489 research outputs found

    Negative association of the chemokine receptor CCR5 d32 polymorphism with systemic inflammatory response, extra-articular symptoms and joint erosion in rheumatoid arthritis

    Get PDF
    Introduction Chemokines and their receptors control immune cell migration during infections as well as in autoimmune responses. A 32 bp deletion in the gene of the chemokine receptor CCR5 confers protection against HIV infection, but has also been reported to decrease susceptibility to rheumatoid arthritis (RA). The influence of this deletion variant on the clinical course of this autoimmune disease was investigated. Methods Genotyping for CCR5d32 was performed by PCR and subsequent electrophoretic fragment length determination. For the clinical analysis, the following extra-articular manifestations of RA were documented by the rheumatologist following the patient: presence of rheumatoid nodules, major organ vasculitis, pulmonary fibrosis, serositis or a Raynaud's syndrome. All documented CRP levels were analyzed retrospectively, and the last available hand and feet radiographs were analyzed with regards to the presence or absence of erosive disease. Results Analysis of the CCR5 polymorphism in 503 RA patients and in 459 age-matched healthy controls revealed a significantly decreased disease susceptibility for carriers of the CCR5d32 deletion (Odds ratio 0.67, P = 0.0437). Within the RA patient cohort, CCR5d32 was significantly less frequent in patients with extra-articular manifestations compared with those with limited, articular disease (13.2% versus 22.8%, P = 0.0374). In addition, the deletion was associated with significantly lower average CRP levels over time (median 8.85 vs. median 14.1, P = 0.0041) and had a protective effect against the development of erosive disease (OR = 0.40, P = 0.0047). Intriguingly, homozygosity for the RA associated DNASE2 -1066 G allele had an additive effect on the disease susceptibility conferred by the wt allele of CCR5 (OR = 2.24, P = 0.0051 for carrier of both RA associated alleles) Conclusions The presence of CCR5d32 significantly influenced disease susceptibility to and clinical course of RA in a German study population. The protective effect of this deletion, which has been described to lead to a decreased receptor expression in heterozygous patients, underlines the importance of chemokines in the pathogenesis of RA

    Association of the CCR5 gene with juvenile idiopathic arthritis

    Get PDF
    The CC chemokine receptor 5 (CCR5) has been shown to be important in the recruitment of T-helper cells to the synovium, where they accumulate, drive the inflammatory process and the consequent synovitis and joint destruction. A 32 base-pair insertion/deletion variant (CCR5Δ32) within the gene leads to a frame shift and a nonfunctional receptor. CCR5Δ32 has been investigated for its association with juvenile idiopathic arthritis (JIA), with conflicting results. The aim of this study was to investigate whether CCR5Δ32 is associated with JIA in an UK population. CCR5Δ32 was genotyped in JIA cases (n=1054) and healthy controls (n=3129) and genotype and allele frequencies were compared. A meta-analysis of our study combined with previously published studies was performed. CCR5Δ32 was significantly associated with protection from developing JIA, in this UK data set (P(trend)=0.006, odds ratio (OR) 0.79 95% confidence interval (95% CI): 0.66-0.94). The meta-analysis of all published case-control association studies confirmed the protective association with JIA (P=0.001 OR 0.82 95% CI: 0.73-0.93). CCR5Δ32 is a functional variant determining the number of receptors on the surface of T cells, and it is hypothesized that the level of CCR5 expression could influence the migration of proinflammatory T cells into the synovium and thus susceptibility to JIA

    Role of Host Genetic Factors in the Outcome of Hepatitis C Virus Infection

    Get PDF
    The natural history of hepatitis C virus (HCV) infection is determined by a complex interplay between host genetic, immunological and viral factors. This review highlights genes involved in innate and adaptive immune responses associated with different outcomes of HCV infection. For example, an association of HCV clearance with certain HLA alleles has been demonstrated. The mechanisms responsible for these associations have been linked to specific T cell responses for some particular alleles (e.g., HLA-B27). Genetic associations involved in T cell regulation and function further underline the role of the adaptive immune response in the natural history of HCV infection. In addition, some genes involved in innate NK cell responses demonstrate the complex interplay between components of the immune system necessary for a successful host response to HCV infection

    Progress toward curing HIV infection with hematopoietic cell transplantation.

    Get PDF
    HIV-1 infection afflicts more than 35 million people worldwide, according to 2014 estimates from the World Health Organization. For those individuals who have access to antiretroviral therapy, these drugs can effectively suppress, but not cure, HIV-1 infection. Indeed, the only documented case for an HIV/AIDS cure was a patient with HIV-1 and acute myeloid leukemia who received allogeneic hematopoietic cell transplantation (HCT) from a graft that carried the HIV-resistant CCR5-∆32/∆32 mutation. Other attempts to establish a cure for HIV/AIDS using HCT in patients with HIV-1 and malignancy have yielded mixed results, as encouraging evidence for virus eradication in a few cases has been offset by poor clinical outcomes due to the underlying cancer or other complications. Such clinical strategies have relied on HIV-resistant hematopoietic stem and progenitor cells that harbor the natural CCR5-∆32/∆32 mutation or that have been genetically modified for HIV-resistance. Nevertheless, HCT with HIV-resistant cord blood remains a promising option, particularly with inventories of CCR5-∆32/∆32 units or with genetically modified, human leukocyte antigen-matched cord blood

    Predominance of the heterozygous CCR5 delta‐24 deletion in African individuals resistant to HIV infection might be related to a defect in CCR5 addressing at the cell surface

    Get PDF
    Introduction The chemokine receptor CCR5 is the main co-receptor for R5-tropic HIV-1 variants. We have previously described a novel 24-base pair deletion in the coding region of CCR5 among individuals from Rwanda. Here, we investigated the prevalence of hCCR5 Delta 24 in different cohorts and its impact on CCR5 expression and HIV-1 infection in vitro. Methods We screened hCCR5 Delta 24 in a total of 3232 individuals which were either HIV-1 uninfected, high-risk HIV-1 seronegative and seropositive partners from serodiscordant couples, Long-Term Survivors, or HIV-1 infected volunteers from Africa (Rwanda, Kenya, Guinea-Conakry) and Luxembourg, using a real-time PCR assay. The role of the 24-base pair deletion on CCR5 expression and HIV infection was assessed in cell lines and PBMC using mRNA quantification, confocal analysis, flow and imaging cytometry. Results and Discussion Among the 1661 patients from Rwanda, 12 individuals were heterozygous for hCCR5 Delta 24 but none were homozygous. Although heterozygosity for this allele may not confer complete resistance to HIV-1 infection, the prevalence of the mutation was 2.41% (95%CI: 0.43; 8.37) in 83 Long-Term Survivors (LTS) and 0.99% (95%CI: 0.45; 2.14) in 613 HIV-1 exposed seronegative members as compared with 0.35% (95% Cl: 0.06; 1.25) in 579 HIV-1 seropositive members. The prevalence of hCCR5 Delta 24 was 0.55% (95%CI: 0.15; 1.69) in 547 infants from Kenya but the mutation was not detected in 224 infants from Guinea-Conakry nor in 800 Caucasian individuals from Luxembourg. Expression of hCCR5 Delta 24 in cell lines and PBMC showed that the hCCR5 Delta 24 protein is stably expressed but is not transported to the plasma membrane due to a conformational change. Instead, the mutant receptor was retained intracellularly, colocalized with an endoplasmic reticulum marker and did not mediate HIV-1 infection. Co-transfection of hCCR5 Delta 24 and wtCCR5 did not indicate a transdominant negative effect of CCR5 Delta 24 on wtCCR5. Conclusions Our findings indicate that hCCR5 Delta 24 is not expressed at the cell surface. This could explain the higher prevalence of the heterozygous hCCR5 Delta 24 in LTS and HIV-1 exposed seronegative members from serodiscordant couples. Our data suggest an East-African localization of this deletion, which needs to be confirmed in larger cohorts from African and non-African countries

    Lack of association between the chemokine receptor 5 polymorphism CCR5delta32 in rheumatoid arthritis and juvenile idiopathic arthritis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The chemokine receptor CCR5 has been detected at elevated levels on synovial T cells, and a 32 bp deletion in the <it>CCR5 </it>gene leads to a non-functional receptor. A negative association between the <it>CCR5Δ32 </it>and rheumatoid arthritis (RA) has been reported, although with conflicting results. In juvenile idiopathic arthritis (JIA), an association with CCR5 was recently reported. The purpose of this study was to investigate if the <it>CCR5Δ32 </it>polymorphism is associated with RA or JIA in Norwegian cohorts.</p> <p>Methods</p> <p>853 RA patients, 524 JIA patients and 658 controls were genotyped for the <it>CCR5Δ32 </it>polymorphism.</p> <p>Results</p> <p>The <it>CCR5Δ32 </it>allele frequency was 11.5% in the controls vs. 10.4% in RA patients (OR = 0.90; <it>P </it>= 0.36) and 9.7% in JIA patients (OR = 0.85; <it>P </it>= 0.20). No decreased homozygosity was observed for <it>CCR5Δ32</it>, as previously suggested.</p> <p>Conclusion</p> <p>Our data do not support an association between the <it>CCR5Δ32 </it>allele and Norwegian RA or JIA patients. Combining our results with those from a recently published meta-analysis still provide evidence for a role for <it>CCR5Δ32 </it>in RA, albeit substantially weaker than the effect first reported.</p
    corecore