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i 

Abstract 

The optical phenomenon of retroreflection (RR) is described as light rays contacting a 

surface and being redirected back to their originating source. While applications are many 

and varied, their primary focus is safety in low-light conditions, and the focus of this 

research is toward automotive applications. Few geometric shapes are capable of 

retroreflection. Among them are the lens-and-mirror, and cube corner geometry; however, 

the right triangular prism (RTP) has been introduced as a viable alternative. This study 

demonstrates a more efficient fabrication technology when compared to current industry 

practices. 

The ultraprecise single point inverted cutting (USPIC) technology was envisioned 

as a combination of diamond turning and multi-axis machining. The unique cutting 

kinematics of USPIC required the development of dedicated tooling and a postprocessor 

for machine automation. Experimental results have demonstrated both the feasibility of this 

approach, and that RTP arrays fabricated by this technology outperform those fabricated 

through conventional means. 

Keywords 

Retroreflector, Automotive Lighting, Microoptics, Diamond Cutting, Multi-axis, 
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CHAPTER 1 

Introduction 
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1.1 Micro-optics 

By broad definition, the field of micro-optics is related to the engineering of components 

with feature sizes in the micrometer (10-6 m) range which serve to manipulate light (Zappe, 

2010). Thanks to advances in manufacturing technology, most notably in the field of 

semiconductor technology, the miniaturization of optical components has been a 

developing field since the early 1980s. Literature suggests that the term “micro-optics” was 

first used by Drs. Teiji Uchuda and Ichiro Kitano in the late 1960s (Sinzinger and Jahns, 

2005). But it was not until 1982 that the term was applied to a specific component when 

Kenicha Iga et al. developed a micro-lens for use in optical fiber communications (Iga et 

al., 1982; Zappe, 2010). The 1.0 mm diameter lenses had a focal length of 2.5–3 mm and 

were fabricated with a technique known as electromigration which is not typically 

understood as a fabrication technique. It is rather a mechanism which negatively affects 

the reliability of integrated circuits, and is caused by a momentum transfer from electrons, 

which constitute the flow of electricity, to the atoms of the conducting media – causing 

them to be displaced and the flow of electrons disrupted (Baldini et al., 1993; Lim et al., 

2013). 

Micro-lenses were first fabricated with electromigration because the well 

established fabrication procedures (i.e. cutting, grinding and polishing) were not applicable 

to lenses with a diameter of 1 mm or less (Zappe, 2010). Electromigration, and other 

techniques which will be discussed, made it possible to fabricate optical components which 

otherwise would not have been realized. 

Applications for micro-optical devices range from medicine to entertainment, and 

appear in many of our everyday lives. One such application is the Digital Micromirror 



3 

Device (DMD), which was first used in digital projectors in 1996 (Zappe, 2010). It is 

comprised of many small mirrors which are each mechanically actuated to one of two 

positions. Each 16 × 16 µm mirror is fixed to a hinge and assembled into array sizes as 

large as 1280 × 1024 pixels (1.31 million individual mirrors) on a silicon chip. The position 

of each mirror is controlled electrostatically to either the “on” or “off” position. In the “on” 

position the mirror reflects light from a bulb to the projector lens which makes the pixel 

appear bright, otherwise the mirror reflects light away from the lens and the pixel appears 

dark. The relative brightness of each pixel is controlled by the length of time its 

corresponding mirror is held in the “on” position. Again, this technology was only made 

possible through advances in semiconductor technology (Lee, 2013). 

Micro-optical components can be classified according to whether they are passive 

or active. Passive components interact with light and include mirrors, lenses, optical fibers, 

and diffraction gratings. These components do not require the addition of energy for their 

function; however, active components require or produce energy – usually electrical. Light 

emitting diodes (LEDs), photodetectors, and liquid crystals are each classified as active 

components (Sinzinger and Jahns, 2005; Zappe, 2010). These are just a few of the 

components that constitute the broad field of micro-optics, and the methods of 

manufacturing these components are as broad and technically advanced as the field itself 

(Sinzinger and Jahns, 2005; Kemme, 2010). While a comprehensive discussion on these 

methods is not feasible within the introduction of this thesis, a few of the more relevant 

techniques will be introduced. 

Since the first micro-lenses were fabricated through electromigration, many other 

techniques have been developed and applied with varying results, but these generally draw 
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from a limited number of fundamental principles. One of these principles being surface 

tension in which a volume of fluid seeks to form a shape of least energy – a sphere. This 

phenomenon can be seen after a rainfall as drops of water form hemispherical shapes on 

windows and other low-wetting surfaces. Many of the fabrication techniques for micro-

lenses rely on the principle of surface tension, such as the melted photoresist lens, or reflow 

lens (Figure 1.1). In this technique a small cylinder of polymer is heated above its glass 

transition temperature and begins to flow as a fluid. Surface tension causes the shape of the 

polymer to take on a hemispherical shape with a radius of curvature, rc, and focal length 

determined by 
1

c
r

f
n

, where n is the refractive index of the lens material (O'Neill et 

al., 2004; Sinzinger and Jahns, 2005). 

 

Figure 1.1 Reflow lens process: a) melting polymer cylinders, and b) resulting refractive 

lens 

In more recent work, micro-lenses have been fabricated with the use of lasers on soda-lime 

glass substrates (Delgado et al., 2016). This is a two-step process consisting of direct-

writing lens “posts” in the glass, followed by a post-thermal treatment which gives the lens 

its shape and functionality. Delgado et al. fabricated an array of lenses with a diameter and 

period of 60 µm and 90 µm, respectively. The direct-writing step was carried out with 

precision laser ablation where a pulsed Ytterbium femtosecond laser removes material 

from a substrate by evaporation. The material is removed such that a cylindrical post 

cylinder 
lens 

rc 

a) 

) 

heat 
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remains with diameter and height of 60 and 15 µm, respectively. The post-thermal 

treatment is done with a CO2 laser and assisted by a roller furnace for improved process 

control. Similar to the reflow process in Figure 1.1, the glass cylinder is brought to the 

melting temperature where it begins to flow as a liquid. In this phase, surface tension 

governs the spherical shape of the lens. When the glass is allowed to cool back to its solid-

state, it retains its lens-like shape. 

Rapid prototyping techniques have also been used for the fabrication of micro-

optical components. One particular technique is stereolithography, where a near-infrared 

laser is used to set a photopolymer which cures in UV light. Two separate lasers are pointed 

such that the two beams intersect at a controlled point. It is here that the two beams have 

enough energy to cure the UV photopolymer while leaving the rest of the polymer in its 

liquid state. 3D structures designed in a CAD environment are built up in layers as small 

as 0.2 µm with comparable XY resolutions. The result is a micro-manufacturing technique 

that has been extensively applied to the field of micro-optics (Maruo, 2008). 

At the beginning of this discussion it was mentioned that the field of micro-optics 

would not have advanced as far as it has if it were not for the parallel advancement of 

semiconductor technology. While this remains true, recent advances in precision 

manufacturing with 5-axis machine tools have allowed for the fabrication of micro-optical 

components. These precision machines are capable of achieving optical surface finishes of 

Ra < 10 nm, and the linear axes have resolutions as low as 10 nm with a positional accuracy 

of ±250 nm (Bordatchev, 2013). They have been used in many applications, including the 

fabrication of high-quality diffraction gratings for state-of-the-art spectrometers (Davies et 

al., 2012). 
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1.2 Retroreflectors 

The retroreflector is classified as a passive optical device that is able to return an incident 

light beam back to its source through a range of incidence angles (Nilsen and Lu, 2004). It 

differs from typical reflection which returns light back to the source only at a zero angle of 

incidence (Figure 1.2a). Retroreflection also differentiates itself from diffuse scattering in 

that a large percentage of the incident light is returned to the source (i.e. minimal 

scattering). Applications for retroreflectors are primarily related to safety in low light 

situations: automotive lighting, road signs and surfaces, bicycles, and safety clothing. 

Retroreflectors have also been used for optical communication and radar detection (Park 

et al., 2012). 

 

Figure 1.2 a) reflection, b) retroreflection, and c) diffuse scattering 

The Retroreflection effect of dew covered grass was first modeled by Lommel in 1874 

(Nilsen and Lu, 2004). He proposed that the spherical nature of the water droplet focused 

incoming light onto the surface of the grass supporting the droplet. The light is then 

reflected and the droplet again focuses the light toward the source. A person standing with 

the morning sun to their back will see that the edge of the shadow cast by their head glows 

as the sunlight is retroreflected. It should be stressed that true retroreflection requires that 

the incident and returned light are parallel to one another. For this reason, it is the edge of 

a) b) c) 

θ -θ θ 
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the shadow that glows, which represents the area where the rays of incident light have the 

least parallel distance from the eyes of the viewer (Figure 1.3). 

 

Figure 1.3 Retroreflection of dew droplets 

The model proposed by Lommel has been categorized as a lens-and-mirror retroreflector. 

It is also known as a “cat’s eye” RR because of the way many animals, cats included, have 

eyes that reflect light as a result of a reflective layer behind the retina which allows for 

light to pass through the retina twice – increasing their ability to see at night (Nilsen and 

Lu, 2004). This natural phenomenon has been reproduced using a transparent sphere with 

a reflective coating applied to the back. In order to ensure the light is focused onto the 

reflective coating, it is necessary that the sphere be made of a material with a refractive 

index of 2.0. 

Another important RR category is the cube corner, which received its name based 

on the fact that it is composed of two or three sides of a cube sharing a common vertex. 

While the geometry of each side (i.e. facet) can be somewhat arbitrary, it is necessary that 

the facets are planar and mutually orthogonal for proper functionality. If the angle between 

facets deviates from 90°, divergence is introduced to the retroreflector, and its effectiveness 

over long distances will be diminished. Therefore, manufacturers must adhere to tight 

angular tolerances. 

incident 

light 
returned 

light 

parallel 

distance 
water 

droplet 
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There are three basic types of cube corner RRs based on the number and shape of 

their facets (Hussein et al., 2016). Notice in Figure 1.4 below that RRs with three facets 

are either designated as triangular or hexagonal, and those with two facets have been named 

right triangular prisms (RTP). 

 

Figure 1.4 Cube corner retroreflectors with: a) two facets, and b) three facets 

The term aperture stems from the shape of the perimeter formed by the structure when 

viewed along its axis of operation. In Figure 1.4b, a hexagonal aperture is formed by a 

three-sided cube corner with square facets, while a triangular aperture is formed by a cube 

corner with triangular facets. Following this principle, the RTP has a rectangular aperture 

with no specific aspect ratio required by the geometry. The overall size of these structures 

can either be micro or macro, and it is the specific application which determines the 

permissible scale. 

Each of these structures share a common function; however, their operating 

characteristics, and specific applications, differ greatly. The lens-and-mirror type of 

retroreflector is widely used in reflective clothing worn by road workers, and the reflective 

paint used to mark roadways because the small, spherical, glass beads used in the paint are 

hexagonal 

aperture 

triangular 

aperture 
a) b) 
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economical to manufacture and do not require a specific orientation (MnDOT, 2015). 

Although the retroreflective efficiency of a single bead is quite high, the packing factor of 

an array of beads reduces the overall efficiency of an area covered by the paint (Nilsen and 

Lu, 2004). For this reason, the lens-and-mirror RR is a low-cost solution for many 

applications. 

The differences in geometry between the hexagonal and triangular aperture cube 

corner RRs also lead to differences in their retroreflective characteristics and ease of 

manufacturing. The triangular aperture has a peak efficiency of 67% while the hexagonal 

aperture returns 100% of the light at a zero incidence angle (Seward and Cort, 1999). 

Furthermore, an array of triangular structures has a continuous toolpath which lends itself 

to more cost effective manufacturing procedures when compared to an array of hexagonal 

structures (Brinksmeier et al., 2008). Therefore, the hexagonal aperture is used in 

applications where safety takes precedence over cost. 

Likely one of largest applications of these structures is the automotive industry, 

where arrays of hexagonal structures are manufactured into the lenses of side markers and 

taillights as a means of increasing driver safety through visibility. When a vehicle is parked 

at night on the side of the road, oncoming traffic may not see the vehicle with enough time 

to safely maneuver around it. With the addition of RRs to the parked vehicle, it is more 

distinguishable to other drivers when the light from their headlights is returned to their eyes 

by the RRs on the parked vehicle. 
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1.3 Motivation 

In typical automotive applications, structure sizes are about 2–3 mm and array sizes 

sometimes larger than 100 mm2, requiring thousands of individual structures. The 

manufacturing technique used for these arrays, which will be fully described in subsequent 

chapters, was developed in the 1970s and is still in use today (Van Arnam, 1978). Arrays 

are manufactured in batches using injection moulding techniques which can produce parts 

with cycle times of less than one minute. While this is a cost-effective approach for 

producing the functional RR arrays, it is improving the technique used to fabricate the 

moulds that should be addressed. The minimum possible structure size is about 1 mm and 

many time intensive steps are required to fabricate the mould which ultimately lead to it 

being a costly technique, prone to error. Yuan et al. addressed the current size limitations 

by applying the Reactive Ion Etching Technique developed for semiconductor micro-

fabrication (Yuan et al., 2002). They were able to produce cube corner arrays with 10 µm 

structure sizes, but the RR functionality of the structures was not stated. 

In more recent work precision 5-axis machine tools have been used to create arrays 

of hexagonal aperture cube corner RRs (Brinksmeier et al., 2012). A 10 × 10 mm planar 

array of 150 µm structures was created using a specialized procedure. The resulting surface 

finish of the facets was within the optical requirements (i.e. Ra < 10 nm), and the optical 

performance of the array was evaluated using a reflection measurement system. This 

procedure requires an ultraprecise machine tool and diamond tooling to achieve the 

geometrical accuracy achieved in testing, but the result is a procedure which enables 

manufacturers to produce a mould for the recreation of optically functional hexagonal RR 

structures with dimensions not previously realized with the former technique. 
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1.4 Purpose of the Thesis 

This research was conducted in collaboration with the National Research Council of 

Canada (NRC) – the Government of Canada’s premier research and technology 

organization. Working alongside Canadian businesses, they are focused on developing new 

technologies that will keep Canadian industry competitive on the global market. One of the 

goals of the Automotive and Surface Transportation division of NRC is to develop 

advanced manufacturing technologies for the Canadian automotive parts industry (NRC, 

2016). This thesis has partnered with that goal and seeks to develop a technology to 

improve the current procedure for the manufacturing of automotive retroreflective optics. 

The following chapters of this thesis contribute to the overall goal of developing a 

new and innovative manufacturing procedure. The second chapter seeks to introduce the 

need for a method of fabricating right triangular prism retroreflectors. The third chapter 

evaluates the optical performance and geometrical accuracy of the method developed, and 

suggests the steps that should be taken to improve upon these results. The fourth chapter 

implements these suggestions and evaluates their results, while the fifth chapter offers a 

detailed discussion of how the improvements were realized. The final chapter of this thesis 

proposes steps to be taken in order to further develop this manufacturing procedure. 

1.5 Thesis Contributions 

The widespread application of retroreflectors has required the development of specific 

manufacturing techniques. Whether the retroreflective structures are macro or micro-sized, 

their manufacturing techniques are well-documented in literature (Van Arnam, 1978; Yuan 

et al., 2002; Brinksmeier et al., 2012). The techniques applied to macro retroreflectors 
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(larger than 1 mm) require specially designed procedures, yet still make use of standard 

machine tools; however, the techniques applied to micro retroreflectors with more complex 

geometry (i.e. hexagonal cube corners) have traditionally made use of technology 

developed for semiconductors. Recent developments in ultraprecise machine tools have 

enabled the development of cutting techniques and toolpaths applicable to hexagonal cube 

corners. At the beginning of this research, there were no documented techniques for the 

fabrication of the right triangular prism geometry. This thesis will contribute to that 

knowledge gap by developing such a technique applicable to the ultraprecise machine tools 

available today. 

1.6 Overview of Thesis 

The second chapter of this thesis introduces the need for a manufacturing technique 

applicable to micro-sized right triangular prism (RTP) retroreflectors. The bidirectional 

Ultraprecise Single Point Inverted Cutting technique (USPIC) was developed as an 

alternative to the common pin-bundling technique, and is capable of producing planar 

arrays of RTP structures in a brick-like pattern. Verification of this technique was 

completed on a PMMA (polymethyl methacrylate) sample, which allowed for the 

immediate evaluation of the optical performance of the retroreflective characteristics of the 

array. While the chapter is not presented in chronological order with the remaining 

chapters, it was written in response to criticism regarding the novelty of the cutting 

technique – the issue being a lack of clarity in the other chapters. 

Chapter three describes and implements the first iteration of the USPIC technique. 

The effects of a geometric artifact, resulting from the common pin-bundling technique, is 

simulated and compared directly to the RTP structure, fabricated with the USPIC 
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technique, that does not have such defects. The strategy is implemented directly on a 

PMMA sample, which allows for direct evaluation of the optical performance without 

having to reproduce the array using moulding techniques. The cutting strategy requires that 

the tool be engaged in the material in two different orientations – one for each facet, and 

the resulting surface finish is analyzed qualitatively with the use of SEM images, because 

the complex geometry does not allow for common methods of measuring surface 

roughness. 

In chapter four, a CAD based macro is introduced which reduces the time required 

for simulating the optical performance of RTP arrays, and aids visualization. The primary 

objective of the chapter is to modify the cutting kinematics and geometry in an effort to 

improve the resulting surface finish. This required the full functionality of the 5-axis 

ultraprecise machine tool, necessitating the development of an inverse kinematic model 

and postprocessor. Experimental validation was again carried out on a PMMA sample for 

the purpose of direct optical evaluation of the optical performance, and comparison to 

previous results. The final result of this chapter is an optically functional retroreflective 

array. 

The fifth and final chapter introducing new content is a more detailed description 

of the postprocessor briefly discussed in the previous chapter. The block diagram is 

presented along with the equations used to calculate the machining coordinates of the 

USPIC method. An improved kinematic model, applicable to arrays of RTP structures, is 

introduced. Further experimental validation is carried out while small changes are made to 

the cutting geometry for the purpose of enhancing the surface finish of the cut facets, 

thereby increasing the optical functionality of the array.  
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CHAPTER 2 

Enhanced Bidirectional Fabrication of  

Right Triangular Prismatic Retroreflectors 

A version of this paper will be submitted to: The American Society for Precision 

Engineering (ASPE) 31st Annual Meeting. Portland, Oregon, USA. 
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2.1 Introduction 

A retroreflector (RR) is a passive optical element with the primary function of returning 

incident light back to its originating source (Figure 2.1). Retroreflection differentiates itself 

from specular reflection in that light is returned through a range of incident angles. While 

the applications of these optical structures are widespread, the primary focus of this paper 

will be automotive lighting applications in which RRs are meant to supplement the vehicle 

occupant safety by increasing the visibility of the vehicle to the surrounding traffic. 

 

Figure 2.1 Cube corner retroreflective element 

There are two basic classifications of retroreflective structures: lens-and-mirror, and cube 

corner. The cube corner structure is characterized by a superior retroreflective ability across 

a wide range of incidence angles. It derives its name as a result of being comprised of three 

faces of a cube that are mutually orthogonal and share a common vertex. The faces can 

either be square, as depicted in Figure 2.1, or triangular, and the shape determines the 

cross–sectional area, retroreflective characteristics, and ease of manufacturing. The square 

sided structure has a hexagonal cross-section and higher efficiency when compared to the 

structure with a triangular aperture. For this reason, the structure primarily used in 

automotive applications is the hexagonal cube corner. Nevertheless, manufacturing arrays 

of these structures, necessary for automotive applications, is time consuming because of 

incident light 

retroreflected light 
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the geometry’s sharp 90° concave corners, and the non-continuous toolpaths, both of which 

contribute to rotating tools not being directly applicable. 

Instead, manufacturers developed a technology in the late 1970s in order to produce 

the dies necessary for injection moulding of these components (Van Arnam, 1978). The 

pin-bundling technique involves the use of individual pins, each with a single “negative” 

RR structure machined and lapped at the “forming end” of the pin (Figure 2.2). The surface 

finish of the machined structure must be at least Ra = 10 nm to achieve sufficient optical 

functionality. Without an optical quality finish, the structure will scatter more light than is 

permissible. Each pin is then bundled into an array and electroplated with nickel. The 

electroform is then used as a cavity insert for the injection moulding die. Electroforming is 

a necessary step to replicating the geometry of the pins, because the final geometry of the 

functional part should be that of the pins, not their “mirror”. The electroform allows for an 

accurate mould of the pins to be made; however, it is a time consuming process. 

 

Figure 2.2 Pin-bundling technology 

Typical structure sizes for automotive applications are about 2–3 mm and an array 

may have a surface area of 100 mm2. Therefore, many thousands of pins are required for 

this technique. Also, the number of pins necessary for a given array is inversely 

proportionate to the individual structure size – as the structure size is reduced, the number 

Single pin Pin array 
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of pins required for a given surface area increases. Due partly to this, the pin-bundling 

technique is limited to structure sizes of about 1 mm. 

The placement of pins on non-flat or flat and inclined surfaces leads to the 

formation of manufacturing artifacts called “pockets” (Figure 2.3) whose role on the optical 

performance of the RRs is rather unclear at this time. 

 

Figure 2.3 Manufacturing artifacts as a result of pin-bundling 

Extensive research efforts were recently made to reduce the overall manufacturing time 

associated with the pin-bundling technology that requires in excess of hundreds of hours 

per insert, particularly in the case of automotive lighting components characterized by a 

complex freeform shape. For this purpose, Diamond Micro Chiseling (DMC) was 

identified as a viable alternative to pin-bundling (Brinksmeier et al., 2008; Brinksmeier et 

al., 2012b; Hamilton et al., 2016a). DMC has also been utilized to fabricate structure sizes 

as small as 150 µm. 

The switch from pin-bundling/forming to material removal/machining technologies 

enables a greater flexibility in terms of RR geometry and – when accompanied by 

optimized cutting strategies – an increased productivity. It is important to note again that 

the nature of the geometry necessary for RR prevents the use of classical tool path planning 

strategies associated with milling operations (Brinksmeier et al., 2012a). 

pockets 

pin bundle 

electroform 
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To date, diamond microchiseling technology was developed with a focus on the 

hexagonal cube corner RR geometry presented in Figure 2.1 & Figure 2.2 that was cut in 

a flat and horizontal base surface. This technology allows for direct machining of the 

injection moulding die by means of a V-shaped diamond tool whose motions are controlled 

by an ultraprecise five-axis micromachine tool. The diamond tool cuts each RR structure 

in multiple layers in order to improve the final surface finish and reduce tool wear. 

In a further development of the microchiseling technology, ultraprecise single point 

inverted cutting will be presented in this study as a possibility to generate – without 

manufacturing artifacts – RRs characterized by right triangular prismatic geometries. 

2.2 Geometry and Optical Performance of Right Triangular 

Prismatic RRs 

Retroreflectors are generally classified according to the shape of their aperture as well as 

the number of facets involved in retroreflection. The right triangular prismatic (RTP) 

geometry is characterized by a rectangular aperture through which the incoming light rays 

enter and later exit, as well as two rectangular facets which reflect light through total 

internal reflection (Figure 2.4a). Unlike the cube corner geometry, the aperture of the RTP 

is not limited to a single aspect ratio, and while different geometric combinations can be 

imagined, the current study will be focused on a simple square aperture, isosceles form 

(β = 45º). At this angle, the axis of operation is normal to the surface of the structure. 

The RTP geometry analyzed in this work was rarely – if ever – part of the taxonomy 

of retroreflectors since it was not fabricated before and as such its practical applicability 

was rather unclear. Recent simulation studies have shown that the retroreflective efficiency 
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of the RTP is comparable to the ubiquitous hexagonal cube corner geometry through a 

large range of incidence angles and outperforms it at incidence angles of less than four 

degrees (Hussein et al., 2016). 

 

Figure 2.4 a) principal geometric parameters of an RTP, and b) retroreflective 

characteristics of RTP and hexagonal 

2.3 Diamond Micro Chiseling 

In order to achieve geometric accuracy and optical functionality, the hexagonal cube corner 

RRs directly machined with the Diamond microchiseling process have made use of an 

ultraprecise five-axis CNC machine tool and diamond tooling. The geometry of the 

diamond tool resembles that of a 50° V-shaped turning tool, yet is specific to the DMC 

process (Figure 2.5). The tool is aligned in the machine such that the conventional 

clearance and rake faces have been switched and therefore the tool geometry is different. 

The tool features a 22° rake angle and the clearance face has an angle of 2–3° ground into 

it (Brinksmeier et al., 2012a). 

l 

w 

rectangular 

facets 

rectangular 

aperture 
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Figure 2.5 Geometry of the Diamond Micro Chiseling tool. Adapted from Brinksmeier et 

al., 2012a. 

The two rotary axes of the five-axis machine tool are required for the alignment of the tool 

with the facets of the to-be-cut structure. The machine used in the DMC process has the B-

axis connected to the spindle and the C-axis connected to the workpiece. This type of 

machine is known as a head/table tilting machine, because the head and table are each 

equipped with a rotary axis. 

The cutting process follows a sequence of motions whereby layers of material are 

removed one-by-one. The first step is to align the clearance face of the tool with the plane 

of the facet to be cut. From this position, the nose of the tool is moved linearly along the 

edge of the facet in a two-step process: plunging along the first edge to the apex, followed 

by retracting along the second edge (Figure 2.6). In this V-motion, a single facet of the 

hexagonal cube corner is completed. The remaining two facets of the structure are 

completed following the same sequence, after a 120° rotation of the C-axis to align the 

plane of the facet to be machined with the tool. This process of cutting and rotating is 

repeated for each facet of each structure in the array. 

Bottom 

Side 

cutting edge 

clearance face 

rake face 

50° 

shank 

3 mm 
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Figure 2.6 Cutting motions of a single facet. Adapted from Brinksmeier et al., 2012a. 

2.4 Ultraprecise Single Point Inverted Cutting of Right 

Triangular Prisms 

As illustrated by Figure 2.7, USPIC enables the fabrication of pocketless RTPs on flat but 

inclined base surfaces. 

 

Figure 2.7 Pocketless array of right triangular prisms 

Similar to microchiseling, USPIC requires a monocrystalline diamond, single point tool as 

a prerequisite towards achieving an optical surface finish (Ra < 10 nm) that is mandatory 

for adequate retroreflective efficiency. However, the geometry of the tool used in USPIC 

operations has been tailored to RTP fabrication and therefore is different than that needed 

for cube corner geometries. While the tool is of a custom design, its geometry is 

comparable to a grooving tool used for turning operations (Figure 2.8). The wedge angle 

was chosen to be 50° in order to prevent the chip from binding against the adjacent facet, 

potentially damaging its surface finish, as the tool reaches the root of each cut. This angle 

does however contribute to a large positive rake angle which, according to common theory, 

1 
2 

tool nose 

cutting edge 
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is not ideal (Stephenson and Agapiou, 2006). Instead, it is a compromise necessitated by 

the RTP geometry. The width of the tool determines the smallest possible structure size, 

but larger structures are possible by effectively cutting multiple structures next to one 

another. For the purpose of this study, the tool width was chosen to be 450 µm. 

 

Figure 2.8 Geometry of USPIC tool: a) CAD model b) physical tool 

2.4.1 Uni-directional Strategy 

The kinematics of this strategy requires the cutting geometry to be quite different for each 

of the two facets of the RTP structure (Figure 2.9). The vertical facet engages the tool such 

that its cutting geometry is conducive to achieving an optical quality surface finish, while 

the horizontal facet engages the tool in a manner that results in a sub-optical surface finish. 

The vertical and horizontal cutting kinematics have been termed plunging and ploughing, 

respectively. Plough cutting is defined as cutting geometry where the clearance angle is at 

least 90°, resulting in a negative rake angle equal to or greater than the wedge angle. 

Alternatively, a plunge cut, has preferred cutting geometry with a small clearance angle 

and positive rake angle. Since the resulting surface directly contributes to the optical 

functionality, this strategy is insufficient for a finishing procedure; however, its high 

material removal rate is such that it remains applicable to roughing procedures where 

surface finish is not the principal priority. 

Side Top 

50° 450 µm 

a) b) 

rake face clearance face 
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Figure 2.9 Uni-directional cutting strategy 

2.4.2 Bi-directional Strategy 

As suggested by Figure 2.10, the kinematics of the bi-directional strategy result in the 

optimal cutting geometry for both facets of the RTP; however, these cutting motions 

require the full functionality of a five-axis CNC machine center. The primary role of the 

two rotary axes is indexing/positioning in order to properly align the cutting tool with the 

RTP facets. This type of machining is also known as 3½½-axis machining, because the 

rotary axes are held stationary as the tool removes material (Chen et al., 2003). In this bi-

directional approach, the two active facets of the RTP are being cut alternatively, such that 

“ploughing” is no longer necessary since the entire RTP is generated by means of 

“plunging” motions. However, the relatively low traverse rate of the rotary axes reduces 

the material removal rate when compared to the uni-directional strategy, therefore its 

primary application should be as a finishing strategy in which the primary interest is 

achieving a surface finish of optical quality. 

1 2 3 
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Figure 2.10 Bi-directional cutting strategy 

The culmination of this discussion is a strategy in which an array of RTP structures are cut 

with separate roughing and finishing procedures. The uni-directional USPIC strategy has 

been used to rough-cut the structure, resulting in a near-complete geometry, while the bi-

directional USPIC strategy has been applied as a finishing procedure. This strategy 

represents a further iteration of the original 3½½-axis cutting that was introduced in the 

past (Hamilton et al., 2016b). And while many of the process setting and parameters were 

kept unchanged, a special calibration protocol has to be used to ensure the post-indexing 

parallelism between the RTP facet and the rake face of the diamond tool. The calibration 

procedure requires that the tool be aligned to an XYZ tolerance of ±1 µm for chips to be 

properly released from the workpiece throughout cutting. 

2.5 Experimental Validation 

Figure 2.11 shows a representative sample of a planar array of RTP structures that was cut 

in 0.5 mm thick PMMA. The array is composed of 601 structures, each characterized by 

the following dimensional parameters: w = 450 µm, l = 450 µm, and a surface finish 

Ra < 90 nm. Although preliminary inspection proves the optical functionality of the array, 

measurements have not been conducted in an effort to quantify these results. 

1 2 3 
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Figure 2.11 Fabricated array of RTP structures 

2.6 Conclusions 

The presented enhanced USPIC technique represents a viable option for the fabrication of 

the RTPs. It is important to note that while USPIC was developed as an alternative for 

mould fabrication, its use on PMMA enables the immediate validation of the optical 

performance of the generated RR arrays. Future efforts will be made toward improving 

surface finish of the reflective facets. 
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3.1 Overview 

Retroreflectors (RR) represent optical elements whose primary functionality is to return 

incident light back to its originating source. While inverted cube corner (ICC) geometry 

constitutes the de facto standard in automotive lighting applications, other RR designs 

exist. Among them, right triangular prism (RTP) constitutes a viable alternative and 

therefore, the main intention of the present study was to demonstrate that a fabrication 

means other than the ineffective conventional pin-bundling technology is possible. 

To address this, a new ultraprecise single point inverted cutting (SPIC) technology 

– envisioned as a virtual combination between diamond turning and five-axis machining – 

was introduced as a viable manufacturing option for the fabrication of the RTP RR arrays. 

While simulation results seem to suggest a slight optical superiority of the RTP RR arrays 

produced through conventional, rather than SPIC approaches, experimental results have 

demonstrated that fabricating RTP RR prototypes is not only possible, but it can yield better 

retroreflective efficiencies when compared to state-of-the-art ICC-based automotive 

retroreflectors. 

3.2 Introduction 

Retroreflectors (RRs) are passive optical components that have the ability to reflect a light 

beam back to its source through a range of incident angles deviating from the normal axis. 

There are three primary groups of retroreflectors: lens-and-mirror (or cat’s eye), and 

inverted cube corner (ICC) (Figure 3.1). RRs are used in illumination and safety 

applications (i.e., automotive reflectors, road signs, safety clothing), as well as in 

communications systems (Seward and Cort, 1999). 
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When compared to the lens-and-mirror RR, cube corner RRs are characterized by higher 

efficiency, but the former allow for larger incident angles deviating from the normal axis 

(So et al., 2002). Because of their superior efficiency (i.e., luminance), this study will 

present a new cutting technology which was used to fabricate arrays of RR elements that 

are functionally similar to CC RRs. 

 

Figure 3.1 Typical RR elements: a) cube corner, and b) lens-and-mirror 

The new RR geometry to be demonstrated in the context of the present work was recently 

introduced and termed as right triangular prism (RTP) (Hussein et al., 2016). In this regard, 

it can be mentioned here that a retroreflective array is comprised of a number of elements 

that effectively form a structured surface characterized by incoming light 

returning/reflecting capabilities. 

3.3 Design and Fabrication of ICC RRs for Automotive 

Lighting Applications 

The geometry of the cube corner RR can be described by means of two or three sides of a 

cube that share a common vertex. Because the CC RR geometry is derived from a cube, its 

facets are mutually orthogonal and this is in fact a prerequisite of its retroreflectivity. If the 

angle between two adjacent faces deviates from 90°, the efficiency of the retroreflector will 

be diminished as a result of divergence, in a sense that the incident and reflected beams 

a) b) 
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light 

Reflected 
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Lens Mirror 
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will no longer be parallel (Seward and Cort, 1999). However, automotive lighting 

manufacturers prefer to introduce a certain level of divergence in their retroreflectors, 

particularly because in many traffic applications the source and viewer are often separated 

by a certain distance (Seward and Cort, 1999). 

Three main types of retroreflectors have been identified so far with respect to the 

shape of aperture as well as the number of reflective facets participating in retroreflection: 

i) right triangular prism (RTP) with rectangular aperture and two reflective facets, ii) CC 

with a triangular aperture and three reflective facets, and iii) CC with a hexagonal aperture 

and three reflective facets (Figure 3.2) (Hussein et al., 2016). 

 

Figure 3.2 Main types of RR elements: a) RTP with rectangular aperture, b) CC with 

triangular aperture, and c) CC with hexagonal aperture 

Traditionally, automotive manufacturers make use of plastic injection moulding to produce 

the majority of RR elements which are installed on modern cars (Brinksmeier et al., 2008). 

The functionality of all RRs relies on the total internal reflection (TIR) phenomenon which 

essentially occurs when a ray propagating through a homogeneous/isotropic medium 

intersects a boundary surface at an angle larger than the critical angle (ϴc) (Kim and Lee, 

2007). Under these circumstances, the ray will be reflected back at an equal angle (Figure 

90° 

a) 
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3.3). For incident angles smaller than ϴc, the ray will be refracted at an angle determined 

by Snell’s law (Poole, 2007). Evidently, when the incident angle is equal to ϴc, the ray will 

remain trapped into the surface delimiting the two adjacent media. 

 

Figure 3.3 Refraction and reflection at the boundary between media: a) refraction for 

incident angles < θc, and b) TIR for incidence angles > θc 

In general terms, the geometry of the RR pose significant fabrication challenges, primarily 

since the optical efficiency degrades significantly as soon as the smallest manufacturing 

imperfection – regardless if related to RR geometry or facet roughness – is present. Since 

rotational tools cannot be used to generate concave structures that are lacking any filleted 

features automotive lighting manufacturers have to rely on standard pin-bundling 

techniques to fabricate CC RRs (Van Arnam, 1978; Brinksmeier et al., 2012). 

In brief, these approaches make use of small pins each with a single “negative” 

convex retroreflective structure (e.g., ICC) that is machined and lapped at one of the ends 

of the pin (Figure 3.4). These pins are then assembled into a bundle such that one desired 

concave RR structure with hexagonal aperture is created by means of three adjacent pins. 

The replication of the individual CC features on a surface creates the RR array that – after 

nickel or silver electroplating – will eventually form the electroform insert, which 

constitutes the injection moulding master. 

ϴ
c
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Figure 3.4 Elements of the pin-bundling technique 

The miniaturization of the individual CC elements tends to enhance the optical 

characteristics of the overall RR array in two different ways: i) by decreasing the parallel 

displacement of reflected light (the distance between incident and reflected light rays), and 

ii) by minimizing the impact of facet distortion/imperfections on retroreflective 

functionality (Brinksmeier et al., 2012). However, when the size/height/depth of the 

individual RR elements drops approximately under 500 µm, the conventional pin-bundling 

technique can no longer represent a viable manufacturing option, primarily because of the 

size and the number of pins that are to be used. The second important limitation of the 

conventional technique is related to the challenges that are associated with the relative 

positioning of the pins on curved surfaces, such as those used to define the external shape 

of the car. 

3.4 Comparison of Optical Performance for Pin-Bundled and 

Machined RTP RRs 

The novel RTP geometry which was recently introduced (Hussein et al., 2016) will be 

further investigated herein in order to identify the difference in optical performance 

Single pin Pin array 
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between the RTP RRs fabricated through: i) pin-bundling, or ii) single point inverted 

cutting techniques (SPIC). 

As outlined before, RTPs consist of a rectangular facet/aperture through which the primary 

beam enters and then exits, as well as two reflective facets that contribute to TIR. The 

parameters of a typical RTP element are shown in Figure 3.5 where W and C represent the 

width and the length of the aperture, respectively. 

 

Figure 3.5 RTP geometry 

As shown in the past (Hussein et al., 2016), no significant differences exist between the 

optical performances of RTPs generated on a flat surface that is normal to the incident 

beam, regardless if conventional pin-bundling or newer ultraprecise SPIC were used as 

fabrication means. 

However, the automotive industry cannot make use solely of RR elements placed 

on flat surfaces that are normally oriented with respect to the direction of the incident light. 

In fact, the majority of automotive lighting applications will require positioning of the 

individual RTP elements on surfaces in a different orientation with respect to the direction 

of the incoming rays of light. 
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To illustrate the differences between the RR geometries fabricated by means of the two 

aforementioned techniques (e.g., baseline/ conventional and SPIC), two arrays of RTP RRs 

were placed on a 10º inclined flat surface (Figure 3.6). As it can be noticed, when the array 

of RTPs is generated through cutting, no geometric discontinuities will occur between 

adjacent elements. However, when the array of RR elements is generated by means of the 

pin-bundling technique, pocket-like structures tend to appear between the neighboring 

RTPs, primarily due to the shape and orientation of the forming pins. These pocket-like 

structures represent in fact a manufacturing artifact with further implications on the optical 

performance of the RR array. 

 

Figure 3.6 Geometry of RTP RRs fabricated on inclined flat surfaces by means of: 

a) SPIC, and b) pin-bundling techniques 

In order to determine the effect of the manufacturing artifacts on the optical performance, 

the two RTP arrays (e.g., with or without pocket-like structures) were subjected to an 

identical illumination setup (Figure 3.7) simulated by means of an optical simulation 

software. 
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Figure 3.7 Optical simulation setup 

To preserve the accuracy of the results, the two geometries were kept dimensionally 

comparable in a sense that each array had the same number of RR elements, characterized 

by identical and equal apertures (2.2 mm × 0.45 mm). As indicated above, the incident 

beam forms a 10º angle with the normal to the main surface on which the RR elements are 

to be produced. To ensure the similarity with real automotive traffic situations, the detector 

was intentionally placed sufficiently far from the RTP array. Along the same line of 

thought, the size of the detector was kept under control in order to only measure the amount 

of light returned to the source, where – commonly – the observer is also placed. 

The general results of the optical analysis suggest that pocket-like manufacturing 

imperfections contribute in fact to a superior retroreflective efficiency (RRE) since 36.68% 

of the incident light power is returned in case of machined RTPs, while 44.54% of the 

incident light falls on the detector in case of RTPs produced by means of pin-bundling. The 

detailed trajectory of the incoming rays entering a conventionally-fabricated or cut array is 

presented in Figure 3.8. Here, the light originating from the source is shown in blue, and 

changes colour every time it intersects a medium boundary. 
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Figure 3.8 Detailed ray tracing for RTPs fabricated on the inclined flat surface through: 

a) inverted cutting, and b) pin-bundling 

Compared to the case of maximum RRE, which occurs when the incident beam is 

perpendicular to the RTP incident face, the 10º tilt of the workpiece surface introduces an 

additional 4% loss in the form of light that is reflected but never returns to the observer/ 

source (green colour #1). As it can be noticed, light rays are successively reflected and/or 

refracted on each of the media boundary, such that the incident light ends up being spread 

by the RTP array in a variety of directions. While not necessarily evident, a certain amount 

of crosstalk exists between adjacent RTPs in a sense that a certain amount of rays are being 

transferred to the neighboring element after the first TIR (red colour #2). The 7.86% loss 

between the conventionally-fabricated RTPs and those to be produced through machining 

are caused by the presence of the “dead zones” that are marked by the smaller-sized arrows 

 

a) 
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in Figure 3.8a and by null irradiance in Figure 3.9 (blue coloured bands on the right side 

of the images). This dead zone – located at the elevated end (with respect to the incoming 

light direction) of the incident face of the RTP – is responsible for a decrease in the 

effective aperture of the optical element to be cut. 

To further illustrate the presence, as well as the size, of the dead zone for the 

analyzed RTP arrays, Figure 3.9 outlines the correlation between the geometrical 

configuration of the RTP arrays and their detailed total power output. According to this 

analysis, while cut RTP elements are characterized by an effective aperture of 362.4 µm 

(Figure 3.9a), the conventionally-fabricated array yields an effective aperture of 440.0 µm 

(Figure 3.9b). This 17.6% difference in the effective aperture is absolutely identical to the 

17.6% difference in the RRE of the two geometries and it is absolutely clear that the wider 

dead (e.g., blue) bands between RR elements represent its root cause. 

It is important to note that although the geometrical size of the effective aperture of 

the conventionally-fabricated RTPs (Figure 3.9b, left) yields at 440 µm, the length of its 

corresponding irradiated area yields at 412.5 µm. While the cause of this discrepancy is 

rather unclear at this point, one possible explanation could be optical simulation errors. 
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Figure 3.9 Correlation between RTP array design (grey), effective apertures (red lines) 

and light intensity for: a) cut RTP element, and b) conventionally fabricated RTPs 
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3.5 Fabrication of RTP RRs Through Ultraprecise Single 

Point Inverted Cutting 

In order to fabricate RTP optical elements, a novel machining-based procedure has been 

developed. This new fabrication technique relies on a monocrystalline diamond tool that is 

theoretically capable to generate optical surface finishes with Ra < 10 nm without the need 

for post-machining operations. To fabricate the intended geometry, the diamond tool has 

to be mounted in a five-axis micromachining center capable to provide the required 

kinematics. Compared to the original CC retroreflectors, the geometry of the RTP can be 

formed easier since their apex is formed by an edge, rather than a single point. Furthermore, 

since RTPs are delimited by two, rather than three facets, it can be anticipated that their 

fabrication cycle will be proportionally shorter. 

3.5.1 Ultraprecise Single Point Inverted Cutting 

The development of the cutting strategies for RTP elements includes a certain degree of 

separation between roughing and finishing passes. Same as in the traditional machining, a 

roughing cut will remove more material in a shorter amount of time but will generate 

surfaces of lower quality and of just near-net dimensions. By contrast, finishing cuts will 

remove smaller amounts of material in longer amounts of time, while generating surfaces 

of higher quality and final size. Further considerations on both types of cuts will be 

introduced and examined from qualitative and quantitative perspectives. 

While performing an ultraprecise single point inverted cutting operation, the 

diamond tool is expected to move in a short, intermittent grooving/chiseling-like motion. 

The primary purpose for the primary cutting motion is to ensure that the tool maintains a 

permanent contact with the each of the two RTP facets to be formed. For this reason, the 
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design of the single point inverted cutting tool replicates reasonably well that of a typical 

diamond turning cutter (Donaldson et al., 1973; Stephenson and Agapiou, 2006), even 

though considerable differences exist between the short and interrupted motions that are 

specific to the new approach and the long and steady cuts that are specific to turning 

(Donaldson et al., 1973). 

When it comes to single point inverted cutting, machine motions can still be 

separated in the two traditional categories: positioning/ancillary, and cutting. In this 

context, a positioning move aims to align the tool with the workpiece while preparing to 

execute a cut. While not absolutely necessary, all five axes could become involved in the 

ancillary motions which can be performed at an increased speed since the tool is not 

engaged with workpiece material. By contrast, when cutting is performed, the direct 

contact between the tool and workpiece contributes directly to surface finish and tool wear 

(Brinksmeier et al., 2012), such that it should happen at a rate appropriate for the type of 

material being cut. 

Depending on the relative position of the tool with respect to the workpiece surface, 

the cutting motions involved in SPIC could be divided into two main categories, namely 

plunging and ploughing. More specifically, when the cutting tool is oriented in such a way 

that the rake angle is positive, the engagement between the tool and the workpiece could 

be regarded as a plunge cut. By contrast, plough cutting occurs when the rake angle is in 

the negative domain. 
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3.5.2 Monocrystalline Diamond Cutting Tool 

The monocrystalline diamond tool used in SPIC shares many of its geometrical 

characteristics with a parting/grooving tool which is commonly used in turning. The use of 

the diamond insert – that is specific to ultraprecise machining – is meant to ensure an 

optical surface quality for the cut facets, particularly since a high surface roughness 

translates into a large amount of light scatter which significantly reduces the optical 

performance of the RTP element. This approach contrasts the conventional method in 

which the quality of the RR surfaces is strongly dependent on the quality of the forming 

end of the pins. 

As depicted in Figure 3.10, the cutting geometry of the diamond insert is largely 

determined by three critical angles, namely: relief/clearance, wedge, and rake (Stephenson 

and Agapiou, 2006). According to its traditional purpose, a positive relief angle will 

prevent the tool from re-contacting the newly cut surface, and will thereby preserve its 

surface finish as yielded from the material removal operation (Stephenson and Agapiou, 

2006). Depending on cutting conditions and material, relief angles typically range between 

5° and 15°. A small relief angle will provide the tool with a maximum support/strength, 

but it – at the same time – can also lead to vibrations caused by an excessive tool contact 

area. Conversely, a large relief angle (generally not larger than 15°) will lead to smaller 

cutting forces, while reducing the overall strength of the tool tip (Stephenson and Agapiou, 

2006). 
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Figure 3.10 Specific angles of the tool used in ultraprecise SPIC 

Similar to conventional machining, the rake angle is measured between the rake face (e.g. 

the face of the tool in contact with chips) and the normal to the pre-machined surface which 

passes through the tip/cutting edge of the tool. According to general machining principles, 

positive rake angles will direct the chips away from the cutting interface and will thereby 

contribute to cutting force reductions that in turn translate in diminishes rates of tool wear 

(Stephenson and Agapiou, 2006; Oberg et al., 2008). 

The size of the third tool angle (e.g. wedge angle) is merely a consequence of the 

other two since their summation has to remain constant at 90°. As expected, large wedge 

angles will increase the tool stiffness, while smaller values will make it more susceptible 

to damage and/or failure under the cutting load. The final geometry of the tool fabricated 

for experimental trials is shown in Figure 3.11, while Figure 3.12 showcases various views 

of the physical tool. A wedge angle of 50° was chosen as somewhat of compromise 

between a cutting tool geometry that is optimized for plunging, while ensuring that plough 

cutting remains still possible. 
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Figure 3.11 Final design of the cutting tool 

Because of the orientation of the RTP geometry with respect to the tool, the relief angle 

during a plough cut can be no less than 90° and this in turn would result in a rake angle 

that is at least equal to the wedge angle. However, such cutting angles would lead to 

unfavorable cutting conditions, given that the use of negative rake angles should be in fact 

minimized. As such, this tool should be used for plunge cutting with rake angles up to 35°. 

According to common practice, rake angles generally range between 0 and 30°, depending 

on the material being cut (Oberg et al., 2008). 

The tool was designed with a width of 450 µm in an attempt to enable the 

fabrication of optical structures somewhere at the boundary between micro and macro 

scale. As expected, wider structures can be produced by means of successive adjacent 

passes (overlapping or not) generated by means of a transversal feed. However, the smallest 

width of the RTP structure (Figure 3.12) that can be fabricated with this tool is w = 450 µm. 

Note that the side (or secondary) clearance angle is meant to minimize the amount of 

unnecessary friction/rubbing between the tool and RTP facets that do not have an active 

role in TIR. 
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A 

A 

A-A 

450µm 

1.2mm 

3.0 mm 
50⁰ 

Edge radius (rβ) 



46 

 

Figure 3.12 Physical cutting tool 

The last dimension to be considered is the cutting edge radius (rβ). Once again, according 

to conventional machining knowledge, this geometric feature plays a critical role on the 

post-machining surface finish. More specifically, a “keen” edge (i.e., smaller cutting edge 

radius) would reduce the amount of cutting force and would thereby improve the overall 

quality of the surface. However, it is important to keep in mind that a strong tradeoff exists 

between the surface finish and tool wear in a sense that as cutting edge radius decreases, 

the tool becomes more susceptible to wear and chipping.  

According to the surveyed literature, a roughing tool could have rβ > 200 nm, while 

finishing tools are typically expected to have rβ < 60 nm (Schönemann et al., 2010). 

Physical experiments have shown that surface finishes could vary significantly with small 

changes in the cutting edge radius. However, these thresholds should be regarded as “soft”, 

rather than “hard” limits, since their values are strongly dependent on the material being 

cut. More specifically, while for soft/ductile materials lower cutting edge radii translate 

into better surface finishes, higher values are in fact recommended for harder workpiece 

materials. As such, it can be inferred that the radius of the cutting edge should be large 

enough to increase tool life, but without doing that at the expense of a lower surface quality 

450µm 

450µm 

50° 
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which would be clearly detrimental to the optical functionality of the RR element. By 

taking into account all the aforementioned factors, a value of 200 nm was specified for rβ. 

However, the standard practice of the chosen tool supplier is to offer either a sharp or honed 

edge. In order to maximize the resulting surface finish, a sharp edge was chosen. The edge 

is inspected at 800× magnification to be chip free. It is anticipated that the sharp edge will 

reduce the life of the tool, but this is yet to be determined. 

3.5.3 Cutting Strategy 

While various cutting strategies could be developed, the current study has focused on 

implementing one that does not require workpiece rotation/ repositioning, in an attempt to 

reduce the complexity of the calibration procedures involved. Because of this, three-axis 

motions are sufficient to fabricate the geometry of the intended RTP array. In the remainder 

of the section, the cutting strategy will be analyzed with an end goal to determine the length 

of the tool path required to cut an RTP element characterized by the following geometric 

characteristics: C = W = 450 µm, and ϴ = 45º. 

An overview of the selected cutting strategy is presented in Figure 3.13. As it can 

be noticed, in order to avoid the need to reorient the workpiece, the two optically-functional 

facets of the RTP have to maintain their normals parallel with two of the translational axis 

of motion for the CNC machine tool. More specifically, in the selected experimental setup, 

the vertical facet of the RTP was positioned parallel with the XZ plane, while the horizontal 

facet was positioned parallel with XY principal plane of the machine tool. 
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Figure 3.13 Successive sets of motions/passes in selected SPIC strategy 

As it can be noticed, the cutting consists from an equal amount of plunging and ploughing 

instances that begin at one end of the RTP structure and then gradually advance towards 

the distant facet. The main role of the horizontal ploughing motion is to enable a mandatory 

chip breaking/separation approach. The length of the ploughing move cannot be shorter 

than the underformed chip thickness λ (e.g., the thickness of the new layer cut removed 

with each new plunging motion), since its role would be to ensure a complete/superior 

detachment of the chip from the RTP facet. 

When the initial set of two cutting motions (e.g., vertical and horizontal or plunging 

and ploughing) has been completed, the tool has to be positioned at the beginning of the 

next set by means of two ancillary (e.g., non-cutting) motions. Since during the first 

auxiliary move (e.g., in the Z direction) the tool remains in contact with the workpiece at 

the two ends of the primary cutting edge, the triangular facets of the RTP will likely exhibit 

manufacturing artifacts caused by the undesirable tool contact. On the other hand, since the 

role of these two facets in TIR is minimal, this unwanted contact is not expected to cause 

any decreases in the performance of the optical element.  
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Based on the aforementioned considerations, the overall cutting strategy for 

individual RTP elements can be regarded as being comprised of a set of four consecutive 

motions: two for cutting purposes, and two for ancillary/tool repositioning purposes. Given 

the overall dimensions of the RTP element, a total of 32 different sets of motions are 

required to cover the length of the rectangular RTP facet a (or the cathetus of the right 

isosceles triangle) where: 2 318.19μm
2

A C  . According to the selected cutting 

strategy, each of the successive cut is longer than the previous by the same length as the 

undeformed chip thickness, the final cut motion being 320 µm long. 

3.5.4 Experimental Validation 

The validation of the aforementioned cutting strategy was performed by cutting an RTP 

array exhibiting a brick-like pattern characterized by a C/2 (= 50%) overlap between the 

RTP elements positioned in adjacent rows (Figure 3.14). 

 

Figure 3.14 CAD model of the fabricated RTP array: a) isometric view, and b) "quasi"-

top view 

The array was produced on a 4 mm thick flat PMMA (e.g., polymethyl methacrylate) sheet 

(Figure 3.15) and was comprised of 769 RTP elements covering an area of 195 mm2. Each 

RTP element was characterized by a square aperture of 450 × 450 µm and ϴ = 45°, which 

a) b) 
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is equivalent with a feature depth of 225 µm. As noticeable in SEM micrographs (Figure 

3.15b), the geometry of the machined feature matches dimensionally that of its CAD 

counterpart. 

 

Figure 3.15 Sample workpiece: a) overview of the fabricated RTP array, and b) SEM-acquired 

detail views 

As a drawback of the employed cutting strategy, Figure 3.16 clearly suggests that the lack 

of a two-phase cutting strategy (to include both roughing and finishing passes) leads to 

significant decreases in the roughness of the RTP facets fabricated through ploughing, 

rather than plunging motions. 

 

Figure 3.16 Visual appearance of the cut RTP facets obtained through: a) plunging, and b) 

ploughing 

a) b) 

a) b) 
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Moreover, certain unintentional marks, which are present at the tip of the cut RTP features 

(yellow arrows in Figure 3.16a/b), could be regarded as a consequence of either an 

incorrectly sharpened tool/chipped cutting edge or an unidentified material behavior 

phenomenon associated with cutting tool engagement/disengagement with the workpiece. 

All these issues, along with the lack of appropriate means to quantify the roughness of the 

cut RTP facets, will be addressed in future studies. 

3.6 Assessment of the Optical Performance of the Fabricated 

RTP Array 

The optical performance of the fabricated array was quantified by means of RRE, which 

can be numerically interpreted as the ratio between the retroreflected and incident light. In 

simple terms, an array characterized by a larger RRE will appear more luminous and this 

will make it more visible under low light conditions. 

To perform this assessment, the fabricated array was compared directly to a 

conventional ICC RR used in automotive applications. As shown in Figure 3.17, both 

optical components were illuminated with a white LED source. While subjective to a 

certain extent, this preliminary testing seemed to indicate that the retroreflective array 

fabricated through the ultraprecise SPIC technology is more luminous than a commercial 

taillight that was regarded as the baseline for comparison. 
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Figure 3.17 Qualitative comparison between the optical performance of the RTP array 

and that of a conventional ICC RR design 

To quantitatively assess the difference between the optical performances of the two 

analyzed RR designs, the experimental setup shown in Figure 3.18 was used to measure – 

under darkroom conditions – the amount of the light returned to the source. The light source 

and the lux meter were placed adjacent to each other and 272 mm away from the 

retroreflectors being evaluated. Under the aforementioned experimental conditions, the 

light reflected by the commercial RR component was amounted to 12.6 lux, while the 

fabricated RTP array returned 19.8 lux. 
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Figure 3.18 Experimental setup used in the quantitative evaluation of the optical 

performance 

It is perhaps important to note that the 57% increase in the optical performance of the RTP 

array was attained even though its retroreflective area is in fact considerably smaller than 

that of the commercial taillight. On the other hand, it is possible that both the large flat 

(e.g., uncut) area surrounding the fabricated RTP arrays along with the different colour of 

the PMMA (i.e., white vs. red) might confound the quality of the results obtained. 

3.7 Conclusions 

The main objective of the present study was to introduce a new technique capable of 

replacing the conventional and ubiquitous pin-bundling approach in the fabrication of the 

RTP RR arrays, particularly since simulations performed on geometries derived from both 

manufacturing approaches seem to yield comparable optical performances.  

The ultraprecise single point inverted cutting technique, demonstrated in the 

context of the present work, essentially consists of a combination of diamond turning 

mechanics and five-axis machining kinematics. The selected cutting strategy has 

demonstrated the feasibility of the newly devised fabrication technique that was able to 
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generate a functional RTP array prototype with an approximate area of 200 mm2. The 

initial qualitative and quantitative comparisons performed between the RTP RR array 

prototype and a commercial taillight baseline have shown that the geometry produced 

through the new technique might perform better than the conventional ICC RR. 

Future possible extensions of this work could be focused on: i) solving of the optical 

simulation inconsistencies along with the inclusion of new comparison scenarios, 

ii) refinements of the SPIC technology to enable a superior and measurable surface quality, 

and iii) enhancements to be brought to the experimental setup to be used for optical 

validation/assessment purposes. 
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CHAPTER 4 

Fabrication of Right Triangular Prism Retroreflectors 

through 3½½-Axis Ultraprecise Single Point Inverted Cutting 
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4.1 Overview 

Retroreflectors (RR) are passive optical structures that are capable of returning incident 

light back to the source. The focus of the current study is represented by the right triangular 

prism (RTP) geometry, which could be a more efficient alternative to the traditional 

inverted corner cube geometry. While current manufacturing practices rely solely on the 

use of conventional pin-bundling techniques, the work reported in this study presents 

further enhancements of the previously introduced ultraprecise single point inverted cutting 

technique, which can be used in a manner approximately similar to 3½½-axis kinematics. 

The experimental results obtained have demonstrated both the feasibility of the proposed 

fabrication approach as well as the optical viability of the fabricated RTP elements. 

Keywords: Automotive lighting, retroreflector design, optical performance, 3½½-axis 

diamond cutting 

4.2 Introduction 

A retroreflector (RR) is a passive optical device that reflects light back to the originating 

source through a range of incident angles deviating from the normal axis. RRs can be 

divided into two categories: lens-and-mirror, and inverted corner cube (ICC). As depicted 

in Figure 4.1a, the lens-and-mirror type, also referred to as cat’s eye, are made of 

transparent spheres with a reflective layer on the back. The sphere has a refractive index 

greater than air which causes the light entering the sphere to be directed to the reflective 

surface. The reflected light is then refracted again as it leaves the sphere, and because of 

that, it ends up travelling in a direction that is parallel to the incident light (Nilsen and Lu, 

2004). Alternatively, the ICC retroreflector consists of three mutually orthogonal surfaces 
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each contributing to retroreflection (Figure 4.1). In the case of this retroreflective element, 

the incident light reflects off each facet and after three successive reflections will be 

reflected back to the source according to a phenomenon called total internal reflection 

(TIR) (Seward and Cort, 1999). More details about the construction and functionality of 

RRs can be found in (Seward and Cort, 1999; Brinksmeier et al., 2012). 

 

Figure 4.1 Functionality of typical RR elements: a) lens-and-mirror, and b) inverted 

corner cube 

Retroreflective arrays have found many industrial applications, including, but not limited 

to traffic safety, communications, and metrology. Moreover, its superior efficiency at long 

distances makes the ICC appropriate for the needs of the automotive industry (Nilsen and 

Lu, 2004) and the typical example in this category is represented by the taillights installed 

on virtually all transportation vehicles (Seward and Cort, 1999).  

However, the fabrication of the corner cube geometry poses an inherent challenge 

in a sense that rotating tools cannot be used to produce the geometry of the ICC, particularly 

around its apex. Because of this, the “workaround” that has been in use for several decades 

involves the use of the pin-bundling technique (Van Arnam, 1978). According to this 

method, the “negative” (e.g. the core) of each RR element in the array is formed by means 

of the end of a hexagonal pin that in turn is produced through conventional machining 

followed by lapping in order to attain the Ra < 10 nm surface finish that is required for 

a) b) 

Incident ray 

Reflected ray 

Lens Mirror 
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optical reflectivity. Once individual pins are completed, they are bundled together and a 

cavity insert is created at their forming end by means of electroforming. 

Its inherent complexity makes pin-bundling inefficient, error-prone and difficult to 

use for microscale features, particularly due to the stringent surface quality requirements 

calling for Ra < 10 nm – a requirement which is typically equated with optical surface 

quality. For this reason, more efficient and versatile retroreflector fabrication techniques 

are highly desirable and two new ideas have recently emerged in this regard: 

i) development of cutting/machining-based fabrication techniques and ii) development of 

alternate RR shapes, preferably of lower geometric complexity. 

In response to these challenges, a new fabrication process called ultraprecise single 

point inverted cutting (USPIC), along with a novel RR geometry coined as right triangular 

prism (RTP) have been recently developed (Hamilton et al., 2016; Hussein et al., 2016) as 

viable alternatives to pin-bundling fabrication and ICC RR design, respectively. However, 

while the initial experiments proved that USPIC can produce the desired RTP geometry 

(Hamilton et al., 2016), it also became clear that the combination of plunging and 

ploughing motions that can be generated through the sole involvement of the translational 

axes of a five-axis machine is insufficient to attain the intended optical surface quality. To 

address this, the primary goal of the current study was to fabricate the new RTP geometry 

through a combination of translational and rotational motions, for which purpose the 

development of an USPIC postprocessor becomes essential. 
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4.3 Design and Optical Performance of RTP Arrays 

4.3.1 Optical Characterization of the RTP Element 

To ensure the retroreflective functionality of the novel RTP geometry, its geometry was 

modeled in CAD and then subjected to optical simulation analysis performed with a 

specialized software. The geometry of an RTP includes two reflective facets with role in 

TIR and one incident facet/aperture through which light enters and then exits (Figure 4.2). 

According to the automotive use of the RRs, an illumination element whose size is 

determined by thickness, width and base was joined with the incident face of the RTP. 

 

Figure 4.2 Geometry of the RTP element 

To assess the optical performance of the new RTP design, the retroreflective efficiency 

(RRE) – defined as the percentage ratio of retroreflected light to incidence light – was 

determined through a series of optical simulations in which the primary variable was the 

direction of the incident beam (Figure 4.3). The optical simulation model (Figure 4.3a) 

included an RTP element with a rectangular aperture of 0.45 × 0.45 mm, a light source 

with a rectangular shape matching that of the RTP aperture, as well as a detector capable 

to measure the quantity of the retroreflected light. The material assumed for RTP element 

was polymethyl methacrylate (PMMA). 
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Figure 4.3 Optical performance of the RTP: a) optical simulation setup, and b) optical 

simulation results 

The results presented in Figure 4.3b reveal that as the incidence angle increases, the RRE 

of the RTP element decreases since more light is lost either because it is reflected at the 

incident face of the illumination element or because it is never returned in the direction of 

the observer/detector. As such, these results imply that the best optical performance occurs 

when RTP’s incident face is normal to the incident light. However, this theoretically 

“ideal” RR may not be in fact suitable for automotive lighting applications as it returns the 

incident light back to its source whereas this location may or may not coincide with the 

actual position of the observer. 

4.3.2 Automatic CAD-Based Generation of the RTP array 

As mentioned previously, a RR surface can be created by arranging individual RTP 

elements in an arrayed pattern. The base surface, in which the RTP cavities are fabricated, 

could have any freeform shape (i.e. automotive taillights), but has been assumed planar in 

our study to simplify the geometry. The pattern and orientation of each structure could also 

take on many forms, but has assumed a brick-like pattern (Figure 4.4). Geometry is 
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characterized by parameters which indicate the size of the array, individual element size, 

and how each element is positioned and oriented with respect to neighboring elements. 

 

Figure 4.4 Geometrical parameters of the RTP array: a) top view of an RTP array, b) bottom 

left corner of the array (detail A in subfigure a), and c) cross section through RTPs (B–B 

plane in subfigure b) 

To rapidly generate arrays belonging to the same family, a Visual Basic script/macro was 

created under the SolidWorks environment (Figure 4.5). The program collects all input 

parameters outlined in Figure 4.5 from a text file and then generates the geometry of the 

RTP array according to the preset design constraints and rules. 

 

Figure 4.5 Automatic generation of the RTP array 
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The program first extrudes the base geometry, an operation that is followed by the 

calculation of the number of structures required to create the array while satisfying the 

input parameters. After that, the position of the first element is determined in order to 

ensure that the entire array is centered on the base geometry. Finally, a cut-extrude feature 

combined with a linear pattern is used to replicate the base RTP element in order to generate 

the entire array. 

4.3.3 Optical Performance of the RTP Array 

The procedure outlined in the section allows rapid generation of arrays with different 

geometric characteristics. As such, a family of RTP array geometries were investigated in 

an attempt to determine the correlation between their geometrical parameters and their 

optical performance. The two main parameters that were varied for this study were the 

width and the base of individual RTP elements, while all other parameters were set at 

constant values as follows: XOffset = 0 mm, YOffset = 0 mm, XGap = 0 mm, 

YGap = 0 mm, Overlap% = 50%, XLength = 10 mm, YLength = 10 mm, and β = 45º. 

Numerical simulation was performed on the arrays and their RRE was measured. For all 

optical simulations, the light was directed towards the RTP at a 0º incidence angle and all 

setups were absolutely identical. It can be noticed that although the RTPs covered a base 

flat area of identical dimensions (10 mm × 10 mm), the detector measured different RREs 

for different RTP sizes. This variation can be regarded as a consequence of the changes in 

the effective RR area defined as the total area of the reflective facets that participate in the 

retroreflection. The results presented in Figure 4.6 clearly indicate that with the exception 

of the single (e.g. non-arrayed) RTP feature covering the entire base flat surface, an inverse 
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proportionality relationship exists between the total effective RR area and the size/number 

of arrayed RTP elements. 

 
Figure 4.6 Correlation between the optical performance and the number of arrayed RTP 

elements 

To further reiterate the dependence between array design and its associated optical 

performance, the numerical values of significant optical/geometrical parameters were 

summarized in Table 4.1. 

Base [mm] Width [mm] RTPs # 

Total Reflective 

Facets Area 

[mm2] 

Total 

Effective RR 

Area [mm2] 

RRE [%] 

10 10 1 141.42 141.42 99.99 

5 5 3 141.42 106.07 76.88 

2 2 22 141.42 124.45 88.90 

1 1 95 141.42 134.35 95.37 

0.5 0.5 390 141.42 137.88 97.68 

Table 4.1 Summary of geometrical and optical characteristics of the RTP array 

To further explain this behavior, Figure 4.7 depicts two representative cases of RTP array 

design along with the distribution of the reflected light as recorded by the detector. As it 
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can be noticed, while absolutely no loss of light exists in the case of a single RTP (Figure 

4.7a), certain “dead spots” (e.g. non-retroreflective facets/RTPs) will exist in the case of 

arrayed RTPs (Figure 4.7d), particularly for the elements located on the boundary of the 

base surface. As the summated area of the “dead spots” decreases with the size of the 

elementary RTP, it becomes clear that this will translate into corresponding 

retroreflectivity increases. Given that the Overlap% parameter (Figure 4.4) was assumed 

at 50%, it is inevitable that some of the RTP facets will fall outside of the base 10 × 10 mm 

area. 

 

Figure 4.7 Optical performance of the RTP arrays: a) single RTP design, b) retroreflected 

light distribution for the analyzed single RTP, c) design of an RTP array, and d) 

retroreflected light distribution for the analyzed RTPs array 

Based on the considerations above, it becomes apparent that while the absolute best 

scenario from an optical perspective would be a singular RTP instance, this would be in 

fact unfeasible for manufacturing/applicability reasons. Because of this, a more practical 
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suggestion would be to decrease the size of the RTP as much as possible, one inherent 

limitation being the width of the cutting tool to be used for RTP array fabrication. 

4.4 Fabrication of the RTP Array through 3½½-Axis 

Machining 

4.4.1 Diamond Cutting Tool 

To fabricate the intended RTP array, a custom tool was developed and manufactured for 

use in USPIC operations. The cutter consists of a steel shank and a diamond tip and shares 

many design characteristics with cutting tools used in parting or turning operations, the 

primary difference being that clearance and rake faces were positioned in a rather reversed 

manner (Figure 4.8). The use of a diamond tip – that is specific to ultraprecise machining 

operations – is meant to ensure an optical quality on the retroreflective facets of the RTP 

(Schönemann et al., 2010). If the surface finish is below the optical quality, the reflective 

facets will tend to scatter light and this will decrease the reflective efficiency of the 

elementary RTP and implicitly that of the array. In this context, it is perhaps worth to 

mention that while in the traditional pin-bundling-based technique the surface finish is 

primarily determined by the lapping operation applied on the forming end of the hexagonal 

pin, the quality of RTP facets is mainly dependent on the overall tool-workpiece 

interaction/dynamics during USPIC. 
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Figure 4.8 Design of the diamond cutting tool: a) overview of the cutting tool, and b) 

constructive detail of the tool tip 

In this regard, since USPIC mechanics is somewhat similar to that of turning, the design of 

the USPIC tool has to adhere to comparable guidelines. As shown in Figure 4.9, three 

angles are critical for the entire cutting geometry: relief/clearance, wedge, and rake. 

The relief angle is formed between the post-machined surface of the workpiece and 

the clearance face of the tool. Its presence is meant to reduce/eliminate the risk of post-

machining surface damage (Stephenson and Agapiou, 2006). Typical relief angles range 

from 5° to 15° depending on cutting conditions, tool material, and workpiece material. On 

the other hand, the rake angle is measured between a normal to the post-machined surface 

that passed through the tool tip and the rake face of the tool. According to conventional 

machining theory, the rake angle determines how the chip develops during the cutting 

process in a sense that a positive angle (Figure 4.9) is associated with decreased cutting 

forces leading to an improved tool life (Stephenson and Agapiou, 2006; Oberg et al., 2008). 

Since rake angle values are largely determined by the material being cut, values between 

0º and 30º are typically recommended (Oberg et al., 2008; Brinksmeier et al., 2012). 

Finally, the wedge angle is determined as the 90º complement of rake and relief angles 
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( 90      ). As such, a large wedge angle (i.e. close to 90°) is associated with a stiff 

tool, while a smaller wedge angle makes the cutter more susceptible to failure. 

 

Figure 4.9 Cutting geometry and tool angles 

Similar to turning, the radius of the cutting edge (rβ) has a strong effect on the surface finish 

as well as the durability of the tool (Schönemann et al., 2010). The tool used in RTP cutting 

operations is characterized by a 50° degree wedge angle which in turn enables a wide range 

of rake and clearance angles. Based on the considerations presented in Section 2.2, the tool 

was fabricated with a width of 1 mm in an attempt to maintain the RTP structures 

dimensionally comparable to their ICC equivalents that are commonly used in automotive 

lighting applications. To minimize the presence of “dead” (e.g. unreflective) zones of the 

RTP facets around the apex, the radius of the cutting edge was reduced to the minimum 

attainable value (rβ  0). 

4.4.2 Cutting Motions and Strategies 

When it comes to the fabrication of an RTP array, different cutting strategies can be 

imagined. The “unidirectional” strategy that was previously (Hamilton et al., 2016) 

introduced for individual RTPs consists of a combination of plunging and ploughing 

motions. The primary difference between the two main types of motions consists in the 

relative position between the tool and the workpiece (Figure 4.10). Evidently, while the 

large positive rake angle associated with the plunging motion facilitates chips evacuation, 
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its negative value – characteristic to a ploughing cut – will translate into a decreased quality 

on the corresponding RTP facet.  Furthermore, the increased cutting forces make the cutter 

more susceptible to failure during ploughing. 

 

Figure 4.10 Principal motions in unidirectional RTP cutting: a) plunging, and b) ploughing 

Figure 4.10b suggests that in order to achieve ideal cutting conditions on the second RTP 

facet, the tool should be in fact rotated in a counterclockwise direction by 90°. However, 

this position is geometrically unfeasible, such that other cutting strategies have to be used 

in order to overcome the aforementioned drawbacks of the ploughing motion, possibly by 

involving plunging motions only. On the other hand, the main advantage of this 

unidirectional approach resides in the fact that repositioning (through rotation) of the 

workpiece is not necessary, such that three-axis kinematics was sufficient to generate the 

intended RTP array geometry. 

To further improve the roughness of both facets of the RTP, a novel cutting strategy 

was developed in the context of the current study. According to this new technique, the 

cutting starts by roughing out the cavity of the RTP element in a unidirectional manner 

similar to the one depicted in Figure 4.11. It is important to note that – if the RTPs are to 

cut on a base flat surface, the workpiece should be held in a rotated (A = 45º). With the 

exception of a small portion at the beginning of the cut, roughing consists of a four-step 

Z 

Y 

Volume 

removed 

Cutting tool 

b) a) 



70 

sequence comprised of two cutting and two ancillary motions required to position the tool 

for the next cutting cycle. During roughing, the horizontal cutting motion has to exceed the 

thickness of the layer being cut (λ) in order to ensure a successful chip separation. 

Evidently, the length of the cutting increases as the roughing progresses. 

 

Figure 4.11 Roughing sequence 

Once the near-net shape of the RTP is achieved, a cut performed solely by means of 

plunging was used to finish the facet that has was previously subjected to ploughing only. 

In order to implement the finish strategy, an appropriate machine tool setup and/or 

calibration was critical in obtaining the intended optical surface quality (Brinksmeier et al., 

2012). For this purpose, the tool was installed by ensuring the parallelism between the 

clearance face and the XZ plane of the multi-axis machine tool. Since similar strict 

parallelism conditions were also enforced between the cutting edge and the X-axis of the 

machine, an adjustable cutting tool fixture was designed and used for this purpose. In order 

to orient the horizontal facet – that was roughed out through ploughing – in a vertical 

position, workpiece rotation is mandatory, such that a five-axis machine tool with rotary 

table configuration was employed for this purpose (Figure 4.12). However, since the 

rotational axes have merely a positioning/indexing role, the proposed strategy resembles a 

traditional 3½½-axis machining operation that is also sometimes termed as 3+2, inclined, 

fixed, or tilted machining (Suh and Lee, 1998; Chen et al., 2003; Albert, 2006). The 
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addition of the rotary axes necessitates the development of a complete kinematic model of 

the five-axis machine tool. Its development constitutes a routine analysis in the broader 

context of five-axis machining postprocessors, especially since generalized kinematic 

models have also been proposed (Tutunea-Fatan and Feng, 2004; She and Chang, 2007). 

 

Figure 4.12 Finishing sequence performed on a roughed-out RTP: a) indexing motion, and 

b) finishing cut 

4.4.3 Machine Tool Kinematics 

In general terms, a five-axis machine tool provides additional manufacturing flexibility 

through the addition of two rotational degrees of freedom that supplement the three 

translational degrees that are offered by a classical three-axis machine. According to the 

terminology introduced in (Tutunea-Fatan and Feng, 2004), an AC rotary table five-axis 

micro-machine was used to demonstrate the newly-developed 3½½-axis cutting strategy. 

Similar to prior naming conventions, A represents the primary, while C is the secondary 

rotary axis. 

b) a) 

C-Axis indexing 
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Figure 4.13 Five-axis micro-machine: a) motions, and b) inverse kinematics model 

According to the robotics theory, an inverse kinematics transformation is required in order 

to convert the position WP of the cutting point from the workpiece coordinate system (WCS) 

into a point MP located in the machine coordinate system (MCS): 

 M M W

W
 P T P  (4.1) 

where M
W[ ]T represents the generalized coordinate transformation matrix from WCS to MCS 

(Tutunea-Fatan and Feng, 2004).  

As illustrated in Figure 4.13, each joint connects different links of the kinematic 

chain (Tutunea-Fatan and Feng, 2004; Boz and Lazoglu, 2013), and in turn each of the 

joints is associated with one of the five degrees of freedom. The relative position between 

successive joints is determined by the positional matrices
ib , while the relative orientation 

between them is quantified by means of the rotational matrices
iR . As such, the kinematic 

chain depicted in Figure 4.13 can be described by means of four position vectors (e.g. 
0b ,
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1b ,
2b , and

3b ), and two rotational matrices (e.g. 
XR and 

ZR ). In general terms, 
ib  can be 

described as: 

 

1 0 0

0 1 0

0 0 1

0 0 0 1

i

i
i

i

x

y

z

 
 
 

  
 
  

b  (4.2) 

while the general rotation matrix 
iR  about an arbitrary vector in space [ ]t

x y zn n nn  is 

(Zeid, 2005): 
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R  (4.3) 

For both Equations. 4.2 and 4.3, i is the index of the joint,  is the rotational angle around 

the 
in vector, while the other expressions are simplified trigonometric forms: cosc  , 

sins  , 1 cosv   . 

It is important to emphasize here that while rotational matrices can be reduced to 

much simpler expressions, the inherent precision required for the RTP fabrication 

operation requires a careful account of the misalignments that are present along the 

kinematic chain. In line with this thought, after the completion of the calibration routines, 

it was found that the actual cosine directors of the two rotational axes of the machine were:  

 [0.999995 0.0014502 0.00268292]
X

t  
R
n  (4.4) 

and 
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 [ 0.00015666 0.00048007 0.99999987]
Z

t  
R
n  (4.5) 

which are close, but not coincident with their theoretical values, i.e. [1 0 0]and [0 0 1] , 

respectively. 

Based on all the above considerations, a more detailed form of the generalized coordinate 

transformation matrix used in Equation (4.1) can be written as: 

 M

W 3 2 1 0X Z
     T b b R b R b  (4.6) 

which constitutes in fact the core of the required inverse kinematics transformation. 

4.5 Experimental Validation 

To test the proposed fabrication approach, several RTP features were machined on a top 

flat face of a PMMA block (Figure 4.14a, and Figure 4.14b). The feed rates used for 

roughing and finishing varied between 100 mm/min and 10 mm/min, while the 

corresponding layer thicknesses were selected at 10 μm and 1 μm, respectively. Since the 

primary goal of the experimental validation was to assess the quality of the fabricated RTP 

elements (Figure 4.14c, and Figure 4.14d), no enlarged arrays were generated at this time. 

Instead, the majority of the RTPs were located in positions that can be placed at the 

appropriate focal distance for the optical profilometer used for surface roughness 

evaluation (Figure 4.14d).  
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Figure 4.14 RTP elements generated for validation purposes: a) physical test workpiece, 

b) CAD-rendered workpiece, c) facet labeling for roughness assessment, and d) relative 

positioning between the workpiece and microscope objective 

A summary of the surface quality results obtained during trials is presented in Table 4.2 

Quality of the fabricated RTP facets. According to these values, Sa = 147.07 ± 41.37 nm 

for all 10 assessed facets. 

Facet 

Average Areal 

Surface Roughness 

Sa [nm] 

 

Facet 
Average Areal Surface 

Roughness Sa [nm] 

F1 191.28  F6 121.63 

F2 190.36  F7 90.19 

F3 109.21  F8 114.40 

F4 179.54  F9 114.46 

F5 201.36  F10 158.26 

Table 4.2 Quality of the fabricated RTP facets 
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A more in-depth analysis of the surface quality reveals significant differences between the 

original unidirectional approach (Figure 4.15) and the proposed 3½½-axis cutting 

technique (Figure 4.16). As a general comment, the quality of the facets obtained through 

plunging seems to be more than 4 times better than that obtained through ploughing. 

Beyond that, even if the cutting process seems to be somewhat difficult to stabilize at this 

time (90.19 nm ≤ Sa ≤ 191.28 nm), its quality can be brought close to the optical quality 

(Figure 4.16c). 

 

Figure 4.15 Uni-directional cutting quality: a) broad-field SEM micrograph, b) close-up 

SEM micrograph, c) optical (top) and topographic (bottom) images of the plunge-cut 

facet (Sa = 114.55 nm), and d) optical (top) and topographic (bottom) images of the 

plough-cut facet (Sa = 468.19 nm) 
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Figure 4.16 Quality of 3½½-axis cutting: a) broad-field SEM micrograph, b) optical image 

of facet F7 (Sa = 90.19 nm), and c) topographic image of facet  

F7 (   
A A1 2 3

120.23nm, 70.56nm, 50.63nm
Aa a aS S S ) 

One of the largest contributors to the significant decreases in surface quality was 

represented by the occurrence/development of chips on the cutting edge that in turn have 

translated into veritable scratches/grooves on the surface of the RTP facets (Figure 4.17) 

While the rationale behind their formation remains at this time unclear, it is possible that 

they have appeared due to a combination of incorrectly sharpened tool edge and/or 

workpiece material build-up. The size of the chips/scratches varies, but the majority of 

them remain below 5 μm wide while their length stretches over the entire RTP facet. 

A1 

A2 

A3 

c) b) a) 
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Figure 4.17 RTP facet scratches caused by chipping of the diamond tool cutting edge. 

As a final verification of their optical functionality, the fabricated RTP elements were 

subjected to an incident light that was projected from the back of the workpiece (Figure 

4.18). This setup mimics the real working scenario in which the RTPs will be used, as the 

machined facets constitute in fact the “negative” (e.g. mould insert) of the final optical 

element. While it is true that this rather simplistic experiment can only provide a certain 

level of qualitative evaluation of the RTPs – at this time – it was considered that this is 

sufficient to demonstrate that the proposed technique can generate functional optical 

elements that are visible under a wide incidence angle – a desirable trait in safety 

applications. 

Tool 

RTP facet 

Tool 

RTP facet 

Tool 

RTP facet 

Tool 

RTP facet 
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Figure 4.18 Optical functionality of the fabricated RTP: a) CAD-rendered image of the 

workpiece, b) lateral illumination, and c) normal-to-aperture illumination. 

4.6 Conclusions 

The primary objective of this study was to further enhance the unidirectional cutting 

technique that was previously proposed for fabrication of the RTPs. Since the only way to 

further improve the quality of the RTP facets is by producing them exclusively by means 

of plunge-cutting, a new 3½½-axis USPIC technique was developed for this purpose.  

However, prior to being considered for fabrication, an automatic CAD-based 

procedure was devised to quickly generate parametrized RTP arrays that were then 

subjected to optical simulations in order to determine an optically-performant size for them. 

Following this, an inverse kinematics model of the five-axis machine used during cutting 

experiments was developed and its numerical parameters were adjusted according to the 

data collected through calibration experiments. The experiments performed revealed that 

the proposed 3½½-axis cutting technique can generate RTP facets with average areal 

roughness around 150 nm that in some cases can be as low as 50 nm. The RTP elements 

that were produced by means of the new approach proved to be optically functional. 

b) a) c) 
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In summary, the proposed 3½½-axis USPIC technique has proved to be a viable 

fabrication option for the RTP elements. Future work will attempt to improve further the 

quality of the retroreflective facets, as well as to improve the productivity of the overall 

manufacturing process.  
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CHAPTER 5 

Development of a Postprocessor for Ultraprecise Single Point 

Inverted Cutting of Right Triangular Prism Retroreflectors 
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5.1 Overview 

In the previous chapter the postprocessor was introduced and discussed in brevity which 

does not give adequate understanding to its function, or potentially even its purpose. The 

following discussion is intended to give the reader sufficient knowledge of the purpose of 

a postprocessor and to thoroughly explain the function of the postprocessor developed for 

the fabrication of RTP arrays using the aforementioned USPIC strategies. 

5.2 Introduction 

Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) are used 

extensively throughout industry in an effort to reduce the time between product conception 

and realization. The design engineer creates a virtual model of the product by making use 

of a CAD system while the manufacturing engineer uses a CAM system to develop an 

appropriate manufacturing procedure and translate that procedure into machine tool 

language (Zeid, 2005). The virtual machine motions developed by the CAM system are 

written in a common generic language known as cutter location data (CL Data). The 

postprocessor then translates this to the numerical control (NC) programming language 

specific to machine tools – PMAC Script Language in this case. The postprocessor is not 

to be thought of as separate from the CAM system, rather it is an integral part of it. Because 

each machine tool differs by its kinematics and controller, each machine tool must have its 

own specific postprocessor (Apro, 2008). 

The five-axis machine tool used throughout this project does have a postprocessor which 

can be applied to machining applications which make use of standard rotating tools and 

common toolpath strategies. The challenge at hand is that current CAM systems do not 
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support the toolpath and tooling of the USPIC cutting strategy. Therefore, the automation 

of writing G-Code for the fabrication of RTP structures was not possible, and manual 

writing was not feasible based on the number of lines necessary. To address this challenge, 

a program was developed in the MATLAB environment which automates the writing of 

the PMAC Script Language based on the previously discussed input parameters that 

specify both structure and array criteria. 

5.3 Postprocessor 

The flow of the program is outlined in the block diagram of Figure 5.1. Rectangles 

represent separate functions, parallelograms represent either an input or output, and 

rhombuses are conditional statements. 

 

Figure 5.1 Block diagram of USPIC postprocessor 

When the program is run, it first extracts variables from a text file – the input parameters. 

These include three parameters that determine the geometry of the RTP: base, beta and 

width, and eight parameters specific to the fabrication process: strategy (uni-directional, or 

bi-directional), clearance height, roughing chip thickness, finishing chip thickness, number 
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of finishing cuts (two in the case below), length of chipbreaker (applicable only to the uni-

directional strategy), rapid feed rate, and cutting feed rate (Figure 5.2). 

 

Figure 5.2 a) structure parameters, b) machining parameters 

Clearance height is defined as a plane above, and parallel to, the workpiece which is 

determined as a “safe” distance for the tool to make ancillary motions at an increased 

traversing rate (rapid feed rate), and below this plane the tool should move at a slower rate 

conducive to cutting (cutting feed rate). This height is determined somewhat arbitrarily, 

but should be kept at a minimum for the sake of toolpath efficiency, while keeping the tool 

clear of the surface so as to reduce the likelihood of tool collisions. 

Machining strategies can generally be divided into two procedures: roughing and 

finishing. The two procedures represent a tradeoff between material removal rate and 

resulting surface finish – the roughing procedure being focused on the rate of material 

removal, while the finishing strategy focuses on achieving optimal surface finish. The 

roughing procedure is carried out first and brings the geometry to a near finished state, after 
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which the finishing procedure removes the remaining material while achieving the desired 

surface finish. 

Chip thickness, as referred to here, is defined as the thickness of the undeformed 

material being removed. Cutting conditions and material composition largely determine a 

preferred range for these two parameters, but Brinksmeier et al. has shown that a roughing 

and finishing thickness of 4 µm and 1–3 µm, respectively, produces consistent optical 

quality surface finish when using N37 as the workpiece material (Brinksmeier et al., 2012). 

Brinksmeier et al. also applied a roughing feed rate of 45 mm/min and finishing feed rate 

of 3 mm/min. 

Since cutting parameters rely primarily on the composition of the tool and 

workpiece, an experiment was carried out in order to determine what these parameters 

would ideally be for our specific application: a monocrystalline diamond tool, and a 

PMMA (poly methyl methacrylate) workpiece. This material was chosen because it is 

relatively soft when compared to metals, which will reduce the likelihood of tool damage 

during the verification phase of the USPIC strategy. Throughout the experiment, the 

resulting surface finish was observed for a series of 20 cuts in which the chip thickness was 

varied from 1 to 20 µm. The experiment was carried out three separate times – each with 

its own distinct applied feed rate (10, 50, and 100 mm/min). As a result, the cutting feed 

rate should be no more than 50 mm/min and the chip thickness less than 10 µm for the 

finishing cuts. 

While a quantitative analysis of the resulting surface finish was not carried out, 

images of the cut surfaces were captured with a microscope. Six images are displayed in 
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Figure 5.3 below to give a general sense of how these two parameters affect the resulting 

surface finish. A comprehensive set of images was not deemed necessary for this 

discussion primarily for the sake of spatial constraints. 

 

Figure 5.3 Qualitative surface roughness comparison: a) 3 µm at 10 mm/min, b) 3 µm at 

50 mm/min, c) 3 µm at 100 mm/min, d) 10 µm at 10 mm/min, e) 10 µm at 50 mm/min, 

and f) 10 µm at 100 mm/min 

Preliminary iterations of this program were carried out with a single finishing cut, but 

depending on the cutting conditions, this was often not enough to remove the poor surface 

finish left by the roughing strategy. Therefore, it was determined that the number of 

finishing cuts should be a variable. Finally, the chipbreaker is implemented in the uni-

directional strategy as a means of separating the newly formed chip from the base material. 

Practically speaking, after the tool reaches the root of a cut the next motion is the 

chipbreaker which is along the adjacent facet. The length of this motion should be at least 

b) c) a) 

d) e) f) 
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the thickness of the chip being formed, but can be made longer in an effort to fully remove 

the chip from the cavity. 

5.4 Rough Cutting Coordinates 

Calculations for the cutting coordinates depend on the rough and finish vertices of the RTP 

structure, which are first determined based on the input parameters (Figure 5.4). Equations 

for each of these points utilize fundamental, right triangle trigonometry, a result of the RTP 

geometry, and were derived through examination. 

 

Figure 5.4 Finish and rough structure vertices 

Finish structure coordinates are, 
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and rough structure coordinates are, 
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Where Fn is the number of finish cuts chosen by the user, and FDOC is the finishing depth 

of cut (i.e. chip thickness). X coordinates are all assumed to be zero which ensures the 

structure is aligned with the YZ plane. 

Since the two roughing strategies differ in their respective cutting kinematics, it 

should follow that the cutting coordinates will also be different. Therefore, two separate 

MATLAB functions were written to calculate the roughing coordinates according to the 

strategy specified by the user. Equations for these coordinates were derived in a similar 

fashion to those of the structure vertices. It should also be noted that the coordinates for 

structure vertices and cutting coordinates are taken with respect to the corner of the RTP 

containing the angle β. 



91 

 

The uni-directional strategy is a repeated sequence of four motions: cutting, 

chipbreaker, and two ancillary motion. These four motions are linear interpolations 

between the points depicted in Figure 5.5 below. Parallel cuts are separated by the roughing 

chip thickness, RDOC. Since the length of the rough structure facet adjacent to β may not 

necessarily be divisible by an integer quantity of roughing cuts having a depth of cut equal 

to the desired roughing chip thickness, the exact value of this parameter is modified such 

that this condition becomes true. Maintaining a constant chip thickness throughout each 

procedure is an important detail which ensures the surface finish for each roughing cut can 

be accurately predicted.  

 

Figure 5.5 Graphical depiction of the uni-directional strategy 

Coordinate calculations for the four points are, 
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The remaining coordinates are calculated through a conditional statement, until the last set 

of four complete the geometry of the rough structure. Again, each set of four coordinates 

are separated by a distance equal to the modified value of the chip thickness as measured 

parallel to the facet adjacent to β. 

The cutting coordinates for the bi-directional strategy are calculated in the same 

manner, but this strategy is a repeated sequence of six motions: two cutting, and four 

ancillary (Figure 5.6). It should be restated that this strategy relies on rotations about the 

Z-axis to ensure the tool is properly aligned with the facet being cut. These rotations are 

necessary after each cut is made and the tool is retracted to the clearance height – a total of 

two rotations for each sequence of six tool motions. In Figure 5.6 below, rotation occurs 

when the tool has reached position three and again at position six. These ancillary motions 

are not all depicted in Figure 5.6, doing so would only serve to increase the difficulty of 

interpretation. 
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Figure 5.6 Graphical depiction of the bi-directional strategy 

Coordinate calculations for the six points are then, 
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Where YD is a point along the base of the geometry, which corresponds to a line originating 

from the vertex of the two facets and drawn at 45° from the same two facets. The line is 

necessary for this strategy in order to keep the number of cuts and their respective thickness 

identical for each facet. In the case of β = 45° the line is vertical, but is at an angle for any 

other case. The present iteration of this program retracts the tool along this line after a cut, 

in an effort to reduce the likelihood of damaging the facet just cut. 

Comparable to the uni-directional strategy, successive sequences of these six cuts 

are calculated with similar equations through a conditional statement which populates an 

array of cutting coordinates to be used in the generation of machine code written for the 5-

axis CNC machine center employed for experiments. 

5.5 Finish Cutting Coordinates 

While many strategies could be conceived in order to complete the RTP geometry, the 

primary focus of the finishing procedure is to produce an optical quality surface finish (i.e. 

Ra < 10 nm). As a result of the experiment discussed in chapter three, it was determined 

that plough cutting is not capable of generating a surface finish comparable to that of 
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plunge cutting – a direct result of poor cutting angles (Figure 5.7). Therefore, the finish 

cutting procedure should implement plunge cutting exclusively. 

 

Figure 5.7 SEM images showing surface finish of reflective facets: a) plough cut facet, 

b) plunge cut facet 

The bi-directional strategy was developed in order to achieve the same criteria, so it is the 

strategy applied to the finishing procedure, but differentiates itself from the bi-directional 

roughing procedure by implementing a chip thickness and cutting feed rate specific to 

finishing. Quantitatively speaking, both variables are generally less than those used in the 

roughing procedure. Throughout experimentation, the finishing procedure used a chip 

thickness and feed rate of 10 µm and 10 mm/min, respectively, whereas those for the 

roughing procedure were 20 µm and 20 mm/min. Although the rapid feed rate for the two 

procedures remained the same, the material removal rate for the finishing procedure can 

be approximated as half that of the roughing procedure. For this reason, the number of 

finishing cuts should be kept to a minimum in order to produce a sufficient surface finish 

at an acceptable rate. 

a) b) 
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Throughout experimentation, between zero and three finishing cuts were used. The 

resulting surface finish from varying the number of cuts demonstrated that a minimum of 

two finishing cuts should be used following the uni-directional roughing strategy, while a 

single finishing cut is capable of producing the same results after the bi-directional strategy 

is used for roughing. Whatever the chosen number of finishing cuts may be, their 

coordinates are calculated and stored in an array similar to the method used for the roughing 

coordinates.  

5.6 Kinematic Model/Transformation Function  

The calculated coordinates could be applied to machining an RTP structure in a 

straightforward manner if the CNC machine in use was a 3-axis machine. In this case, a 

work offset vector would be used to establish the location of the workpiece with respect to 

the machine coordinate system (MCS) (Apro, 2008). This however is not the case when 

machining with rotational axes (She and Chang, 2007). Instead, the roughing and finishing 

coordinates, which are calculated with respect to the work coordinate system (WCS), must 

be transformed to the machine coordinate system (MCS). As mentioned in chapter four, 

the difficulty with this transformation is that the location and orientation of the WCS 

changes, with respect to the MCS, as the rotational axes index to the positions necessitated 

by the desired cutting kinematics. Therefore, it is necessary to translate the roughing and 

finishing coordinates from the WCS, which they were calculated relative to, to the MCS 

that the machine operates with respect to. 

In chapter four the kinematic model and transformation function are discussed in 

detail for the machining of a single structure (Hamilton et al., 2016). This discussion will 
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not reiterate that information, yet it is important to note that an additional vector was added 

to the kinematic chain that describes the location of the RTP structure relative to the WCS 

(Figure 5.8). This vector is necessary for the fabrication of a planar array of RTP structures 

which each have their own X and Y coordinates describing their location within the array. 

Therefore, the kinematic model of the machine now has an additional vector, and the 

kinematic chain now starts at b4 instead of the previous b3. 

 

Figure 5.8 Kinematic model of precision 5-axis CNC machine 

And the transformation function is now, 

  
M

4 3 x 2 z 1 0 0W
T =b b R b R b b p        (5.32) 

Where p0 represents the roughing and finishing coordinates mentioned above. The 

transformation equation is therefore a function of the XYZ coordinates of a single point in 

the WCS, and the orientation of the A and C axes – with the output being the XYZ 

coordinates of that point in the MCS. The transformed cutting coordinates are not stored in 

an array, rather they are printed directly to a text file as machine code. 
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5.7 Machine Code 

The final output in the block diagram of this postprocessor is a text file written in the 

appropriate language of the CNC machine which dictates the motions necessary to 

fabricate the desired array of RTP structures. This text file is synonymous with a program 

file for the machine and will be referred to as such throughout this discussion. The task of 

writing the program is handled by one of two MATLAB functions specific to each of the 

two cutting strategies: uni-directional and bi-directional. These two functions require the 

use of MATLAB’s built in functions to create a text file and then read, and write to it. 

The core of the program file is a series of X, Y, Z, A, and C coordinates which 

control the motion of the machine as it fabricates structures one-by-one. The actual strategy 

for machining arrays of RTP structures could take on many forms, but the structure-by-

structure approach was chosen as a result of the development of the postprocessor. Primary 

iterations machined a single structure in order to verify the functionality of cutting 

strategies, so the natural progression to arrays applied this same approach. While machine 

time could likely be reduced through optimization, this was not pursued because of the 

time constraints of the project. 

Lines of code are comprised of a single coordinate in the MCS, and the cutting tool 

moves in a linear fashion to each of the coordinates as it cuts the workpiece material. 

Machine functions such as feed rate, coolant control, and dwell time may also be controlled 

within the program, and comments may also be added according to the syntax required by 

the machine control. 
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A typical structure in an array requires hundreds of cutting coordinates and 

therefore hundreds of lines of code in the machine program. When a single structure is 

completed, the machine moves to the next location in the array and cuts another structure. 

This process is repeated until every structure in the array has been completed. 

The postprocessor manages this structure-by-structure approach by using a nested 

logic loop. The outer loop is for the array coordinates while the inner loop handles cutting 

coordinates for each structure. The transformation function is used to calculate the MCS 

coordinates for each line of code as the logic loops step through their sequence. Each 

structure has its own array location, or b0 vector, and each cutting coordinate its own 

location, or p0 vector.  In summary, the function transforms single structure cutting 

coordinates one-by-one, writes them to a text file, and repeats this for each structure in the 

array. The end result is many thousands of lines of code for a typical array. 

5.8 Experimental Validation 

This postprocessor was applied to the fabrication of a logo comprised of RTP structures 

(Figure 5.9). This particular logo was fabricated in order to demonstrate the postprocessor’s 

ability to write machine code for nearly any two-dimensional array conceivable. Structures 

in the array below are characterized by a square aperture of 450 µm, and they are each 

aligned in a brick-like pattern with adjacent rows being offset by 50% of the structure 

length. The array was cut on a 0.5 mm thick, flat PMMA sheet. At the time of assembling 

this thesis, a quantitative assessment of the array was not completed; however, surface 

roughness and optical functionality will both be measured in the near future. 
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Figure 5.9 Fabricated logo comprised of RTP structures 

5.9 Conclusion 

Throughout the development of this postprocessor numerous tests were conducted in order 

to verify the function of each contributing component. Initially these tests were carried out 

with simulation software and later with the physical machine. The simulation software used 

was Vericut by CGTech which enables the user to simulate NC machine code without the 

risk of damaging machines and tooling. The software also allows for direct importing of 

CAD models to be used as machine components. Developing a CAD model of the 5-axis 

machine used throughout this project was the topic of previous work within the research 

group, so it was adopted as the simulation model for use in Vericut. The simulation phase 

of postprocessor verification proved quite useful for correcting miscalculations and logical 

errors. 

The result of this work is an automated process for writing machine code 

specifically for the USPIC method. The toolpath length and machine time portions of the 

block diagram were intentionally excluded from this discussion because they do not play a 
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significant role in the postprocessor, and their description would not likely add value to the 

discussion. 

In closing, many improvements to the postprocessor could be conceived for future 

studies. For instance, while some effort was focused on tool path optimization, the strategy 

applied to manufacturing arrays of RTP structures could be improved in an effort to reduce 

the number of rational and ancillary motions. Furthermore, typical automotive applications 

require retroreflective arrays described by freeform surfaces in order to follow the 

curvature of the vehicle; therefore, future iterations of this postprocessor should allow for 

arrays manufactured on freeform surfaces. 
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CHAPTER 6 

Discussion and Conclusions 
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6.1 Summary 

The research conducted within this thesis contributes to the goal of developing a new and 

innovative manufacturing procedure for right triangular prism (RTP) retroreflectors. At the 

outset of this thesis no such research had been published, so it was not clear whether or not 

the RTP geometry was appropriate for retroreflection in automotive applications. To this 

end, the Ultraprecise Single Point Inverted Cutting technique (USPIC) has been proven 

applicable for the fabrication of two dimensional arrays of RTP structures. 

The technique was envisioned as a combination of the mechanics of single point 

diamond turning, and the kinematics of multi-axis milling. As such, the tool developed for 

this technique resembles that of a standard grooving tool used in turning operations, and is 

fixed to an ultraprecise five-axis milling machine. Unlike common tools used in milling 

operations, the USPIC tool does not rotate during cutting. Instead, its cutting motion is 

provided by the linear axes of the milling machine. 

Although many variations of cutting kinematics could be imagined, two techniques 

have been developed to produce the RTP geometry: the uni-directional, and bi-directional 

strategies. These represent a modification of classical cutting mechanics for single point 

operations (Stephenson and Agapiou, 2006). For instance, the tool geometry was 

developed in keeping with standard practices to allow for a straightforward prediction of 

material removal and generated surface finish. The first technique favours material removal 

over surface finish, while the second technique utilizes cutting mechanics that produce 

sufficient surface finish for both reflective facets, but requires additional ancillary motions 

– decreasing the material removal rate. 
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The additional ancillary motions necessitated by the bi-directional strategy require 

the use of the two rotational axes of the ultraprecise machine tool. These two axes are 

aligned with the X and Z principal axes of the machine, and allow for tool orientations 

otherwise not obtainable (Apro, 2008). However, the increased complexity of the machine 

kinematics, and novelty of the proposed cutting technique required the development of a 

suitable postprocessor whose foundation is a kinematic model of the machine. 

As the rotary axes index throughout the bi-directional technique, the workpiece 

moves with it, so the orientation and location of the workpiece with respect to the machine 

coordinate system (MCS) are not immediately known. Therefore, its location and 

orientation must be calculated through a transformation function – a mathematical 

description of the kinematic model, which serves to simplify the job of the programmer by 

allowing for the translation of coordinate systems. Since the workpiece is a solid body, 

cutting coordinates can be calculated relative to a fixed location on the workpiece, or the 

workpiece coordinate system (WCS), and later converted to the MCS (Tutunea-Fatan and 

Feng, 2004). 

In its current form, this postprocessor is able to produce machine code for the 

fabrication of two dimensional planar arrays of RTP structures. As seen in the experimental 

validation of chapter five, the solution is quite versatile and has been applied to simple 

arrays described by rectangular geometry, and more complex arrays described by familiar 

logos. Many of the fabricated arrays depicted in previous chapters required more than 

50,000 lines of code – a result of the number of tool motions to complete a single structure. 
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6.2 Conclusions 

Working in collaboration with the National Research Council of Canada (NRC), a new 

manufacturing technology has been developed – a viable option for the fabrication of RTP 

structures. The current iteration of this technique includes separate roughing and finishing 

procedures, each with process specific variables that provide for increased compatibility 

with workpiece materials and structure geometry. It also provides a means of automating 

the machine code writing process necessary to fabricate large arrays. Without an automated 

process, writing lines of code manually would be necessary but not feasible. 

Throughout the development of this technique, visualization and simulation aids 

were also created. A CAD based macro was devised to generate RTP arrays, first for the 

purpose of visually analyzing changes to geometry, and second for the purpose of optical 

analysis with simulation software. As the research progressed toward physical 

experiments, a full CAD model of the five-axis machine, adapted from previous work, was 

used to verify and expose errors in the machine code writing process. This step proved 

invaluable, revealing small errors that would not have been easily identified throughout 

physical applications. 

Initial quantitative analysis suggests that the RTP fabricated with USPIC 

outperforms the cube corner retroreflectors, and has a comparable optical performance to 

RTPs created with the pin-bundling technique (Hussein et al., 2016). The geometry also 

lends itself to more straightforward toolpaths for the direct machining of structures. All 

things considered, the cutting technology developed herein not only serves to fill a 

literature gap in retroreflector technology, but also contributes to the advancement of the 

Canadian manufacturing sector. 
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6.2 Recommendations 

Moving forward from the work presented in this thesis, a number of recommendations can 

be made to further develop the USPIC technology. A study of cutting mechanics should be 

conducted with a focus on optimizing process parameters. Currently, these parameters are 

chosen as a result of a parametric study in which surface finish was analyzed following 

incremental changes to the depth of cut and cutting speed. A better understanding of the 

mechanisms which affect surface finish would allow for the optimization of tool geometry 

and process parameters. Furthermore, the time intensive tool calibration procedure means 

that optical assessment of tool wear is an inconvenient and time intensive procedure. With 

a better understanding of cutting mechanics, tool life and wear predictions could be made. 

The targeted surface finish of Ra < 10 nm was not achieved throughout testing 

which fundamentally limits optical functionality. This is believed to be a result of the 

PMMA workpiece material that was originally selected because of its machinability and 

optical clarity. Optimizing the cutting mechanics of this process may contribute to 

achieving the targeted surface finish. However, cutting RTP structures in a material 

suitable for moulding is a primary objective, and the process parameters and tool geometry 

developed for PMMA material are expected to change somewhat for mould materials, such 

as aluminum or tool steel. 

Typical automotive applications require the surface of the retroreflective arrays to 

follow the lines and curves of the vehicle body which are by nature freeform. Further 

iterations of the postprocessor should therefore be focused on array parameters with the 

objective of producing arrays characterized by freeform surfaces. Intermediate steps should 
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include the ability to machine arrays on inclined and curved planes, as well as the ability 

to change the orientation of specific elements within the array. 

Finally, a standard should be used, or developed, for the optical testing of samples. 

Automotive manufacturers must adhere to a standard set by the Society of Automotive 

Engineers (SAE, 2009). No such standard was applied for testing samples created with 

USPIC, which contributes to the difficulty of comparing fabricated samples with one 

another and with examples from automotive applications. Without this standard, the optical 

functionality of samples tends to be a subjective discussion rather than one based on 

quantitative results. 

In closing, the current iteration of the USPIC technology provides a foundation for 

fabricating planar arrays of RTP structures with monocrystalline diamond tools and 

ultraprecise multi-axis milling machines. With regard to minimum structure size and 

machine time, this solution is an improvement over the pin-bundling technique. Further 

research should be carried out in order to develop this procedure to a point where it is 

capable of being adopted as a cost-efficient mass-fabrication alternative for automotive 

optical components. 
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