fulfilled.

Allow multiple contributors to modify the model. The multi-user support of the model re-
quires the introduction of multiple users. This is done in Section 6.2.3 of this case study. Access-
ing the model as a specific user is performed during the extension modelling of Section 6.2.4 as
the user Station Distributor contributes to the model. Because this can be performed externally,
the contribution to one model by multiple users is shown.
One aspect that is not shown during the case study performance is the parallel modification

of the model as the prototype does not support simultaneous access yet. However, this is not
explicitly demanded by the requirement but could lead to synchronisation problems – similar to
the problem of simultaneous access to text documents or spreadsheets using an online service
such as Google Docs or Microsoft Office Online.
Nevertheless, the model modification through multiple contributors is supported by the model

as shown above, which leads to the satisfaction of that requirement.

Rights management for multiple contributors. The requirement for a rights management has
the intention to integrate a controlling unit to permit or deny access to certain elements or parts
of the model. This access includes the the permission to see or to modify a part of the model.
The POSF modelling as described in Chapter 4 implements this rights management by intro-

ducing users (and user groups) that can be assigned to features. This feature assignment leads
to certain visibility and modification rules as described in Section 4.1.4. The prototype realises
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these rules by crossing out immutable features.
Section 6.2.4 of this case study demonstrates the use of the rights management by modelling

the concrete extension with limited access rights. Only the necessary interface and interface
specification is visible, as well as the affected cross-tree constraints. None of the rights manage-
ment rules of Section 4.1.4 are violated by adding the concrete online radio station extension of
this case study. Any other model modification (changing the interface specification, deleting or
removing features) would violate the defined rules.
In consequence, the requirement to have a rights management implementation to support

multiple contributors is fulfilled.

Compatibility with existing modelling strategies. The proposed POSF model is based on the
concept of feature models. Removing the interface specifications leads to a model with a closed
set of variability. Actually, this is a standard feature model. Even including concrete extensions
can be considered as the addition of concrete features or closed variability. Hence, this modelling
strategy is compatible with the existing feature modelling strategy. What is not supported is the
open variability using interfaces and interface specifications. An extension set can be interpreted
as a mandatory binary relation.

Low change impact. The change impact of the model in this case study can be analysed using
the results of Chapter 5. The key intention of a low change impact level is to avoid modification
interference between the different model contributors.
One suggestion of Section 5.2 is to avoid unnecessary cross-tree constraints between the main

model and interface specifications. According to the online radio stations, this suggestion is
obeyed. To use online radio, an internet connection is required. Instead of setting an implication
from each radio station (which is an extension based on the station interface specification), the
parent Online Radio feature implies the selection of the Internet feature. Hence, this constraint
is limited to the main model.
One further advantage of the rights management is the opportunity to identify affected users

for each potential model edit. The Station Distributor user is only able to create new radio
station extensions without any cross-tree constraints. Thus, changes made by this user should
have no effect on any other model contributor. On the other hand, every direct change according
to the Station interface, its specification, the Online Radio feature, Radio, Entertainment and
the root feature including all relations between the mentioned model elements would affect the
Station Distributor.
Finally, the modelled case study offers a relatively low change impact by obeying the sugges-

tions of Chapter 5. Even more importantly, the affected users can be identified as the potential
impact of a change can be traced. Hence, the requirement for a low change impact can be
considered as satisfied.

Human readable and computable. The human readability is given by the graphical notation
of Section 6.1 and the visual appearance of the model using the prototype.
The computability is given by the implemented data structure as given in Section 4.2.2 (cf.

Figure 4.9).
After performing this case study, it can be stated that all defined requirements are satisfied.

This leads to the answer to the research question of this thesis. The question asks for a feasible
variability modelling method for POSFs. As this case study shows, the proposed modification
to feature models describes such a feasible variability modelling method.
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6.4 Summary
The Chapters 4 and 5 proposed a modelling concept to support modelling Partly Open Software
Families. To discuss the feasibility of this new concept, a case study has been used to check
which of the former stated POSF modelling requirements are fulfilled.
To perform this evaluation, a concrete case study has been constructed in Section 6.1. The

foundation of this case study was a car infotainment system based on the 2015 BMW 7 series.
The modelling process has been done using the former developed prototypical modelling tool.
This case study’s performance (cf. Section 6.2) realised the modelling of the feature structure,

the introduction of interfaces including their specifications and the addition of cross-tree con-
straints. Multiple users organised in user groups were added, too, including the desired feature
assignment to permit certain modification rights. Finally, a concrete extension based on one of
the given interface specifications has been modelled. All modelling steps were based on the use
cases the prototype was implemented for.
The evaluation in Section 6.3 checked the case study performance against the POSF require-

ments to show the actual feasibility of the proposed modelling concept.
The following last chapter will summarise this thesis and evaluate the presented work and its

results based on the thesis’ goals stated at the beginning. Furthermore, an outlook for further
research work will be given to wrap up this thesis.
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The former chapters contained the main part of this thesis. The first part introduced the
idea of Partly Open Software Families (POSFs) as a software family concept between Software
Product Lines and Software Ecosystems (Chapters 1 and 2). As a modelling concept shall be
developed, a detailed analysis was done afterwards that derived specific modelling requirements
for those POSFs and analysed existing modelling strategies regarding these requirements to
determine a feasible foundation to develop an appropriate modelling concept (Section 2.2.1 and
Chapter 3). The modelling concept has been presented afterwards including the development
of a prototypical modelling tooling and a change impact analysis (Chapters 4 and 5). The
contribution ends with a feasibility check by means of a case study and its discussion according
to the prior stated modelling requirements (Chapter 6).
This last chapter summarises the work and derives conclusions out of it based on the goals

of this thesis (cf. Section 1.2). This conclusion is followed by an outlook with possible tasks
for further research that has to be done to integrate the presented variability modelling concept
into a viable variability management concept for POSFs.

7.1 Conclusion
Section 1.2 at the beginning of this thesis formulated a red thread for this thesis by giving a
concrete research question and deriving goals from this question. Thus, the conclusion of this
thesis evaluates the work done according to the accomplishment of the stated goals.
The research question is the following:

What variability modelling concept can be used to allow variability management of
Partly Open Software Families as a concept placed between Software Product Lines
and Software Ecosystems?

This thesis offered a modified feature model as a new POSF modelling concept to answer this
question. To get to this answer, the following major tasks were accomplished.

7.1.1 Comparison of SPLs and SECOs
The comparison of the two existing software family concepts has been done within the first part
of Chapter 2. The concepts of Software Product Lines (SPLs) and Software Ecosystems (SECOs)
were presented within Section 2.1.2 and 2.1.3.
An important aspect of these concepts is the supplier network with the contributing parties

in the context of the customers and their concrete products. It is conspicuous that – in both
cases – the resulting product is customised, but the customisation process is done at different
times. In case of SPLs, the customisation is done on the vendor’s side based on a closed set of
variability. In case of SECOs, the customisation is done on the customer’s side after getting the
software platform from a platform vendor.
The actual comparison of both concepts, SPL and SECO, has been performed in Section 2.1.4.
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7.1.2 Definition of the Concept between SPL and SECO
Based on the commonalities and differences of SPLs and SECOs a third type of software family
was introduced in the second part of Chapter 2. A clear definition is proposed, which has been
derived from the the results of the former SPL and SECO comparison.
The new concept was illustrated as a merged supplier network combining the SPL approach

of a customised product from a software vendor and the SECO approach that allows further
customisation on the customer’s side based on an open set of variability.
Additionally, concrete modelling challenges were identified and, thus, POSF modelling re-

quirements were fixed for the further work. Section 2.2.2 argued, why such a POSF concept
offers chances and opportunities for customers and developers on both sides.

7.1.3 Analysis of Existing Variability Modelling Methodologies
Chapter 3 accomplished the third goal of an analysis of existing modelling strategies regarding
the feasibility to serve as a foundation for a new POSF modelling concept.
Therefore,

• Feature models,

• Decision models,

• Orthogonal Variability Models (OVMs) and the

• Common Variability Language (CVL)

were presented, characterised, compared and evaluated according to the former stated POSF
modelling requirements. The result of this chapter and this goal was a design suggestion to chose
feature modelling to serve as a foundation to build an appropriate POSF modelling strategy.

7.1.4 Creation of a Feasible Variability Modelling Concept
A major goal of the thesis is the proposal of a new modelling strategy for POSFs. This goal has
been accomplished within Chapter 4. Based on the requirements stated in Section 2.2.1 and the
analysis result of Chapter 3, the challenges were derived that have to be tackled to get to an
appropriate modelling strategy based on feature models (cf. Section 4.1). The following steps
were accomplished afterwards:

• An interface notation element has been introduced to feature models to allow the sup-
port for open variability. Alongside with this notation element, the structural interface
specification has been introduced, too.

• To support a graphical representation of interfaces with their specification and a distin-
guishable notation of concrete extensions that obey the regarding specification, graphical
notation elements were introduced.

• Next to structural interface specifications, semantic information needs to be modelled as
well. To support this, multiple levels of specification detail were discussed. Suggestions
were given describing when to decide for which semantic representation and how to check
whether an extension respects that specification or not.
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• To allow multiple contributors to work with one POSF model, a rights management has
been proposed with access rules for feature visibility and modification rights. The rights
management is implemented by assigning users or groups of users to features. The model
structure derives the visibility and modification rules based on stated rules for that.

To proof the feasibility of the proposed modelling strategy, a prototypical implementation of
a modelling tool was given in Section 4.2 as well as a case study with a detailed discussion in
accordance to the modelling requirements in Chapter 6.
The tool has been developed using EMF and the EMF Client Platform (ECP) based on an

Ecore model that comprised the model elements as proposed in Section 4.1. The case study is
based on multiple sources but uses a 2015 BMW 7 series as a foundation, because of its broad
variety of different infotainment features and opportunities to integrate open variability.

7.1.5 Change Impact Analysis
One of the POSF requirements is a low change impact. This can be reduced to the question of
what can be done to minimise the change impact. The intention is to avoid or at least reduce
the modelling interference between multiple contributors. Furthermore, no external contributor
should be able to invalidate a whole POSF model by developing an extension.
Therefore, Chapter 5 defined a procedure to systematically analyse the change impact. In

a first step (cf. Section 5.1.1), all possible changes were identified and an analysis structure
was derived from that. In a second step (cf. Section 5.1.2), the potential impact of each of
the identified changes has been analysed. The third and last step of the analysis filtered the
potential contributor interference (cf. Section 5.1.3).
Based on this analysis, the conclusion is that nearly every model modification can potentially

lead to interference with other contributors. Thus, regulations are needed to reduce this effect.
One major advantage of using a modelling strategy that supports a rights management and
implements a user and user group management is the possibility to identify the users that
are affected by a change. Hence, the potential impact of changes can be traced to seek for
features with assigned users to identify a set of users that may be affected by a model change.
Additionally, cross-tree constraints should be avoided between the main feature model and
concrete extensions, because they contain the risk to invalidate an entire model as a worst case
scenario.

7.2 Outlook
This thesis introduced a new concept of software families as a promising approach to create
software that is highly customisable on a vendor’s side (as known from SPLs) but afterwards on
the customer’s side as well (as known from SECOs). The concept combines the advantages of
closed and open variability modelling by offering a tradeoff between community-driven openness
and variability control by the main developing party. Ideally, the result is a highly customisable
product that fits the customer’s needs as good as possible while increasing the ROI for the
software vendor as a result of a high customer satisfaction ratio.
Based on this software family concept, this thesis proposed a way to model software variability

by multiple contributors while supporting closed and open variability at the same time and inside
of one single model.
Variability modelling is part of the variability management that has to be done alongside

the development lifecycle. Further work has to be done here to elaborate a full variability
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management concept for POSFs. Especially the variability realisation aspect has to be discussed
here. The proposed model already introduced the conceptual basis for that.
During the work for this thesis, the concept of MSPLs seems to be related to the POSF

concept. This relation should be discussed in further research as part of the mentioned full
variability management strategy. The basic intentions of both concepts are different: MSPLs
introduce a compositional approach for product lines, whereas POSFs introduce open variability
modelling. However, both concepts overlap on a conceptual level. Perhaps both concepts can be
merged in a way that is advantageous for both sides. Further scientific discussion should clarify
this.
When working on a feasible variability management strategy, discussing software evolution

processes is necessary, too. The proposed modelling concept concentrates on variability in space
(structural aspects). Discussing software evolution requires to cope with variability in time.
As soon as a variability management concept is ready for an actual test run in a real world

project, a real world feasibility evaluation should be discussed in a scientific research context to
evolve and improve the concept, optimise the modelling process and build a developer-friendly
modelling toolset. The aim would be the development of a modelling and variability management
strategy that may be considered by a broad range of software engineers to increase the potential
customer satisfaction and the vendor’s ROI.
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A Task Description

This appendix includes the whole official task description that has been worked out in advance of
this thesis. The task description comprises a thesis title proposal, the context and motivation of
the work, the goals to achieve when elaborating the thesis and some planning attempts, namely
a working outline and a schedule.

A.1 Title
The title of the intended work is proposed to be

Conceptual Variability Management in Software Families with Multiple Contributors

A.2 Context and Motivation
The world of software families is basically divided into Software Product Lines (SPLs) and
Software Ecosystems (SECOs) which both follow different ideologies. Whereas in SPLs the
variability space of derivable products is closed and mostly contributed by one party, variability
in SECOs is mainly driven by a (public) community and – in consequence – follows an open
approach.
While the transformation of software between both worlds is a frequently discussed topic

(especially the question of how to evolve a software family from an SPL to a SECO), the aim of
managing software families between both concepts mentioned seems to be out of scope of most
discussions yet. Nevertheless, the idea of such software families makes a promising impression,
as it would allow a very flexible, collaborative engineering and development of software families.
A software family that is partly an SPL and a SECO finally is partly closed and open at the
same time regarding the offered variability space.
One field in which such a concept seems to be promising is the area of in-car software that

allows users to install apps to customise the user experience and to cope with differently timed
product life cycles. Actual demand seems to exist as well, as in 2013 Schultis et al. (from
Siemens) described the problem of handling industrial software products that have been designed
as typical product lines, but with external influences.
Finally, a major problem in the described field is an appropriate and feasible variability mod-

elling as part of the variability management respecting the existence of multiple contributors,
as both concepts, SPLs and SECOs, seem to follow opposite approaches of centralised versus
decentralised variability management. Finding a solution here is an essential part to realise a
software family that combines the concepts of SPLs and SECOs. It is necessary to specify which
part of the offered variability is closed and which part follows an open approach. It is required
to clarify the meaning of closed and open in this case of a software family. Generally, it has
to be possible to specify, which contributor is allowed to perform which modification to the
variability model. The prevailing concepts do not respect this aspect so far.
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A.3 Goals
The main task of the proposed thesis is to analyse possible concepts to realise variability mod-
elling that allows developing software families that combine both closed and open variability
approaches as known from SPLs and SECOs. To fulfil this task the thesis should accomplish
the sub-goals described in the following.

A.3.1 Comparison of SPLs and SECOs
Current situation. Identify conceptual similarities of SPLs and SECOs regarding variability
modelling with special focus on the contributing parties, their interrelation and coordination
approaches. Where are the substantial differences to cope with when finding a common model?
To accomplish this task, a concrete distinctive definition of both SPLs and SECOs is needed,

respecting the different ways of handling collaboration that exist in each of both software family
concepts. Furthermore, the comparison should highlight characteristics of SPLs and SECOs that
are desirable for the intended combined software family concept. Unwanted or even contradictory
characteristics has to be identified here as well.

A.3.2 Definition of the Concept Between SPL and SECO
Scope setting. Compile a concrete definition of a partly open software family concept as a
combination of SPLs and SECOs. This definition is missing yet but necessary to build up a
common context to talk about.
To accomplish this task, an idea should be drafted that combines the desired characteristics

of both SPLs and SECOs. Undesired characteristics has to be avoided and to ensure feasibility,
contradictory characteristics must not be included at all. There has to be a clear distinction
between the new concept and SPLs as well as SECOs. The need for that new concept should
be justified exemplarily to clarify when the new concept would be appropriate where an SPL or
a SECO would not.

A.3.3 Analyse Existing Variability Modelling Methodologies
Identify the concrete problem. Evaluate existing variability modelling methodologies regard-
ing suitability and feasibility for partly open software families as previously defined.
Accomplishing this task requires a beginning inventory of existing variability modelling con-

cepts available for SPLs and SECOs. To what extent are these methodologies already feasible
regarding a partly open software family? What changes would be necessary to get to a feasibly
variability modelling method?

A.3.4 Creation of a Feasible Concept
Solution proposal. This is the major goal of the thesis. Create a feasible draft for a variability
modelling concept for partly open software families. This concept comprises a proof in the form
of a prototypical implementation and a case study to demonstrate the feasibility.
Ideally, the task can be accomplished by combining promising and non-contradictory variabil-

ity modelling concepts discussed in the previous goal and adding the necessary modifications to
make it feasible. To proof the feasibility, a case study has to be created as an exemplary partly
open software family with multiple contributors. The proof itself should be performed using a
prototypically implemented tool that realises the developed variability modelling method.
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A.3.5 Change Impact Analysis
How to continue. Finding answers to these questions: In how far are other contributing parties
affected by changes that one party makes on the variability model? (Especially: What changes
can be performed? What is the influence scope of these changes? Identify potential overlap
with the action scope of other contributors.) Can this impact be avoided or at least reduced
– how? Furthermore: Identify steps to take to get to a feasible concrete variability modelling
methodology for partly open software families. What compromises have to be made or (at least)
taken into account?

A.4 Working Outline
As the goals described in the previous section basically describe a sequential path for develop-
ing a variability modelling technique for partly open software families, the working outline is
structured equally sequential. The working process is proposed to be structured as follows.

1. Comparison of SPLs and SECOs (6 %)

a) Create common definitions for SPL and SECO
b) Identify desired characteristics of SPLs and SECOs
c) Identify undesired/contradictory characteristics of SPLs and SECOs
d) Writing (Comparison)

2. Defining the concept between SPL and SECO (6 %)

a) Generate idea concept
i. Combine desired SPL/SECO characteristics
ii. Feasibility proof (avoid contradictory characteristics)

b) Clarify distinction to SPL and SECO
c) Justify exemplarily the need for that concept
d) Writing (Definition)

3. Analyse existing variability modelling methodologies (10 %)

a) Research existing variability modelling methods
b) Analyse feasibility of these techniques for new concept
c) Identify necessary modifications of these techniques
d) Writing (Analyse existing VM)

4. Creation of a feasible concept (48 %)

a) Generate feasible idea
i. Combine existing variability modelling concepts
ii. Extend concept by required modifications
iii. Writing (Idea)

b) Conception of prototypical tool
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c) Create exemplary case study
d) Writing (Concept and Case Study)
e) Create a prototypical tool
f) Run case study using tool
g) Writing (Implementation and Run)

5. Change Impact Analysis (16 %)

a) Analyse change impact
i. What changes can be made?
ii. Identify influence scope
iii. Identify potential overlap with other contributors

b) Find ideas to reduce/avoid change-impact on other contributors
c) Identify steps to get to feasible concrete variability modelling methodology
d) Writing (Change Impact Analysis)

The major working packages are strictly based on the defined goals. The emphasised writing
has to be done in parallel to the other tasks in the same group. Each task has been scheduled
as shown in the Gantt charts of last section of this task description.
The project duration is fixed to 23 weeks, respectively 161 days. The percentage next to each

working package group mentioned above shows the relative duration based on these 23 weeks.
In total, 86% of the project duration has been planned. The remaining 14% of the available
time will be used as a buffer and for thesis finalisation steps.

A.5 Schedule (Gantt-Chart)
The shown Gantt charts in Figures A.1, A.2 and A.3 visualise the project structure and schedule.
The left part of Figure A.1 shows a zoomed-out overview whereas all other charts are detailed
viewports of the whole chart representing one major work package each.
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A.5 Schedule (Gantt-Chart)

Figure A.1 – Gantt charts 1 and 2 out of 6
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Figure A.2 – Gantt charts 3 and 4 out of 6
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A.5 Schedule (Gantt-Chart)

Figure A.3 – Gantt charts 5 and 6 out of 6
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B Prototype Manual
This appendix provides a short user guide regarding the developed modelling tool of the second
part of Chapter 4.

B.1 How to Install and Run the Tool
To execute the prototypical tooling, there are a few steps that have to be performed in advance
to set up the software properly using the Eclipse Modeling Framework (EMF) and EMF Client
Platform (ECP). In this guide, the following prerequisites are assumed:

1. A current Java Runtime Environment (JRE) and Java Development Kit (JDK) distribution
is installed.1

2. The Eclipse IDE is installed, containing the current version of EMF and ECP. Ideally, the
already fully-equipped Eclipse distribution Eclipse Modeling Tools2 should be used.

3. Both necessary project folders

de.davidgollasch.posf.model and de.davidgollasch.posf.model.edit

are available to import them in the next step.

Figure B.1 – Setting up the prototype project using the Eclipse IDE

As a first step, the given project folders – as named above – need to be imported as projects
into the Eclipse workspace environment. As soon as this is done, the Project Explorer shall
show both projects similar to that given in the left part of Figure B.1.
To run the prototype, the source code needs to be generated using the underlying Ecore model.

This is the consequence of using EMF as a foundation to create a modelling data structure.
1Download Java from https://www.java.com/de/download/
2Download EMT from http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/mars1
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Initially, by importing the given project folders, the required source code is already given in a
fully-generated form. However, in case any problem occurs during execution or changes to the
model are performed, the model needs to be regenerated. This can be done by opening up the
file

de.davidgollasch.posf.model/model/posf.genmodel

and right-clicking the shown root node Posf. The context menu shown in the right part of
Figure B.1 appears. To generate the required code, both options Generate Model Code and
Generate Edit Code have to be triggered.

Caution! Never delete the existing code files (*.java). As these files contain flagged non-
generated code, deleting the files would remove the modifications, which are required for the
tooling to run properly.
Finally, to run the tooling, an appropriate Run Configuration has to be set up. To do so,

in the Run Configurations dialogue a new configuration needs to be created inside the Eclipse
Application node on the left side.

Figure B.2 – Creating a run configuration to execute the tooling

To create an appropriate configuration, some changes need to be made in the Main tab and
the Plug-ins tab.3

• In the Main tab (cf. left dialogue of Figure B.2), the Program to Run has to be set to
an application of the type org.eclipse.emf.ecp.application.e3.application. Secondly, ensure
that the Java Runtime Environment is set to the current execution environment.

• In the Plug-ins tab (cf. right dialogue of Figure B.2), the correct selection is crucial
for a proper run. To properly select the right bundles, Launch with has to be set to
features selected below and all bundles should be initially deselected. Afterwards, the
bundle org.eclipse.emf.ecp.demo.e3.feature has to be selected and an additional click on
Select Required finalises the selection of required plug-ins. Additionally, the two former
imported projects …posf.model and …posf.model.edit need to be added via clicking on Add
Plug-ins.

Triggering the created run configuration starts the tooling as intended.
3Additional information regarding the ECP configuration can be found at http://eclipsesource.com/blogs/

tutorials/getting-started-with-the-emf-client-platform/
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B.2 How to Create a New Model Project

B.2 How to Create a New Model Project

Edit View

Repository ViewNavigator

Figure B.3 – Prototype: GUI structure (navigator, edit view and repository view)

Starting the tooling leads to a GUI similar to Figure B.3. The interface provides three basic
parts:

Navigator The navigator comprises all models and their containment structures, including fea-
tures, different types of relations, constraints and user groups with users inside. The
modelling is basically performed using this part of the window.

Edit View The upper-right part of the window contains a tabbed environment to show an editor
for each object that is shown in the navigator. Each editor is context sensitive, so that it
shows the elements of each object that can be modified only.

Repository View The repository view allows accessing various persistence layers, depending on
which layers are implemented. For the purpose of this prototype, this part of the screen
is not relevant.

To create a new model, the first and second step shown in Figure B.4 have to be executed.
Thus, creating a new model requires the creation of a new project, which is done by choosing
Create new project out of the context menu of the navigation view. The Create Project dialogue
will open immediately. This dialogue shall be filled obeying the following steps:

• The Provider shall be an Eclipse Workspace.

• The assigned project name will be the name of the project node as shown in the navigator.

• To create a new project, Create empty project has to be selected.

• It is mandatory to select a Filename, which is the path to an *.xmi file which will contain
the model.

• Every model (or project) needs exactly one root node. To create a POSF model, the Root
Class to choose is http://de/davidgollasch/posf/FeatureModel.
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Figure B.4 – Creating a new model

If these steps are performed correctly, the navigator will show the just created project including
the chosen root element of the model (cf. step 3 of Figure B.4). Double-clicking onto the Feature
Model node opens the edit view, which allows assigning a name to the model.

Remark! When making changes to the model, saving it is required. This can be triggered
using the save icon on top the the Model Exporer as shown in step 4 of Figure B.4.

B.3 How to Model

Figure B.5 – Modelling via the navigator’s context menu; Exporting and importing models and
model elements; Interface notation of the tooling

The whole modelling process in terms of creating model objects is done using the navigation
view and context-sensitive right-click menu as shown in the left part of Figure B.5.
The modelling process starts with the root element. Each right-click on any of model elements

shows the currently addable model elements according to the underlying model as described in
Chapter 4. Basically, the following rules apply:

Feature Model The feature model itself allows adding one model root feature, several con-
straints (as implications or exclusions) and user groups.
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B.4 How to Store/Export a Model

Features Each feature may contain different relations, such as a mandatory, optional or set
relation. Each of these relations comprises one or many further features. Mandatory
and optional relations are binary relations, set relations represent groups. Furthermore,
features can serve as an interface, which requires adding an interface specification into a
feature. If a feature serves as an interface, a set of concrete extensions may be added as
well.

Interfaces Interfaces are represented by means of an interface specification and – optionally –
a set of concrete extensions as child elements of a feature. Interface specifications may
contain a feature that serves as a root for that specification. This defines the root element
for later to be developed extensions. Additionally, an interface specification is allowed
to comprise constraints. The set of concrete extensions is allowed to comprise features
representing a concrete extension each. Interfaces are represented as exemplarily shown in
the right part of Figure B.5.

Constraints Constraints can be defined as child-nodes of the model’s root element or inside an
interface specification. Each constraint may contain a left and a right expression. Each
expression can be a feature reference or a logical operator (and, or, not) that may contain
further expressions until the leaf elements of a constraint are feature references only.

Users Users are organised in groups that can be defined as child-elements of the model’s root
element.

Next to adding new elements, the navigator’s context menu offers the possibility to delete
nodes of the model as well.

Remark! Remember to save the current state using the save button on top of the navigation
view whenever changes to a model are performed.

B.4 How to Store/Export a Model

Storing a model can be performed using the Export option offered by the navigator’s context
menu, cf. the left part of Figure B.5.

Store a model To store or export a whole model, the root feature model element has to be
selected before performing the Export option of the context menu.

Export an extension To export an extension, the context menu’s Export option has to be per-
formed onto a set of concrete extensions.

Remark! The prototype does not prevent users from exporting arbitrary parts of the model.
Nevertheless, only the two actions above are explicitly intended to show, how working with
POSF models using an appropriate tooling should look like.

B.5 How to Open a Model

There are two ways of opening a model. Both ways work rather equivalently.
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Option 1 The model may be imported during the project creation process. This process is
similar to the one of the new model creation, except that in the dialogue of Figure B.4 the
option Import existing XMI-File needs to be selected. Hence, a formerly exported model
may be imported inside of a new project.

Option 2 The alternative option is to use the Import Project option of the navigator’s con-
text menu. This leads to a dialogue which allows choosing an *.xmi file that contains a
modelling project.

B.6 How to Import a Partial Model

The process of importing partial models is required when desiring to import an externally
developed (and formerly exported) concrete extension. Hence, this regards to the import of a
partial model into a proper extension set element of the model.
The importing itself is done similar to opening a model using the secondly described way of

using the navigator’s context menu. Importing a partial model runs analogously but using the
Import Child option of a concrete extension set’s context menu.

Remark! Actually, the prototype does not prevent the user form importing any *.xmi file
at any location inside the model, unless the *.xmi is not importable as it violates the data
structure. Furthermore, there is no model validation available to check, whether the imported
model obeys all modelling rules or not. In consequence, the user has to take care of this.

B.7 How to Apply User Perspectives

The prototype implements a dummy implementation of a rights management. This means, no
user is actually prevented from performing modelling actions he would normally not be permitted
to. The rights management is implemented in a way that crosses out all model elements where
a user would be denied to get access to according to the presented modelling concept.

Figure B.6 – Setting user specific model perspectives
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B.7 How to Apply User Perspectives

Firstly, introducing rights management requires the setup of user groups containing users and
assigning users or user groups to the features, the access should be granted. Ideally, there is a user
group for model administrators, which are permitted to get access to the whole model. Therefore,
the root feature needs a user group assignment for that group of administrators. Usually,
interfaces should be made visible for a selection of specific users or user groups. Therefore, the
parent-features of the intended interface specification should be used to assign the desired user
or group of users.
To invoke the rights management, a user has to be set as the currently accessing user. This

can be done inside the edit view of the root feature model element as shown in Figure B.6. To
update the view, the project needs to be closed and re-opened afterwards. This can be done as
follows:

1. Choose Close from the project’s context menu inside of the navigation view.

2. Double-click on the closed project.

3. Open the child-nodes of the feature model to review the result.

Navigating through the tree shows that only the path to the features is not crossed-out for
which the access rule is given, including the whole model containment of these features and
the constraints that affect any of the visible features. Users and user groups are always visible.
Everything else is crossed-out.
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C Case Study Construction
This appendix presents the compositional construction of the case study of a car infotainment
system handled in this thesis. To generate a case study that is as realistic as possible, the
car infotainment system of a 2015 BMW 7 series [BMW15a; BMW15b] shall be modelled –
including the BMW Connected Drive system [BMW14]. Furthermore, to extend the model
by supplemental infotainment related elements that are invisible to a customer’s configuration
process, additional sources (namely [Whi+10] and [HT08]) are used.
The presented tree models are not designed as a feature model yet but comprise all features

that should be modelled in a structured way. The colour coding is done using the following
semantics:

black The black feature is the model’s root feature.

orange The orange features indicate the top-level structure, meaning the first level of cate-
gorisation of the given functionalities. They are chosen with separation of concerns in
mind.

blue The blue features are based on the online car configurator from BMW for their 2015 BMW
7 series. [BMW15b; BMW15a; BMW14]

green The green-coloured features are added to implement further structuring and adding “hid-
den” features based on [Whi+10] and [HT08].

purple Purple-coloured features describe the future interfaces to open up the model in the sense
of a Partly Open Software Family (POSF).

Figure C.1 gives a brief overview of the whole model that is presented below. Because it is
too large for printing it entirely on one page in a readable way, the single parts of the model are
presented in the following. This overview shows, how these model parts are composed.
Figure C.2 shows the top-level structure of the model, comprising the root feature Car In-

fotainment System and the sub-ordered categories. The categories either present hardware
components of the system (e. g. Connections, Dash Power Supply and Controls) or offered
functionality (e. g. Communication, Entertainment and Navigation).
The Figures C.3 to C.14 present the sub-trees of the top-level structure of Figure C.2. The

interfaces Online App, Station, Bluetooth Phone, USB Phone and Browser include sub-trees with
their interface structure that shall be modelled as an interface specification during performing
the case study.
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Figure C.1 – Case study structure – overview

Figure C.2 – Case study structure – top-level structure
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Figure C.3 – Case study structure: Communication

Figure C.4 – Case study structure: Entertainment
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Figure C.5 – Case study structure: Connections

Figure C.6 – Case study structure: Dash Power Supply

Figure C.7 – Case study structure: Navigation

Figure C.8 – Case study structure: Controls
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Figure C.9 – Case study structure: Parking

Figure C.10 – Case study structure: Comfort

Figure C.11 – Case study structure: Driving

Figure C.12 – Case study structure: Phone
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Figure C.13 – Case study structure: Display

Figure C.14 – Case study structure: Audio
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