162 research outputs found

    ADDITIVE MANUFACTURING OF COMPONENTS FOR IN-DIE CAVITY USE, SUITABLE TO WITHSTAND ALUMINIUM HIGH PRESSURE DIE CASTING (HPDC) PROCESS CONDITIONS

    Get PDF
    Thesis (M. Tech. (Engineering: Mechanical)) -- Central University of Technology, Free State, 2013This research examines the suitability of Additive Manufacturing (AM) for manufacturing dies used in aluminium high pressure die casting. The study was guided by the following objectives: • The reviews of applicable literature sources that outline technical and application aspects of AM in plastic injection moulds and the possibilities of applying it to high pressure casting die. • To introduce AM grown die components in die manufacture. Further, to develop a methodology that will allow industry to apply AM technology to die manufacture. • Revolutionise the way die manufacture is done. The potential for AM technologies is to deliver faster die manufacture turnaround time by requiring a drastically reduced amount of high level machining accuracy. It also reduces the number of complex mechanical material removal operations. Fewer critical steps required by suitable AM technology platforms able to grow fully dense metal components on die casting tools able to produce production runs. • Furthermore, promising competitive advantages are anticipated on savings to be attained on the casting processing side. AM technology allows incorporation of features in a die cavity not possible to machine with current machining approaches and technology. One such example is conformal cooling or heating of die cavities. This approach was successfully used in plastic injection mould cavities resulting in savings on both the part quality as well as the reduction on cycle time required to produce it (LaserCUSING®, 2007). AM technology has evolved to a point where as a medium for fast creation of an object, it has surpassed traditional manufacturing processes allowing for rapidly bridging the gap between ideas to part in hand. The suitability of the AM approach in accelerating the die manufacturing process sometime in the near future cannot be dismissed or ignored. The research showed that there is promise for application of the technology in the not too distant future. In the South African context, the current number and affordability of suitable AM platforms is one of the main stumbling blocks in effecting more widespread applied research aimed at introduction of the technology to die manufacture

    Hybrid additive and subtractive machine tools - research and industrial developments

    Get PDF
    By synergistically combining additive and subtractive processes within a single workstation, the relative merits of each process may be harnessed. This facilitates the manufacture of internal, overhanging and high aspect ratio features with desirable geometric accuracy and surface characteristics. The ability to work, measure and then rework material enables the reincarnation and repair of damaged, high-value components. These techniques present significant opportunities to improve material utilisation, part complexity and quality management in functional parts.The number of single platform workstations for hybrid additive and subtractive processes (WHASPs) is increasing. Many of these integrate additive directed energy deposition (DED) with subtractive CNC machining within a highly mobile multi-axis machine tool. Advanced numerical control (NC), and computer aided design (CAD), manufacture (CAM) and inspection (CAI) help to govern the process.This research reviews and critically discusses salient published literature relating to the development of WHASPs, and identifies future avenues for research and development. It reports on state-of-the-art WHASP systems, identifying key traits and research gaps. Finally, a future vision for WHASPs and other hybrid machine tools is presented based upon emerging trends and future opportunities within this research are

    Design and characterisation of an additive manufacturing benchmarking artefact following a design-for-metrology approach

    Get PDF
    We present the design and characterisation of a high-speed sintering additive manufacturing benchmarking artefact following a design-for-metrology approach. In an important improvement over conventional approaches, the specifications and operating principles of the instruments that would be used to measure the manufactured artefact were taken into account during its design process. With the design-for-metrology methodology, we aim to improve and facilitate measurements on parts produced using additive manufacturing. The benchmarking artefact has a number of geometrical features, including sphericity, cylindricity, coaxiality and minimum feature size, all of which are measured using contact, optical and X-ray computed tomography coordinate measuring systems. The results highlight the differences between the measuring methods, and the need to establish a specification standards and guidance for the dimensional assessment of additive manufacturing parts

    FABRICATION OF CERAMIC MICROPATTERNS AND THEIR IMPACT ON BONE CELLS

    Get PDF
    The main objective of this study is to elucidate possible methods of producing ceramic calcium phosphate micropatterns ranging from 5 to 100 µm. Today, micropatterned ceramic surfaces are of great interest for fundamental materials research as well as for high-end industrial processes, whereas the fabrication of these patterns in the sub-100 µm range is still a challenge. Therefore, six different patterning techniques have been applied in order to generate ceramic patterns: Microtransfer molding (µTM), modified micromolding (m-µM), Aerosol-Jet® printing, CNC-micromachining, laser ablation and direct laser interference patterning (DLIP). The patterning techniques have been evaluated concerning their capability of fabricating ceramic patterns smaller than 100 µm. Another objective of this study has been the investigation of the influence of ceramic patterns on human osteoblasts (HOB). This investigation has revealed that ceramic hydroxyapatite-based patterns ranging from 16 to 77 µm in widths have a strong influence on the contact guidance of the HOB, whereas the cells showed distinct orientations between 0°-15° in reference to the pattern direction

    Ultraprecise Single Point Inverted Cutting Strategies for Multi-axis Fabrication of Right Triangular Prismatic Retroreflectors

    Get PDF
    The optical phenomenon of retroreflection (RR) is described as light rays contacting a surface and being redirected back to their originating source. While applications are many and varied, their primary focus is safety in low-light conditions, and the focus of this research is toward automotive applications. Few geometric shapes are capable of retroreflection. Among them are the lens-and-mirror, and cube corner geometry; however, the right triangular prism (RTP) has been introduced as a viable alternative. This study demonstrates a more efficient fabrication technology when compared to current industry practices. The ultraprecise single point inverted cutting (USPIC) technology was envisioned as a combination of diamond turning and multi-axis machining. The unique cutting kinematics of USPIC required the development of dedicated tooling and a postprocessor for machine automation. Experimental results have demonstrated both the feasibility of this approach, and that RTP arrays fabricated by this technology outperform those fabricated through conventional means

    Optimising additive manufacturing for fine art sculpture and digital restoration of archaeological artefacts

    Get PDF
    Additive manufacturing (AM) has shown itself to be beneficial in many application areas, including product design and manufacture, medical models and prosthetics, architectural modelling and artistic endeavours. For some of these applications, coupling AM with reverse engineering (RE) enables the utilisation of data from existing 3D shapes. This thesis describes the application of AM and RE within sculpture manufacture, in order to optimise the process chains for sculpture reproduction and relic conservation and restoration. This area poses particular problems since the original artefacts can often be fragile and inaccessible, and the finishing required on the AM replicas is both complex and varied. Several case studies within both literature and practical projects are presented, which cover essential knowledge of producing large scale sculptures from an original models as well as a wide range of artefact shapes and downstream finishing techniques. The combination of digital technologies and traditional art requires interdisciplinary knowledge across engineering and fine art. Also, definitions and requirements (e.g. ‘accuracy’), can be applied as both engineering and artistic terms when specifications and trade-offs are being considered. The thesis discusses the feasibility for using these technologies across domains, and explores the potential for developing new market opportunities for AM. It presents and analyses a number of case study projects undertaken by the author with a view to developing cost and time models for various processes used. These models have then been used to develop a series of "process maps", which enable users of AM in this area to decide upon the optimum process route to follow, under various circumstances. The maps were validated and user feedback obtained through the execution of two further sculpture manufacturing projects. The thesis finishes with conclusions about the feasibility of the approach, its constraints, the pros and cons of adopting AM in this area and recommendations for future research

    Development of a flexible and modular metrology system for measuring complex surfaces

    Get PDF
    The demand for customised optical devices is increasing tremendously. Such optical devices do not employ traditional designs like planar, spherical, or even aspherical shapes. Instead, modern lenses exhibit free-form surfaces with a large variety of gradients in all directions. Highly accurate and repeatable measurement of such lens surfaces represents a considerable challenge; therefore there is a pressing need to both improve the metrology systems used in the optical industry and to develop new generations of high-performance metrology systems that employ innovative measurement techniques.Workshops need fast measurement solutions for the rough surfaces produced in the early stages of a lens typical production chain. The last steps produce very smooth surfaces, usually ideally suited to interferometers. However, interferometers are physically not suited to the measurement of strong aspheres or free-form shaped objects. Therefore, research was undertaken to investigate a metrology solution applicable to all common surface types and roughness grades at any stage of the production chain.This PhD research presents a novel approach for applying the principle of a spherical coordinate measurement machine (SCMM) to lens metrology. SCMMs require the precise and repeatable alignment of all axes. Therefore, research was performed to investigate a novel method for generic axes alignment without the need for external tools. This method, with the enhanced SCMM approach, was then combined with research into suitable multi-sensor measurement modes, in order to adequately address the needs of all stages in the production chain. Coordinate measurement machines are subject to the influence of errors. Therefore, research was conducted to develop a novel user-interface and a patented device to analyse and compensate for errors of the applied rotational axes and the 3D-Scale. The mathematical models presented, enable a simple transfer to other types of SCMMs. Also, the researched processes, software tools and mechatronic devices may be generically adopted to other machines applying rotational axes. Therefore, in addition to providing advanced capabilities for high-accuracy measurement of lenses with complex morphologies; the results of this research and the new approaches developed may be employed with SCMMs more generally, in a wide range of industrial sectors

    Investigation of the High-Cycle Fatigue Life of Selective Laser Melted and Hot Isostatically Pressed Ti-6Al-4v

    Get PDF
    Experimental research was conducted on the effectiveness of Hot Isostatic Pressing (HIP) to improve the high-cycle fatigue life of Selective Laser Melted Ti-6Al-4v (SLM Ti-64). A thorough understanding of the fatigue life performance for additively manufactured parts is necessary before such parts are utilized in an operational capacity in Department of Defense (DoD) systems. Such applications include the rapid, on-demand fabrication of replacement parts during contingency operations or the production of light-weight topology-optimized components. This research assesses the fatigue life of SLM Ti-64 test specimens built directly to net dimensions without any subsequent surface machining. The configuration is designed as representative of end-use parts where further surface machining is unavailable or undesirable. Past research suggests utilization of HIP as a densification process to reduce the negative impact on fatigue life from internal porosity within SLM Ti-64. The impact of HIP on the rough surface of SLM Ti-64 to remove stress concentrations on the surface is not addressed in literature. The experimental data from this research demonstrates HIP improves high-cycle fatigue-life of un-machined test specimens by 61.4% at a maximum stress level of 500 MPa and 102% at a maximum stress level of 300 MPa

    A CNC machine guiderail wear in-process monitoring system

    Get PDF
    This research investigates and establishes a system for monitoring the guiderail wear on medium size CNC machines. The system possesses the function of measuring the wear state on guiderails in an in-process way, which is more functional and efficient than the traditional method. In this research, two different types of sensors for monitoring each particular friction wear feature have been implemented. Calculations to complete designing of a physical experimental rig and the realisation of in-process monitoring are also discussed in detail. The first type sensor adopted in the experiment is the accelerometer, used for monitoring the vibration caused by the wear on bearings and the increasing roughness on the guiderail surface. The second sensor is the capacitance probe mounted on the table and against a straight edge, searching the deviation signal of the moving table while rolling on the guiderail surface with wear. The novelty of this thesis covering an in-process monitoring approach has been tested based on a physical experimental rig. The data calculation illustrates how the noise and other disturbances are filtered and data analysed to determine the state of wear. This system utilises an indirect solution to wear monitoring with less cost while delivering convincing reliability according to the experiment result. The thesis shows the possibility to acquire CNC machine guiderail wear data through an in-process monitoring system

    Optimization of Operation Sequencing in CAPP Using Hybrid Genetic Algorithm and Simulated Annealing Approach

    Get PDF
    In any CAPP system, one of the most important process planning functions is selection of the operations and corresponding machines in order to generate the optimal operation sequence. In this paper, the hybrid GA-SA algorithm is used to solve this combinatorial optimization NP (Non-deterministic Polynomial) problem. The network representation is adopted to describe operation and sequencing flexibility in process planning and the mathematical model for process planning is described with the objective of minimizing the production time. Experimental results show effectiveness of the hybrid algorithm that, in comparison with the GA and SA standalone algorithms, gives optimal operation sequence with lesser computational time and lesser number of iterations
    • …
    corecore