467 research outputs found

    MMWR Surveill Summ

    Get PDF
    Problem/ConditionCoccidioidomycosis, histoplasmosis, and blastomycosis are underdiagnosed fungal diseases that often mimic bacterial or viral pneumonia and can cause disseminated disease and death. These diseases are caused by inhalation of fungal spores that have distinct geographic niches in the environment (e.g., soil or dust), and distribution is highly susceptible to climate changes such as expanding arid regions for coccidioidomycosis, the northward expansion of histoplasmosis, and areas like New York reporting cases of blastomycosis previously thought to be nonendemic. The national incidence of coccidioidomycosis, histoplasmosis, and blastomycosis is poorly characterized.Reporting Period2019.Description of SystemThe National Notifiable Diseases Surveillance System (NNDSS) tracks cases of coccidioidomycosis, a nationally notifiable condition reported to CDC by 26 states and the District of Columbia. Neither histoplasmosis nor blastomycosis is a nationally notifiable condition; however, histoplasmosis is voluntarily reported in 13 states and blastomycosis in five states. Health departments classify cases based on the definitions established by the Council of State and Territorial Epidemiologists.ResultsIn 2019, a total of 20,061 confirmed coccidioidomycosis, 1,124 confirmed and probable histoplasmosis, and 240 confirmed and probable blastomycosis cases were reported to CDC. Arizona and California reported 97% of coccidioidomycosis cases, and Minnesota and Wisconsin reported 75% of blastomycosis cases. Illinois reported the greatest percentage (26%) of histoplasmosis cases. All three diseases were more common among males, and the proportion for blastomycosis (70%) was substantially higher than for histoplasmosis (56%) or coccidioidomycosis (52%). Coccidioidomycosis incidence was approximately four times higher for non-Hispanic American Indian or Alaska Native (AI/AN) persons (17.3 per 100,000 population) and almost three times higher for Hispanic or Latino persons (11.2) compared with non-Hispanic White (White) persons (4.1). Histoplasmosis incidence was similar across racial and ethnic categories (range: 0.9\u20131.3). Blastomycosis incidence was approximately six times as high among AI/AN persons (4.5) and approximately twice as high among non-Hispanic Asian and Native Hawaiian or other Pacific Islander persons (1.6) compared with White persons (0.7). More than one half of histoplasmosis (54%) and blastomycosis (65%) patients were hospitalized, and 5% of histoplasmosis and 9% of blastomycosis patients died. States in which coccidioidomycosis is not known to be endemic had more cases in spring (March, April, and May) than during other seasons, whereas the number of cases peaked slightly in autumn (September, October, and November) for histoplasmosis and in winter (December, January, and February) for blastomycosis.InterpretationCoccidioidomycosis, histoplasmosis, and blastomycosis are diseases occurring in geographical niches within the United States. These diseases cause substantial illness, with approximately 20,000 coccidioidomycosis cases reported in 2019. Although substantially fewer histoplasmosis and blastomycosis cases were reported, surveillance was much more limited and underdiagnosis was likely, as evidenced by high hospitalization and death rates. This suggests that persons with milder symptoms might not seek medical evaluation and the symptoms self-resolve or the illnesses are misdiagnosed as other, more common respiratory diseases.Public Health ActionImproved surveillance is necessary to better characterize coccidioidomycosis severity and to improve detection of histoplasmosis and blastomycosis. These findings might guide improvements in testing practices that enable timely diagnosis and treatment of fungal diseases. Clinicians and health care professionals should consider coccidioidomycosis, histoplasmosis, and blastomycosis in patients with community-acquired pneumonia or other acute infections of the lower respiratory tract who live in or have traveled to areas where the causative fungi are known to be present in the environment. Culturally appropriate tailored educational messages might help improve diagnosis and treatment. Public health response to these three diseases is hindered because information gathered from states\u2019 routine surveillance does not include data on populations at risk and sources of exposure. Broader surveillance that includes expansion to other states, and more detail about potential exposures and relevant host factors can describe epidemiologic trends, populations at risk, and disease prevention strategies

    Chapter 4 Endemic Mycoses and Allergies

    Get PDF
    In this book, we discuss the changing medical and public profile of fungal infections in the period 1850–2000. We consider four sets of diseases: ringworm and athlete’s foot (dermatophytosis); thrush or candidiasis (infection with Candida albicans); endemic, geographically specific infections in North America (coccidioidomycosis, blastomycosis and histoplasmosis) and mycotoxins; and aspergillosis (infection with Aspergillus fumigatus). We discuss each disease in relation to developing medical knowledge and practices, and to social changes associated with ‘modernity’. Thus, mass schooling provided ideal conditions for the spread of ringworm of the scalp in children, and the rise of college sports and improvement of personal hygiene led to the spread of athlete’s foot. Antibiotics seemed to open the body to more serious Candida infections, as did new methods to treat cancers and the development of transplantation. Regional fungal infections in North America came to the fore due to the economic development of certain regions, where population movement brought in non-immune groups who were vulnerable to endemic mycoses. Fungal toxins or mycotoxins were discovered as by-products of modern food storage and distribution technologies. Lastly, the rapid development and deployment of new medical technologies, such as intensive care and immunosuppression in the last quarter of the twentieth century, increased the incidence of aspergillosis and other systemic mycoses

    Pulmonary fungal infections

    Full text link
    This review details some of the advances that have been made in the recent decade in the diagnosis, treatment and epidemiology of pulmonary fungal infections. These advances have occurred because of increasing knowledge regarding the fungal genome, better understanding of the structures of the fungal cell wall and cell membrane and the use of molecular epidemiological techniques. The clinical implications of these advances are more rapid diagnosis and more effective and less toxic antifungal agents. For example, the diagnosis of invasive pulmonary aspergillosis, as well as histoplasmosis and blastomycosis, has improved with the use of easily performed antigen detection systems in serum and bronchoalveolar lavage fluid. Treatment of angioinvasive moulds has improved with the introduction of the new azoles, voriconazole and posaconazole that have broad antifungal activity. Amphotericin B is less frequently used, and when used is often given as lipid formulation to decrease toxicity. The newest agents, the echinocandins, are especially safe as they interfere with the metabolism of the fungal cell wall, a structure not shared with humans cells. Epidemiological advances include the description of the emergence of Cryptococcus gattii in North America and the increase in pulmonary mucormycosis and pneumonia due to Fusarium and Scedosporium species in transplant recipients and patients with haematological malignancies. The emergence of azole resistance among Aspergillus species is especially worrisome and is likely related to increased azole use for treatment of patients, but also to agricultural use of azoles as fungicides in certain countries.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92435/1/j.1440-1843.2012.02150.x.pd

    Epidemiology of Invasive Fungal Infections in Latin America

    Get PDF
    The pathogenic role of invasive fungal infections (IFIs) has increased during the past two decades in Latin America and worldwide, and the number of patients at risk has risen dramatically. Working habits and leisure activities have also been a focus of attention by public health officials, as endemic mycoses have provoked a number of outbreaks. An extensive search of medical literature from Latin America suggests that the incidence of IFIs from both endemic and opportunistic fungi has increased. The increase in endemic mycoses is probably related to population changes (migration, tourism, and increased population growth), whereas the increase in opportunistic mycoses may be associated with the greater number of people at risk. In both cases, the early and appropriate use of diagnostic procedures has improved diagnosis and outcome

    Systemic and pulmonary fungal infections

    Get PDF

    Endemic Mycoses and Allergies: Diseases of Social Change

    Get PDF

    Chapter Bibliography

    Get PDF
    In this book, we discuss the changing medical and public profile of fungal infections in the period 1850–2000. We consider four sets of diseases: ringworm and athlete’s foot (dermatophytosis); thrush or candidiasis (infection with Candida albicans); endemic, geographically specific infections in North America (coccidioidomycosis, blastomycosis and histoplasmosis) and mycotoxins; and aspergillosis (infection with Aspergillus fumigatus). We discuss each disease in relation to developing medical knowledge and practices, and to social changes associated with ‘modernity’. Thus, mass schooling provided ideal conditions for the spread of ringworm of the scalp in children, and the rise of college sports and improvement of personal hygiene led to the spread of athlete’s foot. Antibiotics seemed to open the body to more serious Candida infections, as did new methods to treat cancers and the development of transplantation. Regional fungal infections in North America came to the fore due to the economic development of certain regions, where population movement brought in non-immune groups who were vulnerable to endemic mycoses. Fungal toxins or mycotoxins were discovered as by-products of modern food storage and distribution technologies. Lastly, the rapid development and deployment of new medical technologies, such as intensive care and immunosuppression in the last quarter of the twentieth century, increased the incidence of aspergillosis and other systemic mycoses

    Invasive fungal infections and COVID-19: a review

    Get PDF
    Invasive fungal diseases (IFDs) are major causes of morbidity and mortality among hospitalized patients all over the world with a global prevalence of 15%. Since the first case of COVID-19 was reported on February 27, 2020, in Nigeria, it had been discovered across all geopolitical zones in Nigeria. As the medical community confronts the ongoing COVID-19 pandemic, determining whether patients infected with SARS-CoV-2 develop fungal complications, especially invasive aspergillosis, is crucial. This review aimed to highlight the fungal co-infections that might be associated with SARS-CoV-2 infection, and modalities for their diagnosis, prevention, and management, with the view to reducing the high mortality associated with these infections

    AIDS and Opportunistic Infections

    Get PDF
    • …
    corecore