395 research outputs found

    Anonymity-Preserving Public-Key Encryption: A Constructive Approach

    Get PDF
    Abstract. A receiver-anonymous channel allows a sender to send a message to a receiver without an adversary learning for whom the message is intended. Wireless broadcast channels naturally provide receiver anonymity, as does multi-casting one message to a receiver population containing the intended receiver. While anonymity and confidentiality appear to be orthogonal properties, making anonymous communication confidential is more involved than one might expect, since the ciphertext might reveal which public key has been used to encrypt. To address this problem, public-key cryptosystems with enhanced security properties have been proposed. We investigate constructions as well as limitations for preserving receiver anonymity when using public-key encryption (PKE). We use the constructive cryptography approach by Maurer and Renner and interpret cryptographic schemes as constructions of a certain ideal resource (e.g. a confidential anonymous channel) from given real resources (e.g. a broadcast channel). We define appropriate anonymous communication resources and show that a very natural resource can be constructed by using a PKE scheme which fulfills three properties that appear in cryptographic literature (IND-CCA, key-privacy, weak robustness). We also show that a desirable stronger variant, preventing the adversary from selective “trial-deliveries ” of messages, is unfortunately unachievable by any PKE scheme, no matter how strong. The constructive approach makes the guarantees achieved by applying a cryptographic scheme explicit in the constructed (ideal) resource; this specifies the exact requirements for the applicability of a cryptographic scheme in a given context. It also allows to decide which of the existing security properties of such a cryptographic scheme are adequate for the considered scenario, and which are too weak or too strong. Here, we show that weak robustness is necessary but that so-called strong robustness is unnecessarily strong in that it does not construct a (natural) stronger resource

    Signcryption schemes with threshold unsigncryption, and applications

    Get PDF
    The final publication is available at link.springer.comThe goal of a signcryption scheme is to achieve the same functionalities as encryption and signature together, but in a more efficient way than encrypting and signing separately. To increase security and reliability in some applications, the unsigncryption phase can be distributed among a group of users, through a (t, n)-threshold process. In this work we consider this task of threshold unsigncryption, which has received very few attention from the cryptographic literature up to now (maybe surprisingly, due to its potential applications). First we describe in detail the security requirements that a scheme for such a task should satisfy: existential unforgeability and indistinguishability, under insider chosen message/ciphertext attacks, in a multi-user setting. Then we show that generic constructions of signcryption schemes (by combining encryption and signature schemes) do not offer this level of security in the scenario of threshold unsigncryption. For this reason, we propose two new protocols for threshold unsigncryption, which we prove to be secure, one in the random oracle model and one in the standard model. The two proposed schemes enjoy an additional property that can be very useful. Namely, the unsigncryption protocol can be divided in two phases: a first one where the authenticity of the ciphertext is verified, maybe by a single party; and a second one where the ciphertext is decrypted by a subset of t receivers, without using the identity of the sender. As a consequence, the schemes can be used in applications requiring some level of anonymity, such as electronic auctions.Peer ReviewedPostprint (author's final draft

    Theory and Applications of Outsider Anonymity in Broadcast Encryption

    Full text link
    Broadcast Encryption (BE) allows efficient one-to-many secret communication of data over a broadcast channel. In the standard setting of BE, information about receivers is transmitted in the clear together with ciphertexts. This could be a serious violation of recipient privacy since the identities of the users authorized to access the secret content in certain broadcast scenarios are as sensitive as the content itself. Anonymous Broadcast Encryption (AnoBe) prevents this leakage of recipient identities from ciphertexts but at a cost of a linear lower bound (in the number of receivers) on the length of ciphertexts. A linear ciphertext length is a highly undesirable bottleneck in any large-scale broadcast application. In this thesis, we propose a less stringent yet very meaningful notion of anonymity for anonymous broadcast encryption called Outsider-Anonymous Broadcast Encryption (oABE) that allows the creation of ciphertexts that are sublinear in the number of receivers. We construct several oABE schemes with varying security guarantees and levels of efficiency. We also present two very interesting cryptographic applications afforded by the efficiency of our oABE schemes. The first is Broadcast Steganography (BS), the extension of the state of the art setting of point-to-point steganography to the multi-recipient setting. The second is Oblivious Group Storage (OGS), the introduction of fine-grained data access control policies to the setting of multi-client oblivious cloud storage protocols

    Contributions to Identity-Based Broadcast Encryption and Its Anonymity

    Get PDF
    Broadcast encryption was introduced to improve the efficiency of encryption when a message should be sent to or shared with a group of users. Only the legitimate users chosen in the encryption phase are able to retrieve the message. The primary challenge in construction a broadcast encryption scheme is to achieve collusion resistance such that the unchosen users learn nothing about the content of the encrypted message even they collude

    Biometric Cryptosystems : Authentication, Encryption and Signature for Biometric Identities

    Get PDF
    Biometrics have been used for secure identification and authentication for more than two decades since biometric data is unique, non-transferable, unforgettable, and always with us. Recently, biometrics has pervaded other aspects of security applications that can be listed under the topic of ``Biometric Cryptosystems''. Although the security of some of these systems is questionable when they are utilized alone, integration with other technologies such as digital signatures or Identity Based Encryption (IBE) schemes results in cryptographically secure applications of biometrics. It is exactly this field of biometric cryptosystems that we focused in this thesis. In particular, our goal is to design cryptographic protocols for biometrics in the framework of a realistic security model with a security reduction. Our protocols are designed for biometric based encryption, signature and remote authentication. We first analyze the recently introduced biometric remote authentication schemes designed according to the security model of Bringer et al.. In this model, we show that one can improve the database storage cost significantly by designing a new architecture, which is a two-factor authentication protocol. This construction is also secure against the new attacks we present, which disprove the claimed security of remote authentication schemes, in particular the ones requiring a secure sketch. Thus, we introduce a new notion called ``Weak-identity Privacy'' and propose a new construction by combining cancelable biometrics and distributed remote authentication in order to obtain a highly secure biometric authentication system. We continue our research on biometric remote authentication by analyzing the security issues of multi-factor biometric authentication (MFBA). We formally describe the security model for MFBA that captures simultaneous attacks against these systems and define the notion of user privacy, where the goal of the adversary is to impersonate a client to the server. We design a new protocol by combining bipartite biotokens, homomorphic encryption and zero-knowledge proofs and provide a security reduction to achieve user privacy. The main difference of this MFBA protocol is that the server-side computations are performed in the encrypted domain but without requiring a decryption key for the authentication decision of the server. Thus, leakage of the secret key of any system component does not affect the security of the scheme as opposed to the current biometric systems involving cryptographic techniques. We also show that there is a tradeoff between the security level the scheme achieves and the requirement for making the authentication decision without using any secret key. In the second part of the thesis, we delve into biometric-based signature and encryption schemes. We start by designing a new biometric IBS system that is based on the currently most efficient pairing based signature scheme in the literature. We prove the security of our new scheme in the framework of a stronger model compared to existing adversarial models for fuzzy IBS, which basically simulates the leakage of partial secret key components of the challenge identity. In accordance with the novel features of this scheme, we describe a new biometric IBE system called as BIO-IBE. BIO-IBE differs from the current fuzzy systems with its key generation method that not only allows for a larger set of encryption systems to function for biometric identities, but also provides a better accuracy/identification of the users in the system. In this context, BIO-IBE is the first scheme that allows for the use of multi-modal biometrics to avoid collision attacks. Finally, BIO-IBE outperforms the current schemes and for small-universe of attributes, it is secure in the standard model with a better efficiency compared to its counterpart. Another contribution of this thesis is the design of biometric IBE systems without using pairings. In fact, current fuzzy IBE schemes are secure under (stronger) bilinear assumptions and the decryption of each message requires pairing computations almost equal to the number of attributes defining the user. Thus, fuzzy IBE makes error-tolerant encryption possible at the expense of efficiency and security. Hence, we design a completely new construction for biometric IBE based on error-correcting codes, generic conversion schemes and weakly secure anonymous IBE schemes that encrypt a message bit by bit. The resulting scheme is anonymous, highly secure and more efficient compared to pairing-based biometric IBE, especially for the decryption phase. The security of our generic construction is reduced to the security of the anonymous IBE scheme, which is based on the Quadratic Residuosity assumption. The binding of biometric features to the user's identity is achieved similar to BIO-IBE, thus, preserving the advantages of its key generation procedure

    On the Impossibility of Basing Identity Based Encryption on Trapdoor Permutations

    Full text link
    We ask whether an Identity Based Encryption (IBE) sys-tem can be built from simpler public-key primitives. We show that there is no black-box construction of IBE from Trapdoor Permutations (TDP) or even from Chosen Ci-phertext Secure Public Key Encryption (CCA-PKE). These black-box separation results are based on an essential prop-erty of IBE, namely that an IBE system is able to compress exponentially many public-keys into a short public parame-ters string. 1

    On Security Notions for Multi-Party Computation

    Get PDF
    Die meisten Sicherheitsbegriffe, die heutzutage benutzt werden, stammen aus den 1980ern. Doch durch ein seitdem besseres Verständnis der Theorie stellt sich die Frage, ob sie nicht weiterentwickelt werden können. Ein begrenzender Faktor sind hierbei sogenannte Unmöglichkeitsbeweise, die mathematisch beweisen, welche Sicherheitsgarantien nicht erfüllt werden können. Diese liefern einen begrenzenden Faktor, ihre Aussage sollte jedoch nicht übertrieben werden. Der Beweis ist nur in seinem eigenen Setting gültig und deckt nur genau den einen Sicherheitsbegriff ab. Historisch haben sich die etablierten Sicherheitsbegriffe jedoch zu etwas deutlich schwächerem entwickelt, wodurch eine Lücke zwischen dem entstanden ist, was praktisch benutzt wird, und dem, was bekanntermaßen unmöglich ist. In dieser Promotion zeigen wir einige dieser Lücken auf und untersuchen Sicherheitsbegriffe, die mit Sicherer Mehrparteienberechnung (MPC) zusammenhängen, und die zwischen den Etablierten und den Unmöglichen liegen. Abbildung von Geschäftsmodellen und Gesetzlichen Regelungen in MPC. Mit Sicherer Mehrparteienberechnung (MPC) können Parteien eine Funktion über privaten Eingaben auf sichere Weise so berechnen, dass nichts über die Eingaben der anderen Parteien bekannt wird außer die Ausgabe der Funktion. Heutzutage hat MPC nur einen vergleichsweise geringen Mehraufwand im Vergleich zur direkten Berechnung. Und obwohl Datensparsamkeit in der Praxis belohnt wird, wird MPC kaum benutzt. Wir glauben dass einer der Gründe dafür, dass MPC in Praxis kaum benutzt wird, darin liegt, dass es Geschäftsmodelle und gesetzliche Regelungen ignoriert die eine gewisse Leakage der Daten benötigen, während allgemeines MPC auf fast-perfekte Privatsphäre hinarbeitet. Wir präsentieren einen neuen Baustein, der es Geschäften---die durch einen zentralen Operator repräsentiert werden---ermöglicht, effizient die gewünschte Menge an Leakage abzubilden, die benötigt wird, um das Geschäft aufrechtzuerhalten oder um gesetzliche Vorgaben zu erfüllen, während Nutzer anonym und ohne durch mehrere Interaktionen hinweg verlinkt werden können Daten sammeln. Wir modellieren die Anforderungen im Universal Composability (UC) Framework. Dadurch wird garantiert, dass die Sicherheitsgarantien unabhängig davon halten, welche Protokolle parallel ausgeführt werden. Trotz dieser starken Sicherheitsgarantien ist das Protokoll dabei effizient genug, um auf moderner Hardware ausgeführt zu werden, selbst wenn der Nutzer die Daten auf Smartphones mit beschränkter Rechenleistung sammeln. (Fetzer, Keller, Maier, Raiber, Rupp, Schwerdt, PETS 2022) Eine Instantiierung stärkerer Commitments. Mit einem Bit Commitment Schema kann sich ein Sender gegenüber eines Empfängers auf ein Bit festlegen, ohne das dabei zu offenbaren (hiding), aber auf eine Art die es dem Sender nicht erlaubt, den Empfänger später davon zu überzeugen, dass das Commitment auf ein anderes Bit festgelegt wurde (binding). In der Quantenwelt sind Commitments stark genug, um MPC zu konstruieren, weswegen es einen Anreiz gibt, Commitments so sicher wie möglich zu machen; jedoch sagen Unmöglichkeitsbeweise aus, dass beide Sicherheitsbegriffe -- hiding und binding -- gleichzeitig nicht bedingungslos halten können. Als Konsequenz weichen moderne Bit Commitment Schemas eine Sicherheitseigenschaft auf, die dann nur noch computationally halten, also auf Grundlage komplexitätstheoretischer Annahmen. Wir stellen das erste Bit Commitment Protokoll im Quantum Random Oracle Modle (QROM) vor, das bedingungslose Sicherheit für den Empfänger (binding) und langfristige Sicherheit für den Sender (hiding) bietet und das dabei keine Zusatzhardware benötigt. Unser Resultat basiert auf einer neuen Annahme über die Schwierigkeit, Quantenzustände über einen langen Zeitraum zu speichern. Langfristige Sicherheit modelliert technischen Fortschritt des Angreifers, da Transkripte, die heutzutage nicht effizient gebrochen werden können, in Zukunft vielleicht einfach extrahierbar sind, sobald schnellere Maschinen verfügbar sind. Wir beweisen die Sicherheit des Commitment Protokolls im QROM unter oben genannter Annahme und zeigen, dass eine Instantiierung im Standardmodell zu einem neuen Angriff auf die langfristige Hiding-Eigenschaft zulässt. (Döttling, Koch, Maier, Mechler, Müller, Müller-Quade, Tiepelt, IN EINREICHUNG) Undetectable Multi-Party Computation. Covert MPC ist eine Erweiterung von MPC, die nicht nur die Eingaben versteckt, sondern das gesamte Vorhandensein der Berechnung. Teilnehmer lernen nur dann die Ausgabe, wenn alle anderen Parteien das Protokoll ausgeführt haben und die Ausgabe für alle Parteien vorteilhaft ist. Anderenfalls lernen die Teilnehmer nichts, nicht mal, welche anderen Parteien versucht haben, an der Berechnung teilzunehmen. Ein einzelner Nichtteilnehmer kann unabsichtlich die gesamte Berechnung abbrechen. Daher stellt sich die Frage: können NN Teilnehmer eine Berechnung ausführen, während K>NK > N Parteien anwesend sind, und bei der die Ausgabe nur von den Eingaben der NN Teilnehmer abhängt, während die Identität der anderen Teilnehmer unter den anwesenden Parteien versteckt wird? Dies sollte insbesondere dann gelten, wenn die restlichen Parteien nicht wissen, dass eine Berechnung im Gang ist. Wir verknüpfen diese Frage mit der theoretischen Machbarkeit von Anonymen Whistleblowing, bei dem eine einzelne Partei versucht, eine Nachricht preiszugeben, ohne dabei die eigene Identität zu offenbaren und ohne dass sich die anderen Parteien auf irgendeine besondere Art verhalten müssen. Leider zeigen wir dass keine Primitive sowohl Korrektheit und Anonymität mit überwältigender Wahrscheinlichkeit im asymptotischen Setting erreichen kann, selbst unter sehr starken Annahmen. Jedoch konstruieren wir eine heuristische Instantiierung im Fine-Grained setting mit überwältigender Korrektheit und jeder beliebigen Ziel-Anonymität. Unsere Ergebnisse liefern starke Grundlagen für die Untersuchung der Möglichkeit von Anonymen Nachrichtentransfer durch authentifizierte Kanäle, ein faszinierendes Ziel von dem wir glauben, dass es von grundlegendem Interesse ist. (Agrikola, Couteau, Maier, TCC 2022

    Studies on the Security of Selected Advanced Asymmetric Cryptographic Primitives

    Get PDF
    The main goal of asymmetric cryptography is to provide confidential communication, which allows two parties to communicate securely even in the presence of adversaries. Ever since its invention in the seventies, asymmetric cryptography has been improved and developed further, and a formal security framework has been established around it. This framework includes different security goals, attack models, and security notions. As progress was made in the field, more advanced asymmetric cryptographic primitives were proposed, with other properties in addition to confidentiality. These new primitives also have their own definitions and notions of security. This thesis consists of two parts, where the first relates to the security of fully homomorphic encryption and related primitives. The second part presents a novel cryptographic primitive, and defines what security goals the primitive should achieve. The first part of the thesis consists of Article I, II, and III, which all pertain to the security of homomorphic encryption schemes in one respect or another. Article I demonstrates that a particular fully homomorphic encryption scheme is insecure in the sense that an adversary with access only to the public material can recover the secret key. It is also shown that this insecurity mainly stems from the operations necessary to make the scheme fully homomorphic. Article II presents an adaptive key recovery attack on a leveled homomorphic encryption scheme. The scheme in question claimed to withstand precisely such attacks, and was the only scheme of its kind to do so at the time. This part of the thesis culminates with Article III, which is an overview article on the IND-CCA1 security of all acknowledged homomorphic encryption schemes. The second part of the thesis consists of Article IV, which presents Vetted Encryption (VE), a novel asymmetric cryptographic primitive. The primitive is designed to allow a recipient to vet who may send them messages, by setting up a public filter with a public verification key, and providing each vetted sender with their own encryption key. There are three different variants of VE, based on whether the sender is identifiable to the filter and/or the recipient. Security definitions, general constructions and comparisons to already existing cryptographic primitives are provided for all three variants.Doktorgradsavhandlin

    Building Secure and Anonymous Communication Channel: Formal Model and its Prototype Implementation

    Full text link
    Various techniques need to be combined to realize anonymously authenticated communication. Cryptographic tools enable anonymous user authentication while anonymous communication protocols hide users' IP addresses from service providers. One simple approach for realizing anonymously authenticated communication is their simple combination, but this gives rise to another issue; how to build a secure channel. The current public key infrastructure cannot be used since the user's public key identifies the user. To cope with this issue, we propose a protocol that uses identity-based encryption for packet encryption without sacrificing anonymity, and group signature for anonymous user authentication. Communications in the protocol take place through proxy entities that conceal users' IP addresses from service providers. The underlying group signature is customized to meet our objective and improve its efficiency. We also introduce a proof-of-concept implementation to demonstrate the protocol's feasibility. We compare its performance to SSL communication and demonstrate its practicality, and conclude that the protocol realizes secure, anonymous, and authenticated communication between users and service providers with practical performance.Comment: This is a preprint version of our paper presented in SAC'14, March 24-28, 2014, Gyeongju, Korea. ACMSAC 201
    corecore