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i 

ABSTRACT 

This research investigates and establishes a system for monitoring the guiderail 

wear on medium size CNC machines. The system possesses the function of 

measuring the wear state on guiderails in an in-process way, which is more 

functional and efficient than the traditional method. 

In this research, two different types of sensors for monitoring each particular 

friction wear feature have been implemented. Calculations to complete 

designing of a physical experimental rig and the realisation of in-process 

monitoring are also discussed in detail.  

The first type sensor adopted in the experiment is the accelerometer, used for 

monitoring the vibration caused by the wear on bearings and the increasing 

roughness on the guiderail surface. The second sensor is the capacitance 

probe mounted on the table and against a straight edge, searching the deviation 

signal of the moving table while rolling on the guiderail surface with wear. 

The novelty of this thesis covering an in-process monitoring approach has been 

tested based on a physical experimental rig. The data calculation illustrates how 

the noise and other disturbances are filtered and data analysed to determine 

the state of wear. This system utilises an indirect solution to wear monitoring 

with less cost while delivering convincing reliability according to the experiment 

result. The thesis shows the possibility to acquire CNC machine guiderail wear 

data through an in-process monitoring system. 

 

 

Keywords:  

CNC machine, guiderail, friction fatigue wear, in-process, sensor, experiment 
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1 INTRODUCTION 

The initial aim of the project is to establish a novel monitoring system to 

measure the wear state of guiderail in an in-process manner. Over the last 

decade, several measuring systems to assess the wear of different components 

of CNC machine have been developed (Tan, Zhang, & Hu, 2015). The further 

facility performance improvement has taken advantage from the monitoring 

systems. In this study, the feature of the system is high resolution (reaches to 

micrometre level, which is correspondent to the manufacturing accuracy of the 

widely utilised CNC machine types, for example, turret mill and knee/knee-and-

column) and with an efficient method of monitoring the guiderail on CNC 

machine without dismantling any device component.  

Presently, the widely applied CNC machine guiderail wear measuring solution in 

the manufacturing industry is regular inspection. The most common 

maintenance periods presently adopted in the manufacturing industry is six 

months or 12 months  (Giourntas, Hodgkiess, & Galloway, 2015). The length of 

this maintenance period is arranged by CNC machine suppliers with the 

summary of long-term hands-on experience. The major solutions utilised in the 

wear inspection to the straightness of machine components are: using optical 

equipment, a gradienter or a dial gauge  (Leach, Flack, Hughes, & Jones, 2009). 

The optical instrument usually uses laser tracker, an optical autocollimator and 

an interferometer. These apparatus come with high resolution and accuracy, 

also with strict assembly design and fast responding speed to signal. However, 

since the typical optical equipment contains two main parts which are laser 

ejector and reflector, the equipment is with high cost and large scale. Also, if 

applying the optical instrument into in-process or dynamic monitoring system, 

the fallacy of insufficient resistance to outside disturbance would be obvious 

(Kong, 2012). For instance, particles or spraying of coolant would affect the 

performance of optical instruments.  

The gradienter is attached to a transit's telescope which allows the angle of 

inclined measuring via deviance of a bubble. This instrument features flexibility 
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and convenience but low resolution. Firstly, the resolution of the equipment (on 

millimetre level) does not fit the requirement of CNC machine monitoring which 

involves a micrometre level. Secondly, the recording to the data of deviance is 

difficult to the user. 

The dial gauge is one of the most common tools in every industry. It has the 

resolution of micrometre level and is easy to be equipped. The cost is relatively 

low compared to optical instruments. Therefore, with proper design, the 

monitoring system which with dial gauges would meet the requirement of static 

measurement. 

The main restriction of current wear monitoring systems is that they can be 

used only during the idle time of the CNC machine. This method needs the 

disassembly of the machine to its components and the avoiding of outer 

disturbance as preconditions. After that, the further reassembly and calibrating 

work are involved after the inspection is finished. 

Those systems considering in-process monitoring and analysis to the data are 

still lacking investigation. In this case, comparing with traditional monitoring 

methods, the in-process monitoring solution is with significant advantages on 

convenience and cost saving. The aim of this research is to develop a quick, 

easy-to-use and cost-efficient method to assess the wear of CNC machine 

guiderails. 

To realise the in-process monitoring function, realising measurement without 

suffering interruptions from the running of the machine is of importance. Thus, 

an idea from electronic signal processing is brought in. It is adopting the signal 

of disturbance and realising the offset to the data of wear monitoring. To 

achieve this goal, the traditional high-resolution gauging equipment, dial gauge, 

has been adopted in order to meet the requirement of micrometre level 

resolution. However, the common mechanical dial gauge has the disadvantage 

of not being able to transmit and transfer the digital signals. Therefore, a new 

type of dial gauge with the function of a digital data output is applied.  
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The CNC machine tool is widely utilised in the precision machining industry. 

The guiderail is a crucial and fundamental component of a machine tool and the 

wear of it can have a significant impact on the precision. In this study, the 

circular guiderail with rolling bearing is selected as the study object. Comparing 

with sliding guiderail, the rolling guiderail also has better tribology properties 

and causes less wear. With such reason, the type of guiderail represents the 

mainstream of the CNC machine guiderail configuration. (Besharati, et al., 

2016) 

According to the literature study of typical CNC machine guiderail wear and the 

state-of-the-art to the metallic material tribological characteristics study, the 

majority of wear on rolling guiderail is friction fatigue wear (Sutar, 2013). Thus in 

this research, the mechanism, effects and symptoms brought by the wear would 

be studied and taken as the measuring object. 

The aim of the thesis is developing an in-process monitoring method to improve 

the CNC machine guiderail wear monitoring approach, which with systematic 

verification process. Comparing with the present method utilised in 

manufacturing industry, implementation of such advanced method suggests a 

promising future of efficient monitoring method improving. 
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2 LITERATURE REVIEW 

A literature review is presented for the purpose of investigating the state-of-the-

art for wear monitoring in CNC machine tools, particular on the critical 

component – the guide rail. The literature review includes types of guiderails 

which are widely implemented, major degradation which impacts the 

performance of CNC machines in processing and the applicable solutions to 

achieve monitoring the wear effectively. The scope of the study, the rationale for 

choices to further research and requirement are illustrated and analysed in the 

summary of the literature review. 

2.1 CNC Machine 

The Computer Numerical Control (CNC) machine is the type of instrument 

whose operations are numerically directed by the computer control system, 

taking advantage of command instructions in a specifically created program. 

The instructions for commanded operations are written in the program in the 

form of alphanumerical symbols. The program is given for the direction of the 

force components of a machine and it ensures the process of making parts 

(Leonardo et al., 2010). Comparing with traditional manual milling machine, 

CNC machine operation requires higher level technique to operators. However, 

utilising the CNC machine in the manufacturing industry may bring high 

resolution and accuracy. High precision CNC machines can reach the precision 

of several nano-metre levels (BSI, 2014). 

2.1.1 Fundamental Structure of CNC Machine 

The typical structure of a CNC machine acquires three main blocks as can be 

seen in Figure 2-1: 

(1) Computer Control System: It contains an operation system and 

application NC program producing software. The input of the program 

can be multiple, making the program in advance and transferring it to the 

control system of the CNC machine is applicable. The computing system 

unit follows by controlling circuits, which directly control the components 

of the CNC machine through converted high-tension electrical signals. 
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(2) Adjusting Circuit: the adjusting circuit is used to guarantee the correct 

position of each crucial working component. 

(3) Implementation of components: within the processing, the workpiece is 

mainly operated by the machine tools mounted on a spindle, clamps on 

the moving table used to firmly hold the workpiece and the guiderail in 

multiple directions to precisely allocate the workpiece.  

 

Figure 2-1 CNC Machine Internal Structure (Leonardo et al., 2010) 

2.1.2 Coordinate System of CNC Machine 

Theoretically, there are six degrees of freedom to the motions of CNC machine 

(as can be seen in Figure 2-2 and Figure 2-3). Those are three linear axes (X, Y 

and Z) and three rotational axes (A, B and C) (Nanfara et al., 2002). 
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Figure 2-2 Coordinate system of a CNC mill (Leonardo et al., 2010) 

 

Figure 2-3 Coordinate system (with 6 degrees of freedom) (Leonardo et al., 2010) 

2.1.3 CNC Machine Categorisation 

Since the CNC machine has developed, there are many types of CNC 

machines present in the industries for parts manufacture. Presently, a large 

number of CNC machine tools are used for multiple operations simultaneously. 

There are also other types of CNC machines invented for the special purposes. 

The categorisation of machine tools is necessary to narrow down the research 

area. According to the machine size and the field applied, the typical types of 

CNC machine tools are the following: 
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2.1.3.1 Gantry Milling Machine 

The configuration of the gantry milling machine can be a spanning framework 

with various shapes. It is a structure that bridges over the working table with 

several cranes (Besharati, et al., 2016). The gantry milling machine can be very 

large (Figure 2-4) and is mainly utilised in rough milling. 

 

Figure 2-4 Typical gantry manufactured by FERMAT Company (Besharati, et al., 

2016). 

2.1.3.2 Knee Mill/Knee-and-Column Milling Machine 

A knee-and-column milling machine can be used for a wide range of milling 

operations. Such type of milling machines are one of the most common milling 

machines, as shown in Figure 2-5. The spindle and the milling cutter could be 

either horizontal (slab milling) or vertical (face and end milling) (Danford, 

Matthew, 2007). 
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Figure 2-5 Typical knee milling machine manufactured by Atrump (Danford, 

Matthew, 2007) 

2.1.3.3 Floor Milling Machine 

The floor milling machine is the super-heavy-duty CNC floor type boring-milling 

machine. It is assumed as a general machine tool for large part machining (Wu, 

2012). It has been widely applied in fields such as aviation, aerospace, energy, 

metallurgy, transportation and ship. 

2.1.3.4 C-frame Milling Machine 

The CNC C-frame milling machine is the middle-size to gigantic size machine 

with relatively high horse power. Comparing with other types of CNC machine, 

the “C” structure of the machine (as can be seen in Figure 2-6) has the 

advantage of rigidity and stability since closed structural loops can bring more 

stiffness and accuracy than Long-open structural loops ( Slocum, 2012). 

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj-pLOtx63MAhWMKMAKHSNjBt8QjRwIBw&url=http://www.centroidcnc.com/oems/atrump/atrump_cnc_kneemills_3vkrig.html&psig=AFQjCNH3xQwjFDN_vj5KSKchH7p0Q226Pw&ust=1461803105263194
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Figure 2-6 C-frame CNC machine manufactured by HURON (Technical 

documentation, 2010) 

2.1.3.5 Box Milling Machine 

Box milling machines are with rigid and space saving structure that used for 

milling small size work piece. The type of machine majorly utilised in small work 

piece manufacturing or hobby workshop.  

2.1.3.6 Turret Milling Machine 

The CNC turret machine can be applied to different manufacturing areas. It is 

one type of the medium-size CNC machine (as can be seen in Figure 2-7) with 

multiple functions. It acquires the feature of flexible moving angles and linear 

behaviour without losing resolution (Star, 2011). 

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjFoqaVy63MAhWIF8AKHV5uBpMQjRwIBw&url=http://www.directindustry.com/prod/huron/product-7958-1322795.html&psig=AFQjCNG_HN92bE-LiaCIg8eCv_YF0n9QvQ&ust=1461804156072479
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Figure 2-7 Turret milling machine manufactured by Star CNC machine tool Corp 

(Star, 2011) 

2.1.3.7 Bed Milling Machine 

The major feature of CNC Bed milling machine is it owns stable structure and 

has better invulnerability to disturbance (BSI, 2012). It is another type of large 

size machine which is provided with hardened and ground box ways as well as 

hardened and ground table surfaces for accurate machining.  

2.2 Guiderail Categorisation 

The resolution of CNC machine manufacturing will typically reach micrometres. 

Highly advanced machines can even achieve nanometre levels (BSI, 2014). 

The accuracy of implementing components is critical to the performance of the 

CNC machine. The guiderail is a fundamental component and its motion error 

affects machining accuracy directly (Deng, 2015). The study of guiderail types 

with different friction mechanisms is fundamental to this research. 

2.2.1 Categorisation of the Guiderail by Tribological Mechanism on 

Friction Surface 

2.2.1.1 Sliding Guiderail 

A) Elementary sliding contact linear guiderail 

This type of linear guiderail is the earliest form, having a simple physical 

configuration and low cost. It still has wide applications in the modern industry. 
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All sliding contact guiderails have greater friction coefficient than other types. 

Because of this, they are commonly deemed to be the secondary options while 

the designing system for precise positioning applications. However, with 

lubricant constantly maintained between two relatively moving objects, and 

thereby, a thin film is formed. Under such condition. The degradation process of 

guiderail would be mitigated significantly (Waterhouse, 1972). 

B) Aerostatic (Figure 2-8) or hydrostatic (Figure 2-9) linear motion bearings 

While extreme accuracy and diminished operation noise must be attained, a 

guide without mechanical contact between its elements would be frequently 

adopted. With a pressurised fluid between two relatively moving component, 

one of them is kept floating by the fluid (Sutar, 2013). Depending upon the fluid 

in use, it is classified in aerostatic and hydrostatic linear motion bearings. 

Although the advantage of this type of guides is promising for particular 

purposes, it brings high cost together with the difficulty in manufacturing and 

maintenance, and requires expensive auxiliary apparatus. Yet, this type is 

sometimes used for ultra-precision machines, with air pumps to keep the slide 

between floating and abrading (Sutar, 2013). 

 

Figure 2-8 Typical structure of the aerostatic guiderails (Sutar, 2013). 
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Figure 2-9 Typical structure of the hydrostatic guiderail and oil pump (Sutar, 

2013). 

2.2.1.2 Rolling Guiderail:  

This type decreases friction utilising rolling contact via rolling elements (balls, 

rollers, etc.) which are placed between two relatively moving objects. There are 

many manufacturers and each manufacturer provides a wide variety of products 

(Figure 2-10). Because of its superiority over the sliding contact linear motion 

bearings as described hereunder and because of its availability, this type has 

won the position as an essential component to the equipment that requires 

highly accurate positioning operation (Sutar, 2013). 

 

Figure 2-10 Typical structure of the rolling guiderail with rolling balls in between 

the slide and support to reduce friction (Sutar, 2013). 
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For the purpose of achieving high-speed and high-precision positioning, the 

static/dynamic behaviours of transmission systems shall be sufficiently settled in 

the designing stage of a machine with high level of processing precision. As can 

be observed from Table 2-1, comparing to the rolling guiderail, the sliding 

guiderail has the property of simpler construction and lower cost. However, the 

rolling guiderail has a different tribological mechanism between guiderail shaft 

and ball bearings from that on sliding guide rails. The linear guide system with 

rolling balls is the more popular and effective transmission system as the lower 

friction efficient (table), lower wear rate and less friction force induced at ball 

grooves when compared to the conventional guide with sliding contact interface 

(Wu, 2009). 

Table 2-1 Comparative characteristics of Rolling and Sliding Guideway (Sutar, 

2013) 

 

2.2.2 Categorisation of the Guiderail by Cross-section Shapes 

The following are different cross-section shapes of the guiderails: 
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1) Circular guiderail  (Figure 2-11) 

   Steel  material 

   Easy to manufacture 

   Simple structure 

   Have small size sample corresponding to CNC 

machines 

 

 

2) Triangle guiderail (Figure 2-12) 

  steel material 

  Wear concentrated on top surface, not equal 

distribution 

 Complicated to analysis the wear due to complex 

structure 

  Small size product not found  

 

3) Rectangular guiderail (Figure 2-13) 

 Steel material 

 Wear on flat top and side faces 

 Suitable for small size products 

 Complex to calculate or simulate 

 

 

 

 

 

4) Dovetail guiderail:  (Figure 2-14) 

 Suitable to equip with oil pump 

 Difficult to analyse with complex structure 

 More expensive 

 

 

 

 

 

Figure 2-11 

Circular Guiderail 

(Wei, 2010) 

Figure 2-12 

Triangle 

Guiderail (Wei, 

2010) 

Figure 2-13 

Rectangular 

Guiderail (Wei, 2010) 

Figure 2-14 

Dovetail 

Guiderail (Wei, 

2010) 
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5) Multiplex guiderail:  (Figure 2-15) 

 difficult to analyse with complex structure 

 The most stable but expensive type of guiderails 

 

 

 

2.3 Guiderail Accuracy 

Although CNC machines offer great precision and versatility in the fabrication of 

complex parts, machining is an innately slow and expensive process. 

Straightness errors in the linear stage are basic geometric errors inherent to 

machine tools and will be directly reflected in the workpiece (Deng, 2015). 

Attempts to improve the efficiency of machining processes must be tempered 

by the call for maintaining part accuracy. Therefore, precise allocation operated 

by machine guiderail to both the work piece and the machine tool is assumed 

as the prerequisite to high-resolution machining.  

Generally, there are four major error sources (Sparham, 2014): 

(1) Thermal expansion 

In CNC machine manufacturing, the linear positioning accuracy will inevitably 

suffer due to temperature changes which cause thermal deformation, as there 

are resources of the heat from surface friction on components, driving motors 

and tool cutting operation. (Heisel, 2006) Industrial CNC’s have evolved in 

various compensation features, such as feedforward and notch filters, 

disturbance observation and cancellation schemes (especially indirect drives), 

as well as torque ripple, geometric and thermal error compensation modules. 

(Kamalzadeh, 2010) 

(2) Machine wear 

Surface wear is the principal failure mode of traditional single-material guide 

rails. The tribological mechanism of the wear is complicated, the resources can 

be multiple. To prevent abrasion, new types of guide rails have been 

manufactured in these years with a wear-proof layer bonded onto a traditional 

Figure 2-15 Multiplex 

Guiderail (Wei, 2010) 
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elastic substrate (Wei, 2010). However, as soon as the surfaces of metal have 

relative friction behaviour, the process of wear starts.  

Wear between surfaces may be roughly divided into four categories (Angus, 

1957): 

a) Lubricated sliding wear: While in the CNC machining, the direction of 

table movement constantly reverses following the program command. 

Therefore, maintaining the state of a continuous oil film is more difficult 

than that of a rotating shaft. 

b) At the end of each stroke, the sliding component is momentarily at rest, 

random occasion may remain so for considerable periods of time (Majda, 

2012). This would possibly produce the local failure of the oil film, then 

change the tribological property and promote metallic contact between 

the two surfaces. Under such conditions, the possibility of surface tearing 

off is increased. 

c) Dry sliding wear: This type of wear in the case of a machine tool slide 

(both rolling friction mode and sliding friction mode) may arise from 

defectiveness, regional lubrication deficiency or uneven sliding/rolling 

surfaces. (Angus, 1957) In the initial stages, it may merely cause 

polishing of the surface to take place, but ultimately it tends to result in 

galling or tearing of the surface part and particularly accelerate the 

corrosive wear. 

d) Abrasive wear: Wear in which a component harder than the worn surface 

cuts and tears the surface to destruction (Wen & Huang, 

2008).Resistance to this form is dependent almost entirely upon the 

hardness of the material and the thickness ratio of the anti-friction casting 

surface (Wei, 2010). 

e) Fretting corrosion: The extremely localised damage that occurs is caused 

by the small amplitude of vibration, which does not permit the debris to 

escape from the initial contact zone (Angus, 1957). 

 

(3) Mechanical deviation (including tool error) 
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The mechanical deviation caused by geometric errors exerts a significant 

influence on the machining quality, and it is the major factors affecting the 

machine tool accuracy. The modelling to such deviation is studied (Figure 2-16) 

and the simulated data of the error such as joint kinematic errors (Figure2-17) 

are analysed. (Majda, 2012) Based on those efforts, methods of developing 

improved structures of the guide rail to reduce error sources and proposing 

compensation method for both the straightness and positioning error have been 

studied (Deng, 2015).   

 

Figure 2-16 Guide way configuration (bottom side); (a) detailed model, (b) 

simplified model, and (c) model FEM (Majda, 2012) 
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Figure 2-17 Characteristics of joint kinematic errors variant  (FEM calculation) 

(Majda, 2012) 

(4) Force acting on the part 

Forces acting on the parts as well as tool error and wear collectively constitute 

the remaining error percentage. (Sparham, 2014) The load of cutting force on 

the work piece is mainly from three aspects:  

a. Contact area between the cutter and the work piece: The greater the contact 

area present, the more actual cutting of material occurs, therefore more 

load.(Gorasia, 2009) 

b. Feed rate: Speed rate is the terminology refers that the speed of the 

workpiece moving towards a cutter. The feed rate proportionally increases the 

forces against the workpiece, especially while tangential to the cutter. 

c. The spindle rate: Meanwhile, the cutter spindle rate is positively proportional 

to the force. 
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2.4 Wear categorisation 

The wear metallic surfaces is almost invariably a cause of injury to the 

contacting surface- excessive wear causes, in sum, more damage than fracture 

(Eric, 1972). Wear is the undesirable removal of solids from a sliding or rolling 

component (Nallasamy et al., 2015). It is the principal failure mode of CNC 

machine guide rails. Determining the types of wear occur on the particular 

component is necessary to further analyse wear problem to it.  

There are six types of wear occurring on CNC machine guiderails. The wear of 

guide rails that are tightly protected and running stably in good working 

conditions is slow and mild and will be dominated by friction fatigue (Wen & 

Huang, 2008). 

(1) Friction fatigue wear: 

Mechanism: Friction fatigue is a common mechanism of fatigue wear, which 

refers to the fatigue failure of surface asperities (Figure 2-18) caused by 

repeated contact and consequent cyclic stress of the asperities under normal 

pressure and sliding friction (Stachowiak & Batchelor, 2006). Meanwhile, the 

particle wiped off from the surface would also accelerate the speed of wear.  

 

Figure 2-18 Friction fatigue wear on the round guiderail (Bremer, 2014) 

Effects: It usually results in a smoother, low-wearing surface on guiderails. 

(Fitch, 2013) 
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(2) Grinding abrasion wear: 

Mechanism: It is mainly caused by particles between the slide and support of 

the guiderail when the slide moves under high stress (Fitch, 2013), many very 

small grooves are produced at relatively low speed across the metal surface 

(Chandrasekaran, Natarajan, & Kishore, 1991) . 

 

Figure 2-19 View of grinding abrasive wear (Fitch, 2013) 

Effects: there will be scratches on the surface of guiderail (Figure 2-19), 

making the slide goes deviant from the straight line in particular positions 

(Burdekin, Cowley, & Hemingray, 1971). 

(3) Corrosive wear:  

Mechanism: Corrosive wear phenomena are apparent in machinery. As can be 

observed from Figure 2-20, it is the corrosion that happens on the shaft with the 

material of AISI 316 and the diameter of the shaft is 40mm. It exists with 

lubricating systems or working in the severe environment. Most lubricants 

contain corrosion inhibitors that protect the guiderail from the damage. It is 

caused by the coolant, lubricant or workshop with corrosive ingredients 

(Giourntas, Hodgkiess, & Galloway, 2015).  
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Figure 2-20 Corrosive wear on the shaft surface (Waterhouse, 1972) 

Effects: the corrosive wear is often too small to distinguish individually and 

usually cause unsmooth behaviour or small range vibration to the running slide. 

(4) Rusty wear: 

Mechanism: The existence of rust wear mainly depends on the humidity of the 

working area. Due to the oxidative chemical reaction of the metal surface in the 

presence of moisture (water mainly). The wear involves material removal or loss. 

It is the dissolution of metal in an electrically conductive liquid by low amperage 

and may involve hydrogen embrittlement as well. The rusting speed can be 

increased with increasing temperature rising and other relevant factors.  

Effects: the abnormal moving behaviour caused by rusty wear is similar to 

corrosive wear but more violent. The rusty wear will cause further damage to 

guiderail if keep on running the machine. 

(5) Fretting wear: 

Mechanism: Fretting wear (Figure 2-201) is due to reciprocating sliding of 

extremely low amplitude because of vibration (Brosend, 2012). Mechanically, it 

can be diminished by reducing or stopping vibration by tighter fit or higher load. 
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Another solution is improving the lubrication between surfaces by the rougher 

surface finish. Take lubricant into concern, frequent re-lubricating or choosing 

the oil with lower viscosity can prevent guiderail from getting severe damage 

from the wear. 

 

Figure 2-21 The fretting wear on the guide rail surface (Brosend, 2012) 

 

Figure 2-22 Scanning electron micrograph of fretting damage on the aluminium 

X54  (Brosend, 2012) 

Effects: The fretting wear (Figure 2-22) causes unsmooth behaviour or small 

range vibration to the running slide. 

20mm 
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Besides the above major wear happening on CNC machine, there are also 

some other types of wear which participate in the guiderail degradation 

behaviour in different tribological occasions. 

When the slide works at high speed, the temperature will increase. The 

dominant mechanism of the wear changes (Tan, Zhang, & Hu, 2015). Adhesive 

wear is one of the further consequences. The adhesive wear is a kind of 

lancinating damage to the surface of guiderail. Because of high temperature 

and pressure on the slide surface, the oxidation film or liquid film being 

squeezed out, then the molecular absorption happens on the naked surfaces 

between the slide and support. Later moving behaviour of the guiderail causes 

lancinating damage (Hou, Chen, & Zheng, 1982). Meanwhile, the continuous 

removal of surface films makes the metal surface has chemical reaction with the 

additive of lubricant oil, which is called polishing wear. 

When the slide works in low speed (rubbing speed), it leads to changes in the 

wear mechanism and the real contact configuration (Tan, Zhang, & Hu, 2015). It 

will cause time-dependent but irreversible deformation which is called ‘‘plastic 

deformation’’ and It also leads to the crawl appearance on the guiderails. The 

crawl appearance is the typical mechanical self-excitation. It is the phenomenon 

that happens under sliding friction. The slide changes running speed 

periodically. Such behaviour speeds up the wear of guiderail (Wei, Li, & Lee, 

2010). 

2.5 Friction Fatigue Wear 

In the thesis, due to the typicality of the friction fatigue wear, such wear is 

chosen as the object. This section mainly focuses on illustrating the mechanism 

and effect of the wear. 

2.5.1 Tribological Mechanism and Properties 

 

Friction is the "contact force," a force between two surfaces that are in contact 

that resists the sliding/rolling motion of one surface over the other (Deng, 2015). 

The friction force exerted by one object sliding/rolling over another object is 
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always parallel to the contact surface between the two objects and always 

occurs in a direction opposite that of the motion. 

The modern theoretical understanding of friction attributes the friction force to 

the atomic forces of adhesion between atoms or molecules on the surfaces of 

the two materials. These forces are similar to the electronic bonding forces that 

hold the individual atoms together in liquids and solids. 

During the friction process, most of the excess energy is transformed into heat 

by the friction force, though a small part of the excess energy actually abrades, 

or wears away, the surface of the weaker of the two materials. Friction causes 

most mechanical objects to wear out as a result of abrasion (the loss of material 

as the surfaces in contact interact with each other) (Deng, 2015) and because 

of the heating produced as one surface slides over another. 

2.5.2 Static/Kinetic Friction and the Friction Coefficient 

There are two types of friction, "static friction" and "kinetic friction."  

Static friction occurs between two surfaces that are in contact but are not 

moving on each other because static friction provides the force that resists the 

motion of the objects against each other. However, there is a maximum force 

that the two surfaces in contact can exert. If the drive supplies enough power to 

overcome this force, the object will begin to move (Yanqing, 2015). 

The maximum force of static friction is modelled by as the coefficient of static 

friction, a quantity that must be measured for each type of material sliding on 

another type of material, and the "normal force," which is a measure of how 

hard one surface is pushing on the other. 

Kinetic friction occurs when one of the surfaces of objects is moving on the 

other one. Similar to static friction, kinetic friction models as the coefficient of 

kinetic friction. For most materials, the coefficient of kinetic friction is less than 

the coefficient of static friction, so it requires a stronger push to start the object 

in sliding motion than it does to keep it sliding across the table at a constant 

speed (Yanqing, 2015 and Wu, 2009). 
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However, in the field of rolling friction, the tribological property and mechanism 

are different from which in the field of sliding friction. The rolling friction 

coefficient “k” is defined as the ratio between rolling friction moment and normal 

load: 

𝑘 =
𝐹𝑅

𝑊
= 𝑒                                                                           (2.1) 

In which F is the pushing force, R is the diameter of the rolling object and W is 

the load perpendicular to the rolling flat surface (Figure 2-23). 

 

Figure 2-23 Module of rolling friction (Yanqing, 2015). 

Therefore, according to the rolling friction principle, there is no distinguish 

between static friction and kinetic friction. Only on the occasion with the 

increasing of surface roughness and following the tribological property change, 

there will be an intermediate state between rolling and sliding friction. Only in 

such condition, the analysis to static friction such as stick-slip phenomenon 

makes sense. 

2.5.3 Effects of Friction Wear 

The analysis of the rolling friction theory and metal wear tribology property are 

presented (Rabinowicz, 1965).  As soon as the metal surfaces touch each other, 

friction wear process begins. The module of friction fatigue wear asperity in both 

sliding and rolling condition is also provided (Tan, Zhang, & Hu, 2015). 

F 
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According to the analysis of Eric. N. Simons (1972), the bearing metal of rolling 

guide rail must not be so hard as to wear the shaft.  

Therefore the effects of guiderail wear by time can be summarised as below: 

a. To the guiderail shaft 

The most frequent used section on the guiderail would have roughness 

increase. Then there follows the metal grind out by continuous cycling stress. 

b. To the bearing balls 

The non-smooth surface and deformation of the balls against round shape will 

occur as well. 

Meanwhile, the particle wiped off from the surface would also accelerate the 

speed of wear.  

2.6 Monitoring Solutions 

The monitoring system contains two main functions: measurement and data 

collection. Monitoring systems utilised in tool wear monitoring have been 

studied and developed by researchers in recent decades. Girardin et al. (2010) 

developed a system to analyse instantaneous variations in rotational frequency 

so as to observe milling operation. Luo (2004) analysed the formation 

mechanism of tool wear and presented a complete solution to calculate wear 

using a ball end cutter for high-speed cutting. Ratnam & Shahabi (2008) 

developed a vision system using high-resolution CCD camera and back-light for 

the on-line measurement of tool wear. Some of the module or experiment rigs 

on predicting tool wear and sensing tool change have invented. Guo, Q (2014) 

developed a system to predict CNC machine tool wear by monitoring cutting 

force and controlling cutting conditions and complete the prediction by using 

PPR (Project Pursuit Regression) system. 

However, the research and specialised guide rail wear system establishment 

are relatively rare. The following are instruments which have the possibility to 

utilise in the guide rail wear in monitoring systems. 
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2.6.1 Interferometer 

 

Figure 2-24 Optical mechanism of interferometer  (Leach, Flack, Hughes, & 

Jones, 2009) 

Mechanism: 

Most interferometers use light or some other form of electromagnetic wave. It is 

the measurement method product using the phenomenon of interference of 

waves (usually light, radio or sound waves) and extracting information from the 

wave (Figure 2-24). When two waves with the same frequency overlap, with a 

phase difference in between, the result shows the meaningful property. Waves 

that are in phase will undergo constructive interference while waves that are out 

of phase will undergo destructive interference (Leach, Flack, Hughes, & Jones, 

2009). 

Also, interferometry extensively uses for displacement measuring, calibration 

and mechanical stage motion control in precision machining. While monitoring 

2-dimensional movement information, the interferometer system has two linear 

and angular column-referenced interferometers (Leach, Flack, Hughes, & Jones, 

2009). 

https://en.wikipedia.org/wiki/Light
https://en.wikipedia.org/wiki/Electromagnetic_wave
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Phase_(waves)
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2.6.2 Cylindrical Square and Dial Gauge 

Cylindrical square mechanism: 

Cylindrical square is the most common instrument used for checking square, 

flatness of machining parts. It is the tool with a cylinder shape, a hardened 

material made and the end is lapped to 90° angular accuracy. The 6" cylindrical 

squares have an accuracy of ±.0001". 

 

Gauge mechanism: 

Gauge is the instrument used to accurately measure small distances 

and angles, amplify the data to make them more obvious to obtain, or use 

digital cable to transmit the data to computer. 

When the CNC machine is under routine maintenance, cylindrical square is 

equipped on the surface of the slide or drill holder (depend on the checked 

surface). It measures from the precision surface box with a dial indicator against 

the cylindrical square, rotate the table 360 ° and record the value of the 

measurement. 

2.6.3 Dial Gauge with Digital Data Output 

The type of digital data output dial gauge has the digital display screen. The 

data can be transmitted by wire with RS232 port, sorted by the software 

installed in computer and displayed via excel document. The monitoring range 

is from 0 to 12.7mm, with resolution of 0.001mm. However, the data sampling is 

manually but not automatic with sampling frequency. 

https://en.wikipedia.org/wiki/Angle
https://en.wiktionary.org/wiki/amplify
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2.6.4 Laser Tracker 

 

Figure 2-25 Laser tracker with a platform (Kong, 2012) 

The laser tracker is the most effective and precise equipment implemented in 

the machine tool measuring or large object measuring (Figure 2-25).  The 

equipment contains two parts, the laser tracker settled on a tripod and ball 

probe as a reflector. When taking the measurement, the laser tracker firstly set 

up a on a tripod and the connection between those two parts are established. 

Then the operator removes the ball probe from the base of the laser tracker and 

carries it smoothly to the object being measured, the tracker automatically 

follows the movement of the ball probe during the measuring process. 

2.6.5 Gradienter 

Gradienter is the micro meter, attached to transit's telescope which allows the 

angle of incline to be measured in terms of the angle's tangent instead of in 

degrees and minutes (Mross, 2015). 

https://en.wikipedia.org/wiki/Tripod
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2.6.6 Optical Autocollimator 

 

Figure 2-26 Typical Optical autocollimator (the reflection part)  (Mross, 2015) 

An autocollimator (Figure 2-26) is an optical instrument for non-contact 

measurement of angles. There are typically two types of autocollimators 

implemented in the industries, the visual autocollimator and Electronic one. 

They both work by projecting a laser beam onto an aligning target mirror, while 

measuring the flatness, deflection of the returned image against a scale which 

using an electronic detector produces the deviation from originally settled 

straightness. A visual autocollimator can measure angles as small as 0.5 arc 

second, while an electronic autocollimator can be up to 100 times more 

accurate (Mross, 2015). Electronic l autocollimators are used as angle 

measurement standards, for monitoring angular movement over long periods of 

time and for checking angular position repeatability in mechanical systems 

(Morel, 2015). 

2.6.7 Capacitance Probe 

Non-contact capacitive sensors work by measuring changes in an electrical 

property called capacitance. Capacitance describes how two conductive objects 

with a space between them respond to a voltage difference applied to them. 

(Lion, 2015) When a voltage applies to the conductors, an electric field is 

created between them causing positive and negative charges to collect on each 

object (Figure 2-27). If the polarity of the voltage is reversed, the charges will 

also reverse.  

https://en.wikipedia.org/wiki/Optical_instrument
https://en.wikipedia.org/wiki/Angle
https://en.wikipedia.org/wiki/Mirror
https://en.wikipedia.org/wiki/Arcsecond
https://en.wikipedia.org/wiki/Arcsecond
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Capacitive sensors use an alternating voltage which causes the charges to 

reverse their positions continually. The moving of the charges creates an 

alternating electric current which is detected by the sensor. 

 

Figure 2-27 Applying a voltage to conductive objects (Lion, 2015) 

Applying a voltage to conductive objects causes positive and negative charges 

to collect on each object. It creates an electric field in the space between the 

objects. (Lion, 2015) 

The product of the capacitive sensor can acquire resolution of 0.05nm, 

measurement range from 50um to 2mm. The diameter of the smallest sensing 

area may reach to 0.5mm. (Lion, 2015) 

2.7 In-process Monitoring Solution 

2.7.1 Definition of In-process Monitoring 

Doing the monitoring during the working period of CNC machine (Vacharanukul, 

2008), pre-after drilling/milling on workpiece but not during the working period. 

The in-process monitoring solution is with advantages of (Bosetti & Bruschi, 

2010): 

a. No need to deliberately exclude the outer disturbance; 

b. No need to dismantle the components of CNC machine; 

2.7.2 State-of-art of the In-process Monitoring Technology 

The major research of the guiderail wear measuring approaches is mainly 

based on the mode of static measuring or “pre-after” calibration solution. Deng 
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et al. (2015) developed a linear stage with improved structures for reducing the 

error sources and proposed a macro–micro compensation method for the 

straightness motion error to support the further compensation to straightness 

error. Bosetti and Bruschi, (2010), discussed the concept of in-line monitoring to 

machine cut surface, however, still solving different situation to guiderail wear 

monitoring system. Hongxiang, et, al. (2015) have studied on the shaft 

roundness in-situ inspection using a V-block displacement probe (Figure 2-28). 

Although from the Abbe error control prospect, the solution successfully avoid 

such problem, but the contact of two surfaces would still bring extra wear and 

affect the quality of the system (Figure 2-29). Therefore, according to the 

literature, there is no effective solution particularly to the case of in-process 

monitoring on guiderail wear. 

 

Figure 2-28 Geometrical principle of the in-situ measuring mechanism (Bosetti 

and Bruschi, 2010) 

 

Figure 2-29 Demonstration of pin chasing grinding in an oscillating grinding 

machine (Bosetti and Bruschi, 2010) 
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2.7.3 Guiderail Wear In-process Applicable Solutions Study 

Monitoring the guiderail wear in-process monitoring design should face towards 

two main obstacles: 

(1) The outer disturbance during the tooling of the CNC machine 

(2) The uncertainty of measurement result which is from geometric error, 

assembly tolerance, resolution limitation and measurement error (Lou, 

1997). 

Referring to such assumption, an idea from electronic signal process field has 

brought into consideration. In the field RF characterisation, Brocard et al. 2014 

have applied the technology of noise coupling to solving the 3D digital signal 

transmission. Generally, the solution is splitting the original MOS into dopes and 

sorting the signal by coupling circuit and completing the offset to the noise. 

Bronckers, et al. (2010) utilised a referencing signal to do the offset to 

independently adopted signal to filter the unnecessary noise. Helmy & Ahmed 

A, (2008), also mentioned the technology of coupling the noise to both RFIC 

analogue signal and the DC power signal cross talk. 

2.8 Geometrical error budget 

Definition to error budget 

The error budget is a necessary parameter for the designing of the rig and 

analysing to the experiment result. It calculates each type of possible error from 

various resources and the distribution of each one. After this, it accumulates 

each one error together and carries out the result of possible tolerance of the 

whole system. It provides estimation to potential errors with a machine axis that 

leads to deviations from the desired motion (Kong, 2012). 

In the field of geometric error analysis, the error resources can classify as the 

following: 

a) Moving behaviour straightness error: In guiderail behaviour case, it can 

be roughly categorised as rolling, yawing and pitching (Figure 2-30): 
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Figure 2-30 The deviant motions of a guiderail (Kong, 2012) 

b) Rolling element bearing error: the motion of linear bearing balls is not 

perfectly aligned. 

c) Thermal growth: the thermal expansion of the object being measured 

and the deformation of the instrument used to measure it.  

d) Measuring approach repeatability and reproducibility:  

e) Repeatability: It is evaluated by the difference of repeated measuring 

result while the entire objective situation is stable and the measuring 

solution is the same. 

f) Reproducibility: It is the standard to evaluate if the measuring solution 

can be reproduced by other operators while the object condition is the 

same. 

g) Alignment error: It represents the error brought by the deviation of 

measuring tool while in the measuring. 

h) Parallax error: It results from viewing a marker, which is separated by 

some distance from the scale or object being measured, at an incorrect 

angle. 

i) Abbe error: The Abbe error is the principle that illustrates error results 

from alignment of machine axes if the measurement scale is not co-axial 

with the axis of measurement. 

j) Resolution error: Due to the limitation to the resolution of measuring 

instrument, it can be treated as rounding error, which the value would not 

over than half of the resolution value. 
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k) Calibration error: The error of the measuring instrument inherited from 

calibration process. 

2.9 Summary 

2.9.1 Study Object Selection 

2.9.1.1 CNC machine 

 

Figure 2-31 CNC machine categorisation 

Therefore, according to the categorisation in Figure 2-31, due to the 

extensive use, simple and flexible configuration of the CNC machine, 

turret mill and knee mill are chosen to be the study project. 
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2.9.1.2 Rolling circular guide rail 

1) The selection to the circular guide rail with rolling ball bearings to the table 

is correspondent to the selected CNC machine type. 

2) Rolling guiderail is the most widely utilised type of guiderail in the target 

CNC machine type; 

3) Rolling guiderail is with a relatively low coefficient of friction, represents the 

trend in the future. 

4) Round cross section guiderails are the space-saving type, allows compact 

design. 

The meet to the requirement of such type of guide rail will be discussed in 

section 3.7 of the literature summary. 

2.9.1.3 Friction fatigue wear and symptoms 

The following chart (Figure 2-32) is the categorisation of CNC machine guiderail 

wear: 

CNC Machine guiderail wear 

grinding 
abrasion

corrosive 
wear

rusty wear
Fretting 

fatigue wear
friction fatigue 

wear

A. smooth curve;
B. vibration;
C. non-smooth
    behaviour;

A. vibration;
B. non-smooth 
     behaviour;

A. vibration;
B. non-smooth 
     behaviour;
C. deviant 
     behaviour;

A. vibration;
B. non-smooth 
     behaviour;

A. vibration;
B. non-smooth 
     behaviour;

 

Figure 2-32 CNC machine guiderail categorisation 

The reason for choosing friction wear is because referring to the conclusion 

from the literature review, researchers in the industry highly agree with the 

major issue of the friction wear to guide rail. Therefore, friction fatigue wear is 

the major one that is worth studying. 
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The effects and symptoms of friction wear can be summarised as follow (Table 

2-2): 

Table 2-2 Effect of Wear to each Component 

Component Effects 

Guiderail 1. coating surface& part grind out on particular length;  

2. roughness value on guiderail increases; 

Bearing balls non- smooth surface & deformation against round shape; 

The symptoms of the friction wear can be concluded as below: 

      a. smooth curve on particular length; 

      b. small range vibration happens on random positions; 

      c. non-smooth behaviour. 

2.9.2 Research Approach Discussion 

2.9.2.1 Monitoring solution to experiment 

According to the literature study in monitoring approaches, capacitance probe 

can be the preferable choice for the following reason: 

1) the instrument is with high resolution to meet the discussed level 

of modern CNC machine resolution; 

2) the instrument is with the function of automatic signal sample and 

output and high signal sample frequency; 

3) the instrument is the type of contactless measuring machine 

which will not lead to extra noise by touching reference surface.  

2.9.2.2 Error budget 

Since the resolution of the CNC machine can reach the micrometre level, the 

building of a physical experiment rig would unavoidably bring in an extra 

geometric budget. Under this circumstance, the analysis to error budget is 

necessary to the experiment design. The related factors are: 
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a. Moving behaviour straightness error 

b. Rolling element bearing error 

c. Thermal growth 

d. Measuring approach repeatability and reproducibility 

e. Alignment error 

f. Parallax error 

g. Abbe error 

h. Resolution error 

i. Calibration error 

2.9.2.3 Research gap: in-process monitoring 

1) Nowadays monitoring solutions are mainly regular checking (1 year/ 6months 

regular check). Part recalling happened due to lack of in-process wear 

monitoring. 

2) Present monitoring method is still way too complicated and inconvenient. It 

needs three prerequisites:  

a. no outer disturbance while checking 

b. taking a long period for wear monitoring 

c. components need dismantling in advance, it causes further re-assembly and 

calibration work. 

With the realisation to in-process monitoring, the above problem all can be 

solved. 

 

2.9.3 Requirement 

The following Table 2-3 presents the detailed requirement: 
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Table 2-3 Requirement of the Project 

TITLE DATA SOURCE 

Wear Measurement 

Resolution 

1μ m BS ISO 230-2:2014 

Linear Position 

Measurement 

Resolution 

1mm Linear sensor manual 

Accuracy 1μ m/m BS ISO 230-2:2014 

Measurement Range +20μ m BS ISO 10791-1:1998 

Experiment Rig Length 300-500mm CNC Machine 

Brochures 

Rig Components Scales Save space& easy to 

equip 

Stiffness; 

Material should be the 

same or with ; 

Literature: (Deng, Jin, & 

Zhang, 2015) 

Data Collection Easy to collect (raw data 

transform to digital data) 

product documents 

0.001 second sampling 

precision 

Vs/r 

(Vs: speed of slide 

movement; 

R: resolution settled) 
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TITLE DATA SOURCE 

Motor Speed (linear) Capable of drive the ball 

screw with 50mm/s ~ 

1m/s; 

Enough smoothness while 

in lowest speed; 

Literatures& Calculation: 

(Deng, Jin, & Zhang, 

2015) 

Error Budget Geometric error budget to 

the physical rig should be 

analysed and taken into 

account while analysing 

the data. 

(Kong,2012) 

In-process Monitoring Option a: System be 

capable of resist to the 

outer disturbance. 

Option b: with system 

function of coupling or 

offset to the noise. 

(Bosetti & Bruschi, 

2010): 

Take Costs into 

Account 

Low costs ; 

Easy to get the product 

Constraint to 

experimental validation 
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3 AIM AND OBJECTIVES 

3.1 Aim 

The aim of the research is to establish a system to realise the in-process 

monitoring of the wear of guiderails on CNC machine, analyse and visualise the 

wear efficiently. 

3.2 Objectives 

The objectives of this research are listed as follows: 

a. Identify and categorise types of the wear on CNC machine guiderail, then 

select the major type of wear as the study object in the research. 

b. Study the mechanism, effect and conclude the symptoms of the wear; define 

the requirement of an industrial monitoring system for further study 

according to the symptoms of the wear. 

c. According to symptoms and requirements, design proper approaches to 

monitor each particular type of symptoms. 

d. Design the in-process part referring to the characteristics of the disturbance 

that different from static monitoring solution. 

e. Integrate and assess the system through systematic experiments. 

f. Complete the validation to the proposed solutions through expert judgement. 
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4 METHODOLOGY 

For the purpose of implementing the research, the methodology is proposed as 

follow. As can be seen in the Figure 4-1, the methodology is divided into four 

phases with actions and deliverable. 

1

2

3

4

PHASE DELIVERYACTION

Literature Review

Study Scope Define

System Rig Design

(a) Literature 
Review Report

(b) Mind Map

(c) Requirement

(a) Rationale 
of choice

(b) 2D, 3D Drawing & 
Parameters

(c) Error Budget

Design of Experiment Experiment Procedure

Validation to Theory

Experiment Data Record 
& 

Analysis

Discussion
&

Conclusion

 

Figure 4-1 Research methodology 
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In the first phase, according to settled Aim & Objective, the literature review 

referring to different areas has been carried out. Referring to such review, state-

of-art to the research area has been defined. It is the solid support to the 

contribution to new knowledge in this research. Concerning the designing of the 

system, the thesis has made study and discussion on multiple options to each 

component of the future design in the review part.  

The literature review report is carried out in this phase, representing as the 

exploration and definition to the study scope. Meanwhile, the summary in the 

report would theoretically support the following system rig design part.  

The mind map in Figure 4-2 is another deliverable in the first phase. It contains 

structured outline of the whole literature review and clearly illustrated the main 

content of the research. The concept of the research idea can be approached 

step by step through the details of mind map. In the mind map, the relationship 

among each study object and the selection to the study scope is clearly 

represented. As can be seen from the mind map, those parts with red texts are 

the ones included in the study scope, those with black texts are mentioned and 

have given a briefing in the literature reading as well. Those contents with 

rectangular lines are the key points which the research focuses. 

According to the conclusion of the literature review and defined Aim and 

Objectives, the requirement to the design is settled. It contains the resolution, 

accuracy and other crucial standards. It is regarded as the fundamental 

principle to rig components, monitoring solutions selecting and also what the 

whole system design eventually meets.   
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Non-
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 & 
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solution
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Design
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Experiment 
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Figure 4-2 Mind map of the Project 
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In the second phase, referring to the settled requirement, it clearly discussed 

the rationale of choices to components belonging to each part. Comparison 

among all the applicable choices and reasons to each decision are provided as 

well. By such conclusion, the system experiment rig is built up, 2D and 3D 

drawings are represented with detailed parameters. Above all, the rig design 

part illustrated the error budget to the established real rig with the calculation 

result of expanded uncertainty. 

In the third phase, the detailed experiment content and steps are carried out. It 

divided the whole plan into each independent experiment and arranged them in 

sequence. Each step has declared experiment title, object and content. The first 

step to achieve is the establishment of the rig which strictly follow the design, 

following with calibration based on the study of error budget. The second step is 

the monitoring system building up and function test to make sure the proper 

working of the system. The third phase is wear simulation which makes wear in 

different levels of degradation on the guiderail samples, then follows the 

monitoring system implementation part to acquire the data and make a contrast 

to the wear tested by high resolution equipment to verify the result from the 

experiment. Above all, during the wear test, in-process monitoring solution is 

adopted and tested by deliberately making external disturbance. 

In the fourth phase, the theory validation part presents the result of analysis to 

the experiment data and conclusion to the discussion. 
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5 DESIGN OF THE EXPERIMENT 

5.1 Introduction 

According to the conclusion of literature review, the wear on CNC machine 

guiderail is to the micrometre level, the resolution of the monitoring system and 

the control to the accuracy is important. On the other hand, in the experimental 

validation part (Figure 5-1), uncertainty resources and the in-process 

monitoring solution need to be concerned. Therefore, how to discriminate 

between the wear signal and deviation caused by other aspects and proper 

designing to the experiment is of importance. 

In this part, the monitoring objects and specific measuring strategies are 

discussed and settled. Then the designing of each part of the rig with proper 

analysis and calculation is illustrated. In each part of the rig, the uncertainty 

resources are discussed and the uncertainty value (combined standard 

uncertainty and expanded uncertainty) is calculated. The thesis represents the 

novel design of the in-process monitoring strategy based on both the state-of–

the-art of the mechanical monitoring solution and the idea of electronic signal 

coupling approach, and then follows the experiment plan and results of the 

validation of the hypothesis of the design. 

 

Figure 5-1 The structure of the experiment design and validation 
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5.2 Monitoring Objects and Approaches Settling 

The study objects and corresponding appropriate measuring solution shall be 

defined in advance of the designing and implementation. This part of the thesis 

illustrated the three symptoms of the wear and clarified the particular 

approaches to be the guidance of the following rig design. 

5.2.1 Friction Wear Symptoms 

According to the conclusion of the literature reading, the effects and symptoms 

of friction wear can be summarised as the following Table 5-1: 

Table 5-1 Effects and Symptoms 

Component Effects 

Guiderail 1. roughness value on guiderail shaft surface increases, 

because of the repeating abrading between ball bearing and 

shaft surface; 

2. further coating surface& part grind out and the curving 

concave along the trail of moving balls exists as time goes by; 

Bearing balls 1. non- smooth surface on each ball appears caused by the 

abrading between metal;  

2. material wiped off over time and leads to deformation 

against round shape; 

The symptoms of the friction wear can conclude as below (Figure 5-2): 

Frist stage: 

    a. non-smooth behaviour;  

    b. small range vibration happens on random positions, which with the 

frequency of 1kHz~2kHz (Wu, 2009); 

Second stage: 
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    a. smooth curving deviance against straightness of the movement of 

particular length, from 10um to 50um (BS ISO 230-2:2014). 

    b. the vibration gets severe, with higher amplitude but same level of vibration 

frequency. 

 

Figure 5-2 The symptoms caused by friction wear 

5.2.2 Corresponding monitoring solution 

(1) To the non-smooth behaviour of the rolling table, the change to the 

current of the stepper motor or the vibration of the movement can be 

monitored to analysis the roughness increasing. 

(2) To the small range vibration, the optical equipment or other high-

resolution distance measuring equipment mounting on the rolling table 

can be utilised. 

(3) To the deviation of the movement on particular length, the optical 

equipment or other high-resolution distance measuring equipment 

mounting on the rolling table can be utilised as well. 
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5.3 Physical Experiment Rig Design and Build up 

According to the above summary, the designing process to the complete 

monitoring system is represented, each part is analysed to anticipate the 

uncertainty for further calculating of the error budget. 

5.3.1 Guiderail, Ball Bearing and Ball Screw 

5.3.1.1 Design Consideration 

1. The length, the diameter of the cross section, especially the shape of the 

guiderail shall be correspondent to the type of CNC machine chosen to 

study. 

2. The tribology mode of the moving table should be chosen by taking the 

mainstream of the component selection in the CNC machining industry 

into account. 

3. It is necessary to consider the solution of fixation to both the guiderail 

and the ball screw, to minimise the stress caused by the equipping.  

4. The thermal deformation of each component should consider. 

5. The deformation caused by the joining of the ball screw through moving 

table should consider as well. 

5.3.1.2 Instrument Selection and System Component Parameters 

1) According to the technical document of the CNC machine (Danford, Matthew, 

2007 and Gorasia, 2009), the guiderail utilised on the keen mill is circular ones 

in major, some use triangular ones or rectangular ones. The length is from 

340mm to 800mm, which with the diameter of the circular ones is from 16mm to 

25mm. Therefore the parameter of the selected guiderail, ball bearing and ball 

screw is shown on the below table 5-2: 
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Table 5-2 Parameters of the components 

 Length Diameter Number Tolerance 

Shaft 500mm 16mm 2 0 ~ 11μm 

Ball Screw 510mm 

20mm (outside) 

16mm (inside) 

1 +20μm 

Ball 

Bearing 
44mm 3.175mm 

2 bearings        

50 balls in 5 

rows 

0 ~ -9μm 

 

 

Figure 5-3 Configuration of the guiderail and ball screw 
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Figure 5-4 Configuration of the ball bearings 

2) While equipping the guiderail rig, the base shall settle on a flat marble base 

to make sure the equipping against deviation. The guiderail shaft and the ball 

screw are fixed with supports on each side. All the components are fixed with 

bolts on the panel (Figure 5-4). 

The instability caused by vibration from the motor and the rolling table may 

bring deviation to the parallelism of the shafts and ball screw (Figure 5-5). 

 

Figure 5-5 The deviation to the parallelism of the guiderail shafts and the ball 

screw 

Therefore, building up a frame to the whole system is necessary. The 

rectangular frame shows in Figure 5-6. The bars of the frame is aluminium and 

with the inner structure shows in Figure 5-7. 
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Figure 5-6 The frame built up for the rolling system 

 

Figure 5-7 The cross section of the frame material (aluminium) 

The rig frame (including the aluminium frame and the foundation of driving 

system) is based on an experiment rig of PHD program and revised in this 

project. The structure parameter is shown in the following figures from Figure 5-

8 to Figure 5-9. 
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Figure 5-8 The frame and the rolling system equipped part 1 

 

Figure 5-9 The frame and the rolling system equipped part 2 

5.3.1.3 Uncertainty Analysis 

The error resources and the value of uncertainty are as following: 

 Frame straightness error: 

In this section, the tolerance is defined as t, length of the structure is l. 



 

66 

Since the tolerance of the chosen aluminium structural frame is 0.3mm 

maximum for 2000mm long, the width of the frame is 158mm, therefore 

the value of the error is:  

𝑢𝑓 = 𝑡 ×
𝑙

2000
= 0.3 ×

158

2000
= 0.023𝑚𝑚                                 (5.1) 

 Guiderail support base panel flatness & assembly error: 

Since the flatness tolerance of the chosen aluminium panel is 0.1mm 

maximum for 1000mm long, therefore the value of the error is:  

𝑢𝑝𝑓 = 𝑡 ×
𝑙

1000
= 0.1 ×

100

1000
= 0.01𝑚𝑚                                   (5.2) 

Since the deflection permissible of the aluminium panel with 4mm 

thickness is±1%, therefore the value of the assembly error is:  

𝑢𝑝𝑎 = 𝑡 ×
𝑙

1000
= 0.01 × 4 ×

100

1000
= 0.004𝑚𝑚                             (5.3) 

 Support error& assembly error: 

According to the data sheet of the linear shaft support, the tolerance of 

the support is 0~0.02mm. Since there are two shaft supports, the value 

of support error in the system is 0.04mm. The value of the assembly 

error is: 

𝑢𝑠𝑎 = 𝑡 ×
𝑙

1000
= 0.01

2⁄ × 8 ×
48

1000
= 0.00192𝑚𝑚                          (5.4) 

 Shaft error: 

According to the data sheet of the linear shaft, the tolerance of the shaft 

is 0~0.011mm. Since there are two shaft supports, the value of support𝑢𝑠 

error is 0.022mm. 

 Ball bearing shell error: 

According to the data sheet of the ball bearing, the tolerance is 0~ - 

0.013mm. Since there are 2 shaft supports, the value of the support 

𝑢𝑏error is 0.026mm. 

 Table error and assembly error: 

Since the flatness tolerance of the chosen aluminium panel is 0.1mm 

maximum for 1000mm long, therefore the value of the error is:  

𝑢𝑝𝑓 = 𝑡 ×
𝑙

1000
= 0.1 ×

158

1000
= 0.016𝑚𝑚                             (5.5) 

Since the deflection permissible of the aluminium panel with 4mm 

thickness is±1%, therefore the value of the assembly error is:  
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𝑢𝑝𝑎 = 𝑡 ×
𝑙

1000
= 0.01

6⁄ × 24 ×
158

1000
= 0.006𝑚𝑚                             (5.6) 

 Table moving deviation error: 

The Deviation of the moving table can be separated into 3 directions 

following X, Y and Z directions, according to the manual of ball bearings, 

the tolerance of the ball bearing is 9µm. Therefore the deviation can be: 

X-direction error: 𝑢𝑏𝑥 is 0.009𝑚𝑚; 

Y-direction error: 𝑢𝑏𝑥 is 0.009𝑚𝑚; 

Z-direction error: 𝑢𝑏𝑥 is 0.009𝑚𝑚; 

5.3.2 Drive System 

The driving system is connected to the ball screw to drive the table move to 

align with X axis repeatedly, to simulate the movement in actual CNC machining 

process. 

The foundation of driving system is also based on the experiment rig of PHD 

program owned by Dr Cristobal. 

5.3.2.1 Design Consideration 

a. The movement of the motor should be smooth enough on the settled 

speed. 

b. The propulsion of the motor should be just above the necessary kinetic 

driving force but should not higher than one order of magnitude because 

the over high propulsion may overcome the phenomenon of unsmooth 

behaviour caused by wear. 

c. The motor shall be controlled by a driver. The driver is capable of settling 

the moving speed in advance. It is to change the moving speed 

according to the experiment plan. 

5.3.2.2 Instrument Selection 

1) Comparison between stepper motor and servo motor 

Stepper Motor: Stepper motor is the type of open-loop control motor, the 

rotation of the motor is controlled by the driver and the control unit, usually with 
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ARDUINO program. The controller transfers the electric pulse signal to angular 

displacement. It rotates by steps according to the pulse period. 

The features of the stepper motor are: 

a. Well sustainability: Since the stepper motor would be under relatively firm 

retentive force supplied by the magnetising current. Therefore the 

sustaining to stasis would achieve by stepper motor without having a 

mechanic brake. 

b. Easy to achieve angular control and speed control, the angular is positive 

to the pulse. 

c. With high torque and well responsiveness. 

d. The error of each step will not accumulate any further. 

e. Cost effective. 

Servo Motor: It is the system with motor, encoder, disc driver and close-loop 

control system to guarantee the resolution. It outputs constant torque with 

settled angular speed. 

The features of the servo motor: 

1) With high reliability and so as to the const. 

2) Parameters of the controlling system need to set according to the 

structure rigidity and load condition. The utilising of the component is 

relatively complicated. 

3) Better performance in high speed working condition. 

4) When the terminal load has a wide range of change, the servo motor has 

better stability. 

The comparison is on the Table 5-3 in below: 
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Table 5-3 Comparison Result 

 Stepper Motor Servo Motor 

Low speed reliability √ X 

Location precision 

control 

√ √ 

Control and program 

operability 

√ X 

Cost efficiency √ X 

Therefore, the conclusion of the comparison is: 

Stepper motor: applicable to stable terminal load, simple movement, low 

speed; 

Servo motor: applicable to terminal load, complex movement, high speed. 

To the system in this thesis, stepper motor is more suitable. 

2) Stepper motor selection: 

 

Figure 5-10 Top View of the Rig with Stepper Motor 
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Figure 5-11 Side View of the Rig with Stepper Motor 

The rotational inertial of the system is the combination of 3 ball bearings on the 

ball screw (Figure 5-10 and Figure 5-11) and also the weight of the working 

table (diameter of the bearing balls 𝑟𝑏 is 3mm, the number of balls in the ball 

bearing 1 and 5 𝑛𝐵 is 15 each, weight of each ball 𝑚𝑏 is 0.89g, weight of the 

shaft 𝑚𝑠ℎ𝑎𝑓𝑡 is 0.63kg, radius of the shaft  𝑟𝑠ℎ𝑎𝑓𝑡 is 8mm and the length ℎ𝑠ℎ𝑎𝑓𝑡 is 

500mm, the weight of the ball bearing 𝑚𝐵 is 189g and the table panel 𝑚𝑝𝑎𝑛𝑒𝑙 is 

1.4915kg): 

                          𝐽𝐿 = 𝐽𝐵1 + 𝐽𝐵3 + 𝐽𝐵5 + 𝐽𝑠ℎ𝑎𝑓𝑡 + 𝐽𝑤 

                              = 𝑛𝐵1 × 𝑟𝑏
2 × 𝑚𝑏 + 𝑛𝐵3 × 𝑟𝑏

2 × 𝑚𝑏 + 𝑛𝐵5 × 𝑟𝑏
2 × 𝑚𝑏 

  +
𝑚𝑠ℎ𝑎𝑓𝑡

12
(3𝑟𝑠ℎ𝑎𝑓𝑡

2 + ℎ𝑠ℎ𝑎𝑓𝑡
2) + (3 × 𝑚𝐵 + 𝑚𝑝𝑎𝑛𝑒𝑙) × (𝑃 ⁄ 2𝜋)2 

                              = 15 × 1.5152 × 0.89 × 10−3 + 15 × 4 × 1.5152 × 0.89 

                                  × 10−3 + 15 × 1.5152 × 0.89 × 10−3 + 
0.63

12
(3 × 0.82 + 52) 

                                  +(3 × 189 × 10−3 + 1.4915) × (0.5
2𝜋⁄ )

2

 

                              = 180.225 × 10−5 + 1.41 + 0.1014 

                              ≈ 1.52 (𝑘𝑔 · 𝑐𝑚2)                                                              (5.7) 

The frequency of the excitation signal and maximum driving signal are: 

𝑓0 = (𝑁0/60) × (360/𝜃𝑆) 

= (500/60) × (360/1.8) 
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= 1660𝐻𝑧                                                           (5.8) 

𝑓1 = (𝑁1/60) × (360/𝜃𝑆) 

= (800/60) × (360/1.8) 

= 2560𝐻𝑧                                                           (5.9) 

The moment of force to the load is: 

𝑇𝐿 = [µ(𝑚𝑠ℎ𝑎𝑓𝑡 + 3 × 𝑚𝐵 + 𝑚𝑝𝑎𝑛𝑒𝑙) × 𝑔 × 𝑃
2𝜋⁄ ] × 10−2 

= [0.04(0.63 + 3 × 189 × 10−3 + 1.4915) × 10 × 0.5
(2 × 3.14)⁄ ] × 10−2 

≈ 8.56 × 10−3(𝑁 ∙ 𝑚)                                          (5.10) 

Taking the acceleration period t is 2 seconds, therefore the moment of 

acceleration force Ta is: 

𝑇𝑎 = 𝐽𝐿 (
𝜋

180
) 𝜃𝑠 [

𝑓1 − 𝑓0

𝑡
] × 10−2 

                                           = 1.52 × (
3.14

180
) × 1.8[

2560−1660

2
] × 10−2    

                            ≈ 0.214(𝑁 · 𝑚)                                                 (5.11) 

Thus the moment of moment of driving force T is: 

                                           𝑇 = 𝑇𝑎 + 𝑇𝐿 

= 0.214 + 8.56 × 10−3 

≈ 0.22(𝑁 · 𝑚)                                                  (5.12) 

It is to say that while driving the system to run by stepper motor, the holding 

torque of the stepper motor should be more than 0.22𝑁 ∙ 𝑚. Then, the stepper 

motor with model number Nema 17, which with the holding torque of 0.44 𝑁 ∙ 𝑚, 

is selected. 



 

72 

5.3.2.3 Data Acquisition and Analysis 

The stepper motor is driven by the stepper motor driver and also controlled by 

the Arduino, the following (Figure 5-12) is the wiring graph: 

 

Figure 5-12 Wiring Graph of the Motor Controller 

5.3.2.4 Uncertainty Analysis 

According to the data sheet, the step motor has the tolerance of +/- 5% non-

accumulative error regarding the location of any given step. Therefore, the 

selected stepper motor with 1.8 degree steps will be within a 0.18-degree error 

range. Since there is no movement on Z axis lead by stepper motor, the Z axis 

error contributed by stepper motor can be considered as zero. The resulting in 

linear error on X axis Um is (the angle speed shall be transferred in to linear 

speed:
𝜔𝑒𝑟𝑟𝑜𝑟

2𝜋⁄ ): 

𝑢𝑚 = 𝑃 × (
𝜔𝑒𝑟𝑟𝑜𝑟

2𝜋⁄ ) 

= 5 × (
0.18

2𝜋
) 

= 0.0025𝑚𝑚                                            (5.13) 
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5.3.3 Linear Position Monitoring System 

In the experiment design, relative position of the moving table is considered as 

the reference (X axis value of the final data figure) for the further comparison 

and calculation to each particular value rather than the time. Therefore, in the 

system, monitoring to the position while moving on the guide rail is another 

crucial case in the whole design. 

5.3.3.1 Design Consideration 

d. The resolution of the linear sensor should be accordant to the wear size 

level. 

e. The linear position sensing equipment shall not interfere the Y axis 

moving, vibration caused by the roughness increasing and the deviation 

on multiple directions. 

5.3.3.2 Instrument Selection 

1) Linear encoder 

The mechanism of the linear encoder is detecting and measuring changes in 

position by on/off sequence in contactless approach. It provides a defined 

number of digital pulses (5-V DC typically) per revolution or per unit. The 

resolution of the linear encoder may reach to 1nm at a maximum rotating speed 

of 100m/s. 

However, the linear encoder needs to be mounted on the side of the moving 

table and causes unnecessary weight and gravity centre deviation. 

2) Inductive sensor 

An inductive sensor (Figure 5-13) is a non-contact device that monitors ratio 

changes in impedance (effective resistance) of a coil to get the positioning 

information. The produced voltage changes with the inductance of the coil and 

proportional to the position. The product can reach to the resolution on 

micrometre level.  
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Figure 5-13 Mechanism of the Inductive sensor (Hydraulics & Pneumatics, 2012) 

3) LVDTs (linear variable-differential transformer) and MVDTs (magnetostrictive 

linear displacement transducer) 

 

Figure 5-14 Mechanism of LVDTs (Hydraulics & Pneumatics, 2012) 

LVDTs (Figure 5-14) is a non-contact transducer that converts linear 

displacement into an identical electrical output signal. The output voltage 

contains two properties: the amplitude which proportional to the position and the 

phase which indicates the direction of moving behaviour. 

MLDTs (magnetostrictive linear displacement transducer): 

A magnetostrictive position transducer is also a non-contact device that detects 

the position of a magnet. The magnet moves along the length of the sensing 

element and is attached to the object whose position is to be determined. 

4) Resistive sensor: 
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Figure 5-15 Mechanism of Resistive sensor  (Hydraulics & Pneumatics, 2012) 

The resistive sensor is also commonly known potentiometer.  An electrical 

circuit with constant voltage is produced across the conductive strip. A wiper 

moves along the strip, from which it picks up voltage (Figure 5-15). Voltage 

increases as the wiper moves closer to the positive end of the strip and it is 

proportional to the positioning. 
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Table 5-4 Selection to the 1D positioning sensor with requirement 

REQUIREMENTS 
LINEAR 

ENCODER 

INDUCTIVE 

SENSOR 
LVDTs MAGNETOSTRICTIVE INTERFEROMETER 

Measurement Resolution: 1μ m √ √ √ √ X 

Accuracy: 1μ m/m √ √ √ √ X 

measurement Range (linear):+20μ m N/A N/A N/A N/A N/A 

Experiment Rig Length: 300-400mm √ √ X √ √ 

Rig Components Scales:  

1) Save space& easy to equip 
2) Stiffness; 
3) Resist of “crawling”; 
4) Resistant to rust; 

N/A N/A N/A N/A N/A 

Thermo Affect Response: 

Option A: Thermal deformation negligible or easy to 
measure; 

Option B: Best performance on resistance to thermal; 

X √ √ √ X 

Data collection: 

a. Easy to collect (raw data transform to digital 
data) 

b. 0.001 second sampling precision 

X √ √ √ X 

Low costs &Easy to get the product √ √ X √ √ 
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Therefore, as a product, the proper choice of the linear sensing part is the 

inductive sensor (As can be observed from Table 5-4, rationale of choice is 

provided). However, concerning about the design to the following experiment in 

this project is aiming to validation to the principle, so the finally chosen sensor is 

the potentiometer with a resolution of millimetres. 

5.3.3.3 Data Acquisition and Analysis 

Resistive sensors are not generally provided with any form of signal 

conditioning electronics. The user is responsible for ensuring that appropriate 

electrical parameters are evaluated. These parameters include - but are not 

limited to - excitation voltage, power dissipation, and wiper current, as it relates 

to the input impedance of the controller. The signal can be adopted and 

transferred to digital data by DAQ equipment and analysed by computer via 

LABVIEW. 

5.3.3.4 System Component Parameters  

In the system, the adopted potentiometer is the 115L08E502 produced by 

VISHAY. The main specifications are illustrated in the following Table 5-5: 

Table 5-5 Parameters of the potentiometer 

Travel Range 25mm ~ 1000mm 

Accuracy ≤ ± 0.05% for ≥ 100mm 

≤ ± 0.025% for ≥ 200mm 

Resolution 1mm 

Temperature -55˚C ~ +125 ˚C 

Working Power Supply +9V 

5.3.3.5 Uncertainty Analysis 

According to the data sheet, the potentiometer has the tolerance of +/- 0.05% 

while the measuring size is over than 100mm. Meanwhile, since there is no 

movement on the Z axis driven by the stepper motor, the Z axis error 
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contributed by the stepper motor can be considered as zero. Therefore, the 

resulting linear error from the selected sensor in the wear area (200~300mm) is: 

𝑢𝑙 = 𝐿 × ± 0.05%                           (5.14) 

Range of the linear error is from 0.1mm to 0.15mm. 

5.3.4 Wear Monitoring System 

The wear monitoring system shall be the major part of the whole design for 

which monitoring the symptoms of the wear: non-smoothness and the table 

deviation. 

5.3.4.1 Design Consideration 

a. The resolution of the wear monitoring sensors should be in accordance 

with the wear size level which is on micrometer level. 

b. The mounting location of the sensor shall take the following factors into 

account:  

1. the distance between the wear source and sensor shall be shorten to 

guarantee that the wear signal can be owned by sensors; 

2. be assured not to diminish the wear signal while transmitting to the 

sensor from the guiderail and ball bearings; 

c. Sampling speed and the working period need to meet the requirement 

settled; 

d. The equipment size needs to be small and components contained in the 

system should be easy to equip and as less as possible; 

e. The capability of avoiding wear-unrelated inference must consider.  

5.3.4.2 Instrument Selection 

1) Vibration monitoring sensor selection 

According to the literature review, the non-smooth behaviour while moving on 

the guiderail is mainly coming from two resources: guiderail shaft surface 

asperity and the worn ball bearings.  
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The first applicable detecting method is mounting the Hall Effect sensor on the 

stepper motor current wire. The mechanism is that the stepper driver has the 

function that while the motor is rotating, if the rotational drag from the load 

increases, then the driver will automatically change the current to increase the 

impulsion. 

Another solution is utilising the accelerometer to monitor the vibration caused by 

the roughness of the shaft surface. The accelerometer has the function that 

receives the vibrating signal on the particular direction. Therefore, while using 

the sensor, it needs to be mounted on the machine in stableness and as close 

to the vibration resource as possible. 

Comparing with the first option, the second one is more suitable to the design 

because of the following reasons: 

1) Monitoring the vibration altitude value is more direct than testing the current 

change; 

2) The implementation of the accelerometer is less complicated comparing with 

assembling the Hall Effect sensor. Data from the accelerometer is easier to 

be analysed as well. 

Therefore, in the design of this project, the accelerometer is adopted as the 

non-smooth travelling behaviour monitor and mounted on the top of the table 

where above the vibration resource – guiderail shaft surface. 

2) Rolling table deviation monitoring sensor selection 

The deviation of the table (Figure 5-16) while rolling on the guiderail can be the 

motion in vertical direction is termed the vertical vibration mode, the rocking 

motion θ about y-axis is termed the pitching vibration mode, the rocking motion 

ψ about z-axis is termed the yawing vibration mode and the rocking motion φ 

about x-axis are termed the rolling vibration mode. 
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Figure 5-16 Three behaviour modes of the rolling table (Kong, 2012) 

According to the literature review, the capacitance probe is chosen as the 

deviation monitoring sensor. Meanwhile, when deciding the relative position of 

the sensor shall consider about the fundamental principle of designing precision 

machining monitoring system, which is: 

 The working system shall be separated from the monitor system in case of 

the crosstalk phenomenon, that the noise from CNC machine would run into 

the system and make it lose the function as referencing. 

 The physical structure of the monitoring system should be based on the 

“close loop” shape, on the purpose of decreasing the resonance of the 

system. 

Above all, the magnetic stand is placed at the edge of the table to make arms of 

the stands extend out from the rig as much as possible. 

In the system, the rolling behaviour can be monitored by the capacitance 

probes as the following module (Figure 5-17): 
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Figure 5-17 Rolling behavior of the Capacitance and Stand Arm 

The extreme situation is that the left side of the guiderail has wear on the top 

surface and the right side of the wear has wear on the bottom surface, as 

shown in the Figure 5-18. In such case, the rolling table reaches the biggest 

angle of inclination, it can be simplified as the following two triangles: 

ℎ0 = 𝑚𝑙 + 𝑚𝑟 = 0.05 + 0.05 = 0.1𝑚𝑚                                       (5.15) 

𝑠𝑖𝑛∅ =
ℎ0

𝑤𝑡
=

0.1

158
= 1/1580                                                                 (5.16) 

In the above formulas, the  𝑚𝑙  and 𝑚𝑟 are distance of the vertical deviation on 

each long and short side, 𝑤𝑡 is the width of the rig panel. 

Situation 1: the base of the stand is located at point A, end of the table: 

 

Figure 5-18 Angle and Height of the Deviation 
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Then the capacitance probe is assembled on point C: 

ℎ1 = (𝑙𝑎 − 𝑤𝑡)𝑠𝑖𝑛∅ =
165−160

160
= 3 × 10−3mm                         (5.17) 

Situation 2: the base of the stand is located at point A, another end of the table: 

                      Then the capacitance probe is assembled on point D: 

ℎ1 = 𝑙𝑎 × 𝑠𝑖𝑛∅ =
165

1600
= 0.103mm                                             (5.18) 

Conclusion:  

Comparing the two different situations, it is evident that placing the base of the 

stand at point B has more reflection value to the deviation of the table. Then it is 

easy to measure the changing value via capacitance probes in the experiment. 

5.3.4.3 Data Acquisition and Analysis 

All the sensors adopted in the design are linked to a DAQ produced by National 

Instrument. The DAQ is used for receiving the output of those sensors and 

transferring the signal to digital data. The next stage of the system is using the 

LABVIEW program to realise the sampling and digital data collection. Collected 

data from the LABVIEW program is saved in excel files for further analysis and 

calculate via Matlab. The data collection process is shown in the Figure 5-19: 

 

Figure 5-19 Data transferring sequence 

The data acquisition sequence of the LABVIEW program shows in the bellowing 

Figure 5-20: 
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Figure 5-20 LABVIEW Data Acquisition Sequence 

5.3.4.4 System Component Parameters  

1) Accelerometer: The chosen accelerometer is the one produced by DYTRAN 

with module number: 3055B2. Parameters are shown on the bellowing Table 5-

6: 

Table 5-6 Accelerometer Parameters 

Module number DYTRAN 3055B2 

 Sensor direction Z axis 

Sensitivity 100mV/g 

Range for output ±50g’s 

Frequency range 1 ~ 10kHz 

Equivalent electronical noise 0.0004g 

Linearity ±1% 

2) Capacitance probe: 
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The chosen capacitance probe is PX405HC manufactured by Lion Precision, 

parameters of the tool provides on the bellowing Table 5-7: 

Table 5-7 Capacitance Probe Parameters 

Module number Lion Precision CPL190 

Sensitivity 1.000Volts/mil 

Resolution 0.2µm/mil 

Range ±5.000mils 

Frequency flat to 10000Hz; 

band width (-3dB): 17000Hz; 

Linear Error 0.004% of range 

weight 60g 

5.3.4.5 Design of the stand arm 

In the design, the stand arm to the capacitance probe has three options which 

are with typical vibration resistant structure. They are the “T” shape, “L” shape 

and the “π” shape. Referring to the settling point of capacitance probe, the 

length of the stand arm is 200mm and the height is 50.8mm. After FEM 

simulation, the results of three different shapes (Figure 5-21, Figure 5-22, and 

Figure 5-23) are as shown in the following (parameters of the simulation are: sin 

wave vibration with 100N amplitude, 2kHz frequency on one fixed side. The 

material of the component is aluminium, 5mm thickness): 
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Figure 5-21 “π” shape stand arm FEM simulation result 

 

Figure 5-22 “L” shape stand arm FEM simulation result 

 

Figure 5-23 “T” shape stand arm FEM simulation result 

As can be seen from the result, the “π” shape has the least vibration amplitude 

in the same condition. Therefore, considering the efficiency of space utilising, 

the stand arm in the project is designed in a “T” shape which resists the bending 

utmost, which within 1% of the measuring range. Therefore, since the 

measuring range is from 10um to 50um, the bending shall be controlled within 

β=4×10-7m. 

In the experiment, for the purpose of validation to the principle, the “T” shape 

stand arm is replaced by anepoxy resin (PTFE) panel made by 3D printing with 

the length L=158mm and width b=20mm. The thickness of the panel “h” is 

calculated as below: 
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According to the formula of the bending, the bending ωB: 

𝜔𝐵 = −
𝐹𝐿3

3𝐸𝐼
                                                (5.19) 

F is the force, L is the length of the stand arm, E is the elasticity modulus of the 

material, I is the inertia moment, h is the thickness of the stand arm, b is the 

width of the stand arm. 

𝐼 =
𝑏ℎ3

12
=

(20×10−3)×ℎ3

12
                                      (5.20) 

𝜔𝐵 = −
𝐹𝐿3

3𝐸𝐼
< 𝛽                                         (5.21) 

                                 Therefore: ℎ > (
4𝐹

𝑏𝛽𝐸
)1/3 × 𝐿                                      (5.22) 

Considering the weight of the capacitance probe and the signal wire is 100g, 

the force on the end of the stand arm is: 

𝐹 = 1𝑁 × 2 = 2𝑁                                              (5.23) 

Therefore, taking E=71×109 Pa, the thickness of the panel should be: 

ℎ > 20𝑚𝑚                                                   (5.24) 

5.3.4.6 Uncertainty Analysis 

1. Abbe error 1: Capacitance probe stand arm error: 

The aluminium stand arm has the resolution error of 0.2mm by 

manufacturing.  

2. Abbe error 2: Stand arm assembly error: 

The deflection permissible of the aluminium panel with 𝑙𝑑 =

20𝑚𝑚thickness is 𝑡 = ±1.8%, therefore the value of the assembly error 

is:  

𝑢𝑝𝑎 = 𝑡 × 𝑙𝑑 ×
𝑙

𝐿
= 0.018 × 20 ×

158

1000
= 0.0057𝑚𝑚         (5.25) 

3. Abbe error 3: Stand arm vibration error:  

As calculated, the vibration error brought by the stand arm on Z axis is 

0.004mm. 

4. Abbe error 4: Probe assembly error:  

The stand arm assembly hole has the drilling tolerance of 0.2mm, which 

means the assembled probe might have deviation against vertical axis 

caused by the looseness (Figure 5-24 and Figure 5-25). 
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Figure 5-24 Side look of the capacitance probe and the straight edge (1) 

 

 

Figure 5-25 Side look of the capacitance probe and the straight edge (1) 

In the above figure, the looseness between the stand arm and the 

sensor is 0.2mm, and 𝛼 is the deviation angle of the sensor. 

cos 𝛼 =
20

√202+(0.2)2
=

ℎ

ℎ1
                                (5.26) 

ℎ =
20

2
+ 5 = 15𝑚𝑚                               (5.27) 

Therefore ℎ1 ≈ 15.00075𝑚𝑚                                (5.28) 

𝑢𝑝 = ℎ1 − ℎ = 0.00075𝑚𝑚                       (5.29) 

5. Straight edge flatness error: 

The selected straight edge has the flatness of 0.5µm, which 

manufactures by the precise machining centre of Cranfield University. 

6. Calibration error: 

The capacitance probe has the resolution of 0.0002mm which is on 

nanometre level. 
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5.4 In-process Monitoring realisation 

As mentioned in the literature review, the ultramodern approach of the CNC 

machine guiderail monitoring has no resistance to the outer disturbance and the 

isolated condition for the monitoring process is of necessity. Therefore, the in-

process monitoring solution considers as the novelty of the project. In the 

design, an idea brought from the electronic field is applied and making the offset 

to the noise and other disturbing vibration via the bi-channel system and leave 

the signal brought by guiderail wear solely. 

The definition of “in-process” is that taking advantage of the idle time slot during 

CNC machine runs, distinguished from shutting down or processing period. 

5.4.1 Design Consideration 

a. The resolution of the wear monitoring sensors should be accordant to the 

wear size level which is on micrometre level. 

b. The mounting location of the sensor shall take the following factors into 

account:  

1) Be mounted vertically above the wear resource; 

2) be assured not to diminish the wear signal while transmitting to the 

sensor from the guiderail and ball bearings; 

c. Sampling speed and the working period need to meet the requirement 

settled; 

d. The equipment size needs to be small and components contained in the 

system should be easy to equip and as less many as possible; 

e. The invulnerability to external disturbance, which means the capability of 

avoiding wear-unrelated inference must be considered.  

5.4.2 Data Acquisition and Analysis 

Taking the pair of accelerometers as an example, in the following drawing, 

sensor No.1 and sensor No.2 are mounted parallel along the guiderail. 

Therefore the data processing sequence is shown in the Figure 5-26. The 

system adopts data of the accelerometer signal by the same sampling 

frequency. Then complete the coupling of the data to realise offset to the 
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disturbance, as is shown in Figure 5-27. In the theory, since the physical 

condition and the sensor selected to the system is the same, the final data 

represented shall be the signal of the wear solely.  The same solution to acquire 

in-process wear data can be applied to capacitance probes as well. 

 

Figure 5-26 The 2D drawing of the experiment rig 

 

Figure 5-27 In-process data processing sequence 
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5.4.3 System Component Parameters 

The sensitivity of the accelerometer is 100mV/g, which means that each 1V 

voltage refers to the 10g accelerometer. Meanwhile, the selected capacitance 

probe in the system has the sensitivity of 1.000Volts/mil. All the sensors’ output 

is analogue signal and needs to be adopted and transfer to digital signals. 

According to these, the data acquired from the sensors are in voltage, then 

transfers into acceleration and distance change. 

5.5 Experiment & Validation 

After the design of the experiment rig, component selection and parameter 

calculation, the uncertainty analysis shall be calculated first, to anticipate the 

error brought into the final result. Then based on this, the rig can be constructed 

under proper control. Then the validation to the theory of in-process monitoring 

can be completed. 

5.5.1 Error Budget 

The uncertainty 

The calculated error budgets which affect the Z-axis accuracy are on the 

following Table 5-8: 

Table 5-8 Error Budget 

Source of 

uncertainty 

Value Units Probability 

Distribution 

Divisor Sensitivity 

Coefficient 

Standard 

Uncertainty 

frame 

straightness 

0.023 mm normal 

(k=2) 

2 1 0.0115 

panel flatness 0.01 mm normal 

(k=2) 

2 1 0.005 

Panel 

assembly 

0.004 mm normal 

(k=2) 

2 1 0.002 



 

91 

Source of 

uncertainty 

Value Units Probability 

Distribution 

Divisor Sensitivity 

Coefficient 

Standard 

Uncertainty 

Support 

flatness 

(left) 

0.02 mm normal 

(k=2) 

2 1 0.01 

Support 

flatness 

(right) 

0.02 mm normal 

(k=2) 

2 0.05 0.005 

Support 

assembly (left) 

0.00192 mm normal 

(k=2) 

2 1 0.00096 

Support 

assembly 

(right) 

0.00192 mm normal 

(k=2) 

2 0.05 0.000048 

Shaft 

straightness 

(left) 

0.011 mm normal 

(k=2) 

2 1 0.011 

Shaft 

straightness 

(right) 

0.011 mm normal 

(k=2) 

2 0.05 0.00055 

ball bearing 

shell 

(left) 

0.013 mm normal 

(k=2) 

2 1 0.0065 

ball bearing 

shell 

(right) 

0.013 mm normal 

(k=2) 

2 0.05 0.000325 
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Source of 

uncertainty 

Value Units Probability 

Distribution 

Divisor Sensitivity 

Coefficient 

Standard 

Uncertainty 

table 0.016 mm normal 

(k=2) 

2 1 0.008 

Table 

assembly 

0.006 mm normal 

(k=2) 

2 1 0.003 

Table 

deviation 

0.009 mm Rectangular √3 0.33 0.0017 

Stand-arm 

resolution 

0.2 mm Triangular √6 0.05 0.0041 

Stand-arm 

assembly 

0.0057 mm normal 

(k=2) 

2 1 0.00285 

Stand-arm 

vibration 

0.0004 mm normal 

(k=2) 

2 1 0.0002 

Straight-edge 

flatness 

0.0005 mm normal 

(k=2) 

2 1 0.00025 

Probe 

deviation 

0.00075 mm normal 

(k=2) 

2 1 0.00075 

Calibration 

error 

0.0002 mm normal 

(k=2) 

2 1 0.0001 

Since the experiment data analysing part is for the calculation of the difference 

between original value and the value after wear, the stable error which does not 

change during the monitoring shall not include in the error budget. Therefore, 

uncertainties affect the measurement accuracy are:  

1. Table deviation: 𝑢𝑡𝑑 = 0.0017𝑚𝑚 

2. Stand arm vibration: 𝑢𝑠𝑣 = 0.0002𝑚𝑚 

3. Probe deviation: 𝑢𝑝𝑑 = 0.00075𝑚𝑚 
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4. Calibration error: 𝑢𝑐𝑒 = 0.0001𝑚𝑚 

The combined standard uncertainty of the system 𝑢𝑐 is: 

𝑢𝑐 = √(𝑢𝑡𝑑)2 + (𝑢𝑠𝑣)2 + (𝑢𝑝𝑑)
2

+ (𝑢𝑐𝑒)2                          (5.30) 

= √(0.0017)2 + (0.0002)2 + (0.00075)2 + (0.0001)2 

= 0.00189𝑚 

= 1.89𝑚𝑚 

The expanded uncertainty (while K=2.95% confidence) is: 

𝑈 = 1.89 × 2 = 3.78𝑚𝑚                               (5.31) 

Since the measuring range is 10~ 50µm, the percentage of uncertainty p is: 

𝑝 = (
3.78

50−10
) × 100% = 9.45%                            (5.32) 

5.5.2 Experiment Plan 

The whole experiment is based on a marble base in the thermal static 

laboratory in Precision Machine Centre of Cranfield University. Which means 

that the disturbance from outside the system is diminished to ignorable level 

and the temperature during the whole experiment process is stable in 23 

degrees, the influence of the temperature is eliminated. The following flow chart 

in Figure 5-28 is the general experiment structure:  
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Figure 5-28 Experiment Structure 

5.5.2.1 Experiment A:   

Experiment Title: Rig Assembly 

Experiment Objective: construct the rig according to the 3D drawing for the 

following experiments 

Experiment Content: 

1)  Complete the rig base establishing (Figure 5-29) and test the flatness of the 

rig base on the marble table. 
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It is necessary to test if the four edge of the rig base is stable enough. 

 

Figure 5-29 The Rig Base 

2) Complete the assembly of guiderail components and ball screw components.  

The guide rail part contains the following components on Table 5-9, the 

completed rig part are shown in figures from Figure 5-30 to Figure 5-33: 

Table 5-9 List of Components 

Component Name Number of Pieces 

Guiderail shaft 2 

Rolling support (including ball bearing) 4 

Rolling table 2 

Rail shaft support 4 

Ball screw 1 

Ball nut 1 

Ball screw floating bearing 1 

Ball screw fixed bearing 1 
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Figure 5-30 Top view of the rig 

 

Figure 5-31 Side view on X direction 
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Figure 5-32 Side view on Y direction 

 

Figure 5-33 Upward view of the rig 

3) Retest to confirm if the four edge of the rig base is stable enough after 

assembling the guiderail components. 

4) Using capacitance probes or flatness aligner to test and calibrate the 

flatness of the table. 

5) Complete the assembly of the stepper motor as shown in the Figure 5-34: 

A. Complete Fixture of the motor to the machine. 

B. Connect the ball screw with the motor on the coupling. 

C. Complete testing the motor operation by utilising Arduino controller. 
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Figure 5-34 Assembly of Stepper Motor 

6) Complete the assemble and calibration to the linear sensor as shown in 

Figure 5-35; 

 

Figure 5-35 Assembly of Linear Sensor 
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7) Complete allocation to the metal straight edge on the marble base as shown 

in Figure 5-36. 

 

Figure 5-36 Assembly of Straight Edge 

8) Use capacitance probe or flatness aligner to test the surface flatness of the 

straight edge to make sure it meets the requirement (Figure 5-37). 

Meanwhile, make sure the metal straight edge and the rig frame is 

separated, with relative parallel position, for the purpose of separating the 

monitoring system and the CNC machine running system.  

 

Figure 5-37 Relative Position of Straight and the Rig 
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9) Complete the assembly of capacitance probe and the sensor stands, 

calibrate the relative position of the stand in between the straight edge and 

the rolling/static tables (Figure 5-38). 

 

Figure 5-38 Assembly of Capacitance Probes and Stand Arms 

10)  Complete the assembly to the accelerometer mounting on the top of the 

rolling table with wax (Figure 5-39). 

 

Figure 5-39 Assembly of Accelerometer 
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5.5.2.2 Experiment B:   

Experiment Title: rig calibration 

Experiment Objective: calibrate the components to minimise the error of 

assembly  

Experiment Content: 

1) Calibrate the position of capacitance probes and sensor stands. 

Sensor stands: 

The 2 stands should be located at the same relative position to the tables and 

with the same gesture. 

To calibrate the relative position of sensor stands to the table by screwing bolts, 

the following requirement should be reached: 

(1) The relative position of the sensor stands installed on the tables shall be the 

same in Z axis, as is shown in Figure 5-40; 

(2) The Y and Z axis edge of the sensor stands must be parallel to the Y and Z 

axis edge of the table, as is shown in Figure 5-40, in order to reduce the 

Abbe error. 

 

Figure 5-40 Relative Positions of sensors and the Rig 
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Capacitance probe: 

Step 1: Assemble the capacitance probes to the sensor arms and guarantee the 

axis of the probes is perpendicular to the surface of the straight edge on 

Z direction (Figure 5-41 and Figure 5-42). 

 

Figure 5-41 Angle of the arm on YZ plane 

 

Figure 5-42 Angle of the arm on XY plane 



 

103 

Step 2: Turn on the driver of the capacitance probe and calibrate the distance 

between the sensing surface of the capacitance probe and the reflecting 

surface of the straight edge, confirm the distance is within the measuring 

area of the capacitance probe, which is 254um. 

Step 3: Calibrate the initial reading value of the capacitance probes by moving 

the position to the clamp, guarantee the values are correspondent 

(Figure 5-43). 

 

Figure 5-43 Relative Moving Direction of the Straight Edge and Sensor 

Step 4: To check the alignment of the two probes along X axis, using the 

solution of flipping over the ruler on X axis to check if the changing value 

of the two sensors at the same (Figure 5-44). 

 

Figure 5-44 Relative Deviation of the Straight Edge 
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5.5.2.3 Experiment C:   

Experiment Title: Monitoring system equipping and function testing 

Experiment Objective: Complete settling and calibrating to the linear 

positioning system, vibration system and the deviation monitoring system. Then, 

use the calibrated monitoring systems to collect referencing data for further 

wear monitoring and comparison. 

Experiment Content: 

Step 1: Settle the moving speed: 

According to the stepper motor data sheet, below than 100RPM 

(1.67round/s) of the rotating speed is suitable; 

Then the constant moving speed of the table after acceleration is: 

     V=w × Vr=5 × 1.67=8.35mm/s                                                         (5.33) 

According to the manual of the CNC machine, the speed is no beyond 

the working speed of the CNC machine guiderail. Meanwhile, according 

to the Nyquist Sampling Theorem, the sampling frequency shall be two 

times of the signal, and 10 times in the engineering design. Since the 

accelerometer measuring range is from 1Hz to 10kHz, also according to 

the literature review, (Giourntas, 2015, Yanqing,v2015 and Vi´afara, 

2005), the size of the particle is from 1 um to 25um. Therefore, the linear 

speed of the motor is: (In the formula, Vmis the speed of stepper motor, 

fsample is the sampling speed of DAQ, s is the smallest moving distance 

per sampling duration) 

𝑉𝑚 = (
𝑓𝑠𝑎𝑚𝑝𝑙𝑒

10
) × 𝑆                                                                      (5.34) 

= (
10 × 103

10
) × 1 × 10−3 

= 1𝑚𝑚/𝑠 
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Therefore in the experiment, according to the calculation of the 

roughness frequency and also the measuring range of the accelerometer, 

1mm/s (0.2 round/s) is selected as the moving speed of the rig. 

Transfer to the motor, which the micro step is set as 200 steps per round 

(which is 1.8 degree per step), the delay of the threshold is 5 to the 

speed of 1mm/s. 

Step 2:  Set up the linear positioning equipment: 

1) Complete the assembly to the potentiometer on the frame and 

connect the measuring shaft to the moving table (Figure 5-45).  

In case of the connection between the potentiometer and the moving 

table would infect to the deviation of the table while moving on guiderail 

with wear on it, the two connect joint on the Fig should not use lock nuts 

but bearings to guarantee the stiffness on X axis but flexibility on the YZ 

surface. 

 

Figure 5-45 Assembly Points of the Linear Position Sensor 

2) Connect the three pins to the DAQ and use LABVIEW to realise 

the position data acquisition. 

Step 3: Set up the accelerometers on each of the tables, guaranteeing the 

following two conditions: 
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a. The two accelerometers should be allocated on the exactly same 

relative position to the tables and as near to the wear resource as 

possible, in order to make sure receiving the same vibration signal; 

b. With the precondition that the base of the sensor does not interfere 

with the bolts, two accelerometers should be mounted as close to 

the source of the vibration (the guiderail shafts) as possible (Wu, 

2009), for the purpose of receiving highest altitude of the vibration 

signal (Figure 5-46). 

 

Figure 5-46 Assembly of Accelerometers 

Step 4: Repeat the connection process of sensor to the DAQ, and use 

LABVIEW to realise the vibration signal receiving.  

Step 5: Repeat the steps in Experiment B to recalibrate the capacitance probe, 

then realise the digital signal acquisition via LABVIEW. 

Step 6: Collect and record the referencing data for the rest of the test: 

1) Settle the stepper motor via ARDUINO to drive the moving table along 

the guiderail for 5 turns with settled constant speed. 

2) Turn all the sensors on and record the data of relative position, the 

data of vibration during the process that the stepper motor working on 
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constant speed, and the data that the relative position changes between 

the capacitance probe and the straight edge. 

3) Use Matlab to sort the data, transfer each of the original data from 

time domain to frequency domain.  

4) Calculate the average of the vibration altitude, the average of distance. 

Visualise the data to graph, representing the result as the state of the 

system while assuming there is no wear on it.  

5) Record the data as reference to the following wear monitored data, the 

guiderail used in this experiment is marked as pair (1). 

The following figure 5-47 is the rig after completing the assembly. 

 

Figure 5-47 Complete Experimental Rig 

 

   The following Figure 5-48 is the assembly of the accelerometers: 
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Figure 5-48 Complete Experimental Rig 2 

The following Figure 5-49 is the assembly of the capacitance probes and the 

straight edge: 

 

Figure 5-49 Complete Experimental Rig (with Sensors and the Straight Edge) 
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5.5.2.4 Experiment D:   

Experiment Title: monitoring system function test 1: repeatability test. 

Experiment Objective:  

To test the repeatability of the monitoring system; 

Experiment Content: 

Part A: repeatability test: 

Step 1: Mark the four pairs of guiderails. Since the first pair of guiderails used in 

the Experiment C is already marked as pair No.1, the rest are marked 

as pair No.2, No.3 and No.4.Define the data of each pair of the guide 

rail as a group. Therefore, there should be four groups of data after 

complete experiment. 

Step 2: Repeat the work of initial data collection in Experiment C to the rest of 

the three groups of guiderail. 

Step 3: While moving the table over the oil paint and scotch tape surface, 

record the data from the capacitance probes with LABVIEW to make 

contrast to original data and calculate the depth change while moving 

over the oil painting and scotch tape area. Then compare with the 

measured paint/tape change to see if the sensor measured result is 

accordant with it. 

Step 4: Use Matlab to compare five controls in each group of the data and 

calculate the difference value among them, then calculate the ratio to 

amplitude of the average. Taking a1 as output of capacitance probe 

Static,a2as output of capacitance probe dynamic, the difference is: 

𝑑 = |𝑎1(𝑛) − 𝑎2(𝑛)|                                                               (5.35) 

Then, define 𝑑1 as the result of the first test. Therefore, define 𝑑2 as the 

result of the second test, 𝑑3 as the result of the third test,  𝑑4 as the result 

of the fourth test, 𝑑5 as the result of the fifth test.  

The average of the five groups’ difference is: 

𝑎𝑣(𝑛) =
∑ 𝑑𝑖(𝑛)5

𝑖=1

5
                                              (5.36) 
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Step5：calculate the difference of capacitance probes between each result and 

the average: 

Taking shaft No.1 as example, the difference between 𝑑1and 𝑎𝑣: 

𝑎𝑑1(𝑛) =   √
1

5
∑ (𝑑𝑖(𝑛) − 𝑎𝑣(𝑛))25

𝑖=1                                        (5.37) 

5.5.2.5 Experiment E:   

Experiment Title: monitoring system function test 2: In-process monitoring 

system 

Experiment Objective:  

To validate the novelty of the thesis, testing the outer disturbance offset ability 

of the in-process monitoring principle and solution. 

Experiment Content: 

In order to make the experiment simpler and easy to analyse, the whole 

Experiment E is under the situation that there is no wear on the guiderail. The 

test is solely on the purpose of verifying the signal coupling function. 

Step 1: When the two capacitance probes on each of the table are settled, 

deliberately make outer disturbance by using a wooden hammer to knock 

the marble base. The purpose is to simulate the disturbance outside from 

the CNC machine (Figure 5-50). 

 

Figure 5-50 Striking Point to the Rig  
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Step 2: Collect the data from these two capacitance probes with the same 

sampling frequency and make the contrast to inspect if the 2 sensors at 

different positions reflect the same data from outer strike. The contrast 

involves 2 aspects:  

1) The time difference by receiving the striking signal; 

2) The difference to amplitude of the striking signal; 

Step 3: utilising Matlab to make coupling, then contrast to the original data to 

check if the data averages are accordant; 

Step 4: Repeat Step 1, but deliberately make outer disturbance by knocking the 

rig frame. This solution is to simulate the disturbance from the CNC 

machine itself (Figure 5-51). 

 

 

Figure 5-51 Striking Point to the Rig 2 

Step 5: repeat the content in step 2 and step 3, to inspect the outer disturbance 

effect and the capability of in-process monitoring solution. 

5.5.2.6 Experiment F:   

Experiment Title: friction fatigue wear simulation& data acquisition 

Experiment Objective:  

According to the effect of friction fatigue wear described in literature reading 

part, simulate the wear on the guiderail and ball bearings for further testing. To 
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make wear in the third region (the wear region) of the guiderail and ball bearing 

via capacitance probe and micrometre to monitor the depth and width of the 

groove until the deepest point reaches to 100um.  

Experiment Content: 

 Guide way part: 

a. The rough surface simulation: 

Use emery paper to wipe on the surface of the guiderail shaft in pre-settled 

wear length. According to the literature review, (Giourntas, 2015, Yanqing, 

2015 and Vi´afara, 2005), the size of the particle is from 1 um to 25um, 

therefore the type of emery paper can be chosen from the following sheet: 

 

Table 5-10 Emery Paper Parameters 

Particle grit Diameter (um) 

500 20 - 14 

600 14 -10 

800 10 – 7 

1000 7 – 5 

1200 5 – 3.5 

1400 3.5 – 3 

1600 3 – 2.5 

1800 2.5 – 2 

2000 2 – 1.5 

2500 1.5 – 1 

3000 1 – 0.5 

 

The selected types of paper are: 500 grit, 1000grit, 1600 grit, 2000 grit, 2500 

grit and 3000 grit. 

b. Smooth curve simulation: 

1) Calculate the length, width and depth of the abraded area shown on 

Figure 5-52 and Figure 5-53: e.g. (from sample of supplier): 
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Figure 5-52 Relative Position of Components (with wear on) 

Bearing ball diameter (f)=3.175mm, W=0.7~ 1mm; ht= t1 (tolerance of bearing 

ball)+t2 (tolerance of shaft)=6+9=15um=0.015mm; 

 

Figure 5-53 Relative Position of Components (with wear on) 2 

              Therefore:  

ℎ = ℎ0 + ℎ3                                                              (5.38) 

ℎ0 =
𝐹

2
− ℎ2                                                                (5.39) 

Assuming  𝑘 =
𝑓

2
+ ℎ𝑡                                                                (5.40) 
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ℎ1 = √𝑘2 −
𝑤

2

2
                                                        (5.41) 

 

ℎ2 = √(𝐹/2)2 − (𝑤/2)2                                      (5.42) 

ℎ3 = 𝑘 − ℎ1                                                             (5.43) 

                                              So:           ℎ = ℎ0 + ℎ3                                                          (5.44) 

= (
𝐹

2
− ℎ2) + (𝑘 − ℎ1) 

 =
𝐹

2
− √(

𝐹

2
)

2

− (
𝑤

2
)

2

+ 𝑘 − √𝑘2 − (𝑤/2)2 

Therefore: 

a. w=0.7mm: 

h=0.049mm; 

b. w=1mm: 

h=0.101mm; 

After calculation, if the width of the wear is 0.7~ 1mm, the depth of the groove 

can reach to 49– 101um. 

c. Implementation: 

Step 1: allocate the two shafts horizontal on the table;  

Step 2: As shown on Figure 5-54, using ink pen to draw a line on the shaft 

which is parallel to the axis; 

 

Figure 5-54 Marking the Wear Position 

Step 3: using file to wipe on the shaft along the line; 

Step 4: As shown on Figure 5-55, using dial gauge and micro meter to monitor 

the depth and width of the groove until the deepest point reaches to 

101um; 



 

115 

 

Figure 5-55 Side View of the Smooth Curve Wear 

Step 5: As shown on Figure 5-56, re-assembly the guiderail to make the groove 

of shaft No.1& No.2 meet the trail of bearing balls on the top. 

 

Figure 5-56 Guide rail and Ball Bearing Cross-section Figure 

 simulate the wear of rolling balls: 

Step 1: Dismantle the bearing; 

Step 2: As shown on Figure 5-57, using abrasive paper to do the sanding to 

balls via 3 directions: pitching, rolling and yawing. 
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Figure 5-57 Approach to the Wear of Balls 

Step 3: Using micrometre to measure the average wear amount that 

correspondent to the wear amount on the guiderail; 

Step 4: complete re-assembly of the ball bearing; 

a. Re-assembly the components and turn on the stepper motor for 10 

minutes, and test the temperature of the parts to check if the temperature 

is stable enough, in order to eliminate the thermal disturbance. 

b. Repeat the approaches of B part to collect the data and analyse the data 

via Matlab; 

c. Add in the outer disturbance via solution mentioned in C part to validate 

the in-process theory. 

5.5.2.7 Experiment G:   

Experiment Title: measure the symptoms of the wear 

Experiment Objective:  

Complete the measurement of the wear produced on experiment F to validate 

the function of the wear monitoring system. 

Experiment Content: 

Part a. Smooth curve on particular length: 
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Solution: capacitance probes assembled on the table against the face of metal 

straight edge, moves with the table on guiderail.  

Phenomenon expected: the capacitance probe shows unidirectional constant 

value changes: 

a. bigger value changes than vibration; 

b. happens on particular positions; 

c. unidirectional changing; 

Part b. random vibration: 

Solution: the same to the smooth curve detection; 

Phenomenon expected:  

(1) The value of capacitance probe changes in a small range; 

(2) Two directions changing; 

(3) Happens in random places, even in the place that guiderail has never been 

used before and no wear. 

The solution and sequence of collecting guiderail wear data shall strictly follow 

the experiment D, to guarantee the repeatability and reproducibility. 

5.5.2.8 Experiment H:   

Experiment Title: In-process monitoring system with capacitance probes 

Experiment Objective:  

Complete the validation to the function of in-process deviation monitoring 

system and count the wear in. 

Experiment Content: 

As shown on Figure 5-58, capacitance probe No.2 allocates on static table. It is 

in the same relative position as capacitance probe No.1 on the rolling table.  
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Figure 5-58 Capacitance Sensor No.1 and No.2 

Then complete the steps of data acquisition as the following sequence on Table 

5-11: 

Table 5-11 Data Acquisition Process 
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The following pictures from Figure 5-59 to Figure 5-60 are the experiment rig on 

the marble base: 

 

Figure 5-59 The whole rig system after completing the assembly 

 

Figure 5-60 Shafts from No.1 to Nop.4 as the test examples  
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6 VALIDATION RESULT DISCUSSION 

As illustrated in the experiment designing part, the whole test can be separated 

into two parts: the repeatability test and wear test. As can be seen in the Figure 

6-1, the repeatability test, the 4 sample shafts from No.1 to No.4 are all pristine. 

On the contrary, in the wear test, each of the shafts has a 20mm long wear 

region along the whole 100mm measuring range. In each part of the test, to 

each of the sample, there are five times of the test in the same condition. The 

following graph shows the test process: 

 

Figure 6-1 The experimental group 

6.1 Original Data Processing and Analysis 

The original data has the figure as is shown in the picture below, Figure 6-2. 

Because the data acquisition starts in advance, the running of the motor starts 

with a locking signal. Therefore, the useful signal starts with the first high 

altitude at point A and ends with the last one at point B. 
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Figure 6-2 The original data whole length 

 The original data processing work prior at the data calculation is useful data 

section adopting, between point A and B. To guarantee the accordance of the 

data, each of the test data file shall be completed with the work, and delete non-

useful data sections. 

6.2 System Repeatability Test 

The importance of the repeatability test is guaranteeing whether the test result 

is stable and reliable enough. The approach is testing how results of a 

measurement vary when the measurement is repeated under the same 

conditions and within a short period. 

6.2.1 Vibration Monitoring Repeatability Test 

Vibration test is all about the data from accelerometers. The repeatability test is 

based on the Shaft No.1. Working steps are illustrated as following. 

6.2.1.1 Data Average Calculation 

Defining the output of accelerometer static is a1, accelerometer dynamic is a2, 

the difference which represents the signal after getting all the disturbance 

filtered is: 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒1(𝑛) =  |𝑎1(𝑛) − 𝑎2(𝑛)|                                               (6.1) 

 

The following Figure 6-3 is the signal of accelerometer static (green line), 

capacitance probe dynamic (red line) and the difference d: 
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Figure 6-3 Accelerometer Dynamic, Static and the Difference Signals 

Then calculate the average of difference: 

𝑎𝑣(𝑛) = √𝑑1
2(𝑛)+𝑑2

2(𝑛)+𝑑3
2(𝑛)+𝑑4

2(𝑛)+𝑑5
2(𝑛)

5
                                                           (6.2) 

  The figure below Figure 6-4 shows the result of the difference average: 

 

 

Figure 6-4 Result of the Difference on Average 
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6.2.1.2 Data Variation Calculation 

Step1：calculate the difference of accelerometers between each result and the 

average: 

Difference between 𝑑𝑖 and 𝑎𝑣 is: 

𝑎𝑑(n) == √∑ (𝑑𝑁(𝑛)−𝑎𝑣(𝑛))2𝑁
𝑖=1

𝑁
                                                  (6.3) 

In this case, the N is 5. The figure below Figure 6-5 shows the difference 

between 𝑑𝑖  and 𝑎𝑣, the highest difference is 0.0044V: 

 

 

Figure 6-5 Percentage of Difference between 𝒅𝒊 and 𝐚𝐯 

6.2.2 Smooth Curve Monitoring Repeatability Test 

Smooth curve test is all about the data from capacitance probes. The 

repeatability test is based on the Shaft No.1. Working steps are illustrated as 

following. 

6.2.2.1 Data Average Calculation 

Taking a1 as output of capacitance probe Static, a2 as output of capacitance 

probe dynamic, the difference is: 

  𝑑(𝑛) = 𝑎1(𝑛) − 𝑎2(𝑛)                                                             (6.8) 
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The following Figure 6-6is the signal of capacitance probe static (green line), 

capacitance probe dynamic (red line) and the difference d: 

 

Figure 6-6 The signal of two capacitance probe sensors and the difference (Unit 

of the X axis is mm, unit to the Y axis is Voltage) 

Then, define d1 as the result of the first test, therefore, d2 as the result of the 

second test, d3 as the result of the third test,  d4 as the result of the fourth test, 

d5 as the result of the fifth test.  

The average of the 5 groups’ difference is: 

𝑎𝑣(𝑛) = √𝑑1
2(𝑛)+𝑑2

2(𝑛)+𝑑3
2(𝑛)+𝑑4

2(𝑛)+𝑑5
2(𝑛)

5
                                                           (6.9) 

The figure below Figure 6-7 shows the result of the difference average  
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Figure 6-7 Average of difference 

6.2.2.2 Data Variation Calculation 

Step1：calculate the difference of capacitance probes between each result and 

the average: 

Difference between di and av: 

            

𝑎𝑣(𝑛) = √∑ (𝑑𝑁(𝑛)−𝑎𝑣(𝑛))2𝑁
𝑖=1

𝑁
                                                                (6.10) 

The Figure 6-8 below shows the difference between di  and av , the highest 

difference is 0.41V: 
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Figure 6-8 difference to the average 

 

6.2.3 Conclusion of Repeatability Test 

6.2.3.1 Vibration Monitoring System 

According to the test of accelerometers’ repeatability, the average of variation is 

0.004V which means the variance of the repeating test results is 0.004V. 

Resources bring to the result could be the following: 

(1) The stiffness of the assembly of sensors on tables: The accelerometer is 

well equipped with wax in the experiment but might still have an influence 

to the experiment result. 

(2) The rigidity of the moving table: As is analysed in the designing part, the 

moving table has the looseness on Z direction of0.009𝑚𝑚, the looseness 

might contribute to the variance. 

(3) The ball bearing: the balls in the bearing shall not move when the table is 

static, but might have the impact during the moving behaviour. In this 

case, it is still possible that part of the variance is caused by it. Further 

experiment on this case shall be applied to prove this. 
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6.2.3.2 Smooth Curve Monitoring System 

 

Resources bringing to the variance of the result can be the following: 

(1) The stiffness of the stand arm: As can be seen in figures, the stand arm 

for the sensor is not stiff enough and vibrates in the Z section during the 

whole moving process. In this case, the vibration frequency is consistent 

because the speed and the start-end points are settled by Arduino 

program. However, whether the phase of the vibration coordinating to the 

particular position still needs validation through a further test. Therefore, 

there is possibility that the variance is partially caused by such reason. 

(2) The rigidity of the moving table: As is analysed in the designing part, the 

moving table has the looseness on Z direction of 0.009𝑚𝑚 , the 

looseness might contribute to the variance. 

(3) Deviation of sensor assembly on X or Y direction: As mentioned in the 

uncertainty analysis part, Since the stand arm assembly hole has the 

drilling tolerance of 0.2mm, there is an error from the deviation of the 

sensor probe caused by this. 

Above all, the result of repeatability test is promising. It is convinced that the 

further conclusion from wear data calculation is reliable to some extent. 

6.3 Wear In-process Monitoring Test 

After validation to the repeatability and solving the original data, the wear is 

deliberately fabricated on the particular length as mentioned in the experiment 

designing part.  

In this section, in order to test the in-process monitoring approach, the wear 

made on shaft No.1 to No.3 with different depth is tested by the system. The 

No.4 shaft is pristine and the wear is made on the ball bearing, to test the 

vibration signal. 

According to the in-process monitoring hypothesis, the calculated data which 

contains wear signal is minored with the previous data (while there is no wear 

on the shaft, taken as referencing data) to acquire the final data of the wear on 

each symptom. 
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6.3.1 Synchronising In-process Test 

Before the wear test, the static test is represented solely to identify the static 

feature of the system on disturbance receiving. Taking the accelerometer as the 

example, the test is made while the sensor is turned on but the motor is not 

running, simultaneously, making disturbance signal on the frame during the 

measuring. The purpose is to check if those two sensors receive the signal on 

the same sampling frequency and there is no phase difference which impacts 

the result. 

As can be seen from the result in Figure 6-9, those blue dots are signals from 

the static accelerometer, red ones are from the dynamic one.  

 

Figure 6-9 Signals from two sensors in the same sampling frequency 

In the Figure 6-10, the percentage of the difference 𝑈𝑌  among those two 

signals (𝑎1 is the signal from static accelerometer and 𝑎2 is from dynamic one) 

are shown, the calculation formula is: 

𝑈𝑌 =
√|(𝑎1)2−(𝑎2)2|

√(𝑎1)2+(𝑎2)2

2

× 100%                                               (6.15) 
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Figure 6-10 Percentage of the static and dynamic sensors’ difference 

6.3.2 Wear Symptom (1): Non-smooth Behaviour Monitoring Test 

Wear Data Processing and Wear Observation 

Since the repeatability of No.1 shaft is not reliable, the data of No.1 is 

abandoned. 

Step 1: calculate the root-mean-square of accelerometer static from No.2to 

No.5 files: 

Taking the 5 times measured data from shaft No.2 which the wear has made, 

as example, assuming each value of the accelerometer static is 𝑎𝑠𝑐1，𝑎𝑠𝑐2，

𝑎𝑠𝑐3，𝑎𝑠𝑐4，𝑎𝑠𝑐5, thenthe average of the value is𝑎𝑠𝑐𝑣2: 

𝑎𝑠𝑐𝑣2 = √𝑎𝑠𝑐1
2 +𝑎𝑠𝑐2

2 +𝑎𝑠𝑐3
2 +𝑎𝑠𝑐4

2 +𝑎𝑠𝑐5
2

5
                                                       (6.16) 

Assuming each value of the accelerometer dynamic is 𝑎𝑑𝑐1，𝑎𝑑𝑐2，𝑎𝑑𝑐3，𝑎𝑑𝑐4，

𝑎𝑑𝑐5,then the average of the value 𝑎𝑑𝑐𝑣2is: 

𝑎𝑑𝑐𝑣2 = √𝑎𝑑𝑐1
2 +𝑎𝑑𝑐2

2 +𝑎𝑑𝑐3
2 +𝑎𝑑𝑐4

2 +𝑎𝑑𝑐5
2

5
                                                    (6.17) 

Step 2: Same solution to the data of No.2 shaft without wear, the average of 

accelerometer static and dynamic are (in the following formula,  𝑎𝑠𝑐𝑣2𝑛 is the 
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average of the 5 times accelerometer static data, from 𝑎𝑠𝑐1𝑛to 𝑎𝑠𝑐5𝑛; ,  𝑎𝑑𝑐𝑣2𝑛 is 

the average of the 5 times accelerometer dynamic data, from 𝑎𝑑𝑐1𝑛to 𝑎𝑑𝑐5𝑛): 

𝑎𝑠𝑐𝑣2𝑛 = √𝑎𝑠𝑐1n
2 +𝑎𝑠𝑐2n

2 +𝑎𝑠𝑐3n
2 +𝑎𝑠𝑐4n

2 +𝑎𝑠𝑐5n
2

5
                                               (6.18) 

𝑎𝑑𝑐𝑣2𝑛 = √𝑎𝑑𝑐1n
2 +𝑎𝑑𝑐2n

2 +𝑎𝑑𝑐3n
2 +𝑎𝑑𝑐4n

2 +𝑎𝑑𝑐5n
2

5
                                            (6.19) 

Step 3: calculate the result without the noise to No.2 shaft, 𝑎𝑤𝑐2: 

𝑎𝑤𝑐2 = 𝑎𝑑𝑐𝑣2 − 𝑎𝑠𝑐𝑣2                                                      (6.20) 

 Step 4: calculate the result to No.2 shaft without the noise and wear (data from 

the repeatability & reproducibility file) 

𝑎𝑛𝑤𝑐2 = 𝑎𝑑𝑐𝑣2𝑛 − 𝑎𝑠𝑐𝑣2𝑛                                                 (6.21) 

Step 5: calculate the result of wear changes 𝑈𝑤𝑐2 (as provided in Figure 6-11): 

𝑈𝑤𝑐2=𝑎𝑤𝑐2 − 𝑎𝑛𝑤𝑐2                                                     (6.22) 

 

Figure 6-11 Wear Changes 𝐔𝐰𝐜𝟐 

Step 6: repeat the calculation from step1 to step5 on shaft No.3 data, then 

calculate the result of wear change 𝑈𝑤𝑐3 (as provided in Figure 6-12): 

𝑈𝑤𝑐3=𝑎𝑤𝑐3 − 𝑎𝑛𝑤𝑐3                                                 (6.23) 
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Figure 6-12 Wear Changes 𝐔𝐰𝐜𝟑 

6.3.3 Wear Symptom (2): Smooth Curve Increase Monitoring Test 

Step 1: calculate the root-mean-square of capacitance probe static from No.2to 

No.5 files: 

Taking the five times measured data from shaft No.2 which the wear has made, 

as example, assuming each value of the capacitance probe static is 𝑎𝑠𝑝1，𝑎𝑠𝑝2，

𝑎𝑠𝑝3，𝑎𝑠𝑝4，𝑎𝑠𝑝5, thenthe average of the value is 𝑎𝑠𝑐𝑣2: 

𝑎𝑠𝑝2 = √
𝑎𝑠𝑝1

2 +𝑎𝑠𝑝2
2 +𝑎𝑠𝑝3

2 +𝑎𝑠𝑝4
2 +𝑎𝑠𝑝5

2

5
                                         (6.24) 

Assuming each value of the capacitance probe dynamic is 𝑎𝑑𝑝1，𝑎𝑑𝑝2，𝑎𝑑𝑝3，

𝑎𝑑𝑝4，𝑎𝑑𝑝5, then the average of the value 𝑎𝑑𝑝𝑣2is: 

𝑎𝑑𝑝𝑣2 = √
𝑎𝑑𝑝1

2 +𝑎𝑑𝑝2
2 +𝑎𝑑𝑝3

2 +𝑎𝑑𝑝4
2 +𝑎𝑑𝑝5

2

5
                                      (6.25) 

Step 2: Same solution to the data of No.2 shaft without wear, the average of 

capacitance probe static and dynamic are (in the following formula,  𝑎𝑠𝑝𝑣1𝑛 is 

the average of the 5 times capacitance probe static data, from 𝑎𝑠𝑝1𝑛to 𝑎𝑠𝑝5𝑛; ,  

𝑎𝑑𝑝𝑣1𝑛  is the average of the 5 times capacitance probe dynamic data, from 

𝑎𝑑𝑝1𝑛to 𝑎𝑑𝑝5𝑛): 

𝑎𝑠𝑝𝑣2𝑛 = √
𝑎𝑠𝑝1n

2 +𝑎𝑠𝑝2n
2 +𝑎𝑠𝑝3n

2 +𝑎𝑠𝑝4n
2 +𝑎𝑠𝑝5n

2

5
                               (6.26) 

𝑎𝑑𝑝𝑣2𝑛 = √
𝑎𝑑𝑝1n

2 +𝑎𝑑𝑝2n
2 +𝑎𝑑𝑝3n

2 +𝑎𝑑𝑝4n
2 +𝑎𝑑𝑝5n

2

5
                             (6.27) 
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Step 3: calculate the result without the noise to No.2 shaft, awp2: 

𝑎𝑤𝑝2 = 𝑎𝑑𝑝𝑣2 − 𝑎𝑠𝑝𝑣2                                                             (6.28) 

Step 4: calculate the result to No.2 shaft without the noise and wear (data in the 

repeatability & reproducibility file) 

𝑎𝑛𝑤𝑝2 = 𝑎𝑑𝑝𝑣2𝑛 − 𝑎𝑠𝑝𝑣2𝑛                                                         (6.29) 

Step 5: calculate the result of wear changes Uwp2(as shown in the following 

Figure 6-13: 

𝑈𝑤𝑝2=𝑎𝑤𝑝2 − 𝑎𝑛𝑤𝑝2                                                              (6.30) 

 

 

Figure 6-13 Wear Changes 𝐔𝐰𝐩𝟐 

Step 6: repeat the calculation from step1 to step5 on shaft No.3 data, then 

calculate the result of wear change Uwp3(as shown in the following Figure 6-14: 

𝑈𝑤𝑝3=𝑎𝑤𝑝3 − 𝑎𝑛𝑤𝑝3                                                         (6.31) 

 

Figure 6-14 Wear Changes 𝐔𝐰𝐩𝟑 
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6.3.4 Wear Symptom (3): Small Range Vibration Monitoring Test 

Taking the accelerometer data from shaft No.4, repeat the work in 6.3.2.1 to 

calculate the result of wear from bearing balls, then the result of wear change 

Uwp4 (as shown in the following Figure 6-15： 

𝑈𝑤𝑝4=𝑎𝑤𝑝4 − 𝑎𝑛𝑤𝑝4                                                     (6.32) 

 

Figure 6-15 Wear Changes 𝐔𝐰𝐩𝟒 

6.3.5 In-process Monitoring Performance Conclusion 

Whether the approach of in-process monitoring is applicable, mainly depends 

on two parameters:  

1. the change of data on wear section is observable; 

2. the changing amplitude is in accordance with the wear depth, after 

transferring; 

The following is the conclusion of the hypothesis. 

6.3.5.1 Static Performance 

According to the result of static monitoring performance, there are two things 

can be concluded: 

1. There is no phase difference that can impact the data accuracy in the settled 

sampling frequency, referring to the response of the pair of sensors to outer 

disturbance. 

2. The difference between the static and dynamic signal is no more than 1.5% 

of the average, which means the noise and disturbance offset solution is 

reliable. 
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Above all, the static monitoring test result is supportive of the in-process 

monitoring approach. 

6.3.5.2 Wear Symptoms (1) Monitoring Performance 

In the experiment design part, the 20mm wear section is in the middle of 

running area (40 to 60 mm section). The expected symptom is vibration signal 

increases in the particular area.  

In the result, it is observable that shaft No.2 has signal amplitude increase in the 

wear section. However, in the result of shaft No.3, there is no signal change can 

be observed at all, the surface of the shaft performs better comparing with the 

pristine condition.  

The reason could be the utilisation of high grit emery paper: The emery paper 

selected in the experiment can reach to 3000 grit, which is even smoother than 

pristine shaft surface. It is similar to the running process of CNC machine newly 

applied.  

Meanwhile, the acquired result needs to have a further study, to get more 

information about wear degree. 

6.3.5.3 Wear Symptoms (2) Monitoring Performance 

As can be seen from the result, both No.2 and No.3 shafts’ signal amplification 

can be observed. On shaft No.2, the signal increases from -0.8 to -1.8, the 

difference 1V which transfers to depth is 25.4µm. On shaft No.3, the signal 

increase from -1.5 to -2.2, the difference 0.7V which transfers to depth is 

17.8µm.  

Therefore, the calculated result shows that the monitoring solution is applicable 

and can observe the wear as expected. The accuracy of the monitoring result 

requires further improvement. 

6.3.5.4 Wear Symptoms (3) Monitoring Performance 

The data from the test on shaft No.4 does not show clear frequency change 

caused by the wear on bearing balls. The reason can be: 
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1. the wear of ball bearing has no, or limited, impact on the performance of the 

CNC machine guiderail; 

2. the high frequency caused by the wear has low amplitude and cannot be 

observed in the  time domain; 

Therefore, whether there is the existence of high frequency signal caused by 

the wear of bearing balls, still needs a further test. 
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7 CONCLUSION 

In this part, the conclusion to the calculation result illustrated in the data 

analysis part is represented. The whole thesis provides complete design and 

experiment process for the validation of the guiderail wear in-process 

monitoring system 

7.1 The Categorisation to the CNC Machine Guiderail wear  

In the thesis, according to the literature review, the five major types of the wear 

happening on the CNC machine is illustrated and the major one called friction 

fatigue wear is selected as the study object in the whole thesis. The 

mechanism, effect and especially the symptom of the wear are all analysed and 

systematically concluded. 

7.2 Requirement of the Project  

After the analysis to the choose type of wear, friction fatigue wear, the 

requirement based on the symptom is represented. The requirement content 

includes the following factors which are importance to the further designing: 

1. level of accuracy the monitoring system shall reach (among each particular 

type of the sensor) 

2. draft scale of the experiment rig 

3. physical requirement to sensors 

4. DAQ approach and sampling frequency 

5. Driving system parameter calculation 

6. Importance to the uncertainty analysis 

7. Novelty of the thesis: In-process monitoring approach 

7.3 Designing of the Rig and the Experiment Process 

7.4 Contribution to New Knowledge: In-process Monitoring 

Approach 

According to the literature review and proper designing, the definition to the “in-

process”, the solution of realisation and component selection are all specifically 
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illustrated in the thesis. It also includes the consideration of sensor, systematic 

calculation on the sensor parameter, further data calculation. Above all, the 

uncertainty brought into the result is systematically calculated . 

As can be concluded from the result discussion, the in-process wear monitoring 

solution gets more optimistic result from accelerometers. The change of the 

signal altitude can be observed clearly and the position signal is corresponded 

to the position of the wear on the test shaft. Then, according to such approach, 

the depth of the wear can be transferred and calculated referring to the data of 

the result. 
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8 DIRECTION OF FUTURE WORK 

As concluded from the previous design, the past two symptoms of the three can 

be monitored by the system in such an in-process solution. However, the 

repeating vibration caused by bearing balls’ wear is not able to be observed in 

such approach and might need further study on both the symptom and the 

monitoring solution. The following aspects are the plan of future work on the 

theory.  

8.1 Improvement of Repeatability 

The repeatability of the test tells that the repeatability is over that 10% each 

time and if unexpected thing happens, it may reach to over 100%. Therefore, 

the improvement on test repeatability is crucial. 

8.2 Test of Reproducibility 

Another important case in evaluating the performance of the system is 

reproducibility which means how stable the system works in different conditions. 

The test needs to be: 

1) Reproduced in difference areas; 

2) Reproduced by different operators,  

3) Reconstructing the components; 

4) Reproduced with the revising of parameters 

The aim is to prove that the result of the experiment is reproducible and 

credible. 

8.3 Improvement to the range of application 

After complete verification of the hypothesis, the applicability of the product is 

another factor that shall consider. It shall be verified by each type of CNC 

machine widely used in the industry and also applied on each typical guiderail 

with different wear types. 



 

139 

8.3.1 Applicability to different types of CNC machine 

The following are types of CNC machine which the monitoring system shall be 

applied on: 

1) gantry milling machine; 

2) floor milling machine; 

3) C-frame milling machine; 

4) box milling machine; 

5) turret milling machine; 

6) bed milling machine; 

8.3.2 Applicability to different types of guiderail 

The following are types of guiderails widely applied in the CNC machine 

besides the round guiderail: 

By working mechanism: 

1) sliding contact guiderail; 

2) aerostatic  linear guiderail; 

3) hydrostatic linear guiderail; 

By component cross-section shape: 

1) triangle guiderail; 

2) rectangular guiderail; 

3) dovetail guiderail; 

4) multiplex guiderail. 

8.3.3 Applicability to other types of machine wear 

The following are the other types of wear which can be tested with the in-

process hypothesis: 

1) grinding abrasion; 

2) corrosive wear; 

3) rusty wear; 

4) fretting fatigue wear. 
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The next step of the wear monitoring study shall focus on testing if the 

methodology applies those different types of wear. It is the key point to approve 

that if the hypothesis is applicable. The approach of the test would be following: 

1)  study and conclude the phenomena, effect and symptoms of the wear; 

2) Select the proper solution in the experiment to monitor the wear 

symptom and capture the signal; 

3) Use the in-process monitoring solution to adopt the signal to carry out the 

result for approving. 
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