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Overview 
The main objective of this study is to elucidate a possible method of producing ceramic 

calcium phosphate micropatterns ranging from 5 to 100 μm. Aditionally the influence on 

human osteoblast cells has been tested in vitro with patterned surfaces, fabricated with some 

of these techniques.  

Today, micropatterned ceramic surfaces are of great interest for fundamental materials 

research as well as for high-end industrial processes, whereas the fabrication of ceramic 

patterns in the sub-100 μm range is still rather a challenge. Therefore, in the context of this 

thesis, six different patterning techniques have been applied in order to generate ceramic 

patterns. Three of these patterning methods, namely, microtransfer molding (μTM), modified 

micromolding (m-μM) and Aerosol-Jet® printing, generated patterns by the use of aqueous 

ceramic suspensions. The other methods, to wit, CNC-micromachining, laser ablation and 

direct laser interference patterning (DLIP), removed material from solid ceramic substrates to 

generate micropatterned surfaces. The patterning techniques have been evaluated concerning 

their capability of fabricating ceramic patterns. Several different aspects, such as the achieved 

pattern edge contour or the smallest producible pattern size, have been regarded.  

It can be summarized from this that all applied patterning techniques are useful to fabricate 

ceramic micropatterns smaller than 100 μm. Further, it was found that the choice of patterning 

technique limits the scope of the produced pattern properties such as the desired pattern 

accuracy, quality or size. Using modified micromolding, patterns as small as 5 μm with 

vertical sidewalls can be fabricated within some days of production. The molded 

micropatterns feature very high accuracy with only low technical efforts needed at the same 

time. A faster processing can be achieved with the use of Aerosol-Jet® printing, but the 

pattern accuracy then is lower while the costs for equipment are much higher. CNC 

micromachining resulted in ceramic patterns of about 100 μm with the costs for the 

equipment being quite high. Solely re-sintering of machined patterns resulted in widths of 75 

μm. However, CNC-machining is a fast patterning process for various solid ceramics. The 

laser treatment techniques imply high costs for the technical equipment, yet the production 

time required is short. Direct interference patterning, for example, offers a fast and accurate 

patterning of ceramic surfaces within only some hours of production. Thus, altogether, the 

quest for a suitable patterning technique is a balancing act between, on the one hand, general 

process properties, such as costs for equipment or production time, and, on the other hand, 

desired pattern properties.  

Another objective of this study has been the investigation of the influence of ceramic patterns 
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on human osteoblasts (HOB). Tests with defined levels of randomized hydroxyapatite surface 

roughness caused no significant changes in the osteoblast viability (WST-1 and collagen type 

I production) in-vitro. In addition, tests with specific micropatterning were carried out. First 

tests with osteoblast-like tumorous osteosarcoma cells (MG-63) showed a distinct cell 

orientation on ceramic Aerosol-Jet® printed micropatterned lines of 10 to 60 μm in width. 

Due to a lack of edge contour and accuracy further in-vitro testing on better defined 

micromolded patterns were made with normal HOB cells. This investigation has revealed that 

ceramic hydroxyapatite-based patterns ranging from 16 μm to 77 μm in widths have a strong 

influence on the contact guidance of the HOB. In short, less viable cells were measured on the 

basis of patterned compared to non-patterned samples. In doing so, the cells showed distinct 

orientations between 0° and 15° in reference to the pattern direction, whereas fewer cells were 

measured inside the microchannels as compared to on top of the pattern struts. Both effects 

were stronger on smaller pattern widths than on larger ones. 
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Überblick 
Die Hauptziele dieser Arbeit bestanden darin, mögliche Herstellungsmethoden keramischer 

Kalziumphosphatmikrostrukturen im Bereich von 5 bis 100 μm zu erläutern. Deren Einfluss 

auf humane Osteoblasten wurde mit strukturierten Oberflächen, hergestellt mithilfe einiger 

dieser Methoden, in-vitro getestet.  

Mikrostrukturierte keramische Oberflächen sind heutzutage von großem Interesse in der 

Grundlagenforschung von Materialien sowie in hochtechnisierten Industrieprozessen, wobei 

die Herstellung von Strukturen kleiner als 100 μm immer noch eine große Herausforderung 

darstellt. Im Rahmen dieser Arbeit wurden sechs verschiedene Strukturierungsmethoden 

angewendet, um keramische Mikrostrukturen herzustellen. Drei dieser Methoden, und zwar 

„microtransfer molding“ (μTM), „modified micromolding“ (m-μM) und „Aerosol-Jet® 

printing“, stellten dabei Mikrostrukturen unter Verwendung wässriger keramischer 

Suspensionen her. Die anderen Methoden, „CNC-micromachining“, „laser ablation“ und 

„direct laser interference patterning“ (DLIP), trugen Material von keramischen 

Festkörperproben ab, um mikrostrukturierte Oberflächen herzustellen. Die 

Strukturierungstechniken wurden hinsichtlich ihrer Fähigkeit zur Herstellung keramischer 

Mikrostrukturen bewertet. Mehrere Kriterien, wie die erzielten Konturen der Strukturkanten 

oder die kleinsten herstellbaren Strukturen, wurden dabei berücksichtigt.  

Zusammenfassend kann gesagt werden, dass sich alle angewendeten 

Strukturierungsmethoden dazu eignen, keramische Mikrostrukturen kleiner als 100 μm 

herzustellen. Es wurde darüber hinaus herausgefunden, dass die Wahl der 

Strukturierungsmethode die Bandbreite der hergestellten Struktureigenschaften, wie 

Strukturgenauigkeit, -qualität oder -größe, begrenzt. Bei der Verwendung von „modified 

micromolding“ können Strukturen von nur 5 μm mit vertikalen Seitenwänden innerhalb 

weniger Tage hergestellt werden. Die so hergestellten Strukturen weisen eine sehr hohe 

Genauigkeit auf, wobei ein nur geringer technischer Aufwand betrieben werden muss. Eine 

schnellere Strukturierung kann mittels „Aerosol-Jet® printing” erzielt werden, jedoch sind 

hier die Anschaffungskosten weitaus höher. „CNC micromachining“-produzierte keramische 

Mikrostrukturen von ca. 100 μm und die Anschaffungskosten sind vergleichsweise hoch. 

Lediglich ein Nachsintern resultierte in Strukturbreiten von 75 μm. Trotzdem ist „CNC 

micromachining“ ein schnelles Verfahren zur Strukturierung verschiedener keramischer 

Materialien. Die Laserverfahren haben allesamt hohe Anschaffungskosten, aber die 

Produktionszeit verringert sich durch ihren Einsatz erheblich. „Direct laser interference 

patterning“ bietet eine schnelle und präzise Strukturierung von keramischen Oberflächen 
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innerhalb weniger Stunden. Die Suche nach einer geeigneten Strukturierungsmethode ist 

dabei immer ein Spagat einerseits zwischen allgemeinen Eigenschaften wie 

Anschaffungskosten oder Produktionszeit und andererseits den gewünschten 

Mikrostruktureigenschaften.  

Ein weiteres Ziel dieser Arbeit bestand in der Untersuchung des Einflusses keramischer 

Hydroxylapatit-basierter Strukturen auf humane Osteoblasten (HOB). In-vitro-Versuche mit 

definierten, zufälligen Hydroxylapatit-Oberflächenrauheiten erwirkten keine signifikanten 

Unterschiede in der Osteoblastviabilität (WST-1 und Kollagen I Produktion). Zudem wurden 

Versuche mit definierten Mikrostrukturen durchgeführt. Erste Versuche mit tumorösen 

osteoblast-ähnlichen Zellen (MG-63) zeigten eine klare Ausrichtung der Zellen auf 

keramischen Aerosol-Jet® gedruckten Linien mit Breiten von 10 bis 60 μm. Wegen Mangel 

an Kantenkonturen und Genauigkeit wurden weitere in-vitro Versuche an besser definierten 

gegossenen Mikrostrukturen (Modified Micromolding) mit normalen HOB durchgeführt. 

Diese haben gezeigt, dass 16 bis 77 μm breite Hydroxylapatit-basierte Strukturen einen 

starken Einfluss auf die Zellausrichtung haben. Im Allgemeinen gab es weniger lebende 

Zellen auf mikrostrukturierten Oberflächen als auf nicht-strukturierten. Die Zellen zeigten 

eine klare Ausrichtung zwischen 0° und 15° in Abhängigkeit von der Strukturrichtung, wobei 

weniger Zellen in den Mikrokanälen als auf den Mikrostrukturen gemessen wurden. Beide 

Effekte waren in kleineren Mikrostrukturen stärker ausgeprägt als in größeren. 
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1. Introduction and aims of this thesis 

1.1 Cell-material interfaces 

Tissue consists of viable cells, therefore it is in permanent synthesis and degradation to heal 

defects and to prevent loss of quality. Bone tissue is a mineralized tissue that gives various 

mechanical and metabolic functions to the skeleton. In the case of bone tissue, bone-forming 

osteoblasts are involved in the bone synthesis, whereas bone-resorbing osteoclasts are 

responsible for the bone degradation. Both play the main role in the life cycle of the skeleton 

regulating its mass continually (Teitelbaum, 2000; Ducy et al., 2000).  

With a bone implant, e.g. a dental implant or a hip prosthesis, being inserted into the patient’s 

body a distinct reaction will be caused by the surrounding tissue. However, if the implant 

material is toxic, tissue necrosis and death of the surrounding tissue will occur, making a 

removal of the implant obligatory (Wintermantel, 2000). 

If the implant surface is inert, a layer of non-adherent connective tissue will encapsulate the 

implant, which might cause a rejection of the implants. The ingrowth of inert surfaces can be 

remarkably improved by using porous inert materials. As pore sizes in natural cortical bone 

usually range from 1 to 100 μm and from 200 to 400 μm in trabecular bone (LeGeros, 2002), 

best ingrowth results are found for porous implants with interconnecting pores from 100 to 

150 μm. These pore sizes are supposed to be sufficient to allow the vascularisation of blood 

vessels and a mechanical stabilization of the implant (Wintermantel, 2000). However, the 

growth of human osteoblasts into periodic microchannels or micropatterns with well-defined 

accuracy and different sizes is still not fully understood.  

If the implant surface is bioactive, cells and generated tissue are adherent to the implant 

surface via chemical bonding at the interface. The interfacial bonding strength and the 

mechanisms of the bonding depend on the inserted material and the surrounding tissue. In the 

case of bioactive bone implants, a layer of bone apatite-like material or carbonate 

hydroxyapatite is synthesized on the implant surface. The chemical composition of this layer 

is very similar to the crystal structure of the naturally mineralized bone (LeGeros, 2002; 

Wintermantel, 2000).  

If the implant material is non-toxic and degradable, the surrounding tissue will degrade and 

replace the implant. The speed of the biological degradation, then, depends on the material’s 

composition, solubility, size and geometry. For example, cylindrical implants made of ß-tri-

calcium phosphate (ß-TCP) were degraded by 55% after 24 months of implantation in 
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rabbits. Same implants made of hydroxyapatite (HA) were degraded by 5% under identical 

conditions (Lu et al., 2002). 

 

The bioactive calcium orthophosphate ceramic (CaP) hydroxyapatite is an important material 

which has been used in all experiments for this doctoral thesis. HA is utilised as a bioactive 

coating for metal implants. It is similar in composition to mineralized bone apatite and is able 

to promote cellular functions leading to the formation of a uniquely strong bone-tissue-HA 

interface. In addition, HA is osteoconductive, which allows for the provision of an appropriate 

scaffold or template for bone formation. Hydroxyapatite with an appropriate 3D geometry is 

able to bind and concentrate bone morphogenetic proteins. Furthermore, HA might be 

osteoinductive, which describes the capability of osteogenesis, and can be an effective carrier 

of bone cell seeds (LeGeros, 2002; Anselme, 2000).  

 

In many studies, it has been found that chemical and topographical modifications of various 

materials affect different cell functions, depending on topographical geometry and size. Thus, 

Reichert et al. have demonstrated the impact of topography on the attachment of fibroblast 

cells which usually do not show any adherent contact to polytetrafluoroethylene (PTFE) 

surfaces. After laser micropatterning of the PTFE, the fibroblasts became attached to the 

PTFE surfaces (Reichert et al., 2007). Especially the alignment of cells in reference to 

micropattern formation has been reported by several researchers (Kirmizidis et al., 2009; 

Walboomers et al., 1999; Kaiser et al., 2006; Berry et al., 2004; Lu and Leng, 2003; Lu and 

Leng 2009; Tan and Saltzman, 2004; Perizzolo, 2001). Walboomers et al., for instance, 

reported an increased fibroblast alignment with decreasing groove widths from 10, 5, 2, and 1 

μm (depths of 0.5 μm) on polystyrene substrates. 

 

Randomized surface texturing (e.g. roughening of HA) has been studied by different research 

groups with various cell types. Depending on the investigated parameters the randomized CaP 

texturing can have a significant influence on the cell behaviour and metabolism (Ball et al., 

2008; Deligianni et al., 2001; Hayashi et al., 1994).  

The effects of defined CaP surface topographies (e.g. microgrooves) has so far been 

investigated in only very few studies (Lu and Leng, 2003; Lu and Leng 2009; Tan and 

Saltzman, 2004; Perizzolo, 2001). A main reason for this is certainly the difficult fabrication 

of defined ceramic micropatterns. Most reports on this deal with coatings, e.g. HA deposited 

by magnetron sputtering or by direct mineralization of HA on pre-patterned silicon wafer 
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substrates (Lu and Leng, 2003; Lu and Leng, 2009; Tan and Saltzman, 2004; Perizzolo, 

2001). However, the effect of systematically changed micropatterns in the sub-100 μm range 

with high accurate patterns has not yet been studied using solid HA-based ceramic samples 

and human osteoblasts. 
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1.2 Bioceramics 

Bioceramics are ceramic materials and glasses which are biocompatible and used in medical 

applications. Common bioceramics are oxidic ceramics, such as alumina (Al2O3), zirconia 

(ZrO2) and silica (SiO2), or non-oxidic ceramics such as hydroxyapatite. The former, i.e. 

oxidic bioceramics, are bio-inert (Wintermantel, 2002). Stabilized zirconia and alumina have 

a fracture toughness of 6.1 MPa.m1/2 and 4.2 MPa.m1/2, respectively (Bradt et al., 2005). Due 

to their high hardness and fracture toughness, stabilized alumina (ZTA: zirconia-toughened 

alumina) and stabilized zirconia (Y-TZP: yttria-stabilized zirconia and Mg-PSZ: Mg-partially 

stabilized zirconia) have been used as load-bearing implants, e.g. in hip-prosthesis, for almost 

four decades (Wintermantel, 2002). Moreover, alumina and zirconia were used in the 

experimental section of this thesis for the fabrication of micropatterns, e.g. via modified 

micromolding.  

One important group of bioceramics are calcium orthophosphates (CaP), which inhibit twelve 

known non-ion-substituted calcium orthophosphates (Elliott, 1994). They are composed of 

three major chemical elements: calcium, with an oxidation state of +2; phosphorus, with an 

oxidation state of +5; and oxygen, with an oxidation state of -2, as a part of the 

orthophosphate anions. These materials are stabilized by a network of orthophosphate PO4 

groups (Dorozhkin, 2007).  

CaPs are natural minerals and are biocompatible due to a chemical similarity to the mineral 

component of biological calcified tissue. They represent the inorganic part of mammal teeth, 

bones and antlers. Most calcium orthophosphates are stable in alkaline solutions pH 7 to 12, 

but are soluble in acids with pH 0 to 7 (Dorozhkin, 2007). This makes them absorbable in 

acidic conditions, which is important for possible in-vivo insertions into bone tissue, because 

osteoclast cells decrease the pH down to 3 to 4 locally in order to resorb bone tissue (Lucht, 

1972; Ducy et al., 2000). In addition, the solubility between pH 0 and 7 should be kept in 

mind in order to prevent acidic conditions during the manufacture of micropatterns, as e.g. by 

using aqueous slurries of calcium phosphates for molding processes. CaPs are commercially 

available as synthetic materials with different grades of purity and various physical forms 

such as powders with different grain sizes, cements, composites with polymers and differently 

shaped blocks (LeGeros, 2002).  

From the biomedical point of view, hydroxyapatite (Ca10(PO4)6(OH)2), fluorapatite 

(Ca10(PO4)6F2), and ß-tri-calcium phosphate (β-Ca3(PO4)2) are the most commonly used 

calcium orthophosphates. An overview of the properties of these three important CaPs is 

given in Tab. 1.  
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Tab. 1: Material properties of medical relevant calcium orthophosphates according to Dorozhkin, 2007. 
Compound Abbreviation Formula Ca/P ratio Density  Crystal system  pH stability 

at 25 °C in 

aquaeous 

solution 

    (g/cm3)  

β-tri-calcium phosphate β-TCP β-Ca3(PO4)2 1.50 3.08 rhombohedral n.a. 

fluorapatite FA or FAp Ca10(PO4)6F2 1.67 3.20 hexagonal 7-12 

hydroxyapatite HA or HAp Ca10(PO4)6(OH)2 1.67 3.16 hexagonal or monoclinic 9.5-12 

 

In the experimental section of the present thesis, only hydroxyapatite was utilised as a calcium 

phosphate ceramic. The melting point of hydroxyapatite is at 1650 °C (Ha et al., 1994), but it 

thermally degrades and reconstitutes to other calcium orthophosphate structures at a 

temperature of about 1350 °C. Beyond this temperature it converts into α- and β-tri-calcium 

phosphate, which is critical for the sintering of HA and for micropatterning processes with 

thermal impacts, e.g. laser treatment.  

 

An advantage of hydroxyapatite consists in its ability to provide an implant for new bone 

formation and support of osteoblast adhesion and proliferation (LeGeros, 2002; Anselme, 

2000). Due to this osteoconductive behaviour HA is used as a coating on e.g. dental implants, 

hip-prostheses or as a bone grafting material (Salmang und Scholze 2006.). As HA’s fracture 

toughness is low and does not exceed 1.0 MPa.m1/2 it is not used as a load-bearing implant 

material (human bone 2-12 MPa.m1/2) (Suchanek, 1996). 
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1.3 Aims of this Thesis 

The main objective behind this doctoral thesis is to explore processing techniques for the 

fabrication of ceramic surfaces featuring small structures and patterns with dimensions in the 

sub-100 μm range. The explored techniques should be used to fabricate micropatterns and 

evaluate their ability and feasibility for the production of well-defined accurate ceramic 

patterns. The ceramic materials of interest were so-called bioceramics, as e.g. alumina, 

zirconia and hydroxyapatite, which are biocompatible and state of the art in various medical 

applications. The main focus in the fabrication of these micropatterns and in the biological 

study of this thesis has been put on the calcium phosphate hydroxyapatite. These 

micropatterns should be used in in-vitro cell experiments with human osteoblasts (HOB) and 

osteoblast-like osteosarcoma cells (MG-63). The findings from these fundamental 

investigations are aimed to understand osteoblast behaviour on micropatterned ceramic 

surfaces and may improve the bioactivity of medical implants, such as ceramic-coated dental 

implants, in future.  

 

The doctoral thesis at hand is divided up into eight main sections. The first one will give an 

overview of some general problems occurring at the interface of an inserted implant (1.1) as 

well as further information about the ceramic materials used in the experiments (1.1). 

Furthermore, the main objectives will be briefly described, (1.3) highlighting thus the 

fundamental background of this study.  

In the second section the principles of various micropatterning techniques appropriate for the 

fabrication of ceramic patterns will be introduced. The first subsection of it will be divided 

into four parts, namely, soft-lithography (2.1.1), rapid prototyping (2.1.4), micromachining 

(2.1.5) and laser treatment (2.1.6). The second subsection gives a detailed overview of the 

state of the art of ceramic micropatterning, shows examples of recently published literature, 

and outlines possible surface characterizations according to the well-established standards in 

this discipline (1.1). 

The third section, then, will illustrate the experimental fabrication of ceramic micropatterns 

through the use of the techniques mentioned in section 2, including results from non-

published pre-testing as well as from published data. This section comprises micromolding 

techniques via soft-lithography (3.1), rapid prototyping via Aerosol-Jet®-printing (3.2), and 

micromachining (3.3) and laser treatment of ceramic surfaces (3.4).  

The fourth section will be a review on the feasibility of fabrication of ceramic micropatterns 

regarding the tested technologies (4). A detailed discussion of the advantages and 



Introduction and aims of this thesis 

 - 16 - 

disadvantages of each applied technology will also be included. Section five, then, is to 

provide a conclusion drawn from the results of this thesis (5). In section six an outlook in 

order to pave the way for future studies in the field of ceramic research (6) will be given. In 

section seven, all the references used in the work on this thesis will be listed (7), and in 

section eight, finally, the appendices to this paper (8) will be delivered, with some additional 

information, e.g. micrographs, diagrams and further notes and comments.
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2. Micropatterning of ceramic surfaces 

2.1 Principles and state of the art of ceramic micropatterning 

The development and continuous improvement of surface micro and nanopatterning has been 

the focus in material research for the last two decades and reviewed by a large number of 

researchers (Xia et al., 1998; Heule et al., 2003; Geissler and Xia, 2004; Gates et al, 2005; ten 

Elshof et al. 2010, Xia et al. 2011). For the surface patterning of ceramic materials, mainly 

two different strategies can be applied. First of all, there is the possibility of machine-aided 

ceramic micropatterning with a high effort of technical equipment such as laser surface 

treatment, injection molding of microparts, slip pressing, or casting of micro devices and 

micromachining of surfaces by, among others, Computer Numerical Control (CNC). Apart 

from that, there is also the possibility of using low cost methods such as soft-lithography. 

Beyond doubt, the results of the machine-aided methods are quite convincing. Thus, Bauer et 

al. reported on the reliable method for the fabrication of micro parts with high accuracy on 

edges and surface detail when using ceramic slip pressing. Thereby, alumina arrays of more 

than a thousand columns have been fabricated with smooth sidewalls and sharp edges. The 

thus produced patterns were 455 μm high and 115 μm wide (Bauer et al., 1999). Other 

researchers reported about reproducible results from the fabrication of micro devices via 

ceramic injection molding (CIM), in particular with low pressure injection molding (LPIM) of 

ceramic feedstocks. Various ceramic materials, such as alumina, hydroxyapatite and zirconia, 

have been used to reliably produce micropatterned components of a few cm2 in size (Fig. 1) 

(Fanelli et al., 1989; Knitter et al., 2001; Piotter et al., 2003). 

 

100 μm 1 mm
 

Fig. 1: Left: taken from Bauer et al., 1999: SEM micrograph of an Al2O3 micropattern made through 

ceramic slip pressing. Right: taken from Knitter et al., 2001: SEM micrograph of an Al2O3 fluid 

distributor made through low pressure ceramic injection molding. 
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Summarizing the above-mentioned studies, machine-aided processes have proved to yield 

excellent results. One main advantage of this is the potential fabrication of a high number of 

items at a time. On the other hand, the most limiting factor in all this consists still in the 

difficulty to produce patterns or micro components much smaller than 100 μm.  

Due to the ambition of ceramic micropatterning with low technical effort as well as low 

producing costs and very high accuracy (even <<100 μm) at the same time, ceramic molding 

via soft-lithographic techniques will be presented in the following chapter.  

 

2.1.1 Molding techniques 

Micromolding (μM), or replica molding (μRM), is the basic principle for all soft-lithography 

techniques. It is used to fabricate a negative duplication, e.g. a soft PDMS mold, of a silicon 

wafer with a positive surface pattern (Fig. 2). Thereby, the relief structures or patterns and 

shapes of a master surface can be casted and duplicated. This method enables multiple copies 

with nanoscale resolution in a reliable and simple process route.  

master

master

PDMS

PDMS

mold

cure & demold

pr
oc
es
s

 
Fig. 2: Replication of a structured Si-wafer via PDMS 

 

2.1.2 Conventional molding techniques via soft-lithography 

In the field of micropatterning and microfabrication, the soft-lithography is a process route 

that is inexpensive and, at the same time, applicable with low expenditure of time. This non-

photolithographic process is based on replica-molding, allowing the fabrication of micro 

devices or surface nano and micro structuring. As no complex devices or machines are 

needed, this technique is accessible to a wide range of users. During the process an 
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elastomeric fluid is used to replicate the surface relief of a master structure. Very often, the 

master is fabricated by a photolithographic process on a silicon wafer or by CNC 

micromachining, laser machining or etching of a polymer or metal block (Su et al., 2002; Xia 

& Whitesides, 1998). The elastomeric fluid is usually supplied as a two-part kit, containing a 

liquid silicone rubber base and a curing agent or catalyst. After mixing, the elastomeric liquid 

has to be poured over the master surface where it becomes solid and cross-linked due to a 

chemical reaction between the hydrosilane groups and the vinyl groups (Semlyen, 1994). This 

solidification process can be controlled on the basis of the mixing ratio and the hardening 

temperature. Usually, the hardening time decreases with increasing temperatures. Compared 

to rigid molds, the use of elastomeric soft molds makes it easier to release fragile small 

patterns and is much more inexpensive than the original master surface. After replication of 

the expensive and sensible original master surface (e.g. Si-wafer), the economic and stable 

soft mold acts as a new master surface for further molding processes. One of the most widely 

used elastomers for molding is polydimethylsiloxane (PDMS) Sylgard® 184 from Dow 

Corning (Wiesbaden, Germany). This silicone elastomer is optical transparent, does not swell 

in humid conditions, is thermally stable to about 186 °C, and supplies a surface with a low, 

interfacial-free energy (Xia & Whitesides, 1998). This molded negative copy of the master 

surface is called stamp and can be easily removed from the master surface, in most of the 

cases. Thereby, the master can be equipped with a nano-sized topography or even with 

complex, micro-sized quasi-3D pattern geometries. 

The adhesion between the elastomeric stamp and the master surface can be reduced by the use 

of anti-sticking agents such as BGL-GZ-83 (PROFACTOR GmbH, Steyr-Gleink, Austria) or 

else by wetting the master before molding. The lateral resolution for the replication via PDMS 

is strongly dependent on the pattern height or depth. Schmidt and Michel as well as Odom et 

al. reported a lateral resolution of <100 nm by casting parallel line-like patterns and 

cylindrical pillows via PDMS Sylgard® or even 30 nm by using composite layers of different 

polymeric materials (Schmidt and Michel, 2000; Odom et al., 2002).  

Due to its hydrophobic surface state, the PDMS stamp should be treated with, for example, 

oxygen plasma in order to increase the moisture inside the patterns. Otherwise, the small 

patterns will not be covered or filled by the ceramic suspension (so-called “ink”) 

homogeneously, which in turn downgrades the patterning results. Likewise, the aspect ratio 

between pattern height and width is of great importance. If the pattern width is too large 

compared to the height, the PDMS will sag on the substrate due to its own weight. If the
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 pattern height is much larger than the width, the PDMS patterns will collapse and stick 

together (Fig. 3).  
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Fig. 3: Deformation of PDMS due to inauspicious aspect ratio 

 

Zhang et al. have found that molded PDMS nanopatterns mainly collapse owing to the 

adhesive force when the aspect ratio is above 6, whereas those from more rigid molding 

materials (polyurethane and epoxy) collapse laterally at a much higher aspect ratio, namely, 

larger than 12 (Zhang et al., 2006). 

 

The soft-lithography strategy exhibits different methods for the replication of structured 

master surfaces via PDMS stamps. This technique was made in mention and predominantly 

shaped by the group of George M. Whitesides with almost 500 publications in the last twenty 

years. Therefore, three different techniques for the fabrication of ceramic micropatterns will 

be of interest in the following chapter and have been extensively reported on by many 

researchers. These methods are microcontact printing (μCP), microtransfer molding (μTM), 

and micromolding in capillaries (MIMIC). 

 

Microcontact printing (μCP) 

The most widely used technique for the replication of surface topographies via soft mold 

stamps is probably that of microcontact printing. Hereby, the replicated relief of a master 

surface is formed on the surfaces of substrates through contact via a structured PDMS stamp. 

The printed nano or micropatterns can be made of various materials such as biological 

molecules and proteins (Bernard et al., 2000; Dusseiller, 2005; de la Fuente et al., 2006), 

metal oxides, or ceramic particles (Clem, 1997; Heule, 2004; ) (Fig. 4). When using μCP, a 

thin layer is printed on the substrate, where the printed ink and the substrate can be made of 
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two different materials. Through repetition of the printing procedure with different shaped 

stamps or different ink materials or change of the stamp position, more than one material and 

micropattern geometry can be generated on the substrate surface (Bernard et al., 2000; Tien et 

al., 2001). By printing ceramic suspensions onto a ceramic substrate, often a discrete 

separation between the substrate and the printed ceramic patterns occurs after drying. In this 

case, the bonding at the ceramic-ceramic interface can be increased e.g. by sintering.  
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Fig. 4: Left: micro-contact printing (μCP) process. Right: taken from Tien et al., 2001: microscopic image 

of three fluorescently labelled proteins printed on a glass surface by multilevel μCP 

 

Microtransfer molding (μTM) 

Microtransfer molding was firstly introduced by the group around George M. Whitesides 

(Zhao et al, 1996). By the use of microtransfer molding, a thin film of a liquid ink is filled 

into the patterns of a soft mold made of, for instance, PDMS. The excessive ink is then 

removed by scraping with a flat glass slide or a plane piece of PDMS. Then, the filled mold is 

deposited on the substrate surface. After drying it, the mold can be peeled off or lifted with 

care (Fig. 5).  
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Fig. 5: Left: microtransfer molding (μTM) process; right: taken from Zhang et al., 2006: non-sintered 

ceramic Al2O3 structures made by μTM (a); enlarged side view of one ceramic structure (b) 

 

The lower surface energy of the PDMS mold, as compared to the surface energy of the 

substrate, allows the patterned ink to remain on the substrate during the removal of the stamp. 

This process is described in the model by Khan et al., where ink  is the surface energy of the 

liquid ink, mold  the surface energy of the PDMS mold, substrate the surface energy of the 

substrate, and  the aspect ratio of the mold (height vs. width) (Khan et al. 2009, Martin and 

Aksay, 2004):  

 

substratemoldink 12
1

 
            eq. 1

 

The μTM process is adaptable for various substrate materials and inks. In many cases it is 

used for the patterning of polymeric materials. Also, the fabrication of multiple-layer 

structures has been reported (Zhao et al, 1996; Lee et al., 2005). Zhang et al. and Su et al. 

reported on the production of miniaturized engine components such as teeth structures and 

micro-gear wheels made of ceramic alumina suspensions. Defects in the molding quality can 

be avoided by centrifuging the filled mold. Thereby, the green body density and the edge 

definition of the micro gears increase, resulting from a higher strength of the green bodies 

(Fig. 5) (Zhang et al. 2007; Zhang et al., 2004; Su et al, 2002). A variety of materials, e.g. 
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metals, biological materials such as proteins and hydrogels with cells, have been patterned by 

several research groups using μTM (Bailey et al., 2000; Cavallini et al., 2001; Tang et al., 

2003; Thibault et al., 2006; Talei Franzes et al., 2006).  

 

Micromolding in capillaries (MIMIC) 

The MIMIC process was also first presented by the group of George M. Whitesides, in 1996. 

With this method, a micropatterned PDMS mold is placed on a plane substrate surface and 

fixated by applying gentle pressure on the mold. Afterwards, a droplet of a fluid, low-viscous 

ink is pipetted in front of the mold with contact to it. Due to capillary action the ink is soaked 

into the micropatterns where it dries until the removal of the mold (Kim et al., 1996). MIMIC 

has been used for different materials; for example, Ahn et al. reported the fabrication of 

ceramic Al2O3 microstruts on the basis of silicon wafers with widths between 10 and 100 μm 

(Ahn et al., 2008) (Fig. 6). In their application of MIMIC, Beh and Xia used polymeric 

precursors to fabricate polycrystalline ceramic microstructures from ZrO2 and SnO2 (Beh and 

Xia, 1999). In the same year, Beh et al. showed the generation of conducting polymeric 

microstructures (Beh et al., 1999). Furthermore, also biomolecules can be utilised with 

MIMIC. The patterning of fluorescently labelled immunoglobulin was reported on by 

Delamarche et al. (1997).  
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Fig. 6: Left: micromolding in capillaries (MIMIC) process. Right: taken from Ahn et al., 2008: SEM 

micrograph of a cross-section of a ceramic Al2O3 100 μm pattern on a Si-wafer surface (a); micropattern 

with a width of 10 μm on a Si-wafer (b). Patterns were fabricated via MIMIC 
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Altogether, MIMIC is a helpful tool in the patterning of surfaces with various materials. 

However, there are two main disadvantages of MIMIC, to wit, the impossibility to replicate 

isolated patterns and, second, the decrease in the infiltration rate of the ink with an increasing 

length of the microchannel (ten Elshof et al., 2010). 

 

2.1.3 Modified micromolding (m-μM) 

Micropatterning via m-μM was introduced by Rezwan’s group in 2010 and has been 

demonstrated for several ceramic materials in the course of the preparation of the present 

doctoral thesis (Holthaus et al., 2010). The modified micromolding technique belongs to the 

soft-lithography family. By applying m-μM, a microstructured Si-wafer is casted through a 

fluid elastomer such as PDMS Sylgard® 184 or Wirosil®. After curing inside the master mold, 

the elastomer can be removed from the master surface. Subsequently, the soft mold has to be 

sealed and an aqueous ceramic suspension can be filled into the molding chamber (Fig. 7).  
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Fig. 7: Modified-micromolding (m-μM) process 

 

During the drying process the ceramic particles are homogenously dispersed throughout the 

fluid ceramic suspension. Gravity lets the particles sink down to the bottom of the 

micropatterned mold, while water from the fluid ceramic suspension is continuously 

evaporating. Due to the mold geometry the evaporation only takes place to one side. After a 

complete drying of the ceramic green body, the micropatterned sample can be carefully 

removed from the mold. The sedimentation and drying of molded samples is illustrated in 

Fig. 8. According to Reed (1995), this sedimentation of the spherical ceramic particles in 
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aqueous suspension can be described as follows: a ceramic particle with a diameter of a  and a 

density of PD  in a viscous fluid of viscosity L  of lower density LD  accelerates and then 

sinks, at a constant terminal velocity , down to the bottom of the mold.  

dried ceramic
body

ceramic particles in 
aqueous suspension

evaporation of water

micropatterned 
PDMS

sedimentation of 
ceramic particles

sealing/mold

process  
Fig. 8: Cross-sectional view: principle of the sedimentation and drying process of a ceramic suspension 

during m-μM 

 

According to the Stokes equation depicted in Fig. 9, the terminal velocity  is related to the 

diameter of the ceramic particle:  
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            eq. 2 

 

with the acceleration g  due to gravity effects.  
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Fig. 9: Illustration of the equilibrium of forces during the sedimentation of a spherical ceramic particle in 

a Newtonian fluid with laminar flow; taken from Reed, 1995 (modified) 
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A particle of a diameter a  needs to sink a distance of a length H  for the time t  which can be 

calculated from eq. 3. This means that for a ceramic alumina particle released in water 

(density of 1 g/cm3 and viscosity of 1 kg/(s*m) at 20 °C), the time for travelling 1 cm is about 

1 minute for a 10 μm particle, but about 2 hours for a 1 μm particle. For a 150 nm alumina 

particle with a density of 3.98 g/cm3, as it was used in the experimental chapter 3.1, the 

theoretical time to sink to the bottom of a mold with 1 cm height is even 3.2 days.  
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            eq. 3 

 

The drying process starts as soon as a micropatterned mold is filled with an aqueous ceramic 

suspension. In this thesis, the drying of molded samples was applied in a controlled manner 

by the use of a climatic chamber. In the saturated ceramic suspension, liquid consisting of 

water and liquid from the dispersant or binder is removed through evaporation from the 

external surface, as depicted in Fig. 8. The drying rate, which is defined as the weight loss per 

time, increases on heating when the rel. humidity in the climatic chamber is less than 100%. If 

the evaporation surface area and the evaporation rate are constant, the drying rate will be 

constant, too. The mass loss of water due to evaporation ER  is given in eq. 4 (Reed, 1995):  

 

)( owEE PPKR  
            eq. 4 

 

with the evaporation constant EK , which is dependent on air flow conditions in the climatic 

chamber, the vapour pressure of the liquid suspension at the evaporation temperature wP as 

well as the partial pressure of liquid in the surrounding atmosphere oP  inside the chamber. 

The thus evaporated liquid at the sample surface is then re-filled in interparticle liquid 

transport processes via diffusion and capillary flow. Adsorbed binder molecules were mixed 

to the ceramic suspension in order to prevent cracking. These binder molecules are bound to 

the particles and resist the migration/transport with the liquid, so that they remain in their 

position. Non-bound binder molecules and particles as well as dissolved salts will follow this 

migration to the evaporation surface area, which in turn results in an inhomogeneous density 

and material distribution inside the sample. The practical drying rate CRR  can be described as 

in eq. 5 above (Reed, 1995): 
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At
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            eq. 5 

 

where 1W  describes the content of liquid before drying and 2W  is the content of liquid after 

drying for a time t  and a surface area of evaporation A .  

Usually, shrinkage during the drying process of a molded sample takes place because of the 

removal of liquid between the ceramic particles and the decreasing interparticle separation. If 

the shrinkage rate is homogenous within the material and the intensity of shrinkage is 

adequate, no cracks or fissures will occur. However, cracks at the sample surface may appear 

when material near the surface evaporation area becomes too brittle and the differential 

shrinkage results in stresses as high as the greenbodies’ tensile strength. Differential shrinkage 

can be defined as an inhomogeneous shrinkage caused, among other things, by gradients in 

particle size or junctures between differently oriented particles. In addition, vapor inside small 

pores can increase these stresses during drying (Reed, 1995).  

Contrary to conventional soft-lithographic methods, a solid micropatterned ceramic body is 

fabricated by using m-μM instead of a micropatterned thin film which is placed on a plane 

substrate. Another advantage, e.g. compared to MIMIC, is the possibility to produce various 

pattern geometries such as microchannels and struts, holes, cylinders and different isolated 

microstructure formations. 

The results from the molding of ceramic suspensions are presented in chapter 3.1, 

“Microstamping and micromolding of ceramic suspensions. 
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2.1.4 Rapid Prototyping 

By using rapid prototyping (RP) a computer-generated 3D model is fabricated rapidly from a 

computer aided drawing. However, the real fabrication of a rapid prototype involves a number 

of steps that have to be accomplished before the 3D model can be generated. There is a 

variety of existing RP techniques which have been introduced throughout the last three 

decades, having been subject to continuous optimisation. In most cases, they are already well-

established in industrial processes and usable for polymers and metals with high precision and 

accuracy even in the micron range (Bertsch et al. 2000; Varadan et al., 2001). RP processes 

are, for instance, selective laser sintering (SLS), stereolithography (SLA), freeform multijet 

solidification (MJS), laminated object manufacturing (LOM), fused deposition or extrusion 

free-forming, inkjet printing, aerosol jet printing, and injection molding (IM) (Hull, 1986; 

Greulich et al., 1995; Subramanian et al., 1995; Tari et al., 1998; Tseng and Tanaka, 2001; 

Mette et al, 2007; Yu et al., 2007). Independently of the material deployed, rapid prototyping 

processes should inhibit a fast fabrication of samples from a functional model to a small batch 

series within a short time period. RP may involve the fabrication of adequate ceramic micro 

components or just the finishing of various surfaces with a ceramic material. Ideally, the 

process chain combines an inexpensive and accurate but flexible way of processing ceramic 

suspensions, feedstocks, or powders. Ceramic micro fabrication can be integrated into a rapid 

prototyping process chain as successfully shown via low pressure injection molding of 

ceramic feedstocks by Bauer et al. (1999) and Knitter et al. (2001) (see Fig. 1). Contrary to 

metals and polymers, rapid or direct fabrication of ceramic materials in the micro range is still 

not established and rather difficult, but it has become much more usable and accurate 

throughout the last ten years. For instance, Wozniak et al. developed a highly loaded UV 

curable nanosilica dispersion which is suitable for stereolithography applications (Wozniak et 

al., 2009). Hansch et al. reported of the fabrication of screen-printed yttria-stabilized zirconia 

honeycomb structures (D ~ 2 mm) with a layer thickness of less than 20 μm (Hansch et al., 

2009).  

The layer-wise deposition of highly loaded colloidal ceramic slurries was shown by Cesarano 

et al. as well as by other research groups by using “robocasting”. This technique allows a 

freeform fabrication for dense ceramics, as e.g. Al2O3 and composites with less than 2 volume 

percent of organic additives by extrusion of slurry. Thereby, ceramic slurries can be shaped 

into complex geometries with thick solid sections as well as with thin-walled sections with 

high aspect ratios (Cesarano et al., 1997; Cesarano et al., 1999; Tuttle et al., 2001). 
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Another RP technique for ceramics materials is that of inkjet printing, where liquid droplets of 

ceramic suspensions are ejected through inkjet nozzles onto predetermined positions. Several 

researchers have already used ceramic suspension and precursors in inkjet printing to produce 

ceramic micron or sub-millimetre patterns (Mott and Evans, 2001; Zhao et al., 2003; Song et 

al., 2004; Oh et al, 2010). Song et al., for example, reported about the manufacture of grid 

patterns in the sub-millimetre range printed with various ceramics such as alumina and 

zirconia (Song et al., 2004). Even biomolecules and cells have been used for inkjet printing; 

thus, e.g. Xu et al. have illustrated the printing of pre-designed ring patterns of viable hamster 

and rat cells onto a hydrogel-based substrate (Xu et al., 2005).  

However, the horizontal and lateral resolutions are in general limited to the range of 100 μm 

for these RP techniques, suffering from problems in the process reliability or from changes in 

the ceramic properties. One rapid prototyping method, which was also applied for this thesis, 

is aerosol jet printing, whose principles will be introduced in the following chapter.  

 

2.1.4.1 Maskless material deposition by aerosol jet printing 

Aerosol jet printing, also known as maskless mesocale materials deposition (M3D), is a direct 

write printing technique for the precise deposition of different materials on various planar or 

curved substrates without using any masks. The characteristics and details of an aerosol jet by 

Optomec Inc. (Albuquerque, USA) will be given in this chapter, as it is used in experimental 

set-ups in chapter 3.2, “Aerosol-Jet®-printing of hydroxyapatite suspensions”. This printing 

device is computer-aided as CAD-drawings (computer aided design) can be used to deposit 

the ink material on specific positions in various geometries. One ink droplet has a diameter of 

about 1 to 5 μm, which is equivalent to a volume of a few femtolitres. The horizontal 

resolution of printed structures or geometries is 10 μm, whereas the lateral resolution can be 

in the nano range. The feed velocity or printing speed is customizable up to 200 mm/s. Liquid 

materials to be deposited, such as colloidal particles in aqueous suspension, must have a 

viscosity between 0.7 and 1000 mPas (Hedges et al., 2005; Zöllmer et al., 2006; Mette et al., 

2007; Sears et al., 2007).  

During the aerosol jet process an atomizer module converts the liquid and colloidal 

suspension into an aerosol by using an ultrasonic transducer or pneumatic nebuliser. The 

aerosol is then aerodynamically focused by a sheath gas stream in a second module which is 

called flow guidance deposition head. This module forms a co-axial flow between the aerosol 

stream and the sheath gas stream. At the exit of the deposition head, the aerosol leaves the 

module through an abrasive resistant, ceramic nozzle, and the aerosol droplets are 
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deposited on the substrate where a pattern or structure is generated. The distance between the 

printer nozzle and the substrate is adjustable to up to 5 mm. The precise printing of the 

patterns can be either controlled through the movement of the flow guidance head while the 

substrate is fixed or else by the change of the substrate position via a computer-controlled 

stage (Hedges et al., 2005; Zöllmer et al., 2006) (Fig. 10).  
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Fig. 10: Aerosol-Jet®-printing process, modified sketch according to Maiwald et al., 2010 

 

The patterns are generated through a layer-wise material deposition, which allows the 

fabrication of 3D parts or pattern geometries. A continuous-wave Nd:YAG laser is integrated 

in another module (not shown in the sketch) which can be used for the post-treatment of the 

generated particles, as e.g. sintering of ceramic micropatterns. This treatment allows a local 

heat treatment without affecting the surrounding substrate material. Using this aerosol jet 

technique, the printing of various materials and biomolecules has been effected. Maiwald et 

al. reported a multilayer deposition of inks containing nanoscale silver particles for the 

fabrication of a conductive meander structure and isolating polymers for sensor applications 

(Maiwald et al., 2010). The fabrication of aerosol jet-printed ceramic alumina honeycomb 

patterns with average diameters of 430 μm and wall heights of 10 μm has been shown by 

Treccani et al. (Treccani et al., 2009). Grunwald et al. used fluorescently labelled DNA as 

well as labelled proteins bovine serum albumin (BSA) and horseradish peroxidase (HRP) for 

aerosol printing of spot formations with single diameters of 9 μm and lines with widths 

between 10 and 20 μm (Grunwald et al., 2010). These results show the versatility of this rapid 

aerosol printing technique. 
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2.1.5 Micromachining 

All processes where electrical machines are needed to fabricate micropatterns or micro 

components are called micromachining techniques. Micromachining belongs to the group of 

solid freeform fabrication (SFF) and comprises the direct fabrication of complexly shaped 

materials, such as e.g. polymers, metals and ceramics, without the use of molds or masks. 

During the machining process, material is abrasively removed from a solid material substrate, 

for instance by means of a rotating milling tool. Common micromachining processes are 

drilling, reaming, threading, milling, and grinding. Most of these processes such as 

micromilling or microgrinding belong to the rapid prototyping technologies mentioned above. 

Industrial machining techniques are usually CAD-driven, which means that geometrical 

information, e.g. the virtual object of a micro device, is pre-processed by means of software. 

This object is then manufactured by a computer-aided machine as a solid finished component 

(Cawley et al., 1999; Tay et al., 2003). Computer-numerical control-based milling and 

grinding and machine-assisted roughening and polishing will be presented as they were used 

in the experimental set-ups of this thesis.  

 

2.1.5.1 Precision machining by Computer Numerical Control Machining 

In the beginning of automated machining, most machining processes were manually operated. 

Nowadays, computer numerical control (CNC) machining is widely used in industrial as well 

as in research processing routes. CNC milling is the automated, controlled and accurate 

processing of solid materials via an electrical machine tool (device) and a rotional cutter 

(tool). Milling machines are grouped into two basic machine forms, i.e. in a vertical and a 

horizontal form, which corresponds to the orientation of the main spindle. During the cutting 

process the workpiece is held stationary as the cutting tool moves axially to cut the material. 

Furthermore, the milling machine moves the workpiece radially against the rotating tool or 

cutter. The tool, then, cuts using its sides as well as its tip. The contact force during machining 

should remove particles from the surface layer without causing fracture of the workpiece. The 

failure rate of the fracturing is high when the workpiece is brittle and fragile or when the 

strength and the tool force for machining are high (Reed, 1995). Cooling liquid or lubricant 

can be used to remove excessive material from the grinding zone and to reduce or avoid 

thermal effects. 

The cutting tool movement as well as the position of the workpiece are precisely controlled 

with an accuracy in the sub-micron and even in nano range. Important machining settings are 
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the applied feed velocity (vf) and the rotational speed (n). The tool characteristics influence 

the machining results strongly. Tools made of various materials, shapes and diameters are 

commercially available. Thus, tools made of TiAlN coated with tungsten carbide were used 

for milling, and grinding pins made of a solid steel body electroplated with diamond grains 

were utilized for grinding in the experimental section of this thesis since they are hard enough 

to cut ceramics.  

Processing with milling machines can be performed with a large number of operations per day 

and the workpiece shape can feature simple, e.g. planar, as well as complex, e.g. 3D, 

geometries. The CNC-machining processes in this thesis were operated with the so-called end 

milling cutters, i.e. with ball-nose end mills. As illustrated in Fig. 11, the shape of these 

milling tools is a semisphere. Ball-nose end mills are often used when cutting molds, dies as 

well as on solid workpieces with complex surfaces in various fields of applications such as in 

automotive, dental and aerospace industries via the machining with six-axis robots (Dormer-

Tools, 2005; Xu and Newman, 2006; Olabi et al., 2010).  
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Fig. 11: The cutting process with a ball-nose end milling tool. Important parameters are effective diameter 

DE, radius of the cutting tool R and the axial depth-of-cut Ap. Modified sketch according to Dormer-Tools, 

2005. 

 

The effective diameter ED  is the main factor used for the prediction or calculation of the 

required spindle speed. It is defined as the actual radius of the cutting tool R  at the axial 

depth-of-cut line pA : 

 

22 )(*2 pE ARRD          eq. 6 
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The effective diameter replaces the cutting tool diameter when calculating the effective 

cutting speed for ball-nose end milling processes: 

 

1000
)**( nDV E

c           eq. 7 

 

There, cV  stands for the effective cutting speed, ED  is the effective diameter, and n  is the 

rotational speed. The CNC machining of microchannels can be easily described. When a 

cutting tool with a ball-nose end mill is used to machine a surface in groove-like patterns, an 

uncut strut is created between the two cutting passes. The height of these struts is called cusp 

height cH  (Fig. 12).  
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Fig. 12: Schematic illustration of uncut struts between three machined groove-like patterns. Radius of the 

cutting tool R, axial depth-of-cut Ap, cusp height Hc and the step-over value between two cutting passes 

AE. Modified sketch according to Dormer-Tools, 2005. 

 

The cusp height can be calculated as follows:  

 

22 )
2

( AeRRHc          eq. 8 

 

The cusp height therefore depends on the tool nose radius R  and the step-over value between 

two cutting passes Ae  (Dormer-Tools, 2005). 
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The automated micromachining of various materials such as polymers and metals is well 

established in industrial and research processes. The manufacture of complex micropatterns is 

possible with very high accuracy in the micron range. For example, Filiz et al. have reported a 

3D pyramide or mushroom-like microbarbs with different widths ranging from 68 to 174 μm, 

edge sharpness of 60° and 90°, and angles and heights from 84 to 460 μm. These barbs were 

made of non-biodegradable 304 stainless steel and poly-methylmethacrylate (PMMA), 

bioresorbable polylactic acid (PLA), and a fibrin-based plastic (Filiz et al., 2008). Adams et 

al. reported the micromachining of parallel groove-like patterns with widths of 13 μm and 

depths of 4 μm on curved PMMA surfaces (Adams et al., 2000). Various examples of precise 

micromilling can be found in further publications (Friedrich and Vasile, 1996; Takacs et al., 

2003). 

Contrary to the advantageous machining of metals and polymers, ceramic surfaces are more 

difficult to machine due to their high hardness and fracture toughness as well as their 

brittleness. Ceramic parts can be micromachined in industrial processes, e.g. by milling with 

high reliability and tolerances of a few microns. However, the machining of ceramic, 

especially of micropatterns such as groove-like patterns smaller than 100 μm in width, is still 

difficult owing to the size of the cutters (usually a total tool diameter of min. 300 μm).  

Nevertheless, the CNC machining of ceramics such as yttria-stabilised zirconia (YTZ) is well 

established in industrial processes such as in the production of crowns, abutments, bridges, 

and for making final-fit adjustments on dental restorations (Yin et al., 2003; Su et al., 2008; 

Sundh and Sjögren, 2008). The milling of ceramic groove-like patterns smaller than 100 μm 

in width will be further investigated in the experimental section in chapter 3.3.1, 

“Micromachining of ceramic surfaces: hydroxyapatite and zirconia”.  

 

2.1.5.2 Microgrinding via grinding papers 

Very simple and fast micropatterning techniques for the fabrication of unspecific patterns are 

automated roughening, polishing, and lapping. For the present thesis, roughening and 

polishing via grinding papers have been studied. The grinding papers are coated with particles 

of, for example, silicon carbide, zirconia, alumina, or diamond grains. The papers are 

available in different sizes, shapes and grits, e.g. p80. The grit value “p” describes the amount 

of abrasive particles which are fixed on the grinding paper per mesh size according to 

ISO6344. The higher the grit value, the larger will be the average grain size (

Tab. 2) (ISO6344, 2000; Somiya et al., 2003). 
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Tab. 2: Exemplary overview of grinding paper grain sizes according to ISO6344 
Grinding paper  average grain size 

grit (μm) 

p80 201 

p120 125 

p180 82 

p320 46 

p600 26 

p2500 8 

 

The grinding via papers occurs through the sliding frictions between the abrasive paper and 

the solid workpiece. The workpiece can be clamped in a specimen holder or pressed manually 

onto the rotating planar abrasive surface of the grinding paper. In the region of contact, 

particles are removed from the material’s surface layer by the grains of the paper. This 

process can be applied to all solid materials for fabricating randomized roughness levels of 

some microns or even a few nanometres. Removal of excessive material from the grinding 

zone and reduction of thermal effects can be achieved by the use of lubricants (Somiya et al., 

2003, Reed, 1995). The results from experiments with ground ceramic surfaces will be shown 

in chapter 3.3.2, “Monitoring osteoblast viability on hydroxyapatite with adjusted submicron 

and micron surface roughness by using proliferation reagent WST-1”. 

 

2.1.6 Laser treatment 

2.1.6.1 Laser ablation 

A laser is a coherent, convergent, and monochromatic beam of electromagnetic radiation with 

wavelengths ranging from ultraviolet to infrared. Pulsed laser ablation with a solid state laser 

(e.g. nanosecond Nd:YAG laser), as it was used for the experimental section in chapter 3.4.1, 

“Laser ablation of hydroxyapatite surfaces”, is the removal of material from a substrate 

surface via short high-intensity laser pulses. The pulsed laser ablation can be classified into a 

thermal and a non-thermal (photochemical) interaction with the substrate surface. The 

ablation rate depends on various parameters such as the laser fluence, the wavelength, the 

pulse duration of the laser beam, the number of pulse repetitions, and the type of excitation 

and dissipation of the energy within the solid substrate (Bäuerle et al., 2000; Dahotre and 

Harimkar, 2007). At least a laser, a beam delivery system, and an adequate specimen holder 

for the sample, as three basic parts of experimental equipment, are required to perform a 

removal of material with the help of a laser. Additional parts such as lenses can be used to 

focus the laser beam onto the substrate surface, and filters are able to adjust 
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the beam power. Via mirrors and flexible optical fibres, the laser beam can be guided to any 

desired location of the experimental test setup (von Allmen and Blatter, 1995).  

In non-thermal ablation processes, the energy of the incident photon causes a direct bond 

breaking of molecular chains in organic materials. This, in turn, triggers the removal of 

material by molecular fragmentation without significant heat change or thermal damage of the 

substrate surface (Dahotre and Harimkar, 2007).  

In thermal ablation processes, by contrast, laser-induced heating, melting/boiling and 

vaporization are the basic occurrences in the irradiated solid substrate. Vaporization means 

the passage from the solid phase to a vapour phase (gas or plasma) by the emission of atoms 

or molecules from the extreme outer surface under conditions of electron-phonon coupling. 

The vaporization process includes sublimation and evaporation (Miotello and Kelly, 1999) 

(Fig. 13). This ablation of material through a laser beam can be processed once a specific 

energy threshold level has been passed over. The ablation rate, thus the ablation depth per 

pulse, depends on the material. 

substrate

flux zone

laser beam

plasma

heat affected zones

molten particles

 
Fig. 13. Schematic illustration of material ablation via a nanosecond laser 

 

Various materials, such as metals, polymers, biological collagen substrates and ceramics, have 

been micropatterned via pulsed laser beams for research applications as well as for industrial 

purposes (Ihlemann et al., 1995; Chivkov et al., 1996; Liu et al., 2005; Tiaw et al., 2005). 

Thereby, very defined and accurate micropatterns have been laser-machined. For example, 

Ihlemann et al. reported the fabrication of micro holes with diameters of 50 and 100 μm and 

depths of e.g. 20 μm on Al2O3, MgO and ZrO2 ceramics by the use of lasers with nanosecond 
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and femtosecond pulsed lasers. In addition, they reported groove-like patterns with widths of 

4 to 5 μm (Fig. 14).  

20 μm 5 μm
 

Fig. 14: Laser-ablated micro holes in Al2O3, made at a wavelength of 248 nm and pulse duration of 500 fs 

with a fluence of 6.1 J/cm2 with 50 pulses; taken from Ihlemann et al., 1995 (modified) 

 

Results from laser ablation experiments of groove-like HA patterns with a pulsed nanosecond 

Nd:YAG laser are given in chapter 3.4.1. 

 

2.1.6.2 Direct laser interference patterning 

By using direct laser interference patterning (DLIP) a primary beam of a high-power pulsed 

laser is split into two or more coherent sub-beams via a beam splitter. These sub-beams are 

guided by mirrors to interfere with each other on a substrate surface in order to fabricate 

micropatterns. The interference of the sub-beams results in direct, periodical and local heating 

through photo-thermal mechanisms between, on the one hand, light and, on the other, the 

substrate material (Mücklich et al., 2006; Lasagni et al., 2006). An exemplary setup for a 

DLIP process is shown in Fig. 15.  

laser

shutter

power metre

mirror

beam
splitter

lenses substrate

patterning

 
Fig. 15: Possible setup for direct interference patterning using a primary beam which is split into two sub-

beams which are focused on the substrate surface where the patterns are fabricated; taken from Lasagni 

et al., 2006 (modified) 
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Even by applying one single laser pulse the interference patterning can result in a large area 

patterning of several cm2. The pattern depth and width can be adapted from the nano to the 

micron range. The geometry of the interference pattern depends on the number of laser pulses, 

the partial energy, and the geometrical arrangement of optical components from the DLIP 

setup, thus the guidance of the individual laser beams (Lasagni et al., 2005). The number of 

laser pulses can be adjusted by means of a mechanical shutter, and the partial energy can be 

controlled by the power metre. The beam intensity, in turn, can be adjusted independently by 

focusing via the lenses and mirrors for each individual sub-beam.  

Interference patterning is applicable for various materials and substrate shapes; even curved 

surfaces are able to be patterned by DLIP. The interference patterning of metals (laser 

interference metallurgy, LIME) and polymers has been reported in various studies (Catrin et 

al., 2008; Lasagni et al., 2005, Lasagni et al., 2006; Lasagni et al., 2007, Mücklich et al., 

2006). Further, Lasagni et al. 2007 report the fabrication of line-like patterns on polyimide 

with adaptable depth and profile shape by the use of two laser beams and various laser fluence 

(Fig. 16). In the same study, moreover, cylindrical hole-like patterns were fabricated with the 

aid of three laser beams and several laser fluences.  

 

5 μm
 

Fig. 16: Polyimide micropatterns made via DLIP. Hole-like patterns (left) and groove-like patterns (right); 

taken from Lasagni et al., 2007 (modified) 

 

Results of the fabrication of periodic ceramic micropatterning via DLIP are reported only 

rarely. As one of the few, Segawa et al. (2003) showed the periodic fabrication of 10 μm-wide 

groove-like patterns on hybrid TiO2 films on glass substrates. The interference pattern can be 

calculated and simulated prior to the DLIP process. Assuming that the laser beam is perfectly 

mono-chromatic and with linear, polarized plane waves, the total electric field E  of the 

pattern can be weighted according to eq. 9 (Lasagni et al., 2005; Catrin et al., 2008): 
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In this relation, all individual sub-beams j  in terms of their angles  and  between the 

sub-beams with respect to the interference plane yx,  have to be included. Here, 0jE  is the 

amplitude of the beam j , and the wave number k  is given in eq. 10 with the wavelength of 

the laser beams : 

 

2k
 

            eq. 10 

 

The intensity distribution I  of the interference patterning can be calculated as shown in eq. 

11 for the use of two laser beams: 

 

)sin(cos2 22
0 kxEcI  

            eq. 11 

 

with the speed of light in vacuum c  and the permittivity of the vacuum 0 . For the 

experimental section in chapter 3.4.2, “Laser interference patterning of hydroxyapatite 

surfaces”, HA surfaces were patterned using DLIP with two laser beams, whereas periodic 

line-like patterns were finally generated. In the case of these line-like patterns, the period can 

be adjusted by adapting either the angle  between the two sub-beams or else the wavelength 

of the laser light (eq. 12): 

sin2
λp  

            eq. 12 
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2.2 Surface characterization 

2.2.1 Measurement of surface texture 

The surface characterization of material surfaces featuring topography-dependent 

functionality is of crucial importance. Accurate and standardized surface characterization can 

be made for full 3D areas via non-contact optical imaging or else for single 2D profiles via 

tactile scanning contact measurements. Because of increasing requirements on functional 

surfaces, the traditional 2D tactile scanning of surfaces is often not adequate anymore. 

Problems occur in cases of anisotropic surfaces (Fig. 17) where the surface function depends 

on the direction of the surface texturing, such as implant surfaces featuring groove-like 

patterns for cell guidance or tribologically stressed surfaces used for minimized friction in 

bearings (Beck, 2009).  

 
Fig. 17: Example of two different kinds of measuring surface roughness via a 2D profile on an anisotropic 

surface 

 

The fabricated micropatterns, which will be presented in the experimental section in chapter 

3, were topographically analysed by imaging via scanning electron microscopy (SEM) and 

chromatographic confocal profilometry. Both methods have proven useful to image the 

geometry of fabricated ceramic micropatterns and to draw further conclusions regarding the 

surface quality. Contrary to SEM imaging only, it thus was possible to characterize and 

measure surface parameters, such as roughness, via confocal profilometry in compliance with 

industrial standards.  

Two standards were used to verify the surface parameters, to wit, DIN EN ISO 4287 and ISO 

25178. The standard DIN EN ISO 4287 is applicable for single 2D-profile measurements. For 

example, a single line from point A to point B with a measurement length of 5.6 mm was used 

to calculate the average surface roughness “Ra” on a 2D profile. Thus, it turns out crucial to 



 Micropatterning of ceramic surfaces 

 - 41 - 

determine how this profile is positioned on the surface between points A and B, e.g. for 

anisotropic surfaces. This standard was originally introduced for tactile scanning systems. 

Usually, a symbol is given in the measurement result or image in order to indicate the 

direction in which the 2D profile has been measured. DIN EN ISO 4287 was used for surface 

roughness measurements at the beginning of this thesis since it was considered to be state of 

the art at that time.  

ISO 25178 was introduced in 2008 as a draft titled “Geometrical product specification (GPS) 

- surface texture: areal”. The main advantage of this draft standard ISO 25178 has been the 

possibility of a quantification of a full size area (X x Y) measured via optical non-contact 

systems. For example, an area of 635 x 477 μm2 - which corresponds to a single measurement 

with a 20-fold objective with a confocal profilometry system (Sensofar Plu2300®) from the 

experimental section in chapter 3 - can be used to calculate the average surface roughness Sa 

(S for surface) instead of a single 2D profile between two points (Fig. 17). In addition, 

volumetric parameters such as the “real” total surface area are easily measurable using this 

standard (ISO 25178, DIN EN ISO 4287, Beck, 2009).  

 

2.2.2 Roughness analysis 

As mentioned above, two different standards (DIN EN ISO 4287 and ISO 25178) were used 

in this thesis to measure surface characteristics of the fabricated ceramic surfaces. There are 

many different roughness parameters in use, but the Ra, Rp, Rv, Rz (2D profiles) and their 

equivalents Sa, Sp, Sv, Sz (3D area) are the most common. In this study, the four most 

important parameters were set to be arithmetic average roughness (Ra or Sa), maximum peak 

height (Rp or Sp), maximum valley depth (Rv or Sv), and the average maximum difference 

between the highest peak and the deepest valley (Rz and Sz).  

On smooth, homogenous surfaces, both standards represent very similar values for measured 

roughness parameters such as Ra and Sa. Once again, the differences are mainly in the 

quantification of anisotropic surfaces. The definition of average roughness (Ra) and the 

average maximum difference between the highest peak and the deepest valley (Rz) is 

exemplarily given in Fig. 18. According to DIN EN ISO 4278, Rz is the average maximum 

difference between the highest peak and the deepest valley of five neighbouring profile 

sections on a measurement length lc (Fig. 18). There is no direct mathematical correlation 

between Ra and Rz. In general, Ra is 1/3 to 1/7 of Rz. The surface parameters Rp, Rv, as well 

as Sp, Sv are not calculable but only readable from the measured surface profiles.  
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Fig. 18: Definition of the average roughness (Ra) and the average maximum difference between the 

highest peak and the deepest valley (Rz) according to DIN EN ISO 4278; taken from Wittel et al., 2009 

(modified) 

 

Using a modern optical profilometry system it is possible to take 2D-profile measurements 

according to DIN EN ISO 4287 as well as 3D-area scanning in order to compare collected 

data from new and old standards. Thanks to this feature it has been possible, in this thesis, to 

measure both 3D-area surface roughness Sa on homogenous ceramic surfaces as well as the 

average 2D-profile roughness in micropatterns with the same profilometry system. In future, 

the draft standard ISO 25178 will have to be transferred to the Deutsches Institut für Normung 

(DIN) so that it will become standard for industrial surface measurements in Germany in the 

long run. 

 

Moreover, it is important to notice that the mentioned surface parameters inform about the 

roughness but do not give all available information about the topography of a surface. Typical 

topographies as fabricated in the experimental section in chapter 3 are shown in Fig. 19. 
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Fig. 19: Cross-sectional drawing of different topographies: uneven, wavy, rills, channels and struts, 

normal roughness 

 

2.2.3 Measurement of micropattern geometry 

The measurements of micropattern widths and depths were realised by means of the 

chromatographic confocal profilometry system Sensofar Plu 2300®. The measurements were 

not applicable according to any existing standard. Always three neighbouring micropatterns 

were taken for measurement and their average width or depth was then calculated. While the 

width was measured at the first position where the fabricated micropattern was detectable, the 

depth was measured at the deepest point of the fabricated pattern. The same procedure was 

undertaken for rectangular, V-shaped as well as U-shaped patterns (Fig. 20).  

 

width of micropattern depth of micropattern

rectangular
shaped

V-shaped

U-shaped

 
Fig. 20: Definition of micropattern depth and width for three different pattern shapes: rectangular 

patterns or channels, V-shaped and U-shaped, rill-like patterns 
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3. Experimental results of ceramic micropatterning 

Before the results of the different micropatterning techniques can be reported in this section, a 

description of the production process of the ceramic suspensions will be given. The same 

mixed ceramic suspensions were used for Aerosol-Jet®-printing, microstamping and 

micromolding. The procedure was always the following: small amounts (“pinch”) of ceramic 

powder, e.g. hydroxyapatite, were poured slowly into deionised water (Synergy®, Millipore) 

containing a specific amount of polyacrylic acid-based binder (Syntran® 8220, Interpolymers) 

and amonia solution (25 %, Merck). The liquids were then stirred in a beaker glass while the 

ceramic powder was added carefully and slowly in order to prevent powder chunks. Syntran® 

and ammonia were taken as a binder-deflocculant system to generate a polymer network 

around the ceramic particles and for pH and surface charge adjustment. These adjustments 

generated equal particle surface charges, which in turn caused repulsion between the ceramic 

particles. This is called electrosterical stabilization in a deflocculated system. By contrast, a 

heteropolar coagulation of ceramic particles would be originated by an attraction due to 

opposite surface charges.  

In addition, the used suspensions were treated with an ultrasonic horn (Sonifier 450, Branson) 

in order to destroy possible particle agglomerates (coagulated particles) and to homogenize 

the ceramic particles in the liquid media. Subsequently, the suspensions were used in the 

micropatterning processes. The use of this procedure should guarantee that the ceramic 

particles would be homogeneously dispersed within the liquid at the beginning of the 

patterning process, e.g. while filling the molds (as stated in the left beaker glass in Fig. 21). 

The particles sank down to the bottom of the beaker glass or mold in the course of time, due 

to the absence of a full, constant electrosterical stabilization of the particles in the liquid (Fig. 

21).  

deflocculated

cloudy cloudy

 
Fig. 21: Sedimentation behaviour of a deflocculated ceramic suspension; taken from Reed, 1995 

(modified) 
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In a dilute coagulated system, all ceramic particles sink rapidly to the bottom of the beaker 

glass whereas the supernatant liquid above stays clear (i.e. no remaining particles there). In 

the case of the used ceramic suspensions, the particles sank slowly and the supernatant liquid 

above was somewhat opaque due to some remaining ceramic particles which had not sunk 

down to the beaker glass bottom yet.  

The addition of the appropriate amount of binder as well as of ammonia for the pH adjustment 

was experimentally detected by zetapotential measurements. In general, pH ranges in which 

the zetapotential was most negatively charged (-mV) and where the working pH range was 

most far away from the isoelectric point (IEP, point were the zetapotential is zero) were 

chosen to reach highest possible electrosterical stabilization of the ceramic suspensions. 

Further details about zetapotential measurements are given in section 3.2 and Fig. 28 below. 

 

3.1 Microtransfer molding and modified micromolding of ceramic suspensions 

The following results have been partially published in the “Proceedings of the 2008 

International Manufacturing Science and Engineering Conference in Evanston, IL, USA, 

MSEC2008” by Marzellus grosse Holthaus and Kurosch Rezwan (University of Bremen, 

Advanced Ceramics) (Holthaus and Rezwan, 2008). 

In early tests of the experimental studies of this thesis, a stamping technique was used to 

fabricate micropatterns. Commercially available calcium phosphate powder (hydroxyapatite, 

(Ca10(PO4)6(OH)2), Riedel-de Haën) with a density of 3.16 g/cm3 was die-pressed uniaxially 

with 3.5 kN in order to generate plane cylindrical platelets with diameters of 10 mm each. The 

particle size median was 0.151 μm (unimodal distribution, 0.235 std. dev.). The plungers were 

polished (grit: p2500) with the aim to reduce unintentional structures on the platelet surface. 

Before each die-pressing process, the plungers were covered with a thin layer of graphite 

powder (TIMCAL) so as to minimize adhesion between plungers and platelet. Afterwards, the 

platelets were sintered in a furnace (LHT 04/17, Nabertherm) at 1200 °C for two hours. 

Subsequently, the sintered platelets were micropatterned by using a stamping technique called 

microtransfer molding technique (μTM). 
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Fig. 22: Sketch of micropatterns for microtransfer molding 

 

The μ-transfer molding of aqueous hydroxyapatite ceramic slurries was used to generate four 

formations of defined micropatterns with a length of 1000 μm each and a variation in width 

from 10 to 140 μm. The patterns were replicated via polydimethylsiloxane (PDMS) stamps 

from a pre-structured silicon wafer with a depth of 10 μm (Fig. 22).  

After plasma treatment the generated negative micropatterns on the PDMS stamp were coated 

with a droplet of hydroxyapatite ceramic slurry (13.6 vol. %) and, subsequently, pressed 

gently on plane ceramic cylindrical samples. After drying at 4 °C for more than 24 hours, the 

PDMS stamps were removed. Hereafter, the micropatterned samples were sintered in an 

furnace (Nabertherm) at 1200 °C for two hours (Fig. 23). 

 
Fig. 23: Sintered ceramic micropatterns. Structures were generated by microtransfer molding via PDMS. 

Cracks are visible on the surface 
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The hydroxyapatite material which was stamped onto the surface by microtransfer molding 

via PDMS stamps looked craggy and fissured after sintering but the microchannels were 

defined and had clearly visible edges (Fig. 23). Fine cracks occurred partially during or after 

the drying process in which the PDMS stamps had been pressed on the sample surface. Bigger 

cracks were noticed after the sintering process. The PDMS stamps had a height of 10 micron 

each. After sintering, the height of the stamped microstructures was about six to eight micron 

(Fig. 24). A XRD analysis of transfer molded and sintered hydroxyapatite samples showed no 

changes in the crystal structure, thus no traces of ß-tri-calcium phosphate (ß-TCP) were to be 

seen on the surface. 

 

 
Fig. 24: SEM image (top view) and 2D profile of stamped hydroxyapatite microchannels after sintering 

 

The stamped surface looked very craggy. Fine cracks occurred partially during or after the 

drying process in which the PDMS stamps were pressed on the sample surface. This was 

probably a result of the rapid drying. Bigger cracks were noticed after the sintering process, 

probably due to divergent material shrinkage ratios of pressed ceramic platelet and stamped 

ceramic material. The PDMS stamps had a height of 10 μm each. After sintering, the height 

of the stamped microstructures was reduced to about 6 to 8 μm. This loss of height, too, was 

caused by material shrinkage due to the sintering process.  

In an initial testing, the defined stamping of protein solutions was successfully applied by 

using pre-structured PDMS stamps, an ink pad, and a stamping mechanism for the local 

deposition of ink without blurring (Fig. 26). 
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Within these first tests it could be demonstrated that microtransfer molding via PDMS stamps 

is suitable to fabricate calcium phosphate micropatterns and to generate local

biofunctionalisation on ceramic surfaces. However, the fabricated patterns still had a lot of 

cracks. Basic preliminary results with microtransfer molded patterns and osteoblast-like 

osteosarcoma cells (MG-63) were published in Holthaus and Rezwan, 2008. Thanks to these 

promising results, molding via PDMS stamps has been the focus of further studies, too, in 

which the “modified micromolding technique” (m-μM) was investigated.  

 

 

Fig. 25: Upper left: micropatterned PDMS stamp, ink pad with protein solution, and ceramic substrate. 

The other parts show fluorescent images of stamped protein suspensions on non-patterned alumina 

surface. Stamping was realised by use of the μTM technique.  
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3.1.1 Versatile crack-free ceramic micropatterns made by a modified molding 

technique 

The following results have been published in part in the “Journal of the American Ceramic 

Society”, in 2010, by Marzellus grosse Holthausa, Miron Kroppb, Laura Treccania, Walter 

Langb, and Kurosch Rezwana (aUniversity of Bremen, Advanced Ceramics, bUniversity of 

Bremen, Institute for Microsensors, actuators and systems (IMSAS)) (Holthaus et al., 2010). 

 

Abstract  

Crack-free ceramic micropatterns made of oxidic ceramic powders, e.g. alumina, titania, 

zirconia, and non-oxidic calcium phosphate ceramic powders were fabricated by a novel, 

simple, and low-cost modified micromolding technique via PDMS stamps (m-μM). By means 

of this m-μM technique it is possible to fabricate monolithic ceramic bodies with a 

micropatterned surface with very high accuracy on surface detail. Our thus produced 

micropatterns can take on various geometric shapes, e.g. cylinders, holes, channels and struts, 

with measurements ranging from 8 to 140 μm in diameter or widths, and from 8 to 30 μm in 

depth or height. In our experiment, these oxidic and non-oxidic ceramic micropatterns could 

be removed from the molds and dried without any cracks. Even after sintering, these 

micropatterned samples showed no cracks or fissures. Therefore, this technique has a very 

high potential for fully automated up-scale fabrication of micropatterned ceramic surfaces. 

 

Introduction 

Micropatterned surfaces are of great interest in a variety of research fields and are used in 

high-end technical applications such as electrical sensor devices, biochemical fluidic system 

reactors, abrasion-resistant antibacterial surfaces as well as in biological and medical 

applications (Hu et al., 1999; Zhang and Yu et al., 2006; Kim et al., 2008; Treccani et al, 

2009; Wang et al., 2009). The advantages of ceramics as compared to metals or polymers 

consist in its chemical resistance and inertness, the high hardness, and the temperature 

resistance (Lemons, 1996; Munz, 1999). However, especially in the micro range advanced 

ceramics are often difficult to process without cracks, showing at the same time a high 

accuracy on surface details. Thanks to our novel, simple and low-cost modified micromolding 

technique via PDMS stamps (m-μM) we are now able to obtain crack-free ceramic 

micropatterns made of oxidic ceramic powders, such as alumina, titania, zirconia, and non-

oxidic calcium phosphate ceramic powders (Fig. 26).  
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Fig. 26: Fabrication process of ceramic micropatterns. After sealing the micropatterned PDMS stamp 

with a plastic tube, the ceramic suspension is filled into this plastic tube in order to replicate the surface 

structure. The micropatterned ceramic bodies can be removed from the mold after five days of drying. 

 

By means of this m-μM technique it is now possible to fabricate monolithic ceramic bodies 

with a micropatterned surface with very high accuracy on surface detail (Fig. 27) instead of 

thin film micropatterns which can be fabricated with well-known techniques such as 

microtransfer molding (μTM) and capillary force lithography (CFL), conventional 

micromolding (μM) or replica molding (REM), microcontact printing (μCP), micropatterning 

via slip pressing, and especially micromolding in capillaries (MIMIC) (Lange, 1989; Xia et 

al., 1998; Hu et al., 1999; Bauer et al., 1999; Tian et al., 2002; Heule et al., 2004; Khan et al., 

2009; Suh et al., 2009). In contrast to the thin film techniques, it is thus feasible to fabricate 

large-area micropatterned three-dimensional solid ceramic devices. In addition, the shape, size 

and thickness of the molded ceramic bodies are customizable to several requirements (Fig. 

27) which emphasises the versatility for large-area micropatterning of this technique. 

Moreover, this method has a high potential to become fully automated.  
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Fig. 27: SEM images of various fabricated ceramic micropatterns, e.g. channels, holes, struts or cylinders. 

These geometries were applied to different ceramic materials such as alumina, zirconia, hydroxyapatite, 

silica or titania. 

 

Experimental Procedure 

Seven commercially available ceramic powders were used to mix aqueous ceramic 

suspensions for filling the molds. Five of these powders, namely, hydroxyapatite (04238, Lot: 

8345A, Sigma-Aldrich), zirconia (NZ-911, Lot: Z307317P, ABSCO), alumina (TM-DAR, 

Lot: 7553, Taimei), titania (PT401L, Lot: 0/08, Ishihara) and silica (SiO2PO15-01, Lot: 

090320-01, F.O. Center), had a particle size of approximately 150 nm each. Additionally, two 

zirconia powders with particle sizes of approximately 26 nm (TZ-3Y-E, Tosoh) and 360 nm 

(TZ-3YS-E, Lot: S-307752P, Tosoh), each respectively, were used. The specific surface area 

(BET) of the used powders was measured with a Gemini 2375 (Micromeritics), and the 

zetapotentials in suspensions with a solid content of 2 vol.% were measured with a DT1200 

(Dispersant Technologies). 
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Preparing the ceramic suspensions: Zetapotential measurements (DT1200, Dispersion Tech.) 

were carried out in order to characterise the behaviour of the ceramic particles in aqueous 

surrounding (1 vol%) before preparing the suspensions for the molding processes.

Further, suspensions with binder (12 mg /g ceramic) as well as without binder were applied. 

The binder polyacrylic acid (Syntran® 8220, Interpolymer) with a molecular weight of 4000 

g/mol was used because it had already worked successfully as a binding polymer in 

preliminary tests. Thereby, the zetapotentials of hydroxyapatite suspensions with solid 

contents of 2 vol.% and various additions of binder ranging from 0 to 30 mg Syntran®/g 

ceramic powder were measured. Results showed a lowest zetapotential of -17 mV under 

addition of 12 mg Syntran®/g ceramic powder as compared to without adding a binder with a 

zetapotential of -12 mV. The addition of 30 mg Syntran®/g ceramic powder resulted in a 

zetapotential of -14 mV. In correlation with the preliminary tests, it was found that the 

isoelectric point (IEP, the pH value where the charge is zero) shifted to a more acidic pH for 

each material after addition of Syntran® due to the RCOO- groups of the polyacrylic acid. 

Furthermore, the results showed that all suspensions had negative charges in the alkaline 

range at pH 10-11 without addition of Syntran®. After adding Syntran®, the charges were 

even more negative in this alkaline range at pH 10-11 (Fig. 28).  

 

 
Fig. 28: Diagram shows exemplarily the zetapotentials (pH 3 to 11) of hydroxyapatite suspensions with 

solid contents of 2 vol.% and various additions of polyacrylic acid based binder Syntran® ranging from 0 

to 30 mg Syntran®/g ceramic powder. The lowest zetapotential (-17 mV) was achieved by adding 12 mg 

Syntran®/ g ceramic powder as compared to not adding PAA (-12 mV) and an addition of 30 mg Syntran® 

/g ceramic powder (-14 mV). 
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Each powder was stirred (RW20, IKA) separately into double deionised water (Synergy, 

Millipore) in order to obtain suspensions of 10, 15, and 20 vol.% solid loading. Dispersant 

polyacrylic acid (12 mg/g ceramic powder) was added to all suspensions. Each suspension 

was adjusted to pH 10-11 by adding ammonium solution (25 vol.%) to achieve an 

electrosterical stability and prevent an agglomeration of the particles. The ceramic 

suspensions were then treated with an ultrasonic horn (Sonifier 450, Branson) for three 

minutes to destroy potential agglomerates after stirring.  

 

Fabrication of non-structured ceramic solid bodies by molding: To find out the best solid 

contents parameters for the fabrication of crack-free demolded ceramic bodies, cylindrical 

molds with a diameter of 6.6 mm (96-well microtiter plate, Nunc) were filled with 100, 200, 

or 300 μL suspension with solid contents of 10, 15, or 20 vol.%. Due to gravity the particles 

settled at the bottom of the mold and got densified while the water in the supernatant was 

evaporating slowly throughout the drying period. After five days at 21-22 °C with 30-43 % 

relative air humidity, the ceramic bodies were completely dry and got removed from their 

molds. After demolding, the presence of cracks due to shrinkage was checked visually by 

means of a microscope (Axio Imager M.1, ZEISS).  

 

Fabrication of micropatterned ceramic solid bodies by micromolding via PDMS stamps (m-

μM): Cylindrically shaped molds with a diameter of 8 mm and micropatterning depths of 10, 

20, and 30 μm were generated via polydimethylsiloxane (PDMS) stamps (Sylgard® 184, Dow 

Corning) from a structured silicon wafer. Before the molding process, the PDMS stamps were 

hydrophilised in oxygen plasma (Femto, Diener Electronic) by using low pressure plasma 

with 50 watts generator power for two minutes and an operating pressure of 0.3 mbar. After 

that plasma treatment, the generated molds were sealed with cylindrical polyethylene tubes. 

Each mold was filled with 1 ml of ceramic suspension for casting the micropatterns on the 

PDMS stamps (Fig. 1). The particles settled at the bottom of the micropatterned mold due to 

gravity and there got densified, while water was evaporating from the supernatant. The 

samples were dried for five days at 21-22 °C with 30-43 % relative air humidity. Afterwards, 

the micropatterned samples were removed from their molds and densified in a furnace.

With 20 kV the micropatterns were visualised by SEM (Camscan Series 2, Cambridge 

Instruments), and 2D as well as 3D measurements were made by a 20-fold objective with a 

profilometer (Plμ 2300, Sensofar) to characterise the quality and shrinkage caused by the 

sintering process.  
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Results and Discussion 

By applying this technique we achieved a maximum success rate of 88% of crack-free dried 

samples for hydroxyapatite with a solid contents of 10 vol%, 25% for zirconia (26 nm) with 

solid contents of 15 vol%, 100 % for zirconia (150 nm) with solid contents of 10, 15, and 20 

vol%, 100 % for zirconia (360 nm) with solid contents of 10, 15, and 20 vol%, 100 % for 

alumina with solid contents of 15 and 20 vol%, 71% for titania with a solid content of 15 

vol.%, and 100 % for silica with a solid content of 15 vol.% (Fig. 29). A correlation between 

the particle sizes and the achieved success rates for crack-free drying cannot be found by 

comparing the results from three different zirconia powders with particle sizes of 26, 150, and 

360 nm, respectively.  

 
Fig. 29: Photograph of molded ceramic bodies made of alumina, zirconia and hydroxyapatite, with 

various diameters and thicknesses demonstrating the possibility of large surface area micropatterning. 

 

However, a correlation between the surface area (BET), ranging from 6.8 to 68.3 m2/g, and 

the success rates for crack-free drying seems to be plausible (supporting data in the 

appendix). We assume that a binder concentration of 12 mg/g ceramic is not high enough for 

hydroxyapatite with a specific surface area of 68.3 m2/g, silica with a specific surface area of 

22.6 m2/g, zirconia (particles 26 nm) with a specific surface area of 15.1 m2/g, titania with a 

specific surface area of 13.1 m2/g, and alumina with a specific surface area of 12.8 m2/g to 

saturate the whole particle surface with binder molecules in order to avoid cracking during the 

drying process. These materials showed success rates lower than 100 % after drying. In 

contrast, success rates of 100 % were achieved with zirconia powders with particle sizes of 
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150 and 360 nm, which exhibited the smallest surface areas, i.e. 9.7 m2/g and 6.8 m2/g, 

respectively. These materials showed success rates of 100 %. We therefore assume that these 

particles have been fully coated by binder molecules under addition of 12 mg/g which 

avoided the cracking. An overview of some exemplary results and particle and suspension 

characteristics, such as zetapotential measurements, particle sizes, BET surface areas, the 

Hamaker constants as well as achieved success rates for crack-free drying and demolding, are 

given in the appendix to this thesis. To check a difference in the packing density further 

density measurements of the non-sintered zirconia powders (26, 150, and 360 nm) were taken. 

In doing so, ten measurements per sample were made with helium pycnometry (Accu Pyc 

1330, Micromeritics). The density measurements of the non-sintered zirconia powder with 

particles of 26 nm showed an average density of 6.09 g/cm3 ± 0.04. For non-sintered zirconia 

powder with particles of 150 nm a density of 5.87 g/cm3 ± 0.03 was measured, and for 

zirconia powder with particles of 360 nm a density of 5.98 g/cm3 ± 0.04 was measured. 

Thereby the calculation of the total porosity of the molded zirconia samples which were 

comparably made with 15 vol.% in 200 μL fillings and 12 mg binder/g ceramic, resulted in 

62.38 % (26 nm), 57.19 % (150 nm), and 58.45 % (360 nm). The highest porosity of 62.38 % 

gave rise to the assumption that the particles agglomerated stronger in the suspension before 

micromolding, which resulted in a lower final packaging density. The lower zetapotential of -

12 mV as compared to zirconia with 150 nm particles (-18 mV) and zirconia with 360 nm 

particles (-25 mV) confirms the lower electrosterical stability of the suspension at the working 

pH of 9 to 10. 

Due to very high adhesion between the dried samples and the sidewalls of the cylindrical 

polyethylene plastic tube (not the micropatterned PDMS), it was not possible to remove any 

crack-free sample made of titania from the molds without destroying the sample. During the 

trial of demolding the edges of the titania samples, the sample bodies were disconnected from 

each other. These disconnections were parallel to the sidewalls of the cylindrical plastic molds 

and thus circular throughout the entire sample. We assume that this effect occurred because of 

non-visible damages before demolding, e.g. by defects or fine cracks inside the sample 

bodies. During the demolding process, the titania samples broke circularly and titania material 

of the samples edges was partially sticking to the sidewalls of the plastic molds after 

demolding. The entire ceramic body itself, however, did not break. This assumption was 

affirmed by the presence of circular cracks on clearly visible cracked titania samples after the 

drying process. We therefore suppose that this unexpected effect can be minimised or 

completely avoided by deploying anti-sticking agents such as PTFE sprays, as these minimise 
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the adhesion between PE mold and titania material, or else by the use of cylindrical molds of 

PTFE. A possible reason for this unexpected sticking effect could be a not optimally chosen 

concentration of binder, which leads to higher forces between plastic and titania compared to 

the inner forces in the titania sample.  

 

 
Fig. 30: SEM image of a sintered micropatterned zirconia surface of approx. 1 mm2 with over 6500 

cylindrical holes. These holes have a diameter of about 10 μm and a depth of 8 μm. The graph inset shows 

a 2d profile measurement of a single cylinder. 

 

The diameters and the heights of the samples were measured with a micrometer gauge before 

sintering in order to evaluate the shrinkage ratio. Hydroxyapatite samples were densified at 

1200 °C, zirconia samples at 1350 °C, alumina samples at 1500 °C, silica samples at 1000 °C, 

and titania samples at 1250 °C, each for two hours with a heating rate of 50 °K/hour and a 

cooling rate of 100 °K/hour. Results showed shrinkages of 49 % in volume for 

hydroxyapatite, 55 % in volume for zirconia (26 nm), 53 % in volume for zirconia (360 nm), 

and 40 % in volume for silica. The zirconia powder (150 nm) could not be measured after 

sintering, because a monoclinic non-yttria-stabilised zirconia powder was used which was not 

sinterable due to crystal phase changes.  
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Oxidic and non-oxidic ceramic micropatterns, e.g. holes and cylinders with diameters of 10 

μm to 140 μm and depths or heigths of 10 μm and 30 μm could be removed from the molds 

and dried without the emergence of cracks. Even after sintering, these micropatterned samples 

showed no cracks and fissures (Fig. 27 and Fig. 30). It was also possible to fabricate areas of 

1 mm2 with more than 6500 micropatterns, with diameters of 10 μm and depths of about 8 

μm, each without cracks and very high accuracy on surface details (Fig. 30). The excellent 

quality is, on the one hand, due to the chosen binder polyacrylic acid, on the other hand 

because of the geometry of the molds effecting a favourable unidirectional and slow drying 

process (Fig. 31).  

 
Fig. 31: Drying process of ceramic micropatterns made by modified micromolding (m-μM): at the 

beginning, the ceramic particles are homogenously dispersed in the aqueous suspension. Due to gravity 

the particles sink down to the micropatterned bottom of the mold (PDMS stamp) while water is 

continuously evaporating. The one-sided evaporation of water is completed within five days and the dried 

micropatterned ceramic body can be removed from the mold. 
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Samples which did not dry without cracks showed two different kinds of cracking. 

Hydroxyapatite, alumina, silica and zirconia samples showed a cracking throughout the whole 

structure as well as the entire sample body. The cracking did not only occur near the 

micropattern edges or along the micropattern direction, where the mechanical stresses seem to 

be most concentrated during the drying process (Fig. 32).  

 

 
Fig. 32: SEM micrograph of a micropatterned non-sintered hydroxyapatite surface which cracked during 

the drying process. The micropatterns were fabricated with a suspension with a solid content of 20 vol%. 

On samples made of alumina, hydroxyapatite, silica and zirconia, cracks emerged throughout the entire 

sample and in all micropatterns. 

 

Cracks were even visible in the centre of the cylindrical sample. In contrast, cracking on 

titania samples occurred predominantly circularly, throughout the entire sample body (Fig. 

33). Because the BET surface area measurements suggested a higher success rate for higher 

binder concentrations (> 12 mg/g ceramic), an additional test with 24 cylindrical samples of 

titania suspension (10 vol%, 200 μL fillings) and the addition of 30 mg Syntran®/ g ceramic 

was conducted in order to test the influence of binder concentration on crack occurrence.
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Fig. 33: Top view of four non-sintered titania samples (in their plastic molds) which cracked during the 

drying process. The samples were fabricated using a suspension with a solid content of 

10 vol.% under addition of 12 mg Syntran®/g ceramic in 200 μL fillings. The disconnection between the 

sample bodies and the sample edges were parallel to the sidewalls of the cylindrical plastic molds, thus 

circular throughout the entire sample (black arrow bar). The dark grey dots in the centre of the samples 

were made with a permanent marker. 

 

Results showed a success rate for crack-free drying of 0%. All cracks occurred circular-wise 

throughout the entire sample. Such a high concentration of binder does not increase the 

success rate for crack-free drying of titania. This does not mean, however, that there are no 

concentrations between 12 mg and 30 mg/g ceramic which minimise crack occurrence, but 30 

mg is probably too much. Higher binder contents would lead to a higher porosity as well after 

sintering in the sample body, because more binder would be burned out during the sintering 

process.  

 

Conclusions 

With this simple and low-cost modified micromolding technique (m-μM) we are now able to 

produce micropatterns featuring various geometries, e.g. cylinders, holes, channels and struts, 

with diameters ranging from 8 μm to 140 μm and widths from 8 μm to 30 μm in depth or 

height as well as with very high accuracy on surface details. The molding process resulted in 

an outcome of 25% to 100% dried samples free from cracks, whereas the mean shrinkage 

ratio from the dried ceramic body to the sintered ceramic body ranged from 40% to 55% in 

volume, depending on the material. Due to shrinkage it is even possible to fabricate ceramic 

microgeometries smaller than 10 μm without any cracks or fissures. Likewise, no cracks 

occurred in the oxidic or in the non-oxidic ceramic samples during the sintering process. 
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A relation between the used binder concentrations and their impact on the achieved success 

rates for crack-free drying could be shown in correlation with the measured BET surface area 

of the ceramic powders and their calculated porosity of the molded sample bodies. In 

addition, this method has a high potential to get fully automated for up-scale fabrication of 

micropatterned ceramic surfaces.  

Further investigations using m-μM have confirmed the versatility and potential of this 

molding technique. Ceramic micropatterned thin films with freestanding, opened patterns 

have been successfully fabricated in first experiments. The thus fabricated thin films featured 

holes with diameters of a minimum of 86 micron and a thickness of 156 μm, but the molded 

patterns could feature various geometries, e.g. channels or honeycombs (Fig. 34). 

 

sintered alumina 25 μmsintered alumina 10 μm  
Fig. 34: SEM micrographs of a sintered ceramic thin film (Al2O3) with open microholes. This ceramic film 

has a thickness of 125 μm and microholes with a diameter of 88 μm. The micropatterns are well defined 

with high accuracy and vertical sidewalls (left). Cross section of the fragment (right). 

 

3.1.2 Orientation of osteoblasts on hydroxyapatite-based microchannels 

The following results were partially submitted to the journal “Acta Biomaterialia” in 2011 by 

Marzellus grosse Holthaus, Julia Stolle, Laura Treccani, and Kurosch Rezwan. 

 

Abstract 

The effect of calcium phosphate-based microchannels on the growth and orientation of human 

osteoblast cells is to be investigated in this study, as substrates hydroxyapatite-based 

microchannels with high contouring accuracy were fabricated by a novel micro molding 

technique. Microchannels obtained through this method featured widths ranging from 16.0 ± 
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0.7 μm to 76.6 ± 1.4 μm and to depths from 7.9 ± 0.8 μm to 15.5 ± 1.3 μm. Surface and 

contour characterisation was carried out using X-ray diffraction analysis, SEM imaging and 

3D-confocal profilometry. Cell proliferation and alignment on microchannels with different 

widths were determined after one and after three days, respectively, through fluorescence 

microscopic imaging and statistically analysed on the basis of Tukey’s multiple comparison 

test. On days 1 and 3 we found for microchannels with 16 and 30 microns, that 70% to 80% 

of the osteoblasts oriented within an angular range of 0 to 15° relative to the microchannel 

direction. Interestingly, only 20% of the cells grew inside the microchannels for channel 

widths of 16 and 30 microns. Substrates with 45, 65, and 76 micron channel widths allowed 

around 40% of the cells to grow inside. The depth of the microchannel showed hardly any 

significant impact. All micropatterned surfaces provoked a good cell attachment as flat and 

spread cell morphologies with lamellipodiae and filopodiae could be already observed after 

one day. The effect of the microchannels on osteoblast viability was determined with the 

colorimetric WST-1 assay and the presence of collagen type I assessed by fluorescence 

analysis. The cell proliferation obtained through WST-1 assay differed insignificantly for all 

micropatterned samples of varying widths and depths. The assessment of collagen type I 

yielded the same amounts for all micropatterned samples after 1, 3, and 7 days.  

In summary, we can say that the microchannel width of HA-based patterns has a distinct 

effect on the directed growth of human osteoblast cells, allowing novel design strategies for 

surfaces of, for instance, dental implants.  

 

Introduction 

Substrate surfaces featuring well-defined micropatterns are of great interest and relevance for 

biosensor applications (Hyun Jong et al., 2010; Lee et al., 2008; Valsesia et al., 2005), fluidic 

systems (Dusseiller et al., 2005; Velve-Casquillas et al., 2010), antibacterial surfaces 

(Treccani et al., 2009) as well as for medical implants such as neural cell stimulating implant 

surfaces (Hsu et al., 2009; Sommani et al., 2007; Turcu et al., 2003) and bone implants 

(Bowers et al., 1993; Mangano et al., 2010). Ceramic materials are suitable for many of these 

applications and well established as implant materials nowadays. The non-oxide ceramic 

hydroxyapatite (HA) is bioactive and, due to its relative low hardness, not used as a load-

bearing implant material. However, thanks to its similarity to human bone apatite, HA is used 

in medical implants such as bone grafting materials or coatings for dental implants for an 

increased bone in-growth (Dorozhkin, 2009; Wang et al., 2005).  
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It has been found in different studies that chemical and topographic modifications of polymers 

and metals affect cell proliferation, depending on pattern geometries and size. For example, 

Reichert et al. demonstrated the impact of topography on the attachment of Swiss albino 

mouse fibroblasts (3T3). Cells usually do not show any adherent contact to 

polytetrafluoroethylene (PTFE) surfaces, but after micropatterning of the PTFE the fibroblasts 

did indeed attach to the surfaces (Reichert et al., 2007). Especially the alignment of cells in 

reference to microchannel formation has been reported by several groups (Berry et al., 2004; 

Kaiser et al., 2006; Kirmizidis and Birch, 2009; Lu and Leng, 2009;2003; Perizzolo et al., 

2001; Tan and Saltzman, 2004; Walboomers et al., 1999). For instance, Walboomers et al. 

reported an increased rat dermal fibroblast (RDF) alignment by decreasing groove widths 

from 10, 5, 2, and 1 μm (depths of 0.5 μm) on polystyrene substrates.  

Contrary to polymer and metals, the effects of ceramic surface topographies have not yet been 

commented on that often. A randomized calcium phosphate surface texturing, e.g. roughening 

of HA by grinding papers, has already been studied by different research groups with various 

cell types. Depending on the investigated parameters, the randomized calcium phosphate 

texturing can have a significant influence on the cell behaviour and metabolism (Ball et al., 

2008; Deligianni et al., 2001; Hayashi et al., 1994). However, cell behaviour to specific and 

accurate ceramic HA surface micropatterning was reported only by a few researchers (Lu and 

Leng, 2009;2003; Perizzolo et al., 2001; Tan and Saltzman, 2004). A main reason for this is 

the difficult fabrication of defined HA micropatterns. Contrary to our study, in the other 

investigations HA coatings were used, deposited by magnetron sputtering or by direct 

mineralization of HA on pre-patterned silicon wafer substrates. Nevertheless, the effect of 

systematically changed micropatterns in the sub-100 μm range using solid HA-based samples 

on human osteoblasts has not yet been studied well. By using a recently developed method 

called “modified micro-moulding” (Holthaus et al., 2010), we have fabricated HA 

microchannels with high shape accuracy.  

In this study, we investigate the effect of HA microchannels with widths ranging from 16 to 

77 μm on human osteoblast (HOB) proliferation. The objective of this study is to analyse the 

influence of high quality HA-based microchannels with a well-defined topography on the 

“contact guidance” of HOB. For this purpose, we used periodic, large-area microchannels 

fabricated on solid calcium phosphate-based samples. For the patterning process we applied a 

modification technique that did not change the samples’ surface chemistry or crystal structure 

in the patterning region.  
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Materials and Methods 

Fabrication of micropatterned ceramic samples 

Commercially available ceramic powder was used to mix an aqueous ceramic suspension of 

16 vol.% for the fabrication of micropatterned ceramic bodies via modified micromolding (m-

μM) as described in Holthaus et al. 2010. For that purpose, 12.4 g HA powder 

((Ca10(PO4)6(OH)2), Prod.-No. 04238, Lot: 8345A, Sigma-Aldrich Chemie GmbH, Munich, 

Germany) was mixed with 20 g of an aqueous silica dispersion (BegoSol K, SiO2 particle size 

8 nm, solid content of 7.5 g colloidal silica, BEGO GmbH, Bremen, Germany). A polyacrylic 

acid-based dispersant (Syntran® 8220, Interpolymer GmbH, Hassloch, Germany) with a ratio 

of 15 mg Syntran® per gram ceramic was added to the suspension. The pH was adjusted to 9 

to 10 by adding ammonia solution (25%, Merck, Darmstadt, Germany). The primary particle 

size of the HA powder was unimodally distributed 151 ± 0.235 nm (DT1200, Dispersant 

Technologies, Bedford Hills, NY), and the powder density measured via helium pycnometry 

(Accu Pyc 1330, Micromeritics GmbH, Aachen, Germany) was 3.03 ± 0.04 g/cm3. The 

molded samples were dried for two days at 30 °C with 30% relative air humidity in a climate 

chamber (KBF115, Binder GmbH, Tuttlingen, Germany). Afterwards, the micropatterned 

samples were removed from their molds. The molded samples were then sintered in a furnace 

(LHT08/17, Nabertherm GmbH, Lilienthal, Germany) at 1200 °C at ambient conditions for 

two hours. Heating was performed with 50 °C/h, cooling with 100 °C/h. After sintering, all 

samples were washed for five minutes in double deionised water (Synergy®, Millipore, 

resistivity 18 MΩ*cm, Schwalbach, Germany) in an ultrasonic cleaner (1510 Bransonic®, 

Branson Ultraschall, Dietzenbach, Germany) and dried at ambient conditions. 

 

Micropattern dimensions 

The bottoms of the molds were made of polydimethylsiloxane stamps (PDMS, Sylgard® 184 

silicone elastomer, Dow Corning, Wiesbaden, Germany) and featured an area of 1 x 1 cm2 of 

periodic channel-like micropatterns with widths of 20 μm, 40 μm, 60 μm, 80 μm and 100 μm, 

respectively. Molds with two different pattern depths of 10 μm or 20 μm were used.  

 

Surface texture imaging 

The micropatterns were visualized through SEM (Camscan Series 2, Cambridge Instruments 

Obducat CamScan Ltd., Cambridgeshire, U.K.) at 20 kV. Prior to SEM imaging the samples 
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were sputtered with gold (K550, Emitech, Judges Scientific plc, West Sussex, UK). 2D and 

3D measurements were achieved through 420-fold magnification with a profilometry system 

(Plμ 2300, Sensofar Technology, Terrassa, Spain) in order to characterise the quality and 

shrinkage caused by the sintering process and to measure the average surface roughness 

according to ISO 4287 (ISO 4287 (1997)). The measurement length for the roughness (Ra) 

was Lc = 4 mm. 

 

Non-patterned reference samples 

Two kinds of non-patterned ceramic reference samples were fabricated for the experiments. 

First of all, reference samples (ref.-1) were molded with identical materials and settings as 

described above, yet without the presence of microchannels at the bottom of the molds. 

Secondly, reference samples (ref.-2) were die-pressed by using 1.1 g of HA powder. The 

powder was uniaxially die-pressed with the help of metal plungers and a hydraulic press 

(Weber Maschinen- und Apparatebau GmbH, Remshalden, Germany) applying a compressive 

force of 7.5 kN. The sample diameter was 10.0 ± 0.1 mm with a thickness of 2.8 ± 0.2 mm. 

The non-patterned ceramic samples were sintered using identical conditions as described 

above. The die-pressed HA samples (ref.-2) were treated with SiC grinding paper (grit p320, 

WS Flex, Hermes Abrasives Ltd., Virginia Beach, USA) to generate the same surface 

roughness as measured on the molded non-patterned HA-based samples. Subsequently, 

Energy Dispersive Spectroscopy (EDS, Camscan Series 2, Obducat CamScan Ltd., 

Cambridgeshire, United Kingdom), with a detection limit of about 0.1 % of the element’s 

mass, was utilised to detect possible wear residues originating from the SiC grinding papers. 

The measurements were taken on HA samples (ref.-2) for two different spots with an area of 

27 x 17 μm2 each. Prior to EDS analysis the samples were washed three times for five 

minutes respectively in double deionised water in an ultrasonic cleaner and dried at ambient 

conditions. As a third kind of reference samples, cell culture plastic coverslips with a diameter 

of 15 mm (Thermanox®, Nalge NUNC, Rochester, New York, USA) were deployed. Crystal 

structure analysis X-ray diffraction measurements (XRD, C3000, Seifert, Ahrensburg, 

Germany) of sintered HA samples were made for molded and die-pressed samples with the 

aim to determine the crystal structure. Scans with 2ө ranging from 15° to 70° were taken. 

 



Experimental results of ceramic micropatterning 

 - 65 - 

Surface wettability 

The contact angles (Θ) between sessile droplets (20 μL) of double deionised water and the 

ceramic surfaces were measured sixfold (duplicate measurements on n = 3 samples) for each 

kind of micropatterned or non-patterned sample. Macroscopic side view images of the 

droplets were taken via camera (D3100, Nikon Corp., Kanagawa, Japan). The measurements 

were taken cross-sectional to the microchannel direction. The contact angles were analysed 

via Software Image-J (version 1.39u, National Institutes of Health, USA). Prior to the contact 

angle measurement, the samples were rinsed in isopropanol with analytical grade (Merck, 

Darmstadt, Germany) and dried at ambient conditions for thirty minutes. 

 

Cell culturing  

A total of 390 samples were used for in-vitro testing. After their fabrication, all ceramic 

samples were sterilised at 180 °C for two hours in a furnace. Prior to the cell experiments all 

samples were rinsed with double deionised water containing 1% antibiotics/antimycotics 

(GIBCO Laboratories, Grand Island, NY) and dried in air under ultraviolet light for one hour. 

Human osteoblast cells (HOB, cryovial, Cat.-No.: 121 0311, Provitro GmbH, Berlin, 

Germany) with a doubling time of 64 hours were cultivated in their third-culture generation 

for the in-vitro testing. 

Each sample was put into one polystyrene culturing dish (24-well multidish, Nalge NUNC, 

Rochester, New York, US). Subsequently, the samples were fully immersed in 1 ml of 

complete DMEM media with high glucose (Dulbecco’s Modified Eagle’s Medium) and stored 

at 37 °C, 10% CO2 and 94.5% RH in an incubator (C200, Labotect Labor-Technik-Göttingen 

GmbH, Goettingen, Germany) for thirty minutes. The media contained 10% fetal calf serum 

(FCS) and 1% antibiotics/antimycotics. Afterwards, the media was removed with a sterile 

pipette and then discarded. Approximately 2 x 104 cells homogenously dispersed in 1 ml 

DMEM media were added to each well onto the wet samples. The cells were incubated on the 

various substrates in the same incubator for a period of seven days under static conditions. 

Sampling points were taken after 24 hours (day 1), 72 hours (day 3), and after 168 hours (day 

7). Thermanox® cover slides were used as cell culture reference material. Cell relevant 

chemicals were purchased from Invitrogen GmbH (Darmstadt, Germany).  
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Cell viability measurement via WST-1 proliferation assay 

Proliferation of the HOB cells was analysed by means of a plate reader (Cameleon, HIDEX, 

Turku, Finland) using a colorimetric WST-1 assay (WST-1, Roche Diagnostics GmbH, 

Mannheim, Germany). This method is based on the non-radioactive quantification of the cell 

proliferation via the measurement of the formazan product in viable cells. Supernatants were 

quantified spectrometically (OD) at 450 nm with a reference wavelength of 650 nm. 

Proliferation measurements of n = 6 samples for each kind of material per sampling day were 

applied. The same volume of culture medium and cell proliferation reagent WST-1 was used 

in the experiment as a background control (absorbance of culture medium plus WST-1 in the 

absence of cells) for the plate reader. Due to different sample sizes the measured proliferation 

values of Thermanox® were normalised to the sample area of the ceramic samples. 

 

Cell imaging  

Fluorescence staining of the osteoblast cells was accomplished with two different fluorescent 

dyes. Alexa Fluor® 488 Phalloidin was used for the cytoskeletons and 4´6´- Diamidino-2-

phenylindol (DAPI) was taken for the cell nuclei. Cells were visualized and studied with a 

fluorescence microscope (Axio Imager M.1, Carl Zeiss GmbH, Jena Germany). Imaging of n 

= 3 comparison specimens for each kind of material and sampling point was applied. The 

chemicals for cell staining were purchased from Invitrogen GmbH, Darmstadt, Germany. 

 

Staining of collagen type I  

Another parameter for cell viability is the production of collagen type I inside the cells. 

Mouse anti-human collagen as primary antibody and conjugated anti-mouse IgG (Alexa 

Fluor® 546) as secondary antibody were used for a semi-quantitative collagen type I staining 

inside the cells. This inspection was performed on the basis of the fluorescence microscopic 

images. 

 

Measurement of cell orientation angle (OA) 

The morphological deviation of the cells from the microchannel direction was analysed in 

fluorescence microscopy images. A virtual axis was placed in each single cell and the cell 

orientation angle (OA) was measured between 0 and 90° by the use of the software Axio 

Vision Imaging 4.8 (Carl Zeiss GmbH, Jena, Germany). The definition of OA was the same 
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as introduced by Brunette in 1986 and used by others (Brunette, 1986; Clark et al., 1990; Lu 

and Leng, 2003 & 2009). The angle between the long axis of the cell and the channel 

direction was measured. An osteoblast which was perfectly aligned with the groove would 

have a value OA of 0°. The possible orientations of the cells were divided into six groups. 

N = 3 comparison samples were used (e.g. three samples with pattern widths of 20 μm and 

depths of 10 μm). For the analysis, n = 4 microscopic images were taken per sample. Each 

image was of 587,400 μm2 (890 μm x 660 μm), so that a total quantification area of 2.35 mm2 

per material was investigated. Within the images taken, all present cells were analysed. Non-

patterned molded ceramic samples (ref.-1) were taken as reference material. 

 

Measurement of cell positioning  

By using fluorescence microscopy it was analysed whether cells grew on top of the 

micropatterns or inside the microchannels. For this quantitative analysis the same n = 4 

images for n = 3 comparison specimens as mentioned above were used.  

 

Statistical analysis 

The statistical analysis was performed with the aid of Minitab® 16 (Minitab Inc., 

Pennsylvania, US). A comparison of the experimental data was made in a one-way analysis of 

variance (ANOVA) with post hoc Tukey’s multiple comparison method for assessing whether 

all sample scenarios show statistically significant differences. A p-value of p<0.05 was 

considered statistically significant. The statistical test was the same as used by other authors 

for the evaluation of cell orientation (Kirmizidis and Birch, 2009; Lam et al., 2008). 

 

Results 

Characterisation of micropatterns and material  

Micropattern geometry and topography 

Periodic formations of calcium phosphate-based hydroxyapatite microchannels with vertical 

sidewalls were fabricated via modified micromolding (m-μM). The molds had pattern widths 

of 20, 40, 60, 80, and 100 μm, respectively. After drying and sintering the molded HA 

microchannels, the original widths decreased to finally 16.0 ± 0.7 μm (20 μm), 30.3 ± 0.8 μm 

(40 μm), 45.4 ± 1.2 μm (60 μm), 64.7 ± 2.4 μm (80 μm), and 76.6 ± 1.4 μm (100 μm). The 

HA pattern depths eventually shrank to 7.9 ± 0.8 μm (10 μm) and 15.5 ± 1.3 μm (20 μm), 
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respectively (Fig. 35 and supporting data in the appendix) as obtained by 3D profilometry. 

The measured average surface roughness (Ra) inside the sintered HA-based microchannels 

was Ra = 0.358 ± 0.043 μm. On top of the sintered patterns an average roughness of Ra = 

0.359 ± 0.061 μm was measured.  

 

 
Fig. 35: SEM micrographs and measured 2D profiles of the surface cross section (insets) of micromolded, 

sintered hydroxyapatite. „w“ and „d“ respectively refer to width and depth of each micropattern. 

 

Crystal structure and detection of residues from grinding 

XRD measurements showed the presence of tetragonal silica (cristobalite low), ß-tricalcium 

phosphate and hydroxyapatite on molded HA-based samples, which were mixed with aqueous 

silica (supporting data in the appendix). Pure HA crystal structure was measured on die-

pressed HA samples (ref.-2) which were treated with SiC grinding paper (p320) in order to 

generate an identical surface roughness as measured on the molded HA-based samples. In 

addition, EDS as well as XRF analysis (not shown) (ref.-2) showed no presence of residues, 

e.g. Si, from grinding paper after three times of washing for five minutes in deionised water in 

an ultrasonic cleaner for the prepared samples. 
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Surface wettability 

Contact angles Θ ranging from 89° to 98° were measured on HA-based micropatterns with 

depths of 10 μm. On micropatterns with depths of 20 μm contact angels increased to a 

minimum of 105°. A distinct alignment of all water droplets with reference to the groove-like 

pattern direction was observed independently of the microchannel width or depth. The non-

patterned HA references had contact angles of 72° (ref.-1) and 20° (ref.-2). Thermanox® 

showed a mean contact angle of 93° (ref.-Th) (Tab. 3). Droplets of circular shape were 

observed on non-patterned surfaces. 

 

Tab. 3: Contact angles of sessile droplets of double deionised water on surfaces 

sample 

 

 

micropattern width micropattern depth mean contact angle 

(μm) (μm) (°) 

molded HA micropatterns 20 10 98 ± 2 

40 93 ± 4 

60 89 ± 2 

80 94 ± 5 

100 89 ± 6 

 20 20 105 ± 3 

40 105 ± 3 

60 107 ± 4 

80 109 ± 1 

100 114 ± 2 

molded HA (ref.-1) non-patterned 72 ± 6 

die-pressed HA (ref.-2) non-patterned 20 ± 1 

Thermanox® (ref.-Th) non-patterned 93 ± 2 

 

In-vitro tests with osteoblasts 

Osteoblast proliferation 

After 24 hours of proliferation (day 1) no significant differences in the cell proliferation - 

detected via cell proliferation WST-1 assay - were detectable, comparing all patterned and 

non-patterned ceramic samples (ANOVA: Tukey’s Multiple Comparison Method). The mean 

WST-1 proliferation ranged in terms of optical density from OD = 0.0130 to 0.0167. A 

significantly higher mean WST-1 proliferation of OD = 0.0191 was measured on the 

reference material Thermanox® (supporting data in the appendix).  
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No significant differences in osteoblast WST-1 proliferation were measured comparing 

micropatterned and non-patterned ceramic samples after 72 hours (day 3) of in-vitro 

proliferation. The mean WST-1 proliferations there ranged from OD = 0.0367 to 0.0565. 

Here, a significantly higher mean osteoblast WST-1 proliferation of OD = 0.0860 was 

measured on the reference material Thermanox® (supporting data in the appendix).  

After 168 hours (day 7) no significantly differences in the mean WST-1 proliferation were 

measured, comparing all micropatterned ceramic samples. Their mean WST-1 proliferations 

ranged from OD = 0.0835 to 0.1173. Significantly higher WST-1 proliferation, as compared 

to all ceramic micropatterned samples with widths smaller than 100 μm (depth 20 μm), was 

measured on molded non-patterned HA-based samples (ref.-1) and non-patterned die-pressed 

HA (ref.-2). The highest WST-1 proliferation of OD = 0.2400 was measured on Thermanox®, 

which was significantly higher than all micropatterned and non-patterned ceramic samples 

(Fig. 36). 

 
Fig. 36: Dependency of width and depth of micropatterns on the osteoblast WST-1 proliferation measured 

after seven days. Ref.-1: molded hydroxyapatite, ref.-2: die-pressed pure hydroxyapatite, ref.-Th:

Thermanox®. Mean values that share a symbol (*/#/+/-) are insignificantly different (ANOVA: Tukey‘s 

Multiple Comparison Test). 

 

Collagen type I staining 

HOB cells labelled with collagen type I staining (a protein which is important during 

ossification) showed that collagen was concentrated around the nuclei of the cells for all 

samples. After one day of proliferation a weak collagen type I signal was detectable on die-

pressed HA, turning into a very strong signal after days 3 and 7. Independently of the 

sampling point, a very strong collagen type I signal was detectable on all molded 
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micropatterned and molded non-patterned HA-based samples, starting from day 1 on. The 

collagen type I signal was weak on Thermanox® for all sampling points (Tab. 4).  

 
Tab. 4: Collagen type I production in osteoblasts; (-) no signal, (+) low signal, (++) distinct signal, (+++) 

very strong signal. Ref.-1: molded hydroxyapatite, ref.-2: die-pressed pure hydroxyapatite, ref.-Th: 

Thermanox®. Contr.: negative control. 
collagen type I production in osteoblast cells 

 

 

 

width of micropattern (μm) non-patterned 

20 40 60 80 100 20 40 60 80 100 ref.-1 ref.-2 ref.-Th contr. 

depth 10 μm depth 20 μm  

day 1 +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ + + - 

day 3 +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ + - 

day 7 +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ + - 

 

Osteoblast positioning inside or on top of micropatterns 

It was checked if the micropatterns’ width and depth influence the osteoblast z-positioning, 

i.e. if cells grow inside the channels or on top of the patterns. Differences in the positioning of 

the cells in dependency of the pattern width were already detected at day 1 (ANOVA: 

Tukey’s Multiple Comparison Method). On that day, two groupings were found, one of which 

comprising the two smallest pattern widths (20 and 40 μm) for both depths. Between 26% and 

31% of all cells grew inside these channels, though no significant differences were found 

within this group. The second grouping was constituted of the larger channels with widths of 

60 to 100 μm for both depths. Between 42% and 47% of all cells grew inside these channels; 

no significant differences were found within this grouping either. Channels with widths of 60 

μm and depths of 40 μm were statistically related to both groups. Overall, the two groupings 

showed a significant difference concerning cell positioning. Widths of 60, 80, and 100 μm 

showed significantly more cells inside the patterns compared to the smaller channel widths of 

20 and 40 μm for both depths. For all micropatterned samples it turned out that less cells grew 

inside the microchannels (37 ± 5 %) compared to the top of the patterns (63 ± 5 %) 

(supporting data in the appendix). 

On day 3, significant differences in the cell positioning in terms of pattern widths were still 

detectable. Comparing the results from these two groupings among each other, some 

significant differences could be revealed.  
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Widths of 60, 80, and 100 μm showed significantly more cells inside the patterns (35% to 

45%) as compared to widths of 20 and 40 μm (16% to 25%) for both depths. Within each 

grouping no significant differences were found. 

In total, fewer cells grew inside the microchannels (32% ± 5%) compared to the top of the 

patterns (68% ± 5%). No significant differences were measured when comparing both pattern 

depths with the same pattern widths on day 3 (Fig. 37). 

On day 7, it was not possible to measure the osteoblast positioning because of too high cell 

quantities and partial presence of single or multilayered cell coverage on the surfaces.  

 
Fig. 37: Distribution of osteoblast cells on different micropatterns in-vitro after three days. Cells adhered 

either „inside“ the microchannels or „on top“ of the molded hydroxyapatite micropatterns. Cells on n = 3 

samples were analysed on an area of 2.35 mm2 each. Mean values that share a symbol (*/#/+) differ only 

insignificantly (ANOVA: Tukey‘s Multiple Comparison Test). 

 

HOB orientation and morphology 

Phenotypic morphological differences and orientation of the osteoblast cytoskeletons were 

found when comparing micropatterned HA-based surfaces with non-patterned surfaces (Fig. 

38). Thereby, the cells aligned with reference to the microchannel direction starting on day 1. 

This cell alignment was measured and categorised into six groups ranging from 0 to 90° of 

alignment in order to determine the influence of pattern widths and depth on cell orientation 

(Fig. 39). In so doing, it was found that most osteoblast cells aligned between 0 and 15° with 

reference to the pattern direction. Owing to its strong relevance (0 to 15°), a statistical loading 
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of this group was made for two sampling days, i.e. days 1 and 3 (ANOVA: Tukey’s Multiple 

Comparison Method). Detailed results for this 0-15° grouping are given in the following 

paragraph. 

 

 
Fig. 38: Fluorescence microscopy images of osteoblast cells (HOB) after three days of proliferation on 

micropatterned hydroxyapatite samples with different microchannel widths. The position of 

micropatterns is shown in the form of 2D profiles (yellow insets). Non-patterned HA is shown in f) as a 

reference. Blue: nucleus, Green: cytoskeleton, Red: collagen type I. 

 

0-15° 16-30° 31-45°

46-60° 61-75° 76-90°

a

b

cell alignment: not measured:

 
Fig. 39: Osteoblast cell alignment in reference to hydroxyapatite micropattern direction; the aligned cells 

are divided into six groups within angles between 0 and 90°. Excluded cells are cell bulks (a) and cells with 

no distinct alignment (b). 
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On day 1, micropattern with widths of 20 and 40 μm caused an osteoblast alignment in this 

group (0 to 15°) for 66% to 73% of all cells. The differences in cell alignment between these 

two pattern widths were insignificant for both fabricated pattern depths. 31% to 47% of all 

cells aligned between 0 and 15° on HA-based patterns with widths of 60, 80, and 100 μm. 

The differences in orientation between 60 to 100 μm are insignificant, yet the results are 

significantly lower compared to 20 and 40 μm wide patterns. This was found for both pattern 

depths. On non-patterned HA-based samples (ref.-1) in mean 12% of all osteoblasts oriented 

between 0 and 15°. This value was found to be significantly lower compared to all 

micropatterned ceramic samples. The mean cell quantity of cells without any specific 

alignment ranged between 13% and 32% (“not measurable cells”) and increased with 

increasing pattern widths (Fig. 40). All micropatterned as well as non-patterned samples 

caused a good cell attachment, as flat and spread cell morphologies with lamellipodiae and 

filopodiae were already present after one day. Overall, the cells’ morphologies on non-

patterned surfaces were randomly spread.  
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Fig. 40: Osteoblast cell alignment on micropatterned hydroxyapatite with different widths and depths 

after day 1. Ref-1: non-patterned molded hydroxyapatite. Cells on n = 3 samples were analysed on an area 

of 2.35 mm2 each. Mean values that share a symbol (*/#/+/-/§) differ only insignificantly (ANOVA: 

Tukey‘s Multiple Comparison Test). 

 

On day 3, an osteoblast alignment between 0 and 15° was measured for 64% to 79% of all 

cells on ceramic micropatterns with widths of 20 and 40 μm. The mean cell alignment 

between the two pattern widths was insignificantly different for both pattern depths. 29% to 

47% of all cells oriented between 0 and 15° on patterns with widths of 60, 80, and 100 μm. 

The differences in alignment for widths between 60 and 100 μm likewise turned out to be 

insignificant. Compared to widths of 20 and 40 μm, the number of aligned cells was 

significantly lower, which was found for both pattern depths. On non-patterned HA-based 
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samples (ref.-1), 13% of all cells aligned between 0 and 15°, which was significantly lower 

compared to all micropatterned HA samples. The mean cell quantity of osteoblasts without 

any specific orientation (“not measurable cells”) rose with increasing pattern widths (Fig. 41).  
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Fig. 41: Osteoblast cell alignment on micropatterned hydroxyapatite with different widths and depths 

after day 3. Ref-1: non-patterned molded hydroxyapatite. Cells on n = 3 samples were analysed on an area 

of 2.35 mm2 each. Mean values that share a symbol (*/#/+/-/§) are insignificantly different (ANOVA: 

Tukey‘s Multiple Comparison Test). The orientation angles of osteoblast cells on day 7 were not 

measurable because of too high cell quantities and the formation of single or even multilayered cell 

coverage on the surfaces.  

 

Additional testing using microscopic live-imaging (Cell TrackerTM Green CMFDA, Prod.-No. 

C2925, Gibco, New York, US) of viable osteoblast cells revealed that the cells started to align 

after 3.5 hours on HA-based patterns. Widths of 20 μm with depths of 10 μm were tested 

(data not shown). 

 

Discussion 

In this study, the effects of HA-based micropatterned surfaces characterised by five 

differently sized pattern widths and two pattern depths on human osteoblast cell orientation 

were assessed under identical conditions over a period of seven days.  

The surface roughness Ra measured inside the HA-based microchannels was almost identical 

compared to the roughness measured on top of the patterns (“inside”: Ra = 0.356 ± 0.043 μm 

vs. “on top”: Ra = 0.359 ± 0.061 μm). In addition, the average roughness of non-patterned 

molded HA-based material (Ra = 0.397 ± 0.005 μm) as well as the average roughness of the 

phase pure die-pressed HA (Ra = 0.391 ± 0.016 μm) was very similar. Compared to the 

patterned surfaces these roughness values turned out to be significantly higher. We do not 
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expect any impact on cell proliferation measured with WST-1 reagent, collagen type I 

production, or influence on cell morphologies due to the small differences in surface 

roughness. This assumption is based on in-vitro results with osteoblasts on die-pressed HA 

surfaces with well-defined surface roughness ranging from Ra = 0.13 μm to 3.36 μm 

(detailed information in chapter 3.3.2).  

 

The molded HA-based patterns and the molded non-patterned reference sample (ref.-1) were 

fabricated under addition of silica sol (SiO2) for better molding results. The role of SiO2 in 

bone mineralization processes and the influence of SiO2 release on the osteoblast environment 

are still not fully understood. It is reported that the addition of SiO2 to HA can enhance the 

bioactivity which is measurable e.g. via the collagen type I production, cell proliferation and 

number of focal adhesions, yet there are also concentrations which are harmful for cells (Patel 

et al., 2002; Shie et al., 2011; Thian et al., 2005; Xu and Khor, 2007). In our study, the silica-

containing non-patterned HA reference (ref.-1) and the non-patterned pure HA reference (ref.-

2) were insignificantly different in the measured cell WST-1 proliferation (ANOVA, 

Tuckey’s multiple comparison test). Thus, we can exclude that a critical SiO2 concentration or 

a harmful release of SiO2 was reached within the first seven days in-vitro. The collagen type I 

signal was even stronger for SiO2-containing HA (ref.-1) compared to pure phase HA (ref.-2) 

on day 1. This difference might be promoted by the SiO2 addition. We therefore assume that 

the soluble SiO2 and the fast resorbing ß-TCP present in the molded HA-based samples 

(supporting data in the appendix) were dissolved in the culture medium and were rapidly 

available to the osteoblasts on day 1. This might have stimulated the early production of 

collagen type I. After seven days, a similar collagen type I signal strength was observed on 

both non-patterned materials.  

 

Wettability was determined via the contact angle Θ. Those ranged from 89 to 114° on 

micropatterned HA-based samples and 93° on Thermanox®; thus, these surfaces are 

hydrophobic (Θ>90°). Contact angles of 72° were detected on molded HA and only 20° on 

die-pressed HA. Hence, both non-patterned ceramic references are hydrophilic (Θ<90°), 

whereas their values are significantly different from each other. We do not suppose any 

significant influence on the cell behaviour (e.g. cell orientation, cell quantity or collagen type 

I production) due to similar wettability. All samples were fully immersed in DMEM media for 

thirty minutes directly before fresh media containing cells were put onto the wet samples.
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High WST-1 results are an indication for more viable osteoblasts in the samples’ culture dish. 

It was found that the measured WST-1 proliferation was not significantly higher on both non-

patterned ceramic reference samples and Thermanox®, compared to the micropatterned ones 

starting from the second sampling point (day 3). Therefore, there are less viable cells on all 

ceramic surfaces compared to Thermanox® samples. An indication for metabolic processes 

inside the cells is the production of collagen type I. Here, all micropatterned samples showed 

a distinct collagen type I signal starting on day 1, whereas a weak signal was observed for die-

pressed HA and Thermanox® on day 1. The difference was only observed on that day. 

Altogether, the results indicate that the samples’ topography did not have any influence on the 

collagen type I production, but had a distinct negative effect on the number of viable cells. 

This effect could be confirmed through the measurements of the positioning of the cells on the 

micropatterns. The measurement revealed that there were less cells inside all micropatterns 

compared to cells grown on top of the microstruts. This effect became stronger by decreasing 

pattern size. This phenomenon has not been mentioned in comparable studies with osteoblasts 

or osteoblast-like cells on HA patterns (Lu and Leng, 2009;2003; Perizzolo et al., 2001; Tan 

and Saltzman, 2004). We suggest that there are some unfavourable conditions, e.g. less 

exchange of nutritive substances inside these microchannels. Thus, the cells may migrate to 

the top of the patterns or else the cells may die inside the patterns due to nutritive lagging and 

detach from the surface. The observed effect was probably a combination of both. Cell 

migration has often been reported; for example, Kaiser et al. found structure-dependant 

migration of 3T3 cells on patterned Ti4Al6V surfaces. Thereby, most effectively cell 

migration was observed on structures with lower depths and large flat tracks between the 

pattern struts (Kaiser et al., 2006). In our study, cells in small and deep channels (e.g. 20/20 

μm) may die and cells in large flat channels (e.g. 100/10 μm) may migrate to the top of the 

struts.  

Our results have shown that the osteoblast oriented strongly in micropattern direction. This 

was found with an increasing number of aligned cells between OA = 0-15° by decreasing 

pattern width. The effects of micropatterning on cells have been extensively reported by many 

groups, using various materials and cell types. Kirmizidis et al. found significantly lower 

focal adhesions per rat calvarial osteoblast (RCO) and also lower alkaline phosphatase on 

grooved polycarbonate substrates with widths of 10, 15, and 30 μm (depths of 7 μm) 

compared to flat non-patterned polycarbonate surfaces. In addition, they reported distinct 

alignments on grooved polycarbonate substrates (Kirmizidis and Birch, 2009). Concerning the 

alignment, our results for the orientation of osteoblasts on HA micropatterns are similar to 
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those of Kirmizidis et al. Walboomers et al. determined the rat dermal fibroblast (RDF) 

behaviour on microgrooved culturing material with widths of 1, 2, 5, and 10 μm (depths of 

0.5 μm) with different chemical composition but identical surface channel-like texture. 

Moreover, an increased cell alignment by decreasing channel widths to 1 μm on polystyrene 

substrates (PS) was observed (Walboomers et al., 1999). This increased cell alignment with 

decreasing channel widths matches with our results for HOB on HA patterns.  

When comparing our results to studies on cell alignment on sputtered channel-like HA 

micropatterns, very similar findings and conclusions can be drawn. Thus, for instance, Lu and 

Leng report pattern-dependent alignment of osteoblast-like cells (SaOS-2) on sputtered 

channel-like HA patterns. The cells aligned in OA ranging from 10 to 30° and pattern widths 

between 15 and 40 μm with depth of 10 μm on day 1. On day 3, the cell alignment was less 

intense with OA of 25 to 40° (Lu and Leng, 2003). The orientation of the SaOS-2 cells is very 

similar to our results, yet the HOB alignment was not less intense on day 3. SaOS-2 cells are 

smaller compared to HOB cells; so, presumably, the cell guidance depends on the relation of 

pattern widths to cell sizes, thus we assume that the larger HOB cells are more influenced by 

the tested pattern widths. In addition, the sidewalls of our patterns are perpendicular to the 

bottom of the patterns, whereas Lu and Leng report patterns with tapered sidewalls of 55°. 

The more rectangular shaped pattern profile in our study might have mediated the cell 

guidance more strongly. However, the pattern depth did not influence the cell alignment 

significantly, which is in accordance with Lu and Leng. In a second study, Lu and Leng report 

the alignment of SaOS-2 on the same HA-coated silicon wafers with pattern widths of 8 and 

24 μm and depths of 2, 4, and 10 μm. The osteoblasts responded to channels with widths of 

24 μm less intense as compared to widths of 8 μm (Lu and Leng, 2009). Although larger 

pattern widths, i.e. between 16 to 77 μm, were tested in our study, this effect is still in 

accordance with our results. Lehnert et al. have found alignment of osteoblasts from calf 

periost on microgrooved polystyrene surfaces with depth in the sub micron range (50 and 150 

nm). Cell alignment was visible after eight hours and more aligned after two days. This is 

similar to our results with HOB which oriented after 3.5 hours on HA microchannels with 

depth of 20 μm in an in-vitro live-imaging test (data not shown). Even though our study 

revealed significant differences in the osteoblast alignment as well as in the cell positioning 

on different HA-based micropatterns, such differences in the cell proliferation (WST-1 assay) 

or the collagen type I production were not found.  

Micropatterning is useful for various biomedical applications such as implants, tissue 

engineering, cell-based sensors and fundamental cell research. For such applications, the 
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pattern widths and depths have to be chosen with care if HOB cells are intended to be used. A 

compromise between chosen pattern widths and depths has to be made to mediate strong 

HOB cell guidance on the one hand, but also for an effective nutrition support. The results 

indicate that a pattern depth of 10 μm should not be exceeded when the final pattern widths 

are smaller than 45 μm. In summary, the present study indicates very strong contact guidance 

on human osteoblast cells by the use of HA-based microchannels with widths between 16 and 

77 μm and depths of 10 and 20 μm. 

 

Conclusions 

Hydroxyapatite-based microchannels with vertical sidewalls and sharp pattern ridges were 

fabricated via modified micromolding (m-μM) to elucidate the role of micropatterns on 

osteoblast. The cell viability was measured by the use of a colorimetric WST-1 assay and by 

assessing a collagen type I staining. Moreover, the cell positioning and orientation angle (OA) 

were analysed on the basis of microscopic images. Finally, the HA-based micropatterns with 

groove-like channels and struts of different widths and depths were evaluated in-vitro for a 

period of up to seven days.  

The main findings from that have been that osteoblasts orient for 70% to 80% within an 

angular range of 0 to 15° relative to the microchannel direction for channels with 16 and 30 

microns width on days 1 and 3. Only 20% of the osteoblasts grew inside the channels for 

channel widths of 16 and 30 microns. Microchannels with 45, 65, and 76 channel widths 

allowed around 40% of the osteoblasts to grow inside; this was found independently of the 

respective pattern depth. In short, we have found that the width of HA-based microchannels 

has an important impact on the contact guidance of human osteoblasts.  
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3.2 Aerosol-Jet® printing of hydroxyapatite suspensions 

3.2.1 Aerosol-Jet® printing of hydroxyapatite suspensions for bone cell growth 

studies 

The following results were partially published in the “Proceedings of the 2008 International 

Manufacturing Science and Engineering Conference in Evanston, IL, USA, MSEC2008” by 

Marzellus grosse Holthaus and Kurosch Rezwan (University of Bremen, Advanced Ceramics) 

(Holthaus and Rezwan, 2008). 

A rapid prototyping printing technique was used to fabricate micropatterns. The same quantity 

of calcium phosphate powder (HA, Riedel-de Haën), as was described in earlier chapters, was 

die-pressed in order to generate plane cylindrical platelets with diameters of 10 millimetre. 

These platelets were then sintered in a furnace (LHT 04/17, Nabertherm) at 1200 °C for two 

hours with a heating rate of 50 °C/h and a cooling rate of 100 °C/h. Afterwards, the sintered 

HA platelets were micropatterned by means of an Aerosol-Jet® printing technique also known 

as Maskless Mesoscale Materials’ Deposition (M3D).  

The non-structured cylindrical samples were micropatterned with Aerosol-Jet® printing 

(Optomec Inc.) and by using an aqueous hydroxyapatite ceramic slurry of 6.6 vol.% stabilized 

at pH 9.5-10. After slurry deposition, subsequent sintering of the printed micropatterns 

through an Nd:YAG laser was proceeded. The microstructures had a length of 1000 μm and 

were printed with various widths between 20 and a maximum of 150 μm (Fig. 42).  

 
Fig. 42: Sketch of Aerosol-Jet®-printed micropattern sizes 

 

Four micropattern formations were printed on each platelet, and two microstructures were 

deposited on already printed basements, which were also generated with Aerosol-Jet® 
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printing. The printed lines of the basements were generated with a width of 15 μm. The other 

two microstructures were directly deposited onto the plane platelet surface. Each 

microstructure (with and without basement) was printed with an inner microstructure within 

the 100 and 140 μm wide microchannels (Fig. 43).  

 

 
Fig. 43: Four Aerosol-Jet®-printed and laser-sintered ceramic microstructures: two with a printed 

basement (top) and two without any basement (below). Both microstructures on the left side were printed 

with inner microstructures of 20 μm width in the 100 and 140 μm wide channels (see also Fig. 42). The 

detail image shows the magnification of a printed basement. 

 

The microstructure walls had a thickness of 50 μm. Further, the aqueous hydroxyapatite 

ceramic slurry contained double deionised water, puriss. hydroxyapatite powder (Riedel-de 

Haën) and was stabilized with a few droplets of ammonia (25%) so as to reach a pH of 9.5-10 

(Riedel-de Haën). The printing speed was at 0.5 mm/s. By contrast, the laser sintering power 

was systematically varied between a selectable minimum of 0.2 and 1.0 watts in order to find 

the best laser power for sintering.  

After the Aerosol-Jet® printing process and after the laser sintering process of 0.25 watts, the 

generated micropatterns showed a grainy surface. Fine cracks were distinguished within the 

generated structures. Moreover, single hydroxyapatite particles or agglomerates were visible 

in SEM images (Fig. 44). However, the printed patterns under the grainy surface layer seemed 

to be sintered or molten. The higher laser powers of > 0.25 watts caused totally molten 

patterns.
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Fig. 44: Aerosol-Jet®-printed and laser-sintered strut (0.25 watts; view: angular sidewise) made from 

hydroxyapatite. Generated strut is partially sintered. Particles or agglomerates are visible. Fine cracks 

were found (arrows). 

 

The laser-treated hydroxyapatite particles were not fully sintered and showed partially only 

sinter neck formation. Sintering quality was not stable, so that some parts of the micropatterns 

were more sintered than others. Likewise the height of the printed micropatterns varied, 

between 6 to 8 μm (Fig. 45). This variation in height was due to inconstant fabrication 

processes. 

Another problem was the difficulty in selecting the sintering power in order to get a constant 

sintering quality. In doing so, a great disadvantage is the unknown sintering temperature 

which results from the selected laser power. Also, the crystal phase of the printed and sintered 

areas is not exactly determinable because of the different sintering quality within these areas. 

A change in crystal phase may influence cell proliferation. However, XRD analysis of a 

printed and laser-sintered hydroxyapatite sample showed no traces of ß-tri-calcium phosphate 

(ß-TCP) on the printed surface.  

Because of these promising results Aerosol-Jet®-printed patterns were used for a study on cell 

growth with tumorous osteoblasts (MG-63).  
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Fig. 45: SEM image (top view) and 2D profile of Aerosol-Jet®-printed micropatterns on plane pressed 

hydroxyapatite surface (no printed basement and no printed inner structure) 

 

The following results were published in part under the title “Ceramic micropatterns for bone 

cell growth studies” in the proceedings of the conference “Thüringer Grenz- und 

Oberflächentage (ThGOT) 2009” in Friedrichroda, Germany, by Marzellus grosse Holthausa, 

Veronika Ruttkowskib, Volker Zöllmerb, Matthias Busseb, and Kurosch Rezwana (aUniversity 

of Bremen, Advanced Ceramics; bFraunhofer Institute for Manufacturing Technology and 

Advanced Materials, Bremen).  

 

Abstract 

Aerosol-Jet®-printed calcium phosphate groove-like micropatterns have been precisely 

fabricated with widths ranging from 10 to 60 μm. Subsequently, osteoblast-like osteosarcoma 

cells (MG-63, size 20-100 μm) were seeded on the printed patterns for a period of seven days. 

It could thus be shown that the ostoblast-like cells grew into 10 μm wide printed patterns, 

elongating and aligning in accordance with the pattern direction. These first results are of 

great interest for the defined patterning of implant surfaces with improved osseo integration.  

 

Introduction 

The fabrication of implant materials with appropriate mechanical properties and adequate 

bonding to the surrounding bone tissue is still a challenging enterprise. To achieve these 
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requirements some implants nowadays are coated with bioactive and osteoconductive calcium 

phosphate ceramic such as hydroxyapatite (HA). These ceramic-coated implants, e.g. dental 

implants or hip-prosthesis, are directly inserted into the bone tissue, where they are supposed 

to persist for several years without loss of bonding at the implant-bone interface. An adequate 

and good fixation of the implant is achieved when bone cells (osteoblast) adhere at the 

implant surface subsequently to the implantation. If the surface is biocompatible and 

sufficiently “attractive”, osteoblasts form new bone tissue which then grows into the implant 

surface. However, it is still not fully understood how ceramic micropatterns and ceramic 

porous substrates can enhance the osteoblast adherence and ingrowth. The main objective of 

this study has been to evaluate the influence of printed ceramic micropatterns ranging from 10 

to 60 μm in width on tumorous osteoblast-like cells in-vitro.  

 

Sample fabrication 

The same batch of HA calcium phosphate powder as described above was die-pressed in 

order to generate plane cylindrical platelets with diameters of 10 millimetre each. These 

platelets were then sintered in a furnace at 1200 °C for two hours with a heating rate of 50 

°C/h and a cooling rate of 100 °C/h. Afterwards, the sintered HA platelets were 

micropatterned using the Aerosol-Jet® printing technique. 

 

Micropatterning via Aerosol-Jet® printing 

The non-structured cylindrical HA samples were micropatterned through Aerosol-Jet® 

printing (Optomec Inc.) by using an aqueous HA ceramic slurry of 6.6 vol.%. The feed 

motion of the printer nozzle was 0.5 mm/s. The ceramic slurry was mixed from HA powder 

and deionised water (Synergy®, Millipore) and stabilised at pH 9.5-10 with ammonia solution 

(25%, Merck) so as to prevent particles from rapid sedimentation and agglomeration.  

Further, a formation of six micropatterned areas was printed on each calcium phosphate 

substrate (Fig. 46). Each patterned area was of 1 mm2. The line-like micropatterns were 

printed with varying spaces from each other, with the space being called width (w) and 

printed with w = 10, 20, 30, 40, and 60 μm. A non-patterned area of 1 mm2 was chosen as a 

control surface next to the printed areas. This control area was then tagged with a printed 

frame. 
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Fig. 46: SEM micrograph of six printed HA micropatterned areas on a HA substrate. Non-patterned 

control area, w = 60 μm, w = 40 μm (from lower left to upper left) and w = 30 μm, w = 20 μm and w = 10 

μm (from lower right to upper right). Patterns were printed once and laser-sintered (Nd:YAG) with 0.25 

watts. 

 

Each printed single line had a width of 10 μm. The generated patterns were sintered via a 

Nd:YAG laser at 0.25 watts after the printing process in order to reach the final stability. 

Sintering speed was at 0.5 mm/s. All patterned samples were fully immersed and rinsed with 

deionised water so as to remove loose ceramic particles. Heat sterilization was applied at 190 

°C for two hours at dry conditions.  

 
Fig. 47: SEM micrograph of printed HA line-like patterns with a width of 40 μm (left). 2D profile with 

three measurements (position 0-1, 2-3, 4-5) of the horizontal space “w” between printed lines
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Cell culturing 

Osteoblast-like osteosarcoma cells MG-63 (ATCC) with single cell sizes of 20 to 100 μm 

were cultivated at standard conditions (37 °C, 10% CO2, 94.5 % r.h.) and in complete DMEM 

media (GIBCO) in an incubator (C200, Labotect) for seven days. The media contained 10% 

fetal calf serum and 1% antibiotics (Invitrogen). First, the HA samples were washed in 

DMEM prior to the cell seeding. Subsequently, 1 mL DMEM containing 4 x 104 cells was 

pipetted onto the sterilized, micropatterned HA samples. In so doing, twelve samples were 

cultured, with each of them being placed in separate 24-wells (NunclonTM, NUNC). Sampling 

points were taken after days 1, 3, 5, and 7.  

 

Cell staining and imaging 

The cells were fixed onto the substrates via paraformaldehyd (PFA). Cytoskeletons were 

stained with fluorescent dye phalloidin (Alexa Fluor® 488, Invitrogen). Moreover, the cell 

nuclei were stained via DAPI (4´6´-Diamidino-2-phenylindol, Invitrogen). Afterwards, the 

samples were washed in phosphate buffered saline (PBS) in order to remove excessive dyes. 

Microscopy was performed by means of a ZEISS Axio Imager M.1.  

 

Surface characterization 

Surface roughness and width of micropatterns were measured via an optical 3D profilometry 

system (Plμ2300, Sensofar). The data thus gained was analysed with the help of the software 

SensoMap® (Sensofar). The roughness values of the non-patterned areas were analysed 

according to ISO25178. Eventually, SEM imaging was performed at 20 kV (Camscan, 

Cambridge Instr.). Prior to imaging, the samples were sputtered with gold (Emtech).  

 

Results 

The roughness analysis of non-patterned HA control areas resulted in an average roughness of 

Ra = 0.87 μm, with measurements taken on n = 12 samples. The predicted micropattern 

widths of the Aerosol-Jet®-printed patterns were precisely achieved with deviations of only a 

few microns. The adjustment of the aerosol stream was difficult and the stream was 

inhomogeneous and inconstant during the whole process. The mean differences between the 

predicted and the measured pattern widths were of 2.2 μm (Fig. 48). 
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Fig. 48: Predicted width of micropattern vs. measured width of Aerosol-Jet®-printed micropatterns 

 

The heights of the printed micropatterns varied strongly, with a measured minimum of 4 μm 

and a maximum of 17 μm. The heights were measured on micropatterns with widths of 30 μm 

on n = 12 samples. Measurements were taken on n = 3 neighbouring printed patterns. 

 

The osteoblast-like osteosarcoma cells proliferated on the micropatterned HA surfaces as well 

as on the non-patterned surfaces. An increasing cell quantity, regardless of the patterning, was 

observed in all areas, from day 1 to day 7. Remarkable differences in cell quantity were 

measured on all samples. A significant difference was measured in the comparison of non-

patterned and patterned areas with widths of w = 20 μm, whereas the patterned areas showed 

lower cell quantities (Fig. 49). After seven days, no measurements of cell quantity were 

possible anymore because of too high cell concentration. 
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Fig. 49: Cell quantities of osteoblast-like osteosarcoma cells (MG-63) on Aerosol-Jet®-printed 

hydroxyapatite micropatterns 
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At the first sampling point (day 1), the cells showed spherical cell morphologies on all 

surfaces. Spherical cells as well as flat, elongated cells were observed at the second sampling 

point (day 3). At the third sampling point, then, as well as at the fourth sampling point (day 

7), almost all cells showed elongated cell morphologies. It was found that the cells aligned in 

accordance with the micropattern direction. This observation was investigated systematically 

on samples from day 3, measuring the cell alignment with reference to the printed pattern 

direction. Spherical cells and cells with no distinct alignment were found to be not 

measurable. The cell alignment was classified into six groups between 0 and 90°, as shown in 

Fig. 50 below.  

 

0-15° 16-30° 31-45°

46-60° 61-75° 76-90°

 
Fig. 50: Classification of cell alignment in accordance with the printed micropattern direction 

 

The measured cells showed a distinct alignment between 0 and 15° on all patterned areas with 

widths ranging from 10 to 60 μm (Fig. 52), yet significant differences between the varying 

pattern widths were not detectable (Fig. 51).  
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Fig. 51: Osteoblast-like osteosarcoma cell (MG-63) alignment in reference to printed hydroxyapatite 

micropatterns measured after three days of in-vitro proliferation 
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Discussion 

The Aerosol-Jet®-printed micropattern heights (vertical direction) varied between 4 and 17 

μm due to inconstant and inhomogeneous aerosol streaming. These inhomogeneously printed 

pattern heights are assumed to influence the cell alignment. The printing process in pattern 

width (horizontal direction) turned out well reproducible, with the deviation being only 2.2 

μm.  

All patterned HA surfaces were found to be as biocompatible as the non-patterned HA 

surfaces, which was reflected in the identically increasing cell quantity from day 1 to day 7. In 

addition, all patterned HA surfaces showed insignificant differences in the measured cell 

alignment.  

The cell quantity of 4x104 cells at the starting day (day 0) was found to be too high for future 

tests. A measurement of the cell quantity was not possible on day 7 due to too high cell 

concentration on all substrates.  

The fabrication of hydroxyapatite micropatterns with varying widths ranging from 10 to 60 

μm showed that osteoblast-like osteosarcoma cells (MG-63) are able to align even in 10 μm 

wide micropatterns. A preferred cell alignment of 0 to 15° in accordance with the printed 

pattern direction was measured regardless of the pattern width (Fig. 52). 

 

 
Fig. 52: Microscopic image of osteoblast-like osteosarcoma cells (MG-63) on Aerosol-Jet®-printed HA 

micropatterns with widths of 10 μm. The detail image shows cells on non-patterned HA surface. Blue: 

nuclei, Green: cytoskeleton, Red: vinculin staining 
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3.3 Micromachining 

3.3.1 Micromachining of ceramic surfaces: hydroxyapatite and zirconia 

The following results were accepted for publication in the “Journal of Materials Processing 

Technologies” in 2011 by Marzellus grosse Holthausa, Sven Twardyb, Julia Stollea, Oltmann 

Riemerb, Laura Treccania, Ekkard Brinksmeierb, Kurosch Rezwana*(aUniversity of Bremen, 

Advanced Ceramics; bUniversity of Bremen, Laboratory for Precision Machining) (Holthaus 

et al., 2011a).  

 

Abstract 

Computerised Numerical Control (CNC) precision machining can be employed as a fast and 

reproducible method for surface micropatterning. For biomedical applications, an efficient 

and reproducible micropatterning of zirconia and calcium phosphate-based materials is highly 

sought in order to guide implant interactions with surrounding biological tissues for better 

osseo integration. Therefore, CNC precision machining of zirconia and hydroxyapatite 

substrates is investigated in this study and optimised process parameters are described. By 

microgrinding and micromilling, microgrooves with a minimum width of 100 μm were 

obtained and process parameters such as cutting tool diameter and feed velocity discussed. As 

all samples were sintered prior to the micropatterning process, the influence of the sintering 

temperature on the pattern quality, size and hardness of the obtained samples is studied. 

Vickers hardness of the different sintered ceramic surfaces was measured in order to correlate 

the possible wear impact on the tip of the cutting tools. The stiffness and hardness of the used 

cutting tools were measured and their effect on the cutting results was discussed. The pattern 

quality and the average roughness in the machined microgrooves were analysed through 3D 

profilometry and imaged with SEM. Further, a comparison of the two machining techniques 

yielded more defined and less fractured micropatterns for microgrinding. The process 

efficiency for both methods was limited owing to the economic life time of the tool tips. For 

CNC grinding, life time was downsized due to more pronounced abrasive wear. For both 

materials, hardness was the crucial process parameter, being adjusted by the sintering 

temperature. For milling of zirconia, the sintering should not exceed a temperature of 1100 °C 

in order to minimize tool wear. Likewise, a temperature of less than 1200 °C is suggested for 

the milling of HA. For sintering temperatures higher than 1200 °C, the machining of both 

ceramic surfaces was hardly possible. The feed velocity was found not to have a significant 

influence on the obtained micropattern width. Finally, the preset line pitch of 100 μm was 



Experimental results of ceramic micropatterning 

 - 91 - 

excellently reached for both applied machining processes. It was found that lower feed 

velocities and smaller tool diameters caused deeper micropatterns. 

 

Introduction 

Processing of material surfaces in the micro range has become the state of the art and has 

opened new fields of applications and potentials for manufacturing of, for instance, 

micromolds with well-suited microtopographies (Brinksmeier et al., 2008) or for modification 

of micro-bio-interfaces for mediating interactions between medical implants and cell tissue 

(Kirmizidis and Birch, 2009, Lim and Donahue, 2007). Two ceramic materials that are 

already well established as implant materials are the oxide material yttria-stabilised zirconia 

(YSZ) and the calcium-phosphate-based material hydroxyapatite (HA). The former exhibits 

high thermal resistance, hardness and fracture toughness as well as high flexural strength and 

is chemically inert (Rahaman, 2003, Piconi et al., 2003). Thanks to its mechanical features 

and its biocompatibility zirconia is used in load-bearing medical applications (Roy and 

Whiteside, 2010). The non-oxide ceramic hydroxyapatite, by contrast, has lower hardness and 

is bioactive. It is similar to human bone apatite and is used in medical implants for increased 

bone in-growth (Dorozhkin, 2009). 

In a previous study, we have demonstrated that the surface topography has an effect on the 

growth of biological cells on micropatterned surfaces (Holthaus and Rezwan, 2009). For this 

reason, it is necessary to develop machining processes capable of fabricating defined 

micropatterns with high adaptability. Several techniques for the fabrication of ceramic 

micropatterns are reported in the literature, such as micromolding of hydroxyapatite, zirconia, 

alumina, titania and silica (Holthaus et al., 2010), ceramic slip pressing of alumina (Bauer et 

al., 1999), laser interference patterning of hydroxyapatite and zirconia (Berger et al., 2010), 

and Aerosol-Jet® printing of alumina suspensions (Treccani et al, 2009). Some of these 

methods feature a very high accuracy and surface details but are, generally speaking, rather 

slow processes or alter either the material’s crystal structure or composition during the 

process. Micropatterning by grinding and milling, in turn, is highly automatable, fast and 

reproducible on a large scale. The machining of microdevices or patterns made of polymers 

and metals are well-known and often reported in the literature. Various geometries in the 

range of about 10 μm were fabricated with very high accuracy on edges and surface detail. 

Adams et al. reported the microcutting of parallel microgrooves with widths of 13 μm and 

depths of 4 μm on curved polymethylmethacrylate (PMMA) surfaces (Adams et al., 2000). 

Various examples of precise micromilling can be found in further publications, e.g. the 
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fabrication of microbarbs from non-biodegradable stainless steel, PMMA or bio-resorbable 

polylactic acid (Pla-Roca et al., 2007), as well as from a fibrin-based plastic (Filiz et al., 

2008). Additionally, the micromilling of 62 μm deep trenches with stepped and straight walls 

in PMMA (Friedrich and Vasile, 1996) was achieved. Takacs et al. reported the machining of 

metallic 50 μm bars with vertical sidewalls (Takacs et al., 2003). In contrast to these results, 

the machining of ceramic micropatterns by cutting tools is still not well-established, being 

very difficult due to the material’s brittleness and hardness.  

Thus, in this paper we investigate the micromachining of the surfaces of hydroxyapatite and 

zirconia. The aim of this study is to analyse and optimise process parameters for the 

fabrication of high-quality micropatterns of small size and with well-defined topography. For 

this purpose, we used a CNC precision machine tool to either mill or grind the surfaces of the 

ceramic samples. The thereby achieved quality was then evaluated through SEM imaging and 

in an optical 3D profilometry analysis.  

 

Experimental procedure 

Fabrication of the samples 

Plane cylindrical platelets were fabricated by bi-axially die-pressing with 15 kN of 4.5 g of 

commercially available zirconia powder stabilised with 3 mol% yttria (Y2O3:ZrO2, TZ-3YSB-

E, Lot: 08M1357, Tosoh Corporation, Tokyo, Japan). The powder had a theoretical density of 

6.08 ± 0.03 g/cm3 with a particle size of approximately 360 nm. Additionally, 1.7 g 

commercially available calcium phosphate hydroxyapatite powder (HA, Ca10(PO4)6(OH)2, 

Prod.No. 04238, Lot: 8345A, Sigma-Aldrich Chemie GmbH, Munich, Germany) was die-

pressed with identical settings. The hydroxyapatite powder had a theoretical density of 3.03 ± 

0.04 g/cm3 with a particle size of approximately 150 nm. In order to reduce surface defects on 

the platelets the steel plungers of the die-pressing device were polished with SiC grinding 

paper (WS Flex, Hermes Abrasives Ltd., Virginia Beach, USA) with a grit of p2500. After 

die-pressing all samples were sintered in a furnace at ambient conditions (LHT08/17, 

Nabertherm GmbH, Lilienthal, Germany) for two hours with heating rates of 50 °C/h and 

cooling rates of 100 °C/h until reaching the final stability. Two different sintering 

temperatures were applied: hydroxyapatite samples were sintered at 1200 °C and 1350 °C 

respectively, while temperatures of 1100 °C and 1350 °C were chosen for the zirconia 

samples. 
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Subsequently, the sintered platelets were treated with SiC grinding papers (WS Flex, Hermes 

Abrasives Ltd., Virginia Beach, USA), with grits of p80 to p2500, and finally polished with 

p4000. For the grinding process, the ceramic platelets were pressed manually on the rotating 

grinding paper for 45 seconds, with a rotation speed of 150 rpm (Phoenix Alpha, Buehler 

GmbH, Duesseldorf, Germany). Throughout the process, water was used as a lubricant to 

remove excessive material and to avoid a heating of the samples. After polishing, each 

platelet was washed three times for five minutes with double deionised water (Synergy®, 

Millipore, resistivity 18 MΩ*cm, Schwalbach, Germany) in an ultrasonic cleaner (1510 

Bransonic®, Branson Ultraschall, Dietzenbach, Germany).  

 

Vickers hardness measurements 

The Vickers hardness HV0.2 (kg/mm2) was measured on sintered, non-patterned ceramic 

samples via indentation. A quadrilateral diamond pyramid with an apex angle of 136° 

(Moessner Diamantwerkzeugfabrik GmbH, Pforzheim, Germany) between two opposite faces 

was pressed onto the specimen surface. The diameters of the indentations were measured in 

triplicate via an optical profilometer (Plμ 2300, Sensofar Technology, Terrassa, Spain) with 

1042-fold and 3125-fold magnification, respectively. The Vickers hardness HV0.2 was then 

calculated including a standard deviation according to eq. 13 below (Elssner et al., 1999).  

 
2
ind

F/D0.1890.2=HV  
            eq. 13 

 

with F representing the applied force and Dind the diameter of the indentation.  

 

Fabrication of machined ceramic micropatterns 

The manufactured ceramic samples were micropatterned with parallel straight grooves and a 

CNC precision machine tool (Ultrasonic 20 linear, DMG Sauer GmbH, Stipshausen, 

Germany), applying a micromilling or a microgrinding cutting tool respectively. Micromilling 

was carried out using TiAlN coated tungsten carbide cutting tools with a diameter (D) of 300 

μm (#20030640603L006, Van Hoorn Hartmetaal BV, Weert, Netherlands) or 500 μm 

(#20050640603L010), respectively. For microgrinding, cutting tools with a diameter of 300 

μm (FRSS4x63/Da0.3–KH1.5–BT0–D46HGVB, Schott Diamantwerkzeuge GmbH, 

Stadtoldendorf, Germany) were chosen. The grinding pins were made of a solid steel body 
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electroplated with diamond grains. Both fabrication methods were performed using two 

different feed velocities (vf) of 125 mm/min and 250 mm/min. The rotational speed (n) was 

set to 40 krpm for all machining processes. The final cutting depth (ap) was reached through a 

division of cuts, with single cuts with a cutting depth of 5 +/-2 μm being performed in order 

to avoid tool breakage (Fig. 53). The clamping of the circular ceramic samples was achieved 

using a metal sample holder which fixed the circular samples on three contact points in order 

to avoid cracking.  

 

Fig. 53: Parameters for the specification of a micromachining process: diameter of the cutting tool (D), 

rotational speed (n), feed velocity (vf), cusp height (hc), line pitch (ae), and depth of cut (ap) 

 

Zirconia samples sintered at 1100 °C were re-sintered at 1350 °C directly after patterning. 

This re-sintering was realised with the aim to reduce the micropattern size and to increase the 

final stability of the samples. The same treatment was applied to patterned hydroxyapatite 

sintered at 1200 °C. 

 

Analysis of micropattern properties  

Optical imaging and analysis 

In order to analyse the properties of the fabricated grooves in terms of quality and accuracy, 

the micromachined ceramic surfaces were inspected via 3D measurements with an optical 

profilometry system (Plμ 2300, Sensofar Technology, Terrassa, Spain) with 420-fold 

magnification. Measurements in duplicate have been conducted for each sample. The size of 

each single 3D measurement area was 477 x 1272 μm2 containing 884736 measurement data 

points from which the surface topography was derived. For each area, the depths and widths 
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of three neighbouring grooves were measured in a randomly chosen 2D cross-section profile 

perpendicular to the groove direction, and the mean value was calculated via SensoMap Plus 

Software® (Version 5.0.3.4995, Sensofar). Additionally, scanning electron microscopy (SEM) 

was used at 20 kV with a Camscan Series 2 (Obducat CamScan Ltd., Cambridgeshire, United 

Kingdom) as an optical control. Prior to imaging, the samples were sputtered with gold 

(K550, Emitech, Judges Scientific plc, West Sussex, UK).  

Furthermore, samples machined with a tool diameter of 300 μm were measured in triplicates 

with the optical profilometry so as to determine the average surface roughness (Ra) at the 

bottom area of the micromachined grooves. The measurement length was Lc= 4 mm along the 

feed direction. Neither filters, e.g. median or Fourier, nor restoring of missing data points 

were utilised for the calculation of the roughness values according to ISO4287 (ISO 4287, 

1997). The same measurements were applied to non-patterned HA and Y2O3:ZrO2 reference 

surfaces in order to evaluate the influence of the machining processes on the surface 

roughness.  

Depending on the machining tool diameter (D) and the required line pitch (ae), the depth of 

the machined grooves (cusp height hc) of the fabricated micropatterns can be calculated as in 

eq. 14 below (Dormer-Tools, 2005).  

 

22

222
e

c
aDDh

 
            eq. 14 

 

This relation was then used to compare the processed cusp height and groove shape to the 

theoretically predicted height and shape for the different processing scenarios. 

 

Statistical analysis 

The statistical analysis was performed with the aid of the statistic software Minitab® 15 

(version 15.1.30.0, Minitab Inc.). A comparison of the experimental data was made using the 

non-parametric statistical hypothesis “Mann-Whitney” test (U-test) for assessing whether two 

independent processing scenarios show statistically significant differences. A p-value of 

≤0.05 was considered as statistically significant. In this analysis, the effect of tool diameter, 

feed velocity, and the sintering temperature was investigated. Strongly different data points 

(“outliers”) have not been removed from the comparison.  
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Wear residues and abrasive wear 

The presence of wear residues from machining tools was analysed by use of Energy 

Dispersive Spectroscopy (EDS) with a detection limit of about 0.1% of the elements’ mass 

(Camscan Series 2, Obducat CamScan Ltd., Cambridgeshire, United Kingdom). 

Measurements were taken on micromilled and microground HA at 1200 °C and on zirconia at 

1100 °C on two different spots with an area of 27 x 17 μm2 each Y2O3:ZrO2. 

Moreover, X-ray Fluorescence analysis (XRF) was performed to detect elements with a high 

atomic number, e.g. tungsten from the cutting tool material (detection limit of approximately 

10 ppm). XRF was carried out using a low pass filter (0-10 keV) and a main filter (0-40 keV) 

(XL3t900 AnalytiCON Instruments GmbH, Rosbach, v.d. Hoehe, Germany). Here, 

measurements were taken on two different circular spots, with an area of 7.1 mm2 each. Prior 

to the XRF and EDS analysis, the ceramic samples were washed three times for 5 min in 

deionised water in an ultrasonic cleaner. To detect abrasive wear on the tools the tool tips 

were imaged by SEM taken at 20 kV with the Camscan SEM. 

 

Cutting tool stiffness 

The stiffness of all applied micro tools was measured by use of a multicomponent 

dynamometer (MiniDyn Type 9256C, Kistler Holding AG, Winterthur, Switzerland). The tips 

of the clamped cutting tools were moved into feeding direction, against the dynamometer. 

Further, the given tool deflection and the resulting forces were recorded. Eventually, the 

stiffness of the whole system was calculated by the slope of force vs. deflection. 

 

Results  

Determination of the sample size and Vickers hardness 

Die-pressing platelets with a diameter of 30.07 ± 0.09 mm and a thickness of 2.5 ± 0.04 mm 

were prepared for both materials. After sintering at 1200 °C, the hydroxyapatite samples 

shrank to a diameter of 20.83 ± 0.24 mm and a thickness of 1.87 ± 0.03 mm, equalling 88% of 

the theoretical density. A diameter of 19.99 ± 0.03 mm and a thickness of 1.79 ± 0.01 mm 

were obtained at a temperature of 1350 °C, which is equal to 99.8% of the theoretical density.  

The zirconia platelets yielded a density of 45% of the theoretical density after sintering at 

1100 °C. They measured 29.17 ± 0.06 mm in diameter and 2.46 ± 0.04 mm in thickness.



Experimental results of ceramic micropatterning 

 - 97 - 

Sintering at 1350 °C produced 93.1% of the theoretical density. The platelets were 22.84 ± 

0.04 mm in diameter and 1.94 ± 0.04 mm in thickness.  

For hydroxyapatite, a Vickers hardness of 630 ± 21 HV0.2 was measured for samples sintered 

at 1350 °C. A sintering temperature of 1200 °C resulted in a hardness of 192 ± 13 HV0.2 for 

this material. For zirconia samples sintered at 1350 °C, a hardness of 1263 ± 46 HV0.2 was 

obtained, whereas sintering at a temperature of 1100 °C yielded a hardness of 31 ± 0 HV0.2. 

 

Micromachining of hydroxyapatite 

Results from initial tests with hydroxyapatite 

Initial tests with a tool diameter of 300 μm using hydroxyapatite samples sintered at 1200 °C 

showed that the smallest micropatterning width fabricated reproducibly by micromilling was 

about 100 μm. In order to improve comparability among the various process scenarios, the 

width of the micropatterns was fixed to this value for all subsequent milling processes with 

hydroxyapatite and zirconia.  

In a second initial testing, the optimal line pitch for the grinding process was investigated for 

a tool diameter of 300 μm. An analysis of samples machined with a line pitch of 100 μm 

displayed no patterns, as the resulting cusp height was too low to be perceived by the 

machine. As a consequence of this observation, a larger line pitch of 200 μm was chosen to 

machine deeper grooves. 

 

Cusp height and micropattern width of hydroxyapatite 

A total of eight different machining scenarios were performed on hydroxyapatite samples. 

Tab. 5 provides the summarised values of the measured surface parameters of the milled and 

ground samples. For a milling tool of 300 μm, the results showed that the two tested feed 

velocities (125 mm/min and 250 mm/min) have statistically no significant impact on the 

micropattern width (3a vs. 4a; p = 0.853) (supporting data). Similar results were achieved for 

widths ground with a grinding tool of 300 μm (5a vs. 6a; p = 0.435). Grinding with the same 

tool on HA (1350 °C) showed no significant difference (7 vs. 8; p = 0.266) between the two 

feed velocities on the micropattern width. Only for milling with a tool diameter of 500 μm, a 

p-value just within the significant range was determined (1a vs. 2a; p = 0.049). In this case, 

the increased feed velocity caused larger pattern widths. 

Additionally, the influence of the two feed velocities on the cusp heights was analysed. For 

milling with a tool of 500 μm, the U-test evaluated a p-value of p<0.05 (1a vs. 2a). The larger 



Experimental results of ceramic micropatterning 

 - 98 - 

feed velocity resulted in a lower pattern depth. Decreasing the milling tool diameter to 300 

μm resulted in an insignificant difference, with p = 0.533 (3a vs. 4a). However, grinding with 

a tool of 300 μm showed different micropattern depths (5a vs. 6a; p = 0.031). Likewise for the 

increased sintering temperature (1350 °C) a difference was detected (7 vs. 8; p < 0.05). For 

both grinding scenarios, the increased feed velocity led to smaller pattern depths. 

Apart from the feed velocity, the impact of the tool diameter on the micropattern width was 

investigated as well. For milling with a feed velocity of 125 mm/min, a significant influence 

of the tool diameter was detected (1a vs. 3a; p = 0.015). A larger pattern width was measured 

for the smaller tool diameter. For an increased feed velocity of 250 mm/min, however, this 

significance was no longer observed (2a vs. 4a; p = 0.623). 

Finally, the influence of the two sintering temperatures (1200 °C and 1350 °C) on the ground 

pattern widths and heights was investigated. The differences in the machined widths were 

insignificant for both feed velocities. Regarding the cusp heights, only for the high feed 

velocity the values were statistically different (6a vs. 8; p < 0.05). Here, the higher sintering 

temperature caused a lower pattern depth. 

To downsize the machined pattern geometries, the HA (1200 °C) samples were re-sintered. 

After re-sintering at 1350 °C, shrinkages from 5% to 12% in width and from 4% to 31% in 

cusp height were observed on milled micropatterns. On ground samples, the re-sintering 

caused shrinkage in the range from 5% to 8% in width and shrinkage between 15% and 23% 

in cusp height. 

 

Tab. 5: Parameters for the machining of hydroxyapatite (HA) 
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Surface topography of hydroxyapatite 

The HA samples (1200 °C) milled with a feed velocity of 125 mm/min exhibited a U-shaped 

topography. In contrast, the higher feed velocity of 250 mm/min produced a V-shaped surface 

as shown in Fig. 54 a and b.  

Grinding of HA (1200 °C) delivered sharply edged grooves (rectangle profile) with pattern 

sidewalls almost vertical and perpendicular to the bottom area. This was observed for both 

applied feed velocities (Fig. 54 c and d). 

SEM micrographs (magnification 1640-fold; data not shown) showed that there were loose 

particles and small pores with a size of about 1 μm on machined HA sintered at 1200 °C. In 

addition, microcracks were visible, too. These features were observed on milled and ground 

surfaces of HA (1200 °C). Similar surface properties were found for HA 1350 °C for both 

machining processes. However, fewer loose particles were visible on the surface, which 

displayed a higher peak to valley ratio. 

 
Fig. 54: SEM micrographs (magnification 200-fold) and 2D profile cross-section measurements (white 

insets) of hydroxyapatite (1200 °C) machined with a tool diameter of 300 μm. The position of a cross 

section is exemplarily shown in a); the roughness measurements Ra are exemplarily shown in c). a) and 

b): milled hydroxyapatite; c) and d): ground hydroxyapatite; e) and f): re-sintered samples from c) and d) 
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The re-sintering of the HA samples changed the surface topography slightly, with the amount 

of pores being reduced. Through this process the micropattern size decreased, yet there was 

no visible effect on pattern edges and geometries (Fig. 54 e and f). 

A comparison of the SEM micrographs of the milling and the grinding processes in Fig. 54 

showed that the milled samples are bumpy, chipped and rough, whereas the ground surfaces 

displayed smoother surfaces. This could be confirmed in surface roughness measurements on 

HA (1200 °C) milled or ground with a tool of 300 μm in diameter as shown in Fig. 55. Non-

patterned samples featured a roughness of 0.40 ± 0.07 μm (ref.1), while milled samples had a 

roughness of 0.48 ± 0.03 μm (3a) and 0.70 ± 0.04 μm (4a) depending on the feed velocity. By 

grinding, the microgrooves showed a considerably smoother surface of 0.26 ± 0.01 μm (5a) 

and 0.24 ± 0.01 μm (6a). The re-sintering of the machined samples increased the groove’s 

roughness for all milled samples (3b = 0.71 ± 0.03 μm; 4b = 0.81 ± 0.04 μm) and grinding 

setups (5b = 0.68 ± 0.08 μm; 6b = 0.71 ± 0.03 μm). 

 

 
Fig. 55: Average roughness Ra for all samples, measured in the machined microgrooves at the bottom 

area along the feed direction of micromachined hydroxyapatite. Error bars show the standard deviation. 

Descriptions of the samples are given in Tab. 5. 

 

Predictability of cusp heights and pattern widths of hydroxyapatite 

For all milling processes on HA (1200 °C) a preset micropattern width of 100 μm was set. 

The milled widths showed a maximum deviation of 2.9% from the pre-selected value. This 

finding was independent of all other process parameters. An even smaller deviation, i.e. of 
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0.8%, was achieved by grinding the HA samples sintered at 1200 °C and 1350 °C (Tab. 5). 

The measured values of the cusp heights were evaluated according to eq. 14. As depicted in 

Fig. 56, an overlap between the measured values (including error bars) and the predicted ones 

is found for milling with a feed velocity of 125 mm/min for both tool diameters. The mean 

value for these two setups is about 12% of the corresponding theoretical value. For the higher 

feed velocity, a deviation of the mean value of 42% (D = 500μm) and 17% (D = 300μm), 

respectively, was found. The theoretical values of the cusp height for microgrooves machined 

by grinding overestimated the measured heights significantly (deviation > 48 %). 

 
Fig. 56: Micropattern depths (hc) according to eq. 14 for two different cutting tool diameters (D) versus 

the line pitch (ae). Data points show the experimentally obtained results for hydroxyapatite. Error bars 

show the standard deviation. Descriptions of the samples are given in Tab. 5. 

 

Machining of zirconia 

Cusp height and micropattern width of zirconia 

For the micromachining of zirconia a total of eight different processing setups were carried 

out. The summarised values of the measured surface parameters of the milled and ground 

samples are given in Tab. 6. A statistical analysis showed that the obtained pattern widths did 

not display any difference concerning the two feed velocities. This was true for all tool 

diameters and sintering temperatures for both machining methods (supporting data in the 
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appendix). In addition, the effect of the two feed velocities on the cusp heights of milled 

zirconia (1100 °C) was investigated. The results from this showed a difference in the milled 

cusp heights by using a tool diameter of 500 μm (9a vs. 10a; p = 0.003). Decreasing the tool 

diameter to 300 μm, also the cusp heights were different for the two feed velocities (11a vs. 

12a; p < 0.050). For both milling tool diameters, the higher feed velocity caused lower pattern 

depths. On zirconia surfaces sintered at 1350 °C the two feed velocities showed no significant 

difference in the milled pattern depth (13 vs. 14; p = 0.220). 

 

Tab. 6: Micromachining parameters and results for yttria-stabilised zirconia (Y2O3:ZrO2) 

 
 

The results from grinding with a tool of 300 μm on zirconia (1100 °C) showed a difference in 

the achieved cusp heights when comparing the two feed velocities (15a vs. 16a; p = 0.030), 

with the higher feed velocity causing in average slightly lower pattern depths. 

Beside the feed velocity, the influence of the tool diameter on the micropattern width was 

investigated, too. For milling with a feed velocity of 125 mm/min, the influence of the tool 

diameter proved to be not significant (9a vs. 11a; p = 0.169). Also the tool diameter showed 

no influence on pattern widths when milling with the higher feed velocity of 250 mm/min 

(10a vs. 12a; p = 0.410).  

Furthermore, it was investigated if the two sintering temperatures (i.e. 1100 °C and 1350 °C) 

had an influence on the micropattern depth or width of milled zirconia surfaces. The 

difference in width was found to be insignificant for both feed velocities for milling (D = 500 

μm) of zirconia (9a vs. 13; p = 0.174 and 10a vs. 14; p = 0.355). On the other hand, 

differences were found comparing the milled pattern depths for both feed velocities (9a vs. 

13; p < 0.05 and 10a vs. 14; p = 0.001). Decreased pattern depths were measured for 
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increased sintering temperatures. The re-sintering at 1350 °C of milled micropatterns on 

zirconia surfaces caused shrinkages from 19% to 22% in width and from 31% to 38% in 

pattern depth. One milled sample (10) showed an increase in cusp height of 13% after re-

sintering. After re-sintering of ground zirconia samples, shrinkage of 23% in micropattern 

width and from 23% to 26% in pattern depth was measured. 

 

Surface topography of zirconia 

The milling of sintered zirconia (1100 °C) resulted in U-shaped micropattern profile 

topographies independent of the two feed velocities (Fig. 57 a and b). Grinding of zirconia 

(1100 °C) produced sharply edged micropatterns for the two applied feed velocities (Fig. 57 c 

and d). The pattern shape was neither U- nor V-shaped, and the pattern sidewalls were almost 

vertical and perpendicular to the bottom area of the ground micropatterns. Fig. 57 c to f image 

clearly the circular tool marks. 

 

Fig. 57: SEM micrographs and 2D profile cross-section measurements (white insets) of zirconia (1100 °C) 

machined with a tool diameter of 300 μm; a) and b): milled zirconia; c) and d): ground zirconia; e) and f): 

re-sintered samples from c) and d). Grey arrow in e) shows a tool mark.  
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The presence of loose particles is visible on zirconia (1100 °C) in SEM micrographs at a 

magnification of 1640-fold (data not shown). In addition, the surfaces are highly porous, with 

pore sizes of about 1 μm. These findings are observable on milled and ground zirconia (1100 

°C) samples. No microcracks were found on these surfaces. 

On zirconia surfaces (1350 °C) nearly no pores were distinguishable after milling, but many 

grooves were found on the machined areas. These findings were similar to the results of 

ground zirconia (1350 °C). Here, a few pores (1 μm) and many grooves were found on the 

machined areas. The re-sintering at 1350 °C reduced the amount of pores on zirconia (1100 

°C). The visible surface characteristics were not changed by re-sintering, yet shrinkage of the 

micropatterns was found. 

 

Roughness measurements yielded that the differences in roughness of milling and grinding 

processes are not pronounced as shown in Fig. 54. All zirconia samples exhibited a reduced 

roughness after exposure to the milling or grinding tool as compared to the non-patterned 

sample (ref. 2).  

The re-sintering induced an increase of the coarseness for all zirconia samples. For instance, 

the roughness value of sample 11a with a roughness of Ra = 0.15 ± 0.01 μm increased to Ra = 

0.25 ± 0.07 μm after re-sintering (11b). The machined zirconia samples displayed smoother 

surface roughness values as compared to the hydroxyapatite samples. Thus, the milling with 

125 mm/min on zirconia resulted in Ra = 0.15 ± 0.01 μm (11a). The identical process on 

hydroxyapatite yielded a Ra of 0.48 ± 0.03 μm (3a).  

 

Fig. 58: Average roughness values Ra, measured in the machined microgrooves at the bottom area along 

the feed direction of micromachined zirconia. Error bars show the standard deviation. Descriptions of the 

samples are given in Tab. 6. 
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Predictability of cusp heights and pattern width of zirconia 

To evaluate the precision of the milling processes on zirconia (1100 °C), a pre-selected 

micropattern width of 100 μm was set for the six different milling scenarios. For one milled 

sample (13) a deviation of 12.9% in micropattern width from the pre-selected one was found, 

yet in the remaining five testing events the deviation from the pre-selected pattern width was 

less than 2%. This outcome was independent of all other varied milling parameters. Grinding 

showed a deviation of merely 0.1% from the preset micropattern width of 200 μm for both 

tested feed velocities.  

The experimentally obtained cusp heights were evaluated according to eq. 14. An overlapping 

between the measured values (including error bars) and the predicted values is given for 

milling with a tool of 500 μm for both feed velocities, as shown in Fig. 59. In detail, the mean 

value for milling with a feed velocity of 125 mm/min showed a deviation of 7%. However, a 

deviation of 39% was found for the higher feed velocity of 250 mm/min. This shows that for 

the higher feed velocity only outliers are responsible for the overlap.  

 

 

Fig. 59: Micropattern depths (hc) according to eq. 14 for two different cutting tool diameters (D) versus 

the line pitch (ae). Points show the experimentally obtained results for zirconia. Error bars show the 

standard deviation. Descriptions of the samples are given in Tab. 6.  
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Milling with a tool of 300 μm and a feed velocity of 125 mm/min yielded an overlap of the 

measured values and the predicted cusp heights. Here, a divergence of 8% between mean 

value and predicted cusp height was observed. At a feed velocity of 250 mm/min the 

deviation was 20%. 

Independently of the feed velocity, milling of zirconia (1350 °C) showed no overlap between 

the measured cusp heights and the predicted ones, with deviations of more than 50%. For the 

grinding of zirconia the predicted cusp heights clearly exceeded the measured values, with 

deviations of more than 60%.  

 

Wear residues and abrasive wear 

In order to evaluate the effect of abrasion on the tool tips, SEM micrographs were taken 

before and after the machining procedures. Wear due to abrasion was noticeable for both 

fabrication methods (Fig. 60). EDS and XRF analysis were performed for hydroxyapatite and 

zirconia in order to investigate if wear residues could be found on the surface of the 

micromachined samples. Although both surface analyses were conducted on two different 

spots, no significant differences within the detection limit could be observed, neither before 

nor after micromachining the ceramic surfaces. 

 

 

Fig. 60: SEM micrographs of tools for micromilling (left) and microgrinding (right). The cutting tools 

before use are shown in a) and b); c) and d) show wear due to abrasion (white arrow and magnification 

box); e) illustrates an increase in the tool tip diameter from the effective cutting diameter D1 to D2 due to 

abrasive wear. 
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Cutting tool stiffness 

The measured tool stiffness was 323 N/mm for ball end milling tools with a diameter of 500 

μm. The ball end mills with tool diameters of 300 μm had a stiffness of 163 N/mm. The 

lowest stiffness of 27 N/mm was measured for the grinding pins (Fig. 61). 

 

 
Fig. 61: The tips of the clamped cutting tools were moved into feed direction against a dynamometer. The 

tool deflection and the resulting forces were recorded. The stiffness of the whole system was calculated by 

the slope of force vs. deflection.  

 

Discussion 

Topographical characteristics 

The U-shaped surface produced by milling of zirconia and slow milling of HA resembled the 

kind of topography found in earlier studies for ball-end shaped milling tools (Lazoglu, 2003). 

In the case of the higher feed velocity for milling of HA (1200 °C), we assume that chipping 

occurs during the process and causes a sharply edged V-shaped surface topography. During 

this process, also microcracks might appear at the machined surface. The influence of these 

microcracks after machining on the strength of a ceramic has already been described. Thus, 

Griffith et al. and Gogotsi and Andrievski stated that the strength of ceramics in brittle 

condition is defined by surface and by volume defects in the material. The strength decreases 

with the presence of strong surface relief on sintered ceramic samples or due to microcracks 

appearing after electro-machining or diamond cutting (Griffith et al., 1921, Gogotsi and 

Andrievski, 1999). Hence, the occurrence of chipping depicts a loss of quality of the 

microstructure and is very likely to decrease the sample’s overall strength. 
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The rectangle profile caused by grinding of both materials cannot be explained on the basis of 

fracturing or chipping of the machined surface. More likely, the rectangular surface profiles 

were caused by the instantaneous abrasive wear and thus flattening of the grinding pin tip. 

This hypothesis is supported through the results from pre-testing. Therefore, a pre-selected 

micropattern width of 100 μm only patterns with insufficient cusp heights were ground. As 

the height of the tool tip was fixed during the machining process, the low cups heights are 

caused by immediately wearing down the tool tip (Fig. 60). Therefore, by selecting the 

machining method the user is able to predetermine the surface relief topography. Regarding 

the process efficiency, the limiting factor is the short economic life time of the grinding tools. 

This circumstance makes the grinding method disadvantageous concerning costs and 

machining time. Consequently, we suggest instead the use of novel CVD diamond-coated 

shaft tools.  

 

In the SEM micrographs, the circular tool marks are clearly visible (Fig. 57). These circular 

defects occur when cutting conditions are subject to local changes. Cutting the material is 

temporarily inhibited because of an increased mechanical resistance. The surface is too hard 

on these specific positions to be removed homogenously by the cutting tool. Thus, the cutting 

tool cannot progress that fast and is slowed down for a few turns on these positions, which in 

turn results in a circular removal of the material. This causes a formation of circular tool 

marks. We therefore assume that the selected cutting speed is too low and the feed velocity 

too high on the positions where the tool marks occur. 

The ground HA samples displayed a smoother microchannel surface as compared to the non-

patterned reference sample. This decrease of roughness is caused by large micron-sized 

grains, which are pulverized into smaller submicron-sized grains within the grinding contact 

region. These submicron grains then act as a fine powder filling the irregularities of the 

ground groove. Due to the generated heat of the grinding process the grains re-sinter, which 

fosters a smoothing of the surface (Marinescu et al., 1999). Compared to the roughness of the 

untreated samples, milling of HA increased the surface roughness. This increase is in 

accordance with the findings of Chelule et al. For a larger order of magnitude, Chelule et al. 

showed that the surface of milled HA was highly porous. They suggested that a removal of 

grains during the milling process causes unevenness and thus an increase in the surface 

roughness (Chelule et al., 2003). We for our part suppose that a similar effect in combination 

with surface fracturing/microcracking - which causes unevenness, too - was responsible for 

our measured increase of HA surface roughness. 
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Additionally, we measured a more distinctive roughness for the samples milled with the 

higher feed velocity of 250 mm/min. The SEM micrographs revealed a larger degree of 

fracturing on these samples. The higher roughness was caused by a more distinct peak-to-

valley topography. Grinding of HA is therefore more suitable to achieve highly defined 

patterns with smooth surfaces. If an application requires rougher channel surfaces, milling of 

HA seems to be the better choice.  

Similar to the findings for hydroxyapatite, the SEM micrographs of the ground zirconia 

samples showed a smoother surface structure as compared to the milled ones. Roughness 

measurements yielded, however, that the differences were not significant. Nevertheless, all 

zirconia samples exhibited a similar surface roughness after exposure to the milling or 

grinding process. SEM micrographs showed no fracturing of zirconia (1100 °C) for both 

processing methods. We thus suppose that this is caused by the lower hardness compared to 

HA (1200 °C). Due to the absence of fracturing/microcracking on zirconia, roughness was not 

influenced by the machining method. In contrast to the results concerning HA, with zirconia 

the machining method can only be used to influence the surface relief topography but not the 

surface roughness inside the micropatterns.  

 

Tool tip wear residues  

No residues from the tools were found on the ceramic samples after machining. We assume 

that loose particles debris from the tool tips were centrifuged away from the sample during the 

machining process. In addition, remaining wear particles were fully removed from the 

samples in the course of three washing processes in double deionised water in an ultrasound 

cleaner. Thus, no contamination of the ceramic surfaces with cutting tool particles took place.  

 

Process parameters 

Due to the lowered stiffness, the resilience of the grinding pins was six to twelve times higher 

than that of the applied micro milling tools, which was caused by two tool properties. Firstly, 

the milling tool material (tungsten carbide) has a three times higher elastic module than the 

grinding pin material (steel). Secondly, the milling tools have a higher area moment of inertia 

than the grinding pins.  

The cutting forces were not measured in this study. In general, the average cutting force is 

mainly dominated by the machining parameters and the workpiece material properties. If all 

boundary conditions are kept constant, the maximum cutting force can be assumed to be 
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lower for grinding pins, due to the shape of the cutting tool. The removal of material takes 

place on a large area – thus, at an undefined number of cutting edges – as compared to two 

defined active cutting edges when using a milling tool.  

For all used tools a certain amount of tool deflection occurs during the machining of ceramics. 

In ball end milling of straight grooves, this effect is not that important since the minor 

inclination of the cutting edge causes only small differences in the cutting conditions. So, no 

differences in the cutting widths are expected. Due to tool deflection the cutting depth would 

be marginally lower as adjusted, whereas the cusp height (hc) would not be influenced by the 

tool deflection. The tool deflection seems to be negligible in all experiments. As can be seen 

from the SEM micrographs of the tools, the worn-out tip surfaces are nearly flat instead of 

conical, as expected for strong deflected cutting tools. The tool’s hardness seems to be a more 

influencing factor for the surface patterning. Due to different tool materials, the tools have 

different levels of hardness and distinct wear characteristics. So, TiAlN coated tungsten 

carbide mills have a hardness of about 2212 ± 105 HV, measured via Vickers indentation test 

(HV0.2). Thus, the mills are harder than the sintered ceramics, but the mills may abrade due 

to abrasive wear during the cutting process.  

The grinding pins were made of a solid steel body electroplated with diamond grains. The 

hardness of the steel body measured nearly 960 ± 68 HV, thus being much lower than e.g. 

zirconia samples sintered at 1350 °C with a hardness of about 1300 HV. The hardness of 

diamonds is about 9000 HV (according to manufacturer data), which is many times higher 

than the ceramic’s hardness. The diamonds are galvanically bonded to the steel body. The 

strength of such bonding is very important, though unknown. The embedding depth of the 

diamond grains is lower on strongly curved parts of the ball-end tool. Therefore, loss of grains 

is likely to occur in these curved areas. If such a loss of grains occurs at the tool tip, the bare 

steel shaft is exposed to the sample. Consequently, an ongoing abrasive flattening of the steel 

tool is to be expected, whereas the tool length decreases continuously (Fig. 60). This 

assumption could be affirmed through SEM micrographs, where a loss of single grains after 

short-time cutting became visible (Fig. 62). This unintentional flattening of the tool shaft is 

probably the main reason for the rectangular ceramic micropatterns, instead of the V and U-

shaped profiles as fabricated with the milling tools. 
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Fig. 62: SEM micrograph of a short-time used grinding pin with partially loss of diamond grains at the 

tool tip 

 

An analysis of the machining processes has revealed that the feed velocity has nearly no 

impact on the machined pattern widths for both materials. Only for milling of HA (1200 °C) 

with a tool of 500 μm, slightly different widths were detected. In contrast, the determination 

of the feed velocity had a significant influence on the majority of the machined cusp heights. 

This was found for HA as well as for zirconia, for both processing methods. For all setups that 

showed a significant difference the higher feed velocity caused lower cusp heights. This 

suggests that a higher feed velocity increases the wear and fracture of the tool or an increased 

mechanical resistance causes tool deflection, which leads to lower penetration depth. In 

consequence, the depth of indentation of the tool and therefore the machined cusp heights 

decrease.  

The milling tool diameter and sintering temperatures showed no clear and distinct influence 

on the machined micropattern widths and depths for HA. Likewise for zirconia, the milling 

tool diameter and the sintering temperature had no significant influence on the machined 

pattern widths, either. A variation of the sintering temperature, however, caused a distinct 

difference in the cusp heights. The machined cusp heights on zirconia 1350 °C were 

remarkable low. These results unveil the impossibility to operate micromilling accurately and 

repeatedly. Therefore, the difference in cusp heights for the two sintering temperatures might 

be due to the high hardness of zirconia (1350 °C). Although the sintering temperature has no 

significant influence on the pattern geometries, it is responsible for the high abrasive wear of 

the tool tips. To guarantee a machinability of the two ceramic surfaces, the sintering 
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temperature needs to be chosen carefully so as to adjust a proper material hardness. For 

milling of zirconia the sintering temperature should not exceed 1100 °C in order to minimize 

tool wear. A temperature of maximally 1200 °C, or even lower, is suggested for the milling of 

HA. As in this study high abrasive wear was observed in the grinding of both materials, an 

optimized sintering temperature for this process lies considerably below the used 

temperatures. 

 

Model prediction 

The model given in eq. 14 assumes an ideal machining process. However, effects like tool 

wear, vibration, chipping or fracturing are not taken into account. This deficiency of the 

model became manifest in the comparison between the predicted and the measured cusp 

heights. The occurring deviations demonstrated that eq. 14 does not describe a suitable model 

for the cusp heights of the two machining processes. Particularly all grinding setups exhibited 

strong deviations of a minimum of 58% for both materials. The pre-selected micropattern 

widths could be machined with good accuracy for both ceramic materials and processing 

methods. In most of the cases the deviation was less than 3%. 

 

Conclusions 

Hydroxyapatite and zirconia surfaces could be micropatterned successfully by using CNC 

precision machining. Milling of HA caused two different kinds of micropatterns: a U-shaped 

or a V-shaped topography, depending on the feed velocity. Milling of zirconia caused a U-

shaped topography. Grinding generated edgy rectangular patterns for both materials. When 

compared to the milled HA samples, all ground HA samples exhibited a smoother surface 

roughness at the bottom area along the feed direction of the micromachined groove-like 

patterns. No difference in the surface roughness was observed for zirconia.  

The sintering temperature has a major influence on the sample’s Vickers hardness and has 

therefore a strong impact on the machinability. This aspect was found to be heavily 

influencing in terms of abrasive tool wear, which in turn altered significantly the fabricated 

pattern depth. Neither the sintering temperature nor the choice of different tool diameters, 

however, had a distinct influence on the obtained micropattern width. This was found for both 

processing methods as well as for both materials. Although stiffness was strongly different 

comparing milling and grinding tools, this property seems to have a negligible effect for all 

cutting processes. By contrast, the different wear characteristics of the tools were mainly 
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responsible for the varying pattern topographies. In this context the increased unintentional 

flattening of the grinding tool is supposedly the main reason for the rectangular ceramic 

micropatterns. Our results also indicated that the feed velocity had no distinct influence on the 

produced micropattern width. For both machining processes the preset line pitch of 100 μm 

was perfectly reached without exception. Concerning the cusp heights, lower feed velocities 

caused deeper micropatterns. A precise theoretical prediction with regard to the processed 

cusp height was not possible. The re-sintering of the machined samples led in all cases to a 

distinct shrinkage of the patterns. Taking all our findings into account, it can be said that the 

optimal production scenario depends on the required properties of the processed 

micropatterns. Although abrasive wear occurred at the tool tips no unintentional 

contamination of the samples’ surfaces could be found. 
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3.3.2 Monitoring osteoblast viability on hydroxyapatite with adjusted submicron 

and micron surface roughness by using proliferation reagent WST-1 

 

The following results have been partially submitted to the “Journal of Materials Science: 

Materials in Medicine” in 2011 by Marzellus grosse Holthaus, Laura Treccani and Kurosch 

Rezwan (University of Bremen, Advanced Ceramics) (Holthaus et al., 2011c).  

 

Abstract 

The dependency of human osteoblast viability on hydroxyapatite submicron and micron 

surface roughness has hitherto not been clarified yet. Therefore, we investigated in this study 

the effects of hydroxyapatite substrates with different well-adjusted levels of surface 

roughness on human osteoblast proliferation by using colorimetric reagent WST-1. By 

grinding we obtained hydroxyapatite surfaces with six levels of well-defined surface 

roughness ranging from Sa = 3.36 μm down to 0.13 μm, which resulted in hydrophilic contact 

angles of 11° to 27°. Energy dispersive X-ray spectroscopy, X-ray diffraction and X-ray 

fluorescence measurements confirmed that neither grinding paper residues nor changes in the 

crystal structure were introduced to the hydroxyapatite substrate during the grinding process. 

The application of this simple surface treatment allowed the effects of the surface roughness 

to be independent from surface chemistry, crystal structure, and relative density. The 

osteoblast proliferation and collagen type I expression on the fabricated surfaces was 

investigated in-vitro after 1, 3, and 7 days. All surface-treated samples caused a good cell 

attachment, as flat and spread cell morphologies with lamellipodiae and filopodiae were 

present after one day already. The cell proliferation obtained through WST-1 assay differed 

insignificantly for samples of varying roughness. The semi-quantitative assessment of 

collagen type I yielded the same amounts for all samples on days 3 and 7. From the obtained 

results we can clearly conclude that significant differences in the osteoblast proliferation are 

not detectable via WST-1 assay on HA micron and submicron surface roughness in-vitro 

within the first seven days. 

 

Introduction 

Micropatterned and roughened ceramic surfaces are of great interest in biological and medical 

research fields (Kim et al., 2006; Mustafa et al., 2005). Compared to metals or polymers, the 

advantages of oxidic ceramics consist in their chemical resistance and inertness, their high 
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hardness as well as temperature resistance (Lemons, 1996; Munz and Fett, 1999). The use of 

calcium phosphate ceramics in medical applications is very common due to the chemical 

similarities to biological apatite in bone or teeth (Dorozhkin, 2009; Wang et al., 2005). One of 

these important apatites is hydroxyapatite (HA), which is used e.g. as a coating on titanium 

(Ti) implants or as bone-replacing material (Boyan et al., 1996; Mangano et al., 2010). The 

interface between cells and the implant surface exhibits a strong influence on the tissue 

response and the overall success of the incorporation of an implant (Boyan et al., 1996, Curtis 

and Wilkinson, 1998; Kieswetter et al., 1996; Thomas and Cook, 1985). Thereby, the 

interaction strongly depends on a variety of surface properties such as chemistry, free energy, 

and topography. The effects on the surface topography or, in particular, the surface roughness, 

have been thoroughly investigated for titanium. In most studies, osteoblasts and osteoblast-

like cells prefer rougher Ti surfaces as compared to smoother ones by comparing roughness 

values ranging from Ra = 0.60 μm to 5.70 μm (Bowers et al., 1993, Boyan et al., 2002; Keller 

et al., 2003; Kunzler et al., 2007; Schneider et al., 2003).  

Osteoblast viability is indirectly assessable via various indications such as measured cell 

proliferation, cell attachment, cell spreading, and collagen type I or alkaline phosphatase 

production. A few studies correlated osteoblast or osteoblast-like cell viability to different 

levels of hydroxyapatite surface roughness. Deligianni et al. investigated the influence of 

three different HA roughness values (Ra = 0.73 μm; Ra = 2.86 μm; Ra = 4.68 μm) on bone 

marrow stromal cells. The roughness of HA had no impact on the cell morphology or alkaline 

phosphatase activity (ALP) (Deligianni et al., 2001). Ball et al. found no significant 

differences in the ALP activity of osteoblasts on HA-coated implant materials when 

comparing roughness values of Ra = 0.49 μm and Ra = 1.75 μm, yet the cell shapes looked 

different after 48 hours (Ball et al., 2008). From in-vivo experiments with implant surfaces in 

bone tissue, Hayashi et al. reported no differences in interface shear strength of two different 

HA surfaces with roughness values of Ra = 0.88 μm and Ra = 3.38 μm (Hayashi et al., 1994). 

In addition to the above-mentioned studies, we have used more levels of well-defined surface 

roughness and included cell proliferation quantification in order to assess impacts on cell 

behaviour. Apart from the measured osteoblast proliferation via WST-1 assay, the expression 

of collagen I type was semi-quantified. In our study, we focused on the hypothesis that HA 

roughness has an influence on osteoblast viability.  
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Sample fabrication 

Cylindrical plane samples were made of 1.1 g of commercially available calcium phosphate 

hydroxyapatite powder (HA, (Ca10(PO4)6(OH)2), Prod.-No. 04238, Lot: 8345A, Sigma-

Aldrich Chemie GmbH, Munich, Germany). The powder had a primary particle size of 151 ± 

0.235 nm (unimodal distribution) and a density of 3.03 ± 0.04 g/cm3. It was uni-axially die-

pressed by means of metal plungers and a hydraulic press (Weber Maschinen- und 

Apparatebau GmbH, Remshalden, Germany), applying a compressive force of 15 kN. The 

sample diameter was 23 ± 0.1 mm with a thickness of 2.8 ± 0.2 mm. The die-pressed samples 

were sintered in a furnace (LHT08/17, Nabertherm GmbH, Lilienthal, Germany) at ambient 

conditions at 1200 °C for two hours with a heating rate of 50 °C/h and a cooling rate of 100 

°C/h.  

 

Fabrication of defined surface roughness 

The sintered platelets were treated with SiC grinding papers (WS Flex, Hermes Abrasives 

Ltd., Virginia Beach, USA) with the aim to generate a controlled surface roughness. For the 

grinding process, the ceramic platelets were pressed manually on the rotating grinding paper 

for 45 seconds, with a rotation speed of 150 rpm (Phoenix Alpha, Buehler GmbH, 

Duesseldorf, Germany). During the treatment process, the position of the samples was altered 

in order to achieve a randomized surface texture. The treatment processes were truncated after 

selected stages so as to process samples with final grits of p80, p120, p180, p320, p600, and 

p4000. Water was used as a lubricant to remove the excessive material and to avoid a heating 

of the samples during the grinding process. After polishing, each platelet was washed three 

times for five minutes with double deionised water (Synergy®, Millipore, resistivity 18 

MΩcm, Schwalbach, Germany) in an ultrasonic cleaner (1510 Bransonic®, Branson 

Ultraschall, Dietzenbach, Germany). After cleaning with double deionised water, all samples 

were dried at ambient conditions and then sterilised at 180 °C for two hours. 

 

Imaging of surface texture, measurement of surface roughness and surface area 

SEM images were taken at 20 kV (Camscan Series 2, Obducat CamScan Ltd., 

Cambridgeshire, United Kingdom). Prior to imaging, the samples were sputtered with gold 

(K550, Emitech, Judges Scientific plc, West Sussex, UK).  

The imaging of the surface texture as well as the measurement of the surface roughness and 

surface area was performed with an optical profilometer (Plμ2300, Sensofar, Schaefer 
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Technology GmbH, Langen, Germany) with 420-folds magnification. Measurements in 

triplicate have been conducted on fifteen ceramic samples for each treatment. The size of each 

single measurement area was 477 x 636 μm2 containing 442,368 measurement data points 

from which the average surface roughness Sa, the maximum heights of the surfaces Sz (from 

highest peak to lowest valley), and the surface area were calculated according to ISO25178. 

The arithmetical mean height of the surface (Sa) is defined in eq. 15 according to ISO25178-

2, with A being the domain of definition and z(x,y) the height of the surface at position x, y 

(ISO25178, 2007). 

 

dxdy|y)z(x,|
A

=Sa 1
  

            eq. 15 

 

All 3D data analysis was performed using SensoMap Plus software (Sensofar), version 

5.0.3.4995. A commercially available hydroxyapatite-coated dental implant (Tapered HA, 

Nobel BiocareTM, Yorba Linda, USA) and a commercially available standard titanium dental 

implant (Dentsply Friadent, Ankylos®) were measured as reference materials for the surface 

characterisation. Here, the average surface roughness between two screw threads was 

measured on three different positions according to ISO25178. The surface curvature was 

compromised by use of the SensoMap Plus software. In addition, plastic coverslips 

(Thermanox®, Nalge NUNC, Rochester, New York, USA), generally used as cell culture 

substrate material, were measured as a reference material.  

 

Crystal structure analysis 

X-ray diffraction measurements (XRD, C3000, Seifert, Ahrensburg, Germany) of sintered 

(1200 °C) hydroxyapatite samples were made for all roughness values in order to determine 

the crystal structure and to monitor possible changes in the crystal structure due to the 

grinding processes. Moreover, scans with 2ө ranging from 15° to 70° were taken. 

 

Detection of grinding wear residues 

Energy Dispersive Spectroscopy (EDS, Camscan Series 2, Obducat CamScan Ltd., 

Cambridgeshire, United Kingdom) with a detection limit of about 0.1% of the element’s mass 

was used to avoid possible wear residues originating from the grinding papers. The 
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measurements were taken on treated and sintered HA (p4000, 1200 °C) for two different spots 

with an area of 27 x 17 μm2 each.  

X-ray Fluorescence analysis (XRF) was performed to detect residues such as Si from the 

grinding papers (detection limit of approximately 10 ppm). XRF measurement was carried out 

using a low pass filter and a main filter (0-40 keV, XL3t900 AnalytiCON Instruments GmbH, 

Rosbach, v.d. Hoehe, Germany). XRF was conducted on two different circular spots with an 

area of 7.1 mm2 each. Prior to the EDS and XRF analysis, the samples were washed three 

times for five minutes in deionised water in an ultrasonic cleaner. 

 

Density measurements 

The density of non-sintered hydroxyapatite particles was measured by a helium pycnometry 

system (Accu Pyc 1330, Micromeritics, Aachen, Germany). Ten measurements were made 

and the relative density of the samples after sintering was calculated according to the 

geometrical approach, comparing theoretical and experimental (mass/geometrical volume) 

densities.  

 

Contact angle measurements 

The contact angles (Θ) between sessile drops (20 μL) of double deionised water and the 

ceramic surfaces were measured on three samples for each roughness value; as a reference 

material, Thermanox® was used. Side view images of the droplets were taken via an aligned 

(45°) mirror with a microscope (Axio Imager M.1, Carl Zeiss GmbH, Jena, Germany). The 

contact angles were analysed with the help of Software ImageJ (version 1.39u, National 

Institutes of Health, USA).  

 

Cell culturing 

Prior to cell testing, all samples were rinsed with double deionised water containing 1% 

antibiotics/antimycotics and dried in air in ultraviolet light for one hour. Human osteoblast 

cells (HOB, cryovial, Cat.-No.: 121 0311, Provitro GmbH, Berlin, Germany) with a doubling 

time of 120 hours cultivated in their fourth-culture generation for the in-vitro testing. One 

sample was put into one polystyrene culturing dish (12-well multidish, Nalge NUNC, 

Rochester, New York, US). Then the samples were fully immersed into 2 ml of complete 

DMEM media with high glucose (Dulbecco’s Modified Eagle’s Medium) and stored at 37 °C, 

10% CO2 and 94.5% RH in an incubator (C200, Labotect Labor-Technik-Göttingen GmbH, 



Experimental results of ceramic micropatterning 

 - 119 - 

Goettingen, Germany) for 30 minutes. The media contained 10% fetal calf serum (FCS) and 

1% antibiotics/antimycotics. Afterwards, the media was removed with a sterile pipette and 

then discarded. Approximately 8 x 104 cells, homogenously dispersed in 2 ml DMEM media, 

were added to each well containing the wet samples. The cells were incubated on the various 

substrates in the same incubator for a period of seven days under static conditions. Sampling 

points were taken after 24 hours (day 1), 72 hours (day 3), and after 168 hours (day 7). As cell 

culture reference materials, plastic coverslips (Thermanox®) with a diameter of 15 mm were 

used. The cell relevant chemicals were purchased from Invitrogen GmbH, Darmstadt, 

Germany.  

 

Cell proliferation measurements via WST-1 assay 

The proliferation of the HOB cells was analysed via a plate reader (Cameleon, HIDEX, 

Turku, Finland) using a colorimetric WST-1 assay (WST-1, Roche Diagnostics GmbH, 

Mannheim, Germany) for the non-radioactive quantification of the cell proliferation via the 

measurement of the formazan product in living cells. Supernatants were quantified 

spectrometically (OD) at 450 nm with a reference wavelength of 650 nm. Proliferation 

measurements of three samples of each roughness level per sampling day were applied. The 

same volume of culture medium and cell proliferation reagent WST-1 was used in the 

experiment as a background control (absorbance of culture medium plus WST-1 in the 

absence of cells) for the plate reader. Due to different sample sizes the measured proliferation 

values of Thermanox® were normalised to the sample area of the ceramic samples.  

 

Cell imaging 

Fluorescence staining of cell components was accomplished with different fluorescent dyes. 

Thus, Alexa Fluor® 488 Phalloidin was used for the cytoskeletons; 4´6´- Diamidino-2-

phenylindol (DAPI) was taken for the cell nuclei, mouse anti-human-collagen as primary 

antibody, and conjugated anti-mouse-IgG (Alexa Fluor® 546) as secondary antibody was used 

for the specific collagen type I staining. Cells were observed and visualized with a 

fluorescence microscope (Axio Imager M.1, Carl Zeiss GmbH, Jena, Germany). Further, 

imaging of three samples of each roughness value was realised. The chemicals for cell 

staining were purchased from Invitrogen GmbH, Darmstadt, Germany. 
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Statistical analysis 

The statistical analysis was performed with the aid of MiniTab 16. Also, a one-way ANOVA 

using Tuckey’s Multiple Comparison test was performed. In so doing, a p-value ≤0.05 was 

considered statistically significant for the comparison of the absorbance values from the 

proliferation measurement. Data is shown as mean values including standard deviation.  

 

Results of surface characterisation  

Surface texture 

The grinding processes of hydroxyapatite with SiC grinding papers resulted in a range of 

micro and submicron roughness values between Sa = 3.36 μm and Sa = 0.13 μm. Grinding 

with a grit of p80 resulted in a surface roughness of Sa = 3.36 ± 0.54 μm. The surface was 

matt finished with an apparent, randomly grooved and craggy topography. A variety of depths 

having either rounded U-shaped or V-shaped profiles or cavities in the sample surface could 

be distinguished. Comparable results in surface texture were achieved with grits of p120, 

p180, and p320, though with less salient characteristics. In doing so, the treatment with p120 

resulted in a surface roughness of Sa = 1.41 ± 0.18 μm. With p180, a surface roughness of Sa 

= 0.92 ± 0.24 μm was achieved and grinding with p320 caused a surface roughness of Sa = 

0.50 ± 0.10 μm. The grinding procedure with a grit of p600 resulted in a half-matt surface 

with a craggy topography and with U and V-shaped profiles in the submicron range. Grooves 

were partially present on the surface but were smaller and less intense when compared to 

p320. A surface roughness of Sa = 0.24 ± 0.05 μm was fabricated using a grid of p600. The 

polishing with p4000 resulted in a surface roughness of Sa = 0.13 ± 0.03 μm. The surface was 

glossy with a very smooth topography, albeit a few tiny grooves in the submicron range were 

visible. Likewise, a small amount of defects was detectable on the surface (Fig. 63)
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Fig. 63: SEM micrographs of HA surfaces with different surface roughness values (Sa). The white insets 

show representative 2D surface profile of the treated HA surfaces. The obtained 3D surface topography of 

two treated HA samples is exemplarily shown on the right hand side. The dashed lines (pink) show the 

position of the 2D profile sections. 

 

The reference hydroxyapatite-coated titanium implant had an average roughness of Sa = 4.23 

± 0.28 μm. The reference standard titanium implant had a roughness of Sa = 2.06 ± 0.11 μm. 

Both implant surfaces were matt and rough. The reference material Thermanox® had a 

roughness level of Sa = 0.03 ± 0.00 μm and was shiny and transparent (Tab. 7).  

 

Total surface area 

The field of view for the measurement of the total surface area was of 477 x 636 μm2, which 

results in a geometrically ideal surface area of 303,372 μm2. The measurements on treated HA 

showed an increase in total surface area with increasing roughness (Tab. 7).  

 

Sample density and sample size 

The ceramic platelets were 17 ± 0.3 mm in diameter and 2.4 ± 0.2 mm in thickness after 

sintering at 1200 °C. Thus, a total shrinkage of 26% was measured due to sintering.  

The relative density was at 94.5% for all HA samples (prel = 0.945 ± 0.017 g/cm3) resulting 

thus in a porosity of 5.5%. Further, there was no significant difference between the densities 

of the samples with different roughness values. 
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Tab. 7: Roughness, contact angles, and total surface area for ground HA surfaces, Thermanox®, and 

dental implants 

Surface Arithmetical mean 

height of the surface 

(Sa) 

Maximum height 

of the surface (Sz) 

Mean 

contact 

angle (Θ) 

Mean total 

surface area 

(μm) (μm) (°) (μm2) 

HA p80 3.36 ± 0.54 39.94 ± 8.67 11 ± 1 342,635 

HA p120 1.41 ± 0.18 29.46 ± 6.25 12 ± 1 323,166 

HA p180 0.92 ± 0.24 24.90 ± 7.47 24 ± 2 320,126 

HA p320 0.50 ± 0.10 21.04 ± 5.76 20 ± 1 313,638 

HA p600 0.24 ± 0.05 10.26 ± 4.49 27 ± 1 307,394 

HA p4000 0.13 ± 0.03 5.40 ± 2.03 24 ± 3 306,793 

Thermanox® 0.03 ± 0.00 5.05 ± 3.22 58 ± 2 - 

HA-coated dental implant 4.23 ± 0.28 36.41 ± 3.34 - - 

Titanium dental implant 2.06±0.11 24.46 ± 3.68 - - 

 

Crystal structure 

The crystal structure of hydroxyapatite samples sintered at 1200 °C proved to be identical to 

pure and non-sintered HA and did not change due to grinding processes. No traces of other 

calcium phosphate structures, e.g. ß-tri-calcium phosphate, were detectable, either. 

 

Contact angle 

Hydroxyapatite with a surface roughness of 3.36 μm (p80) resulted in a contact angle of 11 ± 

1° with double deionised water. The HA surfaces with a roughness of 1.41 μm (p120) had a 

mean contact angle of 12 ± 1°. Contact angles of 24 ± 2° and 20 ± 1° were measured on HA 

surfaces with roughness values of 0.92 μm (p180) and 0.50 μm (p320), respectively. A 

surface roughness of 0.23 μm (p600) resulted in a mean contact angle of 27 ± 1°. An angle of 

24 ± 3° was measured on HA surfaces with a roughness of 0.13 μm (p4000). The reference 

material Thermanox® had a contact angle of 58 ± 2° (Tab. 7). 
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Fig. 64: Upper left: XRF analysis of surface-treated HA and untreated HA; lower left: EDS measurement 

of surface-treated HA (p4000); right: XRD measurement of treated HA surfaces 

 

Grinding wear residues 

No residues of silicon from the grinding processes with SiC grinding papers could be found in 

the analysis of elements with EDS or XRF (Fig. 64). 

 

Results of cell experiments 

Cell proliferation  

The proliferation of the human osteoblast cells steadily increased on each surface-treated HA 

sample with prolonging period from day 1 to day 7 due to the proliferation kinetics of the 

osteoblasts. After day 1, the measured cell proliferation varied from OD = 0.024 ± 0.013 on 

the roughest HA surfaces to OD = 0.041 ± 0.011 on the smoothest hydroxyapatite surfaces.  

After day 3, the measured absorbance varied from OD = 0.057 ± 0.009 on the roughest HA 

surfaces to OD = 0.093 ± 0.006 on the smoothest hydroxyapatite surfaces. Finally, after day 7, 

the two roughest (p80 and p120) HA surfaces showed the highest tendency towards a high 

proliferation with OD = 0.149 ± 0.023 (p80) and OD = 0.153 ± 0.010 (p120). The two 

smoothest surfaces, i.e. p600 and p4000, showed lower proliferation with OD = 0.122 ± 0.006 

(p600) and OD = 0.134 ± 0.020 (p4000) (Fig. 65).  
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Fig. 65: Proliferation (WST-1 assay) of human osteoblasts grown on hydroxyapatite prepared with 

different roughness values after days 1, 3, and 7. The standard tissue culture support material 

Thermanox® was used as a reference (ref. 0.03). Mean values that share a symbol (*/#) are not 

significantly different (ANOVA: post-hoc Tuckey’s Multiple Comparison Method, p < 0.05; error bars 

show the 95% confidence interval for the mean). 

 

The results for all three sampling points were evaluated in a statistical analysis, which has 

shown that the cell proliferation does not depend on the sample roughness, since a value of p 

> 0.05 was found for all three sampling points (day 1: p = 0.742 / day 3: p = 0.057 / day 7: p = 

0.243).  
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Cell morphology and production of collagen type I 

On day 1, the osteoblasts showed the same flat and spread morphologies with lamellipodiae 

and filopodiae on all treated samples. Non-attaching cells with spherical morphologies could 

be found on any HA sample. Thereby, the cells grew interconnected and actin fibres were 

clearly visible on all samples. No signal of collagen type I staining could be detected on any 

sample that day. By contrast, on Thermanox® a weak signal of the collagen type I staining 

became apparent (Fig. 66 and Tab. 8).  

 

Tab. 8: Collagen type I production in osteoblasts: (-) = no signal, (+) = low signal, (++) = strong signal. 

Surface Arithmetical mean height of 

the surface (Sa) 

Collagen type I 

(μm) day 

1

day 3 day 7 

HA p80 3.36 - ++ ++ 

HA p120 1.41 - ++ ++ 

HA p180 0.92 - ++ ++ 

HA p320 0.50 - ++ ++ 

HA p600 0.24 - ++ ++ 

HA p4000 0.13 - ++ ++ 

Thermanox® 0.03 + + + 

 

 

On day 3, on all HA surfaces with a roughness between Sa = 3.36 μm and Sa = 0.13 μm the 

osteoblasts showed a flat and widely spread morphology with lamellipodiae and filopodiae. 

The cells were still intercellulary connected on all samples.  
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Fig. 66: a) Fluorescence images of human osteoblasts grown on surface-treated hydroxyapatite with 

different roughness values Sa. The images were taken after seven days of in-vitro proliferation. Blue: 

nucleus, Green: cytoskeleton, Red: collagen type I. b) The identical fluorescence images of a) are shown 

without the staining signals of cytoskeletons or nuclei, showing only collagen type I. 

 

Clearly visible actin fibres in the cytoskeleton and a strong signal of collagen type I staining 

could be detected in the cells. No spherical cells could be found on any sample. Likewise, no 

evident differences between the visualized strength of the high collagen type I signal could be 

perceived between samples with different roughness values on day 3. However, a weak signal 

of the collagen type I staining was present on Thermanox® (Fig. 66 and Tab. 8). 

 

On day 7, eventually, neither a difference in the cell morphologies, nor in the visualized 

strength of the high collagen type I signal was noticeable between samples of varying 

roughness. Likewise, no difference in the collagen type I production could be observed 

between days 3 and 7. On Thermanox® a weak signal of collagen type I staining was 

detectable. On all samples a confluent cell layer was detected as well (Fig. 66 and Tab. 8). 

 

Discussion 

Diverse surface treatments or machining processes can result in similar roughness values, but 

exhibit different topographies and textures, which may affect cells during in-vitro 

experiments. In our experiments, we focused on the hypothesis according to which HA 

submicron and micron roughness has an influence on osteoblast viability. Accordingly, we 
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produced six different surface roughness levels on hydroxyapatite samples through a 

traditional grinding technique. The roughness of a surface can be defined by measuring a 

single 2D profile (Ra) according to DIN EN ISO4287 or else a 3D area (Sa) according to 

ISO25178 (ISO25178, 2007; ISO4287, 1997). In our tests, the surface roughness was 

evaluated using a 3D area. The maximum height of the surface (Sz) was measured in order to 

account for the spread of the cells. The results obtained clearly demonstrated that a 

reproducible and very homogenous fabrication of levels of roughness between Sa = 3.36 ± 

0.54 μm and Sa = 0.13 ± 0.03 μm was possible for hydroxyapatite. The same reproducible 

results were found for the maximum height of the surfaces ranging from Sz = 39.94 μm down 

to 5.05 μm. The fabricated average roughness values (Sa) as well as the maximum heights 

(Sz) for the HA samples were comparable to the roughness of two commercially available 

dental implants analysed by us. Thus, the reference HA-coated titanium implant from Nobel 

BiocareTM (Sa = 4.23 μm / Sz = 36.41 μm) showed a slightly higher surface roughness but 

similar maximum surface heights as compared to the fabricated HA samples. The reference 

standard titanium implant from Dentsply Friadent (Sa = 2.06 μm / Sz = 24.46 μm) was in the 

range of the fabricated HA surface roughness values and maximum surface heights, which 

emphasizes the relevance of the examined HA surface roughness levels. The surface 

chemistry and the mechanical properties of the commercially available dental implants might 

be different from the fabricated HA surfaces, yet these properties were not of interest for this 

study.  

As already anticipated, an increase of the total surface area on HA was clearly measurable due 

to an increased surface roughness. An increased surface area means a larger contact area for 

the binding of important and relevant proteins, growth factors or interaction with cells. The 

importance of proteins and growth factors for the adhesion of osteoblasts has been reviewed 

in detail by Anselme (2000). Although the total surface area of the HA samples increased due 

to an increase in surface roughness, no significant differences in the osteoblast cell 

proliferation or shape were detectable.  

Contact angles were measured as an indication for surface wettability in our study. Contact 

angles of less than 30° were measured on all hydroxyapatite samples, independently of 

roughness. The lowest contact angles were measured for the two roughest HA samples, i.e. 

p80 and p120. The highest angles were measured for the two smoothest HA samples, which 

were p600 and p4000. As a tendency, the contact angles decreased in correlation with an 

increase in surface roughness, indicating thus an increase also in surface wettability as well as 

in free surface energy. Schakenraad et al. reported wettability to be one important factor for 
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cell adhesion and proliferation of human fibroblasts on polymer materials (Schakenraad et al., 

1986). The results from our study showed that all tested surfaces were clearly hydrophilic (Θ 

< 90°) and that no significant differences in the wettability of all fabricated HA samples could 

be found. Significantly higher contact angles were measured on Thermanox®.  

Changes in the surface porosity and relative density of HA have influence on the metabolic 

activities, such as ALP activity of rat bone marrow cells (Rosa et al., 2003). The density was 

the same for all treated HA surfaces in our study. Different crystal structures of calcium 

phosphate, such as tri-calcium phosphate (TCP) versus hydroxyapatite, may alter the 

osteoblast-like cell response (Detsch et al., 2008). Nevertheless, neither the crystal structure 

nor the relative density changed throughout our experiments. Thus, the influence of the 

relative density and crystal structure on the osteoblast cells should be identical for all HA 

samples.  

After cleaning the treated HA samples in double deionised water, no particles or residues of 

the SiC papers were detected by XRF and EDS. This indicates that no residues could have 

influenced the cell proliferation or morphology during the in-vitro cell testing. 

In our study, the osteoblasts showed flat and well-spread morphologies with lamellipodiae 

and filopodiae at their periphery on all treated samples on day 1. This indicates a good 

adhesion between the hydroxyapatite surfaces and the cells, yet no influence of the different 

roughness levels on the osteoblasts was detectable. Additionally, they showed clearly visible 

actin fibres (stress fibres) in the cytoskeleton, which is often associated with strong cell 

adhesion; however, as the occurring processes are very complex, the role of these stress fibres 

in relation to adhesion is still not fully understood (Huang et al., 2005; Huang et al., 2006; 

Lim et al., 2005; Matsuda et al., 1998; Thian et al., 2008; Thian et al., 2006; Yamakura et al., 

2001; Zhu et al., 2004b; Zhu et al., 2004). The attachment and proliferation of the HOB was 

good on all treated HA surfaces. Collagen type I was produced after day 1. This indicates that 

the cell adapted to their environment and showed normal metabolic activity. No abnormal cell 

phenotypes like blebbed plasma membranes (blebbing) were detected which might give an 

indication of low cell adhesion or even apoptotic mechanisms within the cells (Fackler and 

Grosse, 2008; Hagmann et al., 1999; Panupinthu et al., 2007).  

A minor role of the surface roughness on cell behaviour and metabolic activity was 

demonstrated in the studies by Hayashi et al. and Ball et al. Thus, Hayashi et al. reported no 

differences in interface shear strength of a dense sintered HA surface with Ra = 0.88 μm and a 

rougher HA-coated Ti surface with Ra = 3.38 μm from in-vivo experiments on bone tissue 

(Hayashi et al., 1994). Other results were found, for instance, by Deligianni et al., who



Experimental results of ceramic micropatterning 

 - 129 - 

 investigated the influence of three different roughness values of HA (Ra = 0.73 μm; Ra = 

2.86 μm; Ra = 4.68 μm) fabricated via grinding papers of p180, p600, and p1200. It turned 

out that the roughness of HA had no impact on the bone marrow stromal cells morphology or 

alkaline phosphatase activity. However, the proliferation after 14 days was higher on rougher 

HA than on smoother ones (Deligianni et al., 2001). The higher proliferation is similar to our 

results with HOB after seven days in-vitro. Altogether, a period of seven days may be too 

short to detect significant differences in the proliferation of HOB on HA. This assumption is 

confirmed by the slightly higher (but statistically insignificant) proliferation values of the two 

roughest HA surfaces (p80 and p120) on day 7. The measurement of the proliferation via 

WST-1 assay might also be not sufficiently sensitive or specific to detect differences in 

osteoblast metabolism between the evaluated HA roughness levels. Likewise, Ball et al. 

reported no significant differences in the ALP activity of osteoblasts after 48 hours on HA-

coated implant materials when comparing roughness levels of Ra = 1.75 μm (grit blasted) and 

Ra = 0.49 μm (treated p240). Though cell shapes were different, collagen type I appeared 

present and was similar on all samples after seven days (Ball et al., 2008), which is in 

accordance with our results.  

In contrast, our findings for osteoblasts grown on HA surfaces with various roughness values 

are different to results obtained from osteoblasts or osteoblast-like cells grown on Ti surfaces. 

On Ti, it has been reported that osteoblasts prefer rougher surfaces to smoother ones. For 

example, Kunzler et al. stated a significant increase in the number of osteoblasts (RCO) with 

increasing surface roughness of titanium. Thereby, the cells were seeded on titanium with 

roughness gradients ranging from Ra = 1.12 μm to Ra = 5.70 μm. The osteoblasts 

morphology changed continuously following the gradient of roughness from smooth to rough. 

Boyan et al. reported a decrease in the number of cells (FRC) with increasing Ti surface 

roughness, albeit the alkaline phosphatase activity of the osteoblast-like cells was increasing 

(Boyan et al., 2002). Schneider et al. (2003) and Bowers et al. (1993) found a higher 

mineralisation ratio of osteoblasts (RCO) on sandblasted Ti compared to ground titanium  

Mangano et al. (2010) reported a faster osteo integration by the differentiation of human 

dental pulp stem cells on laser-sintered titanium (SLS) as compared to acid-etched Ti 

surfaces. Comparing these results for Ti surfaces from the literature to our findings, it may be 

suggested that in contrast to Ti the treatment of HA surfaces does not improve the cell 

proliferation (WST-1 assay) and collagen type I production of osteoblasts within the first 

seven days.  
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Conclusions 

With a simple and low-cost surface treatment technique we produced homogenous and 

reproducible hydroxyapatite surface roughness values between Sa = 3.36 μm and Sa = 0.13 

μm for in-vitro osteoblast experiments. No residues of silicon from the grinding process and 

no changes in the crystal structure of the hydroxyapatite samples were detected. Applying 

only a simple surface treatment technique allowed the effects of the surface roughness to be 

isolated from differences in surface chemistry, crystal structure as well as relative density. 

The changes of the osteoblast proliferation (WST-1 assay) on these differently roughened 

hydroxyapatite surfaces after seven days turned out insignificant (p > 0.05), evaluated by one-

way ANOVA and Tuckey’s Multiple Comparison Method. The results from this study thus 

have shown that all roughened HA surfaces, regardless of the microtopography, are 

biocompatible and allow for osteoblast attachment, proliferation, and collagen type I 

production. The comparison with surface roughness values of Ti has revealed that for HA no 

finishing process is necessary in order to ensure a sound HOB cell proliferation in-vitro. 
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3.4 Laser treatment 

3.4.1 Laser ablation of hydroxyapatite surfaces 

The following results were partially published in the “Proceedings of the 2008 International 

Manufacturing Science and Engineering Conference in Evanston, IL, USA (MSEC2008)” by 

Marzellus grosse Holthaus and Kurosch Rezwan (University of Bremen, Advanced Ceramics) 

(Holthaus and Rezwan, 2008). 

 

In the beginning of the experimental work for this thesis, laser ablation was used to fabricate 

micropatterns. The HA powder introduced at the beginning of this chapter was die-pressed 

uni-axially with 3.5 kN so as to generate plane cylindrical platelets with diameters of 10 

millimetre. Afterwards, the platelets were sintered in a furnace at 1200 °C for two hours with 

a heating rate of 50 °C/h and a cooling rate of 100 °C/h. The thus sintered platelets were 

micropatterned by using a Nd:YAG laser with a wavelength of 1064 nm and a pulse duration 

of 100 ns for the ablation processes. The micropatterns had a length of 3 mm and varied in 

width from approximately 40 μm to a maximum of 220 μm (Fig. 67). The laser power 

amounted to 3.5 watts, at a feed motion of 16 mm/s.  

 

  

Fig. 67: Left: laser-ablated microchannels with different widths between 220 μm, 80 μm, and 40 μm; 

right: magnification of the molten surface of a 220 μm wide channel (upper left) and 80 μm wide channels 

 

The surface inside of the laser-ablated microchannels was rougher than non-laser-structured 

areas in SEM images. Therefore, the area of microchannels with 40 μm and 80 μm in widths 

seemed to be partially molten through the laser treatment and subsequently solidified quickly. 

The surface of microchannels with 220 μm width looked molten as well, but also seemed to 

be rougher and craggy. Same occurrence was noticed next to the microchannels and on the 
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struts. The depth of the laser-ablated micropatterns varied unintentionally between 30 to 110 

μm (Fig. 68). The microstruts between the microchannels had a width of approximately 100 

μm.  

 

 

Fig. 68: SEM image (top view) and 2D profile of laser-ablated microchannels. Microchannels were 

generated by use of NdYAG laser on a plane hydroxyapatite surface. 

 

A problem in this was the difficult selection of laser power to get a constant ablation quality. 

Furthermore, it was not possible to generate microchannels smaller than 30 to 40 μm on these 

pressed HA platelets without quality loss on defined micropattern edges. An XRD analysis of 

a laser-ablated hydroxyapatite sample showed no traces of ß-tri calcium phosphate (ß-TCP) 

on the surface, though amorphous fractions had been expected.  

Within these first tests it could be demonstrated that laser ablation is suitable for the 

fabrication of calcium phosphate micropatterns. These preliminary results with laser-ablated 

patterns and osteoblast-like osteosarcoma cells (MG-63) were published in Holthaus and 

Rezwan 2008. Laser treatment was further investigated in another study using laser 

interference patterning, which is described in the following chapter. 
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3.4.2 Laser interference patterning of hydroxyapatite surfaces 

The following results were published in the journal “Applied Surface Science” in 2011 by 

Jana Bergera, Marzellus grosse Holthausb, Nicola Pistilloac, Teja Rocha, Kurosch Rezwanb, 

Andrés Fabián Lasagnia (aFraunhofer Institute for Material and Beam Technology, Dresden; 
bUniversity of Bremen, Advanced Ceramics; cPolitecnico di Bari, Department of Mechanical 

and Management Engineering, Bari) (Berger et al., 2011). 

 

Abstract 

Direct laser interference patterning (DLIP) was used to produce periodic patterns on 

hydroxyapatite. An Nd:YAG laser operating at 266 and 355 nm wavelengths and with a pulse 

duration of 10 ns was used in these experiments. Line and cross-like patterns with periodical 

distances of 10 and 20 μm were fabricated with energy densities between 0.6 and 2.4 J/cm2 

and pulse numbers from 1 to 100. In the low/middle laser intensity range it could be observed 

that the structure depth increased with the pulse number. However, for higher energies the 

patterns smudged due to thermal effects. For single pulse laser experiments, an increase in 

laser fluence did not produce deeper structures. In addition, the best results were obtained 

when using low-medium laser intensities (~0.6–1.2 J/cm2) and moderate numbers of laser 

pulses (20–50), depending on the laser wavelength. Moreover, at a wavelength of 355 nm 

only patterns with 20 μm periods presented a good quality structure. In contrast, wavelengths 

of 266 nm improved resolution up to periods of 10 μm due to a higher photochemical 

contribution to the ablation process. An X-ray Photoelectron Spectroscopy (XPS) analysis 

showed that there were no significant changes in the chemical composition of laser-treated 

hydroxyapatite. 

 

Introduction 

There are several circumstances in which it may turn out necessary to repair or replace a 

considerable part of lost bone tissue. Now, one of the advantages of substituting lost bone 

tissue with artificial material is that a removal of healthy tissue is not necessary. On the other 

hand, there is an imminent danger of immune reaction and subsequent rejection of the implant 

(Queiroz et al., 2004; Blindow et al., 2009; Rodriguez-Lorenzo et al., 2003; Holthaus and 

Rezwan, 2008; Holthaus et al., 2010; Heule et al., 2003). Therefore, ideally, artificial bone 

replacement materials should present a similar structure and composition as compared to 

human bone, presenting thus bone function. One of the most widely used materials in this 
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field is hydroxyapatite (HA), Ca5(PO4)3(OH). This ceramic has often been used in bone 

implants thanks to its chemical composition being very similar to bone tissue as well as its 

excellent biocompatibility. Apart from chemical composition and mechanical properties of the 

artificial materials, a suitable modification of the surface topography can increase the 

bioactivity and may achieve a stronger bone-implant fixation (Dearnley et al., 1999; Jaffe et 

al., 1996; Brunette et al., 1999; de Groot et al., 1998). It has also been reported that a proper 

surface topography may not only improve the implant’s bone integration (Buser et al., 1991) 

but is also able to influence cell organization (Thomas et al., 1999; Perizollo et al., 2001). In 

this manner, it is possible to organize bone tissue structure (which is mechanically 

anisotropic), so that a strong implant/bone interface can be achieved. Within the techniques 

recently used to create micropatterns to influence bone cell growth, several techniques can be 

mentioned including Aerosol-Jet® printing of aqueous ceramic suspensions, laser ablation, 

and microcontact printing of aqueous ceramic suspension (Holthaus and Rezwan, 2008; 

Holthaus et al., 2010) using microstructured PDMS stamps. These surface patterning 

technologies have already been tested and proved to influence tumorous bone cell growth 

(MG-63) on micropatterned hydroxyapatite surfaces (Holthaus and Rezwan, 2008). Until 

now, the techniques previously deployed consist in rather time-consuming processes or 

require several processing steps. For example, in Aerosol-Jet® printing (Holthaus and 

Rezwan, 2008, Hedges et al., 2005, Zöllmer et al., 2006), an aqueous hydroxyapatite ceramic 

slurry is used first to print micropatterns on the substrate, which are subsequently sintered by 

a laser radiation. Through this technique, it was possible to obtain micropatterns ranging from 

20 to 140 μm in width. For microcontact printing, it is necessary first to produce a stamp of 

PDMS (polydimethylsiloxane) by replicating a microstructured silicon wafer. After plasma 

treatment with oxygen, the stamp becomes covered with hydroxyapatite ceramic slurry and 

pressed on the ceramic samples where it dries for 24 hours. The ceramic micropatterns remain 

on the surface after removal of the PDMS stamp. To reach the final stability, the samples are 

sintered at 1200 °C. With this technique, ceramic micropatterns with widths up to 10 μm 

could be fabricated (Holthaus and Rezwan, 2008, Heule et al., 2003). Another approach that 

has been used for this purpose is based on laser ablation using a scanning system to 

sequentially pattern an array of lines, for example. Yet, this is a time-consuming procedure, 

too, and due to limitations on focusing diameter of the laser beam, the microstructures 

obtained are generally not smaller than 30 μm. In addition, patterning on curved surfaces 

requires a precise control of the focusing distance. An alternative method for the fabrication 

of periodic arrays consists in Direct Laser Interference Patterning (DLIP). In this procedure, 
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the laser beam is split up into two or more coherent laser beams which interfere on the sample 

surface producing an interference pattern on the irradiated area. Depending on the irradiated 

materials, only one single laser pulse is necessary to process a surface area of several square 

millimetres at once. Further, different structures in the micrometer scale are producible. 

Moreover, a wide range of two-dimensional micrometer arrays can be fabricated by just 

controlling the geometrical configuration of the interference setup (e.g. number of utilized 

laser beams) (Lasagni et al., 2007; D’Alessandria et al., 2008). Compared to other laser-

assisted methods, variable geometries with controlled feature sizes are producible in a 

significantly shorter time. In addition, since the interference patterns result from the 

overlapping of different laser beams, no masks are necessary in this technique. Moreover, 

there is no particular need for controlled environment (such as vacuum or special gases), and 

as the interference patterns are produced in the volume at which the beams overlap, curved 

surfaces are treatable as well. In this study, we describe first the results from Direct Laser 

Interference Patterning of hydroxyapatite using a two-beam configuration. Also 2D arrays 

with cross-like patterns were fabricated using a positioning stage with controlled rotation 

angles. The topography and chemical structure of the fabricated arrays was determined by 

means of an optical profilometer and an X-ray Photoelectron Spectroscopy (XPS), 

respectively. 

 

Materials and methods 

Sample fabrication 

Hydroxyapatite substrates were prepared through biaxial die-pressing of calcium phosphate 

powder (Ca10(PO4)6(OH)2) (04238, Lot: 8345A, Sigma–Aldrich) to plane cylindrical platelets 

with a diameter of 10 and 23 mm and a thicknesses of about 2.8 mm. The particle size was 

about 150 nm. Afterwards, the green bodies were sintered at 1200 °C at ambient atmosphere 

for 2 hours with a heating rate of 50 °C/h and a cooling rate of 100 °C/h. To reduce surface 

roughness the platelets were polished manually with SiC paper (grit p4000, WS Flex 

Hermes).  

 

Laser interference patterning 

An Nd:YAG laser (Spectra Physics) with a pulse duration of 10 ns providing a fundamental 

wavelength of 1064 nm was used for the laser interference experiments. Shorter wavelengths 

(532, 355, and 266 nm) can be obtained through harmonic generation. In our case, the 
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substrates were irradiated with wavelengths of 266 and 355 nm. The laser fluence (energy per 

unit of area) was measured with a power meter (Newport model 842 PE). As it can be seen in 

Fig. 69, the laser beam was split into two coherent beams which interfere on the sample 

surface. 

 

Fig. 69: Experimental setup for the interference experiments; the laser beam was split into two individual 

laser beams interfering at the sample with an angle 2 α. 

 

In this way, a line-like interference pattern is obtained with an intensity distribution given by:  
2

0 sincos2 kxll  

            eq. 16 

 

with l0 marking the laser intensity of each laser beam and α the half angle between the laser 

beams. The periodic distance of the interference pattern (period) can be controlled by 

modifying the incident angles of the beams, and is given in eq. 17 below: 

sin2
p  

            eq. 17 

 

with  being the laser wavelength. For applying periodical distances of 10 and 20 μm, an 

angle of incidence ( ) of 0.5 and 1.0° was adjusted, respectively for 355 nm wavelengths. 

For the 266 nm radiation, an angle of incidence of 0.76° permitted to fabricate periods of 10 

μm. In order to produce cross-like structures, the samples were rotated utilising angles of 60° 

or 90°, and with a second laser pulse additional lines were produced. The influence of pulse 

frequency and laser fluence was investigated in the range from 1 to 100 pulses and from 0.6 to 

2.4 J/cm2, respectively.  

 

Surface characterization 

The surface topography of the samples was examined through optical microscope (OM), and 

SEM images were taken at 20 kV with a Camscan Series 2, Cambridge Instruments. The 
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surface profile was measured with an optical profilometer (Plμ 2300, Sensofar). These 

measurements were also used to calculate the structure depth, defined as the depth of the 

gratings within the pattern. The 3D data analysis was performed with the help of SensoMap 

Plus software (Sensofar), version 5.0.3.4995. A photoelectron spectrometer AXIS ULTRA 

(Kratos Analytical, UK) was utilised to investigate possible chemical changes on the surface 

due to the laser treatment. 

 

Results and discussion 

Different periodic arrays including line and cross-like structures have been fabricated on 

hydroxyapatite using DLIP. Depending on the interference pattern period, laser fluence as 

well as pulse number, different effects have been observed. Firstly, the polished HA 

substrates were irradiated with 355 nm laser radiation. Starting from a period of 20 μm, well 

defined structures developed even using one laser pulse (Fig. 70 a and b). Small regions of the 

original surface remained unchanged at the interference minima positions (Fig. 70 b).  

 

Fig. 70: SEM-micrographs of periodic line-like patterns fabricated on hydroxyapatite with 355 nm laser 

radiation, 20 μm period and 1.2 J/cm2 of laser fluence with: (a and b) 1 pulse, (c and d) 10 pulses and (e 

and f) 50 laser pulses 
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At interference maxima positions, the material was molten and ablated, and also several pores 

ranging from 0.4 to 1.5 μm were recognizable. A laser fluence of 1.2 J/cm2 was necessary to 

obtain a homogenous surface structure using a single laser pulse. The increase in laser fluence 

from 1.2 to 2.4 J/cm2 produced straighter and clearer lines. Furthermore, for values higher 

than 2.4 J/cm2, even the walls of the structures corresponding to the interference minima 

positions were modified. However, the variation of laser fluence did not necessarily lead to 

obtain deeper structures, as shown in Fig. 71 for 20 μm periodic arrays (e.g. 2.64 and 2.71 

μm) for 1.2 and 1.8 J/cm2, respectively. On the other hand, variation of the number of laser 

pulses permitted a better control of the structure depth.  

 

 

Fig. 71: Structure depth as a function of laser fluence for 355 and 266 nm laser radiation. In all cases one 

laser pulse was utilized. For 355 nm radiation, the period was 20 μm while for arrays irradiated with a 

wavelength of 266 nm 10 μm patterns were realized. 

 

From Fig. 72 (left) it can be seen that structures become deeper with increasing laser pulse 

number, up to a certain point, for all the studied laser intensities (0.6–2.4 J/cm2). This effect 

can be observed in the Scanning Electron Microscope images of Fig. 70 for HA substrates 

irradiated with 1.2 J/cm2 and different number of laser pulses (1 and 10). On the other hand, a 

high number of laser pulses resulted in a partial destruction of the pattern at several positions. 

This effect is shown in Fig. 70 e for a 20 μm periodic array produced with 50 laser pulses at 

1.2 J/cm2. In consequence, such processing parameters are not adequate for producing stable 

micropatterns. This behaviour is even more evident with higher laser fluence rates. The 

information depicted in Fig. 72 corresponds to experimental data where the partial destruction 

of the micropatterns was not observed.  
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In another set of experiments, HA substrates were irradiated with the same wavelength (355 

nm) but using interference patterns with 10 μm periods. In the whole studied range of laser 

intensities (0.6–2.4 J/cm2) and pulse numbers (1–100), periodic structures presenting a totally 

modified surface were observed (even with only one laser pulse). In addition, the structure 

lines are much less pronounced and, in general, surface patterns could be hardly recognized.  

 

 

Fig. 72: Structure depth as a function of pulse number for 355 (left) and 266 nm (right) laser wavelength 

and laser fluence rates ranging from 0.6 to 2.4 J/cm2 

 

This situation can be clearly observed looking at the 3D surface profiles depicted in Fig. 73 a 

and b. The effects mentioned above can be explained with the following process. Firstly, the 

temperature difference within the wall and the untreated material lead to significant thermal 

stresses that can partially destroy the pattern, especially when using several laser pulses (Fig. 

70 e and f) (Amer et al., 2005). For 355 nm laser pulses interacting with HA, an important 

contribution of photo-thermal processes is expected (Wheeler et al., 2003). This means that 

the material at the interference maxima positions is strongly heated during the laser pulse 

interaction. Moreover, due to the low thermal conductivity of the material, temperature 

differences even higher than 2000 to 3000 K are expected between interference maxima and 

minima positions (Bieda et al., 2010; D’Alessandria et al., 2008). In addition, the porosity of 

the ceramic material caused by the sintering process enhances such stresses due to disruption 

of the heat flow. In this way, the temperature is locally increased at the pore borders (Chivel 

et al., 2007). For smaller periods, the heat can be faster evacuated to the interference minima, 

thus also modifying substantially the material at those positions (melting and even 

vaporization). As a consequence, the pattern may get destroyed. 

Fig. 73 show a comparison of 10 and 20 μm pattern profiles. For the 10 μm structures (Fig. 

73 a), the patterns are less pronounced and practically not recognizable. By contrast, 
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patterns with a 20 μm period showed a better morphology (Fig. 73 b). Using a wavelength of 

266 nm, the HA substrates were also irradiated with different laser fluence rates as well as 

number of laser pulses. 

 

 

Fig. 73: (a, b) 3D and (c, d) 2D surface profiles of different periodic arrays fabricated with 266 and 355 nm 

laser pulses; (a) 1.2 J/cm2, 1 pulse, 355 nm, 10 μm period; (b) 1.2 J/cm2, 1 pulse, 355 nm, 20 μm period; (c) 

0.6 J/cm2, 50 pulses, 266 nm; (d) 1.8 J/cm2, 50 pulses, 266 nm 

 

As can be deduced from eq. 17, shorter wavelengths produce smaller periodic arrays at the 

same incident angle. In order to fabricate 20 μm periodic arrays, an intercepting angle of 

0.381° is necessary. Due to geometrical restrictions of the setup utilized for the laser 

interference experiments, the minimal possible separation between the beam splitter and the 

first mirror is about 20 mm. This means that the sample should be located at least 300 cm 

from the beam splitter. In consequence, smaller periodic structures (10 μm pattern periods) 

have to be fabricated. Fig. 74 a–c show SEM micrographs of different 10 μm periodic arrays 

fabricated with 0.6 J/cm2 and different numbers of laser pulses (1–50). Similarly to the 355 

nm pulses, more laser pulses produced deeper structures up to a certain value, from which the 

structure was partially destroyed (Fig. 72 right). This effect is stronger for more energetic 

laser pulses and, as explained before, results from thermal stresses which become more 

relevant at higher laser fluence rates as well as at large numbers of laser pulses (Fig. 74 d). 
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Fig. 74: SEM micrographs of periodic line-like patterns fabricated on hydroxyapatite with 266 nm laser 

radiation and 10 μm pattern period; (a–c) 0.6 and (d) 2.4 J/cm2 per pulse; (a) 1 pulse; (b and d) 10 pulses; 

(c) 50 pulses 

 

On the other hand, patterns with 10 μm period were homogenous for several combinations of 

number of pulses and laser fluence rates in comparison to the structures fabricated with 355 

nm of wavelength (e.g. Fig. 74 a–c). In particular, substrates irradiated with 0.6 J/cm2 and 50 

pulses showed a structure depth of 5.5 μm (Fig. 74 c). A 2D profile of this structure is shown 

in Fig. 73 c. Furthermore, even in substrates irradiated with only one laser pulse, well defined 

line-like structures could be observed (Fig. 74 a). In the latter case, and similarly to 355 nm 

laser pulses, the structure depth almost did not change when increasing laser fluence for single 

laser pulse experiments (Fig. 71). Moreover, for both studied wavelengths, the thermal 

diffusion length of HA substrates irradiated with 10 ns laser pulses was much smaller than the 

obtained structure depth (~0.5 and 2.5 μm for 266 and 355 nm, respectively). Thus, the 

ablation process is mainly controlled via the absorption coefficient, which means that at 266 

nm the smaller structure depth can be related to the higher absorption of the HA substrates 

(Nakata et al., 2007; Dahotre et al., 2008; Laude et al., 1998; Samant et al., 2009). 

Also the width of the modified regions at the interference maxima was smaller than with 355 

nm pulses. With short UV wavelengths, absorption of photons can result in transitions 
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between different electronic energy levels. Thus, the excited ceramic can decompose directly 

into different products without significant increment of temperature (photochemical ablation) 

(Nakata et al., 2007). However, we also cannot neglect for this wavelength a significant 

photothermal contribution, which is especially true for high laser fluence rates (e.g. 1.8–2.4 

J/cm2), as depicted in Fig. 74 d. In addition to 10 μm, also 5 μm patterns were fabricated with 

266 nm wavelength. However, in this case, throughout the whole studied range of laser 

fluence and pulse number, the surface was partially destroyed and no well-defined structure 

was obtained (not shown). The reason for this behaviour can also be found in thermal stresses 

induced by the laser treatment. Nevertheless, since for 266 nm wavelengths a higher 

contribution of photochemical effects is expected, significant thermal stresses are only 

expected for shorter periods than for 355 nm irradiation. This behaviour is very different to 

periodic arrays fabricated with this technique on metals (Lasagni et al., 2007; D’Alessandria 

et al., 2008). In this case, even periodic arrays with periodic distance in the sub-micrometer 

range could be fabricated.  

When comparing Fig. 72 left and right, and even for the different periodic distances studied, 

there is a clear shift of the maximal number of laser pulses necessary to obtain deeper 

structures without distorting the pattern. While for 355 nm and 20 μm arrays less than 20 

pulses must be utilized to preserve the structure, for 266 nm and 10μm patterns the number of 

laser pulses can be increased of up to 50. This effect can be also attributed to a stronger 

photochemical process for 266 nm wavelengths.  

In addition to line-like shaped arrays, also other geometries can be fabricated using the same 

two-beam setup. Cross-like surface structures, for instance, can be produced by rotating the 

sample a specific angle as shown in Fig. 75 a and b, for wavelengths of 355 and 266 nm , and 

rotation angles of 60° and 90°, respectively. As expected, cross-like patterns fabricated with 

shorter wavelengths (266 nm) present a better structure quality (Fig. 75 b). For 355 nm 

pulses, in all cases no original (i.e. untreated) surface was observed after irradiation, and the 

whole surface seemed to be molten and/or ablated. This behaviour was generally observed 

independently of laser intensity and number of laser pulses. However, and especially for small 

periods and large number of laser pulses (>50), since thermal stresses are produced when 

fabricating the line-like arrays during the first irradiation step, at some stage in the second 

irradiation step after rotation of the substrate, the first structure may be partially destroyed due 

to the cumulated stresses (Fig. 75 c). 
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Fig. 75: SEM micrographs of periodic cross-like structures fabricated with (a) 355 and (b, c) 266 nm laser 

radiation. The period in (a) was 20 μm and the sample was rotated 60° between irradiation steps. In (b) 

and (c), the period was 10 μm and the sample was rotated 60 and 90°, respectively. The laser fluence and 

number of laser pulses per irradiation step were: (a) 1.8 J/cm2, 1 laser pulse; (b) 0.8 J/cm2, 25 pulses; (c) 

0.8 J/cm2, 75 laser pulses. 

 

As shown in Fig. 70 and Fig. 74, for 355 and 266 nm wavelengths, the modified regions 

corresponding to the interference maxima positions present several pores. It is very well 

known that interaction of ns-pulsed lasers with materials may induce different photothermal 

effects. One of these effects is the formation of pores due to local evaporation of the material 

at high temperatures. Another reason to explain this phenomenon is given in the high affinity 

of water and HA. Water is absorbed at the surface as well as at the pores of the ceramic 

material. Then, it evaporates during the laser interaction process, forming bubbles of gas that 



Experimental results of ceramic micropatterning 

 - 144 - 

move towards the surface and thus produce the μm pores (Corno et al., 2009; Santos et al., 

2002). 

In order to determine the chemical surface composition of hydroxyapatite after laser 

treatment, the samples were analyzed using X-ray Photoelectron Spectroscopy (XPS) 

(Amrah-Bouali et al., 1994). Fig. 76 shows XPS spectra of untreated (not irradiated) and 

treated HA substrates with a laser fluence of 4.8 J/cm2 and 10 laser pulses for both utilized 

wavelengths (266 and 355 nm).  

 

 

Fig. 76: XPS spectra of untreated (not irradiated) and treated samples (4.8 J/cm2, 10 laser pulses) at laser 

wavelengths of 266 and 355 nm 

 

This laser intensity is clearly higher than the maximal energy densities utilized in the 

interference experiments. Fig. 76 b shows that the phosphorus peaks (P 2p) in the irradiated 

and not irradiated HA samples do not show any substantial changes. This indicates that no 

additional phosphate phase is formed during laser irradiation. Also the calcium peaks (Ca 2p, 

Fig. 76 c) for the irradiated and not irradiated samples corresponding to Ca 2p3/2 (~348 eV) 

and Ca 2p1/2 (351 eV) are very similar to peak ratios ranging from 1.44 to 1.50. The evolution 

of the oxygen peaks (O 1s, Fig. 76 a) corroborates the behaviour observed in the phosphorus 

and calcium peaks, and, in conclusion, we can confirm that even when using a large number 

of laser pulses and high laser intensities, no substantial changes in the chemical composition 

have been produced on the studied materials. Similar results were obtained for other samples 

irradiated with 1 to 10 laser pulses and 2.4 J/cm2 of laser fluence (not shown). The obtained 

results are in accordance with the findings of other researchers describing irradiation of HA 

substrates with UV lasers (Amrah-Bouali et al., 1994; Ferraz et al., 1999; Sivakumar et al., 

2008). 
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Conclusions 

Single and multi-pulse laser interference experiments have been conducted on hydroxyapatite. 

Using different interference patterns such as line and cross-like arrays, the effects of laser 

fluence, periodic distance, pulse number, and wavelength were investigated. It was found that 

there is a range of laser fluence rates and pulse numbers where homogenous structures 

develop. In addition, larger periods (e.g. 20 and 10 μm for 355 and 266 nm wavelengths, 

respectively) allow for better patterns. In consequence, a compromise between laser fluence 

and number of laser pulses must be found to obtain well-defined and stable structures.  

By increasing the pulse number (5–50) deeper structures could also be fabricated, especially 

at moderate laser fluence rates (e.g. 0.6 J/cm2 for 266 nm wavelength). For single pulse laser 

experiments, an increase in laser fluence did not produce deeper structures after certain laser 

fluence. The smaller structure depth of HA substrates irradiated with 266 nm wavelength 

result from a higher absorption than when using 355 nm laser radiation. 

At high laser fluence rates (1.8–2.4 J/cm2) as well as with several laser pulses (~20), the 

periodic arrays become partially destroyed due to significant thermal stresses between 

interference maxima and minima positions. On the other hand, using shorter wavelengths 

(266 nm) the ablation is also conducted by photochemical processes. Hence, smaller periodic 

arrays as well as deeper structures could be fabricated since thermal stresses are reduced. In 

the case of 266 nm laser radiation, patterns with periodic distance smaller than 10 μm were 

partially destroyed in the whole studied range of laser fluence and pulse numbers, while for 

355 nm radiation the limit was 20 μm. 

XPS analyses have shown that there are no chemical changes in the irradiated hydroxyapatite 

surface, due to the laser irradiation, not even at high laser fluence rates (4.8 J/cm2). However, 

since HA substrates are locally molten and evaporated, it is also possible that amorphous HA 

has been formed due to the fast interaction of the laser beam with the material. This behaviour 

has been reported for HA substrates irradiated with ArF, KrF, and XeF lasers (193, 248 and 

351 nm, respectively), where a thin layer of amorphous HA (of some nanometres) was formed 

after evaporation of the material from an ablated hole and posterior deposition around that 

hole (Nakata et al., 2007).  

The size and scale of the structures reported here are appropriate for controlling cell adhesion, 

promoting cell alignment, and improving biocompatibility. Further studies to evaluate 

biological response of cells are being conducted and will be reported in the future.  
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4. Comparison of micropatterning methods for ceramic surfaces 

The following results were submitted to the Journal of the European Ceramic Society by 

Marzellus grosse Holthaus, Laura Treccani and Kurosch Rezwan in 2011 (University of 

Bremen, Germany).  

 

Abstract 

The fabrication of defined ceramic micropatterns smaller than 100 μm is, due to the hardness 

and brittleness of ceramic materials, still very challenging. However, in recent years 

micropatterned ceramic surfaces have become highly interesting for biomedical applications 

or the fabrication of energy-converting devices, such as solid oxide fuel or solar cells. In this 

study, we will evaluate six modern techniques for ceramic pattern fabrication with feature 

sizes ranging from 5 to 100 μm. Ceramic materials such as alumina, zirconia, silica, and 

hydroxyapatite will be discussed herein. Advantages and disadvantages for each process are 

highlighted and compared to other techniques. Three of these techniques, namely 

microtransfer molding, modified micromolding, and Aerosol-Jet® printing generate patterns 

starting with aqueous ceramic suspensions. The other three techniques, i.e. micromachining 

and two different types of laser treatment, produce micropatterns through the removal of 

material from solid ceramic substrates. The detailed analysis yields that properties such as the 

desired micropatterning size, shape, or the production time are strongly dependent on the 

chosen technique. 

 

Introduction 

Micropatterned surfaces are gaining ever more interest in the field of material research and 

industrial manufacture. They have become state of the art and opened new fields of potential 

applications for the fabrication of, for example, micromolds with modulated micro-

topographies (Brinksmeier et al., 2008), or for the modification of micro-bio-interfaces in 

order to guide interactions between cell tissue and medical implant surfaces (Kirmizidis and 

Birch, 2009; Lim and Donahue, 2007). The development and improvement of surface micro 

and nanopatterning have been in the focus of materials research for the last twenty years. In 

doing so, various techniques for the fabrication of patterned surfaces have been developed. 

These techniques have been reviewed by a large number of research groups (Gates et al., 

2005; Geissler and Xia, 2004; Heule et al., 2003; ten Elshof et al., 2010; Xia and Whitesides, 
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1998). Ceramic materials are of great interest for micropatterning processes, because they 

exhibit highly advantageous properties compared to polymers and metals, advantages such as 

high thermal resistance, chemical inertness, high hardness, and biocompatibility. However, 

obtaining ceramic micropatterns with high accuracy, e.g. precise edge contours, is very 

challenging due to the particular hardness and typically brittle behaviour of ceramic materials. 

For the surface patterning of ceramic materials mainly two different strategies can be applied. 

First of all, there is the possibility of machine-aided ceramic micropatterning with a strong 

need for technical equipment. Examples of it are laser surface treatment, injection molding of 

microparts, slip pressing or casting of microdevices, and micromachining of surfaces through 

CNC machining, for instance (Computer Numerical Control). Beyond doubt, the results of the 

machine-aided methods are quite convincing. Bauer et al. reported the reliable fabrication of 

microparts with highly accurate edge contours and surface details by use of ceramic slip 

pressing. Thereby, alumina arrays of more than a thousand columns could be fabricated with 

smooth sidewalls and sharp edges. The thus fabricated patterns were 455 μm high and 115 

μm wide (Bauer et al., 1999). Other groups reported reproducible results from the fabrication 

of microdevices via ceramic injection molding (CIM), in particular with low pressure 

injection molding (LPIM) of ceramic feedstocks. Various ceramic materials such as alumina, 

hydroxyapatite, and zirconia have been used to reliably produce micropatterned components 

of a few cm2 in size (Fanelli et al., 1989; Knitter et al., 2001; Piotter et al., 2003). Some of 

these machine-aided processes yielded remarkable results in terms of micropattern edge 

contours und process reliability. One main advantage of this is the potential fabrication of 

high numbers of items per time. The limiting factor, however, is the difficulty in obtaining 

micropatterns or components smaller than 100 μm. A different approach to fabricate highly 

defined ceramic patterns is the possibility of using low-cost methods such as soft-lithography 

techniques (Xia and Whitesides, 1998). Soft-lithography is able to fabricate micropatterns 

with low technical efforts and yet very high accuracy - even smaller than 100 μm - at the 

same time.  

In this study, we evaluate the results of six different micropatterning techniques for ceramic 

materials for obtaining structural features of less than 100 μm. Non-oxide ceramic 

hydroxyapatite and at least one oxide material, such as alumina or zirconia, were used as 

material to be patterned. The following techniques will be evaluated: microtransfer molding 

(μTM), modified micromolding (m-μM), Aerosol-Jet® printing, CNC-micromachining as well 

as two types of laser treatment. Each technique was tested and evaluated for ceramic 

micropatterning size features ranging from 5 to 100 μm. 
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Experimental procedures 

Six different processing techniques were applied to fabricate micropatterned ceramic surfaces. 

For CNC micromachining and two types of laser treatment, solid ceramic substrates were 

deployed. From these samples, material was removed in order to form micropatterned 

surfaces. For the other three techniques, namely, microtransfer molding, modified 

micromolding, and Aerosol-Jet® printing, the micropatterns were obtained by starting with 

aqueous ceramic suspensions. 

 

Fabrication of non-patterned substrates 

Plane cylindrical, non-patterned platelets were fabricated through uni-axially die-pressing 

with 15 kN of 1.7 g commercially available calcium phosphate hydroxyapatite powder (HA, 

Ca10(PO4)6(OH)2, Prod.-No. 04238, Lot: 8345A, Sigma-Aldrich Chemie GmbH, Munich, 

Germany). The HA powder had a theoretical density of 3.03 ± 0.04 g/cm3 and particle sizes of 

151 ± 0.24 nm. After die-pressing, all samples were sintered for two hours at 1200 °C in a 

furnace at ambient conditions (LHT08/17, Nabertherm GmbH, Lilienthal, Germany. The 

heating rate was at 50 °C/h, the cooling rate at 100 °C/h. Except for modified micromolding, 

the non-patterned samples were used for all patterning processes. 

 

Fabrication of aqueous ceramic suspensions for molding and printing 

Three different ceramic suspensions were used for the patterning processes. One suspension 

contained 11.15 g of HA particles. The HA powder was stirred (RW20, IKA Werke GmbH, 

Staufen, Germany) into 20 g of double deionised water (Synergy®, Millipore, resistivity 18 

MΩ*cm, Schwalbach, Germany) so as to obtain a suspension of 15 vol.% solid loading. The 

ceramic suspension was adjusted to pH 9-10 through the addition of ammonia solution (25 

%), which served the aim to achieve electrostatic stability and to prevent agglomeration of the 

particles. This ceramic suspension was used as a stamping liquid for the microtransfer 

molding (μTM) process. Another ceramic suspension was utilised as a ceramic “ink” for 

Aerosol-Jet® printing processes. It was similar to the first suspension, yet it was diluted to a 

solid loading of 6.6 vol.%. The third suspension was used for modified micromolding. Its 

composition was similar to the one used for liquid stamping, but, additionally, a polyacrylic 

acid-based dispersant/binder was added (12 mg/g ceramic powder). Prior to micropatterning, 

all ceramic suspensions were homogenised through ultrasonic treatment (Sonifier 450, 



Comparison of micropatterning methods for ceramic surfaces 

 - 149 - 

Branson Ultraschall, Dietzenbach, Germany) for three minutes in order to disperse potential 

agglomerates. 

 

Micropatterning techniques 

Microtransfer molding 

For the microtransfer molding (μTM) process, a ceramic suspension was pipetted onto the 

micropatterned area of a soft mold (PDMS, Sylgard® 184 silicone elastomer, Dow Corning, 

Wiesbaden, Germany). Excessive suspension was carefully removed with a doctor’s blade. 

Subsequently, the filled mold was deposited on a plane ceramic substrate. After drying, the 

mold was lifted carefully. The patterned thin film remained on the substrate during the 

removal of the mold (Fig. 77 a). Hereafter, the ceramic substrate and ceramic patterns were 

sintered. A more detailed description of this method is published in Holthaus and Rezwan 

2008. Generally speaking, adjustable parameters for microtransfer molding are, for example, 

drying conditions, dispersants and binders, particle sizes, and solid loadings of used ceramic 

suspensions. 

 

Modified micromolding 

Similar to the microtransfer molding process, micropatterned soft PDMS master molds were 

deployed for modified micromolding (m-μM). The cylindrical molds were sealed with 

polyethylene tubes and aqueous ceramic suspension was pipetted into the molding chamber. 

During the drying process the ceramic particles sank down to the bottom of the mold, while 

water was continuously evaporating. After drying, the mold could be lifted with care from the 

micropatterned solid ceramic sample. Afterwards, sintering was performed as mentioned 

above. Additional details about this method are described in Holthaus et al. 2010 (Fig. 77 b). 

Adjustable parameters for modified micromolding are e.g. drying conditions, binders and 

dispersants, solid loading of the ceramic suspensions and particle size. 

 

Aerosol-Jet® printing 

Aerosol-Jet® printing (Optomec Inc., Albuquerque, USA), also known as maskless mesocale 

materials deposition (M3D), was used for directly printing ceramic aerosols on non-patterned 

ceramic substrates. The aerosol of a ceramic suspension was generated with an ultrasonic 

transducer. The printing device is computer-aided and was used to deposit the ceramic 
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particles on specific positions onto the plane substrate. The particles were carried by a gas and 

deposited by a nozzle onto the substrate. Subsequent sintering of the printed microstructures 

by means of an NdYAG laser (Newport Spectra-Physics, Darmstadt, Germany) was 

proceeded. Further information about this experiment is provided in Holthaus and Rezwan 

(2008) (Fig. 77 c). Adjustable parameters for Aerosol-Jet® printing are related to the used 

ceramic suspensions, e.g. dispersants and binders, particle sizes, and solid loading. 

Additionally, process parameters such as the feed motion of the print head, the distance 

between nozzle and substrate, the repetition of printing cycles on identical locations, and the 

power of the laser are important parameters for the outcome of the patterning process. 

 

 

Fig. 77: Illustrations of micropatterning techniques using aqueous ceramic suspension. A: microtransfer 

molding (μTM). B: modified micromolding (m-μM). C: Aerosol-Jet® printing (M3D) 

 

CNC micromachining  

Automated CNC milling and grinding (Ultrasonic 20 linear, DMG Sauer GmbH, Stipshausen, 

Germany) was applied on solid ceramic substrates. During the cutting process, the workpiece 

was held stationary as the rotating cutting tool moved along a programmed path in order to 

cut the material. Machining was operated with so-called end milling cutters, namely, with 

ball-nose end mills. The tools cut with their sides as well as with their tips, while the contact 

force during machining removed particles from the surface layer of the ceramic substrate 

(Fig. 78 a). Altogether, the rotational speed (n), the feed velocity (vf), and the diameter of the 

cutting tool (D) are important adjustable parameters which influence the machining results. 
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Laser treatment 

Two different laser treatment processes were applied. By use of the first laser treatment 

ceramic particles were directly removed from the solid ceramic substrate through thermal 

laser ablation at ambient conditions via an Nd:YAG laser (Newport Spectra-Physics) at a 

wavelength of 1064 nm. Thereby, ceramic particles were removed by the laser beam from a 

flux zone in the irradiated area (Fig. 78 b). A more detailed description of this treatment is 

given in Holthaus and Rezwan (2008). 

The second laser treatment technique was the direct laser interference patterning (DLIP). In 

this procedure, the laser provides a fundamental wavelength of 1064 nm (Nd:YAG, Newport 

Spectra-Physics). An applied wavelength of 266 nm was obtained by harmonic generation via 

a shutter. The laser beam was split into two coherent laser beams which interfered on the 

ceramic substrate surface. This interference process, then, produced micropatterns on the 

irradiated area of several square millimetres (Fig. 78 c). Further details of this method can be 

found in Berger et al. (2011). Various parameters such as the laser power, the laser beam 

wave length, the number of laser pulses, or the pulse duration are important parameters for the 

adjustment of both laser treatment processes. 

 

 

Fig. 78: Illustrations of different micropatterning techniques. D: CNC micromachining via a cutting tool 

with a diameter (D), rotational speed (n), and feed velocity (vf). E1: laser ablation process. E2: setup of 

direct laser interference patterning (DLIP) 

 

Imaging of surface texture and analysis of surface roughness  

Micrographs were taken at 20 kV through scanning electron microscopy (SEM) with a 

Camscan Series 2 (Obducat CamScan Ltd., Cambridgeshire, United Kingdom). Prior to 

imaging, the samples were sputtered with gold (K550, Emitech, Judges Scientific plc, West 

Sussex, UK).  
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3D measurements of fabricated ceramic micropatterns were taken via a confocal optical 

profilometry system (Plμ 2300, Sensofar Technology, Terrassa, Spain) at 420-fold 

magnification. Measurements in triplicate were conducted on n = 3 samples each. In doing the 

profilometry analysis, the average surface roughness (Ra) of micropatterned areas was 

determined. The measurement length was lc = 4 mm according to ISO4287 (ISO 4287, 1997). 

These measurements were applied to evaluate the influence of each micropatterning process 

on the surface roughness in the patterning region. In addition, virtual cross sections (2D 

surface profiles) were exemplarily measured for one sample of each micropatterning method. 

 

Determination of crystal structure and analysis of surface properties 

The samples of all applied patterning methods were analysed via X-ray diffraction 

measurements (XRD, C3000, Seifert, Ahrensburg, Germany) in order to determine possible 

changes in the crystal structure due to the patterning technique.  

Two methods were used to detect possible wear residues from, for instance, tools from the 

patterning process. Firstly, energy-dispersive spectroscopy (EDS, Camscan Series 2, Obducat 

CamScan Ltd., Cambridgeshire, UK) with a detection limit of about 0.1% of the elements 

mass was used, and two different spots with an area of 27 x 17 μm2 each were measured. 

Secondly, X-ray Fluorescence analysis (XRF) was conducted so as to detect residues from the 

patterning process (detection limit of approximately 10 ppm). XRF measurement was carried 

out using a low and a high pass filter (0-40 keV, XL3t900 AnalytiCON Instruments GmbH, 

Rosbach, v.d. Hoehe, Germany). The measurements were taken on two different circular spots 

with an area of 7.1 mm2 each. Prior to the EDS and XRF analysis, the samples were washed 

three times for five minutes respectively with deionised water in an ultrasonic cleaner. 

 

Results  

Micropatterned ceramic thin films stamped via microtransfer molding (μTM)  

The drying of microtransfer-molded ceramic surfaces took about two to three days at ambient 

conditions (~21 °C, 30-40% r.h.) and up to six days at 4 °C. Although it was possible to 

fabricate ceramic samples without any cracks after the drying process, all samples showed 

very fine micron sized cracks after sintering. The cracks occurred throughout the whole 

sample surface. However, accurate micropatterns with vertical sidewalls were clearly visible. 

Various pattern geometries such as microcylinders, channels, and struts have been 

successfully transfer-molded. Although excessive ceramic suspension was removed from the 
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mold, a layer of suspension below the patterns was always transferred to the substrate surface. 

The thickness of the transferred thin films varied from 20 to 110 μm. The accuracy in height 

of some transferred patterns was homogenous after drying (± 1 μm). The smallest transferred 

HA patterns were 10 μm in width featuring heights of 10 μm. All patterned areas looked 

craggy and fissured after sintering, whereas microchannels and microstruts were still accurate 

and had defined contours on edges. Due to big cracks the accuracy of pattern heights was 

strongly reduced (± 4 μm) after sintering. The accuracy of sintered patterns varied about ± 2 

μm in width. The average surface roughness inside sintered transfer-molded HA 

microchannels was of Ra = 2.9 μm.  

The microtransfer-molded ZrO2 patterns shown in Fig. 79 a were fabricated using a 

suspension of 15 vol.%. The patterns dried at ambient conditions. XRD analysis of transfer-

molded and sintered HA samples showed no detectable changes in crystal structure, e.g. peaks 

of ß-tricalcium phosphate (ß-TCP). Other ceramic suspensions, such as alumina, have been 

transfer-molded with similar results. 

 

Micropatterned solid ceramic bodies fabricated via modified micromolding (m-μM) 

Solid micropatterned ceramic samples were fabricated via modified micromolding and were 

dried for a period of up to five days at ambient conditions. This drying period could be 

decreased to two days by means of a climate chamber at 30 °C and 30% r.h. The crack-free 

fabrication of patterned solid ceramic samples was feasible with various ceramic suspensions. 

Thereby, different geometries such as cylinders, struts, and microchannels with widths and 

depths ranging from 5 to 200 μm could be successfully produced. The molded micropatterns 

featured very accurate edge contours after drying and sintering. Molded patterns measured on 

different samples varied about ± 1.4 μm in height and ± 1.2 μm in width after sintering. 

The molded patterns shown in Fig. 79 b were fabricated using a SiO2 suspension of 10 vol.% 

with 12 mg Syntran®/ g ceramic. The samples were then dried at 25 °C with 25% r.h. and 

sintered at 1400 °C. The average roughness inside and outside patterned areas was identical. 

For example, a roughness of Ra = 0.2 μm was measured inside sintered molded HA patterns. 

XRD analysis of a modified micromolded and sintered HA sample showed no changes in 

crystal structure.  
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Aerosol-Jet®-printed ceramic micropatterns on ceramic substrates 

The complete Aerosol-Jet® patterning of a ceramic sample as shown in Fig. 79 c took roughly 

three hours. The printed micropatterns showed a grainy surface and did not feature vertical 

sidewalls and accurate edge contours. Single ceramic particles or agglomerates were visible 

on top of the fabricated patterns as well as next to the patterned regions. The Aerosol-Jet®-

printed patterns dried within seconds, thus a controlled drying process was not applicable. 

Various pattern geometries such as circles and lines could be successfully printed. After the 

laser treatment, the ceramic particles were not fully sintered and partially showed only sinter 

neck formation. A few fine cracks were distinguished within the generated structures. The 

sintering quality varied strongly, with some regions of the micropatterns having been more 

sintered than others and some being already molten. The micropattern size was limited by the 

size of a single printed line. The smallest adjustable printed lines ranged from 10 to 15 μm in 

width and height. The heights of printed micropatterns on different samples varied between ± 

4 μm and ± 3 μm in width. It was possible to print multi-layers in order to fabricate, for 

instance, micropatterns with widths of 50 μm and heights of almost 30 μm. The average 

roughness on aerosol-printed regions was Ra = 4.1 μm. The focused aerosol beam had often 

to be re-adjusted, which was due to an inconstant aerosol flow.  

The patterns shown in Fig. 79 c were fabricated by printing single lines of HA suspension 

(6.6 vol.%), using a feed motion of the printer nozzle at 0.5 mm/s. Afterwards, the patterns 

were sintered with an Nd:YAG laser (1064 nm) with a power of 0.25 W. The lateral laser 

movement was at 0.5 mm/s. An XRD analysis of a laser-sintered, aerosol-printed HA sample 

showed no changes in crystal structure.  

 

Fig. 79: SEM micrographs of micropatterned ceramic surfaces. A: microtransfer-molded 30 μm wide 

zirconia channels; B: modified micromolded 50 μm wide SiO2 cylinders; C: Aerosol-Jet®-printed, 10 μm 

wide HA struts. The inset shows the magnification of a printed and sintered line. The 2D profiles show 

representative profiles of fabricated ceramic patterns. 
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CNC-micromachined solid ceramic samples 

By using grinding pins or milling tools in the micromachining process it was possible to 

fabricate large ceramic micropatterns of several cm2. The complete machining of each 

ceramic sample took about sixty minutes. In both cases, periodic groove-like micropatterns 

were machined. In addition, other pattern geometries such as pyramid-like patterns were 

successfully machined in preliminary tests. Milled HA samples exhibited U and V-shaped 

topographies, with their surface being chipped and rough. In contrast, grinding delivered 

sharply edged grooves (rectangle profile) with pattern sidewalls almost vertical and 

perpendicular to the bottom area. Microgrinding resulted in smoother surface roughness as 

compared to milling. However, the surface roughness of all CNC-machined regions ranged 

from Ra = 0.3 to 0.8 μm. The smallest machined patterns were of 100 μm in width with a 

maximum pattern depth of about 10 μm. Smaller patterns of 75 μm in width were achieved by 

re-sintering micromachined ceramic green bodies due to shrinkage. In comparing the 

identically machined samples, the accuracy in pattern width was of ± 3 μm and ± 2 μm in 

depth. The ZrO2 micropatterns illustrated in Fig. 80 d were machined using a ball-end 

grinding pin with a tool diameter of 500 μm, a feed velocity of 125 mm/min, and a rotational 

speed of 40.000 rpm. An XRD analysis of the thus machined HA samples showed no 

alterations in crystal structure. Although strong defects due to abrasive wear were found on 

the machine tools, no residues from the tools were detectable via XRF analysis or EDS after 

three washing processes with double deionised water in an ultrasound cleaner.  

 

Laser-treated ceramic surfaces  

The ablation process of a ceramic sample took about ten minutes. The fabricated 

microchannels showed U/V-shaped profiles. The surface of these ablated patterns looked 

rough and bumpy. Thereby, the surface of microchannels with widths of 40 μm and 80 μm 

seemed to be partially molten. The surface of microchannels with widths of 220 μm looked 

molten as well, but also rough and craggy. Moreover, the contours of ablated pattern edges 

were inaccurate and rough. The surface roughness inside microchannels of 220 μm in width 

was of Ra = 14.8 μm. Rough surfaces with drop-shaped bumps were noticed next to laser-

ablated regions, e.g. on the struts between the channels. It seemed like molten ceramic 

particles solidified subsequently after ablation. The depth of the laser-ablated micropatterns 

varied from 30 to 110 μm, whereas the depth increased with increasing channel width. The 

accuracy in pattern height was about ± 10 μm and the accuracy in pattern width about ± 8 μm. 
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The adjustment of laser power in order to get constant ablation quality turned out somewhat 

difficult. Furthermore, it was not feasible to generate micropatterns smaller than ~ 30 μm on 

die-pressed ceramic substrates without a significant loss of micropattern edge contour. The 

HA micropatterns shown in Fig. 80 e1 were laser-ablated using an Nd:YAG laser with a 

wavelength of 1064 nm and a pulse duration of 100 ns. The laser power was of 3.5 W, and a 

feed motion of 16 mm/s was used. The XRD analysis of laser-ablated HA samples showed no 

change in crystal structure, though amorphous fractions due the massive heat impact are most 

likely to appear. The oxide ceramic alumina was patterned in initial tests. 

 

Direct laser interference patterning (DLIP) conducted on plane ceramic surfaces resulted in 

periodic patterns with U/V-shaped pattern profiles. The effects of laser fluence, periodic 

distance, pulse number, and wavelength were investigated, from which it was found that there 

is a range of laser fluence rates and pulse frequencies at which homogenous ceramic patterns 

can be developed. Different interference patterns such as line-like and cross-like arrays were 

fabricated using single laser or multi-laser pulses. The generation of large area patterning with 

distinct patterns of several mm2 was realisable by using only one single laser pulse. The 

patterning of all sample surfaces took a few minutes. The interference patterns showed a 

distinct geometry, but their surfaces looked rough and partially molten. The contour on 

pattern edges was inaccurate and rough, while the measured surface roughness inside patterns 

was of Ra = 2.1 μm. The smallest producible line-like patterns were of 10 μm in width. 

Pattern depths ranging from 0.5 μm to 6 μm could be fabricated controllably. 

 

Fig. 80: SEM micrographs of micropatterned ceramic surfaces. D: micromachined (grinding) 200 μm 

wide ZrO2 channels; E1: laser-ablated HA microchannels with widths of 40 μm (centre); E2: laser-

interference patterned 10 μm wide HA channels. 2D profiles show representative profiles of fabricated 

ceramic patterns. 
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The accuracy of pattern width as well as pattern depth was about ± 1 μm, comparing various 

samples. The HA patterns shown in Fig. 80 e2 were generated at a wavelength of 266 nm, a 

laser fluence of 0.6 J/cm2, and 50 pulses with durations of 10 ns each. Other materials such as 

oxide ceramics alumina and zirconia were patterned in initial tests. No significant changes 

were detectable in the XPS analysis of untreated and DLIP-treated HA substrates with a laser 

fluence of 4.8 J/cm2 and ten laser pulses. 

 

Discussion 

Microtransfer molding was applied in order to fabricate micropatterned thin films with 

various pattern geometries as small as 10 μm with very high accuracy on edge contours. Even 

suspensions containing, for instance, fluorescently labelled biomolecules such as protein BSA 

(bovine serum albumin) have been successfully patterned to ceramic surfaces and glass slides 

(Fig. 25). The deviations of ± 4 μm in pattern height and of ± 2 μm in width on different 

ceramic transfer-patterned samples seemed promising. A disadvantage of it consists in the 

production time, which is of some days due to the drying process. On the other hand, one 

advantage can be seen in the relatively low costs for equipment. The occurrence of cracks is 

strongly dependent on processing parameters such as the substrate surface, the sintering 

process, or the amount of stamped material. The lower the amount of stamped material, the 

lower will be the probability of cracks. The maximum success rate for crack-free drying on 

glass slides was about 70%, whereas the maximal crack-free drying on a ceramic (HA) 

surface was only 15%. In the end, though, all sintered samples showed cracks. However, until 

the occurrence of cracks is not fully evitable, the μTM process is not applicable for large area 

patterning of ceramic surfaces.  

 

Overall, it was possible to fabricate micropatterned solid ceramic samples via modified 

micromolding. In doing so, various materials and geometries have been successfully used. 

The smallest fabricated patterns were only 5 μm in width and height, whereas the edge

contours were still very high. Smaller patterns have not been fabricated with any other tested 

technique. The deviations of molded patterns on different samples were ± 1 μm in height and 

width. One big disadvantage is the long production time of a few days. A clear advantage of 

m-μM consists in the joint processing of the substrate/device and the micropatterns at once.

The success rates for crack-free drying with subsequent sintering were different for the used 

ceramic materials and strongly depended on process parameters. However, success rates of 

88% were reached for HA and even 100% for zirconia and alumina. The main advantage, 
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without doubt, can be seen in the high output of crack-free ceramic micropatterns. Other 

advantages are the relatively low costs for equipment and the possibility of local deposition of 

molecules on patterned regions by the use of the μTM method. This has successfully been 

tested with BSA on micromolded HA and alumina patterns with widths of 50 μm (Fig. 25). 

One property which differentiated m-μM from all other tested patterning techniques was the 

identical surface roughness on patterned and non-patterned regions. Except for the etching of 

the master molds, no complex devices or machines were needed for this soft-lithographic-

based technique, which makes this method accessible to a wide range of users.  

 

Using Aerosol-Jet® printing it was possible to generate patterns of 10 μm in width. The 

contour of edges and the achieved deviations of ± 4 μm in pattern height and of ± 3 μm in 

width on different samples were not that high when compared to m-μM. A big advantage lies 

in the possibility to print maskless patterns of various materials onto the same substrate. Even 

the printing of different materials onto the same sample thus becomes feasible. Aerosol-Jet® 

printing is a useful, automated, fast processing method, through which samples can be 

patterned within hours. A disadvantage of it is the occurrence of molten areas in the 

patterning regions due to the uncontrollable sintering temperature by the adjustment of the 

laser power. Amorphous phases or change in crystal structure cannot be excluded, either. 

However, this is avoidable by sintering in a furnace at controlled conditions. Big 

disadvantages of it are the high costs for equipment. 

 

Using CNC micromachining the limit in pattern width was at 100 μm, which was much larger 

than in all the other techniques. Although smaller geometries of 75 μm in width could be 

realized by re-sintering, these patterns were still larger than those from the remaining 

techniques. The shape of the machined ceramic patterns depended on the chosen machine 

tool, where U and V-shaped as well as rectangular pattern profiles could be successfully 

fabricated on oxide and non-oxide ceramic surfaces. The contour on pattern edges was high,

though still lower in comparison to m-μM. The deviations of the machined samples were 

about ± 2 μm in pattern depth, but were always at least 12% lower than the predicted 

(calculated) pattern depth. Deviations of ± 3 μm were achieved in pattern width on different 

samples. The surface roughness (Ra = 0.3 to 0.8 μm) of the machined regions was lower than 

in other techniques, e.g. in laser treatment. Some disadvantages of it were strong wear of the 

cutting tools tip, the size of the smallest producible patterns, and the relatively high costs for 
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equipment. Its advantages lie in the automated, fast, and maskless manufacture of solid 

patterned samples within hours. 

 

The use of laser ablation resulted in patterns with a minimum width of 30 μm, tested on oxide 

and non-oxide ceramics. This is not as small as fabricated via m-μM or Aerosol-Jet® printing, 

yet much smaller than through micromachining. Ablated pattern edges looked inaccurate, 

with the pattern surface either being rough and craggy, or even molten. In molten regions, 

amorphous phases or changes in crystal structure cannot be excluded. The deviations between 

patterns of ablated samples were of ± 10 μm in height and ± 8 μm in width. These values 

were the largest measured deviations of all tested techniques. Likewise, the average roughness 

on ablated regions (Ra = 14.8 μm) was the highest Ra value measured in our experiments. A 

clear disadvantage of this technique can be seen in the high costs for equipment. On the other 

hand, laser ablation is a fast and maskless method for the fabrication of micropatterned solid 

ceramic samples. 

 

Direct laser interference patterning resulted in various shaped micropatterns with minimum 

widths of only 10 μm on oxide and non-oxide ceramics. The accuracy on pattern edges was 

lower than with m-μM, but much higher in comparison to common laser ablation. The 

deviations of interference patterned structures on different samples were of ± 1 μm in height 

and width, which was as low as with m-μM. The average roughness on DLIP-patterned 

regions (Ra = 2.1 μm) was similarly low as obtained through Aerosol-Jet® printing. The most 

palpable disadvantage consists in the high costs for equipment and regions with molten 

surfaces. Important advantages of DLIP are a maskless processing and the very fast patterning 

of large areas by using only a few laser pulses. 

 

Highly accurate microgeometries with vertical sidewalls generated via molding could be used 

e.g. for biological applications such as fluidic chambers, sensor surfaces, for fundamental 

cell-surface research, or for novel types of energy conversion cells. Because of its ability to 

print various materials into the same pattern, Aerosol-Jet® printing could be useful e.g. for 

applications where different materials have to be integrated into the same processing step, 

such as layer-wise printing of conductive metallic paths and isolating ceramic parts for sensor 

applications. Moreover, CNC micromachining is applicable for the patterning of ceramic

implant surfaces or even for the manufacture of whole ceramic implants with inline-

processing of specific surface patterning in order to mediate the implant in-growth into the 
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body. Laser treatment of ceramic surfaces could be applied to pattern ceramic implant 

surfaces, too, or else to modulate surfaces of ceramic bearings so as to optimize friction and 

wear. In summary, all tested patterning techniques proved to be very useful for the fabrication 

of ceramic micropatterns smaller than 100 μm. The thus fabricated micropattern surfaces and 

geometries all turned out somewhat different from each other, depending on the method 

applied, which in turn enables a wide range of potential usages. An overview of the properties 

of all these patterning techniques is given in Tab. 9. 
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Tab. 9: Overview on properties of micropatterning techniques for ceramic materials 

                              Method 

 

Properties 

stamping via 

microtransfer 

molding 

(μTM) 

modified 

micromolding 

(m-μM) 

Aerosol-Jet® 

printing with 

laser sintering 

(M3D) 

micro-

machining via 

CNC 

laser ablation direct laser 

interference 

patterning 

(DLIP) 

Smallest pattern size in x/y 

(*) 

10 μm 5 μm 10 μm 100 μm 30 μm 10 μm 

Are various pattern 

geometries producible? 

yes yes yes yes yes yes 

Contour accuracy on edges very high very high middle high middle middle 

Surface roughness (Ra) of 

patterned regions (*) 

~ 3 μm ~ 0.2 μm ~ 4 μm ~ 0.3-0.8 μm ~ 15 μm ~ 2 μm 

Tolerances in height/depth 

(z) (*#) 

± 4 μm ± 1 μm ± 4 μm ± 2 μm (> 12 

%) 

± 10 μm ± 1 μm 

Tolerances in width (x,y) 

(*) 

± 2 μm ± 1 μm ± 3 μm ± 3 μm ± 8 μm ± 1 μm  

final product μ-patterned 

thin film on 

substrate 

μ-patterned 

solid ceramic 

sample 

μ-patterned thin 

film on 

substrate 

μ-patterned 

solid ceramic 

sample 

μ-patterned 

solid ceramic 

sample 

μ-patterned 

solid ceramic 

sample 

Is joint processing of 

substrate & pattern 

possible? 

no yes no no no no 

Was there a change in 

crystal structure detectable 

after patterning? 

no no no no No. However, 

localized 

amorphous 

phases very 

likely. 

No. 

However, 

localized 

amorphous 

phases very 

likely. 

Is there possible 

contamination by residues 

from e.g. tools? 

no no no yes no no 

Is in situ deposition of 

other 

particles/biomolecules 

possible with this method? 

yes yes (via μTM) yes no no no 

Is the method applicable 

for oxide and non-oxide 

ceramics alike? 

yes yes yes yes yes yes 

Production time from raw 

material to final product  

days days hours hours hours hours 

Is sintering required after 

patterning? 

yes yes yes no no no 

Are masks/templates 

needed? 

yes yes no no no no 

Is industrial up-scaling 

possible? 

yes yes yes yes yes yes 

Costs for equipment low low high high high high 

(*) Measurements in triplicate of neighbouring patterns were taken on n = 3 final micropatterned products made of HA. 

(#) Machined depths turned out at least 12% lower than predicted pattern depths, which were calculated before machining. 
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Conclusions 

All tested patterning techniques proved to be useful for the production of ceramic 

micropatterns, but each tested process, naturally enough, has its respective advantages and 

disadvantages. However, general properties, such as the costs for equipment, may affect the 

choice of a certain patterning technique more strongly than other aspects. On the other hand,

 in deciding thus, one has to bear in mind that the desired kind of micropattern geometry, 

accuracy, or size are also affected by the choice, which limits the number of suitable 

patterning methods in situations, for instance, in which a specific surface finish turns out 

indispensable. So, micropatterns as small as 5 μm with vertical sidewalls can be achieved 

through modified micromolding. These patterns feature very high accuracy and low technical 

effort at the same time. However, the production time from the raw material to the final 

patterned product takes some days. A considerably faster processing method consists in 

Aerosol-Jet® printing, but there the accuracy is lower and the costs for equipment are higher. 

Further, via micromachining it is not possible to fabricate ceramic patterns smaller than 100 

μm, and the costs for the equipment are high, too. On the other hand, it is a fast process for 

the patterning of various ceramic solid materials. Laser treatment processes still imply high 

costs for technical equipment, though the production time required is comparatively low. 

Especially direct interference patterning offers a fast and accurate patterning of ceramic 

surfaces. 
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5. Conclusion 

Different patterning techniques for the fabrication of ceramic micropatterns have been 

investigated. In doing so, it has been found that all tested methods are capable to generate 

ceramic patterns smaller than 100 μm. On the one side, the choice for a patterning technique 

was found to be limited by factors such as the costs for equipment or the production time from 

raw material to the final product. On the other hand, the kind of micropattern the geometry, 

the accuracy as well as the size of the micropattern required are also factors that may come to 

play a significant role in this choice. This in turn limits the number of suitable patterning 

methods, i.e. especially if specific surface finish requirements are obligatory. Via 

microtransfer molding (μTM) it was possible to fabricate ceramic patterns of 10 μm in width, 

though in most cases these patterns were very craggy and fissured after sintering. At that time, 

this technique showed the least suitability for the fabrication of ceramic patterns. However, 

μTM could be used, in combination with modified micromolding (m-μM), in order to locally 

functionalise non-patterned and patterned surfaces with proteins. Modified micromolding has 

been introduced during this thesis as a new patterning technique. Because of its low technical 

effort and the low costs for equipment, m-μM has probably the highest potential to get 

optimized. Although it is rather a slow and non-automated processing route, pattern sizes of 5 

μm could already be fabricated with very high accuracy on micropattern edge contours. 

Additional testing has revealed that scratches of several tens of microns in length and only 

one micron in height and width could be molded with ceramic suspensions, which indicates a 

very high potential for further downsizing. In addition, this process showed a very high 

potential to become fully automated.  

Automated Aerosol-Jet® printing was able to pattern surfaces in shorter periods of time 

compared to μTM and m-μM. The accuracy on pattern edge contours was lower and the 

pattern surface was much rougher. The costs for equipment were very high. Nevertheless, it 

provided the possibility to pattern differently shaped ceramic surfaces with various materials 

down to 10 to 15 μm in size.  

CNC micromachining resulted in the biggest pattern sizes, i.e. in sizes of 100 μm in width, 

which shrank down to 75 μm after re-sintering the machined samples. The use of smaller tool 

diameters and other tool materials might result in much smaller machined ceramic patterns in 

the future. Besides, this processing route was automated and should be easily capable of being 

integrated into industrial processes. Both tested laser treatment processes imply high costs for 

technical equipment, but their big advantage consists in the short production time from raw



Conclusion 

 - 164 - 

material to the final patterned product. Direct interference patterning (DLIP) offers, due to its 

higher accuracy as compared to direct laser ablation, a very fast and accurate patterning of 

ceramic surfaces. The patterns were less accurate and much rougher than with modified 

micromolding, but pattern widths of 10 μm were already feasible within one laser pulse. In 

addition, this technique has high potentials to get fully automated and integrated into 

industrial processes.  

In total, we can conclude that in this study we have highlighted and compared the advantages 

and disadvantages of all the above-mentioned methods. The detailed analysis has yielded that 

properties such as the desired micropatterning size, shape or production time strongly depend 

on the chosen patterning technique. Randomized hydroxyapatite surface roughness with a 

roughness of Ra = 3.36 μm to 0.13 μm has no significant influence on the human osteoblast 

viability (WST and collagen type I production) within the first 7 days in-vitro. Different 

hydroxyapatite-based micropatterns ranging from 16 μm to 77 μm have been used for in-vitro 

cell studies on human osteoblasts. The results thereof have shown that a distinct osteoblast 

alignment is already caused by patterns of only 16 μm in width. Most cells oriented between 

orientation angles from 0 to 15° in reference to the micropattern direction. Very similar 

results were achieved with patterns of 30 μm in width. Contrary to this, larger pattern widths 

such as from 45 to 76 μm caused much lower cell orientation. We have further shown that, in 

our experiments, more osteoblasts grew on top of the micropatterns instead of inside the 

microchannels. This effect increased with decreasing pattern widths. Overall, it was found 

that less viable cells grow on patterned compared to non-patterned HA-based surfaces.  
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6. Outlook 

All tested patterning techniques offer many possible fields for further studies. Microtransfer 

molding (μTM) as well as modified micromolding (m-μM) can be improved in terms of 

crack-free drying and sintering. Therefore, the effect of binder contents or binder systems, 

such as silica-based or polymer based binders, could be further investigated. In addition, 

drying processes could be varied. Probably, drying processes with continuing ramps of 

different temperatures and humidity rates may deliver better results. Likewise, the stamping 

of proteins and ceramic nanoparticles into molded ceramic patterns via pre-structured PDMS 

molds could be of interest in order to mediate surface-chemistry-dependent cell growth. 

Although patterns of 5 μm in width were fabricated, especially modified micromolding 

should be studied to achieve even smaller patterns with high accuracy at the same time. The 

main aim, however, should be the achievement of reproducible high success rates for large 

area patterning of several cm2. Aerosol-Jet® printing, for example, could be used to deposit 

various proteins into microchannels or to realize an inline printing of cells and protein-doped 

ceramic suspensions. Those printed patterned samples could be used, then, as bone-grafting 

material - without sintering - for the fabrication of patient-adapted scaffolds with immobilized 

viable cells. In addition, the effect of different bio-functionalisations on patterned surfaces 

could be tested by combining Aerosol-Jet® printing and m-μM. Tools smaller than 300 μm in 

diameter could be tested for their ability to fabricate smaller ceramic patterns by using CNC 

micromachining. Therefore, tools such as CVD diamond-coated shaft tools could be used. A 

possible re-sintering effect of ceramic particles was assumed in the grinding region. This 

effect could be of interest for further experiments since a similar effect has already been 

reported for metals. The systematic investigation of process parameters using laser treatment 

processes could be expanded to other oxide ceramics such as alumina and zirconia. These 

materials could be of interest for load-bearing applications such as hip-joints or friction-type 

bearings. Therefore, the influence of laser-treated ceramic patterns on the surfaces’ friction 

and wear behaviour could be of high interest. Furthermore, other laser treatment methods, 

such as microlense array patterning, should be studied so as to achieve smaller patterns with 

higher pattern edge contours. The effect of large-area laser treatment of hydroxyapatite or 

zirconia on HOB cells could be interesting for dental applications. Further, in-vitro testing 

with HOB cells, e.g. on molded ceramic patterns, should be conducted. There are still many 

unanswered questions. For example, what happens exactly on patterns in the range between 

30 and 45 μm, and what occurs on patterns larger than 76 μm? Do the HOB cells then still 

recognize that a surface is micropatterned? Which pattern depth is still effective enough to
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guide HOB cells and at which depth do the HOBs grow inside as well as on top of the 

micropatterns? Micromolding certainly provides a versatile tool to get answers for these 

questions. 
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8. Appendices 

8.1 Fabrication of micropatterned freestanding ceramic films through m-μM 

 

 

Fig. 81: Drying process of freestanding ceramic micropatterned films made through modified 

micromolding (m-μM). At the beginning, the ceramic particles are homogenously dispersed in the aqueous 

suspension. It is important that the micropatterns are not or only slighty covered by the suspension. Due 

to gravity the particles sink down to the microstructured bottom of the mold (PDMS stamp) while water 

evaporates. The evaporation of water is finished within one day and the dried ceramic films with open 

micropatterns can be removed from the mold by burn-out. 

 

Fig. 82: SEM micrograph of a sintered crack-free ceramic film (Al2O3) with open micropatterned holes. 

The holes have a diameter of about 86 μm. Some microholes contain loose residual ceramic particles from 

the demolding. One microhole in the lowest row is closed due to a defect in the PDMS mold.
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Fig. 83: Bright field image with backlight of a sintered freestanding ceramic film (Al2O3) with open 

micropatterned holes. The holes have a diameter of about 86 μm. One microhole in the last column on the 

right hand side is closed due to a defect in the PDMS mold. 

 

 

Fig. 84: Profilometry measurements of a non-sintered micropatterned ceramic film (Al2O3). The 

microholes have a diameter of 89.0 ± 3.1 μm. The ceramic film has a thickness of 156.3 ± 1.9 μm. A: 3D 

image of the fabricated ceramic film. The purple line shows the 2D profile in C. B: 2D top view with 

heights and dimensions. C: 2D profile measurement of three microholes. Due to the geometry of the molds 

the maximum sizes of the thin ceramic films were 5 mm in diameter with a micropatterned area of 1 x 1 

mm2 in the middle. 
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8.2 Supporting data for 3.1.1 Versatile crack-free ceramic micropatterns made 

through m-μM: 

 

Table 3.1.1: Sintering shrinkages and success rates for crack-free drying and demolding of various 

ceramic suspensions with three different solid contents filled into 200 μL molds. (a) demolding of any 

crack-free dried sample was not possible without destroying the sample. 

Material particle 

size 

 

 

(nm) 

solids 

content 

 

 

(vol%) 

BET  

surface area of 

non-sintered 

powder 

(m2/g) 

zetapotential  of 

suspension + 12 mg 

PAA/g ceramic at  

pH 9-10 

(mV) 

Hamaker-

constant 

 

 

 

 

(*10-20 J) 

success rate 

for crack-free  

drying of  

200 μL fillings 

(%) 

success rate 

for crack-free 

demoulding of 

200 μL fillings 

(%) 

 

Hydroxyapatite 

 

 

150 

10    88 100 

15 68.3 -16 6 (1) 71 100 

20    4 100 

 

Alumina 

 

150 

10    54 100 

15 12.8 -16 6.7 (2) 96 100 

20    100 100 

 

Silica 

 

150 

10    75 94 

15 22.6 -13 1.6 (2) 100 88 

20    96 91 

 

Zirconia 

 

26 

10    0 0 

15 15.1 -12 13 (2) 25 100 

20    25 100 

 

Zirconia 

 

150 

10    100 100 

15 9.7 -18 13 (2) 100 100 

20    100 100 

 

Zirconia 

 

360 

10    100 100 

15 6.8 -25 13 (2) 100 100 

20    100 100 

 

Titania 

 

150 

10    29 0 (a) 

15 13.1 -33 26 (2) 71 0 (a) 

20    67 0 (a) 

(1) Tian et al., 2002 

(2) Rezwan et al., 2005 

 

Success rates for molded samples with diameters of 15 mm (24 NUNC-Well). Volumes of 

800 μL and 400 μL were used for the molding processes. For each process, n = 12 samples 

were fabricated. 
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Fig. 85: Alumina (150 nm) suspension filled into non-patterned NUNC-wells 

 

 

Fig. 86: Alumina (150 nm) suspension filled into NUNC-wells. Non-patterned PDMS was used as the 

bottom of each mold. 
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Fig. 87: Alumina (150 nm) suspension with BegoSol K filled into non-patterned NUNC wells 

 

 

Fig. 88: Hydroxyapatite (150 nm) suspension with BegoSol K filled into non-patterned NUNC wells 
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Fig. 89: Zirconia (360 nm) suspension filled into non-patterned NUNC wells 

8.3 Supporting data for “Orientation of Osteoblasts on hydroxyapatite-based 

micropatterns” 

 

Fig. 90: SEM micrographs and measured 2D profiles of the surface cross section (insets) of micromolded, 

sintered hydroxyapatite. „w“ and „d“ refer to width and depth, respectively, of each micropattern. 
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Fig. 91: Dependency of width and depth of micropatterns on the osteoblast WST-1 proliferation measured 

after one day. Ref.-1: molded hydroxyapatite, ref.-2: die-pressed pure hydroxyapatite, ref.-Th: 

Thermanox®. Mean values that share a symbol (*/#) are not significantly different (ANOVA: Tukey‘s 

Multiple Comparison Test). 

 

Fig. 92: Dependency of width and depth of micropatterns on the osteoblast WST-1 proliferation measured 

after three days. Ref.-1: molded hydroxyapatite, ref.-2: die-pressed pure hydroxyapatite, ref.-Th: 

Thermanox®. Mean values that share a symbol (*/#) are not significantly different (ANOVA: Tukey‘s 

Multiple Comparison Test). 
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Fig. 93: Distribution of osteoblast cells on different micropatterns in-vitro after one day. Cells adhered 

either ”inside“ the microchannels or ”on top“ of the molded hydroxyapatite micropatterns. Cells on n = 

three samples were analysed on an area of 2.35 mm2 each. Mean values that share a symbol (*/#) are 

insignificantly different (ANOVA: Tukey‘s Multiple Comparison Test). 

 

 

Fig. 94: crystal structure analysis via XRD of a sintered molded HA-based sample (ref.-1).  
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8.4 Supporting data for 3.3.1 “Micromachining of ceramic surfaces: 

hydroxyapatite and zirconia” 

 

 

Fig. 3.3.1: SEM micrographs and 2D-profile cross section measurements (white insets) of hydroxyapatite 

sintered at 1350 °C. Samples were ground with a tool diameter of 300 μm. 

 

Tab.3: Significance of process parameters (Mann-Whitney, U test) for hydroxyapatite (HA) 

Observed  

parameter 

Fixed  

settings 

Milling Grinding 

  Depth of micropattern Width of micropattern Depth of micropattern Width of micropattern 

Feed velocity D=300 μm 

1200 °C 

p>0.05 p>0.05 * p>0.05 

D=300 μm 

1350 °C 

- - * p>0.05 

D=500 μm 

1200 °C 

* * - - 

Tool diameter vf=125 mm/min 

1200 °C 

* * - - 

vf=250 mm/min 

1200 °C 

* p>0.05 - - 

Sinter temp. D=300 μm 

vf=125 mm/min 

- - p>0.05 p>0.05 

D=300 μm 

vf=250 mm/min 

- - * p>0.05 

(*) significant    (-) not applicable 
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Tab.4: Significance of process parameters (Mann-Whitney, U test) for zirconia (Y2O3:ZrO2) 

Observed  

parameter 

Fixed  

settings 

Milling Grinding 

  Depth of micropattern Width of micropattern Depth of micropattern Width of micropattern 

Feed velocity D=300 μm 

100 °C 

* p>0.05 * p>0.05 

D=500 μm 

1100 °C 

* p>0.05 - - 

D=500 μm 

1350 °C 

p>0.05 p>0.05 - - 

Tool diameter vf=125 mm/min 

1100 °C 

* p>0.05 - - 

vf=250 mm/min 

1100 °C 

* p>0.05 - - 

Sinter temp. D=500 μm 

vf=125 mm/min 

* p>0.05 - - 

D=500 μm 

vf=250 mm/min 

* p>0.05 - - 

(*) significant    (-) not applicable 

 

8.5 Additional micrographs 

 

Fig. 95: “Ameise”, Photographic competition 2010, Focus - Bilder der Forschung, this image won the 2nd 

place in an online voting. SEM micrograph of an ant with a fractured piece of a ceramic micropatterned 

mask (alumina) in its mouth.  
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Fig. 96: SEM micrograph of ceramic microspheres in ceramic microchannels. The width of the channels is 

about 50 μm, the depth is 30 μm. The sample was made of an alumina suspension and fabricated via 

modified micromolding.  

 

 
Fig. 97: Micropatterned three-dimensional cube made of an alumina suspension via modified 

micromolding. All surfaces are patterned with 110 μm wide and 10 μm deep microchannels.  
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Fig. 98: SEM micrograph of human osteoblast cells (HOB) on molded ceramic micropatterns with widths 

of 20 μm and depth of 20 μm after one day of proliferation.  
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