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Shytaj et al. [1] report that complete

suppression of SIVmac replication can be

achieved in rhesus macaques by a combi-

nation of five antiretroviral (ARV) drugs,

which the authors term ‘‘mega-HAART’’.

This combination consists of the three-

drug nucleoside reverse transcriptase in-

hibitor (tenofovir/emtricitabine) and inte-

grase inhibitor (raltegravir) regimen often

used in treatment studies of simian immu-

nodeficiency virus (SIV)-infected rhesus

macaques, intensified with the protease

inhibitor darunavir (pharmacokinetically

enhanced by ritonavir) and the CCR5

antagonist maraviroc. Achieving complete

suppression of SIVmac in rhesus ma-

caques is an important step in developing

an animal model for HIV-1 cure research

because it parallels the effects of antiret-

roviral therapy in HIV-infected humans.

Without complete suppression, testing of

therapeutic strategies to reduce viral

reservoirs is confounded by ongoing cycles

of viral replication that can replete such

reservoirs.

Over the last two decades, rhesus

macaque models of AIDS have revealed

key aspects of HIV-1 pathogenesis, such as

virus transmission and early events post-

infection, the sites of viral replication and

CD4+ T cell depletion, and virus and cell

turnover [2–8]. These models have also

been instrumental for vaccine research,

allowing the evaluation of increasingly

potent DNA and vector immunogens

and combinations of these vectors in

various prime-boost combinations [9–11].

Macaque models of preexposure prophy-

laxis (PrEP) have also helped elucidate the

ARV exposures and the timing of expo-

sure required to maximize protection from

virus challenge [12].

By contrast, the rhesus macaque/SIV

model has contributed less to the develop-

ment and optimization of ARV therapy

[13]. The main reasons for this include the

natural resistance of SIVs to nonnucleo-

side reverse transcriptase inhibitors

(NNRTIs) [14,15], major differences in

ARV pharmacokinetics between humans

and macaques [13,16], and divergent

interactions of SIVmac and HIV-1 with

host restriction factors [17]. Importantly,

because the pandemic HIV-1 subtypes do

not replicate in monkey species [18],

simian counterparts derived from natural-

ly infected sooty mangabeys, such as

SIVmac/smm, must be used [19]. Al-

though SIVsmm is not completely distinct

from its HIV relatives, being the cause of

the HIV-2 epidemic [20], the differences

in ARV susceptibility and pharmacokinet-

ics have restricted the use of the RM/

SIVmac models for antiretroviral therapy.

Nevertheless, many ARVs are active in

vitro and in vivo against SIVmac [14,21],

and studies of antiretroviral therapy (ART)

in macaques have been reported [21–24].

In most of these studies, however, com-

plete control of viral replication has not

been achieved [14]. In addition to subop-

timal pharmacokinetics, failure to achieve

complete control of viral replication is

likely related to the biology of SIVmac

infection in rhesus macaques. SIVmac is

more virulent than HIV-1 [3]. The set

point of viremia in SIV-infected macaques

is 10- to 100-fold higher than in HIV-1

infection, and progression to AIDS occurs

in 1–2 years and more quickly (,1 year) in

up to 40% of macaques [3,9]. Alternatives

to SIVmac have been reported, most

notably the use of chimeric HIV-SIV

viruses (called simian-human immunode-

ficiency viruses or SHIVs) in which

SIVmac reverse transcriptase (RT) is

replaced by HIV-1 RT (RT-SHIVs) [25–

27]. RT-SHIVs have the advantage of

being susceptible to both nucleoside and

non-nucleoside RT inhibitors similar to

HIV-1. These chimeric viruses also have

limitations, most notably that, similar to

the parental virus, RT-SHIVmac is diffi-

cult to suppress with the same three-drug

combination (tenofovir/emtricitabine/efa-

virenz) that is most commonly used in

humans [25]. As an alternative approach,

RT-SHIVmne was constructed using the

SIVmne isolate from pigtailed macaques

and is used to infect this species. RT-

SHIVmne is less virulent than SIVmac

and not infrequently can be controlled by

the host without intervention. Even so,

ART with tenofovir/emtricitabline/efavir-

enz failed to completely control RT-

SHIVmne replication in chronically in-

fected pigtailed macaques, as evidenced by

both persistent viral replication and se-

quence evolution under treatment [26,27].

The recent report that one patient (‘‘the

Berlin patient’’) was cured of HIV infec-

tion [28] has renewed enthusiasm for a

‘‘cure research’’ aimed at understanding

the mechanisms of HIV-1 persistence and

developing therapeutic strategies to reduce

and ultimately eliminate viral reservoirs.

Limitations of human clinical studies,

especially invasive sampling of multiple

reservoir sites, make it imperative to

develop analogous and tractable animal

models for cure research. Several groups

are trying to achieve this goal by (i) ARV

intensification in SIVmac-infected rhesus

macaques to completely suppress viral

replication, similar to Shytaj et al. [1] (J.

Lifson, unpublished data; P. Luciw, un-

published data), (ii) use of Chinese ma-

caques infected with SIVmac (B. Ling,

unpublished data), in which viral replica-

tion at set point viral replication is lower

than in Indian rhesus macaques [29],
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which have dominated AIDS research,

and (iii) development of an animal model

of functional cure in the absence of ART

[30]. Additionally, humanized mouse

models of HIV-1 infection have been

developed for cure research [31].

How these varied animal models should

be used for cure research is not well

defined. Several different therapies could

have contributed to the cure of the Berlin

patient, including myeloablative chemo-

therapy, total body irradiation, transplan-

tation of allogeneic D32/D32stem cells,

immunosuppressive agents, and graft-ver-

sus-host disease, for which animal models

are impractical [28]. Irrespective of the

mechanisms of the cure, careful charac-

terization of viral reservoirs is the keystone

of cure research. Such studies should

involve invasive sampling and detailed

description of the sites of virus persistence

on completely suppressive ART, as well as

identifying the source of viral rebound

after cessation of ART. New therapeutic

strategies can then be tested, including

selective activators of viral expression,

reversal of immune exhaustion, and en-

hancement of viral specific immune re-

sponses, with careful quantification of

effects on viral reservoirs in different

anatomic sites, including the brain. For

obvious ethical reasons, such studies can-

not be performed in humans. In addition,

because the time of infection and the virus

inocula can be controlled in animal

models, studies can be performed to assess

the optimal timing of cure interventions as

has been reported for PrEP [12]. In

addition, animal models for cure research

can establish ‘‘proof of concept’’ for the

many new therapeutic strategies emerging

in the field before testing in humans. It is

essential, however, that the therapeutic

benefits observed in animal models are

validated in human studies (and vice

versa), and that the cause of discrepancies

be elucidated. Because none of the current

animal models perfectly reproduce HIV-1

infection and ART, it is likely that several

different models will be needed to under-

stand virus persistence, latency, reactiva-

tion, and eradication.

As such, establishing a nonhuman

primate model of complete viral suppres-

sion as reported by Shytaj et al. [1] is a

step forward for cure research. One may

argue that achieving complete control of

viral replication is just a baby step towards

the overall goal of virus eradication and

that much more needs to be accomplished

with regard to developing more sensitive

virological assays [32], small molecules to

activate latent virus [33–36], and biologics

to clear viral reservoirs [37,38]. Neverthe-

less, approaches like that of Shytaj et al.

[1] indicate that control of viral replication

is possible in macaques if drug potent,

multidrug combinations are employed and

that nonhuman primate models for cure

research are here to stay.
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