
On Security Notions for Multi-Party
Computation

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte
Dissertation

von

Sven Maier
aus Stuttgart

Tag der mündlichen Prüfung: 24. Oktober 2022
Erster Gutachter: Prof. Dr. Jörn Müller-Quade
Zweiter Gutachter: Prof. Dr. Marc Fischlin

Acknowledgments

Writing this thesis has been a lot of work, yet this phase of my life has been made easier
by the many people I’ve met during my time as a PhD student. I would like to take this
opportunity to thank them.

First and foremost, I would like to thank my supervisor, Prof. Jörn Müller-Quade, for
putting enough faith in me to offer me a job and to supervise me, and for being not only
a great doctorate supervisor but also a remarkable person to talk to about stuff that is
unrelated to work. Next, my deepest gratitude goes to Prof. Marc Fischlin, who agreed to
take the time to act as the second referee of my thesis.

During my defense, I have had the honor of being additionally examined by Prof. Bernhard
Beckert, Prof. Jörg Henkel, and Prof. Hannes Hartenstein. Special thanks to them for
taking their time and making something I was initially very nervous about a lot more
pleasant.

During my time at KIT, I’ve had the honor of working with outstanding co-authors, namely,
in alphabetical order, Thomas Agrikola, Nicholas-Philip Brandt, Geoffroy Couteau, Nico
Döttling, Valerie Fetzer, Marcel Keller, Alexander Koch, Jeremias Mechler, Anne Müller,
Tobias Müller, Jörn Müller-Quade, Markus Raiber, Andy Rupp, Rebecca Schwerdt, and
Marcel Tiepelt. Thank you all for many fruitful discussions, working with you has taught
me a lot.

Special thanks also goes to Andy Rupp and Geoffroy Couteau, who supported me even to
the point where it feels like they were additional supervisors. Without the two of you, I
genuinely believe that I wouldn’t have my PhD now. Thank you so much.

Also, special thanks to Thomas Agrikola, who read through many parts of my dissertation
and provided helpful feedback.

I was fortunate enough to have met some wonderful colleagues, without whom my time
at KIT wouldn’t have been nearly as fun as it was. In particular, I’d like to thank (in
alphabetical order) Thomas Agrikola for helping me fight through the jungle of KIT
regularities required for a dissertation and fixing my weird LaTeX problems as well as
organizing hiking trips, Geoffroy Couteau for his infectious love for anything related to
cryptography and his incredible patience during discussions, Valerie Fetzer for an amazing
trip to Japan, Willi Geiselmann for always having an open ear and suggestions when things
did not work out the way they should have, Simon Hanisch for organizing board game
nights, Gunnar Hartung for planning and organizing the Diablo 3 videogame sessions,
Killian Herveau for awesome cooking parties and his unending supply of good mood, Julia

i

Kastner for many hours of bouldering together and for teaching me a lot about squirrels,
Michael Klooß for knowing probably any good videogame-soundtrack out there and his
attention to detail if it comes to definitions, Alexander Koch for interesting philosophical
discussions on Effective Altruism, Jessica Koch for still deciding to join our Mario Kart
game night despite having deadlines, Carmen Manietta for keeping the institute running,
Jeremias Mechler for interesting conversations on practical IT Security and ways to secure
the own operating system, Markus Raiber for his endless knowledge on books, Andy Rupp
for always taking his time for research discussions to fully understand a given problem
even when he had other things to do, Rebecca Schwerdt for making sure I always have
a sufficient supply of Tea, Mario Strefler for taking over organizational tasks to make
sure I had enough time to do research and for starting the running group, Marcel Tiepelt
for convincing me to join said running group and for his incredible love for food, Akin
Ünal for organizing great activities in- and outside of the institute and for ensuring the
institutes supply of powerful mouthwash, Bogdan Ursu for many competitive table tennis
matches and for inventing Bogdan-style-bouldering, and Thomas Worsch for making sure
there is always enough coffee at the institute to keep it from collapsing.

Finally, I would like to thankmy friends and family for their encouragement and support.

ii

Abstract

Most of the security notions used which are currently used originate from the 1980s. Yet a
better understanding of the theory since then opens the question whether they can be
refined.

A limiting factor here are so-called impossibility proofs, which prove mathematically which
security guarantees cannot be fulfilled. These provide a limiting factor, yet their statement
should not be overstated. The proof is only valid in its own setting and only covers one
specific security notion. Historically, the established security notions settled for something
much weaker, leaving a gap between what is practically used and what is known to be
impossible.

In this thesis, we shed light on some of these gaps and investigate security notions related
to Secure Multi-Party Computation (MPC) lying between those that have been established
and those that are known to be impossible.

Modelling Business Models and Legal Regulations with MPC. With Secure Multi-Party
Computation (MPC), parties can securely compute a function on private inputs in such
a way, that no information on the other parties inputs is leaked except for the functions
output. Nowadays, MPC only has a relatively small overhead over the direct computation.
Yet even though data economy is incentivized in practice, MPC is not often used in
practice.

We believe that one of the reasons MPC is rarely used in practice is that it ignores business
models and legal requirements that require a certain amount of leakage for the data, while
generic MPC aims for near-perfect privacy.

We present a novel building block that enables businesses—represented by a central
operator—to model the desired amount of leakage required to maintain business or to
fulfill the legal requirements efficiently, while letting users collect data anonymously and
without being linked throughout interactions.

We model the requirements in the Universal Composability (UC) framework. This guaran-
tees that security holds regardless which protocols are executed in parallel. Despite strong
security guarantees the protocol is still efficient enough to be executed on state-of-the-art
hardware, even if the user collect data on smartphones which have limited computation
power.

Fetzer, Keller, Maier, Raiber, Rupp, Schwerdt, PETS 2022

iii

Abstract

An Instantiation of Stronger Commitments. A bit commitment scheme allows a sender
to fix a bit towards a receiver without revealing it in the process (hiding), but such that
the sender cannot convince the receiver that the commitment was on a different bit
(binding).

In the quantum world, commitments are strong enough to provide MPC, so there is a
strong incentive to make commitments as secure as possible; yet impossibility results
state that both security properties—hiding and binding—cannot simultaneously hold
unconditionally. As a consequence, modern bit commitment schemes relax one property
to hold only computationally, i.e. based on a computational hardness assumption.

We introduce the first bit commitment protocol in the Quantum Random Oracle Model
(QROM) that achieves unconditional security for the receiver (binding) and everlasting

security for the sender (hiding) and that does not require additional hardware. Our result
is based on a new assumption on the hardness of storing quantum states over a long period
of time. Everlasting security models technical progress of the adversary, as a transcript
that cannot be efficiently broken nowadays might be easy to extract once faster machines
are available.

We prove the commitment protocol secure in the QROM under the aforementioned as-
sumption and note that an instantiation in the standard model leads to a new attack on
the everlasting hiding property.

Döttling, Koch, Maier, Mechler, Müller, Müller-Quade, Tiepelt, IN SUBMISSION

Undetectable Multi-Party Computation. Covert MPC is an extension toMPC that not only
hides the inputs, but the entire presence of the computation. Parties only learn the output
if all other parties followed the protocol correctly, and if the output is favorable for all
parties. Otherwise the parties learn nothing, not even which parties tried to participate.

A single non-participant can accidentally abort the entire computation. The question
arises: Can N parties perform the computation while K > N parties are present, where
the output only depends on the inputs of the N participants, while hiding the identity of
the other participants among all individuals present? This should hold in particular if the
remaining parties are unaware that a computation is in progress.

We relate this question to the theoretical feasibility of anonymous whistleblowing, where a
single party discloses a message without revealing the own identity and without other
parties having to act in any special way. Unfortunately, we show that no primitive can
fulfill both correctness and anonymity with overwhelming probability in the asymptotic

setting, even under very strong assumptions. Yet we provide a heuristic instantiation in
the fine-grained setting with overwhelming correctness and any given target anonymity.
Our results provide strong foundations for the study of the possibility of anonymous
communications through authenticated channels, an intriguing goal which we believe to
be of fundamental interest.

Agrikola, Couteau, Maier, TCC 2022

iv

Zusammenfassung

Die meisten Sicherheitsbegriffe, die heutzutage benutzt werden, stammen aus den 1980ern.
Doch durch ein seitdem besseres Verständnis der Theorie stellt sich die Frage, ob sie nicht
weiterentwickelt werden können.

Ein begrenzender Faktor sind hierbei sogenannte Unmöglichkeitsbeweise, die mathematisch
beweisen, welche Sicherheitsgarantien nicht erfüllt werden können. Diese liefern einen
begrenzenden Faktor, ihre Aussage sollte jedoch nicht übertrieben werden. Der Beweis ist
nur in seinem eigenen Setting gültig und deckt nur genau den einen Sicherheitsbegriff
ab. Historisch haben sich die etablierten Sicherheitsbegriffe jedoch zu etwas deutlich
schwächerem entwickelt, wodurch eine Lücke zwischen dem entstanden ist, was praktisch
benutzt wird, und dem, was bekanntermaßen unmöglich ist.

In dieser Promotion zeigen wir einige dieser Lücken auf und untersuchen Sicherheitsbegrif-
fe, die mit Sicherer Mehrparteienberechnung (MPC) zusammenhängen, und die zwischen
den Etablierten und den Unmöglichen liegen.

Abbildung von Geschäftsmodellen und Gesetzlichen Regelungen in MPC. Mit Sicherer
Mehrparteienberechnung (MPC) können Parteien eine Funktion über privaten Eingaben
auf sichereWeise so berechnen, dass nichts über die Eingaben der anderen Parteien bekannt
wird außer die Ausgabe der Funktion. Heutzutage hat MPC nur einen vergleichsweise
geringen Mehraufwand im Vergleich zur direkten Berechnung. Und obwohl Datenspar-
samkeit in der Praxis belohnt wird, wird MPC kaum benutzt.

Wir glauben dass einer der Gründe dafür, dass MPC in Praxis kaum benutzt wird, darin
liegt, dass es Geschäftsmodelle und gesetzliche Regelungen ignoriert die eine gewisse
Leakage der Daten benötigen, während allgemeines MPC auf fast-perfekte Privatsphäre
hinarbeitet.

Wir präsentieren einen neuen Baustein, der es Geschäften—die durch einen zentralen
Operator repräsentiert werden—ermöglicht, effizient die gewünschte Menge an Leakage
abzubilden, die benötigt wird, um das Geschäft aufrechtzuerhalten oder um gesetzliche
Vorgaben zu erfüllen, während Nutzer anonym und ohne durch mehrere Interaktionen
hinweg verlinkt werden können Daten sammeln.

Wirmodellieren die Anforderungen imUniversal Composability (UC) Framework. Dadurch
wird garantiert, dass die Sicherheitsgarantien unabhängig davon halten, welche Protokolle
parallel ausgeführt werden. Trotz dieser starken Sicherheitsgarantien ist das Protokoll

v

Zusammenfassung

dabei effizient genug, um auf moderner Hardware ausgeführt zu werden, selbst wenn der
Nutzer die Daten auf Smartphones mit beschränkter Rechenleistung sammeln.

Fetzer, Keller, Maier, Raiber, Rupp, Schwerdt, PETS 2022

Eine Instantiierung stärkerer Commitments. Mit einem Bit Commitment Schema kann
sich ein Sender gegenüber eines Empfängers auf ein Bit festlegen, ohne das dabei zu
offenbaren (hiding), aber auf eine Art die es dem Sender nicht erlaubt, den Empfänger
später davon zu überzeugen, dass das Commitment auf ein anderes Bit festgelegt wurde
(binding).

In der Quantenwelt sind Commitments stark genug, um MPC zu konstruieren, weswegen
es einen Anreiz gibt, Commitments so sicher wie möglich zu machen; jedoch sagen Un-
möglichkeitsbeweise aus, dass beide Sicherheitsbegriffe – hiding und binding – gleichzeitig
nicht bedingungslos halten können. Als Konsequenz weichen moderne Bit Commitment
Schemas eine Sicherheitseigenschaft auf, die dann nur noch computationally halten, also
auf Grundlage komplexitätstheoretischer Annahmen.

Wir stellen das erste Bit Commitment Protokoll im Quantum Random Oracle Model
(QROM) vor, das bedingungslose Sicherheit für den Empfänger (binding) und langfristige
Sicherheit für den Sender (hiding) bietet und das dabei keine Zusatzhardware benötigt.
Unser Resultat basiert auf einer neuen Annahme über die Schwierigkeit, Quantenzustände
über einen langen Zeitraum zu speichern. Langfristige Sicherheit modelliert technischen
Fortschritt des Angreifers, da Transkripte, die heutzutage nicht effizient gebrochen werden
können, in Zukunft vielleicht einfach extrahierbar sind, sobald schnellere Maschinen
verfügbar sind.

Wir beweisen die Sicherheit des Commitment Protokolls im QROM unter oben genannter
Annahme und zeigen, dass eine Instantiierung im Standardmodell zu einem neuen Angriff
auf die langfristige Hiding-Eigenschaft zulässt.

Döttling, Koch, Maier, Mechler, Müller, Müller-Quade, Tiepelt, IN EINREICHUNG

Undetectable Multi-Party Computation. Covert MPC ist eine Erweiterung von MPC, die
nicht nur die Eingaben versteckt, sondern das gesamte Vorhandensein der Berechnung.
Teilnehmer lernen nur dann die Ausgabe, wenn alle anderen Parteien das Protokoll aus-
geführt haben und die Ausgabe für alle Parteien vorteilhaft ist. Anderenfalls lernen die
Teilnehmer nichts, nicht mal, welche anderen Parteien versucht haben, an der Berechnung
teilzunehmen.

Ein einzelner Nichtteilnehmer kann unabsichtlich die gesamte Berechnung abbrechen.
Daher stellt sich die Frage: können N Teilnehmer eine Berechnung ausführen, während
K > N Parteien anwesend sind, und bei der die Ausgabe nur von den Eingaben der N

Teilnehmer abhängt, während die Identität der anderen Teilnehmer unter den anwesenden
Parteien versteckt wird? Dies sollte insbesondere dann gelten, wenn die restlichen Parteien
nicht wissen, dass eine Berechnung im Gang ist.

vi

Zusammenfassung

Wir verknüpfen diese Frage mit der theoretischen Machbarkeit von Anonymen Whist-

leblowing, bei dem eine einzelne Partei versucht, eine Nachricht preiszugeben, ohne dabei
die eigene Identität zu offenbaren und ohne dass sich die anderen Parteien auf irgend-
eine besondere Art verhalten müssen. Leider zeigen wir dass keine Primitive sowohl
Korrektheit und Anonymität mit überwältigender Wahrscheinlichkeit im asymptotischen
Setting erreichen kann, selbst unter sehr starken Annahmen. Jedoch konstruieren wir eine
heuristische Instantiierung im Fine-Grained setting mit überwältigender Korrektheit und
jeder beliebigen Ziel-Anonymität. Unsere Ergebnisse liefern starke Grundlagen für die
Untersuchung der Möglichkeit von Anonymen Nachrichtentransfer durch authentifizierte
Kanäle, ein faszinierendes Ziel von dem wir glauben, dass es von grundlegendem Interesse
ist.

Agrikola, Couteau, Maier, TCC 2022

vii

Own Publications

[1] Thomas Agrikola, Geoffroy Couteau, and SvenMaier. “AnonymousWhistleblowing
over Authenticated Channels”. In: TCC 2022. Ed. by Eike Kiltz and Vinod Vaikun-
tanathan. Lecture Notes in Computer Science. To appear. Springer, Heidelberg,
Germany, Nov. 2022.

[2] Nicholas-Philip Brandt, Sven Maier, Tobias Müller, and Jörn Müller-Quade. Con-
structing Secure Multi-Party Computation with Identifiable Abort. Cryptology ePrint
Archive, Report 2020/153. https://eprint.iacr.org/2020/153. 2020.

[3] Nico Döttling, Alexander Koch, Sven Maier, Jeremias Mechler, Anne Müller, Jörn
Müller-Quade, and Marcel Tiepelt. Towards Everlasting Bit Commitment from Quan-

tum Decay. Unpublished manuscript. 2022.
[4] Valerie Fetzer, Marcel Keller, Sven Maier, Markus Raiber, Andy Rupp, and Rebecca

Schwerdt. “PUBA: Privacy-Preserving User-Data Bookkeeping and Analytics”. In:
Proceedings on Privacy Enhancing Technologies 2022.2 (Apr. 2022), pp. 447–516. doi:
10.2478/popets-2022-0054.

ix

https://eprint.iacr.org/2020/153
https://doi.org/10.2478/popets-2022-0054

Contents

Abstract . iii

Zusammenfassung . v

Own Publications . ix

List of Figures . xvii

List of Tables . xxi

1. Introduction . 1
1.1. Modelling Business Models and Legal Regulations with MPC 4
1.2. An Instantiation of Stronger Commitments 5
1.3. Undetectable Multi-Party Computation 6

2. Preliminaries . 9
2.1. Notation . 9
2.2. Commitments . 10

2.2.1. Definition . 10
2.2.2. Correctness . 11
2.2.3. Hiding Commitment Schemes . 11
2.2.4. Binding Commitment Schemes 12

2.3. Signature Schemes . 12
2.3.1. Definition . 13
2.3.2. Correctness . 13
2.3.3. Existential Unforgeability under Chosen Message Attacks 13

2.4. Encryption Schemes . 14
2.4.1. Definition . 14
2.4.2. Correctness . 15
2.4.3. Indistinguishability under Chosen Plaintext Attacks 15

I. MPC for Business Models and Legal Regulations 17

3. Introduction . 19
3.1. Our Contribution . 20
3.2. Related Work . 21

xi

Contents

4. Preliminaries . 23
4.1. Notation . 23
4.2. Commitments . 23

4.2.1. Additively Homomorphic Commitment Schemes 23
4.2.2. Structure Preserving Commitment Schemes 24

4.3. Signature Schemes . 24
4.3.1. Structure Preserving Signature Schemes 24

4.4. Zero Knowledge Schemes . 25
4.4.1. Perfect Completeness . 25
4.4.2. Perfect Soundness . 26
4.4.3. CRS Indistinguishability . 26
4.4.4. Perfect 𝐹ppG

-Extractability . 26
4.4.5. Dual-Mode . 27
4.4.6. Dual-Mode Zero Knowledge Scheme 27

4.5. The Universal Composability Framework 28
4.5.1. Description . 28
4.5.2. UC Subfunctionalities . 28

5. Overview . 35
5.1. Parties and Roles . 35
5.2. Tasks . 36

5.2.1. Preparatory Tasks . 37
5.2.2. Bookkeeping . 38
5.2.3. Outsourcing Analytical Computations 38

5.3. Cryptographic Building Blocks . 40
5.4. Set-Up Assumptions . 41
5.5. Computation of Benign Functions f . 42
5.6. The User Logbook . 43
5.7. General Principles . 44
5.8. Security Guarantees . 45

5.8.1. Operator . 45
5.8.2. User . 47

5.9. Realizing the Individual Tasks . 48
5.10. Limitations of our scheme . 49

5.10.1. Verification by the TSA . 49
5.10.2. The Trouble of Aborts . 50

6. Ideal Functionality . 53

7. Protocol . 59
7.1. Benign Functions . 59

7.1.1. Bookkeeping . 59
7.1.2. Outsourced Analytics . 60

7.2. Robust Secret Sharing . 60
7.3. Anonymous Communication . 62

xii

Contents

7.4. Our Protocol . 63

8. Security . 79
8.1. User Security . 79
8.2. Operator Security . 100

9. Example Applications . 125
9.1. Fraud Detection for Mobile Payments . 125
9.2. Targeted Advertisement System . 129

10. Implementation . 131
10.1. Setup . 131
10.2. Evaluation . 131
10.3. Discussion . 134
10.4. Performance of Fraud Detection . 134

11. Conclusion . 137

II. An Instantiation of Everlasting Secure Commitments 139

12. Introduction . 141
12.1. Contribution . 142
12.2. Related Work . 144

13. Preliminaries . 147
13.1. Notation . 147
13.2. Quantum Information . 147

13.2.1. Security Notion . 149
13.2.2. Conjugate Coding . 150
13.2.3. Quantum Bit Commitment . 152
13.2.4. Fully Homomorphic Encryption 152
13.2.5. q-IND-CPA . 153
13.2.6. Quantum Fully Homomorphic Encryption 154

13.3. Security Model . 155
13.3.1. Quantum Random Oracle Model 155
13.3.2. Everlasting Security . 156
13.3.3. Quantum Random Oracles with Everlasting Security 157

14. Impossibility Result . 159

15. Quantum Decay . 163
15.1. Motivating the Assumption . 163
15.2. Mathematical Description . 164
15.3. Simulating QROs . 166

xiii

Contents

16. Everlasting Quantum Commitment Protocol . 169
16.1. The BCJL Protocol . 169
16.2. Everlasting Quantum Commitment Protocol 170

16.2.1. The protocol . 171

17. Instantiating the Classical Commitment in the Quantum Random Oracle Model 173
17.1. Closeness-Testing of Quantum Random Oracles 173
17.2. A Classical Commitment Protocol . 176
17.3. Security Analysis . 177

17.3.1. Unconditional Binding Property 177
17.3.2. Quantum-Computational Hiding Property 177

18. Proof of Security of Π𝑄𝐶𝑜𝑚 . 181
18.1. Sender Security . 181
18.2. Receiver Security . 188

19. An Obfuscated Measurement Attack . 191
19.1. The High-level Idea . 191
19.2. A Partially Homomorphic Commitment Scheme 192

19.2.1. Sender Security . 194
19.2.2. Receiver Security . 196

19.3. An Obfuscated Measurement Attack . 197
19.3.1. Description . 197

20. Conclusion . 201

III. Anonymous Whistleblowing 203

21. Introduction . 205
21.1. Contribution . 207
21.2. Related Work . 210

22. Preliminaries . 213
22.1. Steganography . 213
22.2. Distribution Testing . 214
22.3. Covert Oblivious Transfer . 217
22.4. Indistinguishability from Random under Chosen Ciphertext Attacks . . . 217
22.5. Strong Existential Unforgeability under Chosen Message Attacks 218
22.6. Ideal Obfuscation . 218

23. Anonymous Transfer . 221
23.1. Network Model and Non-Participating Parties 221
23.2. The Model . 221
23.3. Fine-grained Anonymous Transfer . 223
23.4. Trivial Anonymous Transfers . 224

xiv

Contents

23.5. Reductions Among AT Protocols . 225
23.5.1. AT implies silent-receiver AT. 225

23.6. Strong Anonymous Transfer . 226

24. Impossibility of Anonymous Transfer . 227
24.1. The Attacker . 227
24.2. Putting the Pieces Together . 234
24.3. Impossibility of Anonymous Transfer for K > 3 235

24.3.1. Security Analysis of Π′
𝐴𝑇

. 236
24.4. Extensions and Limitations . 239

24.4.1. Limitations of the impossibility result. 240

25. Fine-Grained AT from Ideal Obfuscation . 241
25.1. The Protocol . 241
25.2. Security Analysis . 244

25.2.1. Correctness . 244
25.2.2. Anonymity. 245
25.2.3. Secrecy . 260

26. A fine-grained Anonymous Transfer for n-bit messages 265
26.1. The Protocol . 265
26.2. Security Analysis . 265

26.2.1. Correctness . 265
26.2.2. Anonymity . 266
26.2.3. Secrecy . 273

27. Undetectable Oblivious Transfer . 277
27.1. Definitions for Undetectable Oblivious Transfer 277

28. Undetectable Oblivious Transfer Instantiation 281
28.1. Correctness . 281
28.2. Privacy . 283

28.2.1. Sender Privacy . 283
28.3. Anonymity . 285

28.3.1. Corrupted Sender . 286
28.3.2. Corrupted Receiver . 287
28.3.3. Corrupted Dummy Friend . 289

29. Towards Undetectable Multi-Party Computation 293
29.1. Defining Undetectable Multi-Party Computation 293
29.2. Towards constructing Undetectable Two-Party Computation from Unde-

tectable Oblivious Transfer . 293

30. Conclusion . 295

Bibliography . 311

xv

List of Figures

4.1. The functionality F CRS for setting up a Common Reference String. 29
4.2. The functionality F Reg for registering public keys. 30
4.3. The functionality F SMT for secure message transfer. 30
4.4. The functionality F ORR for Onion-Routing with Replies. 32
4.5. Procedure Process_Next_Step(𝑂) for an onion 𝑂 33

5.1. Overview of the preparatory tasks. 37
5.2. Overview of the Bookkeeping task. 38
5.3. Overview of tasks for outsourcing computations. 39

6.1. The first part of the basic functionality F BKA. 54
6.2. The second part of the basic functionality F BKA. 55

7.1. The procedure Share for the protocol Π𝐵𝐾𝐴. 61
7.2. The procedure Combine for the protocol Π𝐵𝐾𝐴. 61
7.3. The procedure Verify for the protocol Π𝐵𝐾𝐴. 62
7.4. The procedure Send for the protocol Π𝐵𝐾𝐴. 62
7.5. The first part of the protocol Π𝐵𝐾𝐴 that specifies the parties state and the

initialization part of the protocol. 63
7.6. The second part of the protocol Π𝐵𝐾𝐴 that specifies the behavior for signing

function parameter. 64
7.7. The third part of the protocol Π𝐵𝐾𝐴 that specifies the behavior for user regis-

tration. 65
7.8. Language ΛUserReg used for the UserRegistration task. 65
7.9. The fifth part of the protocol Π𝐵𝐾𝐴 with the first part on how to compute a

function f . 67
7.10. The sixth part of the protocol Π𝐵𝐾𝐴 that specifies how to compute a function f . 68
7.11. The seventh part of the protocol Π𝐵𝐾𝐴 that specifies how to compute a function

f . 69
7.12. Language ΛCompute used for the Compute task. 69
7.13. Language ΛTransfer used for the Bookkeeping and Update task. 70
7.14. The eighth part of the protocol Π𝐵𝐾𝐴 with the first part on how to outsource a

function f . 71
7.15. The nineth part of the protocol Π𝐵𝐾𝐴 that specifies how to outsource a function

f . 72
7.16. The tenth part of the protocol Π𝐵𝐾𝐴 that specifies how to outsource a function f . 73
7.17. Language ΛOutsource used for the Outsource task. 73

xvii

List of Figures

7.18. The eleventh part of the protocol Π𝐵𝐾𝐴 with the computation of an analytical
function f . 74

7.19. The twelveth part of the protocol Π𝐵𝐾𝐴 with the first part on how to apply
the update of an outsourced analytical computation. 75

7.20. The thirteenth part of the protocol Π𝐵𝐾𝐴 with the second part on how to apply
the update of an outsourced analytical computation. 76

7.21. The fourteenth part of the protocol Π𝐵𝐾𝐴 with the third part on how to apply
the update of an outsourced analytical computation. 77

7.22. Language ΛUpdate used for the Update task. 77

8.1. The first part of the simulator with an honest user: Defines state and set up. 80
8.2. The second part of the simulator with an honest user and corrupt operator:

Defines initialization. 80
8.3. The third part of the simulator with an honest user and corrupt operator:

Defines behavior for signing function parameter. 81
8.4. The fourth part of the simulator with an honest user and corrupt operator:

Defines behavior for user registration. 81
8.5. The fifth part of the simulator with an honest user and corrupt operator:

Defines behavior for computation of a function f 82
8.6. The sixth part of the simulator with an honest user, honest helper and corrupt

operator: Defines behavior for outsourcing of a function f 83
8.7. The seventh part of the simulator with an honest user, corrupted helper and

corrupt operator: Defines behavior for outsourcing of a function f 84
8.8. The eighth part of the simulator with an honest helper and corrupt operator:

Defines behavior for computing an outsourced function f 85
8.9. The ninth part of the simulator with an honest user and helper and corrupt

operator: Defines behavior for updating the user data after outsourcing an
analytical computation. 86

8.10. The tenth part of the simulator with an honest helper and corrupt operator
and user: Defines behavior for updating the user data after outsourcing an
analytical computation. 87

8.11. The first part of the simulator with an honest operator: Defines state and set up. 101
8.12. The second part of the simulator with an honest operator and corrupt user:

Defines initialization. 101
8.13. The third part of the simulator with an honest operator and TSA: Defines

behavior for signing function parameter. 102
8.14. The fourth part of the simulator with an honest operator and honest user:

Defines user registration. 102
8.15. The fifth part of the simulator with an honest operator and corrupt user:

Defines behavior for user registration. 102
8.16. The sixth part of the simulator with an honest operator and corrupt user:

Defines behavior for computation of a function f 103
8.17. The seventh part of the simulator with an honest operator, user, and helper:

Defines behavior for outsourcing a function f 104

xviii

List of Figures

8.18. The eighth part of the simulator with an honest operator and helper and a
corrupted user: Defines behavior for outsourcing a function f 104

8.19. The ninth part of the simulator with an honest operator and user and a cor-
rupted helper: Defines behavior for outsourcing a function f 105

8.20. The tenth part of the simulator with an honest operator and corrupted user
and helper: Defines behavior for outsourcing a function f 106

8.21. The eleventh part of the simulator with an honest operator and helper: Defines
behavior for computing an outsourced a function f 107

8.22. The twelfth part of the simulator with an honest operator and corrupted
helper: Defines behavior for computing an outsourced a function f 108

8.23. The thirteenth part of the simulator with an honest operator and helper and a
corrupted user: Defines behavior for updating the user data. 109

8.24. The fourteenth part of the simulator with an honest operator and user and a
corrupted helper: Defines behavior for outsourcing a function f 110

8.25. The fiveteenth part of the simulator with an honest operator and corrupted
user and helper: Defines behavior for outsourcing a function f 111

9.1. Instantiation of f for privacy-preserving mobile payments with fraud detection. 126
9.2. Instantiation of f for a privacy-preserving targeted advertisement system. . 130

16.1. The commitment protocol Π𝐶𝑜𝑚 from Brassard et al. [36] for committing to a
given bit b ∈ {0, 1}. 170

16.2. The unveil protocol Π𝑈𝑛𝑣 from Brassard et al. [36] for unveiling a commitment. 170
16.3. The everlasting commitment protocol Π𝐶𝑜𝑚 for committing to a given bit

b ∈ {0, 1}. The shaded area shows the extension of the protocol from Fig. 16.1. 171
16.4. The everlasting unveil protocol Π𝑈𝑛𝑣 for unveiling a commitment. 172

17.1. The classical commitment protocol Π𝐶𝑜𝑚 in the QROM for committing to a
given bit b ∈ {0, 1}. 176

17.2. The classical unveil protocol Π𝑈𝑛𝑣 in the QROM for unveiling a commitment. 176
17.3. Hiding games for the commitment Com. 178

18.1. Games to show independence of chosen basis vectors. 182
18.2. Depiction of the oracle selection process. |cod(RQ)⟩ contains the output of

the challenge oracle RQ . |dom(RS)⟩ contains the query sent to the simulated
oracle RS . 185

18.3. Quantum circuit to compare inputs. 186
18.4. Circuit-based description. 187

19.1. The classical commitment protocol Π𝐶𝑜𝑚 in the standard model for committing
to a given bit b ∈ {0, 1}. 193

19.2. The classical unveil protocol Π𝑈𝑛𝑣 in the standard model for unveiling a com-
mitment. 193

19.3. Hiding games for the commitment Com∗. 194
19.4. QPT part of the Obfuscated Measurement Attack to break the everlasting

hiding property. 197

xix

List of Figures

19.5. Unbounded part of the Obfuscated Measurement Attack to break the everlast-
ing hiding property. 198

23.1. Definition of the anonymity experiment Expanon
ΠATn ,A,𝜙 (^). 223

24.1. Definition of the first part of the guessing algorithm, A𝑔𝑢𝑒𝑠𝑠
Ξ
0 , against the 𝛿-

anonymity of the silent-receiver ^-bit AT protocol ΠAT^ , parameterized by a
polynomial Ξ = Ξ(^). 228

24.2. Definition of the second part of the guessing algorithm, A𝑔𝑢𝑒𝑠𝑠
Ξ
1 , against the

𝛿-anonymity of the silent-receiver ^-bit AT protocol ΠAT^ , parameterized by a
polynomial Ξ = Ξ(^). 229

24.3. The protocol Π′
𝐴𝑇

that constructs (K −1)-party AT from a given K-party SRAT
for K parties. 235

25.1. The protocol Π𝐴𝑇 for fine-grained Anonymous Transfer. 242
25.2. Obfuscated program P𝐹𝐺−𝐴𝑇 for a single-bit Anonymous Transfer in the fine-

grained setting with c rounds. 243
25.3. Game to distinguish whether Bernoulli oracles follow a given distribution 𝑝

or 𝑞 = 𝑝 − 1/2c. 256

26.1. The protocol ΠATn for fine-grained n-bit Anonymous Transfer. 266
26.2. Obfuscated program P𝐹𝐺−𝐴𝑇 for an n-bit Anonymous Transfer in the fine-

grained setting with c rounds. 267
26.3. Game to determine whether c Bernoulli-oracles follow a given distribution 𝑝𝜒

or 𝑞𝜒 = 𝑝 − 1/c. 270

27.1. Definition of the game Expanon-otΠ𝑈𝑂𝑇 ,A,𝜛 (^). 278

28.1. The two-round protocol Π𝑈𝑂𝑇 for Undetectable Oblivious Transfer with given
protocols for Anonymous Transfer and Covert Oblivious Transfer. 282

28.2. The two distributions we have to prove indistinguishable in case the adversary
A𝑔𝑢𝑒𝑠𝑠0 picks the sender. 285

28.3. The two distributions we have to prove indistinguishable in case the adversary
A𝑔𝑢𝑒𝑠𝑠0 picks the receiver. 287

28.4. The two distributions we have to prove indistinguishable in case the adversary
A𝑔𝑢𝑒𝑠𝑠0 picks the dummy friend. 289

xx

List of Tables

10.1. Execution times in 𝑚𝑠 for operator and helper.
∑︁

is the total time for the
operator, ZK the time spent on verifying the ZK proof. H is the execution
time of the helper. 132

10.2. Data exchanged in 𝑘𝐵 in relation to the size of the UH. BK denotes a BK
task with non-trivial shift and permutation. BK’ denotes BK with only an
incremental update. 132

10.3. Execution time in𝑚𝑠 for user. U1 uses phone 1, U2 uses phone 2,
∑︁

is the
total user execution time, of which On is the online running time, ZK the
creation of the ZK proofs, Val the time for validating the UH, and PC the
precomputation time. 132

10.4. Time (in seconds) and communication (in megabyte) for logistic regression
with two parties. Strong uses c5.9xlarge instances, otherwise we use m4.large. 133

19.1. Possible quantum states |𝜙⟩ = Z(z)X(x) |𝜓 ⟩ a QOTP encryption of |𝜓 ⟩ = |0⟩ or
|𝜓 ⟩ = |1⟩ can be in. For the sake of simplicity, we assume −|1⟩ = |1⟩. 199

xxi

1. Introduction

Historically, cryptography has established itself as the art of hiding information, which
has been around even in ancient Greek. The task at hand seems relatively simple: How
can we transfer a message from a sender to a receiver in such a way, that the receiver
can read the message, but no opposing party who might capture the messenger can make
sense of the message?

Although the methods of hiding and transporting the sensitive information have changed
since then, cryptography was still mostly related to hiding information. This changed
in the 1980s, when Yao [139] formulated and solved the problem of Secure Multi-Party
Computation (MPC), which can be best explained by his Millionaires’ Problem [140]:

Two millionaires P0 and P1 each have individual assets x0 and x1, respectively. They want
to find out who of them has more money, without revealing any further information in the
process; in particular, the computation should not enable any of the two parties to infer the
difference |x0 − x1 | of their assets. It is thus infeasible for any one party to simply publish
the own assets and to ask the other party to publish whether the own value is above or
below the published value. Instead, Yao [139] solved the problem using cryptographic
techniques like the then-new Oblivious Transfer (OT) [116, 69].

This gave rise to the exciting new research field of MPC which is still under investigation
to date. The more generalized formulation replaces the two millionaires by an arbitrary
number N of participants (P1, . . . , PN) and the function that essentially outputs 1 if x1 > x0
and 0 otherwise by an arbitrary function f . The earliest positive results of Yao [139], Beaver,
Micali, and Rogaway [21], and Goldreich, Micali, and Wigderson [77] were only meant
as possibility results; the method used by the latter in particular was highly improved in
terms of practical efficiency since then.

Modern MPC protocols provide a relatively low overhead compared to the direct computa-
tion with the actual values, in particular when assuming that parties do not deviate from the
protocol (semi-honest), where general-purpose solutions based on the ABY-framework [61]
and special purpose solutions like GAZELLE [94] for neural networks can be used, but also
if we fear that participants might deviate from the protocol in order to learn new infor-
mation (malicious), the SPDZ-family founded by Damgård et al. [58] provides a relatively
small overhead.

So all in all, it is possible for a set of N parties to compute any given function f securely, as
long as f is efficiently computable. But what does it mean for a computation to be secure?
Intuitively, it means that the parties are unable to learn any information from the protocol

1

1. Introduction

execution except for the output and anything that can be inferred from that. In particular,
they learn no additional information on any other parties’ secret input.

In practice, this is modeled by following the real-ideal-paradigm [79, 77]. To better
understand this, let us imagine some parallel world that would be ideal for MPC. In this
world, there is one party which is incorruptible, discrete and who is trusted by everyone.
Every party that wants to participate has a secure connection to this trusted party and can
hence interact both in an authenticated (in that no other party can impersonate anyone
else) and secure (meaning that all messages can only be read by the participant and the
trusted party) way.

In this idealized world, the problem of MPC can be solved as follows: Each participant
sends the own input x𝑖 to the trusted party. Once the trusted party has received input by
all N parties, it computes y ← f (x1, . . . , xN) (with fresh random coins if f is probabilistic)
and outputs the result to all participants.

Unfortunately, this ideal setting is quite unrealistic for almost all scenarios where we would
want to use MPC; it is quite difficult to have even small parties agree on a neutral and
commonly trusted party to perform the computation, but for problems such as elections
with competing (and often distrustful) parties this becomes almost impossible. Instead, we
consider actual protocols that are executed in the real world, where N parties—who likely
distrust each other—execute a protocol that, despite the mutual distrust and the absence of
a single trusted party, is as secure as the execution in the ideal world. This implies that the
computation according to the protocol yields the same result and provides no additional
information on the other parties inputs.

This property is formalized as indistinguishability: We consider a protocol in the real
world to be at least as secure as the ideal execution, if no distinguisher D (in the context of
the Universal Composability (UC) framework [40, 41] often called environment Z) can
determine whether it is observing honest parties executing a protocol, or if the parties
perform the computation in the ideal world by letting the trusted party do all the work.

Since in the ideal world, honest parties only forward their input to the trusted party (which
we call functionality), there are no protocol messages exchanged. As such, the two worlds
could be easily distinguished by simply checking whether parties communicate with each
other or not. Hence, the task of proving security comes down to providing a simulator
who acts in the ideal world, and who creates transcripts (or reports the correct messages
dynamically in the context of UC) of a real-world execution that are indistinguishable
from the actual real world execution of the protocol.

However, the simulator—just like the adversary in the real world—only gets quite limited
notifications from the functionality which (typically) do not contain the secret inputs, but
only the output of the function. As such, it is the simulators task to provide a transcript
based only on the output of the function (and, optionally, some additional leakage explicitly
specified in the description of the trusted party) in such a way, that the distinguisher
cannot determine better than by guessing randomly whether it is witnessing a genuine
message exchange from a real execution or a transcript provided by a simulator who does
not know the secret inputs.

2

1. Introduction

If indistinguishability is formally proven, then the protocol is secure. It follows that any
attack that can be made in the real world can also be executed in the ideal world against
the trusted party.

Therefore, any security analysis needs to provide a simulator and a proof that the view is
indeed indistinguishable (and can be provided by the simulator).

Although the security notions came from the 1980s, with major adjustments until the
early 2000s, they are in essence still widely identical. The major differences from different
instantiations are with respect to parameters such as, but not limited to, the round com-
plexity of the protocol, the abilities of the adversary, the message length, the complexity
of the individual tasks, or the assumption used in the proof to show indistinguishability.

In this thesis, we ask the question if the established security notions for MPC can be
improved upon. In particular, we investigate three different settings:

Business Models and Legal Regulations. Despite its practical efficiency, MPC is barely
used these days. One of the reasons for that is that perfect privacy excludes manda-
tory checks for real world scenarios (say, to detect money laundry when transferring
money) or business models which require data analysis (say, for optimization of the
own services).

Can we construct Secure Multi-Party Computation that provides

anonymity while still complying with regulations and business

models?

Stronger Commitments. In the quantumworld, commitments suffice to constructMPC [57].
A perfectly secure commitment would yield a perfectly secure MPC protocol, yet
perfectly secure commitments are impossible due to Mayers [108] and Lo and Chau
[105].

Can we have commitments without hardware assumptions, where the

security for one party holds unconditionally, and the security for the

other party is stronger than just the computational setting current

literature resorts to?

Undetectable MPC. MPChides the input, but every party is aware of the computation—even
if the computation is aborted and yields no result. Yet there are scenarios where
even the computation itself should be hidden unless the result has been computed
successfully.

Can N parties hide a computation in an innocent-looking

conversation between K > N parties, without revealing their identity

even to each other?

We will elaborate on the individual questions in the following.

3

1. Introduction

1.1. Modelling Business Models and Legal Regulations with
MPC

As we have already discussed, MPC is an incredibly powerful cryptographic tool for which
efficient protocols exist. At the same time, only very few projects exist that use MPC in the
real world; among the best known examples is the dutch sugar beet auction [29], where
the market clearing price is computed using MPC. Yet despite its benefits there are still
only relatively few instances where MPC is used to solve a genuine problem in the real
world.

One might wonder why that is, and frankly, there could be more than one reason. The
protocols are still hard to comprehend for non-cryptographers, the hardware would have
to be better than the one used for computations on plaintext data, causing additional costs,
the protocol would require a lot more bandwidth, just to name a few. Yet one reason we
aim to tackle in this part of the thesis is the inapplicability of general MPC to business
models and legal requirements. This is largely due to the fact that cryptography aims to
maximize privacy: The less data is leaked the better. In contrast, many businesses are
either legally bound to analyze certain parts of the data, or their business requires proper
analysis of genuine user data, for which perfect privacy opens the door to use counterfeit
inputs.

Thus, despite the existence and practicability of MPC, these computations are performed
directly on the cleartext data in reality. Such computations, however, have the problem
that data can be misused; the operator responsible for performing the computation has
the technical possibility to sell the data to other companies or to perform further analytics
without notifying the user, and data centers that store customer data become a target for
hackers. So what ways are there to solve this problem?

We propose a solution based on an abstract framework that enables operators to easily
model the required amount of leakage into a function that is working on private user data
without revealing it. So in a way, one could argue that this makes MPC weaker as we
allow (albeit in a more explicit way) to model leakage into the computation, which results
in less overall privacy in general compared to the near-perfect anonymity that is common.
However, we believe that this increases the overall privacy, as it enables to use MPC in
areas, where previously all computations were performed on plaintext data. Thereby, the
operator can no longer use the user data for a computation without interacting with the
owner of the data. This implicitly requires some form of agreement by the user for the
data to be used in this computation, which can be seen as a way to technically enforce
some requirements of the General Data Protection Regulation (GDPR).

So interestingly, we arguably weaken the security of MPC in an effort to strengthen the
overall security, by providing an MPC definition to widen the scope where MPC can be
applied.

4

1.2. An Instantiation of Stronger Commitments

1.2. An Instantiation of Stronger Commitments

While not directly related to MPC in the classic world (i.e., the world without quantum
computers), in our second contributionwe investigate commitments. Commitments provide
a quite strong building block, which is classically believed to be insufficient for constructing
MPC. This changes, however, if we move into the quantum world; when both parties have
a quantum computer then Crépeau [57] showed that commitments suffice to construct
Oblivious Transfer (OT), from which MPC can be constructed [99, 90].

In proving security we separate between different adversarial strength. A protocol is
unconditionally or statistically secure if the adversary has unlimited runtime and still is
unable to break the security property. In contrast, if a protocol is computationally secure,
breaking the security property is provably at least as hard as solving a complexity theoretic
problem that is conjectured to be not efficiently solvable. So while the security property
can be broken in practice, the task may take even top-tier computers several years, which
provides a sufficient amount of security for many applications.

The protocol provided by Crépeau [57] is statistically secure, yet uses the commitments
as black-box and assumes idealized, perfectly secure instantiations. Using OT as building
block it follows from Kilian [99] and Ishai, Prabhakaran, and Sahai [90] that N -party MPC
can be constructed. They, too, make black-box use of an idealized building block, and
assuming with an idealized instantiation of that building block, the resulting MPC protocol
is statistically secure.

So in the quantum world, if we could somehow construct statistically secure commitments,
we would obtain statistically secure OT [57], hence statistically secure MPC [99, 90].

Such commitments could be provided using dedicated hardware (e.g. by using a heavily
guarded safe where the committer writes the message to-be-committed on a piece of paper
and stores it inside the safe), which would then have to be used somewhat excessively in
order to get statistically secure MPC out of it.

Given this information, it is highly desirable to construct statistically secure commitments
that work without special hardware. It is folklore knowledge that this is impossible in
classical systems. Yet the classical impossibility result is not applicable in the quantum
setting, meaning that in the early 1990s in particular, the cryptographic community was
eager to investigate the possibility of perfectly secure commitments in the quantum setting.
However, it was shown by Mayers [108] and Lo and Chau [105] that this too is impossible.
This results in an asymmetry of security properties where usually, the security of one party
is based on computational assumptions only. Yet the open question still stands how strong

the weaker security property can get. This question was already investigated by Unruh
[129], who provides a protocol that is unconditionally binding and everlasting hiding; that
is, the adversary is computationally bounded during the protocol execution but drops
all runtime restrictions after protocol termination. However, Unruh [129] again relied
on additional hardware. We investigate the same setting, namely that of unconditional
security for one party and everlasting security for the other, only that—except for the
quantum computer—the participants do not require any additional hardware. We provide

5

1. Introduction

a positive answer to this question when we assume Quantum Decay (QD)—stating that
quantum information cannot be stored indefinitely—and a Quantum Random Oracle
Model (QROM) which models a quantumly accessible ideal hash function. The question
remains whether the latter is indeed necessary; can there be an instantiation without the
QROM? While we do not prove directly that the QROM is really necessary, we do provide
evidence that this might be the case. In particular, we introduce a new type of attack called
Obfuscated Measurement Attack (OMA) on the everlasting hiding property and show how
it can be applied to our protocol when instantiating it in the standard model (i.e. without
a QROM).

1.3. Undetectable Multi-Party Computation

We already pointed out that MPC is a strong tool that hides the input of each individual
party beyond what can be learned from the jointly computed output. This means that
it can be used in any scenario where a number of N parties agree to compute a given
function, as long as the desire to compute that function does not automatically leak
sensitive information. Yet, as was already stated by von Ahn, Hopper, and Langford [133],
there are scenarios where the desire to even start a computation reveals too much, and
where we quickly run into a bootstrapping problem. One of the examples brought fourth
by the authors was the classical motivation for MPC, where Alice and Bob want to find
out if they both fancy each other, but neither of them wants the respective other party to
know they fancy them if the feelings are not mutual. In the classical literature, MPC is
presented as the solution to this problem, as Alice and Bob can compute a logical AND on
their secret binary inputs to obtain the correct output. In reality, however, this requires
either of the two parties to convince the respective other party to start this computation,
which already reveals that parties’ interest in the other party; computing a logical AND in
MPC when the own input is 0 is a waste of time, after all. So the question investigated by
the authors was how two people can compute such sensitive functions without revealing
their intent directly. At first glance, it might seem like a viable solution to use a technique
similar to paroles used in spy movies to recognize an ally: If Alice wants to find out if Bob
is interested in her, she starts a conversation by using a recognized sentence that sounds
innocent (e.g. asking how much the bread costs in the bakery on the other side of the
street) but that was previously agreed upon to start the protocol, and if Bob answers in a
specific way (e.g. recommending a special type of cake from that bakery) then it means
that the feelings are mutual. However, this does not solve the problem sufficiently well.
Either the parole is very generic, in which case the false positive rate is too high because
Alice might really just want to know how much the bread costs, or the parole is very
specific, in which case Bob already knows that Alice is interested without even having
done anything. Likewise, any bystander who is aware of the protocol immediately knows
what is going on.

So this naïve method does not work. Instead, the authors drew inspiration from their
previous work in the field of steganography and provided a two-party protocol that

6

1.3. Undetectable Multi-Party Computation

computes the function and provides output to both parties, but only if both parties actively
follow the protocol until the end and if the output is favorable; for the example, favorable
would mean that parties only receive output if they are both interested in each other. Yet
if parties do not get any output, it is indistinguishable whether the other party simply did
not follow any protocol and just acted normally or if the output was unfavorable.

This solved the problem for two parties, but what if there are more than two parties who
want to covertly compute a function? A first step in this direction was taken by Chandran
et al. [48], yet at the cost of requiring all parties to follow the protocol; if an additional
non-participant is present and just acts normally, the entire computation fails. So the
question remains: If we know in advance that there are N parties present who want to
compute the function, but K > N parties are participating in the conversation, is it possible
to compute the function only on the inputs of the N actual participants? And is it possible
that despite obtaining output, the participants do not know which other parties were
actively participating and which were just present and acted naturally? Performing CMPC
with all

(︁
K

N

)︁
subsets would solve the former, but upon receiving output, each participant

knows exactly which other parties were participating and which were not. Furthermore,
this method would drastically limit the number of present parties.

We propose a different solution that extends the notion to K parties, of which only N

parties are computing a function based only on the inputs of the N active participants. We
call this notion Undetectable Multi-Party Computation (UMPC) and investigate whether
or not this works. UMPC itself can be reduced to a novel primitive called Anonymous
Transfer (AT), which allows a sender to anonymously publish a message either to a fixed
receiver or to the general public. We show that if this primitive exists with overwhelming
correctness and anonymity, then we can instantiate UMPC. So the question on the feasibility
of UMPC comes down to the possibility of AT. Yet, we show that no protocol can achieve
overwhelming correctness and anonymity even against a semi-honest adversary with
asymptotic runtime. However, with relaxed requirements, a (non-trivial) protocol under
non-standard assumptions exists. We analyze this protocol and prove its security in the
fine-grained setting.

7

2. Preliminaries

2.1. Notation

We write bit strings using lowercase roman letters, e.g. x or y. For 𝑖 ∈ N we denote by
x [𝑖] the 𝑖-th bit of x. We write vectors as x⃗ using lowercase roman letters and matrices
as �⃗� using uppercase roman letters. Similar to bitstrings, for a given vector x⃗ and some
𝑖 ∈ N we denote by x⃗ [𝑖] the 𝑖-th element of x⃗. Given two bit vectors x⃗ and y⃗ of the same
length, we denote by x⃗ ⊕ y⃗ the bit-wise XOR operation between x⃗ and y⃗.

For a natural number 𝑛 we denote by [𝑛] the set {1, . . . , 𝑛} of all natural numbers from
1 to 𝑛 and for two natural numbers 𝑛0 and 𝑛1 ∈ N for 𝑛0 < 𝑛1 we write [𝑛0, 𝑛1] for the
set {𝑛0, 𝑛0 + 1, . . . , 𝑛1} of all natural numbers between 𝑛0 and 𝑛1. We denote the security
parameter by ^ . Even without writing it every time, every algorithm and protocol obtains
1^ as input, that is, a unary encoding of the security parameter.

We write functions in roman letters, e.g. f . By poly(^) we denote the set of functions that
are polynomial in ^, that is, functions for which a constant 𝑐 and a vector 𝑎 ∈ R𝑐 exists
such that the function can be represented as

∑︁𝑐
𝑖=0 𝑎[𝑖]^𝑖 . By negl(^) we denote the set of

negligible functions, that is, functions that asymptotically shrink faster than any inverse
function in poly(^). More formally, a function f is negligible in the security parameter
(written f ∈ negl(^)) if the following condition holds:

∀𝑐 ∈ N ∃𝑛𝑐 ∈ N ∀𝑛 > 𝑛𝑐 : |f (𝑛) | ≤ 1
𝑛𝑐

(2.1)

Likewise, a function f is overwhelming in the security parameter (written f ∈ owhl(^)) if
(1 − f) ∈ negl(^).

Let Ω be the set of all outcomes of a probability experiment. We denote events by capital
roman letters such as 𝐴, 𝐵 ⊆ Ω. The complementary event of 𝐴 is denoted as �̄� = Ω \𝐴.
The conditional probability of 𝐴 happening conditioned on 𝐵 is denoted Pr

[︁
𝐴

|︁|︁ 𝐵]︁
.

We write general participants of protocols in sans serif fonts, e.g. P for an arbitrary party
or S for a sender. Each party P has its own random tape which we denote as TP. We use N

to denote the number of parties in any execution. Unless explicitly mentioned these are
Interactive Turing Machines (ITMs) which run in Probabilistic Polyonmial time (PPT). The
only party we write in a different font are parties relevant for the security model. These
are written in calligraphic font, e.g. A for an adversary or C for a challenger.

9

2. Preliminaries

Schemes are written in small caps, e.g. Com for a commitment scheme or Sig for a signature
scheme. The respective methods are written in roman letters. When using a method, we
generally write the scheme before the method, e.g. Com.Com for the commitment method
Com as part of the commitment scheme Com.

Let Σ ∈ {0, 1}n be an n-bit string. We denote by Σ the complementary bitstring where
each bit is flipped. For example, if Σ = (10110) then Σ = (01001).

We write sets by italic fonts, e.g. dom to denote a (finite) domain. We write x ∼ dom to
denote uniform sampling from a given set.

If stmt is a statement, we denote by ⟦stmt⟧ the boolean outcome of that statement:
⟦stmt⟧ = 1 ⇐⇒ stmt = 𝑡𝑟𝑢𝑒 . For example, ⟦5 > 3⟧ is 1, and ⟦5 < 3⟧ is 0.

For probability distributions 𝑝 and 𝑞 we write 𝑝⊗t as the distribution arising from taking t

samples from 𝑝 , and 𝑝 ◦ 𝑞 as the distribution obtained by sampling one time from 𝑝 and
one time from 𝑞. By ∥𝑝 ∥1 we mean the 𝐿1 norm of 𝑝 , that is, the sum of the absolute values
of all possible outcomes.

For assigning values we use the following notation: If the assignment is deterministic,
we use the symbol ≔, e.g. for x ≔ 5. If the assignment is probabilistic (i.e. determined
by an algorithm that uses random coins) we write←, e.g. comx ← Com.Com(x). If the
algorithm itself involves sampling, we use the notation $←, e.g. x

$←{1, . . . , 𝑛}.

2.2. Commitments

In the following, we provide definitions for commitment schemes. We focus on definitions
for bit commitment schemes for msg ∈ {0, 1} as those can be expanded canonically to
string-commitments for msg ∈ {0, 1}n. Informally, commitment schemes provide a two-
phase technique that enables fixing a bit without revealing it in a first phase (commitment

phase), and revealing the same bit in a second phase (unveil phase), while guaranteeing
that fixing the bit does not leak information on the bit (hiding) and that the bit remains
fixed and cannot be changed in phase two (binding).

2.2.1. Definition

We provide a general definition of a commitment scheme following [76]:

Definition 2.2.1 (Commitment Scheme). A commitment scheme Com = (Com,Unv) over
a single bit is defined as a tuple of two methods (Com,Unv) executed between a committer C
and a receiver R. The methods are defined as follows:

Com(1^, b) takes as input a unary encoding of the security parameter 1^ and a bit b and

returns two bitstrings (comb,unvb) to C and the bitstring (comb) to R.

10

2.2. Commitments

Unv(1^,comb,unvb, b) takes as input a unary encoding of the security parameter 1^ , the
commitment string comb, the unveil information unvb and the bit b, and returns 1
to all parties if the unveil information unvb opens the commitment comb to b and 0
otherwise.

2.2.2. Correctness

A commitment protocol is correct if an honestly generated commitment gets rejected
only with negligible probability, where the probability is over the random coins used
by Com.Com, that is, if for all ^ ∈ N and all b ∈ {0, 1}, the following probability is
overwhelming in ^:

Pr
⎡⎢⎢⎢⎢⎣ Com.Unv(comb,unvb, b) = 1

|︁|︁|︁|︁|︁|︁ b ∼ {0, 1},
(comb,unvb) ←
Com.Com(1^, b)

⎤⎥⎥⎥⎥⎦ (2.2)

2.2.3. Hiding Commitment Schemes

We call a commitment scheme computationally hiding if the commitment message cannot
be extracted by any PPT adversary A. This means:

Definition 2.2.2 (Computationally Hiding Bit Commitment Scheme). A bit commitment

scheme Com = (Com,Unv) is computationally hiding if for any PPT adversary A and any

security parameter ^ ∈ N, the following probability is negligible in ^:|︁|︁|︁|︁|︁|︁ Pr
⎡⎢⎢⎢⎢⎣ b = b

′

|︁|︁|︁|︁|︁|︁ b

$←{0, 1},
𝜏b ← Com.Com(1^, b),
b
′← A(1^, 𝜏b)

⎤⎥⎥⎥⎥⎦ − 1/2

|︁|︁|︁|︁|︁|︁ (2.3)

where 𝜏b is the transcript of an honest execution for a commitment on b. In this case 𝜏b

corresponds to the entire view of a receiver during the commitment-phase.

Note that this property implies that a transcript originating from an honestly created
commitment on b cannot be distinguished from a transcript of a commitment on b by any
PPT adversary. This property will be used later in this thesis to prove the hiding property
of commitment schemes.

A commitment scheme is unconditionally hiding if the commitment message contains
absolutely no information on the committed bit. That is, we consider a bit-commitment
scheme as hiding if the distribution of zero-commitments is indistinguishable to the
distribution of one-commitments and cannot be distinguished by any algorithm with
noticeable advantage over guessing. More formally [76]:

11

2. Preliminaries

Definition 2.2.3 (Unconditionally Hiding Bit Commitment Scheme). A bit commitment

scheme Com = (Com,Unv) is unconditionally hiding if the following condition holds:

{Com.Com(0)} ≈ {Com.Com(1)} (2.4)

where ≈ denotes information-theoretical indistinguishability.

2.2.4. Binding Commitment Schemes

The binding property implies that a commitment on some bit b cannot be efficiently opened
to a commitment on b. More formally [76]:

Definition 2.2.4 (Computationally Binding Bit Commitment Schemes). A bit commitment

scheme Com = (Com,Unv) is computationally binding if for every PPT-adversary A =

(A1,A2) and security parameter ^ it holds that the following probability is negligible in the

security parameter ^:|︁|︁|︁|︁|︁|︁ Pr
⎡⎢⎢⎢⎢⎣ Com.Unv(comb,unvb, b) = 1

|︁|︁|︁|︁|︁|︁ (st,com) ← A(1
^),

b

$←{0, 1},
unv ← A2(^, st)

⎤⎥⎥⎥⎥⎦ −
1
2

|︁|︁|︁|︁|︁|︁ (2.5)

If A1 and A2 have no runtime restrictions, then the scheme is called unconditionally

binding.

Definition 2.2.5 (Unconditionally Binding Bit Commitment Schemes). A bit commitment

scheme Com = (Com,Unv) is unconditionally binding if for every unbounded-adversary
A = (A1,A2) the following probability is negligible in the security parameter ^:|︁|︁|︁|︁|︁|︁ Pr

⎡⎢⎢⎢⎢⎣ Com.Unv(com,unvb, b) = 1

|︁|︁|︁|︁|︁|︁ (st,com) ← A(1
^),

b

$←{0, 1},
unvmsg ← A(st, b)

⎤⎥⎥⎥⎥⎦ −
1
2

|︁|︁|︁|︁|︁|︁ (2.6)

2.3. Signature Schemes

Signature schemes aim to provide authenticity of messages.

12

2.3. Signature Schemes

2.3.1. Definition

We provide a general definition of a signature scheme as it was defined by [75]:

Definition 2.3.1 (Signature Scheme). A signature scheme Sig = (KeyGen, Sign,Vfy) with
message length n is defined as a tuple of three methods (KeyGen, Sign,Vfy) executed between
a sender S and a receiver R. The methods are defined as follows:

KeyGen(1^) takes as input a unary encoding of the security parameter 1^ and returns two
bitstrings (k, vk) to S and vk to R.

Sign(k) (1^,msg) takes as input a unary encoding of the security parameter 1^ , a message

msg ∈ {0, 1}n, and a signing key k, and returns a signature 𝜎msg to S and R.

Vfy(1^, 𝜎msg, vk,msg) takes as input a unary encoding of the security parameter 1^ , a sig-
nature 𝜎msg , a verification key vk, and a message msg ∈ {0, 1}n, and returns 1 if the

signature 𝜎msg successfully verifies the message msg under the key vk, and 0 otherwise.

2.3.2. Correctness

Intuitively, we say that a signature scheme is correct if a signature that was created by
following the Sign() method is accepted by the Vfy method. More formally [75]:

Definition 2.3.2 (Correctness for Signature Schemes). Let Sig = (KeyGen, Sign,Vfy) be a
signature scheme. Sig is correct, if the following probability is overwhelming in the security

parameter ^:

Pr
⎡⎢⎢⎢⎢⎣ Sig.Vfy(𝜎msg, vk,msg) = 1

|︁|︁|︁|︁|︁|︁ (k, vk) ← Sig.KeyGen(1^),
msg

$←{0, 1}n,
𝜎msg ← Sig.Sign(k) (msg)

⎤⎥⎥⎥⎥⎦ (2.7)

where the probability is taken over the randomness involved in KeyGen and Sign and the

implicit cointoss to create the message.

2.3.3. Existential Unforgeability under Chosen Message Attacks

We follow the outline for describing Existential Unforgeability under Chosen Message
Attacks (EUF-CMA) security set by [75]:

Definition 2.3.3 (EUF-CMASecure Signature Scheme). A signature scheme Sig = (KeyGen,
Sign,Vfy) is EUF-CMA secure if for every PPT-adversary A with access to a signing oracle

OSign(k) (·) the following probability is negligible in the security parameter ^:

Pr
[︃
Sig.Vfy(𝜎∗, vk,msg

∗) = 1
|︁|︁|︁|︁ (k, vk) ← Sig.KeyGen(1^),
(𝜎∗,msg

∗) ← AOSign(k) (·) (vk, 1^)

]︃
(2.8)

where msg
∗
was never sent from A to OSign(k) (·) .

13

2. Preliminaries

If we additionally require the signature to be unique, we get a stronger notion called Strong
Existential Unforgeability under Chosen Message Attacks (sEUF-CMA) security:

Definition 2.3.4 (sEUF-CMASecure Signature Scheme). A signature scheme Sig = (KeyGen,
Sign,Vfy) is sEUF-CMA secure if for every PPT-adversary A with access to a signing oracle

OSign(k) (·) the following probability is negligible in the security parameter ^:

Pr
[︃
Sig.Vfy(𝜎∗, vk,msg

∗) = 1
|︁|︁|︁|︁ (k, vk) ← Sig.KeyGen(1^),
(𝜎∗,msg

∗) ← AOSign(k) (·) (vk, 1^)

]︃
(2.9)

where msg
∗
was never sent from A to OSign(k) (·) and 𝜎

∗
was never returned from OSign(k) (·)

to A.

2.4. Encryption Schemes

Even though the general definitions for symmetric and asymmetric encryption schemes
are quite similar, we provide individual definitions for both of them.

2.4.1. Definition

We follow the definitions from Goldreich [75] for symmetric and asymmetric encryption
schemes:

Definition 2.4.1 (Symmetric Encryption Scheme). A symmetric encryption scheme Ske =

(KeyGen, Enc,Dec) is defined as a tuple of three methods (KeyGen, Enc,Dec) executed
between a sender S and a receiver R. The methods are defined as follows:

KeyGen(1^) takes as input a unary encoding of the security parameter 1^ and returns a

shared key sk to S and R.

Enc(1^, sk,msg) takes as input a unary encoding of the security parameter 1^ , a symmetric

key sk, and a message msg ∈ n, and returns a ciphertext ct to S.

Dec(1^, sk, ct) takes as input a unary encoding of the security parameter 1^ , a symmetric

key sk, and a cipher text ct, and returns a plaintext message msg to R.

Definition 2.4.2 (Asymmetric Encryption Scheme). An asymmetric (or public-key) encryp-
tion scheme Pke = (KeyGen, Enc,Dec) is defined as a tuple of threemethods (KeyGen, Enc,Dec)
executed between a sender S and a receiver R. The methods are defined as follows:

KeyGen(1^) takes as input a unary encoding of the security parameter 1^ and returns two
bitstrings (sk, pk) to S and pk to R.

Enc(1^, pk,msg) takes as input a unary encoding of the security parameter 1^ , a public key
pk, and a message msg ∈ n, and returns a ciphertext ct to S.

14

2.4. Encryption Schemes

Dec(1^, sk, ct) takes as input a unary encoding of the security parameter 1^ , a secret key sk,
and a cipher text ct, and returns a plaintext message msg to R.

2.4.2. Correctness

We define correctness for asymmetric schemes only, but stress that the definition for
symmetric schemes is analogous. In essence, both require that the correct message can be
extracted from the ciphertext, meaning that encrypting and then decrypting a message
results in the same message. More formally, correctness states the following [75]:

Definition 2.4.3 (Correctness for Asymmetric Encryption Schemes). Let Pke = (KeyGen,
Enc,Dec) be an asymmetric encryption scheme. Pke is correct if the following probability is

overwhelming in the security parameter ^:

Pr
⎡⎢⎢⎢⎢⎣ Pke.Dec(sk, ct) = msg

|︁|︁|︁|︁|︁|︁ (sk, pk) ← KeyGen(1^),
msg

$←{0, 1}n,
ct ← Pke.Enc(pk,msg)

⎤⎥⎥⎥⎥⎦ (2.10)

2.4.3. Indistinguishability under Chosen Plaintext Attacks

Security for both symmetric and asymmetric encryption schemes follows the indistin-
guishability paradigm. The Indistinguishability under Chosen Plaintext Attacks (IND-CPA)
security of symmetric schemes is defined as follows [75]:

Definition 2.4.4 (IND-CPA Secure Symmetric Encryption). A symmetric encryption scheme

Ske = (KeyGen, Enc,Dec) is IND-CPA-secure if for every PPT-adversary A and every

𝑥,𝑦 ∈ {0, 1}poly(^)
such that |𝑥 | = |𝑦 |, the following probability is negligible in the security

parameter ^:

| Pr[A(Ske.Encsk(𝑥)) = 1|sk← Ske.KeyGen(1^)]
− Pr[A(Ske.Encsk(𝑦)) = 1|sk← Ske.KeyGen(1^)] |

(2.11)

Definition 2.4.5 (IND-CPA Secure Asymmetric Encryption). An asymmetric encryption

scheme Pke = (KeyGen, Enc,Dec) is IND-CPA-secure if for every PPT-adversary A and

every 𝑥,𝑦 ∈ {0, 1}poly(^)
such that |𝑥 | = |𝑦 |, the following probability is negligible in the

security parameter ^:

| Pr[A(pk, Pke.Encpk(𝑥)) = 1| (sk, pk) ← Pke.KeyGen(1^)]
− Pr[A(pk, Pke.Encpk(𝑦)) = 1| (sk, pk) ← Pke.KeyGen(1^)] |

(2.12)

15

Part I.

MPC for Business Models and Legal
Regulations

3. Introduction

Secure Multi-Party Computation (MPC) allows a set of N parties to securely compute a
function f on private inputs (x1, . . . , xN) in such a way, that all participants only learn
the correct value of f (x1, . . . , xN) without leaking any further information about their
input to the other parties. With recent advancements in MPC protocols can be used with
a relatively slow overhead, in particular when assuming passive adversaries [61, 94] but
also with security against participants who actively deviate from the protocol [90, 58].
At the same time, regulations like the GDPR of the EU incentivize data economy. So it
would be natural to assume that MPC is now used in a variety of user-centric settings such
as pay-as-you-drive insurance, transportation systems, web search or mobile payments.
However, it is still very rare to find MPC in practical applications.

There are many reasons for that, but despite additional costs for development, deployment
and maintenance and the inherent complexity for non-cryptographers one reason for the
rare usage of MPC in such scenarios is a discrepancy between anonymity requirements
appreciated by the cryptographic community and the real-world requirements coming
from both business models and legal regulations, which do not work in settings that
provide perfect anonymity.

Let us consider loyalty programs for grocery shopping. There, a company rewards loyalty
of customers; if customers buy in cooperating stores sufficiently often they get rewards.
Of course, this business model is not funded by stores that want to convince people to
buy there more often, a huge part of the funding is based on analyzing the data of what
people buy in what quantities and finding correlations between the purchase behavior for
different products.

So while it would be possible to model such a loyalty program in MPC, it would come
at the cost of being able to analyze the purchase behavior of customers; funding would
have to be based only on the fee that participating stores pay to provide customers with a
motivation to continue shopping there.

So the research question we investigate in this part of this theses is as follows:

Can we provide a generic framework for MPC that enables efficient

modeling of leakage required for business models and legal

requirements?

19

3. Introduction

3.1. Our Contribution

We provide a positive answer to the research question stated above by introducing an
abstract privacy- and authenticity-preserving bookkeeping and analytics framework that
works on user data. That is, we call users the parties in our framework who can collect
and manipulate data and provide that data anonymously for analytical computations.
Throughout this part of this thesis we will assume that the users have only limited com-
putational power when compared to the other parties, as in a real instantiation a user
would probably use a smartphone to interact. We further assume that the framework is
managed and maintained by a central operator. Users can only manipulate their collected
data by interacting with the operator. At the same time, the operator is unable to link
two interactions to the same user. That is, the user is always hidden among all existing
users: In every interaction, all users are equally likely to be the participant. On the other
hand, users always have the guarantee that they are communicating with the operator.
So in essence, we require that one dedicated party (the operator in our case) sends only
authenticated messages, whereas the other party (in this case the user) is only guaranteed
to communicate with a party from a given set of parties (here the set of registered users).
We show later how this can be constructed using the Tor [62] network—yet we conjecture
that it also works with general mix-nets [50]—alongside with a Public-Key Infrastructure
(PKI) and an identification scheme.

The framework we construct consists of several individual protocols which enable users
to provide their collected data for computations. Depending on the scenario, the functions
to-be-computed have to be kept private—be it because they involve trade secrets that
should not be revealed to the user, or because they only work when kept private, as is
the case with fraud detection schemes1. We thus provide a mechanism that only leaks a
very general structure of the computed function to the user, without leaking the function
details itself. This, however, enables a trivial attack on the users anonymity; an operator
who can use any function it wants can simply compute the identity function that unveils
the entire user data to the operator, which then makes the entire overhead of using MPC
for the computation itself pointless and breaks anonymity.

We thus require a mechanism that disables such attacks and that forces the operator
to only use privacy-friendly functions. The method we use to achieve this requires an
additional party we call the Trusted Signing Authority (TSA). Before being able to use
any functions for computation the operator needs the TSA to verify them. If the function
can be used then the TSA signs the function; it is then checked as mutually visible part of
the MPC that the signature verifies the function under the verification key of the TSA.

As we specified earlier we assume the user to interact using a standard computer or even
a smartphone with relatively weak hardware when compared to the operator, which we
expect to run on much stronger servers. Unfortunately, this restriction also means that

1 Once a fraud detection scheme that detects money laundry or misuse becomes public knowledge, adver-
saries can perform the computations locally and search for a set of inputs where the highest possible
amount of cash is being laundered without raising suspicion.

20

3.2. Related Work

many functions that require a lot of hardware even when computed directly (i.e., without
using MPC) cannot be efficiently computed on a smartphone. We thus introduce a new
class of parties we refer to as helpers. Helpers provide the computational power of a
server and perform computations on behalf of a user, without learning any of the user
data and without being able to manipulate the results unnoticed. Furthermore, helpers
coordinate computations where more than one user is involved.

We model, analyze and prove the security of our protocols in the Universal Composability
(UC) framework [40, 41], which ensures that all security properties hold regardless which
protocols are executed in parallel. Given that most protocols these days are executed on
computers or smartphones, where the operating system is responsible for scheduling, we
consider this strong type of composition to be necessary.

Despite the strong guarantees from the UC framework we aimed at practical efficiency.
While not part of this thesis directly, the protocols were implemented in the conference
version of our paper [70] and executed using only smartphones as user devices.

Also part of the conference version but not directly part of this dissertation are two
instantiations that display how the tasks of targeted advertisement for grocery stores and
fraud detection for payment systems can be implemented in this framework.

3.2. Related Work

While our work is the first that provides an abstract privacy-preserving bookkeeping and
analytics building block that can be instantiated with different user-centric applications,
some parts of our contribution have been considered before by other papers.

Privacy-Preserving Point Collection. If we omit the analytical part of our framework and
only focus on collecting points we use similar techniques as the Black-Box Accumulators
(BBA+) by Jager and Rupp [92] and Hartung et al. [85]. Using those it is possible to collect
and redeem points, but not to provide the points for analytical computations.

A slightly different approach was taken by Blömer et al. [27] who introduced updatable
anonymous credentials. Those provide an update function that a user can apply to the
attributes of the credentials in order to manipulate them in a weaker sense than we do:
The update function updates the value to a new value that is provided and known only
by the user, without providing the possibility to manipulate the attributes based on their
previous contents.

Both the works of Jager and Rupp [92], Hartung et al. [85], and Blömer et al. [27] only
consider collecting points and do not provide any methods towards using points for
computations. Furthermore, both use weaker security models which does not provide the
strong composability guarantees we consider essential for any such scheme. In contrast,
our method provides UC security.

21

3. Introduction

Analytics on Authenticated Data. The scheme from Kolesnikov, Kumaresan, and Shikfa
[101] provides input authentication by ensuring that outputs of one computation are cor-
rectly transferred into the next computation and cannot be changed in between. Their
method identifies users in every interaction and only considers malicious users and as-
sume the operator to be at most passively corrupted. In contrast, our method provides
unlinkability and works even if the operator is actively deviating from the protocol.

There are a lot of methods that provide MPC for dedicated structures without considering
many computations on similar data and where parties can freely choose their inputs. These
can be grouped into protocols that work for special functions (such as neural networks
or logistic regression) only, such as the work from Asharov et al. [16], Cetin et al. [46],
and Juvekar, Vaikuntanathan, and Chandrakasan [94], or propose techniques directly for
solving a given analytical problem [141, 121, 138, 64].

Applications. Our first application provides targeted advertisements for loyalty programs.
Before our work, targeted advertisement has only been analyzed in the online setting to
provide a privacy-preserving alternative to services such as Google Analytics, where a
users device should only display advertisements based on its interests without revealing
the user profile to the advertisement network. Those are mostly informal ideas, yet Backes
et al. [17] provide a formal model and proof. In contrast, we consider loyalty programs
where advertisements are based on the users purchases in actual stores.

Those methods differ between client-based ad selection, where the users device decides
which advertisements to display [127, 17, 82], and proxy-based selection [84] where the
system requires a Trusted Third Party to deliver the advertisements. The former means
that the algorithm needs to be public, which we consider unrealistic for commercial
advertisement companies, and that it is harder to keep track which advertisements were
delivered, thus making payment from the advertising companies much harder. The latter
only works as long as the trusted party is both available and trusted both by the users and
the advertisement network.

Our second application provides a digital payment scenario that includes necessary detec-
tion mechanisms for fraud detection and money laundry. This is a relatively new topic
with barely any previous work to relate with. The only work we are aware of that is related
to ours is that of Canillas et al. [45]. The authors evaluate the performance of classifiers
based on Fully Homomorphic Encryption that classifies transaction data as fraudulent or
not. The method they use only assumes some inputs and does not provide any guarantees
on whether these reflect the actual transactions.

22

4. Preliminaries

4.1. Notation

We write by msg ∈ {0, 1}n a message (or an arbitrary bitstring) of length n. A commitment
on msg is written commsg , the unveil information as unvmsg (see Section 4.2). When
there are old and new commitments on the same values, we mark the old commitment
with an asterisk, i.e. commsg

∗ . We denote by x the (unauthenticated) inputs, and by y the
(unauthenticated) outputs.

For ZK (see Section 4.4) we write by Λ the language. In the figures showing a language,
we use gray color to denote the witness.

4.2. Commitments

In addition to the properties of commitments we defined in Section 2.2 we state here some
additional definitions for commitments.

4.2.1. Additively Homomorphic Commitment Schemes

A bit commitment scheme is additively homomorphic if commitments expose a desired
form of malleability such that arithmetic operations on the commitment yield a desired
effect on the underlying values.

Definition 4.2.1 (Additively Homomorphic Commitment Scheme). A bit commitment

scheme Com = (Setup,Com,Unv,CAdd,UAdd) is additively homomorphic if the following
probability is overwhelming in the security parameter ^:

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Com.Unv(com

b⊕b
′,

unv
b⊕b

′, b ⊕ b
′) = 1

|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁

(b, b′) $←{0, 1},
ppG ← Setup,
(comb,unvb) ← Com.ComppG

(b),
(com

b
′,unv

b
′) ← Com.ComppG

(b′),
com

b⊕b
′ ← Com.CAdd(comb,comb

′),
unv

b⊕b
′ ← Com.UAdd(unvb,unvb

′)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.1)

23

4. Preliminaries

4.2.2. Structure Preserving Commitment Schemes

If a commitment scheme is defined over some pairing group then an important property
for enabling ZK proofs is that it preserves the structure. This means [2]

Definition 4.2.2 (Structure-Preserving Commitment Scheme). A commitment scheme

Com = (Setup,Com,Unv) is called structure-preserving with respect to a bilinear group

generator ppG1,G2,G𝑡
if the following conditions are all satisfied.

1) Common parameter ppG1,G2,G𝑡
consists of a group description generated by g and con-

stants 𝑎𝑖 𝑗 ∈ Zo.

2) Commitment and unveil messages consist of group elements in G1 and G2.

3) Opening algorithm Unv consists only of evaluating membership in G1 and G2 and

relations described by pairing product equations.

4.3. Signature Schemes

Again we extend the definitions given in Section 2.3 and provide some additional properties
a signature scheme can have.

4.3.1. Structure Preserving Signature Schemes

The definition of structure preserving signature schemes is similar to that for commitments.
We again use the definition from Abe et al. [2]:

Definition 4.3.1 (Structure-Preserving Signature Scheme). A digital signature scheme

Sig = (KeyGen, Sign,Vfy) is called structure-preserving with respect to a bilinear group

generator ppG1,G2,G𝑡
if the following conditions are all satisfied.

1) The group is uniquely determined by a group description ppG generated by g and

constants 𝑎𝑖 𝑗 ∈ Zo.

2) Verification key vk consists of group elements in G1 and G2 other than ppG.

3) Messages and signatures consist of group elements in G1 and G2.

4) Verification algorithm Vfy consists only of evaluating membership in G1 and G2 and
relations described by pairing product equations.

24

4.4. Zero Knowledge Schemes

4.4. Zero Knowledge Schemes

Let Rel be a witness relation for some NP-language Λ = {stmt |∃wit : (stmt,wit) ∈ Rel}.
A Zero Knowledge (ZK) scheme contains of two parties, a Sender S (often referred to as
prover) and a Receiver R (which is often called verifier in the literature). The prover tries
to convince the verifier that for a given statement stmt it holds that stmt ∈ Λ without
leaking any other information. If this requires only a single message sent from S to R we
call the scheme Non-Interactive Zero Knowledge.

For efficiency reasons we work with group-based constructions, which generally follow
the following definition:

Definition 4.4.1 (Group-BasedNIZK Schemes). AZero Knowledge schemeZk = (Gen, Setup,
Proof,Verify) is group-based if each verifiable relation contains triplets (ppG1,G2,G𝑡

, stmt,wit)
for a group parameter ppG1,G2,G𝑡

. Further, the algorithms behave as follows:

Gen takes as input a security parameter 1^ and outputs public parameters ppG1,G2,G𝑡
.

Setup takes as input ppG1,G2,G𝑡
and outputs a (public) Common Reference String crs.

Proof takes as input the Common Reference String crs, the group parameters ppG1,G2,G𝑡
, a

statement stmt and a witness wit such that (ppG1,G2,G𝑡
, stmt,wit) ∈ Rel, and outputs a

proof 𝜋 .

Verify takes as input the Common Reference String crs, the group parameter ppG1,G2,G𝑡
, a

statement stmt, and a proof 𝜋 , and outputs 1 if the proof is valid and 0 otherwise.

For the sake of simplicity we generally omit the security parameter 1^ , the group parameter
ppG1,G2,G𝑡

and the CRS crs.

The following definitions are implicitly with respect to group-based NIZKs.

4.4.1. Perfect Completeness

A ZK scheme is perfectly complete if a proof regarding a true relation will always be
accepted. More formally [83]

Definition 4.4.2 (Perfect Completeness). AZero Knowledge schemeZk = (Gen, Setup, Proof,
Verify) is perfectly complete if for all adversary A we have that the following probability is

exactly one:

Pr

⎡⎢⎢⎢⎢⎢⎢⎣
(ppG, stmt,wit) ∈ 𝑅 =⇒
Zk.Verify(ppG, crs, stmt, 𝜋) = 1

|︁|︁|︁|︁|︁|︁|︁|︁
(ppG, sk) ← Zk.Gen(1^),
crs← Zk.Setup(ppG),
(stmt,wit) ← A(ppG, crs),
𝜋 ← Zk.Proof (ppG, crs, stmt,wit)

⎤⎥⎥⎥⎥⎥⎥⎦ (4.2)

25

4. Preliminaries

4.4.2. Perfect Soundness

Perfect soundness is completeness in the other direction; it formally states that it should
be impossible to convince a verifier of a false statement [83].

Definition 4.4.3 (Perfect Soundness). A Zero Knowledge scheme Zk = (Gen, Setup, Proof,
Verify) is perfectly sound if for all adversaries A we have that the following probability is

exactly zero:

Pr
⎡⎢⎢⎢⎢⎣ stmt ∉ Λ =⇒
Zk.Verify(ppG, crs, stmt, 𝜋)

|︁|︁|︁|︁|︁|︁ (ppG, sk) ← Zk.Gen(1^),
crs← Zk.Setup(ppG),
(stmt, 𝜋) ← A(ppG, crs)

⎤⎥⎥⎥⎥⎦ (4.3)

4.4.3. CRS Indistinguishability

CRS Indistinguishability intuitively means that there is some different way to compute
the CRS such that

(1) the new CRS cannot be distinguished from one that was honestly created, and

(2) the new CRS can be constructed with a backdoor.

More formally:

Definition 4.4.4 (CRS Indistinguishability). AZero Knowledge schemeZk = (Gen, SetupExt,
SetupSim, Proof,Verify, ExtractWit, SimZK) provides computationally indistinguishable
Common Reference Strings if for every PPT-adversary A it holds that the following proba-

bility is negligible in the security parameter ^:|︁|︁|︁|︁|︁|︁|︁|︁
Pr

[︃
A(crs) = 1

|︁|︁|︁|︁ (ppG, sk) ← Zk.Gen(1^),
(crs, td𝑒𝑥𝑡) ← Zk.SetupExt(ppG, sk)

]︃
− Pr

[︃
A(crs) = 1

|︁|︁|︁|︁ (ppG, sk) ← Zk.Gen(1^),
(crs, td𝑠𝑖𝑚) ← Zk.SetupSim(ppG, sk)

]︃
|︁|︁|︁|︁|︁|︁|︁|︁ (4.4)

4.4.4. Perfect 𝐹ppG
-Extractability

This property implies a (limited) way of extracting information from the witness. While it is
not possible to extract the witness directly, its exponentiation can be extracted efficiently.

Definition 4.4.5 (Perfect 𝐹ppG
-Extractability). A Zero Knowledge scheme Zk = (Gen, Setup,

SetupExt, Proof,Verify, ExtractWit) is perfectly 𝐹ppG
-extractable if Zk follows CRS indistin-

guishability (Definition 4.4.4) and for all adversaries A the following probability is exactly
one:

Pr

⎡⎢⎢⎢⎢⎢⎢⎣
Verify(crs, stmt, 𝜋) = 1 =⇒
∃wit𝐹𝑔𝑝 (wit) = wit

′

|︁|︁|︁|︁|︁|︁|︁|︁
ppG ← Gen(1^),
(crs, td𝑒𝑥𝑡) ← SetupExt(ppG),
(stmt, 𝜋) ← A(crs, td𝑒𝑥𝑡),
wit
′← ExtractWit(crs, td𝑒𝑥𝑡 , stmt, 𝜋)

⎤⎥⎥⎥⎥⎥⎥⎦ (4.5)

26

4.4. Zero Knowledge Schemes

4.4.5. Dual-Mode

Dual-Mode Zero Knowledge generally depends on the Common Reference String crs. Such
schemes provide two different distributions on how the CRS is created which follow CRS
indistinguishability (Definition 4.4.4).

We furthermore require 𝐹ppG
-extractability in the mode that uses SetupExt to set up the

CRS [83].

The second mode that uses SetupSim is supposed to provide zero-knowledge:

Definition 4.4.6 (Statistical Zero Knowledge). A Zero Knowledge scheme Zk = (Gen,
SetupExt, SetupSim, Proof,Verify, ExtractWit, SimZK) provides Statistical Simulatability if

for every adversary A the following probability is overwhelming in the security parameter

^:

Pr

⎡⎢⎢⎢⎢⎢⎢⎣ Zk.Verify(crs, stmt, 𝜋) = 1

|︁|︁|︁|︁|︁|︁|︁|︁
(ppG, sk) ← Zk.Gen(1^),
(crs, td𝑠𝑖𝑚) ← Zk.SetupSim(ppG, sk),
(stmt,wit) ← A(ppG, crs),
𝜋 ← Zk.SimZK(stmt, crs, td𝑠𝑖𝑚)

⎤⎥⎥⎥⎥⎥⎥⎦ (4.6)

4.4.6. Dual-Mode Zero Knowledge Scheme

We now have all the tools required to define a dual-mode Zero Knowledge scheme.

Definition 4.4.7 (Dual-Mode Zero Knowledge Scheme). A Zero Knowledge scheme Zk =

(Gen, SetupExt, SetupSim, Proof,Verify, ExtractWit, SimZK) is called Dual-ModeZero Knowl-
edge scheme if all of the following conditions are fulfilled:

1) Zk has CRS indistinguishability.

2) Zk, when set up with (crs, td𝑒𝑥𝑡) ← Zk.SetupExt(·), has perfect completeness.

3) Zk, when set up with (crs, td𝑠𝑖𝑚) ← Zk.SetupSim(·), has perfect completeness.

4) Zk, when set up with (crs, td𝑒𝑥𝑡) ← Zk.SetupExt(·), has perfect soundness.

5) Zk, when set up with (crs, td𝑒𝑥𝑡) ← Zk.SetupExt(·), has 𝐹ppG
-extractability.

6) Zk, when set up with (crs, td𝑠𝑖𝑚) ← Zk.SetupSim(·) has statistical Zero Knowledge.

27

4. Preliminaries

4.5. The Universal Composability Framework

4.5.1. Description

We perform our analysis in the Universal Composability (UC) framework [40, 41], which
is a strong version of simulation-based security [79, 77]. The key idea there is to compare
a real protocol execution between mutually distrustful parties to an idealized execution,
where a trusted party performs the computation based on the participants inputs. The
behavior of the trusted party is specified by an ideal functionality F . In the real world,
all parties execute a protocol Π, which is said to realize the functionality F (written as
Π ≥ F) if it can be shown to be indistinguishable from the ideal world. On a formal
level, we want that for all environmentsZ, there exists a simulator S (that can adaptively
depend on the behavior ofZ) such that the view in the real world is indistinguishable from
the view in the ideal world that the simulator provides. This simulator creates a transcript
of an execution without knowing the parties’ inputs. More precisely, the transcripts of
both worlds must be indistinguishable for any non-participant, even those who know the
parties’ secret inputs. Indistinguishability of the two worlds implies that the real adversary
cannot learn anything from the real protocol execution that the simulator cannot contrive
without knowing the private inputs.

The UC framework provides much stronger security guarantees than the standalone
model, but comes with some restrictions; without a trusted setup, no protocol Π can
UC-realize functionalities such as commitments [43], while computational constructions
in the standalone model exist. Constructions in the UC framework also hold in the
standalone model and, conversely, impossibilities in the standalone model extend to the
UC framework.

Regarding communication there is a distinction between the synchronous and asynchronous
communication network. In an asynchronous model, messages are handled by the ad-
versary who can drop all messages [52, 23], thus causing (anonymous) abort. In the
synchronous model, the ability to drop messages is taken from the adversary and we
implicitly assume that any message sent by a sender S also reaches the receiver R. Thus
any protocol in the synchronous setting can be implicitly considered to consist of a set of
rounds, where at the end of each round, any party can can send any message to any other
party, and at the beginning of the next round, each party receives every message sent to it
by other parties. The adversary still gets notified of the transfer but cannot suppress it.

We generally assume that the simulator gets notified whenever any party passes input
to any functionality. The simulator doesn’t learn anything regarding the parties secret
inputs (except its length when applicable). It only learns that input was provided.

4.5.2. UC Subfunctionalities

Soon after the UC framework was introduced by Canetti [40, 41], it was shown by Canetti
and Fischlin [43] that it is too restrictive to construct even MPC-incomplete functionalities

28

4.5. The Universal Composability Framework

Functionality F CRS
F CRS sets up a Common Reference String according to a given distribution. It is
parameterized by a distribution QD. It is running with a set of N parties P1, . . . , PN .

On input (Value, sid) by some party P𝑖 , if this is the first activation, sample a value
crs

$←QD and return crs to P𝑖 .

On input (Value, sid) by some any party P𝑖 for any further invocations, directly
return crs to P𝑖 .

Figure 4.1.: The functionality F CRS for setting up a Common Reference String.

such as commitments—which were possible without any additional assumptions in the
standalone model. As a result, constructions in the UC framework require subfunctionali-
ties. Those are functionalities which fulfill a certain task. They can then be instantiated
based on hardware assumptions [81], computational assumptions [7, 117], or simply by
letting it execute by a trusted party.

An additional benefit of subfunctionalities is the fact that it enables a more modular

approach to protocol design. If the overall protocol uses some mechanism for, say, key
exchange, but works independently of the actual protocol (that is, in a black-box way),
then it makes sense to model a protocol with a key exchange subfunctionality.

In this section we introduce the subfunctionalities we use for this part of the thesis.

4.5.2.1. Common Reference String

The Common Reference String (CRS) is a publicly accessible string that is sampled at
the beginning of a protocol from a distribution QD that is known to all parties.

In Fig. 4.1 we show the UC functionality for setting up and maintaining a CRS as it was
described by Canetti and Fischlin [43]. On its first activation it samples the CRS from the
distribution QD. On any further activations it returns that same CRS that was sampled
during the first activation.

4.5.2.2. Registration

The functionality F Reg for registering public keys was introduced as Certification Authority
by Canetti [42] and is often referred to as Bulletin Board in the literature (e.g. in [137,
70]).

29

4. Preliminaries

Functionality F Reg

F Reg lets parties register public keys. It is running with a set of N parties P1, . . . , PN .

On input (Register, 𝑣) by some party P𝑖 , leak (Register, 𝑣) to the adversary
and await the message Ok by the adversary.
Then, abort if this is not the first request by P𝑖 , and otherwise store the pair
(P𝑖, 𝑣).

On input (Fetch, pidP) by some any party P𝑖 , send (Fetch, P, P𝑖) to the adversary
and await response Ok. Then abort if there is no pair (pidP, 𝑣), and otherwise
load 𝑣 and return (𝑣) to P𝑖 .

Figure 4.2.: The functionality F Reg for registering public keys.

Functionality F SMT
F SMT enables confidential and authenticated communication. It is running with a
sender S and a receiver R.

On input (Send,R,msg) by Swith pid pidS, leak (Sent, S,R, |msg |) to the adversary.

On input (Ok,msg
∗,R∗) by A, output (Sent, pidS,msg) to R if S is honest and

(Sent, pidS,msg
∗) to R∗ if S is corrupted.

Figure 4.3.: The functionality F SMT for secure message transfer.

The functionality basically acts as a database, where each party can store a message. In
the original paper this message was assumed to be a public key, yet the functionality does
not enforce this and only expects some binary string 𝑣 . However, since the main body of
this part uses the functionality only to register and fetch key material, we stick with the
notion of a Registration functionality.

4.5.2.3. Secure Message Transfer

The classical communication model in UC has very little to offer with respect to security.
Any party can send a message to any other party, but the network through which messages
are sent is controlled by the adversary. As such, the adversary can read every message
sent from any party to any other party—even between two honest parties. Furthermore,
the adversary can freely change the content of the message and the reported sender before
delivery.

30

4.5. The Universal Composability Framework

To enable communication that fulfills both confidentiality—the adversary only learns the
length of the messages, that is, the amount of bits sent through the respective channels,
but no longer learns the messages content—and authenticity—the message received should
be clearly recognizable as coming from the supposed sender and should contain exactly
the massage that the sender sent—a common abstraction in the UC framework is to assume
Secure Message Transfer (SMT).

The UC subfunctionality from Canetti [40] is given in Fig. 4.3. It models sending a message
from a sender S to a receiver R in such a way that it leaks only the sender and the receiver
and the length of the message to the adversary. The adversary can then insert a different
message and receiver, and this will only be considered if the sender is corrupted. Otherwise,
the original input from the sender will be sent to the receiver determined by the senders
input.

4.5.2.4. Onion-Routing with Replies

Onion-Routing with Replies (ORR) is an extension to classical Onion Routing services like
TOR [62]. Onion Routing in general aims to provide anonymity for clients against servers
by routing the messages through a set of mix-servers (sometimes also called proxy servers
in the literature). In TOR, there are three such servers between each client and server: an
entrance node, an intermediate node and an exit node. The user picks one for each from a
public list of available mix-servers alongside their public keys and instead of sending a
message msg to the server directly, the user now first encrypts msg alongside the recipient
with the key of the exit node, then adds the IP of the exit node and encrypts that with the
key of the intermediate node, and finally encrypts the resulting ciphertext alongside the
IP of the intermediate node with the public key of the entrance node. The result is then
handed to the entrance node.

Each node then decrypts the cipher text and forwards the result to the target address1.
The exit node then forwards the message to the final receiver. This way, assuming non-
colluding servers, the entrance node only knows that the sender is communicating over
TOR, and the exit node can see the message and the receiver but is unaware of the actual
sender. Using encryption on top ensures that also the message is hidden from the exit
node.

TOR solves the problem of letting the user send messages to a server, but not the problem of
letting the server respond to a given message. To solve that as well Ando and Lysyanskaya
[11] introduced Onion-Routing with Replies (ORR) (which was later extended by Kuhn
et al. [104]), where the sender also implicitly specifies a return path for the message.

1 Hence the name Onion Routing, as this process is reminiscent of peeling of layers from an onion.

31

4. Preliminaries

Functionality F ORR
F ORR provides anonymous communication using Onion-Routing with Replies. It is
running with mix-servers M1, . . . ,MNM and parties P1, . . . , PN we refer to as sender S
and receiver R.

Init: Initialize a list 𝐿 = ∅ of onions processed by corrupted mix-servers, for each
mix-server a list 𝐵𝑖 = ∅ of onions held by M𝑖 , an empty mapping 𝐵𝑎𝑐𝑘 from the
temporary id 𝜗 of an onion to their path and forward id, and an empty mapping
𝐼𝐷 𝑓 𝑤𝑑 from backward id to forward id.

On input (Process_Onion,R,msg, P→, P←) from S, abort if |P | > Ψ . Otherwise,
sample sid and create an onion as 𝑂 ← (sid, S,R,msg, P→, P←, 0, 𝑓 𝑤). If S is
corrupted, leak (0, sid,R,msg, P→, P←, 𝑓 𝑤) to the adversary. Handle the message
according to Process_Next_Step(𝑂) from Fig. 4.5.

On input (Process_Back_Onion,msg, 𝜗) from R, abort if 𝐵𝑎𝑐𝑘 (𝜗) = ⊥.
Otherwise, set (S, P→, P←,R, sid′) ≔ 𝐵𝑎𝑐𝑘 (𝜗). Sample sid and create
an onion as 𝑂 ← (sid, S,R,msg, P←, P→, 0, 𝑏𝑤). If S is corrupted, leak
(0, sid,R,msg, P→, P←, 𝑓 𝑤, sid′) to the adversary where sid

′ is the forwards id of
the same onion. Handle the message according to Process_Next_Step(𝑂).

On input (Deliver_Message, 𝜗) from A, pick (𝑂, 𝑗) from 𝐿 according to 𝜗 .
If 𝑗 < |𝑃 |+1, sample a new temporary id 𝜗′ uniformly at random, send 𝜗′ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
toM 𝑗 , and store (𝜗′,𝑂) in 𝐵 𝑗 .
Otherwise, abort if msg = ⊥ and else send (𝑀𝐸𝑆𝑆𝐴𝐺𝐸,msg, 𝜗, 𝑑) to R. Then, if
P
← ≠ ∅ and 𝑑 = 𝑓 𝑤 , send (𝑓 𝑤) to R and set 𝐵𝑎𝑐𝑘 (𝜗) ≔ (S, P→, P←,R, sid).

On input (Forward_Onion(𝜗′)) from M𝑖 , abort if (𝜗′, ·) ∉ 𝐵𝑖 and otherwise
load and remove (𝜗,𝑂) from 𝐵𝑖 and handle the retrieved onion according to
Process_Next_Step(𝑂).

Figure 4.4.: The functionality F ORR for Onion-Routing with Replies.

In Fig. 4.4 we show the ideal functionality presented by Kuhn et al. [104, Full Version,
Algorithms 1 and 2]. A sender S can insert a new onion using the Process_Onion
task, where a dedicated receiver and the message are inserted alongside a forward path
P
→ and a backwards path P

←. Both paths contain a set of mix-servers through which
the message is scheduled. Each step is simulated through the Process_Next_Step
procedure from Fig. 4.5. This method simulates forwarding the message, but groups the
steps that involve only corrupted mix servers as those are all controlled by the adversary
anyways.

32

4.5. The Universal Composability Framework

Procedure Process_Next_Step(𝑂 = (sid, S,R,msg, P→, P←, 𝑖, 𝑑))
Subprocedure Process_Next_Step for the ideal functionality of Onion-Routing
with Replies in Fig. 4.4.
. .
if (M𝑖+1, . . . ,M𝑛,R) are all corrupted then

Leak (𝜗,𝑑,M𝑖,R,msg, (M𝑖+1, . . . ,M𝑛)) to the adversary.
if 𝑑 = 𝑓 𝑤 then
𝐵𝑎𝑐𝑘 (𝜗) ≔ (S, P→, P←,R, sid)
Let 𝑗∗ be the biggest 𝑗∗ such that (M1, . . . ,M 𝑗∗) ∈ P

← are all corrupted. Leak
(M1, . . . ,M 𝑗∗+1) from P

← to the adversary.
If S is corrupted, leak (𝜗, (sid,R,msg, P→, P←, 𝑓 𝑤)) to the
adversary.

elseif 𝑑 = 𝑏𝑤 then
If S is corrupted, leak (𝜗, (sid,R,msg, P→, P←, 𝑏𝑤, sid′)) to the
adversary where sid

′ is the forwards id of the same onion.
fi

elseif ∃ 𝑗 > 𝑖 : M 𝑗 is not corrupted then
𝑗∗ = min 𝑗 𝑗 such thatM 𝑗 is not corrupted
Sample random id 𝜗 and leak (𝜗,M𝑖, (M𝑖+1, . . . ,M 𝑗∗−1)) to the adversary.
𝐿 = 𝐿 ∪ (𝜗,𝑂, 𝑗∗)
if 𝑑 = 𝑓 𝑤 then

If S is corrupted, leak (𝜗, (sid,R,msg, P→, P←, 𝑓 𝑤)) to the
adversary.

elseif 𝑑 = 𝑏𝑤

If S is corrupted, leak (𝜗, (sid,R,msg, P→, P←, 𝑏𝑤, sid′)) to the
adversary where sid

′ is the forwards id of the same onion.
If additionally 𝑖 = 0 leak (𝜗, sid) to the adversary.
fi

fi
fi

Figure 4.5.: Procedure Process_Next_Step(𝑂) for an onion 𝑂 .

At its destination the functionality outputs the message to the operator; assuming that a
sufficient number of mix servers can be trusted and that a sufficient number of users have
provided input, the adversary cannot link the output to an input.

33

5. Overview

This chapter provides an overview to the parties and tasks involved in this part of the
thesis. It is heavily based on the conference publication [70, Sections 2 and 3] this part of
the thesis is based on and thus contains many similar parts.

5.1. Parties and Roles

We consider five different types of parties:

Users U. There are arbitrarily many users participating at the same time. Each user
collects data inside a personal logbook _. The main part of this data is called User History
(UH) UH . This is the part of the data users want to provide for privacy-preserving
computations. The UH is authenticated and cannot be changed by the user at will. The
only way to update the data is by interacting with the operator in private bookkeeping or
analytics tasks. The private data is represented by a vector of slots. Each slot contains a
Zo-element. Users can be corrupted by the adversary and maliciously collude with other
corrupted parties. We assume that users participate using relatively weak hardware. This
is due to the fact that many real-world applications would be executed on smartphones.

The Operator O. For any given instance of we there is exactly one operator. This party
is the central entity managing the system. The operator has an interest in evaluating
analytical functions on the data collected by users. In certain scenarios, the precise details
of these functions, however, may be subject to trade secrets and should not be leaked to
any other party. We thus assume that the operator can hide all sensitive information inside
Function Parameters (FPs) fp while the publicly known function f itself only provides the
general structure. In real applications, FPs correspond to transition matrices of neural
networks [94] or weights and features for linear regression. Being the operator’s input
to analytics computations they achieve the same level of privacy as the users’ private
data. Relying on FPs is without loss of generality [131] regarding the class of computable
functions. The operator may be corrupted and maliciously collude with other corrupted
parties apart from helpers without affecting the user’s privacy.

35

5. Overview

The Trusted Signing Authority T. Allowing arbitrary private FPs precludes any meaning-
ful level of privacy for the users. To prevent malicious operators from using FPs which
trivially undermine the users’ privacy, we assume the existence of a Trusted Signing Au-
thority (TSA): Before using FPs for computations, the operator has to let them be certified
by the TSA to not violate privacy requirements. We elaborate on the difficulties of this
task in Section 5.10.1. We enforce that only FPs certified by the TSA can be used during
computations on the users’ data. The TSA is an external entity and has to be trusted by the
users and the operator. We consider the TSA to be a privacy-defending donation-funded
Non-Governmental-Organization (like the Electronic Frontier Foundation) or the Federal
Data Protection Officer.

Helpers H. To help the users with analytical computations there are arbitrarily many
helpers. Helpers are used for computing analytical functions and to coordinate computa-
tions that require data from multiple users. We assume helpers to provide the computa-
tional power and bandwidth of a regular server. Helpers may be corrupted and collude
with corrupted users. As long as helpers do not collude with the operator, all user data
is hidden from both parties. Any user may potentially set up their own helper, yet it
is also possible that Non-Governmental-Organizations provide donation-funded helper
servers.

Mix-Servers M. Mix-Servers only appear in ORR (see Section 4.5.2.4). It is their job to
provide an anonymous channel between the user and the operator or helper. Normal
communication in UC leaks the unique pid to the receiver, in reality, the IP address can be
used to determine who the sender of a message is—or even, in case of static IPs, to group
different interactions together. To circumvent such attack we require Mix Servers which
relay the traffic of a user. The mix servers in ORR obtain an encrypted message which they
decrypt, then extract the new recipient from the result and forward the dedicated message
to them. That way, users only interact with mix-servers, mix servers only interact with
mix-servers, and mix-servers only interact with the operator or helper; but (assuming that
at least one of the intermediate mix servers is trusted) there is no direct link between the
user and the operator or helper.

5.2. Tasks

In this section we introduce all the tasks we consider. These are distributed into preparatory
tasks which we introduce in Section 5.2.1, simple two-party bookkeeping tasks which we
present in Section 5.2.2, and outsourced tasks for complex analytical function which we
describe in Section 5.2.3.

36

5.2. Tasks

UReg SFPU O T

Registration

Empty

Verify Function

Certificate

VerifyData

Logbook

Parameters

Figure 5.1.: Overview of the preparatory tasks.

5.2.1. Preparatory Tasks

Before users can participate in the system they have to register with the operator. Similarly,
the operator has to have the FPs signed by the TSA before they can be used for computations.
Both tasks have to be conducted only once (per user/FP, resp.) before they are eligible for
any other computations. An overview of these tasks is provided in Fig. 5.1.

Sign Function Parameter. Any function the operator wants to compute is split in two
parts: A generic and publicly known function representation f (e.g., a neural network with
padded neurons) and a corresponding private set of FPs which determine the specifics (e.g.,
the transition matrices). These FPs constitute sensitive data held by the operator. Before
the operator can use any FPs for computations, the TSA has to verify that the resulting
function does not violate the required privacy standards. To that end, the TSA verifies the
FPs according (but not limited) to the following criteria: 1) Is the output sufficiently general
to not leak confidential user information? We assume a public catalog of requirements
FPs have to fulfill. This also provides feedback for the users on the expected level of
privacy. 2) Does this function use the slots of the UH according to their specification?
We generally assume that the specification of the UH—the semantic interpretation of
the individual slots—to be public knowledge. 3) Are there any additional leaks when
combining these FPs with any of the previously certified FPs? We model the verification
function such that the TSA can input all previously accepted FPs as auxiliary input. The
actual Sign Function Parameter (SFP) task is depicted in Fig. 5.1: The operator inputs FPs
which are then checked by the TSA against the privacy guidelines. If the FPs comply with
the guidelines, the TSA provides the operator with some form of certificate. Our protocol
uses signatures on the FPs. This certificate is a required input to any computation task
that uses these FPs.

User Registration. Users store their private User History inside a personal logbook _.
Providing the user with an “empty” logbook which contains an authenticated initial UH
is the purpose of the User Registration (UReg) task. The task is depicted in Fig. 5.1 and
consists of three phases. In the first phase the user is identified. The operator then
verifies that the user is not registered already—we require that each user can only have at
most one logbook. Lastly both parties jointly compute the initial logbook containing an
authenticated UH. The UH always starts out empty. The logbook _ is a requirement for
participation in any of the other tasks. The UReg task is the only task identifying the user
and only performed once.

37

5. Overview

BKU O

Logbook

Updated

New Data
Signed FPs
New Data

Logbook
Computation
Result

Figure 5.2.: Overview of the Bookkeeping task.

5.2.2. Bookkeeping

The privacy-preserving bookkeeping enables the operator and a user to manipulate data
with certain guarantees for both parties. An overview of this task can be found in Fig. 5.2.

Bookkeeping. The Bookkeeping (BK) task manipulates a single user’s data. While the
main purpose of this task is to provide an efficient targeted manipulation of the UH in an
authenticated yet privacy-preserving way (such as adding or resetting individual values),
the task optionally performs lightweight direct analytics of the user data according to
an application-specific function f and the certified FPs. This enables manipulations of
the UH based on its current values, which may be required for scenarios such as fraud
detection where the decision (to be recorded) whether a transaction is granted or not
depends on a risk level stored in UH. The main part—authenticated manipulation of the
UH—is done without leaking the authenticated and private data stored in the UH to the
operator. The UH is updated using Update Information UI = (𝛼, 𝑠, 𝑎). These contain three
consecutive operations defined by three maps which are output by f . The first map 𝛼
defines a permutation of the contents inside the UH. The second map 𝑠 determines which
values of the UH are set to new values directly, we call this direct update throughout this
part of the thesis. The final map 𝑎 is defined by a vector of additive updates which will be
applied to the values of UH, we call this vector additive increment. The additive increment
is hidden from the operator. In contrast, the permutation and direct updates are learned
by both parties. As such they are subject to privacy considerations during auditing with
the TSA to ensure that they leak no personal information about the user. We stress that
permutations and direct updates are optional; they can be skipped during the BK task in
favor of more efficient updates using only the additive increment. We chose this type of
update mechanism as a tradeoff between what is usually required for (basic) bookkeeping
applications and what can be efficiently implemented (using zero-knowledge proofs and
homomorphic commitments).

The UH remains authenticated because (1) the operator knows that the input was au-
thenticated, and (2) the correctness properties ensure that the data was manipulated
correctly.

5.2.3. Outsourcing Analytical Computations

We assume that users have relatively weak hardware incapable of securely computing
analytical functions like neural networks efficiently. To still enable these costly compu-
tations we involve an additional party—the helper—which provides the computational

38

5.2. Tasks

OS

OA

Upd

U H O

Logbook

Output
Updated Logbook

Logbook Share

Masked Update

Logbook Shares

Output
Masked Update

Logbook Shares

Masked Update

Logbook Share

Masked Update

Figure 5.3.: Overview of tasks for outsourcing computations.

power and bandwidth required to perform such computations. As long as the helper
does not collude with the operator it is not possible for the helper to learn any secrets or
even analytical results from participation. A corrupted helper also poses no risk for the
operator’s privacy.

Involving a helper also enables synchronization of analytical tasks which require private
data from several users. The basic workflow for outsourcing analytical tasks is shown in
Fig. 5.3; note that the three different tasks involved in this cannot be scheduled arbitrarily
but have to be conducted top to bottom. The general workflow first lets the user distribute
the logbook containing their current UH to a helper of its choice and the operator using
the Outsource task. These shares are then used by helper and operator for computing
the analytical function using the Outsourced Analytics task. This can potentially cause
updates on the UH which follow the same three basic operations (permutation, direct
update, additive increment) that were also used for the Bookkeeping task. Again, we want
to hide the additive vector applied to the User History and thus use a similar mechanism
as during the BK task, only that the values relevant for the user are temporarily stored by
the helper and hence masked with One Time Pads. The update can later be applied by the
user by means of the Update task which also re-enables the Outsource task for that user.

Outsource. To prepare the computation of an analytical task the Outsource (OS) task
is conducted between user, helper and operator as shown in Fig. 5.3. The user’s logbook,
which contains the latest authenticated User History, is shared between the operator and
helper for use in the computation. The user receives a new logbook which is identical to
the old one except that it is now marked as having been outsourced.

Outsourced Analytics. Using the shares obtained from the OS tasks, helper and operator
can now conduct the actual computation with the Outsourced Analytics (OA) task. This is
depicted in Fig. 5.3 as well. The function is computed on the private user data using any
secret-sharing based MPC framework. The operator learns the desired analytical result
directly. Information relevant for the user is masked and sent as output directly to the
helper; the users fetch the data and reconstruct it at their convenience but the helper does
not learn the data. Computation again follows the function f and requires validated FPs
from the operator.

39

5. Overview

Update. As mentioned before, the results of OA can be used to update the user data.
To apply these to the latest UH the user and operator can use the Update (Upd) task (see
Fig. 5.3). This also re-enables the Outsource task for their logbook. The analytical result
destined for the user is forwarded to them. Both the operator and helper input the share
they obtained from the Outsourced Analytics task. These shares contain the updates for
the UH, the computation results relevant for the user and additional information to detect
tampering of the shares. The user inputs the latest UH and obtains a new authenticated
UH which was updated using the same mechanism as used in the BK task.

The triplet from Fig. 5.3 is non-blocking regarding further Bookkeeping tasks: A user can
outsource the latest User History in an Outsource task, which prepares an Outsourced
Analytics task in the “background”, and then update the UH using the Bookkeeping task
arbitrarily often before participating in the Update task. This is a desired behavior in
scenarios such as targeted advertising. We stress, however, that the triplet is blocking with
respect to further analytical tasks (amongst others, to hamper denial of service attacks on
helpers and operator): After executing the OS task the user has to successfully perform
the Upd task before it can call Outsource again. This implies that the User History input
to the Update task has potentially been changed via successive Bookkeeping tasks and
significantly differs from the UH used during Outsource. Special care has to be taken
during function design to ensure that the update is still meaningful even after any number
of Bookkeeping tasks manipulating the UH in the meantime.

5.3. Cryptographic Building Blocks

We make use of the following building blocks.

A Non-Interactive Zero-Knowledge Proof of Knowledge scheme. This scheme is used by
the user to prove that certain operations have been performed correctly. It needs to be
extractable and zero-knowledge. Groth-Sahai proofs [83] satisfy our requirements.

A pairing group. We make use of an asymmetric pairing group ppG1,G2,G𝑡
= (G1,G2,G𝑡 , e,

o, g1, g2). The groups G1, G2 and G𝑡 of prime order o are cyclic groups with generators
g1 and g2. Identification of a user relies on the hardness of the Co-CDH problem [31],
which asks to compute g

𝑥
2 given g1, g2, g

𝑥
1 . The Co-DH assumption is implied by the SXDH

assumption [83] we use to instantiate Groth-Sahai proofs.

An additively homomorphic, structure-preserving commitment scheme. The logbook
contains the user data, i.e. the User History, alongside additional information alongside
their commitments; we provide more information on the logbook in Section 5.6. These
commitments are from an additively homomorphic, unconditionally hiding and computa-
tionally binding commitment scheme. To ensure compatibility with our zero knowledge

40

5.4. Set-Up Assumptions

proof system the commitments are additionally structure-preserving. A scheme that fulfills
all those requirements is the commitment scheme from Abe et al. [2].

A structure-preserving EUF-CMA-secure signature scheme. To ensure the integrity of the
logbook, we use an EUF-CMA-secure signature scheme which is compatible (structure-
preserving) with our zero-knowledge proof system. The signature scheme by Abe et al.
[1] provides these requirements.

A Robust Secret Sharing scheme. We use a robust secret sharing scheme, which lets
a party create shares of a secret in such a way that (1) the recipients can verify the
integrity of the received shares, and (2) tampering with the shares can be detected during
reconstruction. Unlike verifiable secret sharing which only protects against a malicious
dealer, robust secret sharing also protects against recipients trying to manipulate their
shares in order to change the reconstructed output.

5.4. Set-Up Assumptions

We formally conduct our investigation in the asynchronous UC framework with anony-
mous abort against static corruption of an arbitrary subset of parties that does not include
both the helper and the operator at the same time. Following strong impossibility re-
sults [43] regarding constructions in the UC-framework, most instantiations require set-up
assumptions: Building blocks with a pre-defined behavior that are generally used in a
black-box way. This means that those too can be interpreted as functionalities which are
controlled entirely by the simulator—providing an advantage over real-world adversaries.
The set up assumptions can be instantiated by any protocol realizing this functionality or
even by using trusted hardware.

We require the following set-up assumptions:

F CRS : Common Reference String (CRS) A CRS is a string visible to all parties, sampled
from a publicly known distribution.

F Reg : Registration (Reg) Reg is a common abstraction to model a Public-Key Infrastruc-
ture (PKI). Parties can register their own public keys and fetch keys from other
parties. Unlike real PKIs, F Reg allow users to register a key exactly once and stored
keys do not expire.

FMPC : Secure Multi-Party Computation (MPC) Using MPC the parties can compute the
function f on their private inputs in such a way, that no additional information on
the individual inputs is leaked except for the output.

41

5. Overview

F SMT : Secure Message Transfer (SMT) SMT (cf. Section 4.5.2.3) provides a secure channel
between any two parties. The messages are both authenticated and confidential.
Unless we explicitly state so in our protocol, we assume that all messages are sent
via SMT.

F ORR : Onion-Routing with Replies (ORR) ORR (cf. Section 4.5.2.4) provides onion routing
in the sense of Dingledine, Mathewson, and Syverson [62], but in UC secure and
with the ability of the sender to provide a return path. The receiver thus only
communicates with mix servers, and not with the user directly.

5.5. Computation of Benign Functions f

Our contribution lies in the construction and analysis of a privacy-preserving bookkeeping
mechanism built around any existing MPC framework. While the MPC building block we
use enables computation of any function f , we only compute benign functions. We will
elaborate in Section 7.1 but stress here that the restriction (1) is necessary as we require
specific pre- and post-processing steps, and (2) does not restrict the basic set of computable
functions any further, as any function can be transformed into a benign function by adding
these pre- and post-processing steps.

As functions can be used for BK and OA let’s briefly discuss the pre- and post-processing
steps required for each task.

Bookkeeping. As a pre-processing step the function needs to verify that the operator
used the same FPs for the MPC that were also verified earlier. To that end we require the
operator to input a signature on these FPs that was signed by the TSA. A similar trick is
used to ensure that the user uses the same UH that was verified before the computation.
The post-processing step ensures that the additive increment of the update is not be learned
by the operator. To that end, f computes a commitment and only outputs that to the
operator (alongside the permutation and the direct update as clear vectors) while the user
additionally obtains the clear text and the unveil information.

Outsourced Analytics. During the OS task the user created and distributed robust secret
shares of the UH and proved that these were correctly distributed. Our pre-processing
phase then verifies that the shares are reconstructed correctly, i.e., that no tampering has
been detected. Then the FPs are verified just as in BK. Post-processing then proceeds as
in BK and computes a commitment on the additive increment. It additionally applies the
OTPs on the permutation, the direct update, the increment, the unveil information on the
increment, and the unauthenticated output, as those are routed through the helper.

42

5.6. The User Logbook

5.6. The User Logbook

We denote by _ the logbook containing the data stored by a user:

_ =
⎛⎜⎝

UH

comUH

unvUH

,

ser

comser

unvser

,

lin

comlin

unvlin

,

skU
comskU
unvskU

, 𝜎UH

⎞⎟⎠ (5.1)

The logbook contains all the data required tomaintain the UserHistory and to anonymously
interact with the operator.

The User History UH . The key component of the logbook is the User History. It is a
vector of Zo elements that represents the authenticated data collected by the user.

The Serial Number ser. The serial number is a single Zo element that uniquely determines
a revision of a logbook. It is unique in that with overwhelming probability there are no
two different logbooks (neither belonging to different users nor to the same user) with the
same serial number. This means that once a serial number has been used, it will never be
used again.

The Linking Number lin. We require linkability inside the triplet for outsourcing com-
putations: consecutive tasks of Outsource, Outsourced Analytics and Update have to be
linked to the same user as otherwise the data outsourced during the Outsource task cannot
be used during Outsourced Analytics and the changes of the resulting update cannot be
applied to the correct User History during the Update task. We thus use an additional Zo

element that links these executions for all three parties involved in outsourcing computa-
tions, which the user stores inside the logbook. If no data has been outsourced since the
latest update then the linking number is 0.

The Secret Key skU. The user has a fixed private key. On a technical level, this key is a
random Zo element. It is randomly chosen during User Registration and is never directly
revealed to anybody. Instead, users only prove knowledge of skU.

The Commitment Informationcom,unv and Signature 𝜎UH . To ensure authenticity the
operator generally signs all values inside the logbook. However, the signature is not on
the values directly—as this would conflict with the users privacy requirement—but on
commitments thereof. This is why the user not only stores the values inside the logbook
but also the commitments that were used by the operator to compute the signature. As
those are part of the witness to generate zero-knowledge proofs, the user also stores the
corresponding unveil information.

The final value in the logbook is a signature by the operator that ensures integrity of the
commitments on the UH, the serial number, the linking number and the identity.

43

5. Overview

5.7. General Principles

For every task involving the user, our protocol begins and ends with the same two mecha-
nisms: The authenticated input mechanism ensures the user enters a fresh and authenti-
cated logbook into the interaction while the updating mechanism provides the user with a
new valid logbook when the task is finished.

Authenticated Input Mechanism. At the start of each task the user owns a valid logbook
_ containing the data described in Eq. (5.1). To prove validity of the logbook to the
operator the user first rerandomizes all old commitments com∗

msg
to commitments commsg

of the same value. Note that homomorphic commitments are trivially rerandomizable
as homomorphically adding a commitment com0 on 0 to a given commitment changes
its internal randomness, but not its value. In the second step the user computes a Zero
Knowledge proof 𝜋 showing that they know (1) commitments com∗ on the same values
as the com and (2) a signature 𝜎UH that authenticates the original commitments under
the verification key of the operator. The rerandomized commitments com and proof 𝜋
are sent to the operator for validation. The above process is only conducted for values
the operator is not supposed to learn, usually (UH , lin, skU). In case the user wants to
fetch updates from an outsourced analytical computation or wants to start one and needs
to show the logbook contains lin = 0, the hidden values are (UH , skU) only. The serial
number ser is always revealed at the start of a task and checked by the operator (using a
database lookup) to make sure the user does not try to use an outdated logbook for a new
task.

Updating Mechanism. At the end of each task the user and operator jointly compute
a new valid logbook _new to be used in the next task. To do that, the operator needs
to reliably learn commitments (comnew

UH
, comnew

ser
, comnew

lin
, comnewskU

) to all new values
(UH

new, lin
new, ser

new, sknewU) and sign them for the user without learning the values
themselves. We explain how commitments to each of the values are obtained by the
operator.

For the update of the User History we considered two different options. For the permuta-
tions and updates we considered two different options. The first one lets the operator do
everything, yet only works with individual commitments for each value in the UH. As the
operator, has access to all the individual commitments from the UH, the permutation can
be applied directly by shuffling the individual commitments, whereas the direct update is
applied by computing new commitments on the updated values and sending them along-
side their unveil information to the user. However, having individual commitments has a
very poor impact on the size of the logbook; so instead we chose a method compatible with
shrinking commitments: The permutation and direct updates are performed the user, who
hands the new UH alongside a ZK proof that the operations were applied correctly to the
operator. The function f additionally provides commitments on the additive increments.

44

5.8. Security Guarantees

The operator then applies the additive increments by using the additive homomorphism
of the commitment scheme.

In case there are only additive updates, the first step is skipped and only the additive
increment is homomorphically applied to the commitment.

A new serial number is constructed using a coin-toss protocol similar to the protocol by
Blum [28], but without the third round and by exploiting the homomorphic properties
of the commitment scheme. In essence, the operator and user execute the following
protocol: (1) The user picks a random share and sends a commitment of that share to the
operator. (2) The operator picks a random share, computes a commitment of that share and
homomorphically adds it to the commitment received by the user. That way, the operator
has a commitment on the sum of both shares, which suffices for the signature creation.
Finally, the operator sends its own serial number share alongside the commitment and
unveil information to the user.

The linking number of the logbook stays the same for most interactions. Whenever the
linking number is changed (in Outsource and Update) the operator knows the new linking
number so the creation of the commitments is up to the operator. In the remaining tasks
the linking number should not change due to the task execution, so the user sends a
rerandomized commitment on the linking number and proves correct rerandomization.

The secret key is chosen once during registration of a user and then is never changed.
Similar to the linking number, the operator only learns a rerandomized commitment and a
proof of correct rerandomization.

The operator signs all the aforementioned commitments sends the to the user. The user
verifies the signature and stores it in the new logbook.

5.8. Security Guarantees

This section discusses the security requirements in an informal fashion based on which
we designed an ideal functionality in the UC framework in Chapter 6.

5.8.1. Operator

The operator expects authenticated inputs and correct analytical results, thereby hiding
potential trade secrets. In particular, we desire the following security requirements for the
operator:

45

5. Overview

Owner Binding. Users can only use their own User History. Even corrupted users cannot
efficiently steal an honest user’s UH. Generating a logbook on behalf of another user
requires showing ownership of its public key; extracting this would violate the co-CDH
assumption. Furthermore, the adversary cannot successfully steal another user’s logbook
as users never interact with each other, and communication uses confidential channels.
Pretending the adversary’s logbook belongs to a different user is also prevented: Given the
(perfect) extractability of the NIZKPoK this would result in a different witness, which in
turn means that the adversary (1) used different unveil information for the commitment,
breaking the binding property, or (2) forged a signature on a new commitment, breaking
EUF-CMA security.

History Freshness. No user can use an outdated User History for any of the Bookkeeping,
Outsource or Update task: The same UH can never be used twice without the operator
noticing. To achieve this goal we use an online-check of serial numbers. A user trying to re-
use an old UH has only three options: (1) Lie during the ZK proof that the rerandomization
of comser was correctly performed, thus breaking the soundness-property, or (2) open
their coin toss commitment com(U) during the creation of the new serial number to a
different value, which would break the binding property, or (3) compute a new signature
𝜎UH on a changed commitment com′

ser
that verifies under the operator’s verification key,

which would break the unforgeability of the signature scheme.

History Unforgeability. The User History can only be changed through task executions.
It is computationally infeasible for a user to create a User History with arbitrary values
that will be accepted by the operator. This hampers Model Extraction Attacks [128] in
which the user uses targeted inputs to steal the FPs. The logbook entries are only used
as witnesses for ZK proofs, but each of them comes with a commitment signed by the
operator. Thus history unforgeability intuitively holds for the following reasons: (1) The
soundness property of the ZK scheme ensures that proofs containing forged entries will
be rejected with overwhelming probability. (2) The binding property of the commitment
scheme and the unforgeability of the signature scheme further disable attacks where the
commitments on the entries are opened to different values or where the signature on a
manipulated entry is forged.

Uniqueness. Each user can have at most a single logbook. It is not efficiently possible for
a user to own two valid logbooks at the same time. This property is enforced as follows:
During the task for User Registration the operator fetches the public key of the user from
F Reg, which models a Public-Key Infrastructure (PKI) in UC but with the difference that
each user can only register one key. If the public key the user tries to use during User
Registration has already been used the operator aborts. Thus uniqueness is reduced to the
security properties of the PKI.

46

5.8. Security Guarantees

Function Privacy. The Function Parameters input by the operator remain private: only
the TSA is allowed to learn them. Other parties only learn the output of the function
computed with these FPs. This property follows from the security properties of the MPC
framework. In the surrounding protocol the FPs are only ever sent as commitments; the
hiding property of the commitment scheme hence ensures that this leaks no information
about the actual FPs.

5.8.2. User

Any user interacting with we expects privacy of the collected data throughout different
interactions:

Unlinkability. The leakage is limited to information that enables identifying the user
during the User Registration task as well as coupling a consecutive tuple of Outsource,
Outsourced Analytics and Update to the same anonymous user. Other than that, it is not
possible to link to executions to the same user; any two interactions are equally likely to
have been made with any registered user. To achieve that goal we use the Zero Knowledge
property of the NIZKPoK scheme and the hiding and rerandomization property of the
commitment scheme: Any data that could be used to link a user to a previous interaction
is only used as witness for ZK proofs and the operator only sees commitments thereof.
As the commitments are rerandomizable they do not leak information regarding their
previous use. To provide a secure channel that does not enable easy linkability we use
Onion-Routing with Replies (cf. Section 7.3).

Input Privacy. The user does not reveal anything about the UH that cannot be derived
from the result of the computation. During computation of f this automatically follows
from the invocation of FMPC. In the surrounding protocol users only use UH in three
settings: (1) Inside commitments, where the hiding property ensures that this leaks no
information. (2) As part of the witness in ZKs proofs, where input privacy follows from
the Zero Knowledge property. (3) For secret sharing during the Outsource task, which
is information-theoretically secure as long as the two recipients—the operator and the
helper—do not collude.

Function Parameter Binding. Computations can only be performed on FPs which were
previously certified by the TSA. It is not efficiently possible for the operator to use un-
certified FPs. For using FPs which were not verified by the TSA a malicious operator
would have to: (1) forge a signature 𝜎 fp in the name of the TSA, which would break the
unforgeability of the signature scheme, or (2) open a valid commitment comfp to new
(invalid) FPs fp

′ by breaking the binding property of the commitment scheme.

47

5. Overview

5.9. Realizing the Individual Tasks

Let us explain how we realize the central tasks of Bookkeeping, Outsource, Outsourced
Analytics and Update.

Bookkeeping. The Bookkeeping task is almost completely covered by the authenticated
input and updating mechanisms explained above. Between the two mechanisms, the user
verifies that the operator uses correctly signed Function Parameters (see Section 5.2.1) for
the task and both of them jointly compute the update information and additional outputs
according to f .

Outsourcing Analytical Computations. As mentioned in Section 5.2.3 outsourcing an ana-
lytical computation consists of three consecutive tasks, namely the Outsource, Outsourced
Analytics and Update task.

For the OS task the user opens the commitment on the linking number lin to show that it
is zero, meaning that no other outsourced computation is in progress. Additionally, the
user uses the additive robust secret sharing scheme to share the UH and the auxiliary
input xU which are to be used for the Outsourced Analytics task, and of several one-time
pads for the helper and operator, respectively. The one-time pads hide the outputs of the
computation that are relevant for the user; the function only outputs masked values which
only the user can unmask. The secret shares are also proven to be distributed correctly.
Helper and operator check the values using the robust secret sharing scheme and, using the
values obtained from the helper in this process, the operator verifies the zero-knowledge
proof to ensure that the shares were created correctly. Helper and operator then use the
modified coin toss protocol to compute a new linking number for the OS/OA/Upd triple.
Again, as the last step the operator provides the user with the necessary information to
create the new logbook, the contents of which have not changed except for the serial and
linking number.

As the OA task does not include the user, the general principles from Section 5.7 do not
apply to this task. Instead, the helper only verifies that the operator uses correctly signed
FPs for the computation. To that end the operator sends a commitment on the FPs and a
signature on the commitment to the helper. The helper then verifies the signature under
the verification key of the TSA. Afterwards both jointly compute f according to the MPC
setup. Note that—apart from the Update Information the operator is supposed to learn—the
Update Information and auxiliary outputs for the respective users are one-time padded to
retain privacy from both helper and operator.

The Update task again follows the general principles: The user proves validity of the used
logbook and reveals the linking number so that helper and operator can find the correct
Update Information. The user then unmasks the one-time padded information from the
helper and operator, respectively, checking them for consistency. The remainder of the
task then consists of the user and operator conducting the logbook updating mechanism.

48

5.10. Limitations of our scheme

The linking number is set to zero again in this process so the user will be able to outsource
a new analytical task.

5.10. Limitations of our scheme

In this section we discuss some of the limitations and open problems and provide ideas on
how to solve them.

5.10.1. Verification by the TSA

A common problem of functions constructed using deep machine learning (such as neural
networks) is a lack of transparency regarding their behavior. Our framework suffers from
the same problem which even persists if we ignore function privacy for the operator; a
user who has to compute a neural network on private data does not automatically know
what the network computes and how the output is to be interpreted. A function that
maps, say, purchases of a user to some abstract class of advertisements relevant for that
user is hard to distinguish from one that maps purchases to an encoding that reflects the
individual purchases on a fine-grained level.

In our setting, the problem is even harder as we additionally require function privacy
for the operator; only a Trusted Signing Authority is there to ensure that the operator
only uses valid Function Parameters which provide a sufficient level of privacy for the
user. The TSA has the same problems mentioned above: While it is straightforward to
check whether a given machine learning model indeed classifies as specified for randomly
chosen inputs, a sufficiently complex model can be used to hide backdoors [51] in the form
of special inputs provided by the operator which would break unlinkability and input
privacy for any user. As it is highly unlikely that the TSA finds this backdoor by using
random testing, the model behaves normally for all inputs chosen by the TSA with high
probability and could even get certified. While we generally assume that the output of
the function is a discrete set of much smaller size than the input space—as is the case for
both applications we propose—we do not restrict to only those functions; using arbitrary
output for the operator requires special attention during the verification step.

While it is possible to implant a backdoor into the model given a sufficiently large output
space and a sufficiently complex model we stress that there are several different ways
to detect—and even to remove, although at the cost of overall accuracy—a backdoor. A
survey on the scenario itself alongside mechanisms to detect and remove a backdoor is
given in [72].

Our generality lets the operator create a model with a backdoor and submit it for the Sign
Function Parameter task, yet increasing progress in the field of backdoor detection [72,
134] given only the final model makes it unlikely that these Function Parameters will
get a certificate. We hence require the TSA to perform a number of such tests in order

49

5. Overview

for verification mechanism to be sufficiently daunting for an operator that tries to use
backdoors.

5.10.2. The Trouble of Aborts

Aborts are a common problem in MPC: If a party looses connection during a computation
or refuses to answer entirely then the computation cannot be finished. This is also modeled
into most security frameworks. For example, we use the the asynchronous UC model.
There, the entire communication is managed by the adversary; parties can ask the adversary
to transfer a given message to an other party but the adversary is free to change any
part of the message, to drop the message entirely or to report messages in the name of
any honest party. Using authenticated channels removes the adversaries capability to
change the message or to create new messages in the name of honest parties, and secure
channels additionally take the adversaries ability to read the message. Yet even with these
precautions the adversary is still able to drop messages at will.

For normal computations an abort only means that the parties do not get any output. But
in our setting this means that the user is at worst left with no valid logbook if the abort
happened after the old logbook has been invalidated at the start of a task but before the
new one has been created and sent to the user. An additional case to consider is if the
abort happens during an Outsourced Analytics task. This leaves the user incapable of ever
outsourcing data again as the linking number will never be reset.

Yet we stress that dealing with aborts is straightforward and could easily be incorporated
into the protocol, albeit at the cost of a longer functionality and protocol description and a
much more complicated security proof. But for completeness reasons we sketch here how
the protocol can be secured against aborts.

In total there are four tasks where the user is directly involved and where aborting in
between means that there is no logbook that the user can use and one task where an abort
implies that the user cannot outsource anymore. The four tasks where the user is directly
involved in, namely User Registration, Bookkeeping, Outsource and Update, we have to
ensure that the mechanism cannot be abused to let a malicious user obtain two different
logbooks. Thus we require that the same messages that were sent before the abort will be
sent in the next interaction again to ensure that the reconstructed logbook will end up
with the same serial number. So essentially the reconstruction only finishes the previously
started task using the state both parties had right before the abort.

The situation only becomes complicated if an abort occurs during an Outsourced Ana-
lytics task. Without a reconstruction mechanism the user would be unable to outsource
ever again, as resetting the linking number lin to 0⃗ is only possible in the Update task
which requires a completed Outsourced Analytics task. Yet again we stress that a slight
modification suffices to deal with this case:

50

5.10. Limitations of our scheme

If an abort occurs during an Outsourced Analytics task then this abort only matters if no
output has been provided to the operator as parties generally get notified of the abort1.
Hence the operator is aware that the computation involving data from a given linking
number lin has failed. The reconstruction task basically consists of the update task but
with all three manipulation vectors corresponding to ⊥. That is, the permutation 𝛼 is the
identity, the direct update 𝑠 is ⊥ everywhere, and the additive increment is 𝑎 = 0. This
resets the linking number lin stored inside the users logbook to 0⃗ and thus enables future
Outsource tasks for that user.

Note that this reconstruction mechanism can be used to restore a broken logbook; yet
until the reconstruction has been performed the user is essentially locked from any further
interactions, with the exception of aborts during Outsourced Analytics where the user
can still perform Bookkeeping tasks.

1 If the abort is happening in the real world, then we can assume standard techniques such as timeouts can
be used to determine that the message will likely never arrive.

51

6. Ideal Functionality

In this section we provide the full description of our ideal functionality F BKA. We use the
standard UC model [41], and assume that the simulator is activated by F BKA whenever
any party provides any input.

All inputs to the functionality have the form (Task name, List of secret inputs). The task
name uniquely determines the task to be executed.

The notifications S obtains after F BKA obtained input from any party depends on the
respective party providing the input: On inputs from T, O, or H, F BKA activates S with
input (Task name, pid), where pid is the Party Identifier of T, O or H, respectively.

For users, however, we want unlinkability in all tasks except for User Registration. During
UReg the functionality explicitly leaks pidU of the calling U to the adversary. For all other
tasks we model unlinkability by having the functionality only revealing the role of a user
after a call, and not the pid; for example, a user calling the OS task yields to a notification
of the form (Outsource,User) for the adversary.

With the exception of User Registration the pid of a user is never revealed to anyone. This
implies that the user can interact anonymously.

Additionally, each party treats the Subsession Identifier (ssid) of the current task in the
same way it treats the Session Identifier, in that they are implicitly sent as input and cannot
be changed.

The stateful functionality. Our functionality is stateful. After interaction with any party
it updates its state. The state contains of different type of data. First of all, F BKA implicitly
stores the pids of all registered users, alongside their latest UH. The latter ensures that
the only way to change the contents of the UH is by using the provided tasks; it is not
possible for any party to change the UH without interacting with the functionality.

For OA we only allow each user to only outsource one computation at a time. To that end,
the functionality stores a boolean value for each registered user indicating whether the
user has an OA computation is in progress or not. Furthermore, the functionality stores
the UI during OA until the user fetches it in the Upd task.

53

6. Ideal Functionality

Functionality F BKA
F BKA enables secure Bookkeeping and Analytics. It is running with an operator O, a
sign party T, and a number of N user U.

Initialize : On input (Initialize) by O and T, respond to other tasks and
output (Ok) to O and T.

SignFP : On input (SignFP, fp, f, xO) from O and (SignFP, xT) from T, abort
if fp when used with f violates privacy standards or if fp have been used with
f before. Otherwise let ℓ be the number of function parameters stored for f ,
remember fp for its use for f and leak (f, ℓ) to the adversary. Finally, output (Ok)
to both O and T.

UserRegistration : On input (UserRegistration) from U andO, abort
if there is already some User History associated to the user pidU. Create a new
User History UH as all-zero vector and associate this with pidU. Output (Ok) to
U and O.

Compute : On input (Compute, f, xO, fp) by O, abort if fp was never verified for f
during SignFP. Otherwise, look up the index ℓ under which fp is stored for
usage by f and leak ℓ to the adversary.
When additionally receiving input (Compute, f, xU) by U, look up the latest
User History UH that belongs to pidU. Compute f (fp,UH , xU, xO) to obtain
outputs (𝛼, 𝑠, 𝑎, yO, yU).
Set UH

(1) ≔ 𝛼 (UH), apply 𝑠 to UH
(1) to get UH

(2) and set UH
new ≔ UH

(2) + 𝑎
and store the new User History UH

new. Output (𝛼, 𝑠, 𝑎, yU) to U and (𝛼, 𝑠, yO)
to O.

Outsource : On input (Outsource, f) by O and H and (Outsource, f, xU)
by U, load the ssid ssid from the current task. If both U and O are corrupted,
store (ssid,⊥,⊥,⊥) for OA with the helper that corresponds to pidH and return
(Ok) to U, O, and H. Otherwise, abort if the user is marked for OA. Mark the
user U for OA. Load the users current UH UH and store (ssid, pidU,UH , xU) for
OA. Return (Ok) to U, O, and H.

Figure 6.1.: The first part of the basic functionality F BKA.

Finally, the functionality stores all certified Function Parameters for a given function f .
The only way to update this list is by using the SFP task with the Trusted Signing Authority
T. This ensures that the operator can only perform computations of functions which were
verified before.

54

6. Ideal Functionality

Functionality F BKA
F BKA enables secure Bookkeeping and Analytics. It is running with an operator O, a
sign party T, and a number of N user U.

Analytics : On input (Analytics, fp, xO) by O, abort if fp was never verified
for f during SignFP. Otherwise, look up the index ℓ under which fp has been
stored for usage by f and leak ℓ to the adversary.
When additionally receiving input (Analytics, f) from H, load the Z f oldest
entries (ssidZ , pidZ ,UHZ , xZ) for OA with the helper that belongs to pidH.
If O is corrupted, output {(Z)} for all Z for which pidZ belongs to a corrupted
user to the adversary, await input (UHZ , xZ) from the adversary for each of them
and use that instead of the stored ones.
If H is corrupted, output {(Z)} for all Z for which pidZ belongs to a corrupted
user to the adversary, await input (xZ) from the adversary for each of them and
use that instead of the stored ones.
Compute ({(𝛼Z , 𝑠Z , 𝑎Z , yZ)}ZZ=1, yO) as f (fp, {(UHZ , xZ)}ZZ=1, xO) and store
(ssidZ , 𝛼Z , 𝑠Z , 𝑎Z , yZ) for Upd
Leak {(Z), 𝛼Z , 𝑠Z , 𝑎Z } for each Z for which pidZ belongs to a corrupted user to the
adversary and output (Ok) to H and ({𝛼Z , 𝑠Z }ZZ=1, yO) to O.

Update : If U and O are corrupted, output (Ok) to all parties. Otherwise, load the
UI (ssid, 𝛼, 𝑠, 𝑎, yU) that was stored during OA and the latest UH UH for the user
with pid pidU.
Set UH

(1) ≔ 𝛼 (UH), apply 𝑠 to UH
(1) to get UH

(2) and set UH
new ≔ UH

(2) + 𝑎
and store the new User History UH

new.
If O is corrupted or if O and U are honest and H is corrupted, leak ssid to the
adversary.
Unmark the user U for OA and remove the stored UI.
Finally, output (Ok) to H, (𝛼, 𝑠) to O, and (𝛼, 𝑠, 𝑎, yU) to U.

Figure 6.2.: The second part of the basic functionality F BKA.

The Init-task. The initializing task has to be called before anything else. The task only
contains the operator and the TSA and essentially starts the whole process. Before calling
init all other calls are ignored. Once it has been called the functionality responds to the
remaining tasks.

Sign Function Parameters. In this task the operator inputs Function Parameters fp which
are to be used for a given function f . We assume that for any function f there is a public

55

6. Ideal Functionality

catalog of requirements that any suitable FPs have to fulfill. All the checks are performed
inside the functionality. If the checks succeed then the functionality remembers that these
FPs can be used for f . The functionality leaks the new amount of FPs it has for the function
f to the adversary; we require this information for our security proof.

User Registration. With the User Registration task a user can register for participation.
In this task a users pid is stored inside the functionality alongside an initial UH. This is
the only way a new user can get a UH; without a valid UH stored the functionality aborts
any other task that involves a user. Thus this models implicitly that the only way to get
a UH is via this task. The task leaves the user with an empty UH which can be used for
further participation.

Bookkeeping. For the BK task the functionality fetches the current UH. This ensures that
the latest UH is used. The operator inputs FPs which define the function to be computed;
the identifier of which is leaked to the adversary as this is required for simulation. The
functionality aborts if the inserted FPs were never registered before.

The computation of function f yields a result (𝛼, 𝑠, 𝑎, yU, yO). Relevant for the update of
the UH are only (𝛼, 𝑠, 𝑎). The remaining outputs, yU and yO, are respective analytical
outputs for the user and the operator. For our security proof we further require that the
outputs of corrupted users are leaked to the adversary. Yet we stress that this is not in
conflict with our confidentiality guarantees as we do not enforce privacy for corrupted
users.

Afterwards, the User History gets updated by the functionality. The user and operator only
learn which operations were applied (though the operator does not learn the incremental
vector), but neither of them gets to actively change any values other than by applying
these updates.

Outsource. The outsource-task requires the user U to provide the data, and the operator
O and a helper H to prepare for the computation. The functionality only continues if
the user has no previous outsourced computation in progress, which is represented by
a boolean flag it stores for each user. If this flag is not set, meaning that the user who
provided the input is not marked, then the functionality remembers its current state of
the UH for later use in OA. To allow linkability with the next Outsourced Analytics and
Update tasks, the functionality also stores the ssid of this task. Note that until the actual
OA task is executed the user can still perform any number of BK tasks which change the
UH, but the snapshot that will be used for the OA task is unaffected by these changes.

Otherwise, if the user has an OA in progress already at the time the OS task is called, the
functionality aborts.

56

6. Ideal Functionality

Outsourced Analytics. In this task the helper (on behalf of Z users) and the operator
want to compute the function f . To that end, the functionality fetches the Z oldest values
it stored during OS with the same helper H from its state to get the input from the users.

Similar to a normal computation the operator provides FPs which can only be used if they
were previously certified by T during the SFP task—as otherwise they cannot be stored
inside the functionality.

The functionality contains leaks in case of corruptions. For one, it is not efficiently possible
for a simulator to extract the whole auxiliary input xU during OS so the functionality asks
for new inputs for all corrupted users. Furthermore, we stress that a corrupted operator
can create arbitrary users which means that for real protocols, it might be the case that
some users who called OS never registered but still have a valid UH—as the UReg task
was executed with a corrupted user and operator and hence the functionality was never
notified. For those, the simulator needs to equivocate the data. Yet we do not consider this
to be in conflict with our security guarantees from Section 5.8 as the data of honest users
is not affected by this.

The functionality performs the computation (thus ensuring correctness) and stores the
outputs relevant for the user. As the user is not present at this task and the computation
can output data that manipulates the users data stored in the UH, this data is stored so
that the user can later fetch it during Upd.

Update. The update task applies the UI from the OA task to the users data. Note that
while the computation during OA used a snapshot of the UH the user had while the OS
task was called, the update is applied to the latest UH. This might differ as further BK
tasks were possible between the time where the user called OS and the time that Upd is
called.

The functionality thus fetches the latest UH and applies the updates from OA onto it.
Furthermore, it unmarks the user so that the OS task is possible again.

57

7. Protocol

In this chapter we introduce our protocol. We start by describing what we mean by benign

functions (which was briefly discussed in Section 5.5) in Section 7.1.

We then describe some helping procedures: In Section 7.2 we introduce a procedure for
Robust Secret Sharing that we use for the Outsource task to let the user share the latest UH
between the operator and helper, such that as long as only one of them is corrupted, the
(benign) analytical function will not compute anything if the data has been manipulated.
In the same section we also show how to verify that the data was shared correctly. This in
itself does not really help, but combined with the ZK proof—where the user proves that
the shares add up to valid values—this takes away the users ability to outsource invalid
data.

Then in Section 7.3 we proceed to describe how the user uses the ORR setup to anonymously
send a message to the operator (and the helper); this is merely a convenience as it makes
reading the protocol descriptions easier.

7.1. Benign Functions

Our protocol requires certain pre- and post-processing steps before the actual MPC-
protocol can be executed. These additional steps have to be fulfilled by any computable
function f which we call benign function.

Functions can be executed during the two tasks BK and OA. In the following we will
describe the necessary pre- and post-processing steps in more detail.

7.1.1. Bookkeeping

Pre-processing. In the pre-processing step the additional code verifies the integrity of
the used Function Parameters before using them with f . This works by letting the
user insert a commitment of the FPs (which the user only does if the operator has
provided a valid signature that verifies under the verification key of the TSA) while
the operator inserts the FPs and the unveil information directly. A similar mechanism
is used for the verification of the user inputs: The user inserts the latest UH unveil
information of the latest commitment, while the commitment itself is inserted by
O. The function then only continues if both commitments verify, meaning that the
check is performed by FMPC.

59

7. Protocol

Post-processing. Instead of providing outputs directly (namely the updated UH and the
individual outputs for both parties) the post-processing step separates the updates
into permutations 𝛼 , direct updates 𝑠 and additive updates 𝑎. Furthermore, f com-
putes a commitment (com𝑎,unv𝑎) on 𝑎 and outputs com𝑎 to the operator and
(𝑎,com𝑎,unv𝑎) to the user, whereas 𝛼 and 𝑠 are output to both parties.

7.1.2. Outsourced Analytics

Pre-processing. In the pre-processing phase the FPs provided by the operator are verified
in the same way as in the BK task. Then the function f proceeds to reconstruct the
robust shares for each user by using the method described in Fig. 7.2 to extract the
actual inputs of each user.

Post-processing. Post-processing starts similar to the BK task by providing updates as
permutation 𝛼 , direct update 𝑠 , and additive update 𝑎. The first two are output to the
operator, but the third one should not be learned by either of the operator or helper.

To hide these (and other sensitive information that should not be seen by the helper)
the user provided as additional input a OTP otp = otp𝛼 ∥otp𝑎∥otp

y
∥otpunv . The

function uses the respective bits of the OTP to mask the user outputs that are
given to the helper. As FMPC leaks no intermediate results this means that the
output seen by the helper only contains cryptographically protected outputs for each
participating user. Note that in addition to the add-vector, the user also learns the
unveil information of the commitment given to the operator; this is an inverse check
to the pre-processing step to ensure that the values given to the user are correct. As
the commitment is only given to the operator and the unveil information is later
obtained (in an encrypted form) by the helper, the user can verify that the increment
was not changed by either of the two parties.

7.2. Robust Secret Sharing

Both our protocol and the benign functions make use of a sharing protocol and its cor-
responding combine protocol. Those are required so that the user can share information
during the OS task with H and O in such a way, that no party—neither H nor O—can
change the shares unnoticed. The protocols are shown in Fig. 7.1.

Essentially, the sharing part comes down to additive secret sharing. The main difference
is that the dealer does not only send the additive share of a value to each party, but also
adds a commitment on the respective other parties share. Additionally, each party obtains
unveil information on its own commitment.

60

7.2. Robust Secret Sharing

Procedure Share(msg)
Subprocedure Share for the protocol Π𝐵𝐾𝐴. It holds that msg ∈ {0, 1}m.
. .
Sample msg

(0) $←{0, 1}m.
Set msg

(1) ≔ msg −msg
(0) .

(com
msg

(0) ,unv
msg

(0)) ← Com.Com(msg
(0)) .

(com
msg

(1) ,unv
msg

(1)) ← Com.Com(msg
(1)) .

rs
(0)
msg
≔ (msg

(0),com
msg

(1) ,unv
msg

(0)).
rs
(1)
msg
≔ (msg

(1),com
msg

(0) ,unv
msg

(1)).
return (rs(0)

msg
, rs
(1)
msg
).

Figure 7.1.: The procedure Share for the protocol Π𝐵𝐾𝐴.

Procedure Combine(rs(0)
msg
, rs
(1)
msg
)

Subprocedure Combine for the protocol Π𝐵𝐾𝐴. It holds that rs
(0)
msg

and rs
(1)
msg

are robust
shares.
. .
Parse rs

(0)
msg

as (msg
(0),com

msg
(1) ,unv

msg
(0)).

Parse rs
(1)
msg

as (msg
(1),com

msg
(0) ,unv

msg
(1)).

Abort if Com.Unv(com
msg

(0) ,unv
msg

(0) ,msg
(0)) = 0.

Abort if Com.Unv(com
msg

(1) ,unv
msg

(1) ,msg
(1)) = 0.

msg ≔ msg
(0) +msg

(1) .
return msg.

Figure 7.2.: The procedure Combine for the protocol Π𝐵𝐾𝐴.

The combine protocol from Fig. 7.2 is only executed in FMPC as part of the computation
for f . It reconstructs the additive secret shares, but only if the commitments are valid. As
those are cross-entered (the commitment on the share for the helper is entered by the
operator and vice versa) this ensures that both parties indeed use the correct shares.

The verify procedure from Fig. 7.3 lets both recipients verify that the data was shared
correctly, without requiring access to the original data. As each robust share has a commit-

ment on the other parties share attached this protocol requires both parties to exchange

their commitments and then locally verify that they were correct. This check is to ensure
that the user provided correct commitments; combined with the ZK proof that shows
that the shares belong to a valid UH (which requires commitments of all shares) this step
provides security against a potentially lying user, whereas the check from Fig. 7.2 inside f
provides security against malicious helper/operator who try to insert wrong data.

61

7. Protocol

Procedure Verify(rs(P)
UH
,com(P)

UH
, rs
(P)
xU ,com

x
(P)
U
, rs
(P)
otp
,comotp)

Subprocedure Verify for the protocol Π𝐵𝐾𝐴. It holds that all the entries rs
(P)
· are

robust shares and P, P ∈ {O,H} such that P ≠ P.
The code is executed by a helper H or the operator O.
. .
if Com.Unv(UH ,comUH ,unvUH) = 0∨
Com.Unv(xU,comxU,unvxU) = 0∨
Com.Unv(otp,comotp,unvotp) = 0 then
return 0

else
return 1

fi

Figure 7.3.: The procedure Verify for the protocol Π𝐵𝐾𝐴.

Procedure Send(msg,R)
Subprocedure Send for the protocol Π𝐵𝐾𝐴. It is running with a set of parties
(U0, . . . ,UNU−1,H0, . . . ,HNH−1,M0, . . . ,MNM−1,O). It holds that msg ∈ {0, 1}m and
R ∈ {O,H0, . . . ,HNH−1}.
It is running in the F ORR-hybrid model.
The code is executed by a user U𝑖 .
. .
Sample P

→ $←{M0, . . . ,MNM−1}Ψ
Sample P

← $←{M0, . . . ,MNM−1}Ψ
Send (Process_Onion,R,msg, P→, P←) to F ORR.

Figure 7.4.: The procedure Send for the protocol Π𝐵𝐾𝐴.

7.3. Anonymous Communication

In Fig. 7.4 we introduce a procedure that is used by the sender to send a message to
a dedicated receiver. We extracted it to its own procedure in order to make the overall
protocol more readable; whenever the user sends a message to either the helper or operator,
the user has to sample both a forward path P

→ and a backward path P
← of mix-servers,

and then send input to F ORR.

Note that F ORR hides the senders identity (among the group of potential senders) so it is
trivially required that the first message is always sent by the user. Alongside the message,
the receiver obtains a dedicated return information 𝜗 . This is require to answer to that
message.

62

7.4. Our Protocol

Protocol Π𝐵𝐾𝐴
Protocol Π𝐵𝐾𝐴 in the (F CRS, F Reg, F SMT, FMPC, F ORR) hybrid model.

Each user U stores:

• User logbook _.
• Key pair (skU, pkU).
• Verification keys (vkO, vkT) of the operator and the sign party.

The operator O stores:

• Signature key pair (vkO, skO).
• List of known serial numbers ser .
• List of known user public keys pkU.
• List of tuples (f, fp,comfp,unvfp, 𝜎 fp).

• List of tuples (H, lin, rs(O)
UH
, rs
(O)
xU , rs

(O)
otp
) for OA.

• List of tuples (lin, 𝛼, 𝑠,com𝑎, ctyU
) for Upd.

The Helper H stores:

• List of tuples (lin, rs(H)
UH
, rs
(H)
xU , rs

(H)
otp
) for OA.

• List of tuples (lin, ct𝛼 , ct𝑠, ct𝑎, ctunv�⃗� , ctyU
) for Upd.

The Sign Party T stores:

• Signature key pair (vkT, skT).
• List of tuples (fp, f).

(Initialize) On input (Initialize), O computes a signature key pair
(vkO, skO) ← Sig.KeyGen(1^), sends (Register, vkO) to F Reg, and outputs
(Ok).
On input (Initialize), T computes a signature key pair (vkT, skT) ←
Sig.KeyGen(1^), sends (Register, vkT) to F Reg and outputs (Ok).

Figure 7.5.: The first part of the protocol Π𝐵𝐾𝐴 that specifies the parties state and the initialization part of
the protocol.

7.4. Our Protocol

In this section we introduce our protocol. Since the protocol itself is quite longwe introduce
each task individually.

63

7. Protocol

Protocol Π𝐵𝐾𝐴
Protocol Π𝐵𝐾𝐴 for handling the task SignFP to sign the function parameters.

On input (SignFP, fp, f, xO), O computes commitments (comfp,unvfp) ←
Com.Com(fp) and sends (fp,comfp,unvfp, f, xO) to T.

On input (SignFP, xT) and after receiving themessage fromO, T aborts if fp does not
comply with the privacy-requirements of f , if the same fp were used previously
for f or if Com.Unv(comfp,unvfp, fp) = 0. Otherwise, T computes a signature
𝜎 fp ← Sig.Sign(kT) (f,comfp), sends 𝜎 fp to O and outputs (Ok).

When receiving (𝜎 fp) from T, O stores a new tuple (f, fp,comfp,unvfp, 𝜎 fp) and out-
puts (Ok).

Figure 7.6.: The second part of the protocol Π𝐵𝐾𝐴 that specifies the behavior for signing function parameter.

Init. Before any other task can be executed the operator and the TSA have to run the
Init task. Even though this is modeled as two-party task we stress that the two parties
never actually interact with each other. They only individually create their signing keys
and register them at F Reg.

Sign Function Parameter. As described in Section 5.2.1 this task is intended for the TSA
to certify the FPs that an operator wants to use, to ensure that these fulfill a given set of
privacy requirement. The protocol for the Sign Function Parameter task lets the operator
input some FPs which are to be used for computation of some function f which is used
either in the BK or the OA task. The TSA verifies the FPs to ensure that they match the
required privacy standards. We assume those privacy standards to be public knowledge.

If a given set of FPs verifies the operator obtains a signature that verifies the commitment
comfp of the FPs and the function f where it can be used under the verification key of
the TSA. That way, the signature legitimates the use of the FPs which were committed to.
The unforgeability of the signature scheme ensures that the operator can only use FPs for
which the unveil information to the commitment are known, and the binding property of
the commitment scheme ensures that the only unveil information the operator is able to
find open the commitment to the original FPs that were verified by the TSA.

User Registration. The protocol for User Registration is shown in Fig. 7.7. One of our
requirements is that each user has at most a single logbook. We use a special PKI infras-
tructure in F Reg to ensure that no user can register twice: F Reg lets the user register a

64

7.4. Our Protocol

Protocol Π𝐵𝐾𝐴
Protocol Π𝐵𝐾𝐴 for handling the task UserRegistration.

On input (UserRegistration), U sends (Fetch, pidO) and (Fetch, pidT) to
F Reg to obtain and store vkO and vkT. Then the user picks a uniformly random
secret key skU

$←Zo, computes the public keys as pkU ≔ 𝑔
skU
1 in G1 and pk∗U ≔

g
skU
2 in G2, and sends (Register, pkU) to F Reg.

Then U computes (comskU,unvskU) ← Com.Com(skU), sets stmt ≔
(pkU,comskU, e, ppG1,G2,G𝑡

) and wit ≔ (skU,unvskU, pk
∗
U) and computes 𝜋 ←

Zk.Proof (stmt,wit,ΛUserReg) as in Fig. 7.8. The user then draws a random
share ser0

$←Zo, computes (comser0,unvser0) ← Com.Com(ser0) and sends
(𝜋,comskU,comser0) to O.

On input (UserRegistration) and after receiving the first message from
U, O sends (Fetch, pidU) to F Reg to obtain pkU and aborts if pkU is
used already. O stores pkU and sets stmt ≔ (pkU,comskU) and aborts if
Zk.Verify(𝜋, stmt,ΛUserReg) = 0. Otherwise, O creates an empty User History
UH and computes the commitments (comUH ,unvUH) ← Com.Com(UH) and
(comlin,unvlin) ← Com.Com(0). Then O picks a random ser1

$←Zo and com-
putes (comser1,unvser1) ← Com.Com(ser1) and the commitment on the final
nonce as comser ≔ Com.CAdd(comser0,comser1). Finally,O computes the signa-
ture 𝜎UH ← Sig.Sign(kO) (comUH ,comser,comlin,comskU), sends (ser1,comser1,

unvser1,comUH ,unvUH ,comlin,unvlin, 𝜎UH) to U and outputs (Ok).

When receiving the message from O, U computes the serial as ser0 + ser1
mod o and adjusts comser ≔ Com.CAdd(comser0,comser1) and
unvser ≔ Com.UAdd(unvser0,unvser1). Then U aborts if the sig-
nature or the commitment is invalid. Otherwise, it stores _ ≔
(UH ,comUH ,unvUH , ser,comser,unvser, skU,comskU,unvskU, 𝜎UH) and
outputs (Ok).

Figure 7.7.: The third part of the protocol Π𝐵𝐾𝐴 that specifies the behavior for user registration.

Language ΛUserReg(pkU,comskU, e, ppG1,G2,G𝑡
)

skU,unvskU, pk
∗
U :

e(pkU, g2) = e(g1, pk
∗
U)∧

g
skU
1 = pkU∧

Com.Unv
(︁
comskU,unvskU, skU = 1

)︁
Figure 7.8.: Language ΛUserReg used for the UserRegistration task.

65

7. Protocol

key exactly once. Our protocol requires the user to publish a fresh public key to the PKI.
To that end we use a naive identification protocol based on a pairing group ppG1,G2,G𝑡

. The
user broadcasts a public key using F Reg but has to prove knowledge of the corresponding
secret key. To that end the user uses the ZK proof from Fig. 7.8.

This proves knowledge of a different key pk∗U which contains the same secret as the original
public key but has the secret applied to g2. In the same proof, the user proves that the
commitment on the secret key is indeed on the same secret key that was used for the
creation of the public key. The operator then only accepts if this proof is valid and if the
public key has not been used before. If this succeeds then the user gets an empty; by empty
we mean that the initial UH is zero on each spot. While there might be applications where
the user does not start with an all-empty logbook, a successive BK task can be used to set
up the correct initial values; yet since all the applications we considered (not only here,
but also in the full version [70]) started out with an empty logbook we decided in favor of
using an empty logbook here.

With this empty UH the two parties create the initial logbook together. The principle is
fairly similar in this task to all the following tasks: To ensure history freshness the user has
to carry a serial number which is invalidated during the next interaction with the operator.
As the serial number would allow tracking of the same user through different tasks we
decided to take inspiration from the Blum coin flipping protocol [28] over Zo where
only the user learns the outcome of the coin toss and the operator only learns that the
outcome is randomly distributed over Zo. This is to ensure that no party picks a malicious
serial number such as one that contains tracking information. The homomorphism of the
commitment scheme enables the operator to create a commitment on the actual serial
number based only on the commitment of the users share and the commitment on the
own share.

The linking number is initially 0 so the operator creates valid zero-commitments and
sends them alongside the unveil information to the user. With all this information at
hand, the operator computes the initial signature of the logbook. This is created by
signing the commitments on the UH and the linking number (both of which are zero-
commitments created by the operator), the commitment on the serial number (which was
homomorphically computed by the operator), and the commitment on the users public
key (which was created and sent by the user). The operator then sends all the information
to the user and the user then verifies the data and stores the initial logbook.

Note that all the communication happening here is identifying on both sides.

Bookkeeping. The protocol for the BK task that directly updates the UH is given in
Figs. 7.9 to 7.11.

Essentially the protocol serves as a wrapper around FMPC: It starts by letting the user
prove to the operator that the latest input is used and the operator proving to the user
that it will input valid FPs that were signed by the TSA. For the former we provide a ZK

66

7.4. Our Protocol

Protocol Π𝐵𝐾𝐴
Protocol Π𝐵𝐾𝐴 for handling the first part of Compute for a function f .

On input (Compute, f, xU), U computes commitments (comUH ,unvUH) ←
Com.Com(UH), (comlin,unvlin) ← Com.Com(lin) and (comskU,unvskU) ←
Com.Com(skU) and loads the corresponding old commitments
(comUH

∗,unvUH
∗), (com

lin
∗,unv

lin
∗) and (comsk∗U,unvsk∗U) along-

side the old serial ser
∗ and its commitments (comser

∗,unvser
∗) from

the logbook _. Now U proves correct rerandomization according to
Fig. 7.12 by setting stmt ≔ (comUH ,comlin,comskU, ser

∗,comser, vkO) and
wit ≔ (UH ,comUH

∗,unvUH
∗,unvUH ,comser

∗,unvser
∗,unvser, lin,comlin

∗,

unv
lin
∗,unvlin, skU,comsk∗U,unvsk∗U,unvskU, 𝜎UH

∗) and computing
𝜋 ← Zk.Proof (stmt,wit,ΛCompute). Finally, U follows Send(O,
(comUH ,comlin,comskU, ser

∗,comser, 𝜋)) from Fig. 7.4.

On input (Compute, f, xO, fp) and after receiving the message and return informa-
tion from F ORR, O looks up a stored tuple (f, fp,comfp,unvfp, 𝜎 fp) and aborts if
there is either no such tuple or more than one for the given (f, fp) pair.
O aborts if ser

∗ has been used before and otherwise stores ser
∗.

Then it sets stmt ≔ (comUH ,comlin,comskU, ser
∗, vkO) and aborts if

Zk.Verify(𝜋, stmt,ΛCompute) fails.
Otherwise, O inputs (Compute, f, (fp,comUH ,unvfp, xO)) into FMPC, and
(Process_Back_Onion, (comfp, 𝜎 fp), 𝜗) to F ORR.

Continued on Fig. 7.10.

Figure 7.9.: The fifth part of the protocol Π𝐵𝐾𝐴 with the first part on how to compute a function f .

language in Fig. 7.12. The user computes new commitments for the User History, the serial
number, the linking number, and the secret key, and proves that the rerandomizations
were performed correctly—namely that they contain the same values as the commitments
that were signed by the operator during the last interaction. For the latter—namely letting
the operator prove that the FPs used for the computation are validly signed—we use an
interactive protocol: The operator sends the commitment and the signature to the user.
This can be done directly as we do not hide from the user which FPs will be used—the
user learns whether the same FPs have been used in previous computations—but only
what those FPs are. Hence we do not require any form of rerandomization or ZK here.
Instead, the operator sends the commitment on the FPs alongside the signature on the
commitment and the function directly to the user. The user then verifies the signature
using the verification key of the TSA and only continues if this signature is valid. If the
commitment is valid the user sends input to FMPC. This input contains the commitment
on the FPs.

67

7. Protocol

Protocol Π𝐵𝐾𝐴
Protocol Π𝐵𝐾𝐴 for handling the second part of Compute for a function f .

Continuation of Fig. 7.9.

When receiving the message from F ORR, U aborts if Sig.VfyvkT (𝜎 fp,comfp) fails.
Otherwise, U picks a random ser0

$←Zo as serial share and computes
(comser0,unvser0) ← Com.Com(ser0).
Finally, U sends (Compute, f, (UH ,comfp,unvUH , xU)) to FMPC and follows
Send(O, (comser0)) from Fig. 7.4.

When receiving (Output, (𝛼, 𝑠, 𝑎,com𝑎,unv𝑎, yU)) from FMPC, U acts as follows:
If 𝛼 and 𝑠 are not empty, U sets UH

(1) ≔ 𝛼 (UH), computes UH
(2) by replac-

ing entries from UH
(1) with values from 𝑠 wherever there are non-empty val-

ues in 𝑠 , and sets UH
new ≔ UH

(2) + 𝑎. Then U computes the correspond-
ing commitments (com

UH
(1) ,unv

UH
(1)) ← Com.Com(UH

(1)) and (com
UH
(2) ,

unv
UH
(2)) ← Com.Com(UH

(2)).
Now U proves correct transfer of 𝛼 and 𝑠 by setting
stmt

∗ ≔ (comUH ,comUH
(1) ,com

UH
(2) , 𝛼, 𝑠) and wit

∗ ≔ (UH ,

unvUH ,UH
(1),unv

UH
(1) ,UH

(2),unv
UH
(2)) and computing 𝜋∗ ≔

Zk.Proof (stmt
∗,wit

∗,ΛTransfer) from Fig. 7.13. Otherwise, if 𝛼 and 𝑠 are
empty, set UH

new ≔ UH + 𝑎, com
UH
(1) = comUH , comUH

(2) = comUH and
𝜋∗ = ⊥.
Finally, U computes com

UH
new ≔ Com.CAdd(com

UH
(2) ,com𝑎)

and unv
UH

new ≔ Com.UAdd(unv
UH
(2) ,unv𝑎) and follows

Send(O, (com
UH
(1) ,com

UH
(2) , 𝜋∗)) from Fig. 7.4.

Continued on Fig. 7.11

Figure 7.10.: The sixth part of the protocol Π𝐵𝐾𝐴 that specifies how to compute a function f .

The operator inputs the corresponding opening information and the clear values. Since f
is a benign function (cf. Section 7.1), computation only happens if the operator’s unveil
information successfully opens the user’s commitment to the FPs inserted by the operator.
As long as the signature scheme is unforgeable and the commitment scheme is binding this
ensures that no malicious operator can input uncertified Function Parameters; this would
either require a forged signature on a new commitment created without knowing the
signing key of the TSA or different opening information for the existing commitment.

After receiving output from FMPC the user updates the UH.We already described the three-
stage update mechanism of the UH in Section 5.2.2. The user obtains the UI consisting of
(𝛼, 𝑠, 𝑎), the operator only 𝛼 and 𝑠 . Unless they are empty, the first two maps, 𝛼 and 𝑠 , are
applied directly to the elements in the User History by the user. We refer to UH

(1) as the

68

7.4. Our Protocol

Protocol Π𝐵𝐾𝐴
Protocol Π𝐵𝐾𝐴 for handling the third part of Compute for a function f .

Continuation of Fig. 7.10.

When receiving (Output, 𝛼, 𝑠,com𝑎, yO) from FMPC and both messages from
F ORR, O acts as follows: If 𝛼 and 𝑠 are non-empty, set stmt

∗ ≔
(comUH ,comUH

(1) ,com
UH
(2) , 𝛼, 𝑠) and abort if Zk.Verify(𝜋∗, stmt

∗,ΛTransfer) ≠
1.
Regardless of 𝛼 or 𝑠 , O sets com

UH
new ≔ Com.CAdd(com

UH
(2) ,com𝑎), picks a

random ser1 and computes (comser1,unvser1) ← Com.Com(ser1). Then O com-
putes the commitment on the serial comser ≔ Com.CAdd(comser0,comser1) and
creates the signature𝜎

UH
new ← Sig.Sign(kO) (comUH

new,comlin,comser,comskU).
Finally,O sends (Process_Back_Onion, (ser1,comser1,unvser1, 𝜎UH

new), 𝜗)
to F ORR and outputs (yO).

When receiving the message from F ORR, U sets ser ≔ ser0 + ser1 mod o and ho-
momorphically updates comser ≔ Com.CAdd(comser0,comser1) and unvser ≔
Com.UAdd(unvser0,unvser1).
Finally, U aborts if 𝜎

UH
new fails to verify and otherwise stores

_ ≔ (UH
new,com

UH
new,unv

UH
new, ser,comser,unvser, skU,comskU,

unvskU, 𝜎UH
new) and outputs (𝛼, 𝑠, 𝑎, yU).

Figure 7.11.: The seventh part of the protocol Π𝐵𝐾𝐴 that specifies how to compute a function f .

Language ΛCompute(comUH ,comlin,comskU, ser,comser, vkO)
UH ,comUH

∗,unvUH
∗,unvUH ,comser

∗,unvser
∗,unvser, lin,comlin

∗,

unv
lin
∗,unvlin, skU,comsk∗U,unvsk∗U,unvskU, 𝜎UH :

Com.Unv(comUH ,unvUH ,UH) = 1∧
Com.Unv(comUH

∗,unvUH
∗,UH) = 1∧

Com.Unv(com
lin
∗,unv

lin
∗, lin) = 1∧

Com.Unv(comlin,unvlin, lin) = 1∧
Com.Unv(comser

∗,unvser
∗, ser) = 1∧

Com.Unv(comser,unvser, ser) = 1∧
Com.Unv(comskU,unvskU, skU) = 1∧
Com.Unv(comsk∗U,unvsk∗U, skU) = 1∧
Sig.Vfy(𝜎UH , (comUH ,comlin,comser,comskU), vkO) = 1

Figure 7.12.: Language ΛCompute used for the Compute task.

69

7. Protocol

Language ΛTransfer(comUH ,comUH
(1) ,com

UH
(2) , 𝛼, 𝑠)

UH ,unvUH ,UH
(1),unv

UH
(1) ,UH

(2),unv
UH
(2) :

Com.Unv(comUH ,unvUH ,UH) = 1∧
Com.Unv(com

UH
(1) ,unv

UH
(1) ,UH

(1)) = 1∧
Com.Unv(com

UH
(2) ,unv

UH
(2) ,UH

(2)) = 1∧
UH
(1) = 𝛼 (UH)∧

∀|UH |
𝑖=1 ((𝑠 [𝑖] = ⊥) =⇒ (UH

(2) [𝑖] = UH
(1) [𝑖]))∧

∀|UH |
𝑖=1 ((𝑠 [𝑖] ≠ ⊥) =⇒ (UH

(2) [𝑖] = 𝑠 [𝑖]))

Figure 7.13.: Language ΛTransfer used for the Bookkeeping and Update task.

UH created by applying the permutation 𝛼 to the old UH and by UH
(2) as the UH created

by updating the values from UH
(1) as stated in 𝑠 . The user then proves to the operator

that the updates were applied correctly. This is what the language from Fig. 7.13 does. The
operator never learns the actual contents of the intermediate UHs but only commitments

thereof; the ZK proof then ensures that the commitments were created correctly.

The user sends both proofs alongside the commitments on the new UH to the operator.
Note that if both the permutation and the update vector are trivial1 then the new UH
corresponds to the old one and the proof of correct transfer is trivial and hence left
empty.

The operator verifies both proofs (if necessary) and then homomorphically computes the
commitment of the final UH using the commitment on the permuted and updated UH
from the user and the commitment on the addition vector 𝑎 obtained from FMPC. The
same technique is used to update the serial number homomorphically. The commitments
are then signed by the operator. All of this information is then sent back to the user, who
then updates the logbook as in the UReg task.

Outsource. The goal of the Outsource task is to distribute the data of the user between
the operator and a helper. The data is shared using the RSS protocol from Fig. 7.1. The
two recipients are the helper and operator; each of them gets an additive share of the data
alongside a commitment of the other parties share and unveil information for the own
commitment.

The user uses the RSS-protocol to create robust shares of the UH, the unauthenticated
input, and a One Time Pad that is long enough to mask the permutation, the direct update,
the additive update, the unveil information thereof and the unauthenticated output from
the computation. Due to the additional requirements for the function f (cf. Section 7.1)

1 We refer to the update vectors as trivial if the permutation is the identity and the direct update does not
change any values.

70

7.4. Our Protocol

Protocol Π𝐵𝐾𝐴
Protocol Π𝐵𝐾𝐴 for handling the first part of Outsource for a function f .

On input (Outsource, f, xU), U draws one-time pads otp
y
, otpunv , otp𝛼 , otp𝑠 and

otp𝑎 of appropriate size, sets otp ≔ otp
y
∥otpunv ∥otp𝛼 ∥otp𝑠 ∥otp𝑎 , and follows

Share(msg) from Fig. 7.1 for msg ∈ {UH , xU, otp} to obtain robust shares rs
(H)
UH

,
rs
(H)
xU , rs

(H)
otp

, rs
(O)
UH

, rs
(O)
xU , and rs

(O)
otp

.
Now U loads the old commitments (comUH

∗,unvUH
∗), (com

lin
∗,unv

lin
∗)

and (comsk∗U,unvsk∗U) alongside the old serial ser
∗ and its com-

mitments (comser
∗,unvser

∗) from the logbook _, draws a ran-
dom ser0

$←Zo, computes a commitment (comser0,unvser0) ←
Com.Com(ser0) and proves correct sharing according to Fig. 7.17
by setting stmt ≔ (rs(O)

UH
,com

UH
(O) , ser

∗,comser,comskU, vkO)
and wit ≔ (comUH

∗,unvUH
∗,unv(H)

UH
,comser

∗,unvser
∗,unvser,

com
lin
∗,unv

lin
∗, skU,comsk∗U,unvsk∗U,unvskU, 𝜎UH

∗) and com-
putes 𝜋 ← Zk.Proof (stmt,wit,ΛOutsource). Finally, U follows
Send(O, (rs(O)

UH
, rs
(O)
xU , rs

(O)
otp
, ser

∗,comser,comser0,comskU, 𝜋)) and
Send(H, (rs(H)

UH
, rs
(H)
xU , rs

(H)
otp
)) and Send(H, (rs(H)

UH
, rs
(H)
xU , rs

(H)
otp
)) from Fig. 7.4.

When receiving the message from F ORR,O aborts if ser was used before and otherwise
remembers ser .
Then O picks lin

(O) $←Zo and computes commitments (com
lin
(O) ,unv

lin
(O)) ←

Com.Com(lin(O)).
Finally, O sends (com

lin
(O) ,com(H)

UH
,com(H)

xU ,com
(H)
otp
) to H, where the commit-

ments (except for lin) were taken from the respective robust shares.

Continued on Fig. 7.15.

Figure 7.14.: The eighth part of the protocol Π𝐵𝐾𝐴 with the first part on how to outsource a function f .

those are applied to the output given to the helper, as the helper itself does not provide
inputs nor gets dedicated outputs but only stores the data until the user fetches it. Since
the helper should not see the outputs they are masked using the OTP.

The double spending detection and history freshness are similar to the BK task; the
language from Fig. 7.17 is similar to the one from Fig. 7.12 with the main difference being
that here the user still proves correct rerandomization of the linking number, but as the
protocol already contains a check that the linking number is 0 (to ensure that the user can
only outsource exactly once) the real linking number is not part of the witness anymore;
this means that the user does not have to rerandomize the commitment on the linking
number, and instead only proves that the old linking number is 0.

71

7. Protocol

Protocol Π𝐵𝐾𝐴
Protocol Π𝐵𝐾𝐴 for handling the second part of Outsource for a function f .

Continuation of Fig. 7.14.

When receiving the messages from F ORR and O, H follows
Verify(rs(H)

UH
,com(H)

UH
, rs
(H)
xU ,com

(H)
xU , rs

(H)
otp
,com(H)

otp
) from Fig. 7.3 and aborts if

the output is 0.
Otherwise, H draws lin

(H) $←Zo and sends (lin(H),com
UH
(O) ,com

x
(O)
U
,com

otp
(O))

to O, where the commitments were taken from the respective robust shares.

When receiving the message from H, O sets stmt ≔ (rs(O)
UH
,

com
UH
(O) , ser

∗,comskU, vkO), follows Verify(rs(O)
UH
,com(H)

UH
,

rs
(H)
xU ,com

(H)
xU , rs

(H)
otp
,com(H)

otp
) from Fig. 7.3 and aborts if the output is 0 or

if Zk.Vfy(𝜋, stmt,ΛOutsource) = 0.
Otherwise, O sets lin ≔ lin

(O) + lin
(H) and stores the tuple

(H, lin, rs(O)
UH
, rs
(O)
xU , rs

(O)
otp
) for Outsourced Analytics.

Now O draws a random ser1
$←Zo, computes (comser1,

unvser1) ← Com.Com(ser1), and homomorphically com-
putes comUH ≔ Com.CAdd(com

UH
H,com

UH
O) and comser ≔

Com.CAdd(comser0,comser1). Then O computes a signature 𝜎UH ←
Sig.SignkO(comUH ,comser,comlin,comskU).
Finally, O sends (Process_Back_Onion, (ser1,comser1,

unvser1,comlin,unvlin, 𝜎UH), 𝜗) to F ORR and (lin(O),unv
lin
(O)) to H and

outputs Ok.

Continued on Fig. 7.16

Figure 7.15.: The nineth part of the protocol Π𝐵𝐾𝐴 that specifies how to outsource a function f .

Additionally, the language lets the user prove that the UH was shared correctly. That is,
the user proves that the two values inside the commitments sent to helper and operator on
the shares add up to the UH that was signed by the operator during the last interaction.

The creation of a new serial number is similar to the method in BK; the user draws a share,
sends a commitment thereof to the operator, who then draws a second share, computes
commitments, and homomorphically computes a commitment on the final serial number.
And the final part of the protocol contains the creation of a new logbook. This is similar
to the method from the BK task, with the main exception that the helper and operator
compute a linking number, to which the operator then computes a commitment which is
sent alongside the unveil information and the clear value to the user.

72

7.4. Our Protocol

Protocol Π𝐵𝐾𝐴
Protocol Π𝐵𝐾𝐴 for handling the third part of Outsource for a function f .

Continuation of Fig. 7.15.

When receiving the message from O, H aborts if
Com.Unv(com

lin
(O) ,unv

lin
(O) , lin

(O)) = 0. Otherwise, H stores
the tuple (lin, rs(H)

UH
, rs
(H)
xU , rs

(H)
otp
) for Outsourced Analytics, sends

(Process_Back_Onion, (lin), 𝜗) to F ORR and outputs Ok.

When receiving both responses from F ORR, U aborts if 𝜎UH fails
to verify and otherwise stores _ ≔ (UH ,comUH ,unvUH , ser,

comser,unvser, skU,comskU,unvskU, 𝜎UH) and outputs Ok.

Figure 7.16.: The tenth part of the protocol Π𝐵𝐾𝐴 that specifies how to outsource a function f .

Language ΛOutsource(rs(O)
UH
,com(O)

UH
, ser,comsercomskU, vkO)

comUH
∗,unvUH

∗,unv(H)
UH
,comser

∗,unvser
∗,unvser,comlin

∗,unv
lin
∗,

skU,comsk∗U,unvsk∗U,unvskU, 𝜎UH
∗ :

Com.Unv(comUH
∗,unvUH

∗,UH) = 1∧
Com.Unv(Com.CAdd(com(H)

UH
,com(O)

UH
),Com.UAdd(unv(H)

UH
,unv(O)

UH
),

UH) = 1∧
Com.Unv(comser

∗,unvser
∗, ser) = 1∧

Com.Unv(comser,unvser, ser) = 1∧
Com.Unv(com

lin
∗,unv

lin
∗, 0) = 1∧

Com.Unv(comsk∗U,unvsk∗U, skU) = 1∧
Com.Unv(comskU,unvskU, skU) = 1∧
Sig.Vfy(𝜎UH

∗, (comUH ,comlin,comser,comskU, vkO)) = 1

Figure 7.17.: Language ΛOutsource used for the Outsource task.

Outsourced Analytics. The protocol for performing analytical tasks lets both parties
fetch the values stored during the OS task earlier and input them into FMPC. We denote
by Z f the number of user whose data is considered in the computation of f . The helper
just takes the oldest Z f stored entries, the operator fetches the oldest Z f entries that were
stored for the given helper H. Before using FMPC to compute f on the given data we again
need to verify that the FPs entered by the operator are valid. The technique is the same as
for the BK task but this time, the verification is done with the helper. If the data verifies

73

7. Protocol

Protocol Π𝐵𝐾𝐴
Protocol Π𝐵𝐾𝐴 for handling the first part of Analytics for a function f .

On input (Analytics, f), H loads the first Z f entries {(lin, rs(H)
UH
, rs
(H)
xU , rs

(H)
otp
)Z }Z f

Z=1
and removes them from the database.

On input (Analytics, f, fp, xO), O loads the first Z f entries {(H, lin,
rs
(O)
UH
, rs
(O)
xU , rs

(O)
otp
)} that correspond to the given helper H and removes

them from the database.
Then O looks up the stored tuple (f, fp,comfp,unvfp, 𝜎 fp)
for the given (f, fp) pair and sends (comfp, 𝜎 fp) to H and
(Compute, f, (fp,unvfp, {rs(O)

UH
, rs
(O)
xU , rs

(O)
otp
}Z f
Z=1)) to FMPC.

When receiving the message by O, H aborts if Sig.Vfy(𝜎 fp, vkT, (f,comfp)) = 0 and
otherwise sends (Compute, f, (comfp, {(rs(H)

UH
, rs
(H)
xU , rs

(H)
otp
)Z }ZZ=1)) into FMPC.

On output ({(ct𝛼Z
, ct𝑠Z

, ct𝑎Z
, ctunv�⃗�Z

, ctyU
)Z }Z f

Z=1) by FMPC, H stores a tuple
((lin, ct𝛼Z

, ct𝑠Z
, ct𝑎Z

, ctunv�⃗�Z
, ctyU
)Z) for Update for each Z ∈ [Z f] and out-

put Ok.

On output ({(𝛼Z , 𝑠Z ,com𝑎Z , ctyU
)Z }Z f

Z=1) by FMPC, O stores a tuple
((lin, 𝛼, 𝑠,com𝑎, ctyU

)Z) for Update for each Z ∈ [Z f] and output yO.

Figure 7.18.: The eleventh part of the protocol Π𝐵𝐾𝐴 with the computation of an analytical function f .

both parties provide input for FMPC. These inputs contain the FPs and their validation (i.e.
a commitment by the helper and unveil information by the operator) and the robust shares
of each of the users whose data is used for this computation. As f is benign it follows that
the data is correctly reconstructed inside FMPC and the results for the users are masked.

After obtaining output both parties store the data they require for the subsequent Upd
tasks, using the linking number to link the data to the respective OS and Upd calls.

Update. The Update protocol from Figs. 7.19 to 7.21 contains two steps which do not
necessarily have to be executed at once. In the first step the user only requests the data
from the helper by sending the linking number. The helper then looks up the data stored
for that linking number during the OA task, sends them back directly to the user and

74

7.4. Our Protocol

Protocol Π𝐵𝐾𝐴
Protocol Π𝐵𝐾𝐴 for handling the first part of Update.

On input (Update),U loads the linking number lin and followsSend(H, (lin)) from
Fig. 7.4.

On input (Update) and after receiving the message and return information
from F ORR, H looks up a stored tuple (lin, ct𝛼 , ct𝑠, ct𝑎, ctunv�⃗� , ctyU

) for
the given linking number lin and aborts if there is no such tuple
stored. Otherwise, H removes the stored entry from the database, sends
(Process_Back_Onion, (ct𝛼 , ct𝑠, ct𝑎, ctunv�⃗� , ctyU

), 𝜗) to F ORR and outputs
Ok.

When receiving the message from F ORR, U computes commitments
(comUH ,unvUH) ← Com.Com(UH) and (comskU,unvskU) ← Com.Com(skU)
and loads the corresponding old commitments (comUH

∗,unvUH
∗),

(com
lin
∗,unv

lin
∗) and (comsk∗U,unvsk∗U) alongside the old serial ser

∗ and
its commitments (comser

∗,unvser
∗) from the logbook _.

Then U draws a random ser0
$←Zo and commitments (comser0,unvser0) ←

Com.Com(ser0) and reconstructs 𝛼 , 𝑠 , 𝑎, unv𝑎 and yU by applying the respective
parts of otp to the received masked values.
Now U proves correct rerandomization by setting stmt ≔
(comUH , ser, lin,comskU, vkO) and wit ≔ (UH ,comUH

∗,unvUH
∗,

unvUH ,comser
∗,unvser

∗,com
lin
∗,unv

lin
∗, pkU,comsk∗U,unvsk∗U,unvskU, 𝜎UH)

and computing 𝜋 ← Zk.Proof (stmt,wit,ΛUpdate) from Fig. 7.22.
If 𝛼 and 𝑠 are not empty, U sets UH

(1) ≔ 𝛼 (UH), computes UH
(2) by replacing

entries from UH
(1) with values from 𝑠 wherever there are non-empty values in 𝑠 ,

and sets UH
new ≔ UH

(2) + 𝑎.

Continued on Fig. 7.20.

Figure 7.19.: The twelveth part of the protocol Π𝐵𝐾𝐴 with the first part on how to apply the update of an
outsourced analytical computation.

deletes them; which concludes the task for the helper. In the second step the user requests
the data from O. In that same message the user also proves validity of the user history
as was done in the BK task; to that end the user uses the ZK language from Fig. 7.22.
The language is quite similar to the one used for the OS task in Fig. 7.17 but instead of
proving that the linking number is 0, the user proves that the linking number stored in
the commitment that was last signed contains the number sent to the operator. And since
there is no secret sharing involved, that part is not contained in Fig. 7.22.

75

7. Protocol

Protocol Π𝐵𝐾𝐴
Protocol Π𝐵𝐾𝐴 for handling the second part of Update.

Continuation of Fig. 7.19.
U computes the corresponding commitments (com

UH
(1) ,unv

UH
(1)) ←

Com.Com(UH
(1)) and (com

UH
(2) ,unv

UH
(2)) ← Com.Com(UH

(2)).
Then U proves correct transfer of 𝛼 and 𝑠 by setting
stmt

∗ ≔ (comUH ,comUH
(1) ,com

UH
(2) , 𝛼, 𝑠) and wit

∗ ≔ (UH ,

unvUH ,UH
(1),unv

UH
(1) ,UH

(2),unv
UH
(2)) and computing 𝜋∗ ≔

Zk.Proof (stmt
∗,wit

∗,ΛTransfer) from Fig. 7.13. Otherwise, if 𝛼 and 𝑠 are
empty, set UH

new ≔ UH + 𝑎, com
UH
(1) = comUH , comUH

(2) = comUH and
𝜋∗ = ⊥.
Finally, U follows Send(O, (comUH ,comUH

(1) ,com
UH
(2) ,comskU,

ser,comser0, lin, 𝜋, 𝜋
∗)) from Fig. 7.4.

When receiving the message and return information from F ORR, O aborts if ser was
used before and otherwise marks ser as used. Then O loads (lin, 𝛼, 𝑠,com𝑎, ctyU

)
and removes it from the database; if no such entry exists for the given linking
number lin then O aborts. Otherwise, O verifies the proof by setting stmt ≔
(comUH , ser, lin,comskU, vkO) and aborts if Zk.Verify(𝜋, stmt,ΛUpdate) = 0.
If 𝛼 and 𝑠 are non-empty, O sets stmt

∗ ≔ (comUH ,comUH
(1) ,com

UH
(2) , 𝛼, 𝑠) and

abort if Zk.Verify(𝜋∗, stmt
∗,ΛTransfer) ≠ 1.

Regardless of 𝛼 or 𝑠 , O sets com
UH

new ≔ Com.CAdd(com
UH
(2) ,

com𝑎), picks a random ser1 and computes (comser1,unvser1) ←
Com.Com(ser1). Then O sets lin = 0, computes the commitment
on the serial comser ≔ Com.CAdd(comser0,comser1) and on the link-
ing number (comlin,unvlin) ← Com.Com(lin) and creates the sig-
nature 𝜎

UH
new ← Sig.Sign(kO) (comUH

new,comlin,comser,comskU). Fi-
nally, O sends (Process_Back_Onion, (ctyU

,com𝑎, ser1,comser1,

unvser1,comlin,unvlin, 𝜎UH
new), 𝜗) to F ORR and outputs (𝛼, 𝑠).

Continued on Fig. 7.21

Figure 7.20.: The thirteenth part of the protocol Π𝐵𝐾𝐴 with the second part on how to apply the update of
an outsourced analytical computation.

Similar to the BK task the user proves that both the permutation and the direct update
were applied correctly to the UH if necessary. The technique—and even the language from
Fig. 7.13—are identical to the one used in the BK task.

The user then sends everything to the operator, who verifies the proofs. Alongside the
necessary information for creating the new logbook the operator sends the encrypted

76

7.4. Our Protocol

Protocol Π𝐵𝐾𝐴
Protocol Π𝐵𝐾𝐴 for handling the third part of Update for a function f .

Continuation of Fig. 7.20.

When receiving the message from F ORR, U sets ser ≔ ser0 + ser1 mod o and homo-
morphically updates com

UH
new ≔ Com.CAdd(com

UH
(2) ,com𝑎), unvUH

new ≔
Com.UAdd(unv

UH
(2) ,unv𝑎), comser ≔ Com.CAdd(comser0,comser1) and

unvser ≔ Com.UAdd(unvser0,unvser1).
Finally, U aborts if 𝜎

UH
new fails to verify, if ctyU

received from O is different
to the one received from H, or if Com.Unv(com𝑎,unv𝑎, 𝑎) ≠ 1, and other-
wise stores _ ≔ (UH

new,com
UH

new,unv
UH

new, ser,comser,unvser, skU,comskU,

unvskU, 𝜎UH
new) and outputs (𝛼, 𝑠, 𝑎, yU).

Figure 7.21.: The fourteenth part of the protocol Π𝐵𝐾𝐴 with the third part on how to apply the update of an
outsourced analytical computation.

Language ΛUpdate(comUH , ser, lin,comskU, vkO)
UH ,comUH

∗,unvUH
∗,unvUH ,comser

∗,unvser
∗,com

lin
∗,unv

lin
∗, pkU,

comsk∗U,unvsk∗U,unvskU, 𝜎UH :
Com.Unv(comUH ,unvUH ,UH) = 1∧
Com.Unv(comUH

∗,unvUH
∗,UH) = 1∧

Com.Unv(comser
∗,unvser

∗, ser) = 1∧
Com.Unv(com

lin
∗,unv

lin
∗, lin) = 1∧

Com.Unv(comsk∗U,unvsk∗U, skU) = 1∧
Com.Unv(comskU,unvskU, skU) = 1∧
Sig.Vfy(𝜎∗

UH
, (comUH ,comlin,comser,comskU), vkO) = 1

Figure 7.22.: Language ΛUpdate used for the Update task.

user output and the commitment of the additive upgrade (which was not contained in the
helper’s message) to the user. The construction of the new logbook then uses the same
techniques that were used before in the BK and OS task.

77

8. Security

In this chapter we analyze the security of our system. That is, we show that the protocol
Π𝐵𝐾𝐴 is at least as secure as our ideal functionality F BKA, without relying on a trusted
party to execute F BKA on all parties inputs. To that end, we provide a simulator that
simulates the protocol messages of honest parties without knowing the parties secret
input, and prove that those simulated messages cannot be differentiated by any efficient
environmentZ.

For technical reasons, we have to restrict our adversary to corrupting only either the helper
H, or the operator O. We split our simulator up in two parts. Section 8.1 contains the
simulator for all corruption scenarios related to the security of an honest user U, even in
the presence of other malicious users. Section 8.2 contains the simulator for all corruption
scenarios regarding the security of an honest operator O. Combined, those two simulators
cover all corruption scenarios, in which either H or O are honest.

8.1. User Security

In this section, we investigate the security of our system in scenarios that relate to the
security of an honest user U. To that end, we prove the following theorem:

Theorem 8.1.1 (User Security). If instantiated with the building blocks introduced in

Section 5.3, it holds that

Π
F CRS,F Reg,F SMT,FMPC,FORR

𝐵𝐾𝐴
≥ F BKA

against all PPT-adversaries B that have statically corrupted the operator O and a subset of

users U.

We use the UC-framework [41] and provide a simulator S for this case. The simulator
provides a view for any PPT-environment Z (that is restricted to not corrupting any
helpers) that is consistent with a real protocol execution.

The simulator is given in Figs. 8.1 to 8.10.

We now introduce a series of hybrid games Game𝑖 (^) and corresponding simulators S𝑖
for protocols Π(𝑖)

𝐵𝐾𝐴
. Formally, given security parameter ^, each hybrid has the following

form:
Game𝑖 (^) ≔ view

Π (𝑖)
𝐵𝐾𝐴

,S𝑖 ,Z (1
^)

79

8. Security

Simulator S𝐵𝐾𝐴
State of a simulator S𝐵𝐾𝐴 and setup against a corrupted operator.

The simulator stores:
• td𝑠𝑖𝑚: Trapdoor for the zero knowledge scheme.
• vkO: Verification key of the operator
• (vkT, kT): Signature key pair of the TSA.
• List of tuples {f, fp,comfp, 𝜎 fp, ℓ} of function parameters that can be used for a
given function f .

• List of tuples {pidH, f, lin, rs
(H)
UH
, rs
(H)
xU , rs

(H)
otp
}.

• List of tuples {H, lin, 𝛼, 𝑠, 𝑎,com𝑎,unv𝑎, otp, ctyU
}.

• List of tuples {ssid, lin}.

On input Setup, S𝐵𝐾𝐴 sets up the Common Reference String using (crs, td𝑠𝑖𝑚) ←
Zk.SetupSim(1^) and stores the simulation trapdoor td𝑠𝑖𝑚 . Now S𝐵𝐾𝐴 starts
simulating all the hybrid functionalities.

Figure 8.1.: The first part of the simulator with an honest user: Defines state and set up.

Simulator S𝐵𝐾𝐴
Simulator S𝐵𝐾𝐴 for the initialization against a corrupted operator.

On input (Initialize, pidT) from F BKA, S𝐵𝐾𝐴 generates and stores a signature
key pair (kT, vkT) ← Sig.KeyGen(1^) and follows the protocol of T. The verifi-
cation key vkT is used for the simulation of F Reg.

On input (Register, vkO, pidO) from F Reg, S𝐵𝐾𝐴 aborts if a key for pidO exists and
otherwise calls F BKA in the name of O with input (Initialize).

On output (Ok) from F BKA to O, S𝐵𝐾𝐴 reports output (Ok) from F Reg to O.

Figure 8.2.:The second part of the simulator with an honest user and corrupt operator: Defines initialization.

We then show for each pair of consecutive hybrids Game𝑖 (^) and Game𝑖+1(^), that, given
our underlying assumptions, no distinguisher can distinguish the two games better than
by guessing.

For our proof, we consider the following hybrid games Game𝑖 (^):

80

8.1. User Security

Simulator S𝐵𝐾𝐴
Simulator S𝐵𝐾𝐴 for the SignFP task against a corrupted operator.

On input (SignFP, pidT) from F BKA and after receiving (fp,comfp,unvfp, f, xO)
from O to T, S𝐵𝐾𝐴 aborts if Com.Unv(comfp,unvfp, fp) ≠ 1. Otherwise, S𝐵𝐾𝐴
calls F BKA in the name of O with input (SignFP, fp, f, xO).

On output (Ok) from F BKA to O, S𝐵𝐾𝐴 follows the protocol of T.

Figure 8.3.: The third part of the simulator with an honest user and corrupt operator: Defines behavior for
signing function parameter.

Simulator S𝐵𝐾𝐴
Simulator S𝐵𝐾𝐴 for the UserRegistration task against a corrupted operator.

On input (UserRegistration, pidU) from F BKA, S𝐵𝐾𝐴 follows the honest pro-
tocol of the user to create and send the first message (𝜋,comskU,comser0) to
O.

When receiving (ser1,comser1,unvser1,comUH ,unvUH ,comlin,unvlin, 𝜎UH) from O
to U, S𝐵𝐾𝐴 inputs (UserRegistration) in the name of the operatorO into
F BKA.

When receiving (Ok) from F BKA toO, S𝐵𝐾𝐴 follows the remaining honest protocol of
the user and, upon successful termination of the simulated user, stores {pidU, _}.

Figure 8.4.: The fourth part of the simulator with an honest user and corrupt operator: Defines behavior for
user registration.

GAME1(^): The first game is equivalent to the real experiment. That is,

Game1(^) ≔ viewΠ𝐵𝐾𝐴,F Reg,FMPC,S1,Z (1^)

This means that all parties execute the real protocol.

GAME2(^): All hybrid functionalities, namely (F CRS, F Reg, F SMT, FMPC, F ORR), are now
executed by S2.

Lemma 8.1.2. For all PPT environmentsZ the advantage for distinguishing Game1(^)
from Game2(^) fulfills:

|Pr[Z(Game1(^)) = 1] − Pr[Z(Game2(^)) = 1] | ∈ negl(^)

Proof. We are using the UC composition theorems, here. Letting S2 emulate all of
(F CRS, F Reg, F SMT, FMPC, F ORR) is possible as all of them are UC-functionalities.

81

8. Security

Simulator S𝐵𝐾𝐴
The Compute task for a function f against a corrupted operator.

On input (Compute, f,User) from F BKA, S𝐵𝐾𝐴 creates the commitments
(comUH ,comskU,comser,comlin) as zero-commitments Com.Com(0⃗) for
a zero-vector of appropriate size and samples a uniformly random serial
ser
∗ $←Zo.

Then S𝐵𝐾𝐴 forges a proof of correct rerandomization by setting stmt ≔
(comUH ,comlin,comskU, ser

∗,comser, vkO) and creating the proof as 𝜋 ←
Zk.SimZK(stmt, td𝑠𝑖𝑚,ΛCompute). Then S𝐵𝐾𝐴 simulates Send(O, (comUH ,

comlin,comskU,comser, ser
∗, 𝜋)) to Fig. 7.4 and remembers 𝜗 .

On input (Process_Back_Onion, (comfp, 𝜎 fp), 𝜗) from O to F ORR, S𝐵𝐾𝐴 aborts
if there is no stored tuple (f, fp,comfp, 𝜎 fp, ℓ). Otherwise, S𝐵𝐾𝐴 follows the
protocol to execute Send(O,comser0) from Fig. 7.4 and remembers 𝜗 and ℓ .

On input (Compute, f, (fp,comUH ,unvfp, xO)) from O to FMPC, S𝐵𝐾𝐴 aborts if
Com.Unv(comUH ,unvUH ,UH) ≠ 1 or Com.Unv(comfp,unvfp, fp) ≠ 1. Oth-
erwise, S𝐵𝐾𝐴 sends input (Compute, f, xO, fp) to F BKA in the name of O.

When receiving the leak (ℓ∗) from F BKA, S𝐵𝐾𝐴 aborts if ℓ∗ ≠ ℓ .

On output (𝛼, 𝑠, yO) from F BKA to O, S𝐵𝐾𝐴 sets (com𝑎,unv𝑎) ← Com.Com(0⃗) and
reports (Output, (𝛼, 𝑠,com𝑎, yO)) as output from FMPC to O.
ThenS𝐵𝐾𝐴 computescom

UH
(1) andcom

UH
(2) asCom.Com(0) each, sets stmt

∗ ≔(︁
comUH ,comUH

(1) ,com
UH
(2) , 𝛼, 𝑠

)︁
and forges a proof 𝜋∗ ← Zk.SimZK(stmt

∗,
td𝑠𝑖𝑚,ΛTransfer). Then S𝐵𝐾𝐴 follows Send(O, (com

UH
(1) ,com

UH
(2) , 𝜋∗)) from

Fig. 7.4 and remembers 𝜗 .

On input (Process_Back_Onion, (ser1,comser1,unvser1, 𝜎UH
new), 𝜗) from O to

F ORR, S𝐵𝐾𝐴 follows the protocol to construct ser and to verify the signature.

Figure 8.5.: The fifth part of the simulator with an honest user and corrupt operator: Defines behavior for
computation of a function f .

Essentially all that happens here is a re-encapsulation on who executes what; as
this regrouping is only cosmetically and all the hybrids can be executed in PPT this
change cannot be detected.

GAME3(^): The simulatorS3 nowmaintains a state in which it stores exactly the same data
that an honest operator stores for the UI of the UH during an OA task. During simu-
lation of FMPC for OA, i.e. after O inserted (Compute, f, (fp,unvfp, {(rs(O)

UH
, rs
(O)
xU ,

rs
(O)
otp
)Z }Z f

Z=1)) and H inserted (Compute, f, (comfp, {(rs(H)
UH
, rs
(H)
xU , rs

(H)
otp
)Z }ZZ=1)) into

82

8.1. User Security

Simulator S𝐵𝐾𝐴
The Outsource task for outsourcing a function f against a corrupted operator and
an honest user and helper.

On input (Outsource, f,User) and (Outsource, f, pidH) from F BKA, S𝐵𝐾𝐴 sam-
ples ser

$←Zo, and creates robust shares (rs(H)
UH
, rs
(O)
UH
), (rs(H)

xU , rs
(O)
xU), (rs

(H)
otp
, rs
(O)
otp
)

by following Share(0⃗) from Fig. 7.1 and comskU , comser0 and comser as zero-
commitments Com.Com(0⃗) for respective zero-vectors of appropriate size. Then
S𝐵𝐾𝐴 simulates the proof of correct sharing by setting stmt ≔ (rs(O)

UH
,com

UH
(O) ,

ser
∗,comskU, vkO) and setting 𝜋 ← Zk.SimZK(stmt, td𝑠𝑖𝑚,ΛOutsource). Now

S𝐵𝐾𝐴 follows Send(O, (rs(O)
UH
, rs
(O)
xU , rs

(O)
otp
, ser

∗,comser,comser0,comskU, 𝜋))
from Fig. 7.4 and remembers 𝜗 .

On input (com
lin
(O) ,com(H)

UH
,com(H)

xU ,com
(H)
otp
) from O to H, S𝐵𝐾𝐴 aborts if any of

the commitments differ from the ones created earlier. Otherwise, S𝐵𝐾𝐴 sets
lin
(H) $←Zo and reports a message (lin(H),com

UH
(O) ,com

x
(O)
U
,com

otp
(O)) from H

to O.

When receiving (lin(O),unv
lin
(O)) from O to H, S𝐵𝐾𝐴 aborts if Com.Unv(com

lin
(O) ,

unv
lin
(O) , lin

(O)) ≠ 1 and otherwise reconstructs lin, stores (pidH, f, lin, rs
(H)
UH
,

rs
(H)
xU , rs

(H)
otp
) for OA, loads the ssid and stores (ssid, lin).

On input (Process_Back_Onion, (ser1,comser1,unvser1,comlin,unvlin, 𝜎UH), 𝜗)
from O to F ORR, S𝐵𝐾𝐴 follows the protocol to reconstruct ser and to verify the
signature. If S𝐵𝐾𝐴 did not abort it sends input (Outsource, f) to F BKA in the
name of O and awaits output (Ok).

Figure 8.6.: The sixth part of the simulator with an honest user, honest helper and corrupt operator: Defines
behavior for outsourcing of a function f .

FMPC, S3 computes f honestly (with fresh random coins, if necessary), based on
the two inputs. S3 uses Combine from Fig. 7.2 on the inputs to reconstruct
(UH , xU, otp)Z for each user Z ∈ [Z]. If reconstruction on any of the shares fails, S3
aborts. Otherwise,S3 computes for each Z ∈ [Z f] the commitment (com𝑎,unv𝑎) ←
Com(𝑎) and the masked output ctyU

≔ yU + otp
y
. S3 then stores a new entry

{H, lin, 𝛼, 𝑠, 𝑎,com𝑎,unv𝑎, otp, ctyU
} for the UI.

Lemma 8.1.3. For all PPT environmentsZ the advantage for distinguishing Game2(^)
from Game3(^) fulfills:

|Pr[Z(Game2(^)) = 1] − Pr[Z(Game3(^)) = 1] | ∈ negl(^)

83

8. Security

Simulator S𝐵𝐾𝐴
The Outsource task for outsourcing a function f against a corrupted operator and
corrupted user.

On input (Outsource, f, pidH) from F BKA, (Process_Onion,H, (rs
(H)
UH
, rs
(H)
xU ,

rs
(H)
otp
), P→, P←) from U to F ORR, and after receiving (com

lin
(O) ,com(H)

UH
,

com(H)
xU ,com

(H)
otp
) from O to H, S𝐵𝐾𝐴 follows the protocol and aborts if

Verify(rs(H)
UH
,com(H)

UH
, rs
(H)
xU ,com

(H)
xU , rs

(H)
otp
,com(H)

otp
) from Fig. 7.3 fails. Then

S𝐵𝐾𝐴 draws a random lin
(H) and reports a message (lin(H),com

UH
(O) ,com

x
(O)
U
,

com
otp
(O)) from H to O.

On input (lin(O),unv
lin
(O)) from O to H, S𝐵𝐾𝐴 follows the protocol, aborts if the

commitment on lin
(O) is invalid and otherwise reconstructs lin and stores

(pidH, f, lin, rs
(H)
UH
, rs
(H)
xU , rs

(H)
otp
) for OA.

Then S𝐵𝐾𝐴 loads the ssid ssid and stores (ssid, lin). Now S𝐵𝐾𝐴 simulates sending
(lin) through P

← in F ORR.
Finally, S𝐵𝐾𝐴 sends (Outsource, f,⊥) in the name of U to F BKA and
(Outsource, f) in the name of O to F BKA and awaits response (Ok) for both.

Figure 8.7.: The seventh part of the simulator with an honest user, corrupted helper and corrupt operator:
Defines behavior for outsourcing of a function f .

Proof. The behavior of the two simulators is exactly identical, only that S3 has more
information; namely the update information. Since none of the messages depend on
this information, indistinguishability trivially follows.

However, there is a now abort-criteria for the simulator. We also have show that the
abort by S3 in Game3(^) only occurs iff H aborts in Game2(^). Assume that H and
O in Game2(^) have respective shares rs

(H)
· and rs

(O)
· . Without loss of generality,

assume that the share that caused the abort of FMPC in Game2(^) be that of the
UH UH , as the cases for xU and otp are analogous. In Game2(^) the two shares are
handed over to the subfunctionality FMPC, where they are merged with Combine.
The procedure aborts if the verification of the shares fails.

The simulator S3 in Game3(^) does exactly the same steps; it aborts iff verification in
Combine fails. Hence, the abort criteria are identical as the same code is executed
only by two different machines. So no environmentZ can distinguish the two games
better than by guessing.

GAME4(^): This game is as Game3(^) with the one change that during setup, instead of
honestly sampling a CRS, S4 computes (crs, td𝑠𝑖𝑚) ← SetupSim, publishes crs ≔ crs

84

8.1. User Security

Simulator S𝐵𝐾𝐴
Analytics computing an analytical function f against a corrupted operator and
honest helper.

On input (Analytics, f, pidH) from F BKA and after receiving (comfp, 𝜎 fp) from
O to H, S𝐵𝐾𝐴 aborts if no entry {f, fp∗,comfp, 𝜎 fp, ℓ

∗} was stored for the given
(f,comfp, 𝜎 fp) and otherwise remember ℓ∗ and fp

∗ for later.

On input (Compute, f, (fp,unvfp, {rs(O)
UH
, rs
(O)
xU , rs

(O)
otp
}Z f
Z=1)) from O to FMPC, S𝐵𝐾𝐴

aborts if fp ≠ fp
∗. Otherwise, S𝐵𝐾𝐴 follows the protocol of the helper and

loads the first Z f entries {(lin, rs(H)
UH
, rs
(H)
xU , rs

(H)
otp
)Z }Z f

Z=1 and uses Combine from
Fig. 7.2 to reconstruct all (UH , xU, otp)Z tuples from the robust shares.
Otherwise, S𝐵𝐾𝐴 inputs (Analytics, fp, xO) in the name of O into F BKA.

When receiving the leak (ℓ) from F BKA, S𝐵𝐾𝐴 aborts if ℓ∗ ≠ ℓ .

When receiving a list {(Z)} of indices where the data belongs to corrupted users, S𝐵𝐾𝐴
inserts the previously reconstructed inputs {(UH , xU)Z } for all corrupted users
Z ∈ {(Z)} into F BKA.

When receiving the leak {(Z), 𝛼Z , 𝑠Z , 𝑎Z } for the data of all corrupted users from F BKA,
S𝐵𝐾𝐴 does the following: For each Z ∗ ∈ [Z f], if Z ∗ belongs to a corrupted user
(i.e. if it was contained in the previous leak of {(Z)}), S𝐵𝐾𝐴 sets 𝑎 and yU as the
value contained in the leak. Otherwise, if Z ∗ belongs to an honest user, S𝐵𝐾𝐴
sets 𝑎 ≔ 0⃗ and draws a random yU.
Now S𝐵𝐾𝐴 computes (com𝑎,unv𝑎) ← Com.Com(𝑎), extracts otpunv from otp

and sets ctyU
≔ yU + otpunv .

On output ({𝛼Z , 𝑠Z }ZZ=1, yO) from F BKA to O, S𝐵𝐾𝐴 adds entries {(H, lin, 𝛼, 𝑠, 𝑎,com𝑎,
unv𝑎, otp, ctyU

)Z } for each Z ∈ [Z f] and reports ({(𝛼Z , 𝑠Z ,com𝑎Z , ctyU
)Z }Z f

Z=1) as
output from FMPC to O.

Figure 8.8.: The eighth part of the simulator with an honest helper and corrupt operator: Defines behavior
for computing an outsourced function f .

as CRS and stores td𝑠𝑖𝑚 . Also, the simulator stores the verification key vkO of the
operator. This is obtained by simulating F Reg during the initialization.

Lemma 8.1.4. For all PPT environmentsZ the advantage for distinguishing Game3(^)
from Game4(^) fulfills:

|Pr[Z(Game3(^)) = 1] − Pr[Z(Game4(^)) = 1] | ∈ negl(^)

85

8. Security

Simulator S𝐵𝐾𝐴
Update for updating the user data after an outsourced computation against a cor-
rupted operator and honest user and helper.

On input (Update,User) and (Update, pidH) from F BKA,S𝐵𝐾𝐴 inserts (Update)
into F BKA in the name of O.

When receiving the leak (ssid) from F BKA, S𝐵𝐾𝐴 looks up and removes (ssid, lin)
and abort if no such tuple is stored. Then S𝐵𝐾𝐴 looks up and removes
{H, lin, 𝛼, 𝑠, 𝑎∗,com𝑎∗,unv𝑎∗, otp, ct

∗
yU
} for the given H and lin and aborts if no

such tuple is stored.
Otherwise S𝐵𝐾𝐴 computes fresh zero-commitments Com.Com(0⃗) for comUH ,
comser0 and comskU , draws a random ser

∗ $←Zo, and proves correct reran-
domization by setting stmt ≔ (comUH , ser, lin,comskU, vkO) and computing
𝜋 ← Zk.SimZK(stmt, td𝑠𝑖𝑚,ΛUpdate).
If 𝛼 and 𝑠 contain non-trivial values, S𝐵𝐾𝐴 computes com

UH
(1) and com

UH
(2) as

Com.Com(0⃗) each, sets stmt
∗ ≔

(︁
comUH ,comUH

(1) ,com
UH
(2) , 𝛼, 𝑠

)︁
and forges a

proof 𝜋∗ ← Zk.SimZK(stmt
∗, td𝑠𝑖𝑚,ΛTransfer). Otherwise, S𝐵𝐾𝐴 sets com

UH
(1) =

com
UH
(2) ≔ comUH and 𝜋∗ ≔ ⊥.

ThenS𝐵𝐾𝐴 followsSend(O, (comUH ,comUH
(1) ,com

UH
(2) ,comskU, ser,comser0,

lin, 𝜋, 𝜋∗)) from Fig. 7.4 and remembers 𝜗 .

On input (Process_Back_Onion, (ctyU
,com𝑎, ser1,comser1,unvser1,comlin,

unvlin, 𝜎UH
new), 𝜗) from O to F ORR, S𝐵𝐾𝐴 aborts if com𝑎 ≠ com𝑎∗ or

ctyU
≠ ct

∗
yU
. Otherwise, S𝐵𝐾𝐴 follows the protocol of the user to verify the

logbook and signature and aborts if it is invalid.

Figure 8.9.: The ninth part of the simulator with an honest user and helper and corrupt operator: Defines
behavior for updating the user data after outsourcing an analytical computation.

Proof. Indistinguishability trivially follows from the trapdoor-nature of Com and Zk.
If any environmentZ could distinguish the execution of the protocol when using crs

created by crs← Setup from crs created by (crs, td𝑠𝑖𝑚) ← SetupSim with probability
1
2 + 𝛼 , we can build a PPT-environment Z′ that breaks the indistinguishability of
the dual-mode property of Zk by having Z′ execute the code of all parties in its
head. This leads to the same success probability of 1

2 + 𝛼 , thus causing 𝛼 ∈ negl(^)
by requirement of the chosen Zk-scheme.

GAME5(^): Replaces all zero-knowledge proofs of honest parties by simulated proofs
(using td𝑠𝑖𝑚) created by the simulator. Note that the simulated proofs can be created
independently from (thus without knowing) the actual witness.

86

8.1. User Security

Simulator S𝐵𝐾𝐴
Update for updating the user data after an outsourced computation against a cor-
rupted operator, corrupted user and honest helper.

On input (Update, pidH) from F BKA and after receiving
(Process_Onion,H, (lin), P→, P←) from U to F ORR, S𝐵𝐾𝐴 looks up
and removes {H, lin, 𝛼, 𝑠, 𝑎∗,com𝑎∗,unv𝑎∗, otp, ct

∗
yU
} for the given H and

lin and aborts if no such tuple is stored. Otherwise, S𝐵𝐾𝐴 extracts
(otp𝛼 , otp𝑠, otp𝑎, otpunv, otp

y
) from otp, sets ct𝛼 ≔ 𝛼 + otp𝛼 , ct𝑠 ≔ 𝑠 + otp𝑠 ,

ct𝑎 ≔ 𝑎 + otp𝑎 , ctunv�⃗� ≔ unv𝑎 + otpunv , and ctyU
≔ yU + otp

y
.

Then S𝐵𝐾𝐴 simulates sending (ct𝛼 , ct𝑠, ct𝑎, ctunv𝑎, ctyU) through P
← in F ORR

and inserts (Update) into F BKA in the name of O and a randomly chosen
corrupted U and awaits output (Ok) for both.

Figure 8.10.: The tenth part of the simulator with an honest helper and corrupt operator and user: Defines
behavior for updating the user data after outsourcing an analytical computation.

Lemma 8.1.5. For all PPT environmentsZ the advantage for distinguishing Game4(^)
from Game5(^) fulfills:

|Pr[Z(Game4(^)) = 1] − Pr[Z(Game5(^)) = 1] | ∈ negl(^)

Proof. Any PPT-environment Z that could distinguish those two games would
trivially be able to successfully break the dual-mode property of Zk, which is not
possible by assumption.

GAME6(^): This game changes Game5(^) in the simulation of the BK task: Instead of
computing the addition vector 𝑎 alongside its commitment and decommitment
information honestly according to the (benign) function f the simulator uses 𝑎 = 0⃗
for a sufficiently big zero-vector. As commitment- and unveil-information S6 uses
(com𝑎,unv𝑎) ← Com.Com(0⃗). Note that the values for 𝑎 and unv𝑎 are not needed
for simulation sinceGame5(^) so the only remaining value visible to the environment
is com𝑎 .

Lemma 8.1.6. For all PPT environmentsZ the advantage for distinguishing Game5(^)
from Game6(^) fulfills:

|Pr[Z(Game5(^)) = 1] − Pr[Z(Game6(^)) = 1] | ∈ negl(^)

Proof. As already stated in the game description the only used value that is visible
to the PPT environment is the commitment com𝑎 . The values 𝑎 and unv𝑎 are only
used as part of the witness in the Zero Knowledge proof in the original protocol and
are not used since Game5(^). Hence, the environment can only see the commitment
com𝑎 .

87

8. Security

For the PPT-environmentZ distinguishing Game5(^) from Game6(^) comes down
to breaking the hiding-property of the commitment schemeComwhich is not possible
(for the PPT-environment) by requirement.

GAME7(^): All commitments that honest players create in the real protocol (i.e. those on
lin, ser , UH and skU) are now created by the simulator as com0⃗, i.e. commitments to
the zero-vector of appropriate size. Also, whenever any user U is supposed to send a
serial number, S7 samples a new value ser

$←Zo and sends this instead of a real serial
number.

Lemma 8.1.7. For all PPT environmentsZ the advantage for distinguishing Game6(^)
from Game7(^) fulfills:

|Pr[Z(Game6(^)) = 1] − Pr[Z(Game7(^)) = 1] | ∈ negl(^)

Proof. First, note that since Game5(^) the Zero Knowledge proofs 𝜋 are simulated
using the simulation trapdoor td𝑠𝑖𝑚 instead of proving actual properties of the commit-
ments. Hence, there the change frommeaningful commitments to zero-commitments
cannot be noticed. Other than that, the commitments are only ever used for homomor-
phic addition; the environmentZ only sees committed values. Any PPT-environment
Z that could distinguish the two games Game6(^) and Game7(^) would be able to
successfully break the hiding property of the commitment scheme Com, which by
assumption is only possible with negligible advantage.

GAME8(^): All helpers H are replaced by a equivalent machines H′. These behave
similar, except for the OS task: There, H′ sends to the simulator S8 the shares
(lin, rs(H)

UH
, rs
(H)
xU , rs

(H)
otp
).

Lemma 8.1.8. For all PPT environmentsZ the advantage for distinguishing Game7(^)
from Game8(^) fulfills:

|Pr[Z(Game7(^)) = 1] − Pr[Z(Game8(^)) = 1] | ∈ negl(^)

Proof. The helper sends the same messages in both games. None of the messages that
S8 sends depend in any way on the leak provided by H′. The leak is hidden from the
environment. Hence, the distributions for both games are trivially equivalent.

GAME9(^): This game extends the state of the simulator S9 by letting it also store the data
stored by the helper for OA. Namely, the additional data stored is {pidH, f, lin, rs

(H)
UH
,

rs
(H)
xU , rs

(H)
otp
}.

The map is only updated during OS-tasks. After S9 received the leak (lin, rs(H)
UH
, rs
(H)
xU ,

rs
(H)
otp
) from H′, S9 adds that data directly to the list of tuples.

Lemma 8.1.9. For all PPT environmentsZ the advantage for distinguishing Game8(^)
from Game9(^) fulfills:

|Pr[Z(Game8(^)) = 1] − Pr[Z(Game9(^)) = 1] | ∈ negl(^)

88

8.1. User Security

Proof. In both games, the same messages are sent. The simulator also behaves
equivalently, as none of the messages thatS9 sends depend on the stored information.
Hence, no (PPT) environmentZ can differentiate these two games.

GAME10(^): Extends the state of the simulator S10 even further by adding a list of tuples
(ssid, lin) that link the ssid of the OS task with the linking number computed dur-
ing that task. The map is only updated during OS-tasks. After receiving the leak
(lin, rs(H)

UH
, rs
(H)
xU , rs

(H)
otp
) from H′, the simulator S10 loads the current ssid ssid and adds

an entry (ssid, lin).

Lemma8.1.10. For all PPT environmentsZ the advantage for distinguishingGame9(^)
from Game10(^) fulfills:

|Pr[Z(Game9(^)) = 1] − Pr[Z(Game10(^)) = 1] | ∈ negl(^)

Proof. Again, the only difference is that the simulator obtains and stores additional
information. As no messages depend on the additional information, the environment
Z is unable to differentiate the two games.

GAME11(^): All calls from honest parties of the form Share(msg) for an arbitrary
msg ∈ Zn

o
during the protocol execution are replaced by calls Share(0⃗) from the

simulator, where 0⃗ = 0n is the all-zero vector of appropriate size. Furthermore,
the simulator takes the role of the helper H during the computation of the linking
number during OS. Thus the helper no longer leaks (lin, rs(H)

UH
, rs
(H)
xU , rs

(H)
otp
) to S11.

During simulation of OS-tasks, linking numbers are now created by the simulator
and the operator. The simulator S11 still stores {pidH, f, lin, rs

(H)
UH
, rs
(H)
xU , rs

(H)
otp
}, but

acquires the data differently. The linking number lin is known to S11 due to its
participation in the coin toss. The robust shares are known regardless of the user’s
corruption. If the user is honest, the shares are created by S11 in the first place and
can be stored directly. If the user is corrupted, the environment sends the shares to
the helper in the name of the user; as this happens via input to F ORR this message is
visible to S11 due to the change induced in Game2(^).

Lemma8.1.11. For all PPT environmentsZ the advantage for distinguishingGame10(^)
from Game11(^) fulfills:

|Pr[Z(Game10(^)) = 1] − Pr[Z(Game11(^)) = 1] | ∈ negl(^)

Proof. Through Share, the user creates OTP encrypted inputs for H and O; the
environment Z only ever sees the share of the corrupted operator, not that of
the helper. ThusZ only has a partial view, which information-theoretically hides
the value that is to be shared due to properties of the OTP. The share itself is not
used directly in any further arithmetic computations—only as input to the setup
functionality FMPC during the OA-task. There, the simulator works independently
of the shares and instead uses the actual values to simulate FMPC by computing f .

89

8. Security

Hence, differentiation between shares of msg and shares of 0⃗ is not possible for any
PPT-environment Z without breaking the information-theoretic security of OTP
encryption.

The computation of the linking number happens via Blum coin toss, where no secrets
are involved; thus S11 can execute this part on behalf of the helper by following
the protocol. This change is hence only cosmetically; the same code is executed on
a different machine. Hence, since the simulator performs the honest computation
and does exactly the same as H′ would, the distributions for both games regarding
computation of lin are equivalent.

Since the shares are created by the simulator, S11 does not have to rely on leaks by
H′ and can store them directly, having the same information afterwards.

GAME12(^): All honest user U are replaced by machines U′ that run a similar code as U
except for the Upd task: Here, the user only sends the linking number lin to the
simulator S12. The remaining part of the honest user’s protocol for the Upd task is
played by the simulator.

After receiving the leak, S12 fetches the entry {H, lin, 𝛼, 𝑠, 𝑎,com𝑎,unv𝑎, otp, ctyU
}

for Upd for the given (H, lin) and aborts if no such entry is stored. Otherwise, S12
follows the protocol of the user from Game11(^).

Lemma8.1.12. For all PPT environmentsZ the advantage for distinguishingGame11(^)
from Game12(^) fulfills:

|Pr[Z(Game11(^)) = 1] − Pr[Z(Game12(^)) = 1] | ∈ negl(^)

Proof. First, note that honest user leaking information does not change anything in
the distribution of sent messages, which makes it impossible for the environmentZ
to distinguish based on that change. So the only change that could be detected by
the environment is the simulation of the Upd task based only on the data accessible
to the simulator and not on the entire data stored by each user. To that end, we need
to show that the simulator can report the same messages in Game12(^) that the user
would have sent in Game11(^).

During the Upd-tasks with an honest user in game Game11(^) the following tasks
are now performed by S12:

• Sending lin to the helper and operator. This is easily possible as lin is leaked by
the user.

• Proving correct rerandomization using of the UH using ΛUpdate from Fig. 7.22.
As the ZK proof is forged since Game5(^) this is trivially possible.

• Finding out whether 𝛼 and 𝑠 contain non trivial values and then either proving
correct transfer of both results to the UH using the ZK language ΛTransfer from
Fig. 7.13 and setting com

UH
(1) and com

UH
(2) to be zero-commitments, or setting

the proof and both of com
UH
(1) and com

UH
(2) to be ⊥.

90

8.1. User Security

As both 𝛼 and 𝑠 are stored (since Game3(^) and correctly fetched the check can
be performed by the simulator.

• Provide commitments for (comUH ,comskU,comser0). Those are all commit-
ments on the zero-vector since Section 8.1 and as such can be created without
knowing the users data. Note that this is no problem for the ZK proofs as they
are also simulated due to Game7(^).

• Provide the old serial number ser . Note here that the old serial number is
independent of the proof (as that is simulated) and can be drawn uniformly at
random by the simulator (since Game7(^)) without the environment noticing.

• Creation of the logbook:

After the simulator received the message with the UI from the operator and has
compared them with the additional data stored since Game3(^) S12 can follow
the honest users protocol and abort whenever the honest user would. So we
have to show that S12 aborts in Game12(^) iff U aborts in Game11(^).

Since in both Game11(^) and Game12(^), the helper H is assumed to be honest1,
the values sent to the user are correct. Those values are exactly the same as
the ones that S12 has stored. Hence, the simulator already has the user’s view
on those values. Additionally, the simulator sees messages exchanged between
parties and as such has access to ctyU

. Since the simulator essentially follows
the honest protocol with the same data from here on, the abort-criteria remain
equivalent and cannot be used to distinguish.

GAME13(^): Introduces incorruptible entity F BKA that follows the specification from
Figs. 6.1 and 6.2 into the experiment. The entity is only accessible by honest partici-
pants and the simulator through subroutine input/output tapes.

Lemma8.1.13. For all PPT environmentsZ the advantage for distinguishingGame12(^)
from Game13(^) fulfills:

|Pr[Z(Game12(^)) = 1] − Pr[Z(Game13(^)) = 1] | ∈ negl(^)

Proof. Since there is no direct link betweenZ and F BKA there is no way for corrupted
parties (which are controlled byZ) to notice the change. Honest parties still only act
according to the protocol from Game12(^), which does not contain any interaction
with F BKA. Hence, there is no way forZ to distinguish the two games; every action
any honest party takes in Game12(^) is equivalent to their actions in Game13(^) and
the corrupted parties act entirely independent of F BKA.

1 As we assume the operator to be corrupted and both cannot be corrupted at once.

91

8. Security

GAME14(^): Replaces the TSA T with a semi-dummy party T′. The party immediately
forwards its input to the ideal functionality F BKA but also leaks xT to S14 after
receiving it. All interactions of T are then simulated by S14 by following the original
protocol.

Lemma8.1.14. For all PPT environmentsZ the advantage for distinguishingGame13(^)
from Game14(^) fulfills:

|Pr[Z(Game13(^)) = 1] − Pr[Z(Game14(^)) = 1] | ∈ negl(^)

Proof. Indistinguishability easily follows from the fact that the TSA T leaks the
relevant part of its input to the simulator who performs the same code; hence, the
simulator can execute the protocol of T perfectly. Concretely, during the Init-task,
the only input to T is (Initialize). As the key generation algorithm for the
signature scheme is public knowledge this can be performed by S14. For the Sign
Function Parameter-task, the only inputs are (SignFP, xT), where xT is leaked to
the simulator. The rest of the protocol can be simulated when knowing kT (which
S14 does from simulation of the Init-task).

Thus, the distribution visible byZ is identical and the game hop is purely cosmetically.
Our claim follows.

GAME15(^): This hybrid game expands the state of the simulator S15 by a list of tuples
{f, fp,comfp, 𝜎 fp, ℓ}, where an entry means that fp can be used for f with a signature
𝜎 fp on (comfp, f) and they were entered as the ℓ-th FP tuple. During simulation of
the task SFP the simulator stores a new tuple in case an input fp can be used for a
function f . In that case, the simulator computes the signature 𝜎 fp on (f,comfp) and
stores (f, fp,comfp, 𝜎 fp, ℓ).

The user U is replaced by a new user U′, which skips verification of the signature on
the FP and instead asks the simulator S15 if the given values for (f, fp,comfp, 𝜎 fp, ℓ)
are valid. Instead of manually verifying the signature, S15 verifies that there is an
entry (f, fp,comfp, 𝜎 fp, ℓ) and aborts if there is none.

Lemma8.1.15. For all PPT environmentsZ the advantage for distinguishingGame14(^)
from Game15(^) fulfills:

|Pr[Z(Game14(^)) = 1] − Pr[Z(Game15(^)) = 1] | ∈ negl(^)

Proof. Indistinguishability follows from the EUF-CMA security of the used signa-
ture scheme: LetZ be an environment that distinguishes between Game14(^) and
Game15(^) with probability 1/2 + 𝛼 with non-negligible advantage 𝛼 . FromZ, we
construct an adversary A on the EUF-CMA property of the signature scheme Sig.
Let C be the EUF-CMA challenger. C provides a signature oracle to A. A flips a
random coin and on heads simulates Game14(^) and on tails Game15(^). During
simulation,A creates all secrets honestly, except for kT and vkT. On every execution
of the SFP-task, whenever A is supposed to sign (f,comfp) for O using kT, A sends
(f,comfp) to the signature-oracle and uses the result as signature.

92

8.1. User Security

Nownote that we assume thatZ successfully distinguishes the two gamesGame14(^)
and Game15(^) notably better than by guessing. Since the only difference is in the
way signatures are handled, any distinguishing attack would require Z to input
some distinguishing commitment comfp on some FPs (fp) into the game that can be
used to determine which game it is playing.

First, note that if the signature on comfp is accepted in Game15(^), it is also accepted
in Game14(^), as a stored entry (f,comfp, 𝜎 fp) implies that the SFP task has been
called with input (fp,comfp) successfully and yielded signature 𝜎 fp. However, the
other way is not as clear; the only differing behavior that can be caused (and used by
Z to detect the change) is by preparing some tuple (comfp, 𝜎 fp) that is rejected in
Game15(^) but accepted in Game14(^). Clearly, the latter implies that the signature
𝜎 fp on (f,comfp) is valid. The former, however, implies that Z never called the
Sign Function Parameter-task on fp for function f in the name of O. This can only
happen if (1) A never called the challenge oracle on input (f,comfp), and (2) the
signature provided byZ on (f,comfp) still verifies under the verification key of the
TSA. Taking both together makes this a valid forgery, with which A can break the
EUF-CMA property of the signature scheme. As this is not possible by requirement
our claim follows.

GAME16(^): This hybrid game ensures that the operator calls the init task for F BKA by
using the information extracted from the F Reg setup functionality. During the Init
task the operator is supposed to insert a message (Register, vkO) that implicitly
contains the pid pidO of the operator. As this is simulated by S16 the simulator
follows the procedure of F Reg correctly and, if it succeeded, calls F BKA with input
(Initialize) in the name of O.

Lemma8.1.16. For all PPT environmentsZ the advantage for distinguishingGame15(^)
from Game16(^) fulfills:

|Pr[Z(Game15(^)) = 1] − Pr[Z(Game16(^)) = 1] | ∈ negl(^)

Proof. The change induced in this game only activates the functionality F BKA. Since,
at this point, it is not accessed by any honest party and neither the environment, nor
the dummy adversary can access F BKA, indistinguishability between the two games
trivially follows.

GAME17(^): Replaces all honest user U∗ by dummy parties that immediately forward their
input to the ideal functionality F BKA with the additional property, that they still leak
the linking number lin during the Update-task (see Game12(^)) and still call FMPC
with honest inputs when demanded by the protocol; the remaining protocol parts
are executed just as specified in the protocol by the simulator S17.

S17 also controls input to F BKA for corrupted users during simulation of the tasks OS
and Upd. During the Outsource-task, S17 calls F BKA in the name of U with empty
input after the successful exchange of the linking number lin. In the Update-task, S17
calls F BKA in the name of U with input (Update) after receiving the first message.

93

8. Security

Lemma8.1.17. For all PPT environmentsZ the advantage for distinguishingGame16(^)
from Game17(^) fulfills:

|Pr[Z(Game16(^)) = 1] − Pr[Z(Game17(^)) = 1] | ∈ negl(^)
Proof. First, note that honest user forwarding input to F BKA cannot be detected by
and environment as the subfunctionality input and output tapes are inaccessible to
the environment. Hence, this change is impossible to detect for any environmentZ.

We claim indistinguishability of the remaining changes based on the fact that the sim-
ulator S17 sends exactly the same messages that an honest user would in Game16(^).
Using the leaks, the simulator in Game17(^) can create every message that the user
would have sent in Game16(^), as we will show now:

User Registration. Here, the user has no secret input; the simulator can safely draw
a random key similar to the real user and respond to calls to F Reg with pkU. The
verification step is only based on the messages sent in this interaction, which
are accessible to the simulator due to simulation of F ORR. Thus, S17 can abort
in Game17(^) whenever U aborts in Game16(^).

Bookkeeping. The first message that S17 has to send here in the name of U is
(comUH ,comlin,comskU, ser

∗,comser, 𝜋).

Since Game7(^) the commitments are commitments on the all-zero vector and
hence independent of the users secret inputs. As such they can be created by
S17. Since Game5(^) the ZK proofs are simulated using the simulation-trapdoor
td𝑠𝑖𝑚 instead of the actual witness, meaning that S17 can forge the proof as long
as it knows the statement; which is (comUH ,comlin,comskU, ser,comser, vkO).
The commitments were chosen by the simulator as zero-commitments, the
old serial number is independent of both comUH and 𝜋 and hence was drawn
uniformly at random, and the verification key vkO is known due to simulation
of F Reg.

The second proof in case of a non-trivial permutation 𝛼 or update 𝑠 is returned
from the simulation of FMPC for the function f can be simulated similarly: Both
com

UH
(1) and com

UH
(2) are zero-commitments, and 𝜋∗ is created once again by

using the simulation trapdoor. The statement here contains (comUH ,comUH
(1) ,

com
UH
(2) , 𝛼, 𝑠) which are all known to the operator; the commitments are zero-

commitments and 𝛼 and 𝑠 are known due to the simulation of FMPC. And in
case of empty 𝛼 and 𝑠 the simulator sets all three to ⊥. So the second message,
(com

UH
(1) ,com

UH
(2) , 𝜋∗), can be simulated as well. The latter is obtained by

simulation of FMPC and hence consistent with the operators view. Hence S17
can reconstruct the statement of the second proof according to ΛTransfer which
proves that the output of FMPC has been transferred to the UH accordingly.

Finally, the simulator has to perform the verification step. S17 always used zero-
vectors for shares and can hence verify the values received from the operator.
This is done by executing the honest protocol, as all commitments and the
signature are known to S17.

94

8.1. User Security

Outsource. Since Game11(^) the shares for the OS-task are created by the simu-
lator. Since Game5(^) and Game7(^) the simulator also creates the commit-
ments and the zero-knowledge proof. The serial is again drawn at random
since Game7(^) as it is independent of comser

∗ (= com0⃗). Hence, the first
message, (rs(O)

UH
, rs
(O)
xU , rs

(O)
otp
, ser

∗,comser,comser0,comskU, 𝜋), is indistinguish-
able from the one in Game16(^).

Verification, again, is only dependent on what the simulator knows already and
hence can be simulated by executing the honest protocol.

Update. The Upd-task has been simulated already since Game12(^).

For security against a corrupted user U our definition of F BKA requires S17 to call
F BKA in the name of U only during the Outsource-task and not during any of the
other tasks:

• In UReg, all that would change is that F BKA adds U to the list of known users,
which is never checked against corrupted users. Interaction with F Reg might
still take place, though, but that one is simulated since Game2(^).

• In the BK-task the environment essentially talks to itself. Updates to the UH
can be done byZ without access to F BKA as the operator can sign any UH and
thus create a valid new logbook _. Simulation of FMPC occurs outside of the
actual protocol since S17 plays FMPC since Game2(^).

• For OS F BKA stores the corrupted user’s information in a list, alongside that
of honest users, and which are used later for the Outsourced Analytics-task.
There, it does not make a difference if the corrupted user’s UH is input to F BKA
directly, or if it is equivocated during simulation of the subsequent OA task.

• During OA the simulator receives input from O to FMPC which contains the
shares the corrupted userU prepared for the operator: (Compute, f, (fp,unvfp,

{rs(O)
UH
, rs
(O)
xU , rs

(O)
otp
}Z f
Z=1)) The respective shares of the helper were already stored

since Game9(^) for the given helper during simulation of the OS-task. Hence all
shares can be reconstructed by S17 using the protocol Combine. This value is
equivalent to the input corrupted users that would have input to F BKA. So S17
can provide F BKA with the correct tuples (UH , xU) for corrupted users.

Correctness trivially follows as the simulator in Game17(^) has, at this point,
exactly the same values that are shared between H and O in Game16(^). Hence,
any attempt byZ to manipulate data that would have worked in Game16(^)
also works in Game17(^) and vice versa, making it impossible for any PPT-
environmentZ to distinguish.

• During theUpd-task corrupted users only obtain masked values from the helper.
This step does not have any consequences for further interaction as F BKA only
loads and returns data that is not accessed at any further point throughout

95

8. Security

the lifetime of the system. Hence, it suffices to call F BKA in the name of any
corrupted user to have it deliver output to the helper.

GAME18(^): Replaces the helpers H with dummy parties that forward their input to the
ideal functionality F BKA. The remaining messages that the helpers sent will be
simulated by the simulator by honestly following the protocol of H from Game17(^).

Lemma8.1.18. For all PPT environmentsZ the advantage for distinguishingGame17(^)
from Game18(^) fulfills:

|Pr[Z(Game17(^)) = 1] − Pr[Z(Game18(^)) = 1] | ∈ negl(^)

Proof. Intuitively, the helper can be easily simulated as it does not have any secret
inputs. It only obtains information via robust shares of the user. At this point, the
simulator S18 already simulates all the messages sent by the user and hence can act
as the honest helper would by following the protocol from Game17(^).

In more detail, the situation for an honest user is as follows:

Outsource. Since the helper is now played by the simulator who also sends all
messages on behalf of the user, all messages from user to helper and vice versa
can be ignored. This automatically resolves most of the Outsource-task; the
only interaction between the helper and the operator that has to be simulated
is during a Blum coin toss to create lin, which does not depend on any secret
inputs at all. This can honestly be executed by S18.

Managing the stored data for OA is also trivially possible; all the values stored
there come from the user, who is played by the simulator at this point, anyway.
Correctness of the values follows from the fact that S18 only stores information
there in Game18(^) when the honest helper H in Game17(^) would.

Outsourced Analytics. In Game17(^), the helper loads the first Z f entries stored for
OA during OS before calling FMPC. We already argued for the Outsource-task
that the information S18 stores for OA in Game18(^) is equivalent to what
H stores during Game17(^); hence, S18 can simulate by following the honest
protocol.

Storing the UI for Upd after the simulation of FMPC is not required anymore,
as it only contains information that the simulator can infer from the own state.

Update. The protocol for the Upd-task basically consists of two mostly disjoint parts:
the interaction between the user and the helper and the interaction between
the user and the operator.

The latter is independent of anything the helper does. The former is independent
of anything the environmentZ (playing the operator) does and has not to be
simulated, asZ is unable to read messages exchanged between honest parties;
in this case the environment only sees ciphertexts which do not need to contain
valid cleartext data.

96

8.1. User Security

If the user is corrupted the behavior for the tasks for OS and Upd change as follows:

Outsource. In this task, everything works by following the protocol of the helper
honestly. The simulator receives the shares, which are sent from U to H via
F ORR (and hence visible to the simulator). Those can be stored by the simulator
for OA.

Since the simulator now also performs the Blum coin toss, S18 knows lin and
can send it to the user directly.

Update. The only interaction that has to be simulated is the part where the helper,
after receiving lin from a user via F ORR, responds to that user via F ORR with
(ct𝛼 , ct𝑠, ct𝑎, ctunv�⃗� , ctyU

) via F ORR.

During simulation of the task for OA the simulator stored the clear values for
Upd alongside the OTP. From that S18 can compute the OTP-encryptions and
use them for the message. Since lin is obtained from the user through the first
message, the helper in Game17(^) will send exactly the same message as the
simulator in Game18(^).

This shows that the two games are indistinguishable for all PPT-environmentsZ.

GAME19(^): The simulator now enforces that for every task, F BKA is called by the operator
with the correct inputs. This causes F BKA to have input from all parties, which means
that it behaves according to its definition and provides leaks and output to the parties
and S19, which the simulator can use. Thus, S19 changes the simulation of FMPC:
Instead of executing f with the appropriate inputs the simulator now uses the inputs
received from operator to FMPC in order to call F BKA in the name of O. The leaks
obtained by F BKA are then used as output of FMPC.

When executing Combine with an honest user and executing the OA-task with
arbitrary user corruption, the simulation of FMPC also includes a consistency check
for the operator’s input: If reconstruction with share via Combine fails, the simu-
lator aborts. The operator shares are obtained via input to FMPC, the helper shares
are fetched from the values stored during OS for OA.

When F BKA asks S19 for updated inputs (UH , xU)Z for corrupted users during the
OA-task, S19 uses Combine to reconstruct those values using the shares that the
user created during Outsource. The helper-shares, (rs(H)

UH
, rs
(H)
xU), were stored already.

The operator-shares, (rs(O)
UH
, rs
(O)
xU), are taken from the input that O sent to FMPC.

The inputs of the operator to both the OS and Upd task do not contain any secrets,
so S19 calls F BKA in the name of the operator after seeing the first message of an OS
task and immediately after the start of the simulation of the Upd task.

Finally, the TSA is replaced by a real dummy party that does not leak anything to the
simulator. Instead of letting the simulator compute the function that states whether
the FPs are valid or not, the computation is now done by the ideal functionality based
on the input of both parties; the simulator only gets the result.

97

8. Security

Lemma8.1.19. For all PPT environmentsZ the advantage for distinguishingGame18(^)
from Game19(^) fulfills:

|Pr[Z(Game18(^)) = 1] − Pr[Z(Game19(^)) = 1] | ∈ negl(^)

Proof. Indistinguishability of the first change, namely that computations of f are
replaced by leaks from F BKA, follows from the following facts:

1. In both hybrid games, the result of the computation is based on the output of f .
The simulator performs this computation inGame18(^). The functionality F BKA
is, by UC-conventions, modeled as an incorruptible entity and hence performs
the same honest computation. Hence, both parties compute f honestly.

2. Both parties, F BKA in Game19(^) and the simulator in Game18(^), use exactly
the same input. Until the point where the interaction takes place, the simu-
lators in both Game18(^) and Game19(^) behave equivalently, leading to an
identical view forZ. From there on, the simulator in Game18(^) performs the
computation of f (·) directly and obtains the outputs for FMPC. In Game19(^),
S19 forwards the same input to F BKA (which is possible because both have the
same interface). The functionality then uses this input in order to compute f .
The outputs are leaked to S19 via functionality output, who now has exactly
the same values as in Game18(^) and can continue equivalently.

Hence, the parts involving interaction with FMPC remain equivalent, as essentially
the output data that S19 obtains in Game19(^) via leakage has been created similarly
to the output that the simulator computed in Game18(^).

We now have to show that the abort-criteria remain equivalent. In Game19(^), S19
aborts if the input of the operator to FMPC differs from the shares that the user
sent to the operator during the OS-task. In Game18(^), the user aborts via FMPC, as
shares that were changed by the operator would be recognized as forgery due to
Verify with overwhelming probability.

Next, we have to prove indistinguishability of the equivocation step for corrupted
users. To that end, we claim that the updated input shares that S19 inputs to F BKA
are the same that were shared during the OS-task and that would have been used by
the helper and operator in a real execution. The helper-shares were treated similar
to a real execution, as the simulator stored the message that was received during the
OS-task for OA. The operator shares were taken from the input that the operator
sent to FMPC and are hence also visible to the simulator. Hence, the same values
that would have been taken as input for f in Game18(^) are also taken by F BKA in
Game19(^). As mentioned above, F BKA computes f just as was done in previous
games, so the outputs stay the same and hence no environment can distinguish.

Finally, note that the change regarding SFP is only cosmetically as once again, the
same code is executed on the same data but by different parties which both are
guaranteed to stick to the protocol.

98

8.1. User Security

GAME20(^): Instead of relying on the leaked input xT and the received data from the
operator to compute whether or not the FP fp should be accepted during the SFP
task, S20 accepts the FPs only if the functionality returns (Ok) to the operator after
both parties sent their inputs. The Trusted Signing Authority is replaced with a
genuine dummy party which does not leak xT to the simulator anymore.

Lemma8.1.20. For all PPT environmentsZ the advantage for distinguishingGame19(^)
from Game20(^) fulfills:

|Pr[Z(Game19(^)) = 1] − Pr[Z(Game20(^)) = 1] | ∈ negl(^)

Proof. Again this gamehop is only cosmetically as the same code still is executed on
the same inputs, but from a different machine. In Game19(^) the simulator obtains
xT from the (semi-)dummy TSA T∗ and (fp,comfp,unvfp, f, xO) from the corrupted
operator and then performs some consistency checks regarding the FPs before
evaluating f . In Game20(^) the simulator only obtains (fp,comfp,unvfp, f, xO) from
the corrupted operator and then performs the same consistency checks regarding the
FPs before inputting (SignFP, fp, f, xO) to F BKA. The input from the TSA—namely
xT—was already forwarded by the honest dummy party to F BKA so the inputs are
the same.

Indistinguishability thus follows directly.

GAME21(^): Instead of relying on the leak of lin send by the semi-dummy user U during
simulation of the Upd task for honest users, S21 now uses the leaks on the ssid

provided by F BKA to infer the correct linking number. The honest users are replaced
by dummy users, i.e. they only forward their input obtained by Z to F BKA. The
remaining interactions with the operator are simulated using the simulator’s knowl-
edge. Therefore, the simulator looks up the list entry (ssid, lin) when receiving the
ssid to get the correct linking number lin during the Upd-task.

Lemma8.1.21. For all PPT environmentsZ the advantage for distinguishingGame20(^)
from Game21(^) fulfills:

|Pr[Z(Game20(^)) = 1] − Pr[Z(Game21(^)) = 1] | ∈ negl(^)

Proof. The situation only changes during Upd-tasks with an honest user, where the
simulator S21 in the honest-user setting does not receive the leak lin from the user,
but instead the ssid ssid of the respective OS-instance from F BKA. Since the simulator
updated the list with tuples (ssid, lin) correctly during the simulation of the OS-task,
S21 can obtain the same linking number lin in Game21(^) that the user has sent in
Game20(^).

Given that F BKA is, by definition, incorruptible, it will always send the correct ssid
to the simulator. During the OS-task, the linking number lin was honestly created
by the simulator S21 in an interaction with the operator. This number is used by
all parties as linking number and is stored just as honest parties would store it.
During the Upd-task, an honest user would look up this linking number, which can

99

8. Security

be simulated by following the program code of the user and fetching it from the list
of ssid and linking number tuples.

Hence, there is no way that the linking number an honest user would store during
an OS and later reveal during an Upd task in Game20(^) would differ from the
linking number that the simulator stores (and later reveals) during the simulation of
Game21(^).

The final game, 8.1, corresponds to our ideal world. Since we have shown that no (PPT)
environmentZ can differentiate this from the real execution in Game1(^), our corollary
follows:

Corollary 8.1.22 (User Security). For all environments Z who statically corrupted the

operator, it follows that

Π
F CRS,F Reg,F SMT,FMPC,FORR

𝐵𝐾𝐴
≥ F BKA

when using building blocks as described in Section 5.3.

We have shown in Lemma 8.1.2 to Lemma 8.1.21, that under static corruption of the
operator, the simulator S acting in the ideal world can provide a view for Z that is
indistinguishable from a real execution of the protocol:

viewZ,A,Π𝐵𝐾𝐴 ≈𝑐 viewZ,S,F BKA

8.2. Operator Security

This section contains an investigation of the remaining corruption scenarios, namely the
ones that are relevant to maintain privacy of an honest operator. That is, we consider
scenarios where the any subset of users and helpers can be corrupted and present a
simulator, which provides a view in the ideal world that cannot be distinguished from a
real-world execution. The simulator is given in Figs. 8.11 to 8.25.

For our proof, we consider the following hybrid games Game𝑖 (^):

GAME1(^): The first hybrid is equivalent to the real experiment. That is,

Game1(^) ≔ viewΠ𝐵𝐾𝐴,S1,Z (1^)

This means that all parties execute the real protocol.

GAME2(^): All calls to the setup functionalities (F CRS, F Reg, F SMT, FMPC, F ORR) are
replaced by calls to S2, who simulates their behavior by following the description of
the ideal functionality.

Lemma 8.2.1. For all PPT environmentsZ the advantage for distinguishing Game1(^)
from Game2(^) fulfills:

|Pr[Z(Game1(^)) = 1] − Pr[Z(Game2(^)) = 1] | ∈ negl(^)

100

8.2. Operator Security

Simulator S𝐵𝐾𝐴
State of a simulator S𝐵𝐾𝐴 and setup against a corrupted user.

The simulator stores:
• td𝑒𝑥𝑡 : Trapdoor for the zero knowledge scheme.
• (vkO, kO): Signature key-pair of the operator
• (vkT, kT): Signature key-pair of the sign party
• List of observed serials {ser}
• List of tuples {f, ℓ,comfp, 𝜎 fp} of functions, indices for function parameters
and commitment and signature to be used for a given function f .

• List of tuples (pkU, pidU).

• List of tuples {pidH, f, lin, rs
(H)
UH
, rs
(H)
xU , rs

(H)
otp
}.

• List of tuples {H, lin, ct𝛼 , ct𝑠, ct𝑎, ctunv�⃗� , ctyU
}.

• List of tuples {pidH, f, lin, rs
(O)
UH
, rs
(O)
xU , rs

(O)
otp
}.

• List of tuples {lin, 𝛼, 𝑠,com𝑎, ctyU
}.

• List of tuples {ssid, lin}.

On input Setup, S𝐵𝐾𝐴 sets up the Common Reference String using (crs, td𝑒𝑥𝑡) ←
Zk.SetupExt(1^) and stores the extraction trapdoor td𝑒𝑥𝑡 . Now S𝐵𝐾𝐴 starts
simulating all the hybrid functionalities.

Figure 8.11.: The first part of the simulator with an honest operator: Defines state and set up.

Simulator S𝐵𝐾𝐴
Simulator S𝐵𝐾𝐴 for the initialization against a corrupted user.

On input (Initialize, pidO) from F BKA, S𝐵𝐾𝐴 follows the honest protocol of O
and creates and stores a signature key pair (kO, vkO) ← Sig.KeyGen(1^).

On input (Initialize, pidT) from F BKA, S𝐵𝐾𝐴 generates a signature key pair
(kT, vkT) ← Sig.KeyGen(1^) and follows the protocol of T.

Figure 8.12.:The second part of the simulator with an honest operator and corrupt user: Defines initialization.

101

8. Security

Simulator S𝐵𝐾𝐴
Simulator S𝐵𝐾𝐴 for the SignFP task against an honest operator and TSA.

On input (SignFP, pidO) and (SignFP, pidT) from F BKA and after having received
leak (f, ℓ) from F BKA, S𝐵𝐾𝐴 computes zero-commitments (comfp,unvfp) ←
Com.Com(0⃗) and a signature 𝜎 fp ← Sig.Sign(kT) (f,comfp). Then S𝐵𝐾𝐴 stores
(f, ℓ,comfp,unvfp, 𝜎 fp).

Figure 8.13.: The third part of the simulator with an honest operator and TSA: Defines behavior for signing
function parameter.

Simulator S𝐵𝐾𝐴
Simulator S𝐵𝐾𝐴 for the UserRegistration task against an honest user and
operator.

On input (UserRegistration, pidU) from F BKA and
(UserRegistration, pidO) from F BKA, S𝐵𝐾𝐴 follows the protocol
of an honest user to create the public key pkU in order to use that to respond to
calls of the form (Fetch, pidU) for F Reg.

Figure 8.14.: The fourth part of the simulator with an honest operator and honest user: Defines user
registration.

Simulator S𝐵𝐾𝐴
Simulator S𝐵𝐾𝐴 for the UserRegistration task against a corrupted user.

On input (UserRegistration, pidO) from F BKA and (𝜋,comskU,comser0) from
U to O, S𝐵𝐾𝐴 follows the protocol of O: It fetches the public key pkU from the
simulated F Reg, sets stmt ≔ (pkU,comskU) and aborts if there is no key pkU
stored or if Zk.Verify(𝜋, stmt,ΛUserReg) ≠ 1. Additionally, S𝐵𝐾𝐴 aborts if an entry
(pkU, ·) has been stored before and otherwise stores an entry (pkU, pidU). Now
S𝐵𝐾𝐴 sends input (UserRegistration) in the name of U corresponding
to pidU to F BKA.

When receiving (Ok) from F BKA, S𝐵𝐾𝐴 follows the remaining protocol specification
of the operator to create the commitments comser1 and comser and to create and
send (a1,coma1,unva1,comUH ,unvUH , 𝜎UH) to U.

Figure 8.15.: The fifth part of the simulator with an honest operator and corrupt user: Defines behavior for
user registration.

102

8.2. Operator Security

Simulator S𝐵𝐾𝐴
Simulator S𝐵𝐾𝐴 for the Compute task for a function f against a corrupted user.

On input (Compute, f, pidO) from F BKA, after having received input
(Process_Onion,O, (comUH ,comlin,comskU, ser

∗,comser, 𝜋), P→, P←)
from U to F ORR, and after having received the leak (ℓ) from F BKA, S𝐵𝐾𝐴
follows the protocol of the operator: it aborts if ser

∗ has been used before
and otherwise stores ser

∗, sets stmt ≔ (comUH ,comlin,comskU, ser
∗, vkO) and

aborts if Zk.Verify(𝜋, stmt,ΛCompute) fails. Then it aborts if there is no (unique)
tuple (f, ℓ,comfp, 𝜎 fp) for the given (f, ℓ) and otherwise simulates sending
(comfp, 𝜎 fp) through P

← to F ORR.

On input (Compute, f, (UH ,comfp,unvUH , xU)) from U to FMPC, S𝐵𝐾𝐴 aborts if
Com.Unv(comUH ,unvUH ,UH) or Com.Unv(comfp,unvfp, fp) fail due to the
simulation of FMPC.

Then, S𝐵𝐾𝐴 extracts pkU(= g
skU
1) from the witness of 𝜋 using

Zk.ExtractWit(td𝑒𝑥𝑡 , 𝜋, stmt,ΛCompute) and aborts if there is no stored en-
try (pkU, pidU∗). Otherwise S𝐵𝐾𝐴 sends input (Compute, f, xU) to F BKA in the
name of the extracted U∗ who belongs to pidU∗ .

On output (𝛼, 𝑠, 𝑎, yU) from F BKA toU, S𝐵𝐾𝐴 sets (com𝑎,unv𝑎) ← Com.Com(𝑎) and
reports output (𝛼, 𝑠, 𝑎,com𝑎,unv𝑎, yU) from FMPC to U.

On input (Process_Onion,O, (com
UH
(1) ,com

UH
(2) , 𝜋∗), P→, P←) from U to

F ORR, S𝐵𝐾𝐴 checks if 𝛼 ≠ ⊥ or 𝑠 ≠ ⊥ and in that case sets stmt
∗ ≔

(comUH ,comUH
(1) ,com

UH
(2) , 𝛼, 𝑠) and aborts if Zk.Verify(𝜋∗, stmt

∗,ΛTransfer) ≠
1.
Regardless of 𝛼 and 𝑠 , S𝐵𝐾𝐴 follows the protocol of the operator to
construct the new logbook and final message and simulates sending
(ser1,comser1,unvser1, 𝜎UH

new) through P
← in F ORR.

Figure 8.16.: The sixth part of the simulator with an honest operator and corrupt user: Defines behavior for
computation of a function f .

Proof. The setups (F CRS, F Reg, F SMT, FMPC, F ORR) are considered to be hybrid func-
tionalities, which by UC-conventions can be simulated by the simulator doing what
the functionality dictates without any other party noticing.

GAME3(^): The simulator now maintains the list of serial numbers in which all the serials
that were opened by a user are stored. That is, whenever a user successfully proves
that the used logbook _ is fresh and hasn’t been used before by sending a serial
number ser together with a proof 𝜋 during any of the tasks for BK, OA or Upd, S3
verifies the proof and aborts, if either the proof fails to verify or if the serial was

103

8. Security

Simulator S𝐵𝐾𝐴
Simulator S𝐵𝐾𝐴 for the Outsource task for a function f where everyone is honest.

On input (Outsource, f,User), (Outsource, f, pidH), and
(Outsource, f, pidO) from F BKA, S𝐵𝐾𝐴 sets lin ≔ ⊥, rs

(H)
UH

≔ ⊥,
rs
(O)
UH
≔ ⊥, rs

(H)
xU ≔ ⊥, rs

(O)
xU ≔ ⊥, rs

(H)
otp
≔ ⊥, and rs

(O)
otp
≔ ⊥, and

stores {pidH, f, lin, rs
(H)
UH
, rs
(H)
xU , rs

(H)
otp
} and {pidH, f, lin, rs

(O)
UH
, rs
(O)
xU , rs

(O)
otp
}.

Figure 8.17.: The seventh part of the simulator with an honest operator, user, and helper: Defines behavior
for outsourcing a function f .

Simulator S𝐵𝐾𝐴
Simulator S𝐵𝐾𝐴 for the Outsource task for a function f against a corrupted user
and honest operator and helper.

On input (Outsource, f, pidO) and (Outsource, f, pidH) from F BKA, after
having received input (Process_Onion,O, (rs(O)

UH
, rs
(O)
xU , rs

(O)
otp
, ser

∗,comser,

comser0,comskU, 𝜋), P→, P←) and (Process_Onion,H, (rs(H)
UH
, rs
(H)
xU , rs

(H)
otp
),

P
→∗, P←∗) fromU to F ORR,S𝐵𝐾𝐴 follows the protocol of the operator by aborting

if 𝜋 fails to verify or if ser is a duplicate. Then S𝐵𝐾𝐴 proceeds to reconstruct UH ,
xU and otp using the robust shares and the Combine procedure from Fig. 7.2.

Now S𝐵𝐾𝐴 draws a random lin

$←Zo and stores {pidH, f, lin, rs
(H)
UH
, rs
(H)
xU , rs

(H)
otp
} and

{pidH, f, lin, rs
(O)
UH
, rs
(O)
xU , rs

(O)
otp
}.

Then S𝐵𝐾𝐴 extracts pkU from 𝜋 using Zk.ExtractWit(td𝑒𝑥𝑡 , 𝜋, stmt,ΛOutsource)
and aborts if there is no stored entry (pkU, pidU∗).
Otherwise, S𝐵𝐾𝐴 loads the ssid ssid, stores (ssid, lin) and calls F BKA with input
(Outsource, f, xU) in the name of U∗ that corresponds to pidU∗ whom the
extracted pkU belongs to.

On output (Ok) from F BKA to U∗, S𝐵𝐾𝐴 follows the protocol of the operator
to construct the new logbook and final message and simulates sending
(ser1,comser1,unvser1,comlin,unvlin, 𝜎UH

new) through P
← in F ORR and (lin)

through P
←∗ in F ORR.

Figure 8.18.: The eighth part of the simulator with an honest operator and helper and a corrupted user:
Defines behavior for outsourcing a function f .

104

8.2. Operator Security

Simulator S𝐵𝐾𝐴
Simulator S𝐵𝐾𝐴 for the Outsource task for a function f against a corrupted helper
and honest user and operator.

On input (Outsource, f,User) and (Outsource, f, pidO) from F BKA, S𝐵𝐾𝐴 cre-
ates robust shares (rs(H)

UH
, rs
(O)
UH
), (rs(H)

xU , rs
(O)
xU) and (rs

(H)
otp
, rs
(O)
otp
) by following

Share(0⃗) from Fig. 7.1 for zero-vectors of appropriate size. Then S𝐵𝐾𝐴
simulates Send(H, (rs(H)

UH
, rs
(H)
xU , rs

(H)
otp
)) from Fig. 7.4 and remembers 𝜗 and

Send(O, (r)) for a random vector r of sufficient size.
Now S𝐵𝐾𝐴 inserts (Outsource, f) in the name of H into F BKA.

On output (Ok) from F BKA, S𝐵𝐾𝐴 follows the honest protocol of the opera-
tor: It draws a share lin

(O) $←Zo for the new linking number and com-
putes (com

lin
(O) ,unv

lin
(O)) ← Com.Com(lin(O)) and reports a message

(com
lin
(O) ,com(H)

UH
,com(H)

xU ,com
(H)
otp
) to H, where the commitments (except for

lin) were taken from the respective robust shares.

When receiving (lin(H),com
UH
(O) ,com

x
(O)
U
,com

otp
(O)) from H to O, S𝐵𝐾𝐴 follows the

protocol of the operator any aborts if Verify(. . .) from Fig. 7.3 fails.
Then S𝐵𝐾𝐴 reports a message (lin(O),unv

lin
(O)) from O to H.

On input (Process_Back_Onion, (lin), 𝜗) from H to F ORR, S𝐵𝐾𝐴 aborts if lin ≠

lin
(O) + lin

(H) . Otherwise, S𝐵𝐾𝐴 loads the current ssid ssid and stores an entry
(ssid, lin) and an entry {pidH, f, lin, rs

(O)
UH
, rs
(O)
xU , rs

(O)
otp
}.

Figure 8.19.: The ninth part of the simulator with an honest operator and user and a corrupted helper:
Defines behavior for outsourcing a function f .

already contained in the list. If no abort happened, S3 adds ser to the list. The code
of the operator is changed in such a way, that the checks that the simulator does
now are not repeated by the operator.

Lemma 8.2.2. For all PPT environmentsZ the advantage for distinguishing Game2(^)
from Game3(^) fulfills:

|Pr[Z(Game2(^)) = 1] − Pr[Z(Game3(^)) = 1] | ∈ negl(^)

Proof. The simulator mimics the behavior of an honest operator. Since none of the
code regarding the list of serial numbers is in any way dependent on the secret input
Z gives to the user or the operator, this can be done without any loss of generality.
In particular, assume that any party (that is, either the operator or S3) aborts due to a
duplicate serial number in any game. In either case, this would mean that there was
a previous interaction of either the task for BK, OS, or Upd, where the user opened a

105

8. Security

Simulator S𝐵𝐾𝐴
Simulator S𝐵𝐾𝐴 for the Outsource task for a function f against an honest operator
and corrupted user and helper.

On input (Outsource, f, pidO) from F BKA after having received input
(Process_Onion,O, (rs(O)

UH
, rs
(O)
xU , rs

(O)
otp
, ser

∗,comser,comser0,comskU, 𝜋), P→,
P
←) from U to F ORR, S𝐵𝐾𝐴 reconstructs UH , xU and otp using the robust shares

and the Combine procedure from Fig. 7.2.
Now S𝐵𝐾𝐴 draws a random share lin

(O) $←Zo, computes a commit-
ment (com

lin
(O) ,unv

lin
(O)) ← Com.Com(lin(O)) and reports a message

(com
lin
(O) ,com(H)

UH
,com(H)

xU ,com
(H)
otp
) from O to H, where the commitments (ex-

cept for lin) were taken from the respective robust shares.

When receiving message (lin(H),com
UH
(O) ,com

x
(O)
U
,com

otp
(O)) from H to O, O sets

stmt ≔ (rs(O)
UH
,com

UH
(O) , ser

∗,comskU, vkO) and aborts if Zk.Vfy(𝜋, stmt,

ΛOutsource) ≠ 1 or if any of the commitments on UH
(O) , x

(O)
U , otp

(O) fail to verify.
Now S𝐵𝐾𝐴 extracts pkU from 𝜋 using Zk.ExtractWit(td𝑒𝑥𝑡 , 𝜋, stmt,ΛOutsource)
and aborts if there is no stored entry (pkU, pidU∗).
Otherwise, S𝐵𝐾𝐴 calls F BKA with input (Outsource, f, xU) in the name of U∗
that corresponds to pidU∗ whom the extracted pkU belongs to and with input
(Outsource, f) in the name of O.

On output (Ok) from F BKA to U∗ and O, S𝐵𝐾𝐴 sets lin ≔ lin
(O) + lin

(H) and stores
{pidH, f, lin, rs

(O)
UH
, rs
(O)
xU , rs

(O)
otp
} for OA.

Then S𝐵𝐾𝐴 follows the protocol of the operator to construct the
new logbook and final message and simulates sending (ser1,comser1,

unvser1,comlin,unvlin, 𝜎UH
new) through P

← in F ORR and reports a message
(lin(O),unv

lin
(O)) from O to H.

Figure 8.20.: The tenth part of the simulator with an honest operator and corrupted user and helper: Defines
behavior for outsourcing a function f .

value of comser
∗ to the same ser that is now seen by the respective party. Since the

different parties execute the same code, their abort-criteria is equivalent. The same
is true for the verification of the proof 𝜋 .

GAME4(^): This game lets the operator leak all the linking numbers {linZ } to the simulator
during the OA task right after loading them and before providing input for FMPC. It
furthermore extends the state of the simulator by two lists of tuples. The first list
is based on what an honest operator would store for the updates after the OA-task,
where the simulator stores {lin, 𝛼, 𝑠,com𝑎, ctyU

}, the second list is based on the data

106

8.2. Operator Security

Simulator S𝐵𝐾𝐴
Simulator S𝐵𝐾𝐴 for the Analytics task for a function f against an honest operator
and helper.

On input (Analytics, f, pidH) and (Analytics, f, pidO) from F BKA,S𝐵𝐾𝐴 loads
the first Z f entries of {(H, lin, rs(O)

UH
, rs
(O)
xU , rs

(O)
otp
)} and {(lin, rs(H)

UH
, rs
(H)
xU , rs

(H)
otp
)Z }Z f

Z=1
and removes them from the database.
Then, for each entry where lin ≠ ⊥, S𝐵𝐾𝐴 proceeds to reconstruct UH , xU and
otp using the robust shares and the Combine procedure from Fig. 7.2 and aborts
if reconstruction fails.

When receiving leak {(Z), 𝛼Z , 𝑠Z , 𝑎Z } for Z that belong to corrupted users from F BKA,
S𝐵𝐾𝐴 sets for each Z from that leak: (com𝑎,unv𝑎) ← Com.Com(𝑎) extracts
(otp𝛼 , otp𝑠, otp𝑎, otpunv, otp

y
) from otp, sets ct𝛼 ≔ 𝛼 + otp𝛼 , ct𝑠 ≔ 𝑠 + otp𝑠 , ct𝑎 ≔

𝑎+otp𝑎 , ctunv�⃗� ≔ unv𝑎+otpunv , and ctyU
≔ yU+otp

y
, and stores {H, lin, ct𝛼 , ct𝑠,

ct𝑎, ctunv�⃗� , ctyU
} and {lin, 𝛼, 𝑠,com𝑎, ctyU

}.

Figure 8.21.: The eleventh part of the simulator with an honest operator and helper: Defines behavior for
computing an outsourced a function f .

stored by each helper, for which the simulator stores {H, lin, ct𝛼 , ct𝑠, ct𝑎, ctunv�⃗� , ctyU
}.

During simulation of FMPC for OA-tasks, i.e. after the operator inserted the mes-
sage (Compute, f, (fp,unvfp, {rs(O)

UH
, rs
(O)
xU , rs

(O)
otp
}Z f
Z=1)) into FMPC and the helper

has input (Compute, f, (comfp, {(rs(H)
UH
, rs
(H)
xU , rs

(H)
otp
)Z }ZZ=1)) to FMPC, the simula-

tor S4 computes f honestly (with fresh coins, if necessary), based on the two
inputs. S4 uses the protocol Combine on both received shares to reconstruct
(UH , xU, otp)Z for each user Z ∈ [Z]. If reconstruction on any of the shares fails, S4
aborts. With this and the extracted individual OTPs (otp𝛼 , otp𝑠, otp𝑎, otpunv, otp

y
)

from otp, S4 computes ct𝛼Z
≔ 𝛼Z + otp𝛼Z

, ct𝑠Z
≔ 𝑠Z + otp𝑠Z , ct𝑎Z

≔ 𝑎Z + otp𝑎Z ,
(com𝑎Z ,unv𝑎Z) ← Com.Com(𝑎Z), ctunv�⃗�Z

≔ unv𝑎Z + otpunv and ctyZ
≔ yZ +

otp
yZ
. S4 then adds a new entry {lin, 𝛼, 𝑠,com𝑎, ctyU

} for the operators view and
{H, lin, ct𝛼 , ct𝑠, ct𝑎, ctunv�⃗� , ctyU

} for the helper, where the linking number lin is taken
from the leak sent by the operator.

During the Upd task, S4 uses the data stored for the helper in order to verify that a
corrupted helper sent the correct values back to an honest user. This replaces the
check the user performs with the OTPs.

Lemma 8.2.3. For all PPT environmentsZ the advantage for distinguishing Game3(^)
from Game4(^) fulfills:

|Pr[Z(Game3(^)) = 1] − Pr[Z(Game4(^)) = 1] | ∈ negl(^)

107

8. Security

Simulator S𝐵𝐾𝐴
Simulator S𝐵𝐾𝐴 for the Analytics task for a function f against an honest operator
and corrupted helper.

On input (Analytics, pidO) and after receiving the leak (ℓ) from F BKA, S𝐵𝐾𝐴
aborts if there is no tuple {f, ℓ,comfp, 𝜎 fp} stored for the given (f, ℓ) and otherwise
loads the remaining values and reports a message (comfp, 𝜎 fp) from O to H.

On input (Compute, f, (comfp, {(rs(H)
UH
, rs
(H)
xU , rs

(H)
otp
)Z }ZZ=1)) from H to FMPC, S𝐵𝐾𝐴

aborts if (comfp) entered here differs from the one sent to H earlier. Other-
wise, S𝐵𝐾𝐴 loads the first Z f entries of {(lin, rs(H)

UH
, rs
(H)
xU , rs

(H)
otp
)Z }Z f

Z=1 and removes
them from the database. Then S𝐵𝐾𝐴 proceeds to reconstruct UH , xU and otp

using the robust shares and the Combine procedure from Fig. 7.2 and inserts
(Analytics, f) into F BKA in the name of H.

When receiving leak {(Z)} as indices for all inputs that belong to a corrupted user,
S𝐵𝐾𝐴 sends the previously reconstructed (xU) for all indices that were contained
in the leak to F BKA.

When receiving leak {(Z), 𝛼Z , 𝑠Z , 𝑎Z } for Z that belong to corrupted users from F BKA,
S𝐵𝐾𝐴 sets for each Z from that leak: (com𝑎,unv𝑎) ← Com.Com(𝑎) extracts
(otp𝛼 , otp𝑠, otp𝑎, otpunv, otp

y
) from otp, sets ct𝛼 ≔ 𝛼 + otp𝛼 , ct𝑠 ≔ 𝑠 + otp𝑠 ,

ct𝑎 ≔ 𝑎 + otp𝑎 , ctunv�⃗� ≔ unv𝑎 + otpunv , and ctyU
≔ yU + otp

y
, and stores

{H, lin, ct𝛼 , ct𝑠, ct𝑎, ctunv�⃗� , ctyU
} and {lin, 𝛼, 𝑠,com𝑎, ctyU

}. For all the other Z (i.e.
the ones that are not contained in the leak and hence correspond to the data
from honest users) S𝐵𝐾𝐴 draws random ciphers ct𝛼 , ct𝑠 , ct𝑎 , ctunv�⃗� , and ctyU

and
stores {lin, 𝛼, 𝑠,com𝑎, ctyU

}.

Finally, S𝐵𝐾𝐴 reports ({(ct𝛼Z
, ct𝑠Z

, ct𝑎Z
, ctunv�⃗�Z

, ctyU
)Z }Z f

Z=1) as output from FMPC
to H.

Figure 8.22.: The twelfth part of the simulator with an honest operator and corrupted helper: Defines
behavior for computing an outsourced a function f .

Proof. Indistinguishability here holds for the same reason that it held in Theorem 8.2.2.
The leaked linking number by the operator is undetectable for any environment yet
contains the correct linking number, and the contents of both lists only depend on
messages which S4 can access via simulation of FMPC, and not (directly) on secret

input. Hence, we only have a new encapsulation, where (PPT-)code that depends
only on previous messages was executed by the operator or helper in Game3(^) is
now executed by S4 in Game4(^).

The equivalence of their contents easily follows from the same argument. The
contents themselves depend on the message that the user sent to the resp. parties,

108

8.2. Operator Security

Simulator S𝐵𝐾𝐴
Simulator S𝐵𝐾𝐴 for the Update task against a corrupted user and honest operator
and helper.

On input (Update, pidH) from F BKA and after having received input
(Process_Onion,H, (lin), P→, P←) from U to F ORR, S𝐵𝐾𝐴 checks if
there is a stored entry {H, lin, ct𝛼 , ct𝑠, ct𝑎, ctunv�⃗� , ctyU

} for the given (H, lin). If
such an entry exists, S𝐵𝐾𝐴 removes them and simulates sending simulates
sending (ct𝛼 , ct𝑠, ct𝑎, ctunv�⃗� , ctyU

) through P
← to F ORR. Otherwise, S𝐵𝐾𝐴

continues without sending a message.

On input (Update, pidO) from F BKA, and after having received input
(Process_Onion,O, (comUH ,comUH

(1) ,com
UH
(2) ,comskU, ser,comser0, lin,

𝜋, 𝜋∗), P→, P←) from U to F ORR, S𝐵𝐾𝐴 looks up {lin, 𝛼, 𝑠,com𝑎, ctyU
} for the

given lin, aborts if no such entry exists or if ser was used before and otherwise
removes the entries from the database and remembers ser .
Then S𝐵𝐾𝐴 sets stmt ≔ (comUH , ser, lin,comskU, vkO) and aborts if
Zk.Verify(𝜋, stmt,ΛUpdate) = 0. Otherwise, S𝐵𝐾𝐴 follows the protocol of the op-
erator: If 𝛼 ≠ ⊥ or 𝑠 ≠ ⊥, S𝐵𝐾𝐴 sets stmt

∗ ≔ (comUH ,comUH
(1) ,com

UH
(2) , 𝛼, 𝑠)

and aborts if Zk.Verify(𝜋∗, stmt
∗,ΛTransfer) ≠ 1.

Regardless of 𝛼 and 𝑠 , S𝐵𝐾𝐴 extracts pkU from 𝜋 using Zk.ExtractWit(td𝑒𝑥𝑡 ,
𝜋, stmt,ΛUpdate) and aborts if there is no stored entry (pkU, pidU∗). Oth-
erwise, S𝐵𝐾𝐴 inserts (Update) into F BKA in the name of the ex-
tracted U∗ who belongs to pidU∗ and follows the protocol of the opera-
tor to construct the new logbook and final message and simulates send-
ing (ctyU

,com𝑎, ser1,comser1,unvser1,comlin,unvlin, 𝜎UH
new) through P

← in
F ORR.

Figure 8.23.: The thirteenth part of the simulator with an honest operator and helper and a corrupted user:
Defines behavior for updating the user data.

the order depends on the (adversarially chosen) scheduling mechanism, which, given
any environmentZ that tries to distinguish the two games, is equivalent for both
games.

The final change contains the check in the corruption scenario where the helper
is corrupted, but the user and operator are honest. Here, in Game3(^), U aborts if
either Unv(com𝑎,unv𝑎, 𝑎) ≠ 1, or if ctyU

differs from the value the honest operator
sent.

Equivalence for the latter is straightforward. If a user aborts due to the former
condition (Unv(com𝑎,unv𝑎, 𝑎) ≠ 1), then this means that some value was tampered
with. com𝑎 was received by the operator, who, in this scenario, is honest, hence

109

8. Security

Simulator S𝐵𝐾𝐴
Simulator S𝐵𝐾𝐴 for the Update task against a corrupted helper and honest user and
operator.

On input (Update, pidO) and (Update,User) from F BKA,S𝐵𝐾𝐴 inserts (Update)
into F BKA in the name of H.

When receiving leak (ssid) from F BKA, S𝐵𝐾𝐴 aborts if no entry (ssid, lin) is stored and
otherwise simulates Send(H, (lin)) from Fig. 7.4 and remembers 𝜗 .

On input (Process_Back_Onion, (ct𝛼 , ct𝑠, ct𝑎, ctunv�⃗� , ctyU
), 𝜗) from H to F ORR,

S𝐵𝐾𝐴 loads and removes {H, lin, ct
∗
𝛼
, ct
∗
𝑠
, ct
∗
𝑎
, ct
∗
unv�⃗� , ct

∗
yU
} for the given (H, lin)

and aborts if they do not exist or differ from the values sent by H.

Figure 8.24.: The fourteenth part of the simulator with an honest operator and user and a corrupted helper:
Defines behavior for outsourcing a function f .

the correct value will be sent to the user. The OTPs otp𝑎, otpunv used to mask 𝑎 and
unv𝑎 were created by the user during the OS task and hence are also correct. Thus,
the only values that could be tampered with are ct𝑎 and ctunv�⃗� , which S4 has seen
during the OS task and hence, for which a consistency check suffices.

GAME5(^): During setup, the Common Reference String crs is now created by (crs, td𝑒𝑥𝑡) ←
SetupExt instead of following the honest Setup-protocol. The simulator stores the ex-
traction trapdoor td𝑒𝑥𝑡 . Also, the operator now leaks the signature key pair (vkO, kO)
to S5 during the Init-task, which is also stored by the simulator.

Lemma 8.2.4. For all PPT environmentsZ the advantage for distinguishing Game4(^)
from Game5(^) fulfills:

|Pr[Z(Game4(^)) = 1] − Pr[Z(Game5(^)) = 1] | ∈ negl(^)

Proof. Indistinguishability here follows from the CRS indistinguishability (cf. Sec-
tion 4.4.3) of the zero-knowledge scheme Zk. If any environmentZ could distinguish
the execution of the protocol when using crs created by crs← Setup from crs created
by (crs, td𝑒𝑥𝑡) ← SetupExt with probability 1

2 + 𝛼 , we can build a PPT-environment
Z′ that breaks the indistinguishability of the dual-mode property of Zk, by havingZ′
execute the code of all parties in its head. This leads to the same success probability
of 1

2 + 𝛼 , thus causing 𝛼 ∈ negl(^) by requirement of the chosen Zk-scheme.

GAME6(^): Introduces a new list for the simulator of tuples (pkU, pidU). Each entry means
that the user’s public keys pkU belongs to the user with pid pidU.

During simulation ofF Reg, afterZ gave instructions to send amessage (Register,
pkU) from the user with pid pidU for a corrupted user U to F Reg and simulation
succeeded (i.e. did not abort), S6 adds a new entry (pkU, pidU).

110

8.2. Operator Security

Simulator S𝐵𝐾𝐴
Simulator S𝐵𝐾𝐴 for the Update task against an honest operator and corrupted user
and helper.

On input (Update, pidO) from F BKA and after having received input
(Process_Onion,O, (comUH ,comUH

(1) ,com
UH
(2) ,comskU, ser,comser0, lin,

𝜋, 𝜋∗), P→, P←) from U to F ORR, S𝐵𝐾𝐴 looks up {lin, 𝛼, 𝑠,com𝑎, ctyU
} for the

given lin, aborts if no such entry exists or if ser was used before and otherwise
removes the entries from the database and remembers ser .
Then S𝐵𝐾𝐴 sets stmt ≔ (comUH , ser, lin,comskU, vkO) and aborts if
Zk.Verify(𝜋, stmt,ΛUpdate) = 0.
Otherwise, S𝐵𝐾𝐴 follows the protocol of the operator: If 𝛼 ≠ ⊥ or
𝑠 ≠ ⊥, S𝐵𝐾𝐴 sets stmt

∗ ≔ (comUH ,comUH
(1) ,com

UH
(2) , 𝛼, 𝑠) and aborts if

Zk.Verify(𝜋∗, stmt
∗,ΛTransfer) ≠ 1.

Regardless of 𝛼 and 𝑠 , S𝐵𝐾𝐴 extracts pkU from 𝜋 using Zk.ExtractWit(td𝑒𝑥𝑡 ,
𝜋, stmt,ΛUpdate) and aborts if there is no stored entry (pkU, pidU∗). Otherwise,
S𝐵𝐾𝐴 inserts (Update) into F BKA in the name of the extracted U∗ who belongs
to pidU∗ and H.

On output (Ok) from F BKA to H and (𝛼, 𝑠, 𝑎, yU) from F BKA to U∗, S𝐵𝐾𝐴 follows the
protocol of the operator to construct the new logbook and final message and simu-
lates sending (ctyU

,com𝑎, ser1,comser1,unvser1,comlin,unvlin, 𝜎UH
new) through

P
← in F ORR.

Figure 8.25.: The fiveteenth part of the simulator with an honest operator and corrupted user and helper:
Defines behavior for outsourcing a function f .

During simulation of the task for User Registration, after Z gave instructions to
send a message (𝜋,comskU,comser0) from a corrupted user to the operator, S6 takes
pk′U from 𝜋 (since it is contained in the statement of ΛUserReg) and aborts if either no
entry (pk′U, pidU) is stored or if a user with public key pk′U is already registered.

Lemma 8.2.5. For all PPT environmentsZ the advantage for distinguishing Game5(^)
from Game6(^) fulfills:

|Pr[Z(Game5(^)) = 1] − Pr[Z(Game6(^)) = 1] | ∈ negl(^)

Proof. The only difference between Game5(^) and Game6(^) is that S6 stores addi-
tional information in Game6(^) that was accessible even in Game5(^). Additionally,
this game introduces a new abort-criteria.

To show indistinguishability of Game5(^) and Game6(^) we thus have to show that
those two criteria are equivalent. In Game5(^) the operator fetches the key pkU

111

8. Security

belonging to pidU from F Reg, thus effectively asking (since Game2(^)) S6 for the
key that the user with pid pidU registered there. Thus, instead of S6 simulating F Reg
and giving the operator the key pkU so O can verify that pkU is the one that was
used in 𝜋 , S6 now follows these steps. Only that due to the simulation of F Reg, no
further interaction is required to obtain pkU. Hence, aborts in Game5(^) due to a
duplicate or mismatching pkU occur if and only if aborts in Game6(^) happen due
to a duplicate or mismatching pkU. Thus, both distributions from Game5(^) and
Game6(^) are equivalent.

GAME7(^): Whenever a corrupted user enters a message containing a ZK proof 𝜋 into
F ORR during any of the tasks for BK, OS or Upd, S7 uses the trapdoor td𝑒𝑥𝑡 to extract
the witness wit from 𝜋 . The simulator only uses the extracted public key pkU in
order to get the pid pidU by looking for an entry (pkU, pidU) in the list. If no such
entry exists for the given public key the simulator aborts.

Lemma 8.2.6. For all PPT environmentsZ the advantage for distinguishing Game6(^)
from Game7(^) fulfills:

|Pr[Z(Game6(^)) = 1] − Pr[Z(Game7(^)) = 1] | ∈ negl(^)

Proof. Extraction is possible due to the different crs introduced in Game5(^) and
the fact that the interesting part of the witness only has elements from the target
group; the ZK scheme provides 𝐹ppG

-extractability (cf. Section 4.4.4) and the witness
contains the secret key skU, so 𝐹ppG

-extractability suffices to extract g
skU
1 = pkU.

As the secret key skU is contained in all three relevant languages as a witness (see
Figs. 7.12, 7.17 and 7.22) it can always be extracted. The user found by searching an
entry (pkU, pidU) is the correct user due to the completeness of the ZK scheme and
the setup F Reg.

Assume for the sake of contradiction that S7 aborts in Game7(^) because pidU = ⊥,
but S6 would successfully terminate in Game6(^). The following behavior by the
user U could have caused this:

U proved a faulty statement. The correctness property of Zk would cause this to be
detected in Game6(^) by O with overwhelming probability, thus causing an
abort.

U changed the commitmentcomskU in the statement. Then the proof of equivalence
between com∗skU and the rerandomized comskU would have to be forged, thus
breaking the statement of 𝜋 . This would also cause an abort in Game7(^), due
to the correctness of Zk.

U openedcomskU to to a different pk′U. Here, the binding-property of the commit-
ment scheme Com would be violated. Since we assumed Com to be uncondi-
tionally binding, this cannot occur.

112

8.2. Operator Security

U created its own signature. In case the user U created a signature 𝜎UH on a new
logbook _′ containing a public key pk′U ≠ pkU without knowing the operator’s
secret key kO, U would break the unforgeability of Sig. By requirement on Sig,
this is possible only with probability negligible in ^.

The reverse is also true; if the operator discards the proof 𝜋 in Game6(^), then the
same happens in Game7(^), as this part has not been changed.

GAME8(^): Introduces an incorruptible entity F BKA that follows the specification from
Figs. 6.1 and 6.2 into the experiment. The entity is only accessible by honest parties
and the simulator through subroutine input/output tapes.

Lemma 8.2.7. For all PPT environmentsZ the advantage for distinguishing Game7(^)
from Game8(^) fulfills:

|Pr[Z(Game7(^)) = 1] − Pr[Z(Game8(^)) = 1] | ∈ negl(^)

Proof. Indistinguishability of those two games trivially follows; the new machine is
only accessible by honest parties, who follow the protocol. Their protocol description
in Game8(^) does not include any access to F BKA. The simulator doesn’t access
F BKA either, so the two distributions of Game7(^) and Game8(^) are statistically
close and hence, the best any PPT-environmentZ can do is guessing.

GAME9(^): Replaces the Trusted Signing Authority Twith a dummy party that immediately
forwards its input to the ideal functionality F BKA and to the simulator S9. All
interactions of T are simulated by S9 by following the original protocol, who also
stores the relevant information for the TSA.

Lemma 8.2.8. For all PPT environmentsZ the advantage for distinguishing Game8(^)
from Game9(^) fulfills:

|Pr[Z(Game8(^)) = 1] − Pr[Z(Game9(^)) = 1] | ∈ negl(^)

Proof. Indistinguishability of the two games directly follows from the facts that
(1) both tasks for Init and SFP that contain the TSA T are executed with an honest
operator O, and (2) the input used by the simulator is the same that would have
been used by the TSA. As such, this gamehop is only a cosmetic change where the
same code is executed on the same values, only by a different party. This implies
indistinguishability based on the fact that in the view of Z the two games are
equivalent.

GAME10(^): This game extends the state of the simulator by an additional list of tuples
(fp,comfp,unvfp, 𝜎 fp) which contains information on the FPs which are eligible for
the computations of functions in BK and OA.

Replaces the operator O with a new operator O′ that acts like the original one, but
has a few minor changes. After having confirmation that FPs fp can be used for a
function f during Sign Function Parameter, O′ sends (fp, f) to S10. The simulator

113

8. Security

then computes comfp as commitment on the actual FPs and 𝜎 fp as corresponding sig-
nature using the signing key of the TSA and stores the tuple (f, fp,comfp,unvfp, 𝜎 fp).
Furthermore, the new operator sends the FPs to S10 during BK and OA tasks and
uses the (comfp, 𝜎 fp) obtained from S10, which the simulator obtains by looking if
an entry (fp, ·, ·, ·) has been stored.

Also, during simulation of FMPC, S10 uses the stored unveil information to verify
the commitment comfp the user or helper input into FMPC.

Lemma 8.2.9. For all PPT environmentsZ the advantage for distinguishing Game9(^)
from Game10(^) fulfills:

|Pr[Z(Game9(^)) = 1] − Pr[Z(Game10(^)) = 1] | ∈ negl(^)

Proof. The rewriting is purely cosmetically, as essentially the same code is executed
on different machines. In Game9(^), the commitment comfp is computed by the
operator, the signature 𝜎 fp is computed by the TSA, and the resp. values are fetched
by the operator prior to a computation with FMPC. In Game10(^), all these steps are
done by the simulator. Since the TSA is honest and its key has been created by S10
(since Game9(^)) and the relevant information for comfp and 𝜎 fp are leaked by O,
the honest code can be executed directly.

Finally, the last change induced is the replaced check with the unveil information.
Since this is essentially a rewriting, as the same values are now fetched by the
simulator instead of the operator, this change is purely cosmetically and hence
undetectable.

GAME11(^): Replaces the operator O′ by a dummy party, which, when receiving input by
Z, forwards the input immediately to F BKA. During the tasks for BK and OA, the
new operator O also leaks the input xO and fp to S11. All messages that were sent
by the operator in Game10(^) are now created by S11 in Game11(^) and sent in the
name of O.

Lemma8.2.10. For all PPT environmentsZ the advantage for distinguishingGame10(^)
from Game11(^) fulfills:

|Pr[Z(Game10(^)) = 1] − Pr[Z(Game11(^)) = 1] | ∈ negl(^)

Proof. O is a PPT-machine, which executes code based on the secret input from
Z. Knowing this input from the leak, S11 can execute the code of the honest O by
following the protocol. This trivially leads to indistinguishability.

GAME12(^): Instead of storing (f, fp,comfp,unvfp, 𝜎 fp) for FPs (cf. Game10(^)) the simu-
lator now stores only (f, ℓ,comfp, 𝜎 fp), i.e. the simulator no longer stores unvfp and
only stores an identifier ℓ instead of the actual FPs.

Instead of relying on the leaked FPs for a mapping, S12 uses the leak ℓ obtained from
F BKA to obtain a consistent (comfp, 𝜎 fp) tuple. Furthermore, instead of creating
these tuples honestly, S12 uses the leaked (f, ℓ) obtained during the Sign Function

114

8.2. Operator Security

Parameter task to sample a new (com0⃗,unv0⃗) ← Com.Com(0⃗) on the all-zero vector
0⃗ of appropriate size (which is fixed given an instantiation of f) instead of a genuine
commitment comfp on fp, and uses the signing key kT to sign com0⃗ and the given
function f . The resulting tuple (com0⃗, 𝜎 fp) is then stored as tuple (f, ℓ,comfp, 𝜎 fp)
and used whenever F BKA leaks the index ℓ during BK or OA.

Lemma8.2.11. For all PPT environmentsZ the advantage for distinguishingGame11(^)
from Game12(^) fulfills:

|Pr[Z(Game11(^)) = 1] − Pr[Z(Game12(^)) = 1] | ∈ negl(^)

Proof. The major change induced in this game hop has the simulator reporting
valid zero-commitments instead of valid commitments on the FPs. Let Z be an
environment that distinguishes the two games from Game11(^) and Game12(^). We
construct an adversaryA that breaks the hiding property of the commitment scheme
Com, which we model similar to IND-CPA for encryption schemes. We adapt the
LR-view, stating that the challenger C on the hiding game provides us with an oracle
that accepts two different inputs, but outputs a valid commitment on a fixed one of
them.

The adversary A can thus create the transcript from Game11(^), but whenever a
commitment comfp on the FPs fp is required, A sends the two messages (0⃗, fp) to C
and obtains a commitment on one of them.

Note that if the commitment always uses the former entry, A perfectly simulates
Game12(^), and if the commitment always uses the latter entry,A perfectly simulates
Game11(^).

It thus follows that the success probability ofZ in detecting this game hop is limited
by the probability of A to break the hiding game, which is negligible.

GAME13(^): Replaces all honest users U by dummy parties, which, when receiving input
byZ, forward the input immediately to F BKA. During the tasks for BK and OA the
new user machines U also leak the input xU to S13. All messages that were sent by
honest user U in Game12(^) are now created by S13 in Game13(^) and simulated via
F ORR in the name of U.

Note that all leaks by F BKA are ignored by S13.

Lemma8.2.12. For all PPT environmentsZ the advantage for distinguishingGame12(^)
from Game13(^) fulfills:

|Pr[Z(Game12(^)) = 1] − Pr[Z(Game13(^)) = 1] | ∈ negl(^)

Proof. The case here is similar to that from Lemma 8.2.10. S13 can execute the code
of any honest user U since honest user reveal their identity to S13; by leaking the
secret input, S13 can follow the protocol of U from Game12(^). Indistinguishability
follows.

115

8. Security

GAME14(^): Replaces all helpers H with dummy parties, which, when receiving input
by Z, forward the input directly to F BKA. All messages that were sent by honest
helpers H in Game13(^) are now created by S14 in Game14(^) and send in the name
of H.

Note that (for now) all leaks by F BKA are ignored by S14.

Lemma8.2.13. For all PPT environmentsZ the advantage for distinguishingGame13(^)
from Game14(^) fulfills:

|Pr[Z(Game13(^)) = 1] − Pr[Z(Game14(^)) = 1] | ∈ negl(^)

Proof. The helper itself has no secrets, so no leaks are required here. Hence, all
messages of H depend only on messages it has seen before. Since S14 can see those
messages as well andH is a PPT-machine, S14 can execute the code of honest helpers,
resulting in an indistinguishable distribution from Game13(^).

GAME15(^): S15 now calls the ideal functionality F BKA in the name of the corrupted
parties with the correct input. This causes F BKA to fully perform as defined by its
specification, as all inputs are provided. Hence, instead of computing the function f
on the inputs in order to simulate FMPC, S15 now relies on the leaks provided by
F BKA.

This game also extends the state of the simulator by a list of tuples (ssid, lin) that
groups the ssid of the OS task with the negotiated linking number lin.

S15 obtains the input for the corrupted parties as follows:

User Registration, U corrupted, O honest. For UReg there is no secret input, so S15
only calls F BKA in the name of the userUwith input (UserRegistration)
after storing the entry (pkU, pidU).

Bookkeeping, U corrupted, O honest. AfterZ gave instructions to send (Compute,
f, (UH ,comfp,unvUH , xU)) in the name of a user U to FMPC, S15 uses the
extracted pidU (see Game7(^)) to obtain the user U∗ who registered for the
used public key pkU. After verifying that the commitments on the UH and
FPs are valid (see Game12(^)), S15 calls F BKA in the name of U∗ with input
(Compute, f, xU) where xU has been extracted from the input of the user to
FMPC.

Since F BKA now has complete input, S15 obtains leaks. Hence, instead of
computing f in his head, S15 uses the output

(︁
𝛼, 𝑠, 𝑎, yU

)︁
from F BKA to U in

order generate the output of FMPC to U by first computing valid a commitment
(com𝑎,unv𝑎) ← Com.Com(𝑎) and then reportingmessage (𝛼, 𝑠, 𝑎,com𝑎,unv𝑎,
yU) as output from FMPC to the user U.

Outsource, U corrupted, O and H honest. S15 can extract the input of the user by
combining the shares that the user sent to the operator and helper, respectively.
As those are visible to the simulator due to simulation of F ORR S15 can use
Combine on the shares to reconstruct the actual values completely.

116

8.2. Operator Security

Once Z has instructed to follow Send(H, (rs(H)
UH
, rs
(H)
xU , rs

(H)
otp
)) and Send(O,

(rs(O)
UH
, rs
(O)
xU , rs

(O)
otp
, ser

∗,comser,comser0,comskU, 𝜋)),S15 uses the extracted shares
from both the operatorO and the helperH to reconstruct xU ≔ Combine(rs(H)

xU ,

rs
(O)
xU); if this fails, S15 sets xU ≔ ⊥2. S15 calls F BKA in the name ofUpidU

, where
pidU corresponds to the user whose identity was extracted from 𝜋 , using input
(Outsource, f, xU).

Outsource, U honest, O honest, H corrupted. H is designed to neither learn secrets,
nor to have secrets itself. Simulator S15 calls F BKA in the name of H with input
(Outsource, f). Also, S15 stores a new entry (ssid, lin) after negotiating the
linking number.

Outsource, U and H corrupted, O honest. S15 calls F BKA for both the helper (who
has no secret input whatsoever) and the user U∗ (who was identified using pkU
extracted from 𝜋 since Game7(^)), but using xU ≔ ⊥.

Outsourced Analytics, H corrupted, O honest. Since Game11(^), S15 maintains the
list for the outsourced information that is to-be-used for OA that an honest
operator would store. As S15 follows the operators code (since Game11(^)) it
stores all the tuples (linnew, rs(O)

UH
, rs
(O)
xU , rs

(O)
otp
) during the Outsource task; given

the additional inputs from simulation of FMPC S15 now has a complete view of
the used shares.

After the corrupted helper has inserted (Compute, f, (comfp, {(rs(H)
UH
, rs
(H)
xU ,

rs
(H)
otp
)Z }ZZ=1)) to FMPC, S15 restores each input using the information stored in

for the helper during OS and aborts if the reconstruction via Combine fails.
When asked by F BKA for inputs for an index set {Z} ⊂ [Z f] of corrupted users
{UZ }, S15 enters the inputs xU from the respective indices.

Reconstruction of the output now only happens for parties Z in the corrupted
party set; information related to honest parties (ct𝛼Z

, ct𝑠Z
, ct𝑎Z

, ctunv�⃗�Z
, ctyUZ

) is
drawn at random and put to the list of UI maintained by the simulator for the
helper.

Update, any corrupted party. The inputs to the Update-task contain no secrets. S15
can call F BKA in the name of any corrupted party with input (Update) as
soon as the party has shown to be active by sending a message. For corrupted
users, S15 awaits the proof 𝜋 to extract the correct user. For corrupted helpers,
S15 awaits their first message. Also, if only the helper is corrupted, S15 awaits
the leaked ssid ssid from F BKA to look up if a tuple (ssid, lin) has been stored.
This tuple is then used to construct the first message from the user to the helper.

2 Note that the simulator does not abort here since in a real execution, the helper and operator would not
notice that the robust shares are invalid until they are reconstructed in OA and we have to follow that as
otherwise this would be a way to distinguish the two games.

117

8. Security

Lemma8.2.14. For all PPT environmentsZ the advantage for distinguishingGame14(^)
from Game15(^) fulfills:

|Pr[Z(Game14(^)) = 1] − Pr[Z(Game15(^)) = 1] | ∈ negl(^)

Proof. Indistinguishability of Game14(^) and Game15(^) follows from the fact that
in both cases the messages depend on exactly the same values. Essentially, the same
code is executed, only by different machines; the game hop is only a cosmetically
one.

In more detail, the situation looks as follows:

User Registration, U corrupted, O honest. Here, the definition ofF BKA andS15, who
calls F BKA with the correct inputs xU, implies correct behavior. The input xU
is correct due to the extractability and the pid is correct as a wrong pid would
require breaking the security of the ZK scheme or that of the implicit identifi-
cation scheme by computing the secret key skU given only the public key pkU
stored in F Reg.

Bookkeeping, U corrupted, O honest. In Game14(^), each user maintains the log-
book _ with the corresponding User History UH directly. In Game15(^), F BKA
executes the same function f on the inputs to F BKA, that the simulator com-
puted in Game14(^). In Game15(^), the correct—and latest—input is used by
definition of the ideal functionality. The transfer values (𝛼, 𝑠, 𝑎) are output to
U and hence visible to S15 and the commitment and decommitment on 𝑎 is
computed directly by S15. If this value would have been the same in Game14(^)
then indistinguishability for any execution of the BK-task trivially follows; the
best any PPT-environmentZ could do here is to guess.

So assume that there is some set of inputs that enables Z can differentiate
between Game14(^) and Game15(^) notably better than guessing based on the
BK task. Since the computation performed by the simulator in Game14(^) is
exactly the same as the one F BKA does in Game15(^) andZ cannot lie about xU
(as it is input into FMPC), the only wayZ could try to win here is by providing
different input UH . There are different waysZ could achieve that:

• Z provides a wrong proof regarding 𝜎UH . Then, we could build an envi-
ronment that either forges a signature 𝜎UH and uses an honest witness,
or fakes a proof 𝜋 and uses a false witness. The former would contra-
dict our EUF-CMA requirement for Sig, the latter would contradict the
soundness-property required for Zk.

• Z provides the correct information of a different corrupted user U′. We
assumed Sig to be EUF-CMA-secure, thus assuring unforgeability of the
signature 𝜎UH on _. Hence, S15 would extract the public key pkU of U′ and
look up a tuple (pkU, pidU) and provide input to F BKA in the name of U′
who corresponds to the pid pidU. Thus, F BKA uses the same UH that would
have been used by the simulator in Game14(^).

118

8.2. Operator Security

Hence, assuming that F BKA internally updates UH correctly (which we will
show for the other tasks as well), this change cannot be used to increase the
chance ofZ to differentiate.

Outsource, U corrupted, O and H honest. Here, too, indistinguishability trivially fol-
lows from the correctness of inputs; we merely copied the reconstruction of
shares for this scenario from OA to OS. Those are input directly into F BKA,
where they are used later. The shares rs

(H)
xU and rs

(O)
xU are either correct, in which

case F BKA will use them accordingly during OA. Or they are not, in which
case S15 sets xU ≔ ⊥; the reconstruction Game14(^) would fail during the
OS-task, which also happens in Game15(^). With the two parties performing
OA being honest, no further problems arise during the subsequent execution.
The extraction of pkU further removes the ability ofZ to cheat by letting S15
send input to F BKA in the name of the wrong user.

Outsource, U and O honest, H corrupted. In this case, it is not possible to cheat with-
out being detected. By knowing the inputZ would have given to H, S15 can
mimic the behavior of an honest dummy helper and forward it into F BKA.

Outsource, U and H corrupted, O honest. The correct user U can be determined via
extraction of 𝜋 , so no environment Z cannot use two different users for the
two games here. However, in this task, S15 information-theoretically cannot
determine the correct input xU, as it only sees one part rs

(H)
xU of the additive

sharing—the second part, rs(O)
xU , is sent between two corrupted parties and hence

not visible for S15. However, in the subsequent OA execution, S15 learns the
shares that the user sent to the helper through the inputs that the helper inserts
into FMPC. There, S15 can reconstruct xU. Note that there is no difference
between S15 learning the input during the OS task and inserting it into F BKA
right away and S15 learning it during the OA task, since F BKA allows S15 to
update the input xU for all corrupted users before starting the computation
during Outsourced Analytics. Thus, the same input xU is used in both games.

Outsourced Analytics, H corrupted, O honest. Here, S15 still uses the same shares
for the operator in both games and receives (and verifies) all helper-shares
input into FMPC in both games, there is no direct change here. The only new
thing is the equivocation of xU for corrupted users. This change was already
discussed above; the remaining protocol remains equivalent, since S15 only
does in Game15(^) what honest parties would do in Game14(^).

Update, U corrupted, H and O honest. The values that determine the messages are
still equivalent in both games. The values that the simulator stores for Upd
during OA for the helper and operator are the same, so both just follow the
same protocol. As nothing is done with the output of F BKA, distinguishing here
is not possible.

Update, U and O honest, H corrupted. The linking number that was sent as leak by
the user to the simulator in Game14(^) trivially equals the linking number that

119

8. Security

S15 obtains by looking up (ssid, lin) for the leaked ssid. During the OS task,
assuming lin is sampled from a sufficiently large space, the probability that the
entry (ssid, lin) being unique becomes overwhelming. During the Upd task, this
does not change. If this wouldn’t be the case,Z would have to create a duplicate
lin, which, with Blum coin toss, is possible only with negligible probability.
Even then, S15 in Game15(^) would use the correct linking number lin. Note
further thatZ has no way on how to lie about ssid.

Update, U and H corrupted, O honest. Here, the simulator only has to ensure that
the interaction between the operator and the user is canonical. Again, nothing
here depends on the output of F BKA, it is only called to keep the functionality
in a consistent space. Hence, the changes induced here provide no advantage to
Z in distinguishing the two games.

GAME16(^): Extends the state of the simulator by two additional lists of tuples which rep-
resent what the honest operator would store during OS and what the helpers would
store for OA. For the operator the simulator stores tuples (pidH, f, lin, rs

(O)
UH
, rs
(O)
xU , rs

(O)
otp
)

and for the helpers, S16 stores tuples (pidH, f, lin, rs
(H)
UH
, rs
(H)
xU , rs

(H)
otp
).

The map is used during the tasks for OS and OA:

Outsource, U, H and O honest. S16 adds a vector of empty entries (⊥, . . . ,⊥) to both
lists.

Outsource, U corrupted, H and O honest. lin
new is now randomly sampled by S16,

which replaces the coin-toss of O and H.

After Z instructed a corrupted party to send (rs(O)
UH
, rs
(O)
xU , rs

(O)
otp
, ser

∗,comser,

comser0,comskU, 𝜋) to the operator via F ORR, S16 adds a new entry (pidH, f, lin,
rs
(O)
UH
, rs
(O)
xU , rs

(O)
otp
) to the list corresponding to the view of the operator, and after

receiving instructions from Z to send a message (rs(H)
UH
, rs
(H)
xU , rs

(H)
otp
) from the

user to the helper, S16 adds a new entry (pidH, f, lin, rs
(H)
UH
, rs
(H)
xU , rs

(H)
otp
) to the

view of the helper.

Outsource, U and O honest, H corrupted. When the honest user is supposed to cre-
ate shares of UH , xU and otp, S16 creates shares of the zero-vector using
Share(0⃗) and uses those in the same way the user uses the actual shares
in the protocol. After having the linking number lin created honestly, S16 stores
the values for the operator only and does not store any additional values for
the view of the helper.

Outsource, U and H corrupted, O honest. S16 follows the protocol of O regarding
the stored information for OA. That is, after Z instructed a corrupted party
to send (rs(O)

UH
, rs
(O)
xU , rs

(O)
otp
, ser

∗,comser,comser0,comskU, 𝜋) to the operator via
F ORR, and after S16 took the role of the operator in honestly computing the

120

8.2. Operator Security

linking number, the simulator adds (pidH, f, lin, rs
(O)
UH
, rs
(O)
xU , rs

(O)
otp
) to its view of

the operator.

Lemma8.2.15. For all PPT environmentsZ the advantage for distinguishingGame15(^)
from Game16(^) fulfills:

|Pr[Z(Game15(^)) = 1] − Pr[Z(Game16(^)) = 1] | ∈ negl(^)

Proof. We claim indistinguishability based on the fact that the two distributions from
Game15(^) and Game16(^) are indistinguishable.

First, notice that the binary outcome of a Blum coin toss and a uniformly random bit
cannot be differentiated better that by guessing, so this change doesn’t provide any
distinguishing advantage.

To support our claim also regarding the new lists of outsourced information for OA,
let’s consider all possible corruption cases:

H honest, O honest. In case the user is also honest, the functionality F BKA directly
obtains input from the respective parties during the Outsource task, which
causes F BKA to load the correct UH UH and to use the input xU provided
by that user. Hence, the simulator has to only remember that honest parties
provided input, not what these inputs were. Thus, inserting the special symbol
⊥ to keep the list size consistent suffices, since those values are never used
again.

In case the user is corrupted the environmentZ has to send shares rs
(H)
(·) and

rs
(O)
(·) in the name of the user to the helper and the operator, respectively. Neither

of them are corrupted, so S16 can see both messages. Since neither the operator
nor the helper have secret inputs here, S16 can follow the honest protocols,
thus producing the same distribution.

H corrupted, O honest. If the user is honest then S16 has to send messages contain-
ing valid shares of Us input, without actually knowing the input. Thus, S16
distributes zero-shares; the environment Z can see only the part sent to the
helper, not the ones sent to the operator. Obviously, no environment Z can
distinguish its part of the zero-sharing obtained in Game16(^) from a valid
sharing of the respective user input from Game15(^) better than by randomly
guessing; the additive shares information-theoretically hide the original mes-
sage and the commitments to the other share are hiding so that they don’t reveal
the respective other share. Hence, those distributions look equivalent. The
simulator follows the protocol of the operator regarding the stored information
honestly, which causes no difference in the distributions.

Against a corrupted user U, S16 directly follows the protocol of the operator,
thus causing the same distribution.

121

8. Security

Note that the final corruption case where both the helper and the operator are
corrupted is excluded because we assume that both cannot be corrupted at the
same time. Since all possible cases cause indistinguishable distributions, our claim
follows.

GAME17(^): All remaining honest parties are replaced by dummy parties, which, upon
receiving input byZ, only forward their input into F BKA.

Lemma8.2.16. For all PPT environmentsZ the advantage for distinguishingGame16(^)
from Game17(^) fulfills:

|Pr[Z(Game16(^)) = 1] − Pr[Z(Game17(^)) = 1] | ∈ negl(^)

Proof. Again, indistinguishability follows from the fact that the messages sent are
still the same. All the leaks sent by honest parties to the simulator in Game16(^) are
ignored, the messages are independent of any leaks still sent by the semi-dummy
parties: the only change between Game16(^) and Game17(^) is with respect to the
auxiliary inputs xO and xU. Both are input to F BKA directly by the respective dummy
party and used there accordingly. Hence, the change induced by Game17(^) doesn’t
change the view ofZ at all, which makes indistinguishability trivial.

GAME18(^): All messages between honest parties are simulated by having S18 report
messages of correct length, but which only contain zero-bits. Consequently, all
operations that do not result in messages are removed.

Lemma8.2.17. For all PPT environmentsZ the advantage for distinguishingGame17(^)
from Game18(^) fulfills:

|Pr[Z(Game17(^)) = 1] − Pr[Z(Game18(^)) = 1] | ∈ negl(^)

Proof. As messages between the operator and helper are sent via F SMT (as are
messages between user and operator during UReg) those messages are secure, and
changing them to the all-zero string cannot be detected by definition as the adversary
only learns the messages length (see Section 4.5.2.3). For anonymous messages all
messages are sent through F ORR (see Section 4.5.2.4) where the respective function-
ality is designed such that leaks that contain the message only occur if: (1) at any
point, all remaining mix-servers and the receiver are corrupted, or (2) the sender is
corrupted. Otherwise, the adversary only learns a random id 𝜗 alongside the next
consecutive group of corrupted mix servers until the next honest server.

Fortunately, we can rule out both cases that leak themessage by requirement. We only
replace messages for honest-honest communication, i.e. communication wherein
both parties are honest. Hence, neither is the sender corrupted, nor the receiver.

Thus the message is never leaked by F ORR to the adversary, which makes the change
from a protocol message to a zero message of appropriate size undetectable for any
environmentZ.

122

8.2. Operator Security

GAME19(^): During the UReg-task with an honest user, instead of honestly creating a user
secret key skU and computing a public key from it, S19 samples a random public key
pkU

$←𝐺1 directly.

Lemma8.2.18. For all PPT environmentsZ the advantage for distinguishingGame18(^)
from Game19(^) fulfills:

|Pr[Z(Game18(^)) = 1] − Pr[Z(Game19(^)) = 1] | ∈ negl(^)

Proof. By assumption on the group ppG1,G2,G𝑡
a public key is uniformly distributed

in G1. Any environment Z distinguishing Game18(^) and Game19(^) based on
pkU would violate this assumption. The simulator now lacks knowledge of the
corresponding secret key skU. However, note that skU is never used in Game18(^),
so S19 can create a similar distribution in Game19(^) independently of skU.

GAME20(^): If the helper is corrupted and the user and operator are honest during the
execution of the OS task, S20 changes its behavior. Instead of verifying the entire
logbook by checking the commitments and signature, S20 only verifies that the
linking number lin received by the helper confirms with the two shares lin

(O) + lin
(H) .

Lemma8.2.19. For all PPT environmentsZ the advantage for distinguishingGame19(^)
from Game20(^) fulfills:

|Pr[Z(Game19(^)) = 1] − Pr[Z(Game20(^)) = 1] | ∈ negl(^)

Proof. Indistinguishability of the two games easily follows from the fact that in
Game19(^), the only corrupted party is the helper and the only value depending on
the helper is lin. Hence, verification only fails iff the helper sent a wrong linking
number lin. This is still the case in Game20(^), thus making indistinguishability
trivial.

Thus, with Game1(^) being the real world and Game20(^) corresponding to the ideal
world with a simulator acting as described above, we have proven the protocol Π𝐵𝐾𝐴 to be
as secure as the functionality F BKA.

Thus, we can now finally prove our final security statement:

Corollary 8.2.20 (System Security). For all environments Z who statically corrupted a

subset U′ ⊆ U and the helper H, it follows that if the building blocks are instantiated as

required in Section 5.3:

Π
F CRS,F Reg,F SMT,FMPC,FORR

𝐵𝐾𝐴
≥ F BKA

We have shown in Lemma 8.2.1 to Lemma 8.2.19 that for an honest operator, the simulator
S acting in the ideal world can provide a view forZ that is indistinguishable from a real
execution of the protocol:

viewZ,A,Π𝐵𝐾𝐴 ≈𝑐 viewZ,S,F BKA

Thus, by combining Corollaries 8.1.22 and 8.2.20, our main claim follows:

123

8. Security

Corollary 8.2.21 (Security). Assuming the building blocks from Section 5.3, then for all

environments Z who do not corrupt the operator O and the helper H at the same time, it

holds that

Π
F CRS,F Reg,F SMT,FMPC,FORR

𝐵𝐾𝐴
≥ F BKA

We thus have proven our protocol Π𝐵𝐾𝐴 to be at least as secure as the ideal functionality
F BKA.

124

9. Example Applications

In this section we sketch two privacy-preserving applications, namely fraud detection
for mobile payments and a targeted advertisement network, and show how they can be
instantiated as a function for F BKA.

However, we only copied this section from the paper of Fetzer et al. [70, Section 4 and
Appendix F] with a few minor adjustments to compensate for the changes applied to the
protocol and functionality in this dissertation compared to the conference paper. So we
stress that this chapter does not count as contribution of this dissertation and is only
included to provide a better intuition on how instantiations of the function f can look
like.

9.1. Fraud Detection for Mobile Payments

In the European Central Bank’s latest report on card fraud [19] published in 2018, the
total value of fraudulent transactions at points-of-sale in 2016 amounted to about 342
Million Euro. This number sounds high, yet it only amounts to 0.008% of the overall
card transaction value. This small ratio is achieved mainly thanks to the use of “strong
authentication” methods like Chip&Pin as well as fraud detection mechanisms as required
by the 2nd European Payment Services Directive (PSD2).

We define a privacy-preserving mobile payment system including fraud detection capabili-
ties. The operator in this system is the bank that offers the mobile payments service to
its customers. These are the users in our system who interact using a smartphone App.
Fraud detection consists in monitoring a customer’s transactions for anomalies or typical
fraud patterns. This can be done based on simple rules or sophisticated machine learning
algorithms. Due to the real-time requirements, the combination of fraud detection with
privacy for mobile payments is particularly challenging. To this end, we consider the
following two-tier mechanism: We force the user to perform a more complex machine
learning based fraud detection with the operator if some threshold of payment transactions
has been reached, resulting in some risk level, and a simple but faster rule-based fraud
detection during each payment at a point-of-sale. The latter takes the risk level into
account and decides whether the current transaction is accepted or declined.

125

9. Example Applications

Function fmpayment

Initialize(fp ≔ ⊥, xU ≔ (rsk, rem,max), xO ≔ (rsk, rem,max))
if xU ≠ xO then abort
UH ≔ (⊥, . . . ,⊥, rsk, rem,max, 0)
return (UH , yU ≔ Ok, yO ≔ Ok)

Top-Up(fp ≔ ⊥,UH , xU ≔ val, xO ≔ val)
if xU ≠ xO then abort

return (𝛼 ≔
(︂

0 ... nume−1
0 ... nume−1

)︂
, 𝑠 ≔ (⊥, . . . ,⊥), 𝑎 ≔ (0, . . . , 0, val), yU ≔ Ok, yO ≔ Ok)

Payment(fp ≔ ⊥,UH , xU ≔ (ts, loc, type, tval), xO ≔ (ts, loc, type, tval))
if xU ≠ xO then abort

(t1
1 , . . . , t

1
5 , . . . , t

T

1 , . . . , t
T

5 , rsk, rem,max, bal) ≔ UH

if bal < tval then

return
(︂
𝛼 ≔

(︂
0 ... nume−1

0 ... nume−1

)︂
, 𝑠 ≔ (⊥, . . . ,⊥), 𝑎 ≔ (0, . . . , 0), yU ≔ ⊥, yO ≔ ⊥

)︂
acc ≔ f fdsimple(UH , (ts, loc, type, tval))
(tnew1 , . . . , tnew5) ≔ (acc, ts, loc, type, tval)
if acc = 1 then bal

diff ≔ tval

else bal
diff ≔ 0fi

𝛼 ≔
(︁ 0 ... 4 5 ... 9 ... 5T−5 ... 5T−1 5T ... 5T+3

5T−5 ... 5T−1 0 ... 4 ... 5T−10 ... 5T−6 5T ... 5T+3
)︁

𝑠 ≔ (tnew1 , . . . , tnew5 ,⊥, . . . ,⊥)
𝑎 ≔ (0, . . . , 0, 0,−1, 0,−bal

diff)
return (𝛼, 𝑠, 𝑎, yU ≔ acc, yO ≔ acc)

Risk Calculation(fp, (UH , xU ≔ ⊥), xO ≔ ⊥)
(t1

1 , . . . , t
1
5 , . . . , t

T

1 , . . . , t
T

5 , rsk, rem,max, bal) ≔ UH

(rsknew, rem
new,max

new) ≔ f fdcomp(fp,UH)
𝑠 ≔ (⊥, . . . ,⊥, rsknew,⊥,max

new,⊥)
𝑎 ≔ (0, . . . , 0, 0,−rem + rem

new, 0, 0)

return (𝛼 ≔
(︂

0 ... nume−1
0 ... nume−1

)︂
, 𝑠, 𝑎, yU ≔ Ok), yO ≔ Ok

Figure 9.1.: Instantiation of f for privacy-preserving mobile payments with fraud detection.

126

9.1. Fraud Detection for Mobile Payments

Each time the user conducts a payment at a point-of-sale, a new transaction is created and
stored in the UH. We assume that a transaction record t consists of the following data
encoded as vector of Zo elements:

t ≔ (acc, ts, loc, type, tval),

where acc is one iff the transaction has been accepted, ts is a timestamp, loc indicates
the geographic location the transaction took place, type describes the type of shop (e.g.,
grocery store, jewelry store, etc.), and tval is the transaction value. We stress that this is
only an example, adding other attributes is pretty straightforward.

The UH contains the latest T transaction records, the user’s balance bal and some important
additional information to support the fraud detection mechanisms. These additional
information include the account’s current risk level rsk, a maximum value max a single
transaction can have, and a limit rem on the number of payment transactions a user can
perform before the complex fraud detection mechanism has to be run. Note that the latter
two values depend on the current risk level.

Thus, the UH has the following form:

UH ≔ (t1
1 , . . . , t

1
5 , . . . , t

T

1 , . . . , t
T

5 , rsk, rem,max, bal)

The first 5T slots store the last T transactions (each transaction t
𝑖 requires 5 slots), t

1 is
the most recent transaction. The UH has a total length of 5T + 4 entries.

We now describe the individual tasks a user can perform. The details of the function
fmpayment can be found in Fig. 9.1.

Registration. During UReg the user obtains an empty UH with an empty balance and
no stored transactions using the User Registration task. We assume that right after that,
the user and the operator immediately call the BK task with the initial registration (thus
making it linkable, but since the values are known this level of leakage is not a problem
since all following interactions are anonymous). Both parties input the initial values for
the risk level, the remaining number of transactions and the maximum transaction value,
i.e., (rsk, rem,max). The values rem and max can either be fixed constants or depend on
the risk level. Alongside empty transactions, those are written into the new UH.

Top-Up. The user can top-up the balance of his account, which is internally realized
with a BK task. As the mobile payments service is prepaid-based it is important that a
user can top-up the balance. We propose a general method where user and bank agree
on the amount that should be topped up and leave the actual transfer of money to the
implementation method, such as anonymously depositing money at an ATM or making a
transfer from the normal bank account (which would be identifying). The user invokes a
BK task where both parties input the amount to be deposited, which is added to the user’s
balance. In our example, a top-up transaction is not recorded in the user’s transaction
history (although this might be reasonable). Note that only an addition is needed to update
the UH here.

127

9. Example Applications

Payment (with simple fraud detection). Before a payment is conducted, it is first checked
whether the payment is allowed or the threshold of payment transactions has been reached
and a risk calculation has to be performed first. Then, a light-weight fraud detection
mechanism is executed (based on the risk level). Depending on the result the payment
is either accepted or denied. To issue the actual payment, the user communicates with a
point-of-sale that has a communication channel with the bank and forwards all messages
between the user and the bank. The payment is performed by using the BK task where
both parties input all transaction details excluding the acceptance bit, i.e., timestamp,
location, type of shop and transaction value. The function aborts if the transaction
value exceeds the account’s balance. Otherwise, the simple rule-based fraud detection
mechanism f fdsimple is executed to decide whether the transaction is accepted or not based
on the last T transactions, the risk level rsk, the remaining number of transactions rem, the
maximum transaction value max, and the details of the current transaction. In our example
implementation in Section 10.4 we verify that the following conditions are all satisfied:
1. tval ≤ max (the transaction value does not exceed the allowed amount) 2. rem > 0 (the
number of payment transactions the user can perform before the complex fraud detection
mechanism has to be run has not exceeded its limit). Of course, additional checks could be
included: The transaction could be denied if the risk level is medium but there are more
than three transactions within a 10 minute period, or if two consecutive transactions differ
in their location so much that no user could have possibly traveled that far in such a short
time period.

The simple mechanism already provides a limited fraud protection which is lightweight
enough to be computed by the user’s resource-constrained device. As those simple mech-
anisms can be public, the user can evaluate the rule-based fraud detection by itself and
provide the point-of-sale with a ZK proof that it evaluated the mechanism correctly based
on its logbook. This can significantly speed up the payment process compared to an
MPC-based computation, assuming the rules are simple and efficiently compatible with
the ZK proof system.

Only if the transaction is accepted it is physically executed and the user’s balance gets
updated accordingly. More specifically, the three output maps of f look as follows: The
permutation shifts all past transactions to the right to make room for the new transaction,
which is written into the UHwith the direct update. This is done because the UH only stores
the last T transactions to hide the total number of transactions. The additive increment
then subtracts one from the number of remaining transactions rem and subtracts the
transaction value tval from the balance bal iff the transaction was accepted. The risk level
and the maximum transaction value stay the same.

More precisely, the new transaction is assembled as (tnew1 , . . . , tnew5) = (acc, ts, loc, type, tval)
and the new UH then looks as follows after applying the three maps: UH

new ≔ (tnew1 , . . . ,

t
new
5 , t1

1 , . . . , t
1
5 , . . . , t

T−1
1 , . . . , tT−1

5 , rsk, rem − 1,max, bal
new).

Risk Calculation (with complex fraud detection). Each time the user executes a payment
transaction, the counter for the number of remaining transactions decreases by one. When

128

9.2. Targeted Advertisement System

this counter reaches zero, it forces the user to participate in a more complex fraud detection
algorithm, where the risk level gets updated and a more sophisticated fraud detection
algorithm is executed. We assume this complex fraud detection mechanism to be based
on machine learning (e.g., logistic regression, as suggested by [98, 91]). Since this is a
computationally expensive operation, this task is realized with the OA task. The fraud
detection mechanism takes all transactions in the UH as well as the current risk level into
account and computes a new risk level.

By choosing a suitable value for the initial value of that counter, we can ensure that users
regularly participate in the complex fraud detection mechanism. The operator inputs its
FPs fp into OA. The fraud detection mechanism then computes the user’s new risk level rsk

along with a new maximum number of transactions rem, and maximum transaction value
max. These new values are then stored in the UH. More specifically, only the direct update
and additive increment are needed. The direct update sets the new values for the risk
level and the new maximum transaction value at the corresponding slots and overwrites
the old values in the process. Since the outsourcing triple is non-blocking regarding
Bookkeeping operations, we have to take into account that the value of the remaining
number of transaction may have changed since Outsource was called. Therefore, the
additive increment adds the difference between the old remaining number of transactions
(from the point when Outsource was called) and the new value to the corresponding slot.

9.2. Targeted Advertisement System

We now briefly sketch a targeted mobile advertisement system which can optionally be
used as an extension for loyalty systems. For their cooperation, users are rewarded with
vouchers targeted at their purchase behavior. The central idea is that the user’s purchases
are stored in the UH. From time to time, users submit their purchase history to the operator,
who analyzes it together with the histories of several other users. The user is rewarded
with a voucher targeted at the user’s probable interests and is displayed alongside a suitable
ad in the smartphone app.

We now assume that the operator acts as a conglomeration of supermarket chains and
further participating shops. In the following, we describe how to use our framework in
this scenario. The function is depicted in Fig. 9.2.

Registration. Upon registration with the UReg task the user obtains an empty UH. Each
slot in the UH represents a product category, e.g., “vegetables”, “candy”, or “fast food”. The
UH tracks the amount of money spent in each category.

129

9. Example Applications

Function fadvertising

Checkout(fp ≔ ⊥,UH , xU ≔ {prod
j
}numi

j=1 , xO ≔ {prod
j
}numi

j=1)
if xU ≠ xO then abort

𝑎 ≔ (𝑎[0], . . . , 𝑎[numc − 1]) with 𝑎[𝑖] ≔
∑︂
j∈I

price
j

where I is the set containing all indices j with pos(categ
j
) = 𝑖 .

𝛼 ≔
(︂

0 ... numc−1
0 ... numc−1

)︂
𝑠 ≔ (⊥, . . . ,⊥)
return (𝛼, 𝑠, 𝑎, categ ≔ ⊥, yU ≔ Ok, yO ≔ Ok)

Analytics(fp, {(UHZ , xUZ
≔ ⊥))Z ∈[Z f], xO = ⊥})

{categZ }Z ∈[Z f] ≔ fadvertising(fp, {UHZ }Z ∈[Z f])
for Z ∈ {1, . . . , Z} do
𝛼Z ≔

{︁ 0 ... numc−1
0 ... numc−1

}︁
,

𝑠Z ≔ (⊥, . . . ,⊥),
𝑎Z ≔ (0, . . . , 0),

done
return ({(𝛼Z , 𝑠Z , 𝑎Z , yUZ

≔ (Ok, categZ))}Z ∈[Z f], yO ≔ Ok)

Figure 9.2.: Instantiation of f for a privacy-preserving targeted advertisement system.

Checkout. When purchasing goods at a participating store, the user updates the purchase
history using the BK task. The amount of money spent in each category is calculated and
added to the corresponding slots in the UH. This only requires additive updates, meaning
that the steps required for permutation and direct updates can be skipped.

Analytics. The Outsourced Analytics task lets the user provide data for analytical pur-
poses. We assume the operator has an analytical function (for example for marketing
analyses) which takes some FPs and multiple UHs as input and assigns to each UH a class
that describes the most likely interests of the corresponding user. The user is rewarded
with a voucher that matches this class and that can be redeemed at a participating shop.
Additionally, the user gets a matching advertisement. For example, if the analysis reveals
that the user likes chocolate, the user obtains advertisements for a new kind of chocolate
and a voucher for a 10% discount on chocolate. The UHs of the participating users remain
unchanged.

If the targeted advertisement system is interconnected with a loyalty system, the user
could also earn loyalty points instead of vouchers.

130

10. Implementation

We evaluated the practicality of our protocol by measuring execution times of a practical
implementation. The implementation is (1) not implemented by the author of this thesis
and hence not a contribution for this dissertation, and (2) based on the conference version
from Fetzer et al. [70], which has a few changes in comparison to this part of this thesis,
mostly in regards to the communication model. Since network communication depends on
various external factors, the communication times have been ignored in the evaluation.

10.1. Setup

Evaluation of the user side has been done on a Nexus 5X smartphone released in 2015
featuring a Snapdragon 808 with two cores with 1.8𝐺𝐻𝑧 and four cores with 1.4𝐺𝐻𝑧.
The phone was running with Android 8.1.0. Throughout this chapter we refer to the
Nexus smartphone as Phone 1. The second phone is a Galaxy S8 smartphone released
2017 featuring an Exynos 8895 with four cores running with 2.3𝐺𝐻𝑧 and four cores with
1.7𝐺𝐻𝑧 running Android 9. We will refer to this phone as Phone 2 from now on. We
executed the code for operator and helpers on much more powerful servers, equipped with
an AMD Ryzen 9 3900X with 12 cores with 3.8𝐺𝐻𝑧 each. In all cases our implementation
makes use of 6 threads to speed up cryptographic operations.

The protocol has been implemented our protocol in C++17, employing the open-source
library RELIC toolkit v0.5.0 [13] for group operations. The required building blocks were
instantiated as suggested in Section 5.3: For signatures we use the scheme from [1], for
commitments we implemented [2], and for the NIZKPoK scheme we use the method
from [83, 67]. Our building blocks are instantiated over the pairing-friendly Barreto–
Naehrig Curves Fp254BNb and Fp254n2BNb [14, 20].

10.2. Evaluation

User Registration, Bookkeeping, Outsource, and Update. We averaged over 50 executions
of each protocol task for UH sizes of 10, 100, 200, 400, 600, 800 and 1000 in order to get
representative results. For BK we implemented both the three-stage update comprising a
permutation of the UH, setting values, and adding values, as well as a simplified version
where no permutation and direct update are done. The concrete choice of permutation
has no impact on performance, whereas performance improves slightly the more entries

131

10. Implementation

|UH | BK OS Upd∑︁
ZK

∑︁
ZK H

∑︁
ZK H

10 22 16 20 10 4 20 12 < 1
100 57 51 30 10 15 54 44 < 1
200 96 90 42 10 26 93 80 < 1
400 176 170 60 10 44 172 152 < 1
600 254 248 79 10 65 251 225 < 1
800 332 327 97 10 84 331 299 < 1
1000 411 405 117 10 105 408 370 < 1

Table 10.1.: Execution times in𝑚𝑠 for operator and helper.
∑︁

is the total time for the operator, ZK the time
spent on verifying the ZK proof. H is the execution time of the helper.

|UH | BK BK’ OS Upd
10 5.8 4.1 8.9 7.0
100 11.8 4.1 34.1 22.6
200 18.4 4.1 62.0 40.0
400 31.6 4.1 118.0 74.8
600 44.8 4.1 174.0 109.6
800 58.0 4.1 229.9 144.4
1000 71.2 4.1 285.9 170.2

Table 10.2.: Data exchanged in 𝑘𝐵 in relation to the size of the UH. BK denotes a BK task with non-trivial
shift and permutation. BK’ denotes BK with only an incremental update.

are set. Thus to provide a good lower bound, we performed a cyclic shift and then set a
single entry.

We present in Table 10.1 the results using a server for operator and helper.

|UH | U
User Registration Bookkeeping Outsource Update∑︁

On ZK Val
∑︁

On ZK Val
∑︁

PC On ZK Val
∑︁

On ZK Val

10 U1 154 97 78 57 616 556 494 60 551 189 298 193 64 528 461 400 67
U2 181 99 73 81 969 881 788 87 749 244 409 272 87 809 719 622 90

100 U1 155 100 78 56 1559 1501 1432 58 1247 818 369 181 63 1541 1439 1319 107
U2 176 96 71 80 2200 2116 2033 84 1750 1180 477 240 89 2102 2008 1842 92

200 U1 223 116 86 84 2725 2616 2542 87 2088 1540 499 204 92 2868 2723 2484 124
U2 175 96 70 79 3465 3382 3300 82 2959 2242 625 235 86 3353 3265 3011 90

400 U1 241 122 91 118 5649 5530 5441 119 4309 3373 804 221 128 5633 5502 5015 130
U2 178 96 71 82 6302 6217 6136 85 5603 4508 986 249 88 6422 6331 5902 93

600 U1 240 120 88 120 9226 9103 9003 121 7073 5773 1182 252 126 9210 9079 8406 129
U2 178 96 70 84 9695 9612 9519 84 8228 6801 1336 265 88 9978 9885 9269 92

800 U1 242 121 90 122 11899 11775 11672 125 9386 7763 1460 253 129 12100 11966 11104 131
U2 186 99 74 87 13130 13046 12950 85 10778 9020 1656 265 90 13402 13311 12462 93

1000 U1 245 121 90 123 14667 14539 14443 129 11440 9594 1708 256 131 14940 14807 13763 130
U2 189 100 74 92 16383 16290 16213 91 13447 11377 1987 269 91 16642 16538 15471 94

Table 10.3.: Execution time in𝑚𝑠 for user. U1 uses phone 1, U2 uses phone 2,
∑︁

is the total user execution
time, of which On is the online running time, ZK the creation of the ZK proofs, Val the time for validating
the UH, and PC the precomputation time.

132

10.2. Evaluation

|UH | Precise sigmoid Approximate sigmoid
Strong LAN LAN WAN MB Strong LAN LAN WAN MB

10 3.60 5.06 94.86 591.74 0.32 0.59 11.61 69.71
20 3.62 5.07 95.12 593.29 0.33 0.60 11.93 71.26
50 3.65 5.11 95.84 597.94 0.35 0.64 12.58 75.91
100 3.68 5.19 96.90 605.68 0.38 0.71 13.53 83.66
1000 4.28 6.47 116.10 745.10 0.97 1.87 32.82 223.07

Table 10.4.: Time (in seconds) and communication (in megabyte) for logistic regression with two parties.
Strong uses c5.9xlarge instances, otherwise we use m4.large.

When only performing addition during BK task and no permutation or direct update of
entries we need to communicate ≈ 4𝑘𝐵 of data regardless of the number of entries in the
UH. This task takes between ≈ 310𝑚𝑠 and ≈ 440𝑚𝑠 on Phone 1 and ≈ 460𝑚𝑠 on Phone 2,
while the operator needs to compute for only about 14𝑚𝑠 .

Overall, even for UH sizes where computation time on a smartphone exceeds 10𝑠 , we
require less than 300𝑘𝐵 of communication. Thus, even when using mobile data, com-
munication times will mostly depend on network latency and in general be relatively
short.

Outsourced Analytics. We implemented logistic regression inference using MP-SPDZ by
Keller [95], which allows for benchmarking across a range of security models and protocols.
As the cleartext modulus of the used curve is not compatible with the implementation
of homomorphic encryption in MP-SPDZ, we restrict ourselves to protocols based on
oblivious transfer with malicious security. For this we use MASCOT by Keller, Orsini,
and Scholl [96]. As MP-SPDZ already implements logistic regression, we only had to
choose the number of features and whether to approximate the sigmoid function for faster
computation. For the former, we ran inference for 10, 20, 50, 100, and 1.000 features, and
for the latter benchmarked both the established sigmoid function and the three-piece
approximation of Mohassel and Rindal [111]. The latter has been found to deliver good
results while being much simpler to compute in the context of secure computation. This is
because the restrictions to three linear pieces only requires two comparisons and oblivious
selections instead of exponentiation and logarithm. To define the computation domain,
we used the order of the 254-bit prime field Weierstrass curve. This allows for a smooth
integration with our zero-knowledge proof.

We show our end-to-end timings when running on AWS c5.9xlarge and m4.large instances
in Table 10.4. The LAN times refers to the collocated setting. We simulate a WAN setting
by adding a 100𝑚𝑠 roundtrip delay and a bandwidth restriction of 10𝑀𝐵/𝑠 . We only use
one thread and about 300𝑀𝐵 RAM for malicious security.

At the time of writing, the spot price in US East was $0.10 and $1.53 for m4.large and
c5.9xlarge, respectively. This results in a cost per computation ranging from $0.000016 to
$0.0032.

133

10. Implementation

10.3. Discussion

Our results show that, even on weak hardware compared to modern smartphones, for
moderately sized UHs our protocol runs fast enough for a smooth user experience: A BK
task—which will be executed most frequently—runs in less than 3𝑠 even including typical
network latency for UHs with 100 entries. When BK can be performed without the need of
permuting or setting UH entries, it runs in well under 1𝑠 and can even support much larger
UH sizes. OS needs to transmit more data but we expect this task to be used less frequently,
and a large part of the necessary computation (i.e. creating commitments to shares of
one-time pads and the random shares for one of the two parties) is independent of the
current UH state and can thus be done in the background in advance. This allows OS to
have very short online running time even for large UH sizes. Upd on the other hand takes
about the same time as BK. Thus, the main limiting factor for the size of the UH is the time
needed for the BK task. This can be partially mitigated if the need of permuting/setting
values arises only sparsely or if only parts of the UH are affected. Then the whole UH
can be split into multiple parts where permuting/setting is done to some parts only and a
simple additive update is performed on the remaining parts. Our evaluation also shows
that Phone 2 was consistently slower than Phone 1 even though the stronger processor
would suggest otherwise. We are not certain about the cause of this. Possible explanations
are the introduction of new battery saving mechanisms in Android 9, or the fact that
Phone 1 has the stock google version of Android whereas Phone 2 has vendor-specific
modifications.

10.4. Performance of Fraud Detection

We evaluated our fraud detection application from Section 9.1 with a UH containing 100
elements, corresponding to a scenario where the last T = 19 transactions are taken into
account for analysis (5 entries per transaction plus previous risk level, number of remaining
transactions, transaction limit and balance).

We are no domain experts for fraud detection in mobile payments, and real-world parame-
ters and implementation details for use cases like fraud detection are not easily obtainable.
The simplified instantiations we benchmarked in this chapter should therefore be viewed
as educated guess how real-world systems could be parameterized. Yet let us try to justify
our parameter choices: On average, we have 0.3-0.8 credit card transactions per day per
person in Europe [18]. So 20 transactions per logbook (UH-size of 100) would cover about
a month, while 200 transactions per logbook (UH-size of 1000) would cover at least 8
months in average. Older transactions are also implicitly taken into account by making the
new risk level depend on the old risk level (and the new transactions). The simple fraud
detection mechanism we implemented is most likely simpler than mechanisms that are
used in practice. One could of course extend the simple fraud detection we implemented
with additional rules. Some ideas on how the simple fraud detection mechanism could
be extended are: (1) Consider the location and time difference between transactions and

134

10.4. Performance of Fraud Detection

deny the transaction if it is not physically possible to travel the distance in that amount of
time. (2) If the transaction amount is a lot higher than the average transaction amount, the
number of remaining transactions until the next calculation gets decreased by more than
one. (3) Implement daily limits: a limit on the number of transactions that are allowed per
day or a limit on the total transaction value that is allowed per day or both. It would be
interesting to study how good our system models fraud detection systems used in practice,
but that would be a research line of its own.

Registration only needs to initialize the default risk level, number of remaining transactions
and transaction limit. As such it is independent of the UH size. Similarly, the top-up task
does not require any special computation and thus the results for BK with only addition
holds for this task (i.e., 330𝑚𝑠 − 450𝑚𝑠 for Phone 1 and ≈ 490𝑚𝑠 for Phone 2 combined
user plus operator computation time excluding communication time and 4.1𝑘𝐵 of data).

Fraud detection happens in two stages: A more complex machine learning based risk
assessment is performed regularly, During each payment, the simple fraud detection based
on the result of the risk assessment are checked in our implementation by the following
two rules: (1) The transaction value is less or equal than the maximum allowed transaction
amount, and (2) the number of payment transactions the user can perform before the
complex fraud detection mechanism has to be run has not exceeded its limit. Additionally
we verify that the current balance is sufficient for the transaction. To that end, we use
bulletproof rangeproofs [39] to let the user prove that the simple rules were evaluated
correctly. These additional proofs take ≈ 200𝑚𝑠 on Phone 1 and ≈ 185𝑚𝑠 on Phone 2, and
17𝑚𝑠 for the operator, independent of the UH size. Thus, for 100 entries (corresponding to
the last T = 19 transactions), this task takes a total of 1.85𝑠 for phone 1 and 2.5𝑠 for phone
2 on the user side and 80𝑚𝑠 on the operator side (excluding the communication time to
transmit 22𝑘𝐵 of data) for 100 entries. Thus, when storing 19 previous transactions, a
transaction can be performed in under 3𝑠 even when taking the communication time into
account. Increasing the number of previous transactions increases the computation time
on average by ≈ 1.5𝑠 for phone 1 and ≈ 1.6𝑠 for phone 2 and 40𝑚𝑠 for the operator per 20
additional transactions.

For the outsourced risk calculation we used logistic regression on 100 features using
approximate sigmoid calculation and active security for the complex fraud detection
mechanism. Our results suggest that the whole outsourced risk calculation process can
be completed in well under 5𝑠: ≈ 0.7𝑠 for outsourcing, ≈ 0.4𝑠 for the logistic regression
and ≈ 1.3𝑠 for the update, plus communication time between the user and the operator or
helper.

135

11. Conclusion

We investigated the feasibility of a framework that cannot only be used to efficiently model
the leakage required for business models and legal regulations with MPC, but that can
also be executed in the real world, on smartphones as user devices, regardless which other
protocols are running in parallel. We consider this type of security, UC, to be a minimal
requirement for such protocols that might be executed on a smartphone. While it might
be feasible to assume that in server farms, one server handles the entire interaction of
one party without being interrupted because the server was deliberately rented for this
one purpose, it is unrealistic to assume that a modern-day smartphone executes an entire
protocol without being interrupted even once.

We introduced our requirements for such a framework in Section 5.8 and modeled all of
them into an ideal functionality in Chapter 6. We then proceeded to introduce a protocol in
Chapter 7 which we claim to fulfill the ideal functionality. To support our claim, we prove
security of the protocol in Chapter 8. In UC, proving security requires a simulator that
interacts with the environment on the one side and exchanges and reports sent messages
in such a way, that the environment does not realize that the messages do not originate
from the honest parties, and with the functionality on the other side to provide inputs for
corrupted parties (as those are controlled by the environment).

UC security is quite strong, and that usually comes at the cost of performance. However, it
was shown by Fetzer et al. [70] that the protocols still are practically efficient; the section
was cloned in Chapter 10 for convenience, even though the implementation does not count
as contribution to this thesis.

So in conclusion, we provided a practically efficient yet still UC secure framework which
enables efficient modeling of leakage for functions. In Fetzer et al. [70] (and copied in
Chapter 9, though again, this chapter is not a part of this thesis) we show how instantiations
of functions look like in this framework by introducing to applications for fraud detection
for mobile payments and for a targeted advertisement system.

We believe that this solves one (of arguably many) reasons why MPC is rarely used in
practice, despite its feasibility and the advantages with respect to data economy—which
is important not only in a legal sense, but also to provide more trust for the user that
collected data is not misused.

137

Part II.

An Instantiation of Everlasting Secure
Commitments

12. Introduction

This part of the thesis is dedicated to commitments. In particular, we study the question
on how secure commitments can become. In particular, we investigate commitments in
the quantum setting where both parties have access to a quantum computer and can
exchange quantum states. These are particularly interesting as quantum bit commitments
are known to be sufficient to construct Quantum Oblivious Transfer (QOT) [57], which in
term suffices to construct Secure Multi-Party Computation (MPC) [99, 90].

While commitments cannot be unconditionally secure for both parties (we elaborate on
that in Chapter 14), modern-day quantum bit commitment protocols limit the power of
one party—either the sender or the receiver—to hold only against computationally bounded

adversaries: Common schemes are either unconditionally hiding and computationally
binding [102], or unconditionally binding and computationally hiding [65, 4]. The impos-
sibility results disable unconditional security for both parties, but the research question
investigated in this part of the thesis is as follows:

Can we hope for unconditional security for one party and a security

guarantee that is stronger than computational but weaker than

unconditional security for the other party?

In particular, we investigate the setting of everlasting security in the quantum case. A
positive answer to this research question was given by Alléaume et al. [9] for quantum key
distribution using authenticated quantum states, which was later formalized and proven
to be secure by Unruh [129]. Their construction uses signature cards (which could also be
instantiated by a post-quantum secure public key infrastructure) to achieve this goal.

A signature card is a trusted device accessible to a party. Using the device, the party can
sign arbitrary messages without access to the signing key. The corresponding verification
key is available to all parties. Constructing secure commitments exploits the hardness
of forging a signature and of extracting the secret key from the physical device. If the
signature card uses an EUF-CMA secure signature scheme it is not efficiently possible to
forge a signature.

Protocols that use signature cards exploit this fact to force a party to fix their values,
which in the case of Unruh [129] forces the receiver to perform a measurement and thus to
collapse the quantum state. Intuitively, parties have to respond to a message before being
able to forge a signature. Thus they have to query the signature card, which only accepts
classical inputs.

141

12. Introduction

The major shortcomings of the protocol by Alléaume et al. [9] and Unruh [129] is that
signature cards are hard to justify for real protocols, as it is infeasible to expect each party
to have a new signature card for each individual commitment they perform. As such, we
focus our research question to the setting where no additional hardware is needed and
focus this part of the thesis on the following research question:

Can we hope for unconditional security for one party and everlasting

security for the other party without relying on additional hardware?

12.1. Contribution

In this part of the thesis we investigate a compromise between unconditionally secure
and computationally secure commitments by introducing a bit commitment scheme that
provides unconditional security for one party and everlasting security for the second party.
Everlasting security models the setting where hardness assumptions need to hold only
during execution of the protocol.

We expand on the field of study for Quantum Decay [100] as a physical assumption and
obtain a security model which provides protection against adversaries whose computa-
tional power is limited (i.e., computationally bounded) during the protocol execution but
may become very powerful (i.e., unbounded) at a later point in time. Our study provides
two interconnected results:

In our first contribution we instantiate a quantum bit commitment that provides uncondi-
tional security for the receiver (binding) and everlasting security for the committer (hiding).
The construction is practically efficient under plausible assumptions, particularly that
consider decoherence in a generic setting. We prove this commitment to be secure in the
Quantum Random Oracle Model (QROM).

The second contribution provides a framework for a new way to attack quantum bit
commitments. The findings show that our security of the above construction breaks
when instantiating the commitment in the QROM with any unconditionally hiding and
computationally binding commitment scheme.

This part of the thesis is organized as follows: First, we motivate and formally introduce
a new adversarial model based on a physical assumption we refer to as Quantum Decay.
It is based on the observation that quantum storage is subject to decay and is rigorously
motivated in Chapter 15. Informally, the assumption states that any quantum information
(e.g., stored during the execution of a protocol) decays to classical information after
polynomially many time1 steps. We review the assumption in light of everlasting security,
i.e., where in the first stage an adversarial receiver with Quantum Polynomial time (QPT)

1 We use the terms time steps and computational steps synonymously as after polynomially many time steps
it is not possible to perform super-polynomially many computational steps and vice versa, polynomially
many operations on a Turing machine can be executed in polynomially many time steps.

142

12.1. Contribution

runtime interacts with an honest sender during the commitment phase. Then, after a
polynomial number of time steps, a (classically) unbounded adversary gets access to the
view of the QPT-adversary as well as any classical information that the QPT-adversary
may extract from the quantum state. To evaluate the security of our scheme the decaying
process may be formally modeled as a measurement performed by the bounded adversary.
However, we note that a measurement is not formally required.

Quantum Bit Commitment. Wepresent an unconditionally binding and everlasting hiding
quantum bit commitment protocol which extends a quantum bit commitment protocol by
Brassard et al. [36] by a classical component.

In the two-stage protocol of Brassard et al. [36] the sender commits to a classical bit by
fixing two classical𝒩-bit strings such that the to committed value is the inner product
of these two strings. One of the strings is then encoded into a quantum state vector by
randomly picking from a basis set and then preparing the respective quantum state. The
second string is sent as classical bitstring directly alongside the quantum state to the
receiver. The (honest) receiver measures the quantum state upon receiving in random
bases. To unveil a bit, the sender uncovers the bit as well as the encoding bases, allowing the
receiver to verify the commitment. In order to make it harder to cheat the authors require
that the𝒩-bit string that is encoded into the quantum state is chosen as a (𝒩,𝒦,𝒟)-code
𝒞.

Mayers [107] showed that the commitment scheme above is unconditionally hiding, but
at most computationally binding. To achieve everlasting security we extend the protocol
by adding a (QROM-based) classical commitment to encode the bases of the sender. The
classical commitment is unconditionally binding but only computationally hiding.

The details of our protocol, denoted Π𝑄𝐶𝑜𝑚 , are presented in Chapter 16. We provide a
complete security proof in Chapter 18.

Security Proof. We deploy a classical commitment protocol in Chapter 17 that uses a
Quantum Random Oracle (QRO) and prove its unconditional binding property based on the
collision resistance of the QRO.We prove a new and simple lemma that limits the advantage
of a quantum adversary trying to determine after t queries whether the given value table
is that from the oracle or if it differs on k inputs. Then, in Chapter 18, we prove that when
assuming Quantum Decay and the classical commitment from Chapter 17, our quantum
bit commitment is everlasting hiding and unconditionally binding. The everlasting hiding
property is shown to hold based on the independence of optimal measurement basis
chosen by the adversary from the actual basis used to encode the quantum information.
This property is based on the difficulty of the adversary to extract a sufficient amount
of information from the classical commitment before the Quantum Decay renders the
quantum state unusable. The unconditional binding property follows from statistical
arguments. This proves our first main contribution, Theorem 12.1.1.

143

12. Introduction

Theorem 12.1.1 (Informal). In the Quantum Random Oracle Model and assuming that

Quantum Decay holds, the quantum bit commitment protocol Π𝑄𝐶𝑜𝑚 is unconditionally

binding and everlasting hiding.

Obfuscated Measurement Attack. We demonstrate that Quantum Decay may not be
sufficient to achieve everlasting security when instantiating the Quantum Random Oracle
based commitment with any unconditionally binding and computationally hiding commit-
ment scheme. To prove our claim we present a novel technique to attack the everlasting
hiding property of quantum bit commitments. To that end we introduce a new type of
attack against the everlasting hiding property of quantum commitments in Chapter 19.

Intuitively, we replace theQRO-based commitment schemewith a commitment scheme that
allows a certain type of malleability: the adversary can perform homomorphic operations
on the hidden value and the quantum state. This allows the bounded adversary to change
the encoding of the quantum state in such a way that the bounded adversary itself actually
obtains less information from the corresponding measurement, but such that the encoding
can be classically undone given the measurement outcome and the additional information
computed by the bounded quantum adversary. Thus an unbounded adversary can later
break the classical commitment and use the extracted information to breach the everlasting
hiding property of the quantum commitment. Due to the involved hiding measurement
refer to this approach as Obfuscated Measurement Attack (OMA).

This does not prove that Quantum Decay in insufficient to provide everlasting secure
commitments. However, it suggests that additional assumptions may be required to
achieve this security notion. We summarize this in Theorem 12.1.2 as our second main
contribution:

Theorem 12.1.2 (Informal). The classical commitment scheme from the protocol Π𝑄𝐶𝑜𝑚
needs to have additional properties beyond unconditionally binding and computationally

hiding for Π𝑄𝐶𝑜𝑚 to be everlasting hiding in the setting of Quantum Decay.

12.2. Related Work

A prominent first example on how to circumvent the impossibility result of Mayers [108]
was provided by Kent [97]: He proved that perfectly secure protocols can exist if we assume
relativistic assumptions such as the impossibility of faster-than-light communication.
However, the resulting protocol is highly impractical. It requires the participants to
be apart by an astronomical distance and even completely fails in case of transmission
errors.

A different approach was taken by Koenig, Wehner, and Wullschleger [100] who also
initiated the study on using Quantum Decay to construct secure commitment protocols.
The authors exploit this in their design of a (highly theoretical) quantum commitment
protocol in a different way than we do; for each protocol message, the protocol by Koenig,

144

12.2. Related Work

Wehner, and Wullschleger [100] has hard-coded delays in the protocol execution to ensure
a certain decoherence of the quantum state. They model decoherence as continuous
quantum noise. This models a gradual decay of the quantum state. While the underlying
assumption is the same, we model the decay differently. Essentially, we only require the
state to be completely decayed within a polynomial number of time steps, whereas they
require the quantum computer to fulfill a (worst case) quantum noise function where the
quantum state decays with each additional timestep. In their protocol the authors use
this by requiring both parties to delay their communication during the commit phase to a
point in time where the quantum state is sufficiently collapsed.

In particular, their model considers an adversarial quantum storage which is both bounded
and noisy. At any time 𝑡 the quantum state either has a minimal trace distance to the
original state that depends on a noise function, or the quantum storage has already been
measured.

As such we believe that our assumption building on decay after a polynomial number of
computational steps to be more natural than the work in [100]. Our modeling enables
protocols that do not require delays during execution. Instead, our assumption only
requires that the adversary is computationally bounded for some time after initiating the
protocol. We briefly recall their idea of quantum decay as well as their scheme, and argue
both that our setup differs, and that our assumptions are orthogonal to theirs.

While this comparison was not made by the author of this thesis but by a co-author
working on the same paper, we consider it highly relevant to distance ourselves from the
work of Koenig, Wehner, and Wullschleger [100] and hence take the comparison into our
thesis.

The authors model the decay as a function that is applied to all quantum states after
every step, resulting in a loss of certain quantum information. If the function were the
identity then quantum information could be stored indefinitely, hence the scheme would
be entirely quantum and the unconditional security would not hold due to Mayers [108].
For unconditional security to hold, the authors show that the function must eventually
eliminate all quantum information, thus making it impossible for the sender to modify the
shared state. The advantage of the adversary is then quantified over all (POV) measure-
ments as the probability to extract information from the quantum state about a classical
value (i.e., the value committed to). In contrast, we model decay as the complete collapse
of quantum information rather than a function that is instantiated to achieve different
levels of security. We do not need to specify the point in time where the decay happens.

Their commitment protocol consists of two parts. In the first part [100, Protocol 1] the
sender encodes a random string using a set of random bases and sends the resulting
quantum state to the receiver. The receiver measures the state in random bases. Both
parties then wait for a time 𝛿𝑡 to ensure that the quantum state has decayed sufficiently to
not be susceptible to quantum computations. After the delay, the decay function is applied
to the quantum state of both parties. In the second part [100, Protocol 2a], the sender
encodes the random string from the first part using a linear code and sends the hash of
the encoding and a random vector to the receiver.

145

12. Introduction

Instead, we only have to assume that decay occurs after polynomially many computational
steps. Therefore, our protocol is independent of the current technological level that dictates
the time it takes the quantum state to decay and does not require any delays during runtime.
In particular, we only require that the adversary is unable to perform a superpolynomial
(in the security parameter) number of queries to the QROM before the Quantum Decay
occurs. If the decay never occurs, our protocol still remains computationally secure.

We consider the following toy example: Assume that quantum states can be kept coherent
for at most three weeks. Then the protocol of Koenig, Wehner, and Wullschleger [100]
requires to halt the interaction for three weeks to cause decay, during which the commit-
phase is still unfinished. Only after the delay, when the sender executes the second part of
the commitment, unconditional security for the committed bit is achieved.

In our case, the protocol execution only takes a relatively small amount of time (in the order
of seconds or at worst minutes). The delay time only comes into play if the receiver tries
to cheat: Then, unless the receiver can perform super-polynomially many computational
steps within those three weeks, the committed bit remains hidden forever (even against
unbounded adversaries).

146

13. Preliminaries

13.1. Notation

To discriminate quantum states from classical values we use the canonical Dirac notation,
e.g. the state vector |𝜓 ⟩ and its dual ⟨𝜓 |.

Throughout this part of the thesis we use two adversaries B and A and always denote
by B the QPT adversary and by A the unbounded adversary. Furthermore, A has access
to the final state st of B, which contains the view, i.e. the complete transcript of the
interactions of B as well as the random tape which we denote by TB .

For an adversary B and some oracle O, BO denotes that B is given black-box access to
the oracle O. We refer to BO as oracle algorithm. The definition for A is analogous.

In this part of this thesis we will use codes. Anything related to codes will be written in
script typestyle, such as𝒞 for the code, 𝒸 for a codeword or𝒩 for the codeword length.

We write quantum gates in sans serif font, e.g. H for the Hadamard-gate.

The hamming distance between two n-bitstrings x and y is denoted by dHam(x) ≔∑︁
n

𝑖=1⟦x [𝑖] ≠ y [𝑖]⟧.

13.2. Quantum Information

Each qubit is represented as an element in a two-dimensional Hilbert space H
2. The

inner product is written as ⟨𝜓,𝜓 ⟩. If not otherwise stated, the state is represented in the
computational basis, which we denote as +, consisting of the orthogonal vectors |0⟩ =

(︁ 1
0
)︁

and |1⟩ =
(︁ 0

1
)︁
for a two dimensional Hilbert space. Additionally we use the Wiesner (or

diagonal) basis |+⟩ = 1√
2

(︁ 1
1
)︁
and |−⟩ = 1√

2

(︁ 1
−1

)︁
, which we denote as ×, to encode quantum

states.

The set of possible single-qubit quantum states can be represented by a unit circle in
two-dimensional Hilbert space: The geometrical representation on a unit circle, where the
vector pointing to the top corresponds to the value |0⟩ and the vector pointing to the right
to the value |1⟩. Then a state can be represented as |𝜙⟩ = cos(𝜓) |0⟩ + sin(𝜓) |1⟩.

Each point on the above circle represents a valid quantum state. The circle additionally
contains descriptions of the computational bases + = {|0⟩, |1⟩}, the diagonal or Wiesner

147

13. Preliminaries

|0⟩

|B⟩

|+⟩

|1⟩|B⊥⟩

|−⟩

basis × = {|+⟩, |−⟩} which were first introduced by Wiesner [136] and the Breidbard bases
B = {|𝐵⟩, |𝐵⟩⊥}.

Formally, they are given as follows:

Definition 13.2.1 (Computational Basis). + = {|0⟩, |1⟩}

Definition 13.2.2 (Wiesner or Diagonal Basis). × = {|+⟩, |−⟩}

|+⟩ = 1
√

2
(|0⟩ + |1⟩)

|−⟩ = 1
√

2
(|0⟩ − |1⟩)

(13.1)

Definition 13.2.3 (Breidbard Basis).

|B⟩ = cos
(︂𝜋

8

)︂
|0⟩ + sin

(︂𝜋
8

)︂
|1⟩ = 1

2 |0⟩ +
1
2 |+⟩,

|B⊥⟩ = − sin
(︂𝜋

8

)︂
|0⟩ + cos

(︂𝜋
8

)︂
|1⟩ = 1

2 |1⟩ +
1
2 |−⟩

(13.2)

An equivalent description of a quantum state is given by the density operator or matrix 𝜌 ≡∑︁
𝑖 𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖 |, which omits the information about a particular basis. It may be noted that two

states that admit the same density matrix cannot be distinguished by any measurement.

By b⃗, we denote a string of the above bases. We denote the measurement operator with
respect to the basis b⃗ as𝑀

b⃗
. A quantum state |𝜓 ⟩𝑃 denotes that |𝜓 ⟩ is in possession of or

associated with a party 𝑃 .

The distance of two states can be measured using the fidelity function F, i.e., for two quan-
tum states represented by the density matrices 𝜌1, 𝜌2, the fidelity is defined as follows:

F
(︁
𝜌1, 𝜌2

)︁
= tr

(︂
(√𝜌1𝜌2

√
𝜌1)

1
2
)︂

(13.3)

The trace of a square matrix𝑀 is defined as tr(𝑀) = ∑︁
𝑖 𝑀𝑖𝑖 .

It can be shown that for any two density matrices 𝜌0 and 𝜌1, the fidelity is 0 ≤ F(𝜌1, 𝜌2) ≤ 1.
The fidelity increases if the states become less distinguishable. Intuitively, the fidelity
F
(︁
𝜌1, 𝜌2

)︁
of two quantum states represented by their respective density matrices 𝜌1 and

148

13.2. Quantum Information

𝜌2 describes the probability that the 𝜌1 is falsely identified as 𝜌2 upon measurement. For
example, the fidelity of two identical states is one, F(𝜌1, 𝜌1) = 1 and of two orthogonal
states is zero, F(𝜌, 𝜌⊥) = 0. Additional details and proofs can be found in Nielsen and
Chuang [114, Section 9.2.2].

A quantum system is the physical entity which is described by a quantum state. If the
state is exactly known, then it is considered pure and described by a single state vector |𝜓 ⟩.
Otherwise the system is fully described by an ensemble of (pure) states {𝑝𝑖, |𝜓𝑖⟩}, where
𝑝𝑖 is the probability to be in state |𝜓𝑖⟩.

Throughout this part of the thesis we work with both quantum algorithms described by
functions and circuits using gates and wires: The notation for single and multi-qubit gates
follows the standard notions, which can be found in Nielsen and Chuang [114, Sec. 1.3].

For controlled gates we use the notation H(\) for an application of a controlled gate (in this
case Hadamard H; the definition for other gates is equivalent), where H is only applied
if \ is 1. As such we denote the Toffoli gate (Controlled Controlled Not) by X(\1,\2) . If the
index is a classical integer 𝑥 , X(𝑥) denotes applying 𝑥 iterations of the quantum gate (here
X) successively. In particular, for a bit b ∈ {0, 1}, X(b) denotes applying the gate only if
b = 1.

Finally, throughout this paper, we refer to protocols/primitives/parties that are not consid-
ered over quantum state or do not have quantum computational power as classical.

13.2.1. Security Notion

We consider the notion of unconditional (or information-theoretic) security where a
scheme is unconditionally secure if an (even unbounded) adversary A attacking the
scheme has only negligible success probability. When talking about security notions, we
use the terms “unconditionally” and “information-theoretic” interchangeably. A scheme
is computationally secure if an adversary’s success probability for breaking the security
guarantees is negligible in the security parameter ^ for any poly(^) bounded adversarial
(quantum) algorithm.

Definition 13.2.4 (Code). Let o ∈ N be the order of a group. Let F𝒩
o

be a vector space. A

subspace 𝒞 ⊆ F𝒩
o

is called a [𝒩,𝒦,𝒟]-code if its codewords form a 𝒦-dimensional vector

subspace of F𝒩
o
.

We additionally require closedness from a linear code, which requires that any linear
combination of codewords is a codeword itself.

Definition 13.2.5 (Closeness). Let𝒞 be a [𝒩,𝒦,𝒟]-code. 𝒞 is closed if for each 𝒸1,𝒸2 ∈
𝒞 we have 𝒸1 + 𝒸2 ∈ 𝒞.

149

13. Preliminaries

Definition 13.2.6 (Linear Code). Let𝒞 be a [𝒩,𝒦,𝒟]-code. 𝒞 is a linear code if 0⃗𝒩 ∈ 𝒞
and if 𝒞 is closed.

The parameter𝒟 denotes the minimal distance, i.e. the minimal number of positions of
any two distinct codewords 𝒸1,𝒸2 ∈ 𝒞 that differ:

𝒟 ≔ min{#{𝑖 | 𝒸1 [𝑖] ≠ 𝒸2 [𝑖]} | 𝒸1,𝒸2 ∈ 𝒞;𝒸1 ≠ 𝒸2} (13.4)

If 𝑡 denotes the number of errors the code can correct, then 𝒟 is at least 2𝑡 + 1. We define
a linear code by its generator matrix �⃗� ∈ F𝒩×𝒦

o
. The generator matrix spans the code

such that each codeword 𝒸 ∈ 𝒞 can be represented as �⃗��⃗� for a vector �⃗� ∈ F𝒦
o
.

13.2.2. Conjugate Coding

We describe the basic idea behind conjugate coding [136] (or Wiesner encoding) to encode
classical information into a quantum state |𝜓 ⟩. It uses a function encode

b⃗
: {0, 1}n → H

n.
The function uniformly samples a string b⃗ ∈ {+,×}n of basis vectors for each qubit and
encodes the input x⃗ ∈ {0, 1}n to a quantum string, i.e. for each bit position 𝑖 it performs
the following operation:

If b⃗[𝑖] = + it encodes 0 as |0⟩ and 1 as |1⟩, and if b⃗[𝑖] = × it encodes 0 as |+⟩ and 1 as |−⟩.

|𝑏𝑖⟩
b⃗[𝑖] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
|0⟩ if b⃗[𝑖] = +, 𝑏 = 0
|1⟩ if b⃗[𝑖] = +, 𝑏 = 1
|+⟩ if b⃗[𝑖] = ×, 𝑏 = 0
|−⟩ if b⃗[𝑖] = ×, 𝑏 = 1

. (13.5)

Codes and Quantum Computers. Linear codes in the quantum setting were thoroughly
investigated by Brassard et al. [36]. In this section we recall some of their results in
this setting. We stress that while their main theorem—the security of their proposed
commitment protocol—was disproven by Mayers [107] the discovered flaw was due to
their definition of the binding property and unrelated to the proven theorems regarding
codewords.

All the following results are with respect to linear [𝒩,𝒦,𝒟] codes with 𝒩 ∈ poly(^)
and 𝒦

𝒩
= 0.52, with 𝒟 > 𝛾𝒩 for 𝛾 = H−1(1/2) for H being the entropy and with 𝒟

𝒩
> 10b

for some 0.01 > b > 0 being the noise of the quantum channel.

Lemma 13.2.7 (Brassard et al. [36, Thm. 3.5]). Let Gen ∈ F𝒩×𝒦 be a randomly chosen

generator matrix defining an [𝒩,𝒦,𝒟] code. With overwhelming probability, the number

of codewords (𝒸,𝒸′) with Hamming distance dHam(𝒸′,𝒸) = 𝒟 is greater than
2(𝒦−

𝒩

2)√
𝒩

.

150

13.2. Quantum Information

As we assume 𝐾
𝑁
> 1

2 , this lemma states for the codes considered here that each codeword
has an exponentially large amount of direct neighbors except with negligible probability
2−𝛼𝒩 for some 𝛼 > 0.

Lemma 13.2.8 (Brassard et al. [36, Thm. 3.6] and Bennett, Brassard, and Robert [24, Thm.
8]). Let 𝐸 denote the set of all possible codewords with distance ≤ 𝒟 around the 𝒸

′
which

was measured by the receiver, and let |𝐸 | ≥ 2(𝒦−𝒩2)√
𝒩

. LetA be an adversary with access to all

|𝐸 | codewords. The amount of informationA has about the parity ⟨𝒸′, otp⟩ is negligible in ^ .

Wiesner encoded codewords. The next lemmas are more specific. In particular, they
limit the success probability of an adversary trying to reconstruct a codeword that was
encoded into a quantum state using Wiesner’s encoding technique. If the adversary has
to reconstruct the codeword without knowing the used bases b⃗ then Brassard et al. [36]
show that the information an adversary can extract from the quantum state is limited. The
first lemma states that the optimal strategy for any adversary is to measure in Breidbard-
bases.

Lemma 13.2.9 (Brassard et al. [36, Thm. 3.1]). Let b⃗ be a string of bases chosen uniformly

at random. Let |𝜓 ⟩ be a quantum state encoding any information 𝒸 using Wiesner’s encoding

with bases b⃗. Let B be the receiver of |𝜓 ⟩ without knowledge of b⃗. The most information B
can extract from |𝜓 ⟩ about 𝒸 is by measurement in Breidbard-bases B.

The next lemma then limits the amount of information that the adversary can extract
using the optimal measurement strategy.

Lemma 13.2.10 (Brassard et al. [36, Lemma 3.2]). Let |𝜓 ⟩ be a quantum state that encodes a

word w of length𝒩 using Wiesner encoding bases b⃗. Let B be an adversary without access to

b⃗, trying to extract the maximal number of bits of the word w. With overwhelming probability,

the number of bits B can extract is less than 0.89𝒩.

This means that with overwhelming probability, every measurement result of B has a
hamming-distance to the original codeword of at least 0.1100279𝒩.

This enables limiting the information on the original codeword:

Lemma 13.2.11 (Brassard et al. [36, Thm. 3.4]). Let 𝒸 ← 𝒞 be a codeword. Let 𝒸
′
be a

codeword with distance to 𝒸 at least 𝛾𝒩. Let ℎ ≔ dHam(𝒸,𝒸′). Let A be an adversary with

access to ℎ and 𝒸
′
trying to guess 𝒸. Then the probability ofA guessing the correct codeword

𝒸 is negligible in the security parameter.

151

13. Preliminaries

13.2.3. Quantum Bit Commitment

The definitions for quantum bit commitments closely follow the definitions provided in
Section 2.2 but with the minor change that all parties have access to quantum computers
and can exchange quantum information, but the commitment is still on a classical bit. This
means that for computational definitions of binding and hiding, the adversary is now in
QPT instead of PPT. Furthermore, the commitment message itself can consist of quantum
states.

While the definition from Definition 2.2.5 is just as for the classical case1, we provide
formal definition for the quantum-computational hiding property.

Definition 13.2.12 (Quantum-Computationally Hiding Bit Commitment Scheme). A bit

commitment scheme Com = (Com,Unv) is quantum-computationally hiding if for any QPT
adversary B and any security parameter ^ ∈ N, the following probability is negligible in ^ :|︁|︁|︁|︁|︁|︁ Pr

⎡⎢⎢⎢⎢⎣ b = b
′

|︁|︁|︁|︁|︁|︁ b

$←{0, 1},
𝜏b ← Com.Com(1^, b),
b
′← B(1^, 𝜏b)

⎤⎥⎥⎥⎥⎦ − 1/2

|︁|︁|︁|︁|︁|︁ (13.6)

where 𝜏b is the transcript of an honest execution for a commitment on b. In this case this

corresponds to the entire view of a receiver during the commitment-phase.

13.2.4. Fully Homomorphic Encryption

The idea of Fully Homomorphic Encryption (FHE) was first put forth by Rivest, Adleman,
and Dertouzos [118] and first instantiated more than 30 years later by Gentry [73]. The key
idea is to provide an encryption scheme that allows to transform ciphertexts into valid new
ciphertexts that fulfill a given relation 𝑅 on the respective plaintext, without decrypting
the ciphertext. This allows for numerous applications as Secure Function Evaluation can
trivially be achieved by letting the client encrypt the inputs and the server executing the
function on the ciphertext.

Definition 13.2.13 (Fully Homomorphic Encryption (taken from the full version of [33,
34, Section 3.1])). A (public-key) Fully Homomorphic Encryption (FHE) scheme Fhe =

(KeyGen, Enc,Dec, Eval) is a quadruple of PPT algorithms as follows.

Key Generation. The algorithm (pk, ek, sk) ← Fhe.KeyGen(1^) takes a unary represen-

tation of the security parameter and outputs a public encryption key pk, a public

evaluation key ek and a secret decryption key sk.

1 We deliberately chose this definition as opposed to the classical definition of an adversary having to
provide unveil information for both bits under a fixed commitment com as this definition does not hold
in the quantum setting [107].

152

13.2. Quantum Information

Encryption. The algorithm ct ← Fhe.Encpk(b) takes the public key pk and a single bit

message b ∈ {0, 1} and outputs a ciphertext ct.

Decryption. The algorithm b
∗ ← Fhe.Decsk(ct) takes the secret key sk and a ciphertext ct

and outputs a message b
∗ ∈ {0, 1}.

Homomorphic Evaluation. The algorithm ctf ← Fhe.Evalek(f, ct1, . . . , ctn) is parameterized

by the evaluation key ek, a function f : {0, 1}n → {0, 1} and a set of n ciphertexts

ct1, . . . , ctn and outputs a ciphertext ctf .

A special case of FHE is called Leveled FHE, which is correct for all circuits up to a given
level (depth). By a standard transformation, assuming circular security2, any leveled FHE
scheme can be transformed into a FHE scheme for arbitrary functions f [73].

Note also that modern schemes such as [74] work without an evaluation key. Hence we
ignore the evaluation key throughout this part of this thesis as we only work with such
FHE schemes that do not require them.

13.2.5. q-IND-CPA

For classical FHE schemes we require a definition of what it means for them to be se-
cure in the presence of quantum adversaries. We thus use the definition of Quantum
Indistinguishability under Chosen Plaintext Attacks from [38, Definition 1]:

Definition 13.2.14 (Quantum Indistinguishability under Chosen Plaintext Attacks). Let
Fhe = (KeyGen, Enc,Dec, Eval) be a classical Fully Homomorphic Encryption scheme. Fhe

fulfills Quantum Indistinguishability under Chosen Plaintext Attacks (q-IND-CPA) security if

for any QPT adversary B, there exists a negligible function negl(^) such that for all ^ ∈ N
and (pk, ek, sk) ← Fhe.KeyGen(1^), it holds that:

| Pr[B(pk, ek, Fhe.Enc(pk, 0)) = 1]
− Pr[B(pk, ek, Fhe.Enc(pk, 1)) = 1] | ≤ negl(^) ,

(13.7)

where the probability is taken over the random coins of the adversary and the coins used for

generation of pk, ek and sk.

That is, we require that no QPT adversary B has a non-negligible advantage to distinguish
encryptions of 0 from encryptions of 1, even when given the evaluation key ek and the
public key pk.

2 The assumption states that encryptions of the secret key under the public key do not violate the security
guarantees.

153

13. Preliminaries

13.2.6. Quantum Fully Homomorphic Encryption

Quantum Fully Homomorphic Encryption (QFHE) follows the formula of classical FHE,
but enables computations on an encrypted quantum state. The encryption of the state is
information-theoretically and uses a Quantum One Time Pad (QOTP), but the keys (x, z)
are only computationally hidden using a classical scheme.

Definition 13.2.15 (Quantum Fully Homomorphic Encryption (taken verbatim from [38,
Def 2])). A (symmetric) Quantum Fully Homomorphic Encryption (QFHE) scheme is a 4-tuple

of quantum algorithms QFhe = (KeyGen, Enc, Eval,Dec):

Key Generation KeyGen: 1^ → (pk, sk, ek). This algorithm takes a unary representation

of the security parameter as input and outputs a classical public encryption key pk, a
classical secret decryption key sk and a quantum evaluation key ek ∈ cod(ES).

Encryption Encpk : cod(MS) → cod(CS). For every possible pk, the quantum channel Encpk
maps a state in the message space MS to a state (the cipher state) in the cipherspace CS.

Homomorphic Evaluation Eval𝐶 : cod(ES × CS
⊗n) → CS

′⊗n
. For every quantum circuit 𝐶 ,

with induced channel 𝜑𝐶 : cod(MS
⊗n) → cod(MS

⊗𝑚), we define a channel Eval𝐶 that

maps an n-fold cipher state to an𝑚-fold cipher state, consuming the evaluation key in

the process.

Decryption Decsk : cod(CS
′) → cod(MS). For every possible sk, Decsk is a quantum channel

that maps the state in codCS
′
to a quantum state in cod(MS).

The definition for symmetric QFHE schemes is analogous only with pk = sk. Note that
later schemes [32, 106] do not rely on an evaluation key ek for quantum operations. As
we only work with these schemes we omit ek throughout this part of the thesis.

Most of the common schemes follow the same basic principle: The evaluator is given
the QOTP-secured quantum state alongside classical Fully Homomorphic Encryption
ciphertexts of the respective keys x and z. Whenever the server performs an operation on
the quantum state, it homomorphically adjusts the QOTP keys accordingly.

Common QFHE schemes such as [38, 8, 106, 32] follow the prepare-and-measure principle,
where the client only has to be capable of performing (alongside classical PPT operations)
relatively simple tasks such as encoding a single qubit and later measuring it.

For our work, we require a QFHE Scheme which has a special property, which is fulfilled
e.g. by the scheme of Brakerski [32]. We call schemes that fulfill these properties Quantum
Fully Homomorphic Encryption Tuples:

Definition 13.2.16 (Quantum Fully Homomorphic Encryption Tuple). Let Fhe be a clas-
sical Fully Homomorphic Encryption scheme. Let QFhe be a secure symmetric Quantum

Fully Homomorphic Encryption-scheme. The tuple (QFhe, Fhe) is called Quantum Fully

Homomorphic Encryption Tuple (QFHET) iff Fhe is q-IND-CPA secure and for all n-qubit

154

13.3. Security Model

quantum states |𝜓 ⟩, there are QPT algorithms where the two following probabilities are both

overwhelming in the security parameter ^:

Pr

⎡⎢⎢⎢⎢⎢⎢⎣ |𝜓 ⟩
′ = (H|𝜓 ⟩)

|︁|︁|︁|︁|︁|︁|︁|︁
(pk, sk, ek) ← QFhe.KeyGen(1^),
|𝜙⟩ ≔ QFhe.Encpk(|𝜓 ⟩),
|𝜙⟩′ ≔ QFhe.Evalek(|𝜙⟩,H),
|𝜓 ⟩′ ≔ QFhe.Decsk(|𝜙⟩′)

⎤⎥⎥⎥⎥⎥⎥⎦ (13.8)

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
|𝜓 ⟩′ =

(︂
X(cb1,cb2) |𝜓 ⟩

)︂
|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁

(pk∗, ek∗, sk∗) ← Fhe.KeyGen(1^),
(pk, sk, ek) ← QFhe.KeyGen(1^),
|𝜙⟩ ≔ QFhe.Encpk(|𝜓 ⟩),
(cb1, cb2)

$←{0, 1}2,
cct1 ≔ Fhe.Encpk∗ (cb1),
cct2 ≔ Fhe.Encpk∗ (cb2),
|𝜙⟩′ ≔ QFhe.Evalek

(︂
|𝜙⟩,X(cct1,cct2)

)︂
,

|𝜓 ⟩′ ≔ QFhe.Decsk(|𝜙⟩′)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.9)

That is, a QFHET has to be capable of homomorphically performing Hadamard gates, as
well as Toffoli gates over classically encrypted control bits. While the former has been
possible ever since the seminal paper of Broadbent and Jeffery [38], the latter has only
been possible since the work of Brakerski [32].

13.3. Security Model

13.3.1. Quantum Random Oracle Model

The (classical) Random Oracle Model (ROM) was designed by Bellare and Rogaway [22] as
a way to proof security of efficient, classical protocols. It models an ideal hash function RH

which returns perfectly random, but for each session deterministic bitstrings of length ^ . So
an adversary B has only negligible advantage to guess RH (x) ∈ {0, 1}^ given a (previously
untested) input x ∈ {0, 1}∗. However, during the same session, the outcome RH (x) will
always remain the same.

The QROM [30] extends the classical Random Oracle Model. It still models an ideal hash

function but gives the adversary B quantum access to a random oracle (which we generally
denote as RQ), thus allowing oracle queries in superposition. This disables many tricks
used in the classical Random Oracle Model, as neither input awareness nor targeted
programmability are possible.

Zhandry [142] introduced so-called compressed oracles, which add two main features to
Quantum Random Oracles that are vital for our proofs: (1) the simulator can at a later
point find out at which positions the oracle has been queried by the adversary and what
the result of that query was, without allowing the adversary to detect that the query was

155

13. Preliminaries

recorded, and (2) the simulator can efficiently simulate a Quantum Random Oracle as
the runtime of the simulator to provide an indistinguishable view is polynomial in the
number of queries t sent by the adversary to the oracle. This allows proving post-quantum
security of different constructions such as Merkle-Damgård [142]. The most basic idea of
Compressed Oracles that separates them from previous approaches [143] is that instead of
implicitly fixing the input-output-tuples in advance by responding according to a certain
function, the approach from Zhandry [142] stores a superposition over all input-output
mappings. While this initially contains each mapping with equal amplitudes, every query
entangles the adversary’s state with the oracle and any measurement outcome of the
adversary fixes the QRO such that the superposition is only over mappings that respect the
adversary’s previous measurements. Zhandry [142] provides a way to efficiently simulate
Compressed Oracles: using a compression mechanism the whole oracle requires qubits
in the order of t, the number of queries, and provides a QPT circuit to respond to oracle
queries.

13.3.2. Everlasting Security

Everlasting or Long-Term Security [112] allows to model future technological progress
by assuming that computational problems might be efficiently breakable in the future.
The model splits the security experiment into two phases: A polynomially bounded
phase executing the protocol, and an unbounded phase where the adversary tries to
extract information from the view of the former. The framework has previously been
considered in the quantum setting by Unruh [129], that is, with quantum adversaries, but
in the framework of Universal Composability (UC) [41]; resulting in an Everlasting UC
framework.

Our standalone setting is less restrictive but does not provide universal composition. Our
execution is split into two phases:

Phase one is executed against a QPT adversary B. In this phase, a protocol Π is executed
and the adversary B may perform computations. Upon termination of B his final
state st is stored. The state contains all classical and quantum registers as well as the
random tape.

Phase two starts after B has terminated (which happens after polynomially many time
steps). In this phase, the unbounded adversary A gets activated with the state st of
B.

st ← B(Π) st A

156

13.3. Security Model

13.3.3. Quantum Random Oracles with Everlasting Security

We use QROs in the Everlasting setting. We build upon the model established by Unruh
[130]. We assume that QROs can be efficiently simulated using techniques from Zhandry
[142].

We model the QPT-adversary as oracle algorithm BRQ who can query RQ a polynomial
number (we generally denote this number as t) of times. After termination of B, the
unbounded adversary A obtains access to the QRO. Since A can query RQ arbitrarily
often, we model this by giving A direct access to the complete value table.

With this addition, our model looks as follows:

st ← BRQ (Π) st A(RQ)

Again, we stress that A(RQ) means that A has access to the full value table of RQ; thus
upon activation of A the entire oracle has to be fixed.

157

14. Impossibility Result

It is folklore knowledge that classical (that is, schemes that do not use a quantum computer)
bit commitment schemes cannot be unconditionally secure. The reason for that is that an
unconditionally hiding commitment scheme implies a level of ambiguity regarding the
bit committed to: After the commitment phase, the adversary A on the hiding property
obtains a commitment comb on some bit b ∈ {0, 1} from an honest committer. The
unconditional hiding property states that even if A has no runtime restrictions, it cannot
extract b from comb with better advantage than by guessing. This implies in particular
that the following attack does not work:

We denote by Com = (Com,Unv) the commitment scheme. The commitment function
Com is a PPT protocol, which means that on input 1^, b it has some randomness applied
to it. However, out of Com we can construct a deterministic commitment protocol Com′
that takes as input (1^, b, TC), where TC is the random tape used by the committer in the
protocol. We replace all invocations of random sampling with 𝑛 bit entropy by using the 𝑛
next random bits of TC and adjust distributions where necessary.

It is easy to see that (1) given fixed inputs, the protocol is deterministic, and (2) when
sampling TC of appropriate length uniformly at random before executing the protocol,
the behavior is the same as in the original Com.

As Com′ is deterministic and the adversary A has no runtime restrictions, the adversary
A can perform a complete search over all choices of b and TC. The adversary can do that
for all possible inputs and when the output comb matches that obtained from the real
committer, A stores this input (and in particular the bit b that comb commits to).

After having tested all possible inputs, the adversary checks the list if all inputs that
resulted in comb used the same bit b; if so it outputs b, if not it outputs a uniformly
random bit.

As stated before, the requirement that the commitment scheme is unconditionally hiding
means that this attack fails to provide a non-negligible advantage. As we assume that
comb was created honestly and that the commitment scheme Com is correct, it follows
that there is at least one input (with the correct bit b and the actual random tape TC used
by the committer) that resulted in comb. Yet the attack failing implies that there is also a
different input (1^, b̄, T ′C) which commits to the complementary bit.

An unbounded adversary on the binding property can perform the exact same attack in
order to later unveil comb to either 0 or 1 as unveil information for both can be extracted

159

14. Impossibility Result

from the attack above. This breaks the unconditional binding property and thus implies
that no classical commitment scheme can be both unconditional binding and hiding.

The attack sketched above does work for any classical bit commitment scheme where
comb is a bitstring of finite length. However, performing the above attack if comb is a
quantum state is not possible: the direct search involves a comparison between the newly
created state and the state received after the commit phase.

As such it was widely believed that quantum commitments can be both unconditionally
binding and hiding, with Brassard et al. [36] providing a candidate construction they
claimed (and proved) to be unconditionally secure for both parties.

A flaw in their proof alongside an attack was pointed out three years later by Mayers
[107]. On a very high level, the flaw in the binding proof of Brassard et al. [36] was in their
definition of the binding property. The authors proved that it is not possible to provide two
different unveil informations unv0 and unv1 for a given commitment comb that open the
commitment to 0 and 1, respectively. While this makes sense in the classic setting, in the
quantum world we do not need both unveil informations to break the binding property, it
suffices if the adversary can come up with the one needed for this particular instance: If
the adversary can commit in such a way, that he can perform a targeted collapse on the
unveil information before starting the unveil phase, he can commit to a generic state and
decide at a later point to which bit he wants to open the commitment.

The collapse of the quantum state then renders it impossible for the adversary to come up
with unveil information for the complementary bit, yet this is not required as the binding
property was already broken.

This attack was generalized to work on arbitrary quantum bit commitment schemes by
Mayers [108] and, independently, by Lo and Chau [105]. Both consider only commitment
protocols where comb is a quantum state and the only measurement is performed right
before termination, which is without loss of generality: Any hybrid protocol that uses
classical and quantum information can be transformed into a protocol that exchanges only
quantum information by encoding the classical bits into a quantum state in computational
bases. And by using deferred measurement, the restriction that measurements are only
possible at the end of the execution is justified.

The key idea of their proof is the following: In order for the quantum commitment to
be unconditionally hiding, the quantum states for {com0} and {com1} need to have a
“similar” description; on a formal level, this means that they have to be encoded by the same
density matrix as otherwise a distinguishing attack works with non-negligible probability.
This in term implies that the theorem by Hughston, Jozsa, andWootters [88] can be applied
which states that two quantum systems with similar decomposition can be transformed
into each other.

This holds in particular for the two quantum states com0 and com1: The adversary can
construct a quantum state containing two entangled registers, where the second register
holds the quantum commitment. The second register is sent as quantum commitment
to the receiver. Before the unveil phase, the adversary decides on the bit to unveil the

160

14. Impossibility Result

commitment to, and performs a unitary transformation only to his own register which
transforms the commitment to be on the desired bit b. By measuring the first register
(the one that was not sent to the receiver) the adversary can extract the correct unveil
information that is consistent with the receivers view so far. As such, the unveil information
is accepted by the receiver and the binding property is broken.

161

15. Quantum Decay

15.1. Motivating the Assumption

This section motivates our first contribution, namely the assumption of Quantum Decay
(QD) in a general model and provides an introduction into its formal treatment. We took
this section verbatim from Döttling et al. [63, Section 2.5] and stress that it not written by
the author of this thesis and is does not count to our contribution, but is here due to its
relevance in justifying our assumption.

Our model assumes that it is impossible to preserve any quantum information after an
arbitrary point in time 𝑡 ∈ poly(^); its decay caused the state to collapse to classical
information. We use this model as one key ingredient to achieve everlasting security. The
unintrigued reader may skip the motivation and jump to Definition 15.2.2.

The theoretical basis of quantum computation is the model of quantum circuits, in which
one often assumes the existence of logical qubits that are perfectly separated from the
outside world. However, every known implementation of a quantum device is an open
system, i.e. the corresponding quantum states eventually couple to their environment
resulting in a partial loss of coherence—“decoherence”. This process is also known as
quantum decay.

A more realistic approach is known as fault-tolerant quantum computing using error
correcting codes (for example using surface codes [125, 37, 71]) allowing to perform any
algorithmic sequence on a quantum computer as long as the physical error per gate is
sufficiently low: Shor [123] showed how to construct an efficient quantum circuit that
tolerates an inaccuracy of O(1

log 𝑡), where 𝑡 is number of gates of the circuit, suggesting
that (fault-tolerant) quantum computing can be performed if the error induced by the
computation is below a logarithmic threshold. The result was later improved to a constant
inaccuracy by Aharonov and Ben-Or [6]. Therefore the model assumes that partial decay
can be counteracted using error correction if the state is refreshed in additional ancilla
states.

In general, decoherence obstructs the realization of efficient quantum circuits by causing a
deviation between the anticipated and the actual state. This process may be quantified by a
(discrete) time it takes a quantum state to deviate from an initial state𝜓init to an erroneous
state𝜓error.

163

15. Quantum Decay

Another possibility is to consider the fidelity of the two states F(𝜓init,𝜓error), i.e. the
probability that the state𝜓error passes as the state𝜓init when measuring. In general, the
quantification is expressed as inaccuracy from either of the two methods.

To stay below this threshold, both physical and theoretical countermeasures are deployed:
Quantum machines are shielded in nearly closed environments, e.g. placed in an almost
perfect vacuum colder than space [66]. However, these safeguards do not prevent but
merely slow the process of decay. A recent result by Zhang et al. [144] shows a fidelity
between a prepared state and the expected state at a magnitude of 10−3 for a single qubit
system, or about 10−5 for two qubit systems. The famous result on quantum supremacy
by Arute et al. [15, Supl, Sec. B] shows that the fidelity gap, thus the probability of error,
grows exponentially in the number of qubits, suggesting that storing larger number of
qubits results in larger failure probabilities.

Employing these countermeasures, state-of-the-art implementations such as the IBM Q

series reach coherence times of about 90 microseconds, Google’s Bristlestone quantum
computer [110, 80] about 35 microseconds (see Tannu and Qureshi [126] for a detailed
survey). It may be noted that quantum computers add additional noise from interacting
with qubits, suggesting that simply storing state may be easier than manipulating it. Recent
results demonstrate coherence times of 10 minutes [135] to 6 hours [145] for single qubits;
or at most 39 minutes [120] for multiple qubits.

Advancing technology allows to increase coherence timings and thus reduce the impact of
decay allowing to compute for a short amount of time. Therefore, practical but not fully
fault-tolerant quantum computing may become possible in the close future: In particular,
this work considers security against quantum computers that keep states coherent for a
limited amount of time, for example, enough time to perform any efficient protocol (e.g.
minutes, hours, days, weeks, ...) but that do not achieve complete fault-tolerance, i.e., can
preserve a quantum state for an indefinite amount of time.

For our model, we do not assume that decoherence may increase over time. Instead we
only consider the moment where decay is complete and assume that an adversary can
perform any BQP computation prior to that on a fully coherent state.

15.2. Mathematical Description

This section was taken verbatim from Döttling et al. [63] and considers the mathematical
modeling of everlasting security. This is not a contribution of this thesis.

The loss of information in an imperfectly closed system due to environmental noise can
be modeled as a transformation of the respective quantum state. Such an irreversible
transformation is considered to be decoherent, i.e. it is named after the loss of coherence,
thus the loss of relations between multiple states; the outcome of which is a state similar
to a measurement result.

164

15.2. Mathematical Description

We follow the description of Hornberger [87] and Brandt [35], who describe decoherence
as the coupling of a quantum system |𝜓𝑞⟩ to the environment |𝜓𝑒⟩ which is unobservable
and uncontrollable due to a large number of degrees of freedom. The environmental state
can be described in the decoherence basis where |𝑒0⟩ and |𝑒1⟩ correspond to the orthogonal
basis vectors. Furthermore, let |𝜓 ⟩ = |𝜓𝑞⟩ ⊗ |𝜓𝑒⟩ describe the complete system. For the
sake of simplicity, consider the two-state quantum system |𝜓 ⟩ = 𝛼0 |0⟩ + 𝛼1 |1⟩ with the
density matrix 𝜌 . Assume that the initial state is pure, thus having the density matrix
representation 𝜌0 =

(︂
|𝛼0 |2 𝛼0𝛼∗1
𝛼∗0𝛼1 |𝛼1 |2

)︂
, where the diagonal elements characterize the basis states,

and the off-diagonal elements correspond to relaying basis states to each other.

It is assumed that the quantum state eventually couples to the environment, resulting in
the density matrix 𝜌1 ≔ |𝜓𝑞⟩|𝜓𝑒⟩⟨𝜓𝑒 |⟨𝜓𝑞 |. The corresponding view of |𝜓𝑞⟩ can be obtained
by tracing out the environment:

tr𝑒
(︁
𝜌1

)︁
= 𝛼2

0 |0⟩⟨0|tr(|𝑒0⟩⟨𝑒0 |) + 𝛼0𝛼
∗
1 |0⟩⟨1|tr(|𝑒0⟩⟨𝑒1 |)

+ 𝛼∗0𝛼0 |1⟩⟨0|tr(|𝑒1⟩⟨𝑒0 |) + 𝛼2
1 |1⟩⟨1|tr(|𝑒1⟩⟨𝑒1 |) .

(15.1)

This results in a state where the outcome is dependent on the trace of the decoherence
basis. Let us consider an example where the decoherence basis of the environment is
the computational basis such that 𝑒0 = |0⟩ and 𝑒1 = |1⟩. Then the partial trace results
in tr𝑒

(︁
𝜌1

)︁
=

(︂
|𝛼0 |2 0

0 |𝛼1 |2
)︂
. Hence, the decoherence would be equivalent to an indirect

measurement process, which maps the state |𝜓 ⟩ to a probability distribution over basis
states, thus destroying any superposition information. This example setup corresponds to
full decoherence.

However, the decoherence bases |𝑒0⟩, |𝑒1⟩ are not orthogonal in general, hence the off-
diagonal elements may not vanish completely in a single time step. Nevertheless, the
system is exposed to decoherence over a continuous time scale, such that coupling may
occur multiple times, resulting in an continuous vanishing of the off-diagonal elements
over time.

We consider quantum states over time (𝑡0, 𝑡1, . . . , 𝑡poly(^)) during the execution of an (effi-
cient) protocol. Throughout the protocol we assume the state to be coherent, such that
any party, including the adversary, can perform arbitrary transformations. At the time
step 𝑡poly(^) , the quantum state couples with the environment, causing full decoherence
and collapsing the superposition to a probability distribution of classical information.

When considering an adversarial setting, the attacker may not necessarily control when the
decoherence occurs. Moreover, hemaymeasure at any time or not at all. However, we stress
that an adversary who terminates with unmeasured registers can be treated equivalently
to one who measures all registers before termination. Thus performing a measurement
does not yield a weaker adversary than collapsing by a random measurement.

Definition 15.2.1 (Quantum Decay Assumption). Every quantum state |𝜓 ⟩ decays after
𝑡 ∈ poly(^) steps. We denote by time (𝑡0) the time where a quantum state |𝜓 ⟩ is written into

the quantum register. At time (𝑡0 + 𝑡) the register contains a state that is independent from
|𝜓 ⟩.

165

15. Quantum Decay

We combine everlasting security from Section 13.3.2 and Quantum Decay to obtain the
adversarial structure from Definition 15.2.2: The computationally bounded QPT-adversary
B executes the (quantum) protocol with access to a quantum state. Upon termination, the
Quantum Decay collapses all quantum registers and hence the unlimited adversary A
only gets access to the classical part of Bs state. Therefore the Quantum Decay model
only allows QPT operations on the quantum state.

Definition 15.2.2 (Quantum Decoherence in the Everlasting Setting). Let B be a QPT-

adversary. Let st be the final state ofB. Let Π be a protocol. LetA be an unbounded adversary.

The final state of B visible to A contains only classical information.

(st) ← B(Π) st A

Definition 15.2.3 (QuantumDecoherence with a QROM in the Everlasting Setting). Let RQ

be a quantum random oracle. A protocol Π is additionally set in the Quantum Random Oracle

Model if the definitions from Definition 15.2.2 are fulfilled and in addition if the bounded

adversary B (RQ)
has oracle-access to RQ . Additionally the unbounded classical adversary A

gets access to the full value table of RQ .

st ← B (RQ) (Π) st,msg ∈ {0, 1}poly(^)
A

15.3. Simulating QROs

Simulating a Quantum Random Oracle using compressed oracles [142] fits surprisingly
well to the everlasting setting. Essentially, during the QPT-phase, the simulator uses the
lazy sampling method described by Zhandry [142] to answer queries. Since the adversary is
also everlasting, the number of queries from the QPT-adversary are limited by a polynomial
number t ∈ poly(^). After termination of the QPT-adversary, execution is continued by a
purely classical (unbounded) adversary which has no access to the qubits stored by the
QPT-adversary. Thus, we can treat the quantum information owned by the QPT-adversary
as if it has been decayed and measure the database which is then entirely classical. Any
collapse will not be noted since the adversary no longer holds the quantum states; either
the QPT-adversary measured them before termination, in which case measuring the
database changes nothing, or the QPT-adversary kept them in superposition, in which
case the measurement from the QPT simulator causes a collapse which is unnoticeable
since the unbounded adversary has no access to the registers that store the quantum
information. Hence, the QPT simulator can read the database in the Fourier domain and
fix the reported oracle values at those spots. Those values are then accessible by the
unbounded simulator.

This unbounded simulator forges an indistinguishable value table by copying the in- and
outputs recorded by the QPT simulator to the value table, and filling all the remaining

166

15.3. Simulating QROs

inputs with additional fresh randomness. This value table is then sent to the unbounded
adversary.

167

16. Everlasting Quantum Commitment
Protocol

This section contains our commitment protocol Π𝑄𝐶𝑜𝑚 which exploits properties of Quan-
tum Decay. We prove the security of Π𝑄𝐶𝑜𝑚—and hence Theorem 12.1.1—in the following
sections. Our protocol extends the work of Brassard et al. [36]; we first recall their com-
mitment protocol. Then we present our extensions, which result in the protocol Π𝑄𝐶𝑜𝑚: It
lets a sender commit to a single (classical) bit and is information theoretically binding and
everlasting hiding in the QROM.

In the sections to come we prove that once the sender committed to a bit b he cannot
convince the receiver that the commitment was on b̄, and no feasible measurement of the
receiver allows to break the hiding property before the unveil-phase.

16.1. The BCJL Protocol

The BCJL protocol deploys a Privacy Amplification Function which is based on a linear
[𝒩,𝒦,𝒟] code 𝒞

�⃗�
with generator matrix �⃗�—initially constructed by the receiver—and

a secret one-time-pad otp ∈ F𝒩2 which is chosen by the sender. To commit to a bit b the
sender picks a codeword 𝒸 ∈ 𝒞

�⃗�
and a string otp such that b = ⟨𝒸, otp⟩. The encoding

function encode
b⃗
maps the codeword 𝒸 to a quantum state |𝜓 ⟩ using a random vector of

Wiesner bases b⃗ ∈ {+,×}𝒩 . The resulting state |𝜓 ⟩ is key to the commitment. The sender
sends the state |𝜓 ⟩ and the OTP otp to the receiver, who measures the state in uniformly
random Wiesner bases, yielding a codeword 𝒸

′.

During the unveil phase, the sender sends the committed message b, the codeword 𝒸 and
the encoding bases b⃗. The receiver checks if his measurements are consistent with the
received values and if the the inner product ⟨𝒸, otp⟩ matches the message b, and accepts
or rejects accordingly.

The full protocol can be found in detail in Figs. 16.1 and 16.2.

169

16. Everlasting Quantum Commitment Protocol

Protocol Π𝐶𝑜𝑚
The commitment protocol Π𝐶𝑜𝑚 by Brassard et al. [36] for committing to a given bit
b ∈ {0, 1}. It is running with a set of 2 parties (C,R) where C is the committer and R
is the receiver.

Upon activation, R samples a uniformly random generator matrix �⃗� ∼ F𝒦×𝒩2 and
sendes �⃗� to C.

On input (b) and after (�⃗�) has been received from R, C samples otp ∼ {0, 1}𝒩 and
b⃗ ∼ {+,×}𝒩 and samples a codeword 𝒸 ∈ 𝒞

�⃗�
s.t. ⟨𝒸, otp⟩ = b. Then C prepares

a quantum state |𝜓 ⟩ ← encode
b⃗
(𝒸) using Wiesner’s encoding with bases b⃗ and

sends (|𝜓 ⟩, otp) to R.

On input (|𝜓 ⟩, otp) by C, R samples uniformly random b⃗

′
∼ {+,×}𝒩 and measures

and stores 𝒸′← measure
b⃗

′ (|𝜓 ⟩) with bases b⃗

′
.

Figure 16.1.:The commitment protocol Π𝐶𝑜𝑚 from Brassard et al. [36] for committing to a given bit b ∈ {0, 1}.

Protocol Π𝑈𝑛𝑣
The unveil protocol Π𝑈𝑛𝑣 by Brassard et al. [36] for unveiling a commitment. We
denote by b the noise of the channel.

Upon activation, C sends (𝒸, b⃗, b) to R.

On input
(︂
𝒸, b⃗, b

)︂
from C, R computes the error rate as 𝜖 ≔

∑︁
𝑖 |b⃗[𝑖]=b⃗

′
[𝑖]

𝒸[𝑖]⊕𝒸′ [𝑖]
𝒩/2 and

rejects if any of the three conditions are not fulfilled: (1) 𝜖 < 1.4b , (2) 𝒸 ∈ 𝒞
�⃗�
,

and (3) ⟨𝒸, otp⟩ = b. Otherwise, R accepts.

Figure 16.2.: The unveil protocol Π𝑈𝑛𝑣 from Brassard et al. [36] for unveiling a commitment.

16.2. Everlasting Quantum Commitment Protocol

In this section we present a bit commitment scheme which we claim to be unconditionally
binding and everlasting hiding. We prove its security in the QROM under the assumption
of Quantum Decay. In particular, we claim that the inevitable Quantum Decay naturally
occurring in quantum states enables us to prove the security of our scheme: Remember
that the attack of Mayers [108] requires the adversary to store the quantum state for an
arbitrary amount of time. If this does not hold, e.g. if the receivers quantum state becomes
unusable after polynomially many time steps due to the Quantum Decay assumption, then

170

16.2. Everlasting Quantum Commitment Protocol

Protocol Π𝐶𝑜𝑚
The everlasting commitment protocol Π𝐶𝑜𝑚 for committing to a given bit b ∈ {0, 1}. It
is running with a set of 2 parties (C,R) where C is the committer and R is the receiver.
It is parameterized by an unconditionally binding and computationally
hiding commitment scheme Com = (Com,Unv).

Upon activation, R samples a uniformly random generator matrix �⃗� ∼ F𝒦×𝒩2 and
sendes �⃗� to C.

On input (b) and after (�⃗�) has been received by R, C samples otp ∼ {0, 1}𝒩 and
b⃗ ∼ {+,×}𝒩 and samples a codeword 𝒸 ∈ 𝒞

�⃗�
s.t.⟨𝒸, otp⟩ = b. Then C pre-

pares a quantum state |𝜓 ⟩ ← encode
b⃗
(𝒸) using Wiesner’s encoding with

bases b⃗, commits to the bases using (com
b⃗
,unv

b⃗
) ← Com.Com(b⃗) and sends

(|𝜓 ⟩, otp,com
b⃗
) to R.

On input
(︂
|𝜓 ⟩, otp,com

b⃗

)︂
by C, R samples uniformly random b⃗

′
∼ {+,×}𝒩 and mea-

sures and stores 𝒸′← measure
b⃗

′ (|𝜓 ⟩) with bases b⃗

′
.

Figure 16.3.: The everlasting commitment protocol Π𝐶𝑜𝑚 for committing to a given bit b ∈ {0, 1}. The
shaded area shows the extension of the protocol from Fig. 16.1.

the measurement of the commitment collapses the quantum state and prevents a malicious
sender from mounting the attack after the commitment phase.

16.2.1. The protocol

In order to exploit the Quantum Decay property, we encode data in a quantum state and
send additional data regarding the state as classical information; the classical information
is computationally hidden and only contains information that is useless after the collapse
of the quantum state. Yet with the information encoded in the quantum state breaking the
commitment becomes trivial. Without it, not even an unbounded adversary can extract the
secret from the commitment. It may be noted that with the subsequent instantiation in the
QROM the commitment will be unconditionally binding and computationally hiding.

Figs. 16.3 and 16.4 shows the commitment protocol Π𝑄𝐶𝑜𝑚 containing the two methods
Com and Unv. We use the same linear code, the same encoding in the Wiesner bases
and the same mechanism for the privacy amplification as Brassard et al. [36]. The main
difference is that we additionally use a classical commitment scheme to commit to the
bases b⃗ in order to circumvent the attack by Mayers [107] by exploiting Quantum Decay.

171

16. Everlasting Quantum Commitment Protocol

Protocol Π𝑈𝑛𝑣
The everlasting unveil protocol Π𝑈𝑛𝑣 for unveiling a commitment. We denote by b the
noise of the channel.

Upon activation, C sends (𝒸, b⃗, b,unv
b⃗
) to R.

On input
(︂
𝒸, b⃗, b,unv

b⃗

)︂
fromC, R computes the error rate as 𝜖 ≔

∑︁
𝑖 |b⃗[𝑖]=b⃗

′
[𝑖]

𝒸[𝑖]⊕𝒸′ [𝑖]
𝒩/2

and rejects if any of the three conditions are not fulfilled: (1) 𝜖 < 1.4b , (2) 𝒸 ∈ 𝒞
�⃗�
,

(3) ⟨𝒸, otp⟩ = b, and (4) Com.Unv(com
b⃗
,unv

b⃗
, b⃗). Otherwise, R accepts.

Figure 16.4.: The everlasting unveil protocol Π𝑈𝑛𝑣 for unveiling a commitment.

Similar to the verification performed in [36], the receiver has to check the bit values of 𝒸
on those spots where the bases b⃗

′
were guessed correctly and verifies that these match with

his measurement 𝒸′ and the unveil information unv
b⃗
for validity against the commitment

com
b⃗
on b⃗. Based on this protocol, we state our main theorem. We will describe the

instantiation in Chapter 17 and use this to prove the theorem in Chapter 18.

Theorem 16.2.1 (Everlasting Quantum Bit Commitment in the QROM). Let Π𝑄𝐶𝑜𝑚 be the

commitment protocol from Figs. 16.3 and 16.4. Assuming Quantum Decay and the QROM,

there exists an instantiation of the classical commitment Com for which Π𝑄𝐶𝑜𝑚 is everlasting

hiding and unconditionally binding.

172

17. Instantiating the Classical
Commitment in the Quantum Random
Oracle Model

In this section we describe an instantiation of the classical commitment in the Quantum
Random Oracle Model. Instantiating the quantum bit commitment protocol Π𝑄𝐶𝑜𝑚 from
Figs. 16.3 and 16.4 with this classical commitment yields a provably secure protocol.

For our proof we need to change some values of a Quantum Random Oracle after the
protocol execution. In a sense, this could be considered as a very weak form of repro-
gramming the random oracle statically, where the new (x, RQ (x)) pairs need to be chosen
in advance, i.e. before the adversary sends the first query. However, a slightly different
way to look at this problem is by considering a distinguishing problem similar to closeness

testing for discrete distributions [47]. There, the adversary needs to differentiate between
an oracle that follows a distribution p, or any distribution p

′ that is at least s off, i.e. where
∥p′ − p∥ ≥ s for a fixed slack s. The difference for us is that (1) we consider a quantum
adversary in the QROM, and (2) we investigate the setting where the truth table is either
exactly that of the oracle, or differs in exactly k spots.

17.1. Closeness-Testing of Quantum Random Oracles

In this section we consider a special case of closeness-testing, namely one where a quantum
adversary tries to decide after t queries, whether the oracle responded according to a given
truth table, or if the real truth table varies on exactly k spots from the one provided to the
adversary after the t queries.

To the best of our knowledge, this question has never been investigated before. A somewhat
related question was under thorough investigation by Ambainis, Rosmanis, and Unruh
[10] and Unruh [130], where the goal of the quantum adversary was to distinguish an
all-zero oracle from a very sparse oracle that only returns 1 only with probability 𝛾 with a
limited number of queries. While this would suffice as foundation for our setting, we will
use a different and much simpler proof method based on the framework from Chung et al.
[53] where analysis in the QROM can be made using classical arguments only.

In this section we will prove the following lemma:

173

17. Instantiating the Classical Commitment in the Quantum Random Oracle Model

Lemma 17.1.1 (Closeness-Testing in Quantum Random Oracles). Let RQ and ˜︂RQ be two

Quantum Random Oracles that map {0, 1}^ → {0, 1}poly(^)
. Let RQ and ˜︂RQ be equivalent

except for a set of k uniformly random spots (w1, . . . ,wk) ∈ ({0, 1}^)k, where RQ (w𝑖) ≠˜︂RQ (w𝑖). Let (C1, . . . ,Ck) ≔ (RQ (w1), . . . , RQ (wk)) be the images of the w𝑖 in RQ .

Let B be an oracle algorithm that makes at most t ∈ poly(^) oracle queries and has access
to {C𝑖}k𝑖=1, and let A be a classical algorithm that can access the (classical part of the) final

state st of B, we have

| Pr
[︃

b = 1
|︁|︁|︁|︁ st ← BRQ ({C𝑖}k𝑖=1),

b← A(st, RQ)

]︃
− Pr

[︃
b = 1

|︁|︁|︁|︁ st ← B˜︂RQ ({C𝑖}k𝑖=1),
b← A(st, RQ)

]︃
| ∈ negl(^)

(17.1)

Proof. As mentioned before, we perform our proof in the framework provided by Chung
et al. [53], wherein a proof against a quantum adversary in the QROM can be made
using purely classical arguments. W.l.o.g. we use a non-parallel version of the QROM,
i.e. one where each query contains one single quantum state1. On a high level, our claim
holds because either the adversary manages to query a point where the two oracles differ
from each other—in which case the adversary can check against the truth tables—or all t

queries were made on spots where both oracles return the same values—meaning that the
adversary can only guess. Since the adversary has to send queries before knowing which
spots differ (as the challenges do not provide any advantage as was shown by Chung
et al. [53, Example 2]), the probability of hitting one spot where the two oracles differ is
negligible in the security parameter. So with overwhelming probability, the adversary ends
up with queries that don’t help to distinguish the truth tables, where the best option is to
guess, and only with negligible probability the queries actually contain usable information.

On a formal level, we define a property to determine closeness, called CLOS, for the
compressed oracles:

CLOS ≔ {RQ |∃xs.t.RQ (x) ∈ {C1, . . .Ck}} (17.2)

Depending on CLOS, the probability to successfully distinguish is given as:

Pr[A guesses correctly] ≤ Pr[CLOS] · 1 + Pr[¬CLOS] · 1
2

(17.3)

Since Pr[CLOS] + Pr[¬CLOS] = 1 it suffices to show Pr[CLOS] ∈ negl(^) to prove our
claim.

1 For parallel access with the same total number of queries the success probability would be worse.

174

17.1. Closeness-Testing of Quantum Random Oracles

The classical case. Following Chung et al. [53, Lemma 4], we can upper-bound the
probability that after t queries, the random oracle is in CLOS:

Pr[RQ

(t) ∈ CLOS] ≤
t∑︂
𝑖=1

Pr[RQ

(𝑖) ∈ CLOS |RQ

(𝑖−1) ∉ CLOS]

≤ t · [¬CLOS → CLOS]
(17.4)

where the latter is called transition capacity by Chung et al. [53] and holds as long as the
queries are answered independently (i.e. the returned values of RQ (x) are independent of
the other values of the oracle), which is the case in our setting.

So to bound the probability we need to get accurate values for the transition capacity. For
that, note that a single query returns one poly(^)-bit string, k ∈ poly(^) of which would
be in the set that transitions the database to fulfill CLOS. Thus,

[¬CLOS → CLOS] ≤ k

2poly(^) (17.5)

Thus, by putting Eq. (17.5) into Eq. (17.4) we get that:

Pr[RQ

(t) ∈ CLOS] ≤ t · k

2poly(^) ∈ negl(^) (17.6)

where the negligible property comes from the fact that we assume both the number of
queries, t, and the number of points where RQ and RQ

′ differ, k, to be polynomial in the
security parameter.

The quantum setting. The above holds for the classic setting, yet our lemma is with
respect to a quantum adversary who has access to a QROM. Using the framework by
Chung et al. [53] we can recycle parts from the classic proof from above, yet some values
have to be adjusted. Most notably, Chung et al. [53, Theorem 1] states that:√︂

Pr[RQ

(t) ∈ CLOS] ≤
t∑︂
𝑖=1

Pr[RQ

(𝑖) ∈ CLOS |RQ

(𝑖−1) ∉ CLOS], (17.7)

and due to Chung et al. [53, Theorem 2] it holds that

[¬CLOS → CLOS] ≤
√︂

10 Pr[RQ

(t) ∈ CLOS] . (17.8)

So, by using the rule from Eq. (17.8) on the formula from Eq. (17.4), it now holds for the
transition capacity that:

[¬CLOS → CLOS] ≤
√︂

10 Pr[RQ

(t) ∈ CLOS]

≤
√︃

10k

2poly(^)

(17.9)

175

17. Instantiating the Classical Commitment in the Quantum Random Oracle Model

Protocol Π𝐶𝑜𝑚
The classical commitment protocol Π𝐶𝑜𝑚 for committing to a given bit b ∈ {0, 1} in
the Quantum Random Oracle Model. It is running with a set of 2 parties (C,R) where
C is the committer and R is the receiver.
We denote by RQ the Quantum Random Oracle.

On input b, C samples a uniformly random nonce a ∼ {0, 1}^ and computes comb ≔
RQ (b∥a). C sends comb to R.

Figure 17.1.: The classical commitment protocol Π𝐶𝑜𝑚 in the QROM for committing to a given bit b ∈ {0, 1}.

Protocol Π𝑈𝑛𝑣
The classical unveil protocolΠ𝑈𝑛𝑣 for unveiling a commitment in the Quantum Random
Oracle Model.

Upon activation, C sends unvb ≔ (b, a) to R.

On input (unvb ≔ (b, a)) fromC, R computescom′
b
≔ RQ (b∥a) and aborts ifcom′

b
≠

comb. Otherwise, R accepts.

Figure 17.2.: The classical unveil protocol Π𝑈𝑛𝑣 in the QROM for unveiling a commitment.

And thus, due to Eq. (17.7):√︂
Pr[RQ

(t) ∈ CLOS] ≤ t ·
√︃

10k

2poly(^)
(17.10)

Finally, by squaring both sides, we get that

Pr[RQ

(t) ∈ CLOS] ≤ 10t
2
k

2poly(^) ∈ negl(^) (17.11)

as again, t and k are both polynomial in the security parameter ^. This concludes our
proof.

17.2. A Classical Commitment Protocol

176

17.3. Security Analysis

We present a protocol construction in the Quantum Random Oracle Model (QROM) for a
classical commitment protocol in Figs. 17.1 and 17.2. The protocol is fairly canonical; to
commit to a bit b ∈ {0, 1}, the sender picks a nonce a of length ^ uniformly at random and
sends the bit b together with a to the QRO RQ . The returned value is used as commitment
on b. In the unveil phase, the sender sends both the nonce a and the bit b to the receiver,
who then verifies that RQ (b∥a) matches the commitment. The hiding property follows from
the randomness and one-wayness of RQ , the binding property comes from the hardness of
finding a collision in RQ . The description of the protocol based on the QRO is sufficient to
follow our proof of the quantum bit commitment Π𝑄𝐶𝑜𝑚 . However, for completeness we
provide a security proof of the classical commitment Com.

17.3. Security Analysis

17.3.1. Unconditional Binding Property

In this section we formally investigate the receivers security of this protocol. Intuitively,
the binding property of Com follows from the injective nature of RQ . More formally:

Lemma17.3.1 (Unconditional Binding Property). Assuming thatRQ : {0, 1}^+1 → {0, 1}poly(^)

is a Quantum Random Oracle, then the classical commitment protocol from Figs. 17.1 and 17.2

is unconditionally binding.

Proof. A given commitment comb has at most one pre-image in RQ with overwhelming
probability as RQ maps strings of length ^ + 1 to length poly(^). Hence a collision exists
with only negligible probability. An adversary A who breaks the binding property has
to send a commitment comb = RQ (b∥a) and find some a′ such that RQ (b∥a′) = RQ (b∥a),
which corresponds to a collision in RQ .

17.3.2. Quantum-Computational Hiding Property

To show the hiding property, we show by consecutive games, each of which is not efficiently
distinguishable by any QPT distinguisher, that the distribution of commitments to 0 is
indistinguishable from the distribution of commitments to 1.

We formally introduce the four games. We start from a distribution of Com.Com(0), and
end at a distribution of Com.Com(1). The games are formally shown in Fig. 17.3:

GAME1(^): This game follows the honest protocol, where the commitment is to b = 0.

GAME2(^): This game is as Game1(^), but after obtaining the original output of the Quan-
tum Random Oracle on input 0∥a , RQ responds to input 0∥a with output r for an
independently sampled r

$←{0, 1}poly(^) .

177

17. Instantiating the Classical Commitment in the Quantum Random Oracle Model

Game1(^)

1 : a
$←{0, 1}^

2 : −
3 : comb ≔ RQ (0∥a)
4 : −
5 : return comb

Game2(^)

1 : a
$←{0, 1}^

2 : r

$←{0, 1}poly(^)

3 : comb ≔ RQ (0∥a)
4 : RQ (0∥a) ≔ r

5 : return comb

Game3(^)

1 : a
$←{0, 1}^

2 : r

$←{0, 1}poly(^)

3 : comb ≔ RQ (1∥a)
4 : RQ (1∥a) ≔ r

5 : return comb

Game4(^)

1 : a
$←{0, 1}^

2 : −
3 : comb ≔ RQ (1∥a)
4 : −
5 : return comb

Figure 17.3.: Hiding games for the commitment Com.

Lemma 17.3.2. LetCom be given as in Figs. 17.1 and 17.2. LetB′ be a QPT distinguisher
which distinguishes Game1(^) and Game2(^) with advantage 𝛼 . By Lemma 17.1.1, it

follows that 𝛼 ∈ negl(^).

Proof. Indistinguishability can be shown by applying Lemma 17.1.1 with k = 1:
Game1(^) uses the original QRO that provides RQ (0∥a), and in Game2(^), the oracle
differs on one random pre-image, such that with overwhelming probability comb

does not have a pre-image.

From a QPT distinguisher B′ between Game1(^) and Game2(^), we can build a QPT
reduction algorithmB that can decide the closeness-testing problem in Lemma 17.1.1:

The challenger C𝑃𝑟𝑒𝐼𝑚𝑔 for Lemma 17.1.1 provides B with a QRO RQ : {0, 1}^ ↦→
{0, 1}poly(^) , and a message C. We let B simulate a compressed oracle RC : {0, 1}^ ↦→
{0, 1}poly(^) .

Before providing oracle access for B′, B reports the commitment comb = C to 𝛼′
and provides a QRO RS : {0, 1}^+1 ↦→ {0, 1}poly(^) .

When 𝛼′ queries the oracle on input |x⟩, B interprets |x⟩ as |b⟩ ⊗ |x′⟩: the first
register is considered a (superposition over a) bit b and the remaining ^ qubits are
used as additional input. B forwards |x′⟩ to RQ and executes the following circuit
on the result: It uses |b⟩ for a controlled circuit that uses CNOT gates to copy the
output of only one register to the output registers for the adversary’s oracle query:
conditioned on b = 0, the output registers contain the result of the challenge oracle
RQ , and conditioned on b = 1, the output registers hold the result of the simulated
oracle RC (|x′⟩). The resulting state is returned by B as response RS (|x⟩).

After t queries, B′ provides output. If B′ assumes playing Game1(^), B reports to
C𝑃𝑟𝑒𝐼𝑚𝑔 that the value table corresponds to the oracle; and if B′ guesses Game2(^),
B reports that k inputs of the value tables differ from the ones that were provided
by RQ .

With overwhelming probability there is a pre-image of C in RS only if the challenge
RQ was used. Our intermediate circuit ensures it has a leading 0. The probability that
the compressed oracle has a pre-image on C is negligible due to the sparse image
domain. Hence, a pre-image of C in RS corresponds to a pre-image of C in RQ with
overwhelming probability.

178

17.3. Security Analysis

There are two important cases. The one case happens with overwhelming probability
due to the sparsity of the domain and in it, the challenge C has no pre-image in the
compressed oracle RC . In this case, the following holds:

If the value table differs for k inputs, the situation resembles exactly that ofGame2(^)
and hence, the advantage of B′ for this case is directly inherited by B.

Whereas if the value table is exactly that from RQ , then there is a unique pre-image
of r in RQ that has a leading 0 in the oracle accessible by B′. Thus in this case the
situation is exactly that of Game1(^) and B again inherits the advantage of B′.

The second case is the one where the compressed oracle RC has a pre-image for the
challenge C. In this case the simulation cannot successfully reconstruct the expected
view of the respective games and we can make no guarantees with respect to the
advantage. However, the sparse domain of the compressed oracle RC implies that
this case occurs with at most negligible probability.

From B′ ∈ 𝑄𝑃𝑇 it follows that t ∈ poly(^), hence Lemma 17.1.1 implies that B′
has at most a negligible advantage 𝛼 of B; as B has the same advantage as B′ with
overwhelming probability it follows that B′ cannot have non-negligible advantage
in distinguishing the two games.

GAME3(^): This game is as Game2(^), but instead of equivocating a value with a leading 0,
Game3(^) picks a random pre-image starting with a 1: Both games pick a random
OTP a $←{0, 1}^ , and Game2(^) uses (0∥a) as initial input, whereas Game3(^) uses
(1∥a) as input to the QRO before re-writing.

Lemma 17.3.3. LetCom be given as in Figs. 17.1 and 17.2. LetB′ be a QPT distinguisher
which distinguishes Game2(^) and Game3(^) with advantage 𝛼 . Then 𝛼 ∈ negl(^).

Proof. Indistinguishability trivially holds against any QPT distinguisher B′. We
simulate the Quantum Random Oracle using the compressed oracle technique which
is indistinguishable from a real random oracle. This implies that for each possible
input w ∈ {0, 1}^+1, the output RQ (w) ∈ {0, 1}poly(^) is uniformly distributed. Before
the distinguisher obtains access to the Quantum RandomOracle, one of the uniformly
sampled values from the image domain is replaced by a different uniformly sampled
value, and the distinguisher B′ has to differentiate whether this rewriting occurred
on a pre-image starting with a zero or a one. This is trivially impossible to detect
better than by guessing in a real Quantum Random Oracle, and the compressed
oracle technique ensures that fixing a uniformly random value in advance cannot be
detected either. With the pre-image being undetectable it also follows that the first
bit of the pre-image where the rewriting occurred is undetectable. It thus follows
that 𝛼 = 0 which proves our claim.

GAME4(^): This game is as Game3(^), but directly returns the output of RQ on input 1∥a .
This resembles an honest commitment on 1.

179

17. Instantiating the Classical Commitment in the Quantum Random Oracle Model

Lemma 17.3.4. LetCom be given as in Figs. 17.1 and 17.2. LetB′ be a QPT distinguisher
which distinguishes Game3(^) and Game4(^) with advantage 𝛼 . By Lemma 17.1.1, it

follows that 𝛼 ∈ negl(^).

Proof. This proof is analogous to the indistinguishability ofGame1(^) andGame2(^),
which was proven in Lemma 17.3.2 only with a flipped control bit such that a
compressed oracle is invoked on oracle queries with a leading 0 and RQ outputs are
only forwarded to B′ on inputs starting with 1.

It follows that the two distributions for Com.Com(0) and for Com.Com(1) are not dis-
tinguishable by any QPT adversary, and thus the quantum-computational hiding prop-
erty follows. From Lemmas 17.3.2 to 17.3.4, alongside the fact that Game1(^) is exactly
Com.Com(0) andGame4(^) corresponds toGame4(^), we can conclude that Lemma 17.3.5
follows (restated for convenience):

Lemma 17.3.5 (Quantum-Computational Hiding Property). Let RQ be a Quantum Random

Oracle RQ : {0, 1}^+1 → {0, 1}poly(^)
as used for Com. No QPT adversary B can break the

hiding property of Com from Figs. 17.1 and 17.2 with non-negligible advantage 𝛼 over guessing.

180

18. Proof of Security of Π𝑄𝐶𝑜𝑚

In this section we prove the everlasting hiding and unconditional binding properties of the
quantum bit commitment protocol Π𝑄𝐶𝑜𝑚 from Figs. 16.3 and 16.4 when instantiating it
with the classical commitment protocol in the QROM from Figs. 17.1 and 17.2. Therefore,
we show that the the binding property holds against any unbounded adversaryA and the
hiding property holds against any everlasting adversary (B,A).

First, we investigate the everlasting hiding property in the QROM with quantum decay.
To that end we start by showing that the bases chosen by the receiver are independent
of the bases chosen by the sender, despite the classical commitment on the chosen basis
vector.

Second, we prove the unconditional binding property by analyzing the two degrees of
freedom within the unveil message susceptible by the adversary: The committed value b

and the codeword 𝒸. The other degrees of freedom—namely the basis vectors—are fixed
by the unconditionally binding property of the classical commitment scheme. The sender
may attempt to unveil a different codeword �̃� than initially hidden in the quantum state.
However, since the receiver measures the quantum state using uniformly random bases
we can show that the probability that the receiver’s codeword 𝒸

′ is sufficiently close to
pass the tests in the unveil function is negligible, and that �̃� will be rejected. This results
in an unconditional binding property.

18.1. Sender Security

We start by presenting our game based proof that any measurement performed by an
adversary is independent of value in the classical commitment. Then, without loss of
generality, we assume that B performs the best measurement, that is, the measurement
from which A can derive the largest amount of information.

Recall from Lemmas 13.2.9 and 13.2.10 that any measurement bases b⃗

′
used by the receiver

B result in at least 0.11𝒩 incorrect bits. This results in an exponentially large number
of possible codewords with the respective distance to the measured 𝒸

′, without further
information helping the adversary to differentiate the correct codeword from incorrect
ones. We can then apply Lemma 13.2.11 to argue that the amount of information available
to even an unbounded adversary is negligible. It then follows from Lemma 13.2.8 that the
adversary has only a negligible advantage in breaking the hiding property.

181

18. Proof of Security of Π𝑄𝐶𝑜𝑚

Game1(^)

1 : S(�⃗�, b)
2 : otp

$←{0, 1}𝒩 , b⃗

$←{+,×}𝒩
3 : 𝒸b ∼ 𝒞

�⃗�
s.t. ⟨𝒸b, otp⟩ = b

4 : |𝜓 ⟩ ← encode
b⃗
(𝒸)

5 : foreach 𝑖 ∈ [𝒩] do
6 : a [𝑖] $←{0, 1}^

7 : −
8 : com

b⃗[𝑖] ≔ RQ (b⃗[𝑖] ∥a [𝑖])
9 : done
10 : Send (|𝜓 ⟩, otp,com

b⃗
) to B

11 : B(|𝜓 ⟩, otp,com
b⃗
) :

12 : 𝒸
′ ← 𝑀𝑒𝑎𝑠𝑢𝑟𝑒

b⃗

′ (|𝜓 ⟩)

13 : RQ (b⃗) :
14 : −
15 : −

Game2(^)

1 : S(�⃗�, b) :
2 : otp

$←{0, 1}𝒩 , b⃗

$←{+,×}𝒩
3 : 𝒸b ∼ 𝒞

�⃗�
s.t. ⟨𝒸b, otp⟩ = b

4 : |𝜓 ⟩ ← encode
b⃗
(𝒸)

5 : foreach 𝑖 ∈ [𝒩] do
6 : −
7 : r𝑖

$←{0, 1}poly(^)

8 : com
b⃗[𝑖] ≔ r𝑖

9 : done
10 : Send (|𝜓 ⟩, otp,com

b⃗
) to B

11 : B(|𝜓 ⟩, otp,com
b⃗
) :

12 : 𝒸
′ ← 𝑀𝑒𝑎𝑠𝑢𝑟𝑒

b⃗

′ (|𝜓 ⟩)

13 : RQ (b⃗) :
14 : ∀𝑖∈[𝒩]a [𝑖]

$←{0, 1}^

15 : ∀𝑖∈[𝒩]RQ (b⃗[𝑖] ∥a [𝑖]) ≔ r𝑖

Figure 18.1.: Games to show independence of chosen basis vectors.

So before we can use Lemma 13.2.10 to limit the amount of information the adversary
can extract from the commitment, we have to show that our commitment scheme fulfills
the requirements stated by that lemma. Recall that their lemma was made with respect
to a protocol where no classical commitment of the basis vectors is sent to the receiver;
since our protocol contains a classical commitment on the basis vector we need to prove
that the commitment yields no information that could help the adversary, which we show
using the two game-hops depicted in Fig. 18.1. More formally, the games are defined as
follows:

GAME1(^): This game follows the original commitment protocol from Fig. 16.3, where the
sender commits to a given and fixed bit b.

GAME2(^): This game is as Game1(^), only that instead of providing actual commitments
com

b⃗[𝑖] on the basis vectors, the reported commitments are drawn as uniformly
random poly(^)-bit strings drawn independently of the basis vector used.

Lemma 18.1.1. If an everlasting distinguisher (B′,A′) can distinguish Game1(^)
and Game2(^) from Fig. 18.1 with non-negligible advantage 𝛼 , then there exists an

everlasting adversary (B,A) that can distinguish which random oracle was used in

Lemma 17.1.1 with the same advantage 𝛼 .

182

18.1. Sender Security

Proof. We want to reduce a distinguisher (B′,A′) of Section 18.1 and Game2(^) to
an adversary (B,A) on Lemma 17.1.1, who is provided with challenges C𝑖 by the
challenger C𝑃𝑟𝑒𝐼𝑚𝑔.

The naïve approach for reduction adversary (B,A) would be to forward the chal-
lenges C𝑖 as commitments com

b⃗[𝑖] to the adversary B
′. Then, any oracle query from

the adversary B′ may be send to the oracle maintained by the challenger C𝑃𝑟𝑒𝐼𝑚𝑔
and respectively the oracle output back to the adversary. However, there might be a
unknown dependency (for example hidden in a superposition query) between the
preimage of the values sent to the oracle and the quantum state |𝜓 ⟩ resulting from
the bases that the preimages define. All outputs of the simulated oracle have to
reflect such dependencies, which means that the reduction algorithm has to ensure
that all oracle queries in correspondence with C𝑖 are mapped to the initial quantum
state, and all other queries are answered consistently. The parties interact with a
total of three oracles:

Challenge oracle RQ : {0, 1}^ → {0, 1}poly(^) . The oracle is provided by C𝑃𝑟𝑒𝐼𝑚𝑔 for
the reduction adversary.

Compressed oracle RC : {0, 1}^ → {0, 1}poly(^) . The oracle is simulated by the reduc-
tion algorithm using the approach described by Zhandry [142].

Simulated oracle RS : {0, 1}^+1 → {0, 1}poly(^) , which is provided by the reduction
algorithm to the distinguisher and is used for the classical commitment compo-
nent. The oracle maps inputs to either the output of the challenge oracle RQ , or
to the output of a compressed oracle RC .

We assume that the each oracle O can be queried in superposition through a circuit
that works on a state |𝜑O⟩ ≔ (|dom(O)⟩, |cod(O)⟩) where |dom(O)⟩ is the input
register and |cod(O)⟩ is the output register. The circuit maps (|dom(O)⟩, |cod(O)⟩) to
(|dom(O)⟩, |cod(O) ⊕ O(dom(O))⟩); by assuming an initially empty output register
we have the output |O(dom(O))⟩ stored directly inside the output register. Note
here that the circuit does not change the input register |dom(O)⟩.

Challenge. The reduction algorithm starts by drawing a random b

$←{0, 1} and
computes the codeword 𝒸 and nonce otp honestly. For the creation of the quantum
state |𝜓 ⟩ the adversary draws uniformly random basis vectors b⃗ ∈ {+,×}𝒩 and
encodes 𝒸 as |𝜓 ⟩ in those bases. Instead of computing honest commitments com

b⃗
,

B embeds the challenge {C𝑖}𝒩𝑖=1 from C𝑃𝑟𝑒𝐼𝑚𝑔. Thus the first message that B reports
to B′ in the name of the sender is given as (|𝜓 ⟩, otp, {C𝑖}𝒩𝑖=1).

Simulated Oracle Behaviour. The reduction algorithm has to provide a view in
which the pre-images of the challenges are valid commitments on the basis vectors
b⃗ without knowing the actual pre-image values. With knowledge of the respective
image one can compare the oracle output with the challenges and either return

183

18. Proof of Security of Π𝑄𝐶𝑜𝑚

the challenges or a value provided by the compressed oracle. Therefore, we define
the simulation oracle to provide an extra bit (compared to the challenge oracle).
Given this extra bit, we can split the oracle results for values representing pre-image
challenges and other values, depending on the basis. In particular the simulated
oracle should behave as depicted in Fig. 18.2.

To that end, note that in our construction the classical commitment scheme in the
QROM from Figs. 17.1 and 17.2, the basis vector for the 𝑖-th qubit is determined only
by the first bit of the pre-image from C𝑖 . The remaining qubits of the pre-image
are independent of the commitment value. We exploit this property by letting the
reduction algorithm take care of the first qubit of the query:

Let |dom(RS)⟩ contain the distinguishers query. The reduction algorithm copies1 the
last ^ qubits of the register into the query register |dom(RQ)⟩, and queries the oracle
provided by the challenger with all but the first qubit:

|cod(RQ)⟩|dom(RQ)⟩[1 . . . ^] ← RQ (|0⟩|dom(RQ)⟩[1 . . . ^]) (18.1)

The same procedure is performed for the compressed oracle:

|cod(RC)⟩|dom(RQ)⟩ ← RC (|0⟩|dom(RC)⟩[1 . . . ^]) (18.2)

To ensure that the first bit of the pre-image to any of the reported C𝑖 values matches
the basis b⃗[𝑖] used for the creation of |𝜓 ⟩ the values {C𝑖}𝒩𝑖=1 and (the single-bit
encoding of) b⃗[𝑖] are encoded into quantum registers (using computational bases),
the QPT circuit works on registers containing the above alongside the original query
register |dom(RS)⟩ which enforces the behavior depicted in Fig. 18.2.

This allows to select which of the two oracle outputs are used as result for the simu-
lated query. The result is then written into the register |cod(RS)⟩ containing the out-
put of the query for the simulated oracle. The quantum state (|dom(RS)⟩, |cod(RS)⟩)
is then returned to B′ as response to his query. The circuit ensures that RS behaves
like a valid random oracle in that the queries resulting in any output C𝑖 look like
valid commitments for b⃗[𝑖] and the same input throughout different queries yields
the same output.

A detailed description of the quantum circuit implementing this behavior is given at
the end of the section.

Oracle Simulation. Let t be the number of oracle queries that the QPT part of the
distinguisher, B′, performs on the simulated oracle RS . B applies the simulation
circuit for all t queries performed by the adversary B′. After termination of B′, the
QPT-part of the reduction algorithm, B, measures the database 𝐷 for input-output
tuples seen by B′, and then terminates by sending those values to the classically

1 For the sake of simplicity we refer to the cloning of non-independent states using CNOT gates as copying.

184

18.1. Sender Security

∃𝑖 : |cod(RQ)⟩ = |C𝑖⟩

|dom(RS)⟩[0]
?
= |b⃗[𝑖]⟩ |dom(RS)⟩[0]

?
= |1⟩

Challenge oracle RQ Compressed oracle RC .

Yes No

Yes NoYes No

Figure 18.2.: Depiction of the oracle selection process. |cod(RQ)⟩ contains the output of the challenge oracle
RQ . |dom(RS)⟩ contains the query sent to the simulated oracle RS .

unlimited part of the reduction, A. From C𝑃𝑟𝑒𝐼𝑚𝑔, A obtains the value table of the
challenge oracle RQ . By definition this value table is guaranteed to have pre-images
for all 𝒩 challenges C𝑖 . Using that alongside the value table of the compressed
oracle RC , the reduction algorithm prepares the value table that is to be handed over
to the classically unbounded distinguishing adversary A′: A goes through every
value x ∈ {0, 1}^ of the value table for RQ , and if RQ (x) is none of the C𝑖 , it adds
to its own value table two entries (0∥x) ↦→ RQ (x) and (1∥x) ↦→ RC (x). If there is
some 𝑖 such that RQ (x) = C𝑖 , then A adds two entries (b⃗[𝑖] ∥x) ↦→ RQ (x) (= C𝑖) and
((1 − b⃗[𝑖])∥x) ↦→ RC (x). This lets A effectively execute the circuit from Fig. 18.2
classically for each possible input and provide the output that is expected to be the
same output that was seen by the distinguisher earlier. We stress here that this value
table is consistent up to the factor that the pre-images of the challenges {C𝑖}𝒩𝑖=1
might have resulted in different outcomes, depending on whether the value table is
exactly that of RQ or if k values differ.

Yet the view of the distinguishing algorithms (B′,A′) can be perfectly simulated: If
the value table was not changed by C𝑃𝑟𝑒𝐼𝑚𝑔 then the challenges {C𝑖}𝒩𝑖=1 were valid
commitments on the basis vectors b⃗ used for encoding the code word 𝒸 into the
quantum state |𝜓 ⟩, as is the case in Game1(^). Note also that with overwhelming

185

18. Proof of Security of Π𝑄𝐶𝑜𝑚

|𝑋 ⟩ • • |𝑋 ⟩

|𝑌1⟩ • |𝑌1⟩

... . . .
. . .

...

|𝑌𝑁 ⟩ • |𝑌𝑁 ⟩

|𝑍 ⟩
· · · · · ·

|𝑍 ⊕ (
⨁︁

𝑖 𝑋
?
= 𝑌𝑖)⟩≡

|𝑋 ⟩
𝐸𝑞

|𝑋 ⟩
|{𝑌𝑖}𝑁𝑖=1⟩ |{𝑌𝑖}𝑁𝑖=1⟩
|𝑍 ⟩ |𝑍 ⊕ (

⨁︁
𝑖 𝑋

?
= 𝑌𝑖)⟩

Figure 18.3.: Quantum circuit to compare inputs.

probability2, none of the C𝑖 are in the image domain of the compressed oracle RC .
Yet if C𝑃𝑟𝑒𝐼𝑚𝑔 changed values of the value table then the random oracle then the
challenge is entirely independent of the basis vectors used for creating the quantum
state |𝜓 ⟩, which resembles the case of Game2(^).

So if the distinguisher (B′,A′) can correctly distinguish with non-negligible advan-
tage 𝛼 then the reduction (B,A) inherits this advantage and can differentiate in
Lemma 17.1.1 with advantage 𝛼 .

Hence, an answer of the distinguisher (B′,A′) can be translated to a response the
reduction algorithm (B,A) sends to the challenger C𝑃𝑟𝑒𝐼𝑚𝑔.

Due to Lemma 17.1.1 the advantage𝛼 of (B,A) is negligible and thus no distinguisher
(B′,A′) with non-negligible advantage exists.

Constructing the Circuit. To conclude our prove we need to show that the circuit
deployed by B that decides which oracle output is returned to the distinguisher
B′ actually exists. The circuit takes as inputs the challenges {C𝑖}𝒩𝑖=1, the output
|cod(RC)⟩ of the compressed oracle, the oracle query |dom(RS)⟩ from B′, the set of
all basis vectors |{b⃗[𝑖]}𝒩

𝑖=1⟩ used in the oracle and the output |cod(RQ)⟩ of the oracle
provided by C𝑃𝑟𝑒𝐼𝑚𝑔.

It compares each value in register |cod(RQ)⟩ to the challenges C𝑖 and outputs either
the image of the random oracle (if the basis has been chosen for a commitment), or
otherwise the image of the compressed oracle.

Fig. 18.4 shows the respective quantum circuit which deploys the subroutine in
Fig. 18.3 to compare the different values.

In the following we review the transformations performed in the circuit in more
detail. We consider the steps from the initial state |𝜙0⟩ to the final state |𝜙5⟩ (without

2 Due to the exponentially larger span of RQ compared to its input domain

186

18.1. Sender Security

|domRS
⟩[0]

𝐸𝑞

•

𝐸𝑞†

|domRS
⟩[0]

|{b⃗[𝑖]}𝑁𝑖=1⟩ |{b⃗[𝑖]}𝑁𝑖=1⟩

|𝐸𝑄
b⃗
⟩ • |𝐸𝑄

b⃗
⟩

|codRQ
⟩

𝐸𝑞

• •

𝐸𝑞†

|codRQ
⟩

|{𝐶𝑖}𝑁𝑖=1⟩ |{𝐶𝑖}𝑁𝑖=1⟩

|𝐸𝑄C⟩ • • |𝐸𝑄C⟩

|codRC
⟩ • • |codRC

⟩

|𝑜𝑢𝑡𝑝𝑢𝑡⟩ |𝑜𝑢𝑡𝑝𝑢𝑡 𝑡𝑜 D⟩

|𝜙0⟩ |𝜙1⟩ |𝜙2⟩ |𝜙3⟩ |𝜙4⟩ |𝜙5⟩

Figure 18.4.: Circuit-based description.

uncomputation). However, since the input registers {C𝑖}𝒩𝑖=1, |cod(RC)⟩, |dom(RS)⟩,
|{b⃗[𝑖]}𝒩

𝑖=1⟩ are not changed after circuit execution, we only consider the initial state:

|𝜙0⟩ = |dom(RS) [0]⟩|𝐸𝑄
b⃗
≔ 0𝒩⟩|𝐸𝑄C ≔ 0𝒩⟩|𝑜𝑢𝑡𝑝𝑢𝑡 ≔ 0⟩

Note that at most one of the oracle outputs |{b⃗[𝑖]}𝒩
𝑖=1⟩ can match the value in

|dom(RS)⟩, and the same applies to |cod(RC)⟩ and the values {C𝑖}𝒩𝑖=1, resulting in
the state:

|𝜙1⟩ = |dom(RS) [0]⟩|b⃗[𝑖]
?
= dom(RS) [0]⟩|∃𝑖 :C𝑖

?
= cod(RQ)⟩|0⟩

In each subsequent step one of the oracle outputs, either from the challenge oracle or
the compressed oracle, are written into the respective subspace of the output register.
For the sake of simplicity we omit variables to denote the unknown amplitudes of
each sub-space, since the exact values are not relevant to provide a consistent view.

|𝜙2⟩ = |dom(RS) [0]⟩|b⃗[𝑖] = dom(RS) [0]⟩|∃𝑖 :C𝑖 = cod(RQ)⟩|cod(RQ)⟩

+ |dom(RS) [0]⟩|b⃗[𝑖]
?
= dom(RS) [0]⟩|∃𝑖 :C𝑖

?
= cod(RQ)⟩|0⟩

|𝜙3⟩ = |dom(RS) [0]⟩|b⃗[𝑖] = dom(RS) [0]⟩|∃𝑖 :C𝑖 = cod(RQ)⟩|cod(RQ)⟩
+ |dom(RS) [0]⟩|b⃗[𝑖] ≠ dom(RS) [0]⟩|∃𝑖 :C𝑖 = cod(RQ)⟩|cod(RC)⟩

+ |dom(RS) [0]⟩|b⃗[𝑖]
?
= dom(RS)⟩|∄𝑖 :C𝑖 = cod(RQ)⟩|0⟩

|𝜙4⟩ = |dom(RS) [0]⟩|b⃗[𝑖] = dom(RS) [0]⟩|∃𝑖 :C𝑖 = cod(RQ)⟩|cod(RQ)⟩
+ |dom(RS) [0]⟩|b⃗[𝑖] ≠ dom(RS) [0]⟩|∃𝑖 :C𝑖 = cod(RQ)⟩|cod(RC)⟩

+ |dom(RS) [0] ≠ 0⟩|b⃗[𝑖] ?
= dom(RS)⟩|∄𝑖 :C𝑖 = cod(RQ)⟩|cod(RQ)⟩

+ |dom(RS) [0] = 0⟩|b⃗[𝑖] ?
= dom(RS)⟩|∄𝑖 :C𝑖 = cod(RQ)⟩|0⟩

187

18. Proof of Security of Π𝑄𝐶𝑜𝑚

|𝜙5⟩ = |dom(RS) [0]⟩|b⃗[𝑖] = dom(RS) [0]⟩|∃𝑖 :C𝑖 = cod(RQ)⟩|cod(RQ)⟩
+ |dom(RS) [0]⟩|b⃗[𝑖] ≠ dom(RS) [0]⟩|∃𝑖 :C𝑖 = cod(RQ)⟩|cod(RC)⟩

+ |dom(RS) [0] ≠ 0⟩|b⃗[𝑖] ?
= dom(RS)⟩|∄𝑖 :C𝑖 = cod(RQ)⟩|cod(RQ)⟩

+ |dom(RS) [0] = 0⟩|b⃗[𝑖] ?
= dom(RS)⟩|∄𝑖 :C𝑖 = cod(RQ)⟩|cod(RC)⟩

Note that in Game2(^), all values that the receiver obtains are independent of the used
basis vectors:

Corollary 18.1.2. When instantiating the classical commitment scheme from Π𝑄𝐶𝑜𝑚 with

the commitment protocol from Figs. 17.1 and 17.2, then the bases chosen by the receiver are

independent from the bases chosen by the sender. Moreover, there is no operation that the

QPT-receiver can do that depends on the real bases b⃗ chosen by the committer.

Thus, we can directly apply Lemma 13.2.9 to deduce that the best measurement of a
malicious receiver is in the Breidbard-bases, which yields at least 0.11𝒩 wrong bits.
And due to Lemma 13.2.11 there are exponentially many possible code words given any
measurement in those best bases, which due to Lemma 13.2.8 results in a situation where
the adversary has only a negligible advantage in breaking the hiding property.

Thus, our conclusion holds despite the fact that the correct basisvectors are contained as a
classical commitment:

Corollary 18.1.3. The commitment protocol from Figs. 16.3 and 16.4 is an everlasting hiding
commitment scheme.

18.2. Receiver Security

Next, we will consider the binding properties of our protocol which is formalized in
Lemma 18.2.1:

Lemma 18.2.1 (Unconditional Binding). When instantiating the classical component of

Π𝑄𝐶𝑜𝑚 from Figs. 16.3 and 16.4 with any unconditionally binding commitment scheme then

Π𝑄𝐶𝑜𝑚 is unconditionally binding: Any unbounded adversaryA has only a negligible chance

to open this commitment to b̄ instead of b, that is, the following probability is negligible in

the security parameter ^:|︁|︁|︁|︁|︁|︁ Pr
⎡⎢⎢⎢⎢⎣ Com.Vfy(com,unvb, b) = 1

|︁|︁|︁|︁|︁|︁ (st,com) ← A(1
^),

b

$←{0, 1},
unvb ← A(st, b)

⎤⎥⎥⎥⎥⎦ − 1/2

|︁|︁|︁|︁|︁|︁ (18.3)

where the probability is taken over the random coins.

188

18.2. Receiver Security

Proof. The unveil information consists of the codeword 𝒸, the basis b⃗ and the committed
value b. First we recall that the classical commitment Com is unconditionally binding,
such that not even an unbounded adversary can unveil different bases b⃗.

Therefore, in order to unveil a different value b̄, only the codeword 𝒸
∗ may be changed:

First, note that our code was constructed to have 𝒟 > H−1(1/2)𝒩 ≈ 0.1100279𝒩, so two
valid codewords differ in at least 0.11𝒩 bits. In order to break the binding property,A has
to change at least 𝒟

2 = 0.055𝒩 positions in the codeword 𝒸
∗; this is due to the fact that

the adversary can commit to an invalid codeword, where half of the difference is taken
from a codeword that commits to 0 and half from a codeword that commits to 1, and then
later tries to equivocate the half that was taken from the codeword that commits to the
respective other bit.

This change can only be induced in those positions where the sender committed to a
different vector b⃗[𝑖] than the b⃗

′
[𝑖] that the receiver chose, since matching bases would let

the receiver detect the change.

However, the A does not know the positions where the bases match. There are at least(︁
𝒩

0.055𝒩
)︁
combinations, thus exponentially many possibilities for the positions. There-

fore, even an unbounded adversary has only negligible chance of guessing the correct
combination and thus opening the commitment to a different value.

189

19. An Obfuscated Measurement Attack

We have seen in Chapters 17 and 18 that the commitment scheme in the QROM yields a
secure protocol Π𝑄𝐶𝑜𝑚 from Figs. 16.3 and 16.4. In this section we want to demonstrate the
significance of the QROM for the classical commitment scheme by presenting an alternative
construction in the plain model for the classical commitment scheme and subsequently
describe an attack where the adversary’s measurement depends on the classical value. We
show that an adversary can break the hiding property in our toy example.

It is therefore conceivable that additional new properties are required to achieve everlasting
security for (quantum) bit commitments which were fulfilled by the QROM jointly with
Quantum Decay, but not by our latter instantiation.

19.1. The High-level Idea

We present an attack on the hiding property of our quantum bit commitment scheme where
the classical component of Π𝑄𝐶𝑜𝑚 is instantiated with an unconditionally binding and
computationally hiding commitment scheme Com∗ which does not rely on the QROM.

First we construct such a commitment scheme, then we show how it can be used by B to
perform operations which are dependent on the value hidden by the commitment.

Perhaps surprisingly, the operations performed byB are insufficient for any QPT adversary
to break the hiding property; instead, they prepare the commitment in such a way, that the
unbounded adversary A can use them to break the hiding property, which is not possible
without the preprocessing step performed by B. In our case, the actions performed by
B transform the Wiesner-encoded quantum state |𝜓 ⟩ into a One Time Pad encrypted
quantum state |𝜙⟩ where the keys of the OTP are only computationally hidden. This
suggests that that we cannot solely rely only on the computational hiding property of the
classical commitment.

Our attack is based on a Quantum Fully Homomorphic Encryption Tuple (QFHET)
(QFhe, Fhe) (cf. Definition 13.2.16). Furthermore, we assume that the QPT adversary
B has access to valid encryptions ct1 under Fhe of bits cb = ⟦b⃗ = ×⟧ indicating which
bases were used; we will show later why this assumption is justified. Without loss of
generality, we assume that cb = 1 iff the qubit was encoded in bases × and cb = 0 indicates
an encoding in bases +.

191

19. An Obfuscated Measurement Attack

We show that while the information on cb provided by Com∗ does not suffice for B to
extract cb, it does suffice to homomorphically transform the Wiesner encoding of the
quantum state the sender prepared into a QOTP ciphertext of the same value. The QFHE
evaluation then additionally yields classical encryptions of the QOTP keys.

UnlikeWiesner’s encoding, a QOTP-encrypted quantum state does not irreversibly destroy
information upon measurement in the computational basis. A phase-flip (Z) does not
change the measurement outcome at all, and a negation (X) can be performed classically
on the measurement outcome. Hence, the QPT adversary can then measure in the compu-
tational basis to obtain both a (classical) OTP-encrypted codeword �̂� and an encryption of
the corresponding OTP.

The latter can be extracted by the unbounded adversaryA and then applied on the former
to obtain the original codeword 𝒸 used by the sender. Alongside the one-time pad otp sent
by the sender during the commitment phase this suffices to reconstruct the committed bit
b.

We first provide a formal description of the attack.

Definition 19.1.1 (Obfuscated Measurement Attack). In the everlasting setting with Quan-

tum Decay, let Com be a classical commitment scheme with unconditional binding and

computational hiding properties. Let Π𝑄𝐶𝑜𝑚 be given as in Figs. 16.3 and 16.4. An Obfuscated

Measurement Attack (OMA) breaks the everlasting hiding property of Π𝑄𝐶𝑜𝑚 . It contains two
algorithms B and A:

B is a QPT algorithm transforming the quantum state |𝜓 ⟩ obtained from the sender during

Π𝑄𝐶𝑜𝑚 from Wiesner bases into a state that quantum computationally hides the same

information in computational bases +.

A is an unbounded classical algorithm, which extracts the secret hidden in the quantum

state from the output of B.

19.2. A Partially Homomorphic Commitment Scheme

We now present a classical commitment scheme and prove its unconditional binding and
computational hiding properties. The commitment contains additional values, namely
valid ciphertexts under Fhe, which we will use for the OMA.

Our construction combines an existing unconditionally binding and computationally
hiding commitment scheme Com′ with a Fully Homomorphic Encryption scheme Fhe
which additionally encrypts the bit under a fresh key.

Using Com′ and Fhe we construct a new commitment scheme Com∗ which is given in
Figs. 19.1 and 19.2. The left protocol shows the commit-stage which first creates a key pair
(sk, pk) according to Fhe.KeyGen and uses Com′ to commit to both the actual bit b and

192

19.2. A Partially Homomorphic Commitment Scheme

Protocol Π𝐶𝑜𝑚
The classical commitment protocol Π𝐶𝑜𝑚 for committing to a given bit b ∈ {0, 1} in the
standard model. It is running with a set of 2 parties (C,R) where C is the committer
and R is the receiver.
It is parameterized by a Quantum Fully Homomorphic Encryption Tuple (QFhe, Fhe)
and an unconditionally binding and computationally hiding commitment scheme
Com′ = (Com,Unv).

On input b, C samples keys (sk, pk) ← Fhe.KeyGen(1^). Then C commits to
b by computing (com′

b
,unv′

b
) ← Com′.Com(b) and to the secret key as

(com′sk,unv
′
sk) ← Com′.Com(sk). Finally, C computes ct1 ← Fhe.Encpk(b)

and ct2 ← Fhe.Encpk((0, 0)) and sends (com′
b
,com′sk, ct1, ct2) to R.

Figure 19.1.: The classical commitment protocol Π𝐶𝑜𝑚 in the standard model for committing to a given bit
b ∈ {0, 1}.

Protocol Π𝑈𝑛𝑣
The classical unveil protocol Π𝑈𝑛𝑣 for unveiling a commitment in the standard model.

Upon activation, C sends unvb ≔ (b,unv′
b
, sk,unv′sk) to R.

On input
(︂
unvb ≔ (b,unv′

b
, sk,unv′sk)

)︂
from C, R rejects if any of the

following conditions does not hold: (1) Com′.Unv(com′
b
,unv′

b
, b),

(2) Com′.Unv(com′sk,unv
′
sk, sk), (3) Fhe.Decsk(ct1) = b, and (4)

Fhe.Decsk(ct2) = (0, 0). Otherwise, R accepts.

Figure 19.2.: The classical unveil protocol Π𝑈𝑛𝑣 in the standard model for unveiling a commitment.

the secret key sk. It also sends encryptions of the message b and of a zero-vector (0, 0) to
the receiver.

To unveil a given commitment, the sender sends the message b and the secret key sk of
Fhe alongside their corresponding unveil information from Com′ to the receiver. The
verification step lets the receiver check that the unveil information of Com′ are valid and
that the secret key decrypts the cipher texts accordingly.

193

19. An Obfuscated Measurement Attack

Game1(^)

1 : (sk, pk) ← Fhe.KeyGen(1^)
2 : (com′

b
,unv′

b
) ← Com′.Com(0)

3 : (com′sk,unv
′
sk) ← Com′.Com(sk)

4 : (ct1) ← Fhe.Enc(pk, 0)
5 : (ct2) ← Fhe.Enc(pk, (0, 0))
6 : return (com′

b
,com′sk, ct1, ct2)

Game2(^)

1 : (sk, pk) ← Fhe.KeyGen(1^)
2 : (com′

b
,unv′

b
) ← Com′.Com(0)

3 : (com′sk,unv
′
sk) ← Com′.Com(0⃗)

4 : (ct1) ← Fhe.Enc(pk, 0)
5 : (ct2) ← Fhe.Enc(pk, (0, 0))
6 : return (com′

b
,com′sk, ct1, ct2)

Game3(^)

1 : (sk, pk) ← Fhe.KeyGen(1^)
2 : (com′

b
,unv′

b
) ← Com′.Com(0)

3 : (com′sk,unv
′
sk) ← Com′.Com(0⃗)

4 : (ct1) ← Fhe.Enc(pk, 1)
5 : (ct2) ← Fhe.Enc(pk, (0, 0))
6 : return (com′

b
,com′sk, ct1, ct2)

Game4(^)

1 : (sk, pk) ← Fhe.KeyGen(1^)
2 : (com′

b
,unv′

b
) ← Com′.Com(1)

3 : (com′sk,unv
′
sk) ← Com′.Com(0⃗)

4 : (ct1) ← Fhe.Enc(pk, 1)
5 : (ct2) ← Fhe.Enc(pk, (0, 0))
6 : return (com′

b
,com′sk, ct1, ct2)

Game5(^)

1 : (sk, pk) ← Fhe.KeyGen(1^)
2 : (com′

b
,unv′

b
) ← Com′.Com(1)

3 : (com′sk,unv
′
sk) ← Com′.Com(sk)

4 : (ct1) ← Fhe.Enc(pk, 1)
5 : (ct2) ← Fhe.Enc(pk, (0, 0))
6 : return (com′

b
,com′sk, ct1, ct2)

Figure 19.3.: Hiding games for the commitment Com∗.

19.2.1. Sender Security

We start by investigating the quantum-computational hiding property. To that end, we
introduce five games in Fig. 19.3 which jump from a valid commitment on b = 0 to a valid
commitment on b = 1.

More formally, we have the following games:

GAME1(^): This game follows the original protocol on Com∗.Com(0).

GAME2(^): This game is as Game1(^), but instead of an honest commitment using Com′
on sk this game reports (com′sk,unv

′
sk) ← Com′.Com(0⃗) as zero-commitment of

appropriate length.

Lemma 19.2.1 (Indistinguishability of Game1(^) and Game2(^)). If Fhe is a q-IND-
CPA-secure encryption scheme, then any QPT-distinguisherB can distinguishGame1(^)
from Game2(^) only with negligible advantage 𝛼 ∈ negl(^).

Proof. Assume for the sake of contradiction that a QPT distinguisher B′ can distin-
guish the two games with probability 1/2+𝛼 with non-negligible advantage 𝛼 . Then
there exists an adversary B on the (computational) hiding property of Com′ with
advantage 𝛼 .

194

19.2. A Partially Homomorphic Commitment Scheme

The reduction algorithm B first creates honest keys (sk, pk) for Fhe and then queries
a commitment on 0 which it uses as comb. The encryptions of 0 and (0, 0) for ct1 and
ct2, respectively, are also honestly created using the public key pk. The adversary
now sends the two messages 0⃗ and sk to the challenger of the hiding game and
obtains a challenge commitment com. This is used as commitment com′sk on the
secret key.

The full message is sent to the distinguisher B′. If the response is Game1(^), then the
reduction adversary reports a commitment on sk and if the response is Game2(^),
then the reduction adversary reports that the commitment was on 0⃗.

It is easy to see that this game simulates the view for the respective games correctly
and that hence B has the same advantage in breaking the hiding property as B′ has
in distinguishing this game hop. Thus the claim follows.

GAME3(^): This game is as Game2(^), but instead of ct1 ← Fhe.Enc(pk, 0) this game re-
ports ct1 ← Fhe.Enc(pk, 1).

Lemma 19.2.2 (Indistinguishability of Game2(^) and Game3(^)). If Fhe is a q-IND-
CPA-secure encryption scheme, then any QPT-distinguisherB can distinguishGame2(^)
from Game3(^) only with negligible advantage 𝛼 ∈ negl(^).

Proof. Assume for the sake of contradiction that a QPT distinguisher B′ can distin-
guish the two games with probability 1/2 + 𝛼 for some 𝛼 ∉ negl(^). This would
imply an adversaryB on the q-IND-CPA property of Fhewith non-negligible success
probability as follows: B computes commitments com′0 ← Com′.Com(0) and asks
for the oracle provided by C𝑞−𝐼𝑁𝐷−𝐶𝑃𝐴 for an encryption ct2 on (0, 0). B sends as
challenge two messages to C𝑞−𝐼𝑁𝐷−𝐶𝑃𝐴, b0 = 0 and b1 = 1, to obtain the challenge
encryption ct1.

B sends (com′0,com′sk, ct1, ct2) to B′ and obtains bit 0 for Game2(^) and 1 for
Game3(^). This is forwarded directly to C𝑞−𝐼𝑁𝐷−𝐶𝑃𝐴.

C𝑞−𝐼𝑁𝐷−𝐶𝑃𝐴 either encrypts b0 = 0, in which case the message from B corresponds
to Game2(^), or b1 = 1, which resembles the message from Game3(^); so the views
from the respective games can be simulated correctly.

It thus follows from the q-IND-CPA requirement of Fhe that B′ has only negligible
advantage in distinguishing the two games.

GAME4(^): This game is as Game3(^), but lets the sender send Com′.Com(1) instead of
Com′.Com(0).

195

19. An Obfuscated Measurement Attack

Lemma19.2.3 (Indistinguishability ofGame3(^) andGame4(^)). IfCom′ is quantum-

computationally hiding, then any QPT distinguisher B trying to distinguish Game3(^)
from Game4(^) has only negligible advantage 𝛼 ∈ negl(^).

Proof. Let B′ be a QPT distinguisher between Game3(^) and Game4(^). We can
create an adversary B that uses B′ to attack the hiding property of Com′.

The challenger C𝐻𝑖𝑑 on the hiding game sends a commitment com′0 = Com′.Com(b)
to the QPT adversary B, who computes a key-pair (sk, pk) ← Fhe.KeyGen(1^),
creates ciphertexts honestly, sends 0⃗ to the commitment oracle, obtains com′sk and
sends (com′0,com′sk, ct1, ct2) to B′.

Both ct1 and ct2 were honestly created and C𝐻𝑖𝑑 either sends a commitment on 0
or on 1, the former corresponding to Game3(^) and the latter to Game4(^). Hence,
B can forward the output of B′ to C𝐻𝑖𝑑 , to inherit the success probability 1/2 + 𝛼 .
With Com′ being computationally hiding, it follows that 𝛼 ∈ negl(^).

GAME5(^): This game is as Game4(^), but instead of using a zero-commitment for (comsk,

unvsk)′ this game creates a valid commitment (com′sk,unv
′
sk) ← Com′.Com(sk).

This game corresponds to an honest commitment Com∗.Com(1).

Lemma19.2.4 (Indistinguishability ofGame4(^) andGame5(^)). IfCom′ is quantum-

computationally hiding, then any QPT distinguisher B trying to distinguish Game4(^)
from Game5(^) has only negligible advantage 𝛼 ∈ negl(^).

Proof. This proof is equivalent to that of Lemma 19.2.1.

We thus have shown that Com∗.Com(0) from Game1(^) is not efficiently distinguishable
from Com∗.Com(1) from Game4(^) for any QPT adversary B. Thus, Lemmas 19.2.1
to 19.2.4 lead to the following corollary:

Corollary 19.2.5 (Computationally hiding). If Com′ is a quantum-computationally hiding
commitment scheme and Fhe is a q-IND-CPA-secure FHE scheme, Com

∗
from Figs. 19.1

and 19.2 is quantum-computationally hiding.

19.2.2. Receiver Security

We now investigate the binding property of the commitment scheme:

Lemma 19.2.6 (Unconditionally binding). If Com′ is an unconditionally binding commit-

ment scheme, Com
∗
from Figs. 19.1 and 19.2 is unconditionally binding.

196

19.3. An Obfuscated Measurement Attack

Algorithm B(|𝜙⟩, otp,com
b⃗
≔ {(com′

b⃗[𝑖]
,com′sk𝑖 , ct1,𝑖, ct2,𝑖)})

for 𝑖 ∈ [𝒩] do
(|𝜙⟩𝑖 , ct𝑖) ← QFhe.Eval(|𝜓 ⟩[𝑖], ct2,𝑖 ,H(ct1,𝑖))

done
𝒸
′ ← measure+(|𝜙⟩)

return (𝒸′,com
b⃗
, {ct𝑖}𝒩𝑖=1, otp)

Figure 19.4.: QPT part of the Obfuscated Measurement Attack to break the everlasting hiding property.

Proof. The reduction from the unconditional binding property ofCom∗ to the unconditional
binding property of Com′ is straightforward. Assume that there is an adversary A∗ on
the binding property of Com∗. We construct an adversary A′ on the binding property of
Com′ as follows:

When A∗ sends a commitment of the form (com′
b
,com′sk, ct1, ct2) to A′, A′ forwards

com′
b
to the challenger C𝐵𝑖𝑛𝑑 . A′ then receives a bit b that com′

b
has to be unveiled to,

which it directly forwards to A∗. When A∗ sends the unveil information (b,unv′
b
, sk,

unv′sk), A
′ forwards (b,unv′

b
) to the challenger C𝐵𝑖𝑛𝑑 .

If A∗ wins with probability 1/2 + 𝛼 , then A′ also wins with probability 1/2 + 𝛼 , thus
implying that 𝛼 ∈ negl(^).

19.3. An Obfuscated Measurement Attack

19.3.1. Description

We now present an Obfuscated Measurement Attack from Figs. 19.4 and 19.5 on the
everlasting hiding property of the quantum commitment protocol Π𝑄𝐶𝑜𝑚 . The attack
employs the instantiation Com′ from Figs. 19.1 and 19.2 for the classical component of
Π𝑄𝐶𝑜𝑚 .

The attack consists of two algorithms: the QPT adversary B, and the unbounded (clas-
sical) adversary A: After creating the generator matrix �⃗� according to Fig. 16.3 and
sending the result to the sender, B receives a message (|𝜙⟩, otp,com

b⃗
). Recall that

due to our instantiation of Com′ as a bit commitment, com
b⃗
is a list of 𝒩 quadruplets

(com
b⃗

′
𝑖
,comsk𝑖 , ct1,𝑖 ≔ Fhe.Enc(sk𝑖, [b⃗𝑖 = ×]), ct2,𝑖 ≔ Fhe.Enc(sk𝑖, (0, 0))).

ct1,𝑖 puts the adversary in possession of an encrypted control bit, which is 1 iff the cor-
responding quantum state was encoded in diagonal bases. With ct2,𝑖 , the adversary has

197

19. An Obfuscated Measurement Attack

Algorithm A(𝒸′,com
b⃗
≔ {(com′

b⃗[𝑖]
,com′sk𝑖 , ct1,𝑖, ct2,𝑖)}, {ct𝑖}𝒩𝑖=1, otp)

for 𝑖 ∈ [𝒩] do
Extract sk𝑖 from comsk

(x[𝑖], z[𝑖]) ← Fhe.Dec(sk𝑖 , ct𝑖)
done
𝒸 ≔ 𝒸

′ ⊕ x

b ≔ ⟨𝒸, otp⟩
return b

Figure 19.5.:Unbounded part of the ObfuscatedMeasurement Attack to break the everlasting hiding property.

an encryption of the Quantum One Time Pad (0, 0), corresponding to a quantum state
hidden with an empty QOTP—that is, one where x = and z = 0 and hence where neither
X nor Z was applied to. This suffices to let the adversary homomorphically adjust all
quantum states from Wiesner encoding to QOTP encodings in the computational basis +:
B homomorphically applies a Controlled Hadamard gate with encrypted control bit ct1,𝑖 .
We show later that this is possible using the scheme of Brakerski [32] due to a result from
Shi [122].

B can then measure the outcome and return all the resulting classical information to A.
The unbounded adversary then extracts the secret key sk from the commitment com′sk
contained in the commitment created by Com∗ and uses it to break the encryptions of the
QOTP. With the code word 𝒸, A can reconstruct b and thus break the hiding property.

Lemma 19.3.1. The adversary A can successfully reconstruct the sender’s initial input with

overwhelming probability.

Proof. An honestly created quantum state |𝜙⟩ implies that each of the𝒩 quantum states
|𝜙⟩[𝑖] is in one of four possible states |0⟩, |1⟩, |+⟩ or |−⟩. Homomorphically applying a
Controlled Hadamard (CH) gate to this state using the (encrypted) control bit for [b⃗𝑖 = ×]
has the following effects: It leaves |0⟩ and |1⟩ untouched, but applies the Hadamard gate
to |+⟩ and |−⟩, transforming them into |0⟩ and |1⟩, respectively.

The quantum state at this point is a QOTP encrypted version of either |0⟩ or |1⟩. The keys
of a QOTP define the Pauli gates applied to the quantum state. With only two bits and
one (binary) quantum state, there are only eight combinations of the binary QOTP keys
(x, z) and quantum states |𝜙⟩ for which it holds that Z(z)X(x) |𝜙⟩ = |0⟩ or Z(z)X(x) |𝜙⟩ = |1⟩.
The set of possible quantum states |𝜙⟩ are shown in Table 19.1, proving that those too are
either |0⟩ or |1⟩.

Upon measurement in the computational basis, no information is destroyed; a perfect
measurement apparatus yields a deterministic output. From the correctness of the QFHE
scheme, it follows that the FHE ciphers of the new OTPs are correct as well.

198

19.3. An Obfuscated Measurement Attack

|𝜓 ⟩ = |0⟩ |𝜓 ⟩ = |1⟩
x = 0 x = 1 x = 0 x = 1 x = 0

z = 0 z = 1 z = 0 z = 1
|𝜙⟩ = |0⟩ |𝜙⟩ = |1⟩ |𝜙⟩ = |1⟩ |𝜙⟩ = |0⟩ |𝜙⟩ = |1⟩ |𝜙⟩ = |0⟩ |𝜙⟩ = |0⟩ |𝜙⟩ = |1⟩

Table 19.1.: Possible quantum states |𝜙⟩ = Z(z)X(x) |𝜓 ⟩ a QOTP encryption of |𝜓 ⟩ = |0⟩ or |𝜓 ⟩ = |1⟩ can be
in. For the sake of simplicity, we assume −|1⟩ = |1⟩.

Com′ is unconditionally binding, hence both com′
b⃗

and sk can be extracted by the un-
bounded adversary, who then learns the actual basis vector b⃗ and the secret key sk used
by the sender.

With the extracted key sk,A can extract the QOTP keys from the encryption and classically
undo the x part to obtain the correct code word 𝒸. Now,A can extract the bit b as ⟨𝒸, otp⟩,
which equals the sender’s original input with overwhelming probability.

Lemma 19.3.2. The attack part of B from Fig. 19.4 is a QPT algorithm.

Proof. Most operations in Fig. 19.4 can trivially be performed by any QPT adversary; the
only operation for which it is not obvious is the homomorphic evaluation of H(cct) with an
encrypted control bit cct.

We assume that (QFhe, Fhe) are instantiated such that there are QPT algorithms capable of
homomorphically evaluating a Hadamard gate H and a Toffoli gate X(cb1,cb2) over classically
encrypted inputs (cb1, cb2) on a QOTP-encrypted quantum state |𝜙⟩, which holds e.g. for
the scheme from Brakerski [32].

Following Shi [122, Theorem 3.2], Toffoli and Hadamard gates are complete: they can be
used to compute any QPT circuit. Thus, there exists a polynomial-sized quantum circuit
that only contains Toffoli and Hadamard gates realizing the Controlled Hadamard gate
H(cct) .

Finally, we arrive at the following corollary:

Corollary 19.3.3 (Obfuscated Measurement Attack). In order to prevent the OMA on

Π𝑄𝐶𝑜𝑚 , the classical commitment component of Π𝑄𝐶𝑜𝑚 requires more security properties than

unconditionally binding and computational hiding.

199

20. Conclusion

We formalize quantum decoherence as a new cryptographic assumption that reflects the
major challenge of keeping quantum states coherent for a long period of time. We construct
a Quantum Commitment on a classical bit and prove that our assumption enables the
scheme to have everlasting hiding and unconditional binding properties in the QROM. In
the context of everlasting security, our adversary is modeled as a QPT algorithm which is
active during the protocol execution and becomes classically unbounded after polynomially
many time steps. Our protocol extends the work of Brassard et al. [36], but circumvents
attacks similar to Mayers [108] by adding a classical commitment to the bases used for
encoding the quantum state. A consequence of this setup is the possibility to achieve
everlasting security without the need to interrupt the parties during the execution of the
protocol.

Moreover, we show that our findings might not be transferable when leaving the QROM
and using a classical commitment based on standard assumptions or primitives (for example
Quantum Fully Homomorphic Encryption) instead. Indeed then the QuantumCommitment
scheme may become vulnerable to our innovative Obfuscated Measurement Attack. This
raises the question which properties were inherited by the classical commitment from
the QROM that were not apparent in the homomorphic commitment protocol Com∗ from
Figs. 19.1 and 19.2, and which additional assumptions and requirements we need to reach
everlasting security without deploying a QROM.

Finally, we note that a limitation needs to be considered. Our construction is susceptible
to an adversary that can store a given quantum state over a long period of time, i.e. until
he can perform a super-polynomial number of computational steps, which is believed
to be easier than storing and manipulating over a long time. To identify and formalize a
quantum cryptographic assumption that enforces the latter is left as a subject to future
work.

201

Part III.

Anonymous Whistleblowing

21. Introduction

Secure Multi-Party Computation (MPC) allows a set of N parties to jointly evaluate a
function f on their private inputs. The protocol is secure, if the computation does not reveal
anything about these inputs beyond what can be inferred from the output. There are many
scenarios where this is advantageous. For example, the danish sugar beet auction [59]
enabled private trading of sugar beets and settling on a price that would maximize the
revenue while selling as many sugar beets as possible.

The general scenario there is that the parties mutually agree to engage in a protocol
execution that yields the result of the to-be-computed function f on the private inputs x𝑖 .
However, in certain scenarios, the mere fact that a party is interested to participating in a
certain protocol execution or even is planning to do so reveals a lot of information about
that party. Consider for instance the case where your company was hacked but you don’t
have enough forensic data to trace the attackers. If several companies fell victim to the
same hacker, a joint effort might yield a sufficient amount of information to successfully
trace the hacker. However, the very fact that you are participating in such a protocol
reveals the fact that your company has been hacked. As an other example, consider the
classical motivation for MPC where Bob wants to ask Alice out for a date but does not
want her to know he has feelings for her unless she shares these feelings. Approaching
Alice and suggesting to compute a secure AND to find out whether they will go on a date
or not already reveals the intention from Bob to ask Alice out.

In these situations it would be desirable to hide even the computation and not just the
inputs. A first step in this direction was taken by von Ahn, Hopper, and Langford [133]
and Chandran et al. [48] and was later extended by Jarecki [93] and Couteau [56] in
the form of Covert Multi-Party Computation (CMPC). In this setting a set of parties can
run protocols in a way that (1) no outsider is able to tell that a protocol execution has
taken place at all among the participants, and (2) no participant can tell if a protocol
execution even took place if the outcome is unfavorable or if not all parties were actively
participating. This method solves both problems mentioned above. However, this setting
has two major shortcomings. First, after the protocol terminates, all participants learn
about each other’s participation. This can be undesirable in certain situations. Consider
the following scenario: You are happily employed by some government agency. However,
one day, you learn that your employer violates human rights. You strongly disagree with
this breach of trust and law but you are bound by law to keep internal information secret.
Consequently, you are faced with a dilemma: Either you ignore the human rights violation,
or you face dishonorable discharge or even jail. In fact, whistleblowers often take an
immense personal risk, and face sentences ranging from exile [12] to incarceration [115]
or worse.

205

21. Introduction

The desired solution for any whistleblower is to leak this information without being
identified by anyone in the process. The importance of this question is well recognized
in cryptography and security. It has been the subject of several influential works (e.g.
DC-nets [49], Riposte [55] or Blinder [3]). Concrete solutions include the use of secure
messaging apps [54, 25], mix-nets [50], onion routing systems such as the Tor network [62],
or solutions built on top of DC-nets and secure computation techniques [55, 3] (see also [68,
113]). Yet, all current approaches to anonymous whistleblowing rely on trusted parties (or
non-colluding partially trusted servers), which either receive privately the communication,
or implement a distributed protocol to emulate an anonymous network. Therefore, however
ingenious and scalable some of these solutions are, whistleblowers must ultimately trust
that they will interact with parties or servers which will (at least for some of them) remain
honest and refuse to collude throughout the transmission.

Covert computation does not have such trust assumption but does not help in this scenario
either since as soon as the protocol finishes, the receiver of the message learns the origin
of the message. The second shortcoming of CMPC is with respect to non-participants. By
design, the protocol only yields a result if all parties participate (and the result is favorable),
but it fails to provide a meaningful result if even one of the parties is not participating. As
a result, a bystander can accidentally break the entire computation and a malicious party
can even abort any such ongoing protocol without repercussions.

This part of this thesis is dedicated to investigate whether these restrictions are inherent
or if we can construct a primitive we call “undetectable computation”, where parties
participate without revealing their participation even towards other participants and
where a fixed set of non-participants is tolerated by the protocol. More precisely, we study
the following problem: K individuals are interacting. Among them, N players are willing
to jointly compute a public function on their private inputs, while the remaining (K − N)
are not interested in taking part to the protocol.

So the key research question for this part of the thesis comes down to the following:

Is it possible for N participating players to evaluate a given function f
on their private inputs, such that no one (not even the players

themselves) can determine who else took part to the protocol

execution?

In this part of this thesis we will reduce the above problem of evaluating f on private
inputs (x1, . . . , xN) while hiding participation to the players ability to exchange messages
without revealing their identity. We will therefore focus on the following question:

Is it possible for a sending party to transmit a message to a receiving

party in the presence of unaware non-participating parties such that

the identity of the sender remains hidden among the group of

non-sending parties even to the receiver?

206

21.1. Contribution

We call this notion Anonymous Transfer (AT), which we consider to be an interesting
topic in itself. Following strong impossibility results on the feasibility of an AT with
asymptotic security and overwhelming correctness and anonymity guarantees we focus
on circumventing the impossibility result by considering fine-grained security instead of
asymptotic ones and by relaxing the anonymity guarantee to hold only for an arbitrary
polynomial.

The primitive is without a doubt quite powerful as it solves—among other things—a general
whistleblowing-problem without relying on anything other than authenticated channels.
Consider the communication channel to be a publicly accessible board such as Twitter.
Say via Twitter a reporter obtained classified information on human rights violations of
government agencies, where the AT protocol itself is public knowledge and known to be
executed among all the twitter followers from the journalist—actual protocol messages
are embedded into the distribution of respective tweets. Assume further that a court order
forces the journalist to cooperate with the state, forcing him to open any information
available on the protocol. Our primitive requires that any follower of the journalist—which
might even be the judge—is equally likely to be the sender of the message, even when all
of the receivers messages and his random tape are known.

As any follower of the journalist is equally likely to be the sender of the message—even
the judge if he follows the journalist as well—it follows that the real sender cannot be
determined with sufficient certainty, and that thus no penalty can be imposed on the
whistleblower.

We thus model our setting as more simplistic semi-honest case where parties only can be
corrupted after the execution finished.

21.1. Contribution

Our contribution in this part of the thesis consists of:

Anonymous transfer. We formally define Anonymous Transfer (AT) as an interactive
protocol between a sender, a receiver and an unknowing non-participant. We assume
all parties to interact in a synchronous model over a public broadcast channel. That is,
in each round each individual broadcasts a message which only depends on messages
from previous rounds. The non-participant is not aware that a protocol takes place. We
follow [133, 48] and model non-participating parties as parties that only broadcast uniform
randomness in each round, since any ordinary communication pattern can be embedded
into the uniform distribution using standard techniques [133, 86, 132].

We formally define the security properties of an AT. The sender aims to transmit a message
to the receiver in a way that does not leak the identity of the sender. We say that an AT
protocol is Y-correct if the probability that the receiver successfully receives the message
is at least Y. Further, we say that an AT protocol is 𝛿-anonymous if no adversary is able to

207

21. Introduction

determine the identity of the sender (given the transcript and the receiver’s random tape)
has advantage more than (1 − 𝛿)/2 over guessing. These are the core properties which
shape an AT protocol.

In order to use the AT as building block to construct undetectable MPC we require any AT
protocol to additionally satisfy secrecy. On a high level, an AT protocol satisfies secrecy if
it is infeasible to recover the transmitted message without access to the receivers random
tape. Combined with the correctness property this means that only the party acting as
receiver during the protocol execution is able to reconstruct the transferred message,
which is contrary to our notion of Silent Receiver Anonymous Transfer ; yet we stress that
both make sense individually. While SRAT is used for our analysis on the feasibility of AT
(which in itself ignores secrecy and only focusses on anonymity and correctness), secrecy
is only required when using AT as a building block for a larger protocol.

Impossibility of AT. The two main properties of AT, namely correctness and anonymity,
contradict each other. Correctness requires the receiver to recover the correct message
after the protocol execution, while anonymity ensures that the receiver is unable to tell
which party was the sender. As such, a protocol that is perfectly correct is subject to a
generic replacement attack. From the perfect correctness of a protocol it follows that an
honest transcript always yields the correct bit1, yet when replacing all messages with
randomness the protocol yields a bit from a given pre-defined distribution (say it yields a
uniformly distributed bit).

The impossibility is easy to see for any non-interactive protocol. By replacing the mes-
sage of only one party with randomness while taking the other parties message from
the transcript, the resulting transcript is either completely random (and hence yields a
bit according to the aforementioned distribution) if the senders message was replaced,
or still a valid transcript for transferring the desired bit (as the random message was
replaced by a different random message, and since the sender has to choose the message
before knowing the non-participants message, correctness guarantees that the message is
transferred regardless of the non-participants message) if the non-participants message
was changed.

The same idea can be extended to any c-round protocol. Here, we focus on the last message
of an execution. Either the protocol is such that the message is already sufficiently fixed
before the final round, or the final-round message of the sender changes the distribution
significantly. The former implies the existence of a (c − 1)-round protocol where the
parties execute the first (c − 1) rounds of the protocol, and to reconstruct the receiver
inserts random messages for both parties during the final round. This protocol would be
equally correct but only requires (c − 1) rounds. The latter enables an attack similar to
the non-interactive case, where the message of one party for the final round is replaced by
a random message.

1 Except for the negligible chance that the non-participants messages, which were sampled uniformly
random, happen to be a precise transcript for transferring the respective other bit; but we ignore this
possibility here as it is highly unlikely.

208

21.1. Contribution

While the latter case enables the attack directly, the former can be continued via induction;
either the latter case happens eventually, or we end up with a non-interactive protocol
with the same (or just slightly less) correctness guarantees as the interactive one, to which
the impossibility described above applies.

We elaborate in Chapter 24 but stress that it was taken verbatim from Agrikola, Couteau,
and Maier [5, Section 4] and is not a contribution of this thesis.

Feasibility of fine-grained AT. To circumvent the impossibility results described above, we
give up asymptotic security and resort to the fine-grained setting. That is, we only require
anonymity against adversaries which require polynomially more resources than an honest
protocol execution. We propose a protocol which—assuming ideal obfuscation—allows to
reduce the problem of de-anonymizing the sender to a distribution testing problem.

More precisely, we show that determining the real sender in a c-round protocol given only
a transcript of the AT protocol is as hard as differentiating between a Bernoulli oracle that
returns 1 with probability p and one that returns 1 with p + 1/2c. For this problem, strong
lower bounds on the number of required samples and thus the adversarial runtime are
known.

‘Philosophical implications’: between obfustopia and impossibilitopia. There is a small
remaining gap between our negative and positive results: the possibility of building
Anonymous Transfer secure against arbitrary polynomial-time adversaries, but with non-
negligible (e.g. inverse polynomial) anonymity error remains open. Closing this gap would
have an intriguing philosophical consequence: stretching the terminology of Impagliazzo
[89] on the “worlds” of cryptography, it would establish the existence of a cryptographic
primitive that plausibly exists in obfustopia (the world where indistinguishability obfusca-
tion is possible) in the fine-grained setting, yet does not exist (“reside in impossibilitopia”)
with standard hardness gaps.

Interestingly, there are several known examples where fine-grained constructions of a
“higher world” primitive reside in a lower world; for example, (exponentially secure)
one-way functions (a Minicrypt assumption) imply fine-grained public-key encryption (a
Cryptomania assumption) [109, 26]. Our work seems to provide a new example of this
behavior, at the highest possible level of the hierarchy, showing that impossible primitives
might end up existing if we weaken their security to the fine-grained setting.

Open questions. Our work leaves open two exciting questions:

(1) Can our impossibility result for logarithmic-round AT protocols be extended to a poly-

nomial number of rounds?

(2) Is it possible to instantiate AT in the fine-grained setting from “Obfustopia” standard

assumptions?

209

21. Introduction

Assuming that both our open questions can be answered affirmatively, this would separate
the realm of asymptotic security from the realm of fine-grained security. Item (1) rules
out the fact that AT can be instantiated even when using assumptions from obfustopia,
it would then be in a world we call “Impossibilitopia”. Yet Item (2) would place AT in
the fine-grained version of obfustopia, providing a clear separation between these two
worlds.

Furthermore, we only studied the feasibility of Anonymous Transfer in presence of passive
adversaries, where all non-participants are not even required to be aware of the execution of
the protocol and are only required to generate traffic. As we show, this weaker assumption
does not suffice against arbitrary polynomial-time adversaries, but possibly suffices against
bounded polynomial-time adversaries (where the bound is sub-quadratic). As a natural
next step, one could extend the question and ask: What if some of the non-participating
parties were in fact planted by a malicious adversary, and now act maliciously during
the protocol? It seems plausible, that our general strategy can be extended to deal with
malicious non-participants. However, we expect the analysis to require different techniques
than the ones we used. We leave a thorough analysis and formal proof in the malicious
setting to future work.

Organization. We start by introducing necessary preliminaries in Chapter 22 and formal
definitions for Anonymous Transfer and strong Anonymous Transfer in Chapter 23. We
then introduce the impossibility result in Chapter 24. We then proceed to Chapter 25
where we show how to circumvent the impossibility result by considering fine-grained
security. In Chapter 26 we extend this result from single-bit AT to n-bit AT at the cost
of roughly twice as many rounds. We define our novel primitive Undetectable Oblivious
Transfer in Chapter 27 which allows two parties to hide their OT execution in a group of
K individuals and instantiate it using strong AT in Chapter 28. Finally, in Chapter 29 we
provide definitions for Undetectable Multi-Party Computation, which allows a number of
N parties to perform an MPC protocol while hiding their identities among K individuals
and instantiate UMPC using Undetectable Oblivious Transfer for N = 3.

21.2. Related Work

We already elaborated on the differences between Undetectable Multi-Party Computation
and the existing notions of Covert Multi-Party Computation [133, 48, 93, 56] in our
introduction, where we stressed that Undetectable Multi-Party Computation also works
in the setting where K parties are present, of which N < K parties try to perform a
computation, instead of only focusing on the setting of N = K where all parties present
participate in the protocol execution.

Our positive and negative results on Anonymous Transfer relate to the literature on
anonymous broadcast and secure whistleblowing. In general, a whistleblower willing to
reveal something anonymously has two alternative choices: (1) either the whistleblower

210

21.2. Related Work

has access to an anonymous communication channel, for example by putting their message
(say, encrypted with the receiver public key) on some public website that somehow cannot
be traced to them. However, access to an anonymous channel is typically a “physical”
assumption, and one which is very hard to guarantee. This issue is developed in great
detail in the literature: see for example the discussion in Spectrum [113] about how
metadata have been used by federal judges to trace and prosecute people who leaked data
through secure messaging apps, or the discussion in Riposte [55] and Express [68] on how
traffic analysis can be used to trace whistleblowers on the Tor network or the SecureDrop
service. Hence, most of the literature focuses on scenario (2): the individuals interact over
a communication network, and we do not assume that this network guarantees anonymity
in itself. In this case, what we want is to emulate this anonymity, by developing a strategy
to help the whistleblower transmit a message anonymously to the receiver.

The literature on this subject is incredibly vast, but this emulated anonymity is always
achieved using the same template in all solutions we are aware of (including Spectrum,
Blinder [3], Riposte, Express, Talek, P3, Pung, Riffle, Atom, XRD, Vuvuzela, Alpenhorn,
Stadium (or any other Mixnet-based solution), Karaoke, Dissent, Verdict, and many more):
when the whistleblower wants to anonymously transmit a message, either to everyone
(anonymous broadcast) or to a target receiver, other users generate “honest” traffic in
which communications can be hidden. To do so, the users interact with a set of non-
colluding servers (sometimes two servers, sometimes more, some with honest majority,
some without). This is never even discussed or remarked: it is taken as an obvious fact
that this is the structure of an anonymous broadcast (or messaging) protocol. And indeed,
the need to generate honest traffic feels clear – if the whistleblower is the sole sender,
observing traffic directly leaks their identity. That the use of non-colluding servers was
never challenged or even discussed probably means that it also feels clear – but this
assumption is precisely what we challenge in our work: we do assume that some users
generate honest traffic, but we ask whether the assumption of non-colluding participating
servers is avoidable. Of course, any scientific treatment of a broad question (“are non-
colluding helpful participants required for anonymous broadcast?”) is bound to move from
the broad question to a formal model, in which (feasibility or impossibility) results can be
achieved. Nevertheless, we believe that our impossibility result demonstrates that the use
of non-colluding servers in all previous works was indeed unavoidable, at least insofar as
their aim was to achieve anonymity against arbitrary polynomial-time adversaries.

211

22. Preliminaries

22.1. Steganography

Informally, steganography describes the art of hiding information in such a way, that
no outsider is able to even notice that any information is hidden at all. The concept has
been around for a long time, yet it was first brought up as a field of scientific research by
Simmons [124] and put into a more complexity-theoretic and cryptographic context by
Hopper, Langford, and von Ahn [86]. Simmons [124] described the problem analogously to
prison communication: Two prisoners can talk to each other and want to come up with an
escape plan, but a warden hears everything they say. The problem of steganography can
roughly be described by the following question: How can the two prisoners discuss their
escape plan without the warden noticing that the two prisoners are up to something?

While it is true that in most scenarios, the two prisoners could simply encrypt their
messages and discuss their escape plan through a secure channel, this method is insufficient
for the scenario where a warden is present: If the warden notices that the two prisoners
are up to something, they end up in solitary confinement. Thus the problem is much
harder than the one considered in classical encryption, as the actual communication itself

needs to be undetectable for the warden. In contrast, it suffices for classical encryption
schemes if any other person can detect messages as long as they are unable to decrypt

them. We consider the differentiation to be similar to the one between Secure Multi-
Party Computation and Covert Multi-Party Computation, where the former only hides
information whereas the latter hides the entire execution.

A steganographic channel is modeled as indistinguishable from the uniform channel over
m bits [86, 132, 133], where each party broadcasts uniformly random bitstrings of length m.
This is neither a restriction nor an additional trust assumption: steganographic methods
use actual sources of randomness like the least significant bit in timestamps or the least
significant bits of images (where minor differences can occur due to the noise induced by
the camera) that follow two basic rules: (1) when naturally occurring, they are uniformly
random, and (2) it is efficiently possible by a sender to change this source such that it has
a target value, without acting in a noticeably different way. A random source is suitable
for steganography if it fulfills both these requirements: Unaware parties unknowingly
broadcast random bits automatically, while sending parties can efficiently embed any
message.

As a practical example that not only motivates how steganography can be used in practice,
but also illustrates the fact that the natural messages are indistinguishable from a sampling

213

22. Preliminaries

of the uniform channel, think of a public forumwhere all registered parties can post images
of cats. Each post has its timestamp attached (in UNIX-time, i.e., seconds since the first
of January in 1970), which is set by the sender during the upload and not by the server.
As such, this can be exploited as a steganographic channel: In this (arguably inefficient)
steganographic channel the timestamps of each post encodes a single bit, which can be
extracted directly by taking the least significant bit of the timestamp.

It is easy to see that under normal circumstances, people who just use the forum to upload
cat images whenever they feel like it do not need to be aware of the fact that the stegano-
graphic channel exists, yet they still broadcast random bits simply by doing what they
naturally do, since the least significant bit of the timestamp provides a sufficiently uniform
source of randomness. Furthermore, the delay of up to one second ends up unnoticed, so
it is possible to covertly embed a message by manipulating the least significant bit of the
timestamp.

While it might not be the case that all parties send the same number of messages—which
might be required if we execute a protocol over several rounds by embedding (random
looking) messages into the steganographic channel as was done by von Ahn, Hopper, and
Langford [133])—this is not actually a restriction. If party P𝑖 has finished a given round
by publishing m bits while P 𝑗 still only published m

′ < m bits, P𝑖 continues as normal
and publishes images at arbitrary timestamps until all other parties also broadcast m bits.
The protocol then only considers the first m messages for each party in each round and
ignores all other messages of the resp. parties until the next round starts.

22.2. Distribution Testing

In this section, we introduce preliminaries for probability testing. We start by describing
the Total Variational Distance between two distributions.

Definition 22.2.1 (Total Variational Distance). Let p and q be two probability distributions.

The total variational distance between p and q is defined as:

dTV(p,q) ≔
1
2
∑︂
𝑖

|p𝑖 − q𝑖 | =
1
2 ∥p − q∥1 (22.1)

An important property of the total variational distance is that it acts sublinear when taking
many samples. When taking t samples from a Bernoulli distribution the corresponding
distribution can be described by taking a single sample from a t-bit Binomial distribution.
The sub-additivity then bounds the total variational distance of the corresponding binomial
distribution:

Lemma 22.2.2 (Total variational distance of a t-fold probability distribution). Let p and

q be two Bernoulli distributions with total variational distance dTV(p,q). Then it holds for

214

22.2. Distribution Testing

the binomial distributions p⊗t
and q⊗t

that result from sampling t times from the respective

distributions:

dTV(p⊗t,q⊗t) ≤ t · dTV(p,q) (22.2)

Thus we can bound the distinguishing advantage of any distinguisher who has taken
t samples form the same oracle using the total variational distance of the respective
distributions directly.

A similar rule also holds for two different distributions, where the distinguisher has to
distinguish whether two samples originate from p ⊗ r or from q ⊗ s for known values of
p, q, r and s. In this case the rule states that:

Lemma 22.2.3 (Sub-Additivity of the Total Variational Distance for Product Distributions).
Letp andq be a probability distribution over {0, 1}m with total variational distance dTV(p,q).
Let r and s be two Bernoulli distributions with total variational distance dTV(r,s). Then it

holds for the distribution derived from sampling from each distribution once and concatenating

the outputs (which yields a sample from {0, 1}m+1 originating either from p ◦r or q ◦s) that

dTV(p ◦ r,q ◦ s) ≤ dTV(p,q) + dTV(r,s)

The following lemma limits the distinguishing advantage of any distinguisher that tries to
distinguish two distributions p and q based on a single sample.

Lemma 22.2.4 (Distinguishing distributions based on the Total Variational Distance). Let
p and q be two distributions with total variational distance dTV(p,q). If dTV(p,q) < 1

3 ,
then no algorithm can exist that distinguishes p and q with probability ≥ 2

3 based on a single

sample.

We stress here that this is not our proof but instead adapted from http://cs.brown.edu/

courses/csci1951-w/lec/lec%2011%20notes.pdf. Since we did not find a citeable source
our adapted proof follows, which basically follows the source:

Proof. Let D be the distinguisher between p and q. Due to symmetry it holds for the
correctness that the optimal algorithm has:

Pr
[︁
outD = p

|︁|︁ p]︁
− Pr

[︁
outD = p

|︁|︁ q]︁
= Pr

[︁
outD = p

|︁|︁ q]︁
− Pr

[︁
outD = q

|︁|︁ q]︁
=dTV(p,q)

(22.3)

With a single sample the adversary can only output a single bit indicating whether it
thinks the sample is from p or from q. This cannot be done with better than dTV(p,q). To
get an intuition as to why this is the case, the total variational distance can also be written
as:

dTV(p,q) ≔ sup
𝑋⊆[m]

p(𝑋) − q(𝑋) (22.4)

215

http://cs.brown.edu/courses/csci1951-w/lec/lec%2011%20notes.pdf
http://cs.brown.edu/courses/csci1951-w/lec/lec%2011%20notes.pdf

22. Preliminaries

that is, it corresponds to the largest difference in the probability of occurrence of some
output. Thus, no distinguisher can—with a single sample—guess correctly with larger
advantage than dTV(p,q). Guessing is always an option, which would result in the
distinguisher being correct with probability 1/2. Thus, there can be no distinguisher which
fulfills both these inequalities:

Pr
[︁
outD = p

|︁|︁ p]︁
>

1
2 +

1
2 · dTV(p,q)

Pr
[︁
outD = q

|︁|︁ q]︁
>

1
2 +

1
2 · dTV(p,q)

(22.5)

as this would imply an overall correctness larger than dTV(p,q).

By using the requirement that dTV(p,q) < 1/3 in Eq. (22.5) we get the bound of 2/3 on
the correctness of D.

Using Lemmas 22.2.2 and 22.2.4 we can provide lower bounds on the sampling complexity
of distinguishing two distributions p and q with advantage 𝛼/2.

Corollary 22.2.5 (Distinguishing two Bernoulli-Distributions with t samples). Any dis-

tinguisher D that distinguishes between p and q with probability ≥ 1
2 +

𝛼
2 requires t ∈

Ω
(︂

𝛼
dTV (p,q)

)︂
samples.

Proof. The total variational distance limits the advantage as 𝛼 = dTV(p⊗t,q⊗t).

We know from the subadditivity of dTV that

dTV(p⊗t,q⊗t) ≤ t · dTV(p,q) (22.6)

and as such,
Pr[D correct] ≤ 1/2 + 1/2 · t · dTV(p,q) (22.7)

We have that t ∈ Ω
(︂

𝛼
dTV (p,q)

)︂
=⇒ t ≥ 𝛼 ·𝑐

dTV (p,q) . We claim that this even holds for 𝑐 = 1
4 .

This implies for Lemma 22.2.2 that

dTV(p⊗t,q⊗t) ≤ 𝑐 · 𝛼
dTV(p,q)

dTV(p,q)

= 𝛼𝑐 =
𝛼

4

(22.8)

Thus, the total variation distance is less than 𝛼/4 for 𝛼 ≤ 1, which in term is less than 1/3.

Remember that dTV(p⊗t,q⊗t) corresponds to distinguishing the t-fold (binomial) distribu-
tion with a single sample. Thus Lemma 22.2.4 states that with total variation distance less
than 1/3 no distinguisher D can successfully distinguish with probability ≥ 2/3.

216

22.3. Covert Oblivious Transfer

22.3. Covert Oblivious Transfer

Covert Oblivious Transfer is an extension of classical Oblivious Transfer first defined and
used by von Ahn, Hopper, and Langford [133]. It extends classical OT by two important
properties to ensure that the computation cannot be distinguished from an innocent-
looking conversation: (1) the sender cannot distinguish between the case that the receiver
is following the COT protocol or if the receiver is sending uniformly random messages,
and (2) if the transferred messages are uniformly random, the receiver cannot distinguish
between the case that the sender is following the COT protocol and the case where the
sender is sending uniformly random messages.

The latter has to hold even after the protocol execution is finished, as the authors use
Covert Oblivious Transfer during the execution of their Covert Multi-Party Computation
protocol and actual participation should not be revealed before the computation finishes.

Definition 22.3.1 (Covert Oblivious Transfer, [133, Appendix A]). A 2-party Covert

Oblivious Transfer (COT) between a sender S and a receiver R is an Oblivious Transfer but

additionally fulfills the following two requirements:

(1) S cannot distinguish between the case that R is following the COT protocol and the case

that R is drawing uniformly random messages from Um.

(2) If Σ0, Σ1
$←Um, R cannot distinguish between the case that S is following the COT protocol

and the case that S is drawing uniformly random messages from Um.

22.4. Indistinguishability from Random under Chosen
Ciphertext Attacks

For our instantiations it is crucial that protocol messages can be transferred covertly,
that is, without bystanders noticing. To that end we require an encryption that yields
ciphertexts which look like uniformly random strings. A formal property ensuring this
was defined by Rogaway [119] as Indistinguishability from Random.

While the paper also defines IND$-CPA, we focus on chosen ciphertext attacks only and
provide definitions for symmetric and asymmetric schemes. For symmetric encryption
schemes the definition looks as follows:

Definition 22.4.1 (IND$-CCA for Symmetric Encryption). A Symmetric Encryption Scheme

Ske = (KeyGen, Enc,Dec) fulfills Indistinguishability from Random under Chosen Ciphertext

Attacks (IND$-CCA) if the following probability is negligible in the security parameter ^ for

all PPT valid adversaries A that do not decrypt a challenge:

| Pr
[︁
AEnc(sk,·),Dec(sk,·) = 1

|︁|︁ sk← KeyGen(1^)
]︁

− Pr
[︁
APRF(·),Dec(sk,·) = 1

|︁|︁ sk← KeyGen(1^)
]︁
|

(22.9)

217

22. Preliminaries

PRF is a random function. It is hence the adversaries task to distinguish whether it is
interacting with a random oracle or with an actual encryption oracle.

The definition for asymmetric schemes is equivalent except that the adversary is addition-
ally given a public key. Yet the challenge still comes from either an encryption oracle or a
random oracle.

Definition 22.4.2 (IND$-CCA for Asymmetric Encryption). An Asymmetric Encryption

Scheme Pke = (KeyGen, Enc,Dec) fulfills Indistinguishability from Random under Cho-

sen Ciphertext Attacks (IND$-CCA) if the following advantage is negligible in the security

parameter ^ for all PPT valid adversaries A that do not decrypt a challenge:

| Pr
[︁
AEnc(sk,·),Dec(sk,·) (pk) = 1

|︁|︁ (pk, sk) ← KeyGen(1^)
]︁

− Pr
[︁
APRF(·),Dec(sk,·) (pk) = 1

|︁|︁ (pk, sk) ← KeyGen(1^)
]︁
|

(22.10)

22.5. Strong Existential Unforgeability under Chosen Message
Attacks

For our construction we rely on a signature scheme. Their security is defined as follows
[75]:

Definition 22.5.1 (Strong Existential Unforgeability under Chosen Message Attacks
for Signatures). A signature scheme Sig = (KeyGen, Sign,Vfy) fulfills Strong Existential

Unforgeability under Chosen Message Attacks (sEUF-CMA) if for every PPT-adversary A
with access to a signing oracle Sign(k, ·) it holds that the following probability is negligible

in the security parameter ^:

Pr
[︃
Sig.Vfy(vk, 𝜎∗,X ∗) = 1

|︁|︁|︁|︁ (vk, k) ← Sig.KeyGen(1^)
(𝜎∗,X ∗) ← ASign(k,·) (vk, 1^)

]︃
(22.11)

and for all queries X to Sign(k, ·) which were returned by a signature 𝜎 it holds that X ≠ X
∗

and 𝜎 ≠ 𝜎∗.

22.6. Ideal Obfuscation

We use an abstract concept of idealized obfuscation which replaces a given program P
directly with an oracle that evaluates the program on the given input.

Definition 22.6.1 (Ideal Obfuscation). An ideal obfuscator describes the existence of two

oracles (Obfuscate, Evaluate), where

Obfuscate takes as input a program P and randomly samples a handle h ∈ {0, 1}^ , saves
(P, h) in a list and returns h;

218

22.6. Ideal Obfuscation

Evaluate takes as input a handle h and an input msg and searches for h in the list. If h is in

the list, evaluate the corresponding program P on the given input msg and return its

output, otherwise output ⊥.

219

23. Anonymous Transfer

For an K-party protocol we consider the following situation: some individual P𝜙 for
𝜙 ∈ [K − 1] is willing to transfer a message Σ to a receiver R = PK , while hiding his
identity 𝜙 among the (K − 1) potential senders. We call Anonymous Transfer (AT) an
interactive protocol that achieves this goal.

23.1. Network Model and Non-Participating Parties

The goal of an anonymous transfer protocol is to hide the transfer of a message among
innocent conversations by individuals, which are not taking part in the protocol. By a
well-established folklore result in steganography (cf. Section 22.1), this task can be reduced
to the simpler task of hiding the transferred message among uniformly random beacons,
broadcast by the other individuals: the uniform channel, where all protocol messages look
uniformly random, can be compiled into any other ordinary communication pattern [133,
86, 132]. Therefore, as in previous works (see von Ahn, Hopper, and Langford [133] and
Chandran et al. [48]), we consider a set of K parties who interact with each other via
broadcast channels and focus, without loss of generality, on protocols for the uniform
channel. Consequently, we will model the non-participating parties as “dummy parties”
that only broadcast uniformly random messages of a fixed length at each round.

23.2. The Model

Let 𝜙 ∈ {1, . . . ,K − 1} denote the index of the real sender among the (K − 1) potential
senders and let Σ ∈ {0, 1}n be the message that P𝜙 wants to transfer to the receiver. We
consider an interactive protocol in the Common Reference String (CRS) model between
K individuals (P1, . . . , PK−1,R), where R and P𝜙 participate to the protocol, and P𝑖 for
𝑖 ∈ [K − 1] \ 𝜙 are non-participating but present individuals that only broadcast random
strings. The receiver R gets the CRS as input and the sender P𝜙 gets the CRS and the
message Σ as input. For any player P, let TP denote the random tape from which P
draws his random coins. All the individuals (P1, . . . , PK) interact through authenticated
broadcast channels in the synchronous model: the protocol proceeds in rounds, and each
player broadcasts a message at each round. We denote by ⟨R, P1, . . . , PK−1⟩(crs, 𝜙, Σ) the
distribution of the possible transcripts of the protocol in this setting (i.e., the sequence of
all messages broadcasted by the players during an execution of the protocol), where the

221

23. Anonymous Transfer

probabilities are taken over the random coins TP of the players P ∈ {R, P1, . . . , PK−1} and
the random choice of the CRS crs.

Definition 23.2.1 ((Y, 𝛿, c, n)-Anonymous Transfer). A K-party (Y, 𝛿, c, n)-Anonymous

Transfer (AT) for Y, 𝛿 ∈ R[0,1] and K, c, n ∈ N is a tuple containing two PPT algorithms

(Setup, Reconstruct) and a PPT protocol (Transfer). The number of rounds in the Transfer
protocol is given as c and the bitlength n defines the length of the transferred message Σ. The
algorithms are defined as follows:

Setup(1^) takes as input the security parameter 1^ in unary encoding and outputs a Common

Reference String crs.

Transfer(crs, 𝜙, Σ) defines a c-round protocol
1
that takes as input the Common Reference

String crs, an index 𝜙 ∈ [K − 1] specifying the sender, and the message Σ ∈ {0, 1}n
from the sender and outputs a transcript 𝜏 . The non-sender send independent uniformly

distributed noise in each round. All protocol messages sent by the receiver, the sender

and the non-participating parties at each round are bitstrings of length m = m(^),
where m is implicitly specified by the Transfer protocol.

Reconstruct(crs, 𝜏, TR) is a local algorithm executed by the receiver that takes as input the

CRS crs, the protocol transcript 𝜏 and the receiver’s random tape TR and outputs a

message Σ′.

The algorithms additionally satisfy the Y-correctness and the 𝛿-anonymity properties defined

in Definitions 23.2.2 and 23.2.3.

Definition 23.2.2 (Y-Correctness). An Anonymous Transfer protocol ΠAT
n between players

(P1, . . . , PK−1,R) is Y-correct if for any 𝜙 ∈ [K − 1], any Σ ∈ {0, 1}n, and any crs ←
Setup(1^),

Pr
[︃
Σ = Σ′

|︁|︁|︁|︁ 𝜏 $←Transfer⟨R,P1,...,PK−1⟩ (crs, 𝜙, Σ)
Σ′← Reconstruct(crs, 𝜏, TR)

]︃
≥ Y (23.1)

Note that Y can take on any value between 0 and 1. The naive algorithm that lets the receiver

sample a uniformly random n-bit string has Y = 1/2n
.

Definition 23.2.3 (𝛿-Anonymity). An Anonymous Transfer protocol ΠAT
n between players

(P1, . . . , PK−1,R) is 𝛿-anonymous if for any PPT algorithm A𝑔𝑢𝑒𝑠𝑠 = (A𝑔𝑢𝑒𝑠𝑠0,A𝑔𝑢𝑒𝑠𝑠1), it
holds that |︁|︁|︁|︁ Pr

𝜙
$←[K−1]

[︂
Exp

anon
Π
AT

n ,A,𝜙 (^) = 𝜙
]︂
− 1

K − 1

|︁|︁|︁|︁ ≤ (1 − 𝛿) · K − 2
K − 1 (23.2)

where Exp
anon
Π
AT

n ,A,𝜙 (^) is defined in Fig. 23.1.

1 A c-round protocol corresponds to a synchronous model, where each message is broadcast and the
messages in each round only depend on messages from previous rounds.

222

23.3. Fine-grained Anonymous Transfer

Experiment Expanon
ΠATn ,A,𝜙 (^)

crs

$←Setup(1^)
TR ← {0, 1}poly(^)

(Σ, st) ← A𝑔𝑢𝑒𝑠𝑠0(crs, TR)
𝜏

$←Transfer⟨R,P1,...,PK−1 ⟩ (crs, 𝜙, Σ; TR, ·, ·)
return A𝑔𝑢𝑒𝑠𝑠1(𝜏, TR, st)

Figure 23.1.: Definition of the anonymity experiment Expanon
ΠATn ,A,𝜙 (^).

The value 𝛿 can take any value between 0 and 1. The higher 𝛿 the stronger the provided
anonymity guarantees. If a protocol is 𝛿 = 1-anonymous, the advantage over guessing at
random equals 0, and if a protocol is 𝛿 = 0-anonymous, the advantage over guessing at
random equals 1.

Note that we require anonymity to hold, in particular, against the receiver. Therefore,
the adversary in the anonymity game may know the receiver’s random tape TR from the
beginning.

The guessing algorithm is split between A𝑔𝑢𝑒𝑠𝑠0 who is given the CRS and the random tape
TR the receiver is going to use during the protocol, and outputs the target message Σ that
should be transferred and a state st. In the second phase, the algorithm A𝑔𝑢𝑒𝑠𝑠1 which is
given the inputs 𝜏 and the state.

Unless stated otherwise, we consider the case K = 3, i.e., one non-participant.

23.3. Fine-grained Anonymous Transfer

Fine-grained cryptographic primitives are only secure against adversaries with an a-priori
bounded runtime which is greater than the runtime of the honest algorithms, [109, 60].
We use the notion of [60]. In the following, FC1 and FC2 are function classes.

Definition 23.3.1 (FC1-fine-grained (Y, 𝛿, c, n)-Anonymous Transfer against FC2). The
tuple (Setup,Transfer, Reconstruct) (as defined in Definition 23.2.1) is a FC1-fine-grained
(Y, 𝛿, c, n)-Anonymous Transfer for Y, 𝛿 ∈ R[0,1] and c, n ∈ N against FC2 if the following two
conditions hold:

Efficiency. The algorithms (Setup,Transfer, Reconstruct) are in FC1.

Security. Anonymity (Definition 23.2.3) is only required to hold against adversaries in FC2.

The definition of correctness remains as in Definition 23.2.2.

223

23. Anonymous Transfer

Example 23.3.2 (Merkle-Puzzles). Merkle-Puzzles [109] are a fine-grained protocol to

exchange a shared key from symmetric encryptions where successful encryptions can be

efficiently distinguished from false ones. The sender S creates 𝑛mer many ciphertexts, each

under a different (relatively short) key, containing a unique identifier and a symmetric key.

The receiver R then randomly picks one of the ciphertexts and runs a brute-force attack (which

we assume to cost𝑚mer many steps) to recover the key and to send the identifier back to the

sender.

Here FC1 ≔ O(𝑛mer +𝑚mer) as the sender has to create 𝑛mer puzzles and the receiver must

use𝑚mer steps to break one of them, and FC2 ≔ o(𝑛mer ·𝑚mer) as an adversary has to break

at worst all the 𝑛mer ciphertexts to recover the key.

23.4. Trivial Anonymous Transfers

In this section we introduce two example ATs. Those are taken verbatim from Agrikola,
Couteau, and Maier [5, Section 3.4]. For simplicity, we focus on 3-party anonymous
transfer in the following discussions, with two players P0, P1 and a receiver R.

Remark 23.4.1 (Perfect correctness.). A perfectly correct (i.e. Y = 1) protocol is impossible.

Given a player P𝜙 with input Σ, there is always a probability that the non-participating

player P1−𝜙 behaves exactly as a participating player with input Σ′ ≠ Σ, in which case R is

not guaranteed to output the correct message Σ.

Therefore, the best one can hope for is a correctness statistically close to 1. In the following,
we demonstrate ATs with trivial parameters.

Example 23.4.2 (Trivial single-bit AT). Consider the following trivial single-round AT to

transfer a single bit b: P𝜙 broadcasts the input bit b (and P1−𝜙 broadcasts a random bit). Upon

receiving (b0, b1) from P0 and P1, if b0 = b1, R outputs b0; otherwise, R outputs a uniformly

random bit. As P1−𝜙 broadcasts a random bit, it holds that Pr[b0 = b1] = 1/2. In this case

R always obtains the correct output b = b𝜙 . Otherwise, if b0 ≠ b1, R obtains the correct

output with probability 1/2 due to the involved guessing. Thus, R obtains the correct output

with overall probability 3/4. The protocol is 1/2-anonymous since the adversary knows the

message to be transmitted and can hence determine the sender whenever the transmitted

bits are distinct and guess with probability 1/2 otherwise. Hence, the above protocol is a

(3/4, 1/2, 1, 1)-AT.

Example 23.4.3 (Trivial n-bit AT). One can also construct a trivial n-bit AT. To transmit a

message Σ ∈ {0, 1}n: P𝜙 simply sends Σ repeated^ times. Clearly, (not only) R finds out both Σ
and 𝜙 with overwhelming probability. Hence, the above protocol is a (1−negl(^), negl(^), ^ ·
n, n)-AT.

In this work, we study whether ATs with non-trivial parameters can exist.

224

23.5. Reductions Among AT Protocols

23.5. Reductions Among AT Protocols

This section does not count as contribution to this thesis but was taken verbatim from
Agrikola, Couteau, and Maier [5, Section 3.5] due to its relevance. In this section, we
show that several simplified variants of anonymous transfer are equivalent to the original
definition.

23.5.1. AT implies silent-receiver AT.

We say that an anonymous transfer has silent receiver if the receiver never sends messages
during the Transfer protocol, and Reconstruct is a deterministic function based on the CRS
and the transcript 𝜏 . Any AT directly implies a silent-receiver AT with the same parameters
for correctness and anonymity, but at the cost of secrecy: Any (non-)participant is able
to reconstruct the message given only the transcript of broadcasted messages, not just
the receiving party of the protocol. This might be undesirable for practical applications.
Let ΠATn be a (Y, 𝛿, c, n)-Anonymous Transfer. Define the Silent Receiver Anonymous
Transfer Π𝑆𝑅𝐴𝑇 as follows:

Π𝑆𝑅𝐴𝑇 .Setup(1^) runs crs← ΠATn .Setup(1^) and samples a uniform random tape TR for
R. It outputs (crs, TR).

Π𝑆𝑅𝐴𝑇 .Transfer(crs, 𝜙, Σ) proceeds exactly as ΠATn .Transfer(crs, 𝜙, Σ), except that the re-
ceiver R does not broadcast any message. At each round 𝜒 = 1 to 𝜒 = c, the sender P𝜙
locally appends the 𝜒-th receiver message msg𝜒 in ΠATn .Transfer(crs, 𝜙, Σ; TR, ·, ·) to
the current transcript 𝜏 [𝜒] (note that msg𝜒 can be computed deterministically from
𝜏 [𝜒] and TR), and compute its next message as in ΠATn .Transfer using the transcript
𝜏 [𝜒] ∥msg𝜒 .

Π𝑆𝑅𝐴𝑇 .Reconstruct(crs, 𝜏, TR) is defined exactly as ΠATn .Reconstruct(crs, 𝜏, TR), except
that it first expands the transcript 𝜏 by recomputing (deterministically) the messages
of R in ΠATn .Transfer(crs, 𝜙, Σ; TR, ·, ·) and appending them to 𝜏 at each round.

The notion of silent receiver AT captures the notion of an anonymous transfer whose
aim is to publicly reveal a message (i.e., whistleblowing) rather than sending it to a single
receiver.

Lemma 23.5.1. Π𝑆𝑅𝐴𝑇 is an (Y, 𝛿, c, n)-Anonymous Transfer.

Proof (sketch). Correctness and number of rounds follow directly from the description of
Π𝑆𝑅𝐴𝑇 , which simply mimics ΠATn , except that the random tape of the receiver is made
public, and its messages are computed on the fly locally by the sender and during the
reconstruction. Anonymity follows also immediately by observing that TR is given to the
adversary in the anonymity game, hence making it public cannot harm anonymity.

Since the converse direction is straightforward, AT and silent receiver AT are therefore
equivalent.

225

23. Anonymous Transfer

23.6. Strong Anonymous Transfer

For several practical applications we require the additional property that the real message
can only be extracted by the real receiver. This gives rise to a stronger definition of AT:

Definition 23.6.1 (Strong (Y, 𝛿, 𝜍, c, n)-Anonymous Transfer). A strong (Y, 𝛿, 𝜍, c, n)-Anonymous

Transfer is defined analogously to a (Y, 𝛿, c, n)-Anonymous Transfer from Definition 23.2.1

but additionally satisfies 𝜍-secrecy from Definition 23.6.2.

The additional property we require formally states that without the receivers random
tape, the message cannot be successfully reconstructed from the transcript. We focus on
the 3-party case, since case captures the primitive we will need to construct undetectable
oblivious transfer. However, we stress that the definition can easily be generalized to any
number of parties.

Definition 23.6.2 (𝜍-Secrecy). An Anonymous Transfer protocol ΠAT
n between players

(P0, P1,R) is 𝜍-secret if for any PPT reconstruction algorithm A𝑔𝑢𝑒𝑠𝑠 , any Σ ∈ {0, 1}n, and
any crs← Setup(1^), it holds that:|︁|︁|︁|︁ Pr

[︃
Σ = Σ′

|︁|︁|︁|︁ 𝜏 ← Transfer⟨R,P0,P1⟩ (crs, 𝜙, Σ)
Σ′← A𝑔𝑢𝑒𝑠𝑠 (crs, 𝜏)

]︃
− 1

2n

|︁|︁|︁|︁
≤(1 − 𝜍) · 2n − 1

2n

(23.3)

The secrecy is a value between 0 and 1, where 𝜍 = 0 implies that A𝑔𝑢𝑒𝑠𝑠 can reconstruct
Σ with absolute certainty and 𝜍 = 1 means that Σ can at best be guessed. Note that
secrecy requires TR to remain secret. Hence, the transformation to silent receiver AT from
Section 23.5 does not preserve secrecy.

226

24. Impossibility of Anonymous Transfer

In this section, we prove that no Anonymous Transfer protocol, with an arbitrary poly-
nomial number of rounds, can simultaneously enjoy overwhelming correctness (Y =

1 − negl(^)) and overwhelming anonymity (𝛿 = 1 − negl(^)), even for transmitting single
bit messages.

Theorem 24.0.1 (Impossibility of AT). Let ` : N ↦→ R be any negligible function and 𝑝

be any polynomial. There is no (1 − ` (^), 1 − ` (^), 𝑝 (^), 1)-Anonymous Transfer, for any

number of parties.

Theorem 24.0.1 will follow as a corollary from a more general result bounding the relation
between Y and 𝛿 in any c-round protocol. In Sections 24.1 and 24.2 we will focus on K = 3,
that is, the case with one dummy player. This is without loss of generality as we will show
at Section 24.3 by proving that this impossibility also holds for any K-party Anonymous
Transfer with K > 3.

We remark that this section contains parts that do not count as a contribution of this thesis
but that originate from the paper this part of the thesis is based on. Namely, we do not
claim Sections 24.1 and 24.2 (the impossibility result for K = 3) as our contribution but
rather copy it from Agrikola, Couteau, and Maier [5, Section 4] and use it to motivate our
later construction in Section 24.3 (the extension from K = 3 to K > 3) and Chapters 25
and 26 (the fine-grained constructions).

24.1. The Attacker

From now on, we focus on building a generic attack against 3-party silent-receiver Anony-
mous Transfer for ^-bit messages. The theorem will follow from the reductions from
1-bit Anonymous Transfer to multi-bit silent-receiver Anonymous Transfer described in
Section 23.5.

LetΠAT^ be a silent-receiver (Y, 𝛿, c, ^)-Anonymous Transfer. Letm = m(^) be the bitlength
of the message from the non-participating party. Let Rand denote the following procedure:
on input a transcript 𝜏 of ΠAT^ , Rand(𝜏) truncates 𝜏 to c− 1 rounds of the AT protocol, and
replaces the messages of the last round by two uniformly random length-m bitstrings1. It

1 Since the protocol is silent-receiver, there is no message from the receiver; furthermore, assuming that
the sender message is m-bit is without loss of generality, since otherwise the protocol is trivially not
anonymous

227

24. Impossibility of Anonymous Transfer

Algorithm A𝑔𝑢𝑒𝑠𝑠
Ξ
0 (crs)

(Σ1, · · · , ΣΞ)
$←QDR

ΣΞ $←{0, 1}^ \ {Σ1, · · · , ΣΞ} // Exists as Ξ ≪ 2^

return (ΣΞ, st = (crs, ΣΞ))

Figure 24.1.: Definition of the first part of the guessing algorithm, A𝑔𝑢𝑒𝑠𝑠Ξ0 , against the 𝛿-anonymity of the
silent-receiver ^-bit AT protocol ΠAT^ , parameterized by a polynomial Ξ = Ξ(^).

outputs the new rerandomized transcript 𝜏′. For every Σ ∈ {0, 1}^ and 𝜙 ∈ {0, 1}, we let
D𝜙,Σ,D

′
𝜙,Σ,QDR denote the following distribution:

D𝜙,Σ =

⎧⎪⎪⎨⎪⎪⎩ Σ′ :
crs← Setup(1^),
𝜏 ← Transfer(𝜙, Σ),
Σ′← Reconstruct(crs, 𝜏)

⎫⎪⎪⎬⎪⎪⎭
D
′
𝜙,Σ =

⎧⎪⎪⎨⎪⎪⎩ Σ′ :
crs← Setup(1^),
𝜏′← Rand(Transfer(𝜙, Σ)),
Σ′← Reconstruct(crs, Σ′)

⎫⎪⎪⎬⎪⎪⎭
QDR =

⎧⎪⎪⎨⎪⎪⎩ Σ′ :
crs← Setup(1^),
𝜏

$←({0, 1}m × {0, 1}m)c,
Σ′← Reconstruct(crs, 𝜏)

⎫⎪⎪⎬⎪⎪⎭

(24.1)

Fix an arbitrary polynomial Ξ. We define an attacker AΞ = (A𝑔𝑢𝑒𝑠𝑠
Ξ
0 ,A𝑔𝑢𝑒𝑠𝑠

Ξ
1) against

the anonymity of ΠAT^ , parameterized by the polynomial Ξ, on Figs. 24.1 and 24.2. In
the following, we will not use AΞ directly to attack the full c-round protocol: rather, we
will use AΞ as a distinguisher between the c-round protocol ΠAT^ , and the (c − 1)-round
protocol obtained by running ΠAT^ for (c − 1) rounds, and replacing the messages of the
last round by uniformly random m-bit strings. From there, the proof of impossibility will
proceed by induction; we refer the reader to the introduction for a high-level intuition of
our proof.

Base case: advantage ofAΞ when c = 1. We start the induction by bounding the advan-
tage of AΞ in the anonymity game when ΠAT^ is non-interactive (i.e., Transfer consists of
a single message from each of P0, P1 to the receiver). Before proceeding, we make two key
observations:

(1) When c = 1, D
′
𝜙,Σ = QDR for any (𝜙, Σ). In particular, this means that D

′
𝜙,Σ is indepen-

dent of (𝜙, Σ).

228

24.1. The Attacker

Algorithm A𝑔𝑢𝑒𝑠𝑠
Ξ
1 (Σ, st, 𝜏)

(crs, ΣΞ) ≔ st

(𝜏 [c − 1], (msg0,msg1)) ≔ 𝜏

(msg
′
0,msg

′
1)

$←{0, 1}m × {0, 1}m

𝜏0 ≔ (𝜏 [c − 1], (msg0,msg
′
1))

𝜏1 ≔ (𝜏 [c − 1], (msg
′
0,msg1))

for 𝜙∗ ∈ {0, 1} do
Σ′
𝜙∗ ← Reconstruct(crs, 𝜏𝜙∗)

done

if Σ′0 = ΣΞ then
return 0

elseif Σ′1 = ΣΞ then
return 1

else
𝜙 ′

$←{0, 1}
return 𝜙 ′

fi

Figure 24.2.: Definition of the second part of the guessing algorithm, A𝑔𝑢𝑒𝑠𝑠Ξ1 , against the 𝛿-anonymity of
the silent-receiver ^-bit AT protocol ΠAT^ , parameterized by a polynomial Ξ = Ξ(^).

(2) When c = 1 and 𝜙 = 0, the distribution of the values (Σ′0, Σ′1) constructed by A𝑔𝑢𝑒𝑠𝑠
Ξ
1

given as input a random transcript 𝜏 ← Transfer(0, ΣΞ) is exactly the distribution D0,ΣΞ ×
QDR . This is because msg0 is a random message from the sender with input 𝜙 = 0 and
value ΣΞ, and (msg1,msg

′
0,msg

′
1) are three uniformly random elements of {0, 1}m, hence

(msg0,msg
′
1) is exactly a random transcript of ΠAT^ with (𝜙, ΣΞ), while (msg

′
0,msg1) is

just a pair of random messages. Similarly, if 𝜙 = 1, the distribution of the values (Σ′0, Σ′1)
constructed by A𝑔𝑢𝑒𝑠𝑠

Ξ
1 given as input a random transcript 𝜏 ← Transfer(1, ΣΞ) is exactly

the distribution QDR × D1,ΣΞ .

Both observations follow directly from the definitions of D𝜙,Σ,D
′
𝜙,Σ,QDR and of A𝑔𝑢𝑒𝑠𝑠

Ξ
1 .

Building on the above observations, we show that for an appropriate choice of Ξ, the
advantage of AΞ in the anonymity game can be made arbitrarily close to (Y − 1)/2:

Claim 24.1.1. For any polynomial Ξ∗, there is a polynomial Ξ such that|︁|︁|︁|︁ Pr
𝜙

$←{0,1}

[︂
Exp

anon
Π
AT
^ ,AΞ,𝜙

(^) = 𝜙
]︂
− 1/2

|︁|︁|︁|︁ ≥ Y2 − 1
Ξ∗
, (24.2)

229

24. Impossibility of Anonymous Transfer

which implies that any silent-receiver (Y, 𝛿, 1, ^)-Anonymous Transfer must satisfy 𝛿 ≤
1 − Y + 2/Ξ∗ for any polynomial Ξ∗; equivalently, 𝛿 ≤ 1 − Y + negl(^). In particular, this

means that if the AT has overwhelming correctness (Y = 1−negl(^)), then 𝛿 must be negligible.

Proof. Let Ξ← ^ · Ξ∗, and let Bad ⊂ {0, 1}^ denote the set

Bad =
{︁
Σ ∈ {0, 1}^ : PrΣ′ $←D

′ [Σ′ = Σ] > 2
Ξ∗

}︁
.

We first show that
Pr

ΣΞ
$←A𝑔𝑢𝑒𝑠𝑠Ξ0 (crs)

[︁
ΣΞ ∈ Bad

]︁
≤ 𝑒−^ .

Fix any Σ ∈ Bad. Then

Pr
ΣΞ

$←A𝑔𝑢𝑒𝑠𝑠Ξ0 (crs)
[Σ = ΣΞ] ≤ Pr

Σ1,··· ,ΣΞ
$←D
′
[Σ ∉ {Σ1, · · · , ΣΞ}]

= Pr
Σ1,··· ,ΣΞ

$←D
′

[︂ Ξ⋀︂
𝑖=1
(Σ𝑖 ≠ Σ)

]︂
<

(︃
1 − 2

Ξ∗

)︃Ξ
≤ 𝑒−2Ξ/Ξ∗ = 𝑒−2^ .

Therefore, by a union bound over all Σ ∈ Bad, PrΣΞ $←A𝑔𝑢𝑒𝑠𝑠Ξ0 (crs) [ΣΞ ∈ Bad] ≤ |Bad| ·𝑒−2^ ≤
2^ ·𝑒−2^ ≤ 𝑒−^ . Now, denoting𝜙 the identity of the sender, we bound the success probability
of AΞ = (A𝑔𝑢𝑒𝑠𝑠

Ξ
0 ,A𝑔𝑢𝑒𝑠𝑠

Ξ
1) in guessing 𝜙 .

Consider first the case 𝜙 = 0. Then by observation (2), the values (Σ′0, Σ′1) form a random
sample from D0,ΣΞ × D

′ (in particular, they are independent samples from these two
distributions). Now, by definition of A𝑔𝑢𝑒𝑠𝑠

Ξ
1 , we have

Pr
[︂
Expanon

ΠAT^ ,AΞ,𝜙
(^) = 0

|︁|︁|︁ 𝜙 = 0
]︂
= Pr[(Σ′0 = ΣΞ) ∨ ((Σ′0 ≠ ΣΞ) ∧ 𝜙′ = 0)]

= Pr[Σ′0 = ΣΞ] + 1
2 · Pr[Σ′0 ≠ ΣΞ]

=
1
2 ·

(︂
1 + Pr[Σ′0 = ΣΞ]

)︂
≥ 1 + Y

2 ,

where the second equality is because the events are disjoint, and the last inequality is by
the Y-correctness of the AT. Now, consider the case 𝜙 = 1; in this case, the values (Σ′0, Σ′1)

230

24.1. The Attacker

computed by A𝑔𝑢𝑒𝑠𝑠
Ξ
1 (𝜏, st) are distributed exactly as a random sample from QDR × D1,ΣΞ .

Then, if we condition on ΣΞ being outside of the set Bad, we have

Pr
[︂
Expanon

ΠAT^ ,A𝑡 ,𝜙
(^) = 1

|︁|︁|︁ 𝜙 = 0, ΣΞ ∉ Bad
]︂

= Pr
[︁
((Σ′0 ≠ ΣΞ) ∧ (Σ′1 = ΣΞ)) ∨ ((Σ′0 ≠ ΣΞ) ∧ (Σ′1 ≠ ΣΞ) ∧ 𝜙′ = 1)

|︁|︁ ΣΞ ∉ Bad
]︁

= Pr
[︁
(Σ′0 ≠ ΣΞ) ∧ (Σ′1 = ΣΞ)

|︁|︁ ΣΞ ∉ Bad
]︁

+ 1
2 · Pr

[︁
(Σ′0 ≠ ΣΞ) ∧ (Σ′1 ≠ ΣΞ)

|︁|︁ ΣΞ ∉ Bad
]︁

= Pr
[︁
Σ′0 ≠ ΣΞ

|︁|︁ ΣΞ ∉ Bad
]︁
· Pr

[︁
Σ′1 = ΣΞ

|︁|︁ ΣΞ ∉ Bad
]︁

+ 1
2 · Pr

[︁
Σ′0 ≠ ΣΞ

|︁|︁ ΣΞ ∉ Bad
]︁
· Pr

[︁
Σ′1 ≠ ΣΞ

|︁|︁ ΣΞ ∉ Bad
]︁

=
1
2 · Pr

[︁
Σ′0 ≠ ΣΞ

|︁|︁ ΣΞ ∉ Bad
]︁
· (1 + Pr

[︁
Σ′1 = ΣΞ

|︁|︁ ΣΞ ∉ Bad
]︁
)

≥
(︃
1 − 2

Ξ∗

)︃
· 1 + Y

2 ,

where the third equality follows from the fact that Σ′0 and Σ′1 are independent samples,
and the last inequality follows from Y-correctness and the definition of the set Bad. Now,
since

2 · Pr[Expanon
ΠAT^ ,AΞ,𝜙

(^) = 𝜙]

= Pr
[︂
Expanon

ΠAT^ ,AΞ,𝜙
(^) = 0

|︁|︁|︁ 𝜙 = 0
]︂

+ Pr
[︂
Expanon

ΠAT^ ,AΞ,𝜙
(^) = 1

|︁|︁|︁ 𝜙 = 1
]︂

≥ Pr
[︂
Expanon

ΠAT^ ,AΞ,𝜙
(^) = 0

|︁|︁|︁ 𝜙 = 0
]︂

+ Pr
[︂
Expanon

ΠAT^ ,AΞ,𝜙
(^) = 1

|︁|︁|︁ 𝜙 = 1, ΣΞ ∉ Bad
]︂
· Pr[ΣΞ ∉ Bad]

≥ Pr
[︂
Expanon

ΠAT^ ,AΞ,𝜙
(^) = 0

|︁|︁|︁ 𝜙 = 0
]︂

+ Pr
[︂
Expanon

ΠAT^ ,AΞ,𝜙
(^) = 1

|︁|︁|︁ 𝜙 = 1, ΣΞ ∉ Bad
]︂
· (1 − 𝑒−^),

we get

Pr[Expanon
ΠAT^ ,AΞ,𝜙

(^) = 𝜙] ≥ 1
2 ·

(︃
1 + Y

2 +
(︃
1 − 2

Ξ∗

)︃
· 1 + Y

2 · (1 − 𝑒−^)
)︃

≥ 1 + Y
2 ·

(︃
1 − 1

Ξ∗

)︃
· (1 − 𝑒−^)

≥ 1 + Y
2 − 1

Ξ∗
,

where the last inequality uses the fact that (1 + Y) · (1 − 𝑒−^)/2Ξ∗ ≤ 1/Ξ∗. This concludes
the proof.

231

24. Impossibility of Anonymous Transfer

Induction case. Fix a polynomial number of rounds c(^) and assume that any silent-
receiver (Y, 𝛿, c − 1, ^)-Anonymous Transfer must satisfy

1 − 𝛿
2 ≥ 1

c − 1 ·
(︃
Y

2 −
1
Ξ∗

)︃
for any polynomial Ξ∗.

Equivalently, this means that (1 − 𝛿)/2 ≥ Y/2(c − 1) − negl(^). Let ΠAT^ be any silent-
receiver (Y, 𝛿, c, ^)-Anonymous Transfer.

Claim 24.1.2. For any polynomial Ξ∗,

1 − 𝛿
2 ≥ 1

c

·
(︃
Y

2 −
1
Ξ∗

)︃
. (24.3)

Proof. We have

Pr[Expanon
ΠAT^ ,AΞ,𝜙

(^) = 𝜙] =1
2 · Pr

[︂
Expanon

ΠAT^ ,AΞ,𝜙
(^) = 0

|︁|︁|︁ 𝜙 = 0
]︂

+1
2 · Pr

[︂
Expanon

ΠAT^ ,AΞ,𝜙
(^) = 1

|︁|︁|︁ 𝜙 = 1
]︂
.

We bound separately the two probabilities on the right hand side:

Pr
[︂
Expanon

ΠAT^ ,AΞ,𝜙
(^) = 0

|︁|︁|︁ 𝜙 = 0
]︂

= Pr[(Σ′0 = ΣΞ) ∨ ((Σ′0 ≠ ΣΞ) ∧ 𝜙′ = 0)]

= Pr[Σ′0 = ΣΞ] + 1
2 · Pr[Σ′0 ≠ ΣΞ]

=
1
2 ·

(︂
1 + Pr[Σ′0 = ΣΞ]

)︂
≥ 1 + Y

2 ,

where the second equality is because the events are disjoint, and the last inequality is by
the Y-correctness of the AT. Note that nothing really changes when 𝜙 = 0 compared to the
base case, because the independence of Σ′0 and Σ′1 needs only to be invoked in the case
𝜙 = 1 (this is because the attacker “favors Σ′0” in case of tie). Now, consider the case 𝜙 = 1.
In this case, the values (Σ′0, Σ′1) computed by A𝑔𝑢𝑒𝑠𝑠

Ξ
1 (𝜏, st) are distributed as correlated

samples from D
′
1,ΣΞ and D1,ΣΞ . We have

Pr
[︂
Expanon

ΠAT^ ,AΞ,𝜙
(^) = 1

|︁|︁|︁ 𝜙 = 1
]︂

= Pr[((Σ′0 ≠ ΣΞ) ∧ (Σ′1 = ΣΞ)) ∨ ((Σ′0 ≠ ΣΞ) ∧ (Σ′1 ≠ ΣΞ) ∧ 𝜙′ = 1)]

= Pr[(Σ′0 ≠ ΣΞ) ∧ (Σ′1 = ΣΞ)] + 1
2 · Pr[(Σ′0 ≠ ΣΞ) ∧ (Σ′1 ≠ ΣΞ)]

=
1
2 ·

(︂
Pr[(Σ′0 ≠ ΣΞ) ∧ (Σ′1 = ΣΞ)] + Pr[Σ′0 ≠ ΣΞ]

)︂
,

232

24.1. The Attacker

where the second equality follows from the fact that the events Σ′1 = ΣΞ and Σ′1 ≠ ΣΞ are
disjoint. Now, observe that

Pr[Σ′1 = ΣΞ] = Pr
[︁
Σ′1 = ΣΞ

|︁|︁ Σ′0 = ΣΞ
]︁
· Pr[Σ′0 = ΣΞ] + Pr[Σ′1 = ΣΞ ∧ Σ′0 ≠ ΣΞ]

≤ Pr[Σ′0 = ΣΞ] + Pr[Σ′1 = ΣΞ ∧ Σ′0 ≠ ΣΞ] .

By construction, Pr[Σ′1 = ΣΞ] is exactly the probability that Reconstruct outputs ΣΞ given
a random transcript for 𝜙 = 1 and transmitted value ΣΞ. By Y-correctness of the protocol,
we therefore have Pr[Σ′1 = ΣΞ] ≥ Y. Plugging this into the previous inequality, we get

Pr[Σ′1 = ΣΞ ∧ Σ′0 ≠ ΣΞ] ≥ Y − Pr[Σ′0 = ΣΞ],

which implies that

Pr
[︂
Expanon

ΠAT^ ,AΞ,𝜙
(^) = 1

|︁|︁|︁ 𝜙 = 1
]︂
≥ 1

2 ·
(︂
Y − Pr[Σ′0 = ΣΞ] + Pr[Σ′0 ≠ ΣΞ]

)︂
=
Y + 1

2 − Pr[Σ′0 = ΣΞ] .

It remains to bound Pr[Σ′0 = ΣΞ]. To do so, we define a round-reduced Anonymous Transfer
protocol (Setup′,Transfer′, Reconstruct′), built on top of ΠAT^ :

Setup′ = Setup

Transfer′(crs, 𝜙, Σ) : proceeds as Transfer, except that the parties interrupt the protocol
Transfer(crs, 𝜙, Σ) after c − 1 rounds, obtaining a transcript 𝜏 . In the (c − 1)’s round,
P0 and P1 both additionally broadcast 2m random bits, denoted (r0, r1). Define the
final transcript of Transfer′ to be (𝜏, r0, r1).

Reconstruct′(crs, (𝜏, r0, r1)) : on input a transcript (𝜏, r0, r1), set r ← r0 ⊕ r1 and parse r

as a concatenation of two m-bit messages (msg0,msg1). Let 𝜏′ be a c-round transcript
where the transcript of the first c − 1 rounds is 𝜏 , and the last round transcript is
(msg0,msg1). Output Reconstruct(crs, 𝜏′).

A transcript for the round-reduced protocol is exactly a transcript for ΠAT^ where the
last two messages have been replaced by uniform random strings2. Now, observe that
when 𝜙 = 1, replacing only the message of 𝜙1 by random in the last round still leads to
the exact same distribution over transcript. In other terms, Pr[Σ′0 = ΣΞ] is exactly the
probability that Reconstruct′ outputs ΣΞ given a transcript for the round-reduced protocol.
Of course, the round-reduced protocol is 𝛿-anonymous3, and has c − 1 rounds. Hence, by
the induction hypothesis, we can bound the correctness of the round-reduced protocol:

1 − 𝛿
2 ≥ 1

c − 1 ·
(︄

Pr[Σ′0 = ΣΞ]
2 − 1

Ξ∗

)︄
=⇒ Pr[Σ′0 = ΣΞ] ≤ (c − 1) · (1 − 𝛿) + 2/Ξ∗.

2 We define these strings to be the XOR of two strings sent in the previous rounds by P0 and P1 to guarantee
that Reconstruct remains deterministic; this is just a syntactic manipulation which is not crucial, but
simplifies the rest of the exposition.

3 ΠAT^ is 𝛿-anonymous; truncating the transcript can trivially not decrease anonymity.

233

24. Impossibility of Anonymous Transfer

Therefore, we get

Pr
[︂
Expanon

ΠAT^ ,AΞ,𝜙
(^) = 1

|︁|︁|︁ 𝜙 = 1
]︂
≥ Y + 1

2 − (c − 1) · (1 − 𝛿) − 2
Ξ∗
.

Putting everything together, we obtain

Pr[Expanon
ΠAT^ ,AΞ,𝜙

(^) = 𝜙] ≥ 1
2 ·

(︃
Y + 1

2 + Y + 1
2 − (c − 1) · (1 − 𝛿) − 2

Ξ∗

)︃
=
Y + 1

2 − (c − 1) · (1 − 𝛿)
2 − 1

Ξ∗
,

hence |︁|︁|︁|︁Pr[Expanon
ΠAT^ ,AΞ,𝜙

(^) = 𝜙] − 1
2

|︁|︁|︁|︁ ≥ Y2 − (c − 1) · (1 − 𝛿)
2 − 1

Ξ∗
.

Now, by definition of 𝛿-anonymity, we also have

1 − 𝛿
2 ≥

|︁|︁|︁|︁Pr[Expanon
ΠAT^ ,AΞ,𝜙

(^) = 𝜙] − 1
2

|︁|︁|︁|︁
≥ Y2 −

(c − 1) · (1 − 𝛿)
2 − 1

Ξ∗

=⇒ c · 1 − 𝛿
2 ≥ Y2 −

1
Ξ∗
,

which concludes the proof of the claim.

24.2. Putting the Pieces Together

With the above analysis, we showed that for any silent-receiver (Y, 𝛿, c, ^)-Anonymous
Transfer, it must necessarily hold that (1 − 𝛿)/2 ≥ Y/2𝑐 − negl(^). Since any (Y, 𝛿, c, ^)-
Anonymous Transfer implies a silent-receiver (Y, 𝛿, c, ^)-Anonymous Transfer (with the
exact same parameters, see Section 23.5), we obtain:

Corollary 24.2.1. Any (Y, 𝛿, c, ^)-Anonymous Transfer must satisfy

1 − 𝛿
2 ≥ Y

2c

− negl(^).

In particular, this implies that there exists no ^-bit AT with overwhelming correctness and

anonymity, for any polynomial number of rounds.

Furthermore, as shown in Section 23.5, any single-bit c-round AT with correctness Y =
1 − negl(^) and anonymity 𝛿 = 1 − negl(^) implies a ^-bit AT with correctness Y′ = Y^ =
(1−negl(^))^ = 1−negl(^), and anonymity 𝛿′ = (𝛿−1) ·^−𝛿+2 = 1−negl(^). Combining
this reduction with Corollary 24.2.1 concludes the proof of Theorem 24.0.1.

234

24.3. Impossibility of Anonymous Transfer for K > 3

Protocol Π′
𝐴𝑇

A c-round Anonymous Transfer Protocol Π′
𝐴𝑇

for (K − 1) Parties.

On input (𝜙, b), P𝜙 follows the role of P𝜙 on input (𝜙, b) according to Π𝐴𝑇 .

On input ⊥, P𝜙 ′ for 𝜙′ ∈ [K − 2] \ 𝜙 follows the role of P𝜙 ′ on input ⊥ according to
Π𝐴𝑇 .

On input ⊥, R follows the role of PK−1 on input ⊥ according to Π𝐴𝑇 .

For each round 𝜒 from 1 to c :
P𝜙 computes the next message according to P𝜙 in Π𝐴𝑇 with previous messages

((msg
(1)
1 , . . . ,msg

(1)
K−2,msg

(1)
R), . . . , (msg

(𝜒−1)
1 , . . . ,msg

(𝜒−1)
K−2 ,msg

(𝜒−1)
R)).

P𝜙 ′ for 𝜙′ ∈ [K − 2] \ 𝜙 broadcasts msg
(𝜒)
𝜙 ′

$←{0, 1}m.

R broadcasts msg
(𝜒)
R

$←{0, 1}m.

R outputs Π𝐴𝑇 .Reconstruct((msg
(1)
1 , . . . ,msg

(1)
K−2,msg

(1)
R), . . . , (msg

(c)
1 , . . . ,msg

(c)
K−2,

msg
(c)
R)).

Figure 24.3.: The protocol Π′
𝐴𝑇

that constructs (K − 1)-party AT from a given K-party SRAT for K parties.

24.3. Impossibility of Anonymous Transfer for K > 3

In this section we will expand the impossibility proof we showed previously from K = 3
to an arbitrary K > 3. For that purpose, we prove the following lemma:

Lemma 24.3.1. Let Π𝐴𝑇 be an (Y, 𝛿) Silent Receiver Anonymous Transfer protocol for K

parties. Then, protocol Π′
𝐴𝑇

defined in Fig. 24.3 that makes black-box access to Π𝐴𝑇 is an

(Y, 𝛿′) AT protocol for (K − 1) parties, where 𝛿′ > 1 − (1 − 𝛿) · K−2
K−3 .

Combining this with the insight from Lemma 23.5.1 that (Y, 𝛿)-AT imply (Y, 𝛿)-SRAT, this
implies that an (Y, 𝛿)-AT for K parties implies an (Y, 𝛿′)-SRAT for (K − 1) parties.

We then proceed to show that if 𝛿 is overwhelming, then 𝛿′ is overwhelming. The cor-
rectness Y does not change by our transformation. Hence, we can iteratively apply this
step for any number of parties K . Therefore, if there is a K-party (owhl(^), owhl(^))-AT,
then there is also a three-party (owhl(^), owhl(^))-AT. Since we have proven the latter
to be impossible in Corollary 24.2.1, a K-party AT with overwhelming correctness and
anonymity cannot exist for any polynomial number of parties K .

235

24. Impossibility of Anonymous Transfer

To prove our claim we construct a (K−1)-party AT Π′
𝐴𝑇

as shown in Fig. 24.3. The protocol
is based on an (Y, 𝛿)-SRAT Π𝐴𝑇 . All parties in Π′

𝐴𝑇
follow their respective roles in Π𝐴𝑇 ,

which means that the sender is constructing special messages as advised by Π𝐴𝑇 whereas
the dummy friends only broadcast random bits. To compensate for the missing party (the
K-th party that does not exist in the K − 1 party protocol) the messages of the K-th party
are sent by the receiver, who takes on the role of one dummy friend. This is possible
because the K-party protocol is a Silent Receiver Anonymous Transfer where the receiver
sends no messages, whereas in the (K − 1)-party protocol the receiver is allowed to report
messages in each round. Then parties continue with the extended transcript and proceed
to the next round.

24.3.1. Security Analysis of Π′
𝐴𝑇

Correctness. Correctness of Π′
𝐴𝑇

follows directly from correctness of Π𝐴𝑇 .

Lemma 24.3.2 (Correctness). Let Π𝐴𝑇 be a K-party (Y, 𝛿)-SRAT. Then Π′
𝐴𝑇

has correctness

Y.

Proof. This trivially follows from the fact that the extended transcript is distributed iden-
tically to an execution of Π𝐴𝑇 : The messages of the first (K − 1) parties are distributed
correctly by design, as they follow the original protocol, and the messages of the K-th
party are also distributed in the same way, but accounted to a different party. Thus, the
reconstruction algorithm is queried with the same inputs.

Anonymity. Anonymity requires some work, since one party (the non-silent receiver) in
Π′
𝐴𝑇

is guaranteed to not be the sender.

Lemma 24.3.3 (Anonymity). Let Π𝐴𝑇 be a K-party (Y, 𝛿)-SRAT. Then Π′
𝐴𝑇

has anonymity

𝛿′ = 1 − (1 − 𝛿) · K−2
K−3 .

Proof. We want to find a bound 𝛿′ for the 𝛿′-anonymity of Π′
𝐴𝑇

, that is, a value 𝛿′ for which
the following holds for any PPT algorithm A′𝑔𝑢𝑒𝑠𝑠 :4

Pr[A′𝑔𝑢𝑒𝑠𝑠 wins] ≤
1

(K − 2) + (1 − 𝛿
′) · K − 3

K − 2 (24.4)

Now let A′𝑔𝑢𝑒𝑠𝑠 be an adversary on the anonymity of the (K − 1)-party protocol Π′
𝐴𝑇
. We

will now demonstrate how A′𝑔𝑢𝑒𝑠𝑠 can be used by a guessing algorithm A𝑔𝑢𝑒𝑠𝑠 to break the
anonymity of Π𝐴𝑇 :

4 Ignoring the absolute value here is without loss of generality as we want to bound the best possible
guessing algorithm, which would have Pr[A𝑔𝑢𝑒𝑠𝑠 wins] − 1/(K − 2) > 0.

236

24.3. Impossibility of Anonymous Transfer for K > 3

Upon receiving the challenge transcript 𝜏C for the K-party AT, A𝑔𝑢𝑒𝑠𝑠 picks a uniformly
random party from the group of potential senders (i.e., among everyone except the receiver)
and erases that party from the transcript. A𝑔𝑢𝑒𝑠𝑠 reports this party’s messages as coming
from the receiver in Π′

𝐴𝑇
. Observe that the resulting transcript is perfectly distributed as

an honest transcript of Π′
𝐴𝑇

(given that a non-participant was erased). Now, A𝑔𝑢𝑒𝑠𝑠 feeds
this simulated transcript to A′𝑔𝑢𝑒𝑠𝑠 , and outputs whatever A′𝑔𝑢𝑒𝑠𝑠 outputs.

If A𝑔𝑢𝑒𝑠𝑠 selects a non-participant—which is the case with probability (K − 2)/(K − 1)
as the party is uniformly sampled among all parties except for the receiver and there is
only one actual sender—then the modified transcript is a valid transcript of Π′

𝐴𝑇
and the

probability that A′𝑔𝑢𝑒𝑠𝑠 returns the correct sender is given by probability Pr[A′𝑔𝑢𝑒𝑠𝑠 wins]
that A′𝑔𝑢𝑒𝑠𝑠 wins the anonymity-game. Otherwise, if A𝑔𝑢𝑒𝑠𝑠 selected the actual sender, then
all possible return values for A′𝑔𝑢𝑒𝑠𝑠 are dummy friends and the probability that A𝑔𝑢𝑒𝑠𝑠 is
correct equals 0.

Hence, the overall probability that A𝑔𝑢𝑒𝑠𝑠 wins the anonymity game is given by the follow-
ing term:

Pr[A𝑔𝑢𝑒𝑠𝑠 wins] =
K − 2
K − 1 · Pr[A′𝑔𝑢𝑒𝑠𝑠 wins]

⇐⇒ Pr[A′𝑔𝑢𝑒𝑠𝑠 wins] =
K − 1
K − 2 · Pr[A𝑔𝑢𝑒𝑠𝑠 wins]

(24.5)

Due to the 𝛿-anonymity of Π𝐴𝑇 it holds that

Pr[A𝑔𝑢𝑒𝑠𝑠 wins] ≤
1

K − 1 + (1 − 𝛿) ·
K − 2
K − 1 (24.6)

By merging Eqs. (24.5) and (24.6) we get that

Pr[A′𝑔𝑢𝑒𝑠𝑠 wins] =
K − 1
K − 2 · Pr[A𝑔𝑢𝑒𝑠𝑠 wins]

≤ K − 1
K − 2

(︃
1

K − 1 + (1 − 𝛿) ·
K − 2
K − 1

)︃
=⇒ Pr[A′𝑔𝑢𝑒𝑠𝑠 wins] ≤

1
K − 2 + (1 − 𝛿)

(24.7)

However, to apply 𝛿′-anonymity we need Eq. (24.7) to be in the form from Eq. (24.4), which
means that we have to set:

Pr[A′𝑔𝑢𝑒𝑠𝑠 wins] ≤
1

K − 2 + (1 − 𝛿)
!
=

1
K − 2 + (1 − 𝛿

′)K − 3
K − 2

(24.8)

Solving Eq. (24.8) for 𝛿′ yields the following result:

𝛿′ = 1 − (1 − 𝛿) · K − 2
K − 3

(24.9)

For this value of 𝛿′, the guessing algorithm A′𝑔𝑢𝑒𝑠𝑠 on Π′
𝐴𝑇

cannot be used to violate the
𝛿-anonymity of Π𝐴𝑇 .

237

24. Impossibility of Anonymous Transfer

In contrast, if there is some guessing algorithm A′𝑔𝑢𝑒𝑠𝑠 which violates the 𝛿′-anonymity for
the above value of 𝛿′, then it holds that:

Pr[A′𝑔𝑢𝑒𝑠𝑠 wins] >
1

K − 2 + (1 − 𝛿
′) · K − 3

K − 2
(24.10)

Then the probability that A𝑔𝑢𝑒𝑠𝑠 can successfully determine the sender in the K-party AT
is given as follows:

Pr[A𝑔𝑢𝑒𝑠𝑠 wins] =
K − 2
K − 1 · Pr[A′𝑔𝑢𝑒𝑠𝑠 wins]

>
K − 2
K − 1 ·

(︃
1

K − 2 + (1 − 𝛿
′) · K − 3

K − 2

)︃
Pr[A𝑔𝑢𝑒𝑠𝑠 wins] >

1
K − 1 + (1 − 𝛿

′) · K − 3
K − 1

(24.11)

By inserting the computed value of 𝛿′ from Eq. (24.9) into Eq. (24.11) and get:

Pr[A𝑔𝑢𝑒𝑠𝑠 wins] >
1

K − 1 +
(︃
1 −

(︃
1 − (1 − 𝛿) · K − 2

K − 3

)︃)︃
· K − 3

K − 1 (24.12)

So, in total A𝑔𝑢𝑒𝑠𝑠 would be successful with probability

Pr[A𝑔𝑢𝑒𝑠𝑠 wins] >
1

K − 1 +
(︃
1 − 1 + (1 − 𝛿) · K − 2

K − 3

)︃
· K − 3

K − 1

=⇒ Pr[A𝑔𝑢𝑒𝑠𝑠 wins] >
1

K − 1 + (1 − 𝛿) ·
K − 2
K − 1

(24.13)

which would contradict the assumed 𝛿-anonymity of Π𝐴𝑇 .

From Lemmas 24.3.2 and 24.3.3 the claim from Lemma 24.3.1 follows, which yields the
following corollary:

Corollary 24.3.4. Let Π𝐴𝑇 be an (Y, 𝛿) Anonymous Transfer protocol for K parties where

Y, 𝛿 ∈ owhl(^). Then there is a protocol three-party (Y, 𝛿′)-AT protocol Π′
𝐴𝑇

where Y, 𝛿 ∈
owhl(^).

Proof. Let the number K of parties be given. From Π𝐴𝑇 we can construct a Silent Receiver
Anonymous Transfer with the same values for Y and 𝛿 , so the constructed Silent Receiver
Anonymous Transfer still has overwhelming correctness and anonymity.

By then applying Lemma 24.3.1 it follows that there is a protocol Π′
𝐴𝑇

for (K − 1) parties
which still has the same (hence overwhelming) correctness and anonymity 𝛿′ > 1 − (1 −
𝛿) · K−2

K−3 .

As we assume that 𝛿 ∈ owhl(^) it holds that (1 − 𝛿) ∈ negl(^), and since K−2
K−3 ∈ poly(^) it

holds that (1 − 𝛿) · K−2
K−3 ∈ negl(^).

238

24.4. Extensions and Limitations

So it total it holds that 𝛿′ > 1 − negl(^) ∈ owhl(^).

By then alternating between an application of Lemma 23.5.1 to construct a Silent Receiver
Anonymous Transfer from the normal AT and Lemma 24.3.1 to reduce the number of
parties by one we can proceed until K = 3, where still it holds that both correctness and
anonymity are overwhelming.

This insight, however, contradicts Corollary 24.2.1, which states that no three-party
AT with overwhelming correctness and anonymity can exist, which leads to our final
corollary:

Corollary 24.3.5. Let ^ be the security parameter. Let K ∈ poly(^) be the number of

individuals present in an execution of Anonymous Transfer. Then for any K-party AT protocol

Π𝐴𝑇 it holds that Π𝐴𝑇 is not a (owhl(^), owhl(^))-AT.

Proof. Weprove this corollary by contradiction. Assuming thatΠ𝐴𝑇 is an (owhl(^), owhl(^))-
AT means that due to Corollary 24.3.4, there is an (owhl(^), owhl(^))-AT for three parties.
However, such a protocol cannot exist due to Corollary 24.2.1.

24.4. Extensions and Limitations

The adversary in our impossibility result makes a black-box use of an arbitrary 3-party
silent receiver multi-bit Anonymous Transfer; the reduction to K-party single-bit Anony-
mous Transfer is black-box as well. In particular, this means that our impossibility result
relativizes: it remains true relative to any oracle, where access to the oracle is granted to
all participants and all algorithms (including the adversary).

In the next section, we will provide a heuristic construction of fine-grained Anonymous
Transfer. The aim of this construction is to complement our impossibility result, and to
draw an interesting and surprising picture: Anonymous Transfer appears to be impossible
to realize with the standard superpolynomial cryptographic hardness gaps, but becomes
feasible if one settles for a small polynomial hardness gap. Our fine-grained construction is
described and formally proven secure using an ideal obfuscation scheme; instantiating the
scheme with candidate indistinguishability obfuscation schemes gives a plausible heuristic
construction (the same way that instantiating the random oracle model with standard
hash functions gives plausible heuristic constructions of various cryptographic primitives,
when the construction is not pathological). Because our impossibility result relativizes, in
contrast, standard Anonymous Transfer remains provably impossible relative to an ideal
obfuscation oracle (while fine-grained Anonymous Transfer, as we will see, provably exist
relative to such an oracle).

239

24. Impossibility of Anonymous Transfer

Impossibility of fine-grained multi-bit AT with overwhelming correctness and anonymity.
In the multi-bit setting, where the sender wants to transmit 𝜔 (log^) bits to the receiver,
our result further demonstrates that there exists no fine-grained Anonymous Transfer
with overwhelming correctness and anonymity (1 − negl(^)), even with an arbitrary

small polynomial gap between the runtime of the honest parties and that of the adversary.
Indeed, let 𝑟 = O(c · m) be a lower bound on the runtime of the honest parties (𝑟 is the
total number of bits sent by the sender, hence it is a clear lower bound on its running time),
and consider an adversaryAΞ with Ξ = ^ · c𝑔, where 𝑔 > 0 is an arbitrarily small constant.
Then by construction, the runtime of AΞ is O(^ · 𝑟 · c𝑔) ≤ O(^ · 𝑟 1+𝑔) (as it is dominated
by the cost of sampling Ξ random transcripts for A𝑔𝑢𝑒𝑠𝑠

Ξ
0). Then this adversary satisfies

1 − 𝛿
2 ≥

|︁|︁|︁|︁Pr
[︂
Expanon

ΠAT^ ,AΞ,𝜙
(^) = 𝜙

]︂
− 1

2

|︁|︁|︁|︁ ≥ 1
c

·
(︃
Y

2 −
1
c
𝑔

)︃
, (24.14)

which implies that 𝛿 and Y cannot be simultaneously equal to 1 − negl(^) (since 1/(2c) −
1/c1+𝑔 cannot be a negligible function for any polynomial c and any constant 𝑔 > 0).

24.4.1. Limitations of the impossibility result.

Even putting aside the heuristic security guarantee of our fine-grained construction (or
its security in an idealized model), a gap remains between our impossibility result and
our construction: our impossibility result does not rule out the possibility of having,
say, a (1 − negl(^), 1 − 1/c, c, ^)-Anonymous Transfer – that is, an Anonymous Transfer
with overwhelming correctness, and vanishing anonymity error 1/c in c rounds, with
standard (superpolynomial) security. In contrast, our heuristic construction only achieves
overwhelming correctness and anonymity arbitrarily close to 1/c against fine-grained
adversaries. It is an interesting open question to close this gap. We conjecture that the
true answer is negative:

Conjecture 24.4.1. There exists no (1 − negl(^), 1 − 1/c, c, ^)-Anonymous Transfer.

What follows assumes that the reader is familiar with standard philosophical consider-
ations on the worlds of Impagliazzo. Proving the above conjecture would have a very
interesting (theoretical) consequence: it would demonstrate the existence of a natural
cryptographic primitive that plausibly exists within the realm of fine-grained cryptography,
yet is impossible with standard hardness gap. It is known that fine-grained constructions
sometimes allow building “high-end” cryptographic primitives in “low-end” cryptographic
realms. For example, Merkle puzzles, which can be instantiated under exponentially
strong one-way functions [26], provide a fine-grained key exchange; borrowing Impagli-
azzo’s terminology [89], this places “fine-grained Cryptomania” inside (a strong form of)
Minicrypt. Proving the conjecture would induce a comparable result, but at the highest
level of the hierarchy: it would, in a sense, place fine-grained Impossibilitopia (a world of
cryptographic primitives so powerful that they simply cannot exist) inside Obfustopia.

240

25. Fine-Grained AT from Ideal Obfuscation

25.1. The Protocol

In this section we aim to circumvent the impossibility result from Chapter 24. Recall
that we have proven that no asymptotically secure Anonymous Transfer protocol with
overwhelming anonymity and correctness can exist. Thus we relax two factors and provide
a realization of Anonymous Transfer in the fine-grained security setting according to
Definition 23.3.1 that only provides polynomial anonymity. More precisely, we construct a
c-round protocol which achieves anonymity 𝛿 , where the honest parties have runtime in
FC1 ≔ O(c) against adversaries in FC2 ≔ o(c2(1 − 𝛿)), where c = c(^) is a polynomial in
^. While this sounds easy at first, we show that even in this seemingly trivial setting the
task is highly non-trivial.

For the sake of simplicity we introduce the protocol with K = 3, implying a single dummy
friend. However, expanding this protocol to an arbitrary K ∈ 𝒩 is straightforward as the
behavior of all dummy friends is the same by definition and instead of two messages, each
round now contains K − 1 messages.

We exploit the limited runtime of the adversary and provide a protocol in Fig. 25.1 with c

rounds. In each new round (or with each valid sender message) the probability that the
correct bit is eventually returned increases, i.e., each valid round increases the receiver’s
confidence in the received message. Each round lets the sender compute a signature 𝜎𝜙
using a sEUF-CMA secure signature scheme1 for the transcript of the previous round. The
transferred bit b and the signature 𝜎𝜙 are then sent. The verification key for the signature
scheme is transmitted by the sender in the first round. In order to make the messages look
random the message is not sent directly. Instead, the sender encrypts the message using
an IND$-CCA secure encryption scheme2, [119]. As not every bitstring of length m is a
valid ciphertext, we use a special function Dec∗ instead of the normal function Dec, which
is defined as follows: If Dec on input ct returns ⊥ then Dec∗ returns PRF(ct), otherwise
Dec∗ returns Dec(ct). Hence, every possible input allows an interpretation as a cleartext.
We use those for both the asymmetric and symmetric schemes.

In order to make the output unusable for any other party, the receiver draws a One Time
Pad as first message which eventually masks the final output, and a verification key
of a signature scheme. The latter is used to ensure that the receiver approves with the

1 See Section 22.5 for a definition of sEUF-CMA.
2 See Section 22.4 for a definition of IND$-CCA.

241

25. Fine-Grained AT from Ideal Obfuscation

Protocol Π𝐴𝑇
Protocol Π𝐴𝑇 for realizing Anonymous Transfer in the fine-grained setting. It is
running with a set of 3 parties (P0, P1,R) where one of P0 and P1 acts as sender and R
is the receiver.
It is parameterized by an IND$-CCA-secure public-key encryption scheme Pke =

(KeyGen, Enc,Dec), amulti-challenge IND$-CPA-secure symmetric encryption scheme
Ske = (KeyGen, Enc,Dec), an EUF-CMA-secure signature scheme Sig : {0, 1}∗ ×
{0, 1}^ ↦→ {0, 1}m, and an obfuscated program P𝐹𝐺−𝐴𝑇 from Fig. 25.2.

On activation, R draws otp

$←{0, 1} and computes (kR, vkR) ← Sig.KeyGen(1^). Then
R sets msg

(0)
R ← Pke.Enc(pkP, (otp, vkR)) and broadcasts msg

(0)
R .

On input (𝜙, b), P𝜙 computes a signature key pair (vk𝜙 , k𝜙) ← Sig.KeyGen(1^) and a
symmetric key sk𝜙 ← Ske.KeyGen(1^).
Then, P𝜙 computes a signature 𝜎𝜙 ← Sig.Sign(k𝜙 ,msg

(0)
R) and broadcasts

msg
(0)
𝜙
← Pke.Enc(pkP, (sk𝜙 , vk𝜙))∥Ske.Enc(sk𝜙 , b).

Upon activation , P1−𝜙 sets uniformly random msg
(0)
𝜙
.

For each round 𝜒 from 1 to c :

P𝜙 computes 𝜎𝜙 ← Sig.Sign(k𝜙 , (msg
(𝜒−1)
0 ,msg

(𝜒−1)
1)) and sets msg

(𝜒)
𝜙
←

Ske.Enc(sk𝜙 , (b, 𝜎𝜙)).

P1−𝜙 broadcasts msg
(𝜒)
1−𝜙

$←{0, 1}m.

R computes 𝜎R ← Sig.Sign(kR, (msg
(0)
R , (msg

(0)
0 ,msg

(0)
1), . . . , (msg

(c)
0 ,msg

(c)
1))), com-

pute b
′ ≔ P𝐹𝐺−𝐴𝑇 (msg

(0)
R , (msg

(0)
0 ,msg

(0)
1), . . . , (msg

(c)
0 ,msg

(c)
1), 𝜎R) and output

otp ⊕ b
′.

Figure 25.1.: The protocol Π𝐴𝑇 for fine-grained Anonymous Transfer.

transcript; after the two potential senders provided all messages, the receiver signs the
entire transcript and only if this signature verifies the entire previous transcript, the circuit
continues. The first message of the receiver is broadcast, while the signature is only used
locally. This ensures that only the receiver can obtain a usable output, as other parties are
unable to compute the correct signature on the transcript.

The receiver obtains its output by inserting the final transcript alongside the signature
into an obfuscated circuit which is supplied in a common reference string. The circuit is
obfuscated using ideal obfuscation3. It hides a PRF key and a secret decryption key skP for

3 See Section 22.6 for a definition of ideal obfuscation.

242

25.1. The Protocol

Program P𝐹𝐺−𝐴𝑇 [pkP, c]
(︃
msg

(0)
R ,

{︂
msg

(𝜒)
0 ,msg

(𝜒)
1

}︂
c

𝜒=0

)︃
(otp, vkR) ≔ Pke.Dec∗(skP,msg

(0)
R),

(sk0, vk0) ≔ Pke.Dec∗(skP,msg
(0)
0 [1 : m]),

(b0, 𝜎0) ≔ Ske.Dec∗(sk0,msg
(0)
0 [m + 1 : 2m]),

(sk1, vk1) ≔ Pke.Dec∗(skP,msg
(0)
1 [1 : m]),

(b1, 𝜎1) ≔ Ske.Dec∗(sk1,msg
(0)
1 [m + 1 : 2m]),

if ¬Sig.Vfy(vkR, (msg
(0)
R , (msg

(0)
0 ,msg

(0)
1), . . . , (msg

(c)
0 ,msg

(c)
1))) then :

return CointossS(𝜏)(0.5) (0, 1)

𝜒0 ≔ ⟦Sig.Vfy(𝜎0, vk0,msg
(0)
R)⟧ · (c + 1),

𝜒1 ≔ ⟦Sig.Vfy(𝜎1, vk1,msg
(1)
R)⟧ · (c + 1),

foreach 𝜒 ∈ {1, . . . , c} do :
foreach 𝜙 ∈ {𝜙 ′ |𝜙 ′ ∈ {0, 1}, 𝜒𝜙 = (c + 1)} do :

X𝜙 ≔ Ske.Dec∗(sk𝜙 ,msg
(𝜒)
𝜙
), b

′
𝜙
≔ X𝜙 [0], 𝜎𝜙 ≔ X𝜙 [1 : |X𝜙 |]

if ¬Sig.Vfy(𝜎𝜙 , vk𝜙 , 𝜏 [𝜒 − 1]) ∨ b𝜙 ≠ b
′
𝜙
then :

𝜒𝜙 ≔ 𝜒 // Remember first bad round.

𝜙 ′ ≔ argmax𝜙 (𝜒𝜙)

return otp ⊕ CointossS(𝜏)(1/2· (1+𝜒𝜙′/c)) (b𝜙 ′, (1 − b𝜙 ′))

Figure 25.2.: Obfuscated program P𝐹𝐺−𝐴𝑇 for a single-bit Anonymous Transfer in the fine-grained setting
with c rounds.

the IND$-CCA secure PKE. The corresponding encryption key pkP is also part of the CRS
and, hence, known to all parties. This encryption scheme is used by the sender and the
receiver to hide their respective first message. This uniquely determines the symmetric
key used to decrypt the remaining messages of each potential sender. The message also
contains a verification key used to sign the previous messages in future rounds, the bit
that the sender wants to transfer, and the initial signature on the receivers message. The
remaining rounds of the sender are encrypted using a symmetric scheme, namely the
IND$-CCA secure SKE scheme, using the key transferred to the circuit in the first round.

The circuit is shown in Fig. 25.2. It starts by extracting the verification keys and symmetric
encryption keys (one per potential sender) alongside the bits that the respective party wants
to transfer and the initial signatures on the first receiver messages from the respective
initial messages of both parties, and the receivers OTP and verification key from the
receiver message. Then the circuit starts by verifying the signature of the receiver on the

243

25. Fine-Grained AT from Ideal Obfuscation

entire transcript, and if that does not match, returns a uniformly random bit4. Otherwise,
if the receiver’s signature is valid, the circuit searches for the first faulty round of each
potential sender. That is, the first round of each potential sender where the decrypted
message does not have the expected format—meaning that either signature on the previous
round fails to verify or the encoded bit differs from the bit extracted from the initial
message. The party who sent the most consecutive valid rounds is selected as the sending
party. The circuit outputs the bit transmitted by that party with probability depending on
the ratio between valid sender messages and the total number of rounds, which ranges
between 1/2 (i.e., a uniformly random bit) if no round was valid for any party and 1 (i.e.,
deterministically returning the correct bit) if all rounds were correct. However, as stated
before, the circuit does not output that bit directly, but instead masks it using the OTP
extracted from the receiver’s first message. This ensures secrecy, as other parties only get
a masked output which information-theoretically hides the actual bit.

25.2. Security Analysis

In the following we will analyze the security of this protocol. In particular, we will
analyze its correctness in Section 25.2.1, the anonymity in Section 25.2.2, and the secrecy
in Section 25.2.3.

25.2.1. Correctness

In this subsection we will prove the following theorem:

Theorem 25.2.1 (Correctness). If the protocol from Fig. 25.1 is instantiated with an Ideally

Obfuscated version of the circuit from Fig. 25.2 the protocol is Y-correct with Y = (1−negl(^)).

Proof. At a high level, at the end of an honest protocol execution, the maximum round
in which a valid signature has been provided equals the number of rounds c. With
overwhelming probability, the sending parties’ input is the only one that contains c many
valid rounds. Hence, the correctly masked bit is returned. Since the mask is input by the
receiver and later applied to the output, the receiver obtains the correctly masked bit.

More formally, in a correct execution, there is one sender P𝜙 who encodes the bit b𝜙 in
the first round. Every round that follows has to have a valid signature 𝜎 on both messages
of the previous round. With honest parties doing that, the only way that correctness is
not given is if the circuit confuses P�̄� to be P𝜙 . This only happens if the inputs sent by P�̄�
are interpreted as valid inputs, causing the argmax to return the bit of P�̄� .

4 This is denoted in the figure by the CointossS(𝜏)(p) (b, b) function, which returns b, i.e. the first argument,
with probability p, and b, i.e. the second argument, with the complementary probability (1 − p), where
the randomness for p is extracted from the argument provided by 𝜏 .

244

25.2. Security Analysis

Since we assume the sending party to act honestly, the value of 𝜒𝜙 is c which is as high as
this variable can go. Thus, if the argmax ever returns (�̄�), then 𝜒�̄� = c as well. This can
only happen if P�̄� has sent for c rounds a valid encryption of b�̄� ≔ (1 − b𝜙) (if we assume
a non-correct output, the bit has to differ, naturally) and a valid signature on 𝜏 [𝜒 − 1] in
each of the c rounds.

By requirement, Pke has sparse ciphertexts. With P�̄� sending uniformly random cipher-
texts, the probability that this is a valid ciphertext is negligible in ^.

Assuming that P�̄� had a valid ciphertext by chance, the probability that it encodes the
same bit that was decrypted in the first round is given by 1/2; yet the probability that the
signature verifies the previous round is negligible.

Now we have 𝜒 rounds. In each round we have a probability of negl(^) · 1/2 · negl(^) that
the message is valid. So for P�̄� to accidentally send valid messages of b�̄� , the probability
is given by (negl(^) · 1/2 · negl(^))c. Additionally, in round 0 there has to be a valid
encryption of b�̄� , which also happens with negligible probability as once more we have
the sparseness of Pke. And in the negligible case that the message counts as cipher, there
is only a probability of 1/2 that the message encodes the correct bit.

Thus, in an honest protocol execution, the output of the circuit is b
′
𝜙
= otp ⊕ b𝜙 with

overwhelming probability. Thus by outputting otp ⊕ b
′
𝜙
= otp ⊕ otp ⊕ b𝜙 = b𝜙 the receiver

will output the correct bit with overwhelming probability.

Thus according to the definition of Y-correctness from Eq. (23.1) we get Y ∈ (1 − negl(^)).
This concludes our proof.

25.2.2. Anonymity.

In this section we aim to analyze the anonymity of our protocol. In particular, we try to
prove the following theorem:

Theorem 25.2.2 (Anonymity). Let Pke be an IND$-CCA secure asymmetric encryption

scheme, let Ske be a tightly secure multi-challenge IND$-CCA secure symmetric encryption

scheme, let Sig be an sEUF-CMA secure signature scheme, let O be an ideal obfuscator, let PRF
be a secure PRF, and let ^ be the security parameter. Then the c-round protocol Π𝐴𝑇 satisfies

𝛿-anonymity for all adversaries in FC2 ≔ o(c2(1 − 𝛿)).

On a high level, the proof is structured into two parts. In the first part, we modify the
anonymity game Expanon

Π𝐴𝑇 ,A,𝜙 (^) and the obfuscated circuit oracle P𝐹𝐺−𝐴𝑇 to remove as
much computationally hidden information about 𝜙 as possible. More precisely, we exploit
the non-malleability of Pke and the sEUF-CMA security of Sign to unnoticeably alter the
oracle to determine the number of valid rounds by counting how many rounds of the
input transcript are identical to the challenge transcript provided by Expanon

Π𝐴𝑇 ,A,𝜙 (^). The
first round which is not entirely identical to the challenge transcript (i.e. either the sender

245

25. Fine-Grained AT from Ideal Obfuscation

message or the non-sender message differ) increases the valid rounds count only if the
input sender message is identical to the challenge sender message or if the input sender
message decrypts to the same content as the challenge sender message. The following
round will be counted as invalid since the signature verification will fail. After this step,
the decryption keys of Ske and Pke are not necessary for chosen-ciphertext simulation
anymore. Then, we first replace the sender messages which are encrypted using Ske
and then the first round sender message which is encrypted using Pke with uniform
randomness exploiting the IND$-CCA security of both encryption schemes.

The only information about the bit 𝜙 that is left in the present game is due to the oracle
which counts valid sender messages by comparing the input sender message with the
challenge sender message. Clearly, the final modification of the game must be the removal
of this dependency on𝜙 . However, this removal will noticeably alter the output distribution
of the oracle. Hence, an adversary with arbitrary polynomial runtime will be able to
distinguish this hop with constant probability [47]. However, if we can limit the runtime
of the adversary to be sub-quadratic in the runtime of the honest protocol execution,
we are able to apply results from distribution testing to achieve a good bound for this
distinguishing advantage. We will elaborate on this final game hop in more detail below
and will refer to the second last game as Game7(^) and to the last game (i.e. the game,
where no information about 𝜙 remains) as Game8(^).

We proceed over a series of games.

GAME1(^): This is the original game (after replacing the obfuscated circuit with oracle
access to the circuit, the PRF with an actual random oracle and the adversary with
the simulator), where the sending party P𝜙 is chosen uniformly at random.

GAME2(^): This game follows Game1(^), but during the simulation of the oracle P𝐹𝐺−𝐴𝑇
from Fig. 25.1 the simulation enforces correctness of the challenge transcript 𝜏C :
if the input transcript 𝜏 matches the challenge transcript 𝜏C , it returns otpC ⊕ bC .
Due to Theorem 25.2.1, no PPT adversary can distinguish between Game1(^) and
Game2(^).

Lemma 25.2.3 (Indistinguishability of Game1(^) and Game2(^)). Let Pke be an

IND$-CCA secure asymmetric encryption scheme, let Ske be a tightly secure multi-

challenge IND$-CCA secure symmetric encryption scheme, let Sig be an sEUF-CMA

secure signature scheme, let O be an ideal obfuscator, and let PRF be a secure PRF. Then,

for all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing advantage for Game1(^) and
Game2(^) is bounded by:

|Pr[outGame1 (^) = 1] − Pr[outGame2 (^) = 1] | ∈ negl(^)

Proof. Indistinguishability automatically follows from the fact that both simulated
circuits behave identical with overwhelming probability due to Theorem 25.2.1.

GAME3(^): This game follows Game2(^) but during simulation of the circuit the adversary
aborts if any of the first-round messages from P0 or P1 differ from the messages

246

25.2. Security Analysis

reported in the challenge transcript and the decryptions still yield the same verifi-
cation key or symmetric key. This game hop is justified by the non-malleability of
Pke.

Lemma 25.2.4 (Indistinguishability of Game2(^) and Game3(^)). Let Pke be an

IND$-CCA secure asymmetric encryption scheme, let Ske be a tightly secure multi-

challenge IND$-CCA secure symmetric encryption scheme, let Sig be an sEUF-CMA

secure signature scheme, let O be an ideal obfuscator, and let PRF be a secure PRF. Then,

for all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing advantage for Game2(^) and
Game3(^) is bounded by:

|Pr[outGame2 (^) = 1] − Pr[outGame3 (^) = 1] | ∈ negl(^)

Proof. In order to successfully cause a situation where Game2(^) would yield output
whereas Game3(^) aborts a distinguisher D would have to essentially rerandomize

the first ciphertext.

To that end we use several hybrids to capture all the cases in which rerandomization
might occur. We start with the case where the same verification key vk is encoded
and then handle the case that the ciphertext has the same symmetric key sk.

H0 is the game from Game2(^).

H1 is asH0 but the circuit aborts only if the first-round message of the sending party
P𝜙 C in the input transcript encrypts the same verification key as that from the
challenge transcript and the decryption of the new first-round message is from
the random oracle—that is, the decryption of that message using the first-round
message of the input transcript using the actual decryption algorithm yields
the error symbol ⊥.

So the goal of the adversary is to distinguish, which is only possible if a different
pre-image for the random oracle is found which evaluates to something that
shares the same verification key as the random oracle when evaluated with the
first sending parties ciphertext. However, as we already use a genuine random
oracle in this game, this is information-theoretically impossible and hence the
adversary cannot distinguish.

Thus it holds that

𝐴𝑑𝑣D = |Pr[outD,H1 = 1] − Pr[outD,H0=1] | ∈ negl(^) (25.1)

Now let 𝐸 be the event that D can find a collision for a fixed value. We can
incorporate this event into Eq. (25.1) as follows:

𝐴𝑑𝑣D =|Pr[outD,H1 = 1] − Pr[outD,H0 = 1] |
=|Pr[𝐸] · (Pr[outD,H1 = 1|𝐸]

− Pr[outD,H0 = 1|𝐸])
+ (1 − Pr[𝐸]) · (Pr[outD,H1 = 1|¬𝐸]

− Pr[outD,H0 = 1|¬𝐸]) |

(25.2)

247

25. Fine-Grained AT from Ideal Obfuscation

It trivially holds that ¬𝐸 =⇒ Pr[outD,H1 = 1] = Pr[outD,H0] as there the
two games act exactly the same. Hence it holds for the second line of Eq. (25.2)
that (1−Pr[𝐸]) · (Pr[outD,H1 = 1|¬𝐸] −Pr[outD,H0 = 1|¬𝐸]) = 0. So it holds
that:

𝐴𝑑𝑣D = |Pr[𝐸] · (Pr[outD,H1 = 1|𝐸]
− Pr[outD,H0 = 1|𝐸]) |

(25.3)

Which holds information-theoretically due to the properties of the random
oracle. Thus it holds that Pr[𝐸] ∈ negl(^) and hence 𝐴𝑑𝑣D is negligible.

This concludes our proof.

H2 is as H1 only that the circuit additionally aborts if (1) the first message of the
dummy friend in the challenge transcript is a valid ciphertext, and (2) the first
message of the dummy friend in the input transcript is an invalid ciphertext,
and (3) the first message of the dummy friend in the challenge transcript differs
from the first message of the dummy friend in the input transcript, and (4)
the Dec∗ algorithm outputs the same verification key for the challenge- and
input-transcript.

With the message in the challenge transcript being a valid ciphertext we can
reduce a distinguisher D between H2 and H1 to an adversary breaking the
pre-image resistance of the random oracle. Let 𝐸 be the event that D can find
a different pre-image for which the second half, which is interpreted as the
verification key, is the same as for the challenge message. In this case this
pre-image has to be a value that is mapped by the random oracle to the value
that was reported by the adversary as first dummy-friend message.

First note that the distinguisher can only ever win this game if the challenge-
transcript contains an invalid ciphertext for the dummy friend in the first round.
Denote by𝐶 the event that while sampling a random value for the first message
of the dummy friend the message is not a valid ciphertext. We stress that ¬𝐶
implies that the two games cannot be distinguished as the change induced by
the gamehop will never be noted; simply because the additional check will
never succeed.

We can thus conclude for now that with probability (1− Pr[𝐶]) the gamehop is
perfectly indistinguishable and focus on the case where the adversary reported
a dummy-friend message that is not a valid cipher. Note that in this case we
can use the same argument as in the last game hop, as any distinguisher would
fail if ¬𝐸 where 𝐸 is the event that D breaks the collision resistance, and Pr[𝐸]
is negligible due to the collision resistance of the random oracle.

H3 is as H2 only that the circuit additionally aborts if (1) the first message of
the dummy friend in the challenge transcript is an invalid ciphertext, and (2)
the first message of the dummy friend in the input transcript is an invalid
ciphertext, (3) the first message of the dummy friend in the challenge transcript
differs from the first message of the dummy friend in the input transcript, and

248

25.2. Security Analysis

(4) the Dec∗ algorithm outputs the same verification key for the challenge- and
input-transcript of the dummy friend. This then means that both decryptions
are internally replaced by the PRF. Thus for distinguishing (which only works
by causing an abort in H3 where H2 would have continued with the execution
as the remaining part of the two games do not differ) the distinguisher would
have to find a different message—which is a valid pre-image for the random
oracle—that points to an output that shares the same second half as the value
reported in the challenge transcript, which violates the collision resistance of
the random oracle. Hence the two games cannot be distinguished.

H4 is as H3 but the circuit aborts only if the first-round message of the sending
party P𝜙 C in the input transcript encrypts the same verification key as that from
the challenge transcript and the decryption of the new first-round message
yields a valid message—that is, the message is a valid cipher and the random
oracle is not used for this message.

We want to show that for all PPT distinguishes D the following statement is
true:

|Pr[outD,H4 = 1] − Pr[outD,H3 = 1] | ∈ negl(^)

We first define an intermediate event 𝐸D as the event that D can rerandomize

parts of a ciphertext. This leads to the following observation:

𝐴𝑑𝑣D ≔ |Pr[outD,H4 = 1] − Pr[outD,H3] = 1|
=𝐸 ∧ |Pr[outD,H4 = 1] − Pr[outD,H3] = 1|∨
¬𝐸 ∧ |Pr[outD,H4 = 1] − Pr[outD,H3 = 1] |

=𝐸 ∧ |Pr[outD,H4 = 1] − Pr[outD,H3 = 1] |+
¬𝐸 ∧ |Pr[outD,H4 = 1] − Pr[outD,H3 = 1] |

(25.4)

Now note that ¬𝐸 implies an equivalent behavior in both games, hence:

¬𝐸 ∧ Pr[outD,H4 = 1] = ¬𝐸 ∧ Pr[outD,H3 = 1]

Note next that 𝐸 is negligible due to the IND-CCA-property of the encryption
system Pke; if 𝐸 ∉ negl the following attack on the IND-CCA security would
be possible: (1) The adversary creates two random messages msg0 = (·, vk0)
and msg1 = (·, vk1), where the first half is not important but the second half
differs, and sends them as challenges. (2) The challenger returns a ciphertext 𝑦.
(3) The adversary rerandomizes 𝑦 to 𝑦′ such that the second half remains the
same and sends 𝑦′ to the decryption oracle. (4) If the second half of the result is
vk0 then A returns 𝛽 = 0 and if it is vk1 it returns 𝛽 = 1. Otherwise it returns
a uniformly random bit. If 𝐸 can occur with non-negligible probability then
A would violate the IND-CCA security (which is implied by the IND$-CCA
security of Pke), thus we stress that Pr[𝐸] is at most negligible.

Our claim follows.

249

25. Fine-Grained AT from Ideal Obfuscation

H5 is as H4 only that the circuit additionally aborts if (1) the first message of the
dummy friend in the challenge transcript is a valid ciphertext, and (2) the first
message of the dummy friend in the input transcript is a valid ciphertext, (3) the
first message of the dummy friend in the challenge transcript differs from the first
message of the dummy friend in the input transcript, and (4) the Dec∗ algorithm
outputs the same verification key for the challenge- and input-transcript.

In this case we would have a distinguisher D that can effectively partially

re-randomize transcripts. This distinguisher could be used in order to break the
IND-CCA property of Pke as was the case in H4.

H6 is as H5 only that the circuit additionally aborts if (1) the first message of the
dummy friend in the challenge transcript is an invalid ciphertext, and (2) the
first message of the dummy friend in the input transcript is a valid ciphertext,
and (3) the first message of the dummy friend in the challenge transcript differs
from the first message of the dummy friend in the input transcript, and (4)
the Dec∗ algorithm outputs the same verification key for the challenge- and
input-transcript.

Essentially, to distinguish the distinguisher D has to create a ciphertext that
encodes the same verification key that is in the image domain of the random
oracle. Since this is truly random and the distinguisher cannot query the oracle
it follows that this is possible with negligible probability only which proves our
claim.

H7 This game-hop is purely cosmetic and hence does not change the distribution.

H8 is asH7 but the circuit aborts only if the first-round message of the sending party
P𝜙 C in the input transcript encrypts the same symmetric key as that from the
challenge transcript and the decryption of the new first-round message is from
the random oracle—that is, the decryption of that message using the first-round
message of the input transcript using the actual decryption algorithm yields
the error symbol ⊥.

This is similar to the game hop from H1 and hence indistinguishable.

H9 is as H8 only that the circuit additionally aborts if (1) the first message of the
dummy friend in the challenge transcript is a valid ciphertext, and (2) the first
message of the dummy friend in the input transcript is an invalid ciphertext,
and (3) the first message of the dummy friend in the challenge transcript differs
from the first message of the dummy friend in the input transcript, and (4)
the Dec∗ algorithm outputs the same symmetric key for the challenge- and
input-transcript.

This is the same situation as the game hop between H2 and H1 and thus indis-
tinguishable.

250

25.2. Security Analysis

H10 is as H9 only that the circuit additionally aborts if (1) the first message of
the dummy friend in the challenge transcript is an invalid ciphertext, and (2)
the first message of the dummy friend in the input transcript is an invalid
ciphertext, (3) the first message of the dummy friend in the challenge transcript
differs from the first message of the dummy friend in the input transcript, and
(4) the Dec∗ algorithm outputs the same symmetric key for the challenge- and
input-transcript of the dummy friend. This then means that both decryptions
are internally replaced by the PRF. Showing indistinguishability here is similar
to that of H3 and H2.

H11 is as H10 but the circuit aborts only if the first-round message of the sending
party P𝜙 C in the input transcript encrypts the same verification key as that from
the challenge transcript and the decryption of the new first-round message
yields a valid message—that is, the message is a valid cipher and the random
oracle is not used for this message.

Indistinguishability follows from the indistinguishability between H3 and H4 as
the proof is almost identical.

H12 is as H11 only that the circuit additionally aborts if (1) the first message of the
dummy friend in the challenge transcript is a valid ciphertext, and (2) the first
message of the dummy friend in the input transcript is a valid ciphertext, (3) the
first message of the dummy friend in the challenge transcript differs from the first
message of the dummy friend in the input transcript, and (4) the Dec∗ algorithm
outputs the same symmetric key for the challenge- and input-transcript.

Again the proof is analogous to the indistinguishability of H11 and H12 and we
do not write it up specifically.

H13 is as H12 only that the circuit additionally aborts if (1) the first message of the
dummy friend in the challenge transcript is an invalid ciphertext, and (2) the
first message of the dummy friend in the input transcript is a valid ciphertext,
and (3) the first message of the dummy friend in the challenge transcript differs
from the first message of the dummy friend in the input transcript, and (4)
the Dec∗ algorithm outputs the same symmetric key for the challenge- and
input-transcript.

The non-existence of a successful PPT distinguisher D which is better than the
naive distinguisher that randomly guesses a bit follows from the non-existence
of a distinguisher for the hybrid game hop from H5 to H6.

H14 This game-hop is purely cosmetic and hence does not change the distribution.
We only include it for consistency with Game3(^).

GAME4(^): This game follows Game3(^) but simulates the circuit slightly different: If the
first receiver message of the input transcript 𝜏 is the same as that of the challenge

251

25. Fine-Grained AT from Ideal Obfuscation

transcript 𝜏C , instead of decrypting it the circuit directly sets otp = otpC and vkR =

vkCR as the values used in the creation of the challenge transcript.

Lemma 25.2.5 (Indistinguishability of Game3(^) and Game4(^)). Let Pke be an

IND$-CCA secure asymmetric encryption scheme, let Ske be a tightly secure multi-

challenge IND$-CCA secure symmetric encryption scheme, let Sig be an sEUF-CMA

secure signature scheme, let O be an ideal obfuscator, and let PRF be a secure PRF. Then,

for all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing advantage for Game3(^) and
Game4(^) is bounded by:

|Pr[outGame3 (^) = 1] − Pr[outGame4 (^) = 1] | ∈ negl(^)

Proof. Indistinguishability easily follows from the perfect correctness of the encryp-
tion scheme Pke. If there was any message msg

(0)
R created by the adversary as

Pke.Enc(pkP, (otp, vkR)) which does not decrypt with skP to (otp, vkR) this would
mean that Pke.Dec(skP, Pke.Enc(pkP, (otp, vkR))) ≠ (otp, vkR). As this cannot hap-
pen by requirement indistinguishability follows.

GAME5(^): This game follows Game4(^) but simulates the oracle differently if the first-
round messages of both parties match the first-round messages in the challenge
transcript 𝜏C . In this case, the program compares the input transcript 𝜏 with the
challenge transcript 𝜏C until it finds the first round 𝜒∗ in which the input differs
from the challenge transcript. It then checks round 𝜒∗ + 1, and if it contains the same
message from the sending party, it adds one to 𝜒 .

Finally, the circuit flips a biased coin, which returns the correct bit bC with probability
p ≔ 1/2 + 𝜒∗/2c and the complementary bit (1 − bC) otherwise.

Lemma 25.2.6 (Indistinguishability of Game4(^) and Game5(^)). Let Pke be an

IND$-CCA secure asymmetric encryption scheme, let Ske be a tightly secure multi-

challenge IND$-CCA secure symmetric encryption scheme, let Sig be an sEUF-CMA

secure signature scheme, let O be an ideal obfuscator, and let PRF be a secure PRF. Then,

for all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing advantage for Game4(^) and
Game5(^) is bounded by:

|Pr[outGame4 (^) = 1] − Pr[outGame5 (^) = 1] | ∈ negl(^)

Proof. A distinguisher D between Game4(^) and Game5(^) can be reduced to an
adversary A breaking the sEUF-CMA security of the used signature scheme Sig.

Creating the transcript. The creation of the transcript works similar in both games,
hence the transcript can be created by letting the adversary play all three parties
roles according to Game2(^) for a randomly chosen sender P𝜙 C and a randomly
transmitted bit bC . The only change is with respect to signatures. While the veri-
fication key from the challengers signature oracle is known to the adversary and
hence can be embedded into the senders first message all signatures of the form

252

25.2. Security Analysis

𝜎𝜙 ← Sig.Sign(k𝜙 , (msg
(𝜒−1)
0 ,msg

(𝜒−1)
1)) created in line 11 of the protocol are re-

placed by queries (msg
(𝜒−1)
0 ,msg

(𝜒−1)
1) to the signing oracle.

The complete transcript 𝜏C is then sent to the distinguisher D.

Simulating the oracle. WhenD sends some transcript 𝜏 for evaluation to the oracle
the adversary A behaves according to Section 25.2.2: If the challenge transcript
corresponds to the input transcript then it returns the correct bit, and if any of the
first-round messages differ it simulates the circuit entirely:

If both parties input different messages than in the original transcript then we know
due to the check in line 3 of the circuit code that both encrypt a different message
and hence a use a new verification key (and also a symmetric key) for the remaining
rounds. By knowing the secret key skP the adversary can thus extract both and
simulate accordingly.

The same reasoning is true if only the sending parties message is replaced as then
still both parties messages are independent from the challenge.

Special care thus only has to be taken into the simulation for transcripts where the
first sending party message matches.

If the dummy friends message differs then the circuit also executes the same circuit,
which the adversary can simulate as it has all the required information; the only
thing that depends on the challenge oracle are the signatures and being in possession
of the verification key the simulator can efficiently verify a given signature.

If the dummy friends message also matches then the circuit acts by counting rounds
until the messages differ for the first time. Let D be a distinguisher that uses this
behavior to distinguish. In Game5(^) the round 𝜒∗ is fixed due to lines 7 − 11 as
the first round where any of the messages differs from the challenge transcript,
where potentially 1 is added in case the sending parties message for the next round
is different. Thus for a given transcript 𝜏 we can fix p for Game5(^); in order to
distinguish this value p

′ must differ in Game3(^). (i) p
′ < p, meaning that the circuit

outputs the correct bit with a lower probability when the message is handled by the
original code of the circuit. This, however, would contradict the correctness of the
scheme. (ii) p

′ > p, meaning that the probability of output bC is larger when the
transcript is handled by the actual code than when it is handled by our modification.
By requirement we know that up until round 𝜒∗ all messages are takes directly from
the challenge transcript, and that 𝜒∗ < c (as otherwise the case would have been
handled by the code in line 1). We can now differentiate between the two possible
replacements n round (𝜒∗ + 1): (i.1) If the sending parties message has been replaced
in this round then 𝜒∗ stays the same and p ≔ 1/2 + 𝜒∗/2c. In order to get a larger p

′

the adversary would have to create a replacement message which encrypts the same
bit and a different signature on the same round-(𝜒∗ − 1)-messages. Knowing the
secret key used for the transcript the reduction adversary can extract this signature

253

25. Fine-Grained AT from Ideal Obfuscation

and send it as valid signature on (msg
(𝜒∗−1)
0 ,msg

(𝜒∗−1)
1) to the challenger. Since

the content of the message differs but the bit has to be the same (as otherwise the
message would be rejected in Game3(^)) it follows that the distinguisher created a
new signature that was never returned from the challenge-oracle. (ii.2) If the dummy

friend parties message has been replaced in this round then 𝜒∗ is increased by 1 and
in order to get p

′ > p the distinguisher has to create a message for round (𝜒∗+2) that
contains a valid signature for this new message. Since by requirement the dummy
friends message has been replaced in round (𝜒∗ + 1) this too corresponds to a new
message and hence is a valid forgery for the challenger.

As A can only have a negligible chance to create a forgery due to the sEUF-CMA
security of the signature scheme Sig it follows that 𝛼 ∈ negl(^).

GAME6(^): This game is the same as Game5(^), but in creating the challenge transcript 𝜏C ,
this game only reports randomness for the first-round message msg

0
𝜙
that specifies

the symmetric key sk𝜙 and the verification key vk𝜙 to be used for the remaining
communication with the circuit alongside the receiver message msg

(0)
R that specifies

the One Time Pad and the verification key. Note that all keys are still created as they
are needed for the remaining rounds.

Lemma 25.2.7 (Indistinguishability of Game5(^) and Game6(^)). Let Pke be an

IND$-CCA secure asymmetric encryption scheme, let Ske be a tightly secure multi-

challenge IND$-CCA secure symmetric encryption scheme, let Sig be an sEUF-CMA

secure signature scheme, let O be an ideal obfuscator, and let PRF be a secure PRF. Then,

for all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing advantage for Game5(^) and
Game6(^) is bounded by:

|Pr[outGame5 (^) = 1] − Pr[outGame6 (^) = 1] | ∈ negl(^)

Proof. Let D be an efficient distinguisher that can predict if it is in Game5(^) or in
Game6(^) with probability 1/2 + 𝛼 . Out of D we can construct an adversary A on
the IND$-CCA property of Pke.

The reduction algorithm A starts by creating the key-pair for the signature scheme
and the key for the symmetric scheme honestly and followsGame5(^) the creation of
the transcript, only that instead of encrypting the first message using the public-key
scheme Pke directly,A forwards the messages (otp, vkR) and (sk𝜙 , vk𝜙) as challenge
to the challenger C𝐼𝑁𝐷$−𝐶𝐶𝐴 of the IND$-CCA game.

For further evaluation of the oracle the reduction adversary uses the decryption

oracle from the challenger C𝐼𝑁𝐷$−𝐶𝐶𝐴 for any first-round message that is not from
the reported transcript 𝜏 and continues simulation using the extracted secret key of
that respective party; the same first-round message is covered automatically since
Game5(^) and the same receiver message in Game4(^).

The reported transcript contains exactly the same views that are required by the two
games: if the output is a proper encryption then the view is equivalent to Game5(^),

254

25.2. Security Analysis

and if the output of the oracle is uncorrelated randomness, the view corresponds to
Game6(^).

Thus, if D can differentiate the two games with probability 1/2 + 𝛼 , then A can
differentiate the oracles with the same probability. The IND$-CCA requirement for
Pke thus implies 𝛼 ∈ negl(^).

GAME7(^): This game is the same as Game6(^) but in creating the challenge transcript 𝜏C ,
this game also reports randomness instead of transcripts for all messages msg

𝜒

𝜙
for

𝜒 ∈ [c] that shift the bit towards bC . That means that instead of using the IND$-CPA
secure symmetric scheme Ske with the symmetric key sk𝜙 the challenge transcript
now only contains randomly sampled messages.

We also do not let the adversary create the keys for Sig and Ske as they are no longer
needed for creating the transcript.

Lemma 25.2.8 (Indistinguishability of Game6(^) and Game7(^)). Let Pke be an

IND$-CCA secure asymmetric encryption scheme, let Ske be a tightly secure multi-

challenge IND$-CCA secure symmetric encryption scheme, let Sig be an sEUF-CMA

secure signature scheme, let O be an ideal obfuscator, and let PRF be a secure PRF. Then,

for all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing advantage for Game6(^) and
Game7(^) is bounded by:

|Pr[outGame6 (^) = 1] − Pr[outGame7 (^) = 1] | ∈ negl(^)

Proof. We reduce a distinguisher D that distinguishes Game6(^) from Game7(^) to
an adversaryA on the IND$-CPA property of the symmetric encryption scheme Ske.
Again, we adapt the LR-view of Rogaway [119] to account for the multiple challenges
required, in that the game is played via oracle access to an oracle which either outputs
valid encryptions of the input, or which outputs uncorrelated randomness.

We now describe how the adversary A behaves in order to embed the challenge of
the IND$-CCA challenger C𝐼𝑁𝐷$−𝐶𝐶𝐴 into a challenge for the distinguisher D.

The adversary starts by following the protocol according to Game6(^) and creating
the messages, with the one exception that any call to Ske.Enc(sk𝜙 , b∥𝜎𝜙) is replaced
by an oracle call to the challenge oracle with input (b∥𝜎𝜙). This causes the transcript
to either only have truly random messages (in which case the view corresponds to
Game7(^)) or actual encryptions under the challengers secret key sk (which results
in a valid transcript for Game6(^)).

Thus the adversary inherits the advantage 𝛼 as long asA can simulate the decryption
oracle accordingly. Fortunately this is the case here. Further, as we assume a lazy
evaluation of the or5 the decryption oracle is only called on the first round message

5 This means that first the simulator checks for equal messages and if that is already true, the second
condition is ignored, and hence the sending parties message is only forwarded to the decryption oracle if
it differs from the challenge.

255

25. Fine-Grained AT from Ideal Obfuscation

Oracle O
𝛽

𝑖

if 𝛽 = 0 then

𝑝𝑖 ≔
𝑖 + c − 1

2c

else

𝑝𝑖 ≔
𝑖 + c

2c

return Ber(𝑝𝑖)

C(c)
𝛽

$←{0, 1}

return AO
𝛽

1 ,...,O
𝛽
c (1^)

A(1^)
for 𝑗 = 1 . . . t do
𝑖 𝑗 ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠

msg 𝑗

$←O𝑖 𝑗

𝛽 ′ ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 ((𝑖 𝑗 ,msg 𝑗)t𝑗=1)
return 𝛽 ′

Figure 25.3.: Game to distinguish whether Bernoulli oracles follow a given distribution 𝑝 or 𝑞 = 𝑝 − 1/2c.

which differs from the challenge transcript and, hence, the decryption oracle is never
called on the challenge ciphertext. The leaked public key pk𝑃 is controlled by the
reduction adversary and hence any new transcript that contains a different first-
round message than the challenge transcript can be simulated by first decrypting the
secret key (which is different from the one used by the challenger with overwhelming
probability) and then decrypting each round individually.

GAME8(^): This game follows Game7(^), but instead of choosing a random sender at the
beginning of the game and considering this message to be the right one, the oracle
ignores the additional check and only looks for the first round where both messages
are identical to the challenge.

Note that Game8(^) is entirely independent of the real sender, hence given a challenge
transcript, it is trivially impossible to obtain a non-negligible advantage to determine the
sending party.

For the sake of reducing complexity of the problem of proving indistinguishability between
Game7(^) and Game8(^) we describe an intermediate game in Fig. 25.3 that is provably
as hard to solve as distinguishing the two games.

The key idea is the following: The challenger C𝐵𝑒𝑟 creates c oracles where the probability
to return 1 is equally distributed between 1/2 and 1 in c steps.

On 𝛽 = 0 the oracles are distributed equally between [1/2, 1). On 𝛽 = 1 the oracles
are distributed equally between (1/2, 1]. That is, on 𝛽 = 0 the oracle 𝜒 returns 1 with
probability (c + 𝜒 − 1)/(2c) and on 𝛽 = 1 it returns 1 with probability (c + 𝜒)/(2c).

We now stress that this game is as hard as the problem of distinguishing the two games
from Game7(^) and Game8(^):

Lemma 25.2.9. Let D be a distinguisher between Game7(^) and Game8(^) with advantage

𝛼 over guessing. Let t be the number of queries that D sends to the obfuscated circuit. There

is a reduction adversary A that uses D which has advantage 𝛼 over guessing in winning

Fig. 25.3.

256

25.2. Security Analysis

Proof. Creating the Transcript. Upon activation the adversary samples a bit b ∈ {0, 1}
that is to be transferred in the transcript and a bit 𝜙 ∈ {0, 1} that defines the sending
party. Using c as the number of rounds and m as the length of each message A creates
the transcript by reporting two uniformly sampled messages of length m for each round
inside the loop, and for the preparational round two messages of length 2m each for the
dummy friend and the sender and one message of length m for the receivers messages.
The resulting transcript 𝜏C is reported to the distinguisher D.

Simulating the Circuit. When receiving a transcript 𝜏 , A checks if 𝜏 [0] ≠ 𝜏C [0]. If this is
the case A executes the program honestly as defined in Game7(^) and returns the output
bit. Note that the normal execution of a different transcript is entirely independent of the
secret 𝛽 chosen by C𝐵𝑒𝑟 and effectively of the whole change induced in the transition from
Game7(^) to Game8(^). Hence A has all the information to simulate new transcripts.

Otherwise, if𝜏 [0] = 𝜏C [0],A embeds the challenge oracle by finding 𝜒∗ = max𝜒 𝜏 [0 . . . 𝜒] =
𝜏C [0 . . . 𝜒] by comparing the input to the previously reported challenge transcript. Then
A checks the messages 𝜏 [𝜒∗ +1]. Let msg

C
0 and msg

C
1 be the message from the challenge

transcript at round 𝜒∗ + 1 of parties P0 and P1, respectively, and let msg0 and msg1 be the
respective messages from the transcript that was input by D.

A only considers the message reported for P𝜙 ; if msg𝜙 = msg
C
𝜙 , that is, if at round 𝜒∗ + 1,

the input transcript contains the same message of the sending party, A sends 𝜒∗ to the
oracle O𝜒∗ provided by C𝐵𝑒𝑟 and obtains a binary output b

∗. Since the output of C𝐵𝑒𝑟 is
going towards 1, whereas the bit bC was uniformly distributed,A has to adjust the output
if bC = 0, such that 0 is output with higher probability. Hence, A sends b

∗ ⊕ bC̄ back as
output to D; this essentially flips the output bit iff bC = 0, in which case the output of the
oracle lies between 0 and 1/2.

Otherwise, if msg𝜙 ≠ msg
C
𝜙 , A locally samples a Bernoulli-distributed bit according to

p𝜒∗ and sends the result back to D.

Translating the Result. After (at most) t queries the distinguisher terminates and sends its
guess. If D guesses it was playing Game8(^) thenA reports 𝛽′ = 0 to C𝐵𝑒𝑟 , thus guessing
that the 𝜒-th oracle returns 1 with probability (𝜒 + c − 1)/2c. If D guesses it was playing
Game7(^) then A sends the output 𝛽′ = 1 to C𝐵𝑒𝑟 , indicating that the probabilities were
given as (𝜒 + c)/2.

For a tight reduction it remains to show that the view of D is statistically close to that
from Game7(^) and Game8(^), depending on the choice of C𝐵𝑒𝑟 :

First, note that the way that C𝐵𝑒𝑟 handles the queries in Fig. 25.3 mimics exactly the
situation from the game change: either a query for 𝜒 returns the 1 with probability 𝜒+c

2c

or with probability 𝜒−1+c
2c

. The former implies that the sending parties message is still
considered as in Game7(^), the latter representing Game8(^) where the oracle ignores a
valid message in round 𝜒 + 1 and only considers the round 𝜒∗ until both messages match
the challenge transcript.

257

25. Fine-Grained AT from Ideal Obfuscation

The challenge oracle is only queried when the right sending message for the following
round is used. This is also the only instance where Game7(^) and Game8(^) differ from
each other.

Finally, note that at most t sample were sent to the challenge oracle. Thus, the view is
simulated perfectly and the view of D corresponds to Game8(^) iff the additional factor
of −1/2c is ignored and to Game7(^) otherwise.

So if D has non-negligible advantage 𝛼 over guessing then A inherits this advantage for
winning the game from Fig. 25.3, albeit if D sends t queries to A, less than t queries are
forwarded to C𝐵𝑒𝑟 .

Proving indistinguishability has thus been reduced to showing that no fine-grained ad-
versary can win the game from Fig. 25.3 with non-negligible advantage. The interface of
an adversary in this game is given as a set of 2c oracles. Each oracle follows a Bernoulli
distribution that returns the correct bit bC with probability p. For each round 𝜒 < c any
distinguisher D is given access to two oracles. Each oracle can be queried by copying
the first 𝜒 messages of both parties, but then using (exactly) one new message for round
(𝜒 + 1)—which replaces either the sending parties message or that of the dummy friend.
Any upper bound on winning the game from Fig. 25.3 translates to the underlying problem
of distinguishing the final two games.

Analyzing the game from Fig. 25.3 comes down to probability theory. Recall from Corol-
lary 22.2.5 that in order to distinguish two Bernoulli distributions 𝑝 and 𝑞 with advantage
𝛼/2 we require Ω(𝛼/dTV(𝑝, 𝑞)) many samples. Applying this corollary to Fig. 25.3 implies
that we have c instances where the 𝜒-th instance is to distinguish 𝑝 =

𝜒+c
2c

from 𝑞 =
𝜒+c−1

2c
.

This implies the following 𝐿1-norm between 𝑝 and 𝑞 in round 𝜒 :

dTV(𝑝, 𝑞) =
1
2 (|Pr[𝑝 = 1] − Pr[𝑞 = 1] | + |Pr[𝑝 = 0] − Pr[𝑞 = 0] |)

=
1
2

(︃|︁|︁|︁|︁c + 𝜒2c

− c + 𝜒 − 1
2c

|︁|︁|︁|︁ + |︁|︁|︁|︁c − 𝜒2c

− c − 𝜒 + 1
2c

|︁|︁|︁|︁)︃
=

1
2

(︃
1
2c

+ 1
2c

)︃
=

1
2c

(25.5)

Note here that the total variational distance in round 𝜒 is independent from the round
𝜒 and the same for all c oracles. In combination with Lemma 22.2.3 this means that any
distribution 𝑝 and 𝑞 resulting from sampling t times from arbitrary oracles results in a
total variational distance ≤ t

1
2c
. 6

6 This is in contrast to the Hellinger-distance dH which yields tighter bounds but where the amount of
information from a single query really depends on the oracle O𝜒 which is queried. This makes it harder
to provide meaningful bounds for adversaries querying different oracles with their t samples.

258

25.2. Security Analysis

We now merge this insight with the result of Eq. (25.5) and the bound of Corollary 22.2.5.
This leads a lower bound of:

t ∈ Ω
(︃

𝛼

dTV(𝑝, 𝑞)

)︃
= Ω(𝛼c) (25.6)

We thus have:

Corollary 25.2.10. LetD be a distinguisher in Fig. 25.3 that uses t samples and has runtime

in FC2 ≔ o(c2/𝛼). Let the cost of acquiring a single sample be O(c). Then the distinguisher

D is correct with probability at most 1/2 + 𝛼/2.

Proof. The bound from Eq. (25.6) covers any adversary trying to win Fig. 25.3 regardless of
how the t samples are distributed between the c oracles. This follows from the subadditional
property of the total variational distance shown in Lemma 22.2.3 and the computation in
Eq. (25.5) showing that the total variational distance is the same between all oracles; thus
the bound from Lemma 22.2.2 still is valid and the total variational distance between any
pair of t-fold distributions is at most t · 1

2c
.

Thus Lemma 22.2.4 maintains its validity. Hence the lower bound of Eq. (25.6) matches our
setting. The bound is linear in c with the linear cost of querying a single sample (as the
adversary has to evaluate the entire circuit for each sample, which requires O(c) runtime)
this limits the distinguisher in such a way that only strictly less samples can be drawn
than required according to Eq. (25.6).

Putting everything together, we have shown that for all PPT distinguishers𝒟, |Pr[out0,𝒟 =

1] − Pr[out8,𝒟 = 1] | is negligible in ^. In particular, |Pr[out0,𝒟 = 1] − Pr[out8,𝒟 =

1] | is negligible for distinguishers 𝒟 in FC2. Additionally, the employed reductions
are in FC1 = O(c). Furthermore, for all adversaries A, | Pr

[︁
out8,A = 1

|︁|︁ 𝜙 = 0
]︁
−

Pr
[︁
out8,A = 1

|︁|︁ 𝜙 = 1]
]︁
| ≤ 𝛼 , where the runtime of the game also is in FC1. Hence,

we may conclude that for all adversariesA in FC2, |Pr𝜙 $←{0,1} [ExpanonΠ𝐴𝑇 ,A,𝜙 (^) = 𝜙] − 1/2| ≤
𝛼/2.

On the need for stronger obfuscation. It was shown by Canetti et al. [44] that indistin-
guishability obfuscation (or more precisely, its probabilistic variant) can only guarantee
indistinguishability if the distance between the output distributions of two circuits is
statistically close to zero. This is not the case in our final game hop. Therefore, we crucially
require a stronger form of obfuscation such as virtual black-box obfuscation or ideal
obfuscation. Using ideal obfuscation, we obtain a heuristic candidate proven secure in an
idealized model and consider our result as a first step towards instantiating anonymous
transfer.

259

25. Fine-Grained AT from Ideal Obfuscation

25.2.3. Secrecy

Theorem 25.2.11 (Secrecy). Let Pke be an IND$-CCA secure asymmetric encryption scheme,

let Ske be an IND$-CCA secure symmetric encryption scheme, let Sig be a sEUF-CMA secure

signature scheme, letO be an ideal obfuscator, and let PRF be a secure PRF. Then, Π𝐴𝑇 satisfies

𝜍-secrecy with 𝜍 ∈ owhl(^).

Essentially the proof shows that no PPT distinguisher that gets the transcript but not
the receivers transcript can exist that can distinguish between the case where we always
transfer a 0 and where we always transfer the 1 better than by guessing. This follows from
the fact that the One Time Pad chosen uniformly at random by the receiver masks the
output bit. As this masking bit is never revealed and only sent in an encrypted form with
the key of the circuit our claim follows.

GAME1(^): This is the original game (after replacing the obfuscated circuit with oracle
access to the circuit, the PRF with an actual random oracle and the adversary with
the simulator), where the sending party P𝜙 is chosen uniformly at random but the
sending party always sends b = 0.

GAME2(^): This game follows Game1(^), but with the following changes:

• During the simulation of the oracle P𝐹𝐺−𝐴𝑇 from Fig. 25.1 the simulation enforces
correctness of the challenge transcript 𝜏C : if the input transcript 𝜏 matches the
challenge transcript 𝜏C , it returns otpC ⊕ bC .

• During simulation of the circuit the adversary aborts if any of the first-round
messages from P0 or P1 differ from the messages reported in the challenge
transcript and the decryptions still match.

• During simulation of the circuit, if the first receiver message of the input tran-
script 𝜏 is the same as that of the challenge transcript 𝜏C , instead of decrypting
it the circuit directly sets otp = otpC and vkR = vkCR as the values used in the
creation of the challenge transcript.

• During simulation of the oracle, if the first-round messages of both parties
match the first-round messages in the challenge transcript 𝜏C . In this case,
the program compares the input transcript 𝜏 with the challenge transcript 𝜏C
until it finds the first round 𝜒∗ in which the input differs from the challenge
transcript. It then checks round 𝜒∗ + 1, and if it contains the same message from
the sending party, it adds one to 𝜒 .

Finally, the circuit flips a biased coin, which returns the correct bit bC with
probability p ≔ 1/2 + 𝜒∗/2c and the complementary bit (1 − bC) otherwise.

Lemma 25.2.12. Let Pke be an IND$-CCA secure public-key encryption scheme. Let

Ske be an IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA

260

25.2. Security Analysis

secure signature scheme. For all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing

advantage for Game1(^) and Game2(^) is bounded by:

|Pr[outGame1 (^) = 1] − Pr[outGame2 (^) = 1] | ∈ negl(^)

Proof. Follows from Lemmas 25.2.3 to 25.2.8.

GAME3(^): This game follows Game2(^) but the oracle is simulated slightly different: If
the first receiver message is the same as the one reported in the challenge transcript
and the input transcript is not the challenge transcript, then the circuit reports a
uniformly random bit.

Note that this does not work in the anonymity proof as there we assume that the
adversary is given access to the receivers random tape, and hence can create their
own new signature on the modified transcript.

Lemma 25.2.13. Let Pke be an IND$-CCA secure public-key encryption scheme. Let

Ske be an IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA

secure signature scheme. For all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing

advantage for Game3(^) and Game4(^) is bounded by:

|Pr[outGame3 (^) = 1] − Pr[outGame4 (^) = 1] | ∈ negl(^)

Proof. We reduce a distinguisher D between these two games to an adversary A on
the EUF-CMA security of the signature scheme Sig.

Creating the transcript. The creation of the transcript is straightforward and works
by sampling random messages for each party.

Simulating the oracle. The used verification key vkR is set to be the verification
key of the challenger. Thus the final signature 𝜎R on the entire transcript, which is
required for the circuit to not abort (by outputting a random bit), needs to be forged.
Hence for each input transcript the adversary first checks if the receiver message is
equivalent to that from the challenge transcript. If it isn’t then the transcript cannot
be used for distinguishing anyways. If it is, the adversary checks if the remaining
transcript is the same as well. If it is, the transcript cannot be used for distinguishing
and simulation just continues as the path taken is equivalent in both games. If it
isn’t then the adversary checks if the signature 𝜎R verifies under the used key. If
it doesn’t then both games act exactly the same and output a random bit. Hence
to distinguish the signature has to verify. Then, however, the signature is a valid
forgery.

261

25. Fine-Grained AT from Ideal Obfuscation

Translating the result. Assuming that no valid signature was queried then—as
mentioned above—the distinguishing advantage must be negligible. For a non-
negligible advantage the distinguisher has to query at least one signature. This can
be used as forgery to break the EUF-CMA security of Sig.

As stated above, the advantage of the distinguisher is directly related to the probability
of successfully distinguishing. HenceA will have a valid forgery with non-negligible
advantage.

This would contradict the EUF-CMA security of the signature scheme and thus
completes our proof.

GAME4(^): This game is as Game3(^) but instead of fixing b ≔ 0, we now act as if the
sending party sends b ≔ 1.

Lemma 25.2.14. Let Pke be an IND$-CCA secure public-key encryption scheme. Let

Ske be an IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA

secure signature scheme. For all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing

advantage for Game3(^) and Game4(^) is bounded by:

|Pr[outGame3 (^) = 1] − Pr[outGame4 (^) = 1] | ∈ negl(^)

Proof. Security automatically follows from the statistical security of the One Time
Pad encryption: if there was a distinguisher D with non-negligible advantage 𝛼
in distinguishing these two games then there would be an adversary A which can
decrypt One Time Pad encrypted bits with non-negligible advantage.

Simulating the transcript. As the transcript is the same in both games, we construct
the transcript by uniformly sampling each message.

Simulating the oracle. IfA is given a ciphertext ct (which by definition is defined as
otp⊕ b for some random otp and b) we simulate the oracle as described in both games
(since they are equivalent) and whenever the code says return CointossS(𝜏)(p) (otpC ⊕
b, otpC ⊕ b), we replace otpC ⊕ b with msg and otpC ⊕ b with msg.

Translating the result. If the distinguisher assumes Game3(^) then A assumes
b = 0 (in which case the transferred bit is bC ≔ msg), and if the distinguisher
assumes Game4(^) then A guesses b = 1 (and the transferred bit is bC ≔ msg).

Note that if D is correct with advantage 𝛼 over guessing, hence the guess of A is
correct with advantage 𝛼 as well.

GAME5(^):This game followsGame4(^) but undoes all the changes from the first-to-second
gamehop and that from Game3(^).

262

25.2. Security Analysis

Lemma 25.2.15. Let Pke be an IND$-CCA secure public-key encryption scheme. Let

Ske be an IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA

secure signature scheme. For all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing

advantage for Game4(^) and Game5(^) is bounded by:

|Pr[outGame4 (^) = 1] − Pr[outGame5 (^) = 1] | ∈ negl(^)

Proof. Follows from Lemmas 25.2.3 to 25.2.8 and 25.2.13.

Final Result. Let c = c(^) be a polynomial in ^. Let FC1 ≔ O(c) and let FC2 ≔
o(c2(1 − 𝛿)) for some 𝛿 ∈ R[0,1] . Putting Theorems 25.2.1, 25.2.2 and 25.2.11 together, we
have:

Corollary 25.2.16. The protocol Π𝐴𝑇 is a strong FC1-fine-grained (1 − negl(^), 𝛿, 1 −
negl(^), c, 1)-AT against FC2.

So in total, we get that:

Corollary 25.2.17. The protocol Π′
AT

n defined in Chapter 26 is a strong FC1-fine-grained
(1 − negl(^), 𝛿, 1 − negl(^))-AT against FC2, where FC1 ≔ O(c) and FC2 ≔ o(c2(1 − 𝛿)).

263

26. A fine-grained Anonymous Transfer for
n-bit messages

26.1. The Protocol

In this section we perform some slight modifications of the protocol introduced in Chap-
ter 25 to see how it can handle the transfer of n-bit messages directly.

The protocol is given in Fig. 26.1, the corresponding obfuscated program in Fig. 26.2. The
protocol in Fig. 26.1 is essentially the same as the one in Fig. 25.1 for single-bit AT, where
the bit b ∈ {0, 1} was replaced by a message Σ ∈ {0, 1}n and the circuit is now the one
from Fig. 26.2 instead of the one from Fig. 25.2. The modified circuit from Fig. 26.2 is
basically the one from Fig. 25.2 but with a message Σ instead of a bit b. Additionally, there
is one major change: Instead of returning the actual bit b with probability proportional
to the amount of correct rounds of the sender P𝜙 and the complementary bit with the
remaining probability the new circuit from Fig. 26.2 separates between returning either
the message Σ𝜙 or a dedicated error state ⊥. The actual message Σ𝜙 is implicitly defined
by the respective first-round messages. Accordingly, the probability does not start at 50%
between 0 and 1 but starts at returning ⊥ with probability 100% and each new round
moves this towards returning Σ𝜙 with probability 100%.

26.2. Security Analysis

26.2.1. Correctness

We start by analyzing the correctness of the new protocol.

Lemma 26.2.1 (Correctness). If the protocol from Fig. 26.1 is instantiated with an Ideally

Obfuscated version of the circuit from Fig. 26.2 the protocol is Y-correct with Y = (1−negl(^)).

Proof. Again, in an honest execution the value of 𝜒𝜙 = c and hence the correct message is
returned with probability 1, the argumentation here is similar to that of Theorem 25.2.1.
We only have to assume that there is a dedicated failure-state ⊥ differs from any message
a party would ever send.

265

26. A fine-grained Anonymous Transfer for n-bit messages

Protocol ΠATn

Protocol ΠATn for realizing n-bit Anonymous Transfer in the fine-grained setting. It is
running with a set of 3 parties (P0, P1,R) where one of P0 and P1 acts as sender and R
is the receiver.
It is parameterized by an IND$-CCA-secure public-key encryption scheme Pke =

(KeyGen, Enc,Dec), amulti-challenge IND$-CPA-secure symmetric encryption scheme
Ske = (KeyGen, Enc,Dec), an EUF-CMA-secure signature scheme Sig : {0, 1}∗ ×
{0, 1}^ ↦→ {0, 1}m, and an obfuscated program P𝐹𝐺−𝐴𝑇 from Fig. 26.2.

Upon activation , R draws a random otp

$←{0, 1}n and computes (kR, vkR) ←
Sig.KeyGen(1^). Then R sets msg

(0)
R ← Pke.Enc(pkP, (otp, vkR)) and broadcasts

msg
(0)
R .

On input (𝜙, Σ), P𝜙 computes a signature key pair (vk𝜙 , k𝜙) ← Sig.KeyGen(1^) and a
symmetric key sk𝜙 ← Ske.KeyGen(1^).
Then, P𝜙 computes a signature 𝜎𝜙 ← Sig.Sign(k𝜙 ,msg

(0)
R) and broadcasts

msg
(0)
𝜙
← Pke.Enc(pkP, (sk𝜙 , vk𝜙))∥Ske.Enc(sk𝜙 , Σ).

Upon activation , P1−𝜙 sets uniformly random msg
(0)
𝜙
.

For each round 𝜒 from 1 to c :

P𝜙 computes 𝜎𝜙 ← Sig.Sign(k𝜙 , (msg
(𝜒−1)
0 ,msg

(𝜒−1)
1)) and sets msg

(𝜒)
𝜙
←

Ske.Enc(sk𝜙 , (Σ, 𝜎𝜙)).

P1−𝜙 broadcasts msg
(𝜒)
1−𝜙

$←{0, 1}m.

R computes 𝜎R ← Sig.Sign(kR, (msg
(0)
R , (msg

(0)
0 ,msg

(0)
1), . . . , (msg

(c)
0 ,

msg
(c)
1))), computes Σ′ ≔ P𝐹𝐺−𝐴𝑇 (msg

(0)
R , (msg

(0)
0 ,msg

(0)
1), . . . ,

(msg
(c)
0 ,msg

(c)
1), 𝜎R) and outputs otp ⊕ Σ′.

Figure 26.1.: The protocol ΠATn for fine-grained n-bit Anonymous Transfer.

26.2.2. Anonymity

Once again, the anonymity takes a lot more effort to analyze. However, the proof is still
relatively close to that of single-bit AT leading to the anonymity in Corollary 25.2.16.

GAME1(^): This is the original game (after replacing the obfuscated circuit with oracle
access to the circuit, the PRF with an actual random oracle and the adversary with
the simulator), where the sending party P𝜙 is chosen uniformly at random.

266

26.2. Security Analysis

Program P𝐹𝐺−𝐴𝑇 [pkP, c]
(︃
msg

(0)
R ,

{︂
msg

(𝜒)
0 ,msg

(𝜒)
1

}︂
c

𝜒=0

)︃
(otp, vkR) ≔ Pke.Dec∗

(︂
skP,msg

(0)
R

)︂
,

(sk0, vk0) ≔ Pke.Dec∗(skP,msg
(0)
0 [1 : m]),

(Σ0, 𝜎0) ≔ Ske.Dec∗(sk0,msg
(0)
0 [m + 1 : 2m]),

(sk1, vk1) ≔ Pke.Dec∗(skP,msg
(0)
1 [1 : m]),

(Σ1, 𝜎1) ≔ Ske.Dec∗(sk1,msg
(0)
1 [m + 1 : 2m]),

if ¬Sig.Vfy(vkR, (msg
(0)
R , (msg

(0)
0 ,msg

(0)
1), . . . , (msg

(0)
0 ,msg

(c)
1))) then :

return ⊥
𝜒0 ≔ ⟦Sig.Vfy(𝜎0, vk0,msg

(0)
R)⟧ · (c + 1),

𝜒1 ≔ ⟦Sig.Vfy(𝜎1, vk1,msg
(1)
R)⟧ · (c + 1),

foreach 𝜒 ∈ {1, . . . , c} do :
foreach 𝜙 ∈ {𝜙 ′ |𝜙 ′ ∈ {0, 1}, 𝜒𝜙 = (c + 1)} do : // Check for each potential sender.

X𝜙 ≔ Ske.Dec∗
(︂
sk𝜙 ,msg

(𝜒)
𝜙

)︂
, Σ′

𝜙
≔ X𝜙 [0 : (m − 1)],

𝜎𝜙 ≔ X𝜙 [m : |X𝜙 |]
if ¬Sig.Vfy

(︁
𝜎𝜙 , vk𝜙 , 𝜏 [𝜒 − 1]

)︁
∨ Σ𝜙 ≠ Σ′

𝜙
then :

𝜒𝜙 ≔ 𝜒 // Remember first bad round.

𝜙 ′ ≔ argmax𝜙 (𝜒𝜙)

return otp ⊕ CointossS(𝜏)
((𝜒𝜙 ′/c))

(Σ𝜙 ′,⊥)

Figure 26.2.: Obfuscated program P𝐹𝐺−𝐴𝑇 for an n-bit Anonymous Transfer in the fine-grained setting with
c rounds.

GAME2(^): This game follows Game1(^), but during the simulation of the oracle P𝐹𝐺−𝐴𝑇
from Fig. 26.1 the simulation enforces correctness of the challenge transcript 𝜏C : if
the input transcript 𝜏 matches the challenge transcript 𝜏C , it returns ΣC .

Lemma 26.2.2 (Indistinguishability of Game1(^) and Game2(^)). Let Pke be an

IND$-CCA secure asymmetric encryption scheme. Let Ske be an IND$-CCA secure

symmetric encryption scheme. Let Sig be an sEUF-CMA secure signature scheme. For

all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing advantage for Game1(^) and
Game2(^) is bounded by:

|Pr[outGame1 (^) = 1] − Pr[outGame2 (^) = 1] | ∈ negl(^)

Proof. See Lemma 26.2.1.

GAME3(^): This game follows Game2(^) but during simulation of the circuit the adversary
aborts if any of the first-round messages differ from the messages reported in the
challenge transcript and the decryptions still match.

267

26. A fine-grained Anonymous Transfer for n-bit messages

Lemma 26.2.3 (Indistinguishability of Game2(^) and Game3(^)). Let Pke be an

IND$-CCA secure asymmetric encryption scheme. Let Ske be an IND$-CCA secure

symmetric encryption scheme. Let Sig be an sEUF-CMA secure signature scheme. For

all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing advantage for Game2(^) and
Game3(^) is bounded by:

|Pr[outGame2 (^) = 1] − Pr[outGame3 (^) = 1] | ∈ negl(^)

Proof. The claim is similar to that from Lemma 25.2.4 and thus follows from their
proof.

GAME4(^): This game follows Game3(^) but simulates the circuit slightly different: If the
first receiver message of the input transcript 𝜏 is the same as that of the challenge
transcript 𝜏C , instead of decrypting it the circuit directly sets otp = otpC and vkR =

vkCR as the values used in the creation of the challenge transcript.

Lemma 26.2.4 (Indistinguishability of Game3(^) and Game4(^)). Let Pke be an

IND$-CCA secure asymmetric encryption scheme. Let Ske be an IND$-CCA secure

symmetric encryption scheme. Let Sig be an sEUF-CMA secure signature scheme. For

all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing advantage for Game3(^) and
Game4(^) is bounded by:

|Pr[outGame3 (^) = 1] − Pr[outGame4 (^) = 1] | ∈ negl(^)

Proof. This proof also follows from the correctness of the encryption scheme Pke
just as Lemma 25.2.5.

GAME5(^): This game follows Game4(^) but simulates the oracle differently if the first-
round messages of both parties match the first-round messages in the challenge
transcript 𝜏C . In this case, the program compares the input transcript 𝜏 with the
challenge transcript 𝜏C until it finds the first round 𝜒∗ in which the input differs
from the challenge transcript. It then checks round 𝜒∗ + 1, and if it contains the same
message from the sending party, it adds one to 𝜒 .

Finally, the circuit flips a biased coin, which returns the correct message ΣC with
probability p ≔ 1/2 + 𝜒∗/2c and an error symbol ⊥ otherwise.

Lemma 26.2.5 (Indistinguishability of Game4(^) and Game5(^)). Let Pke be an

IND$-CCA secure asymmetric encryption scheme. Let Ske be an IND$-CCA secure

symmetric encryption scheme. Let Sig be an sEUF-CMA secure signature scheme. For

all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing advantage for Game4(^) and
Game5(^) is bounded by:

|Pr[outGame4 (^) = 1] − Pr[outGame5 (^) = 1] | ∈ negl(^)

Proof. Note that the unforgeability of a valid round-zero message required for de-
tecting the new branch is similar to Lemma 25.2.6. Thus we can focus entirely on the
second claim, namely that the behavior inside the branch reflects that of the actual
circuit.

268

26.2. Security Analysis

In fact, we have to show that at line 31 in Game2(^) if the maximum round is 𝜒𝜙 then
the input transcript is equal to the challenge transcript until at least round (𝜒𝜙 − 1).

Let D be a PPT distinguisher who can create input 𝜏 for which it holds that 𝜒∗
is such that any of the messages from round (𝜒∗ − 2) differ from the challenge
transcript. Then the only way that the verification in round (𝜒∗ − 1) succeeds is if
the sending parties message encodes a valid signature on the changed message from
round (𝜒∗ − 2), which would violate the EUF-CMA security of the used signature
scheme Sig.

Thus the claim follows.

GAME6(^): This game is the same as Game5(^), but in creating the challenge transcript 𝜏C ,
this game only reports randomness for the first-round message ̂︄

msg
0
𝜙
that specifies

the symmetric key sk𝜙 to be used for the remaining communication with the circuit.
Note that both the signature- and the symmetric-key are still created for the sending
party P𝜙 as they are needed for the remaining rounds.

Lemma 26.2.6 (Indistinguishability of Game5(^) and Game6(^)). Let Pke be an

IND$-CCA secure asymmetric encryption scheme. Let Ske be an IND$-CCA secure

symmetric encryption scheme. Let Sig be an sEUF-CMA secure signature scheme. For

all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing advantage for Game5(^) and
Game6(^) is bounded by:

|Pr[outGame5 (^) = 1] − Pr[outGame6 (^) = 1] | ∈ negl(^)

Proof. See Lemma 25.2.7.

GAME7(^): This game is the same as Game6(^) but in creating the challenge transcript 𝜏C ,
this game also reports randomness instead of transcripts for all messages msg

𝜒

𝜙
for

𝜒 ∈ [c] that shift the message towards ΣC . That means that instead of using the
IND$-CPA secure symmetric scheme Ske with the symmetric key sk𝜙 the challenge
transcript now only contains randomly sampled messages.

We also do not let the adversary create the keys for Sig and Ske as they are no longer
needed for creating the transcript.

Lemma 26.2.7 (Indistinguishability of Game6(^) and Game7(^)). Let Pke be an

IND$-CCA secure asymmetric encryption scheme. Let Ske be an IND$-CCA secure

symmetric encryption scheme. Let Sig be an sEUF-CMA secure signature scheme. For

all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing advantage for Game6(^) and
Game7(^) is bounded by:

|Pr[outGame6 (^) = 1] − Pr[outGame7 (^) = 1] | ∈ negl(^)

Proof. See Lemma 25.2.8.

269

26. A fine-grained Anonymous Transfer for n-bit messages

C𝐵𝑒𝑟 (c)
𝛽

$←{0, 1}
Create c orales {O𝑖}c𝑖=1
foreach Oracles O𝑖 do
if 𝛽 = 0 then

Pr[outO𝑖
= 1] ≔ 𝑖 − 1

c

else

Pr[outO𝑖
= 1] ≔ 𝑖

c

fi done

A(1^)
for 𝑗 = 1 . . . t do
𝑖 𝑗 ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠

msg 𝑗

$←O𝑖 𝑗

done
𝛽 ′ ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 ((𝑖 𝑗 ,msg 𝑗)t𝑗=1)
return 𝛽 ′

Figure 26.3.: Game to determine whether c Bernoulli-oracles follow a given distribution 𝑝𝜒 or 𝑞𝜒 = 𝑝 − 1/c.

GAME8(^): This game follows Game7(^), but instead of choosing a random sender at the
beginning of the game and considering this message to be the right one, the oracle
ignores the additional check and only looks for the first round where both messages
are identical to the challenge.

Note that this game is entirely independent of the real sender, hence given a challenge
transcript it is trivially impossible to obtain a non-negligible advantage to determine
the sending party.

Claim 26.2.8 (Indistinguishability of Game7(^) and Game8(^)). Let D be a distin-

guisher with runtime o(c2/𝛼). Let the cost of acquiring a single sample be O(c). Then
the distinguishing advantage is limited by

|Pr[outGame7 (^) = 1] − Pr[outGame8 (^) = 1] | ≤ 𝛼 (26.1)

The actual proof is similar to the single-bit case, only that we do not differentiate a
Bernoulli oracle that returns a single bit but one that returns either a n-bit message
or an error state. However, we slightly adapt the game from Fig. 25.3 to our new
scenario; basically instead of ranging from 0.5 to 1 the oracles now range from 0 to 1
in equally-sized steps:

Lemma 26.2.9. Let D be a distinguisher distinguishing Game7(^) and Game8(^)
with advantage 𝛼 over guessing. Let t be the number of queries that D sends to the

obfuscated circuit. There is a reduction adversary A that uses D which has advantage

𝛼 over guessing in winning Fig. 26.3.

Proof. The overall idea of the proof is similar to that used in Fig. 25.3 but has some
minor changes in order to incorporate the different range of the oracles and the fact
that instead of 0 or 1, the oracle returns ⊥ or Σ.

270

26.2. Security Analysis

Creating the transcript. The transcript is the same in both games and hence can
be created canonically. Upon activation the adversary A samples the required
information for the challenge transcript, that is, ΣC

$←{0, 1}n and 𝜙 $←{0, 1}, and
creates and stores a transcript 𝜏C by sampling uniformly random messages for both
parties. This transcript is then reported to the distinguisher.

Simulating the circuit. WhenD sends some input to the simulated circuitA has to
return some message Σ according to the respective distributions. There are several
possible inputs for the circuit but the below list covers all the possibilities:

(At least) one of the first-round messages is different. Then the adversary simulates
the circuit by following the actual protocol. This case is equivalent for both
games.

First different message for both parties in round (𝜒 + 1). Then the adversary flips a
biased coin that lands on heads with probability p ≔ 𝜒/c and on heads A
returns Σ and otherwise A returns ⊥.

First different message only for P𝜙 in round (𝜒 + 1). This case is equivalent to the
one before and does not change in the game hop.

First different message only for P
𝜙

in round (𝜒 + 1). This is the interesting case as
this class contains all the transcripts that are actually treated differently in the
two games.

In this case the adversary queries the (𝜒 + 1)st oracle that returns 1 with
probability 𝜒/c if 𝛽 = 0 and with probability (𝜒 + 1)/c if 𝛽 = 1. When receiving
output 0 the adversary returns ⊥ as oracle-output. On output 1 the adversary
returns the challenge message ΣC .

It is easy to see that this reflects the two games; if 𝛽 = 0 then Σ is returned
with probability 𝜒/c as it is in Game7(^), and if 𝛽 = 1 then Σ is returned with
probability (𝜒 + 1)/c as in Game8(^).

Using the response. After (at most) t queries the distinguisher terminates and sends
its guess. If D guesses it was playing Game8(^) then A reports 𝛽′ = 1 to C𝐵𝑒𝑟 . And
if D guesses it was playing Game7(^) then A sends the output 𝛽′ = 0 to C𝐵𝑒𝑟 .

As was described above the two distributions can be perfectly simulated, hence the
probability that D guesses the correct game is the same that A has to correctly
guess 𝛽 . So if D has non-negligible advantage 𝛼 over guessing then A inherits this
advantage for winning the game from Fig. 26.3, albeit if D sends t queries toA, less
than t queries are forwarded to C𝐵𝑒𝑟 .

271

26. A fine-grained Anonymous Transfer for n-bit messages

We now have a new game in Fig. 26.3 which we used for a more intuitive proof,
however we still need to analyze how hard winning Fig. 26.3 really is. Fortunately,
the game is already quite close to Fig. 25.3 only with a larger range. We thus borrow
ideas from the proof of the single-bit case and adapt them to our new scenario.

Note that Lemma 22.2.4 can also be applied, and that Corollary 22.2.5 also holds for
Fig. 26.3.

We can thus skip towards adjusting Corollary 25.2.10, for which we first need to
embed Corollary 22.2.5 into our problem setting: We have c instances where the
𝜒-th instance corresponds to distinguishing 𝑝 ≔ (𝜒 − 1)/c from 𝑞 ≔ (𝜒)/c. This
implies the following 𝐿1-norm between 𝑝 and 𝑞 in round 𝜒 :

dTV(𝑝, 𝑞) =
∥𝑝 − 𝑞∥1

2
=

1
2
(︁
|Pr[𝑝 = 1] − Pr[𝑞 = 1] |

+ |Pr[𝑝 = 0] − Pr[𝑞 = 0] |
)︁

=
1
2

(︃|︁|︁|︁|︁ 𝜒 − 1
c

− 𝜒
c

|︁|︁|︁|︁ + |︁|︁|︁|︁ 𝜒 + 1
c

− 𝜒
c

|︁|︁|︁|︁)︃
=

1
2

(︃
2
c

)︃
=

1
c

(26.2)

This implies again that the total variational distance in round 𝜒 is independent of
the round 𝜒 and hence the same for all oracles. So when combining this observation
with the subadditivity of the total variational distance (Lemma 22.2.3) we get that
any distribution resulting from t samples have a total variational distance of at most
t

c
. Thus we get:

t ∈ Ω(𝛼/dTV(𝑝, 𝑞)) = Ω(𝛼 · c) (26.3)

We thus end up with the following corollary.

Corollary 26.2.10. Let D be a distinguisher playing the game from Fig. 26.3 using

a fixed number t of samples and has runtime o(c2/𝛼). Let the cost to acquire a single
sample be O(c). Then the distinguisherD is correct with probability at most 1/2 +𝛼/2.

Proof. See Corollary 25.2.10. Eq. (26.3) yields a lower bound for the number of
samples required by D to distinguish with advantage 𝛼 . With each sample having
a cost of O(c) an advantage of 𝛼 requires runtime in O(c2 · 𝛼) to get the samples
alone. With the runtime of D being bounded as o(c2/𝛼) it follows that D cannot
have constant advantage.

272

26.2. Security Analysis

26.2.3. Secrecy

We conclude this section with a secrecy analysis of the protocol. Fortunately, this proof is
quite close to that from the single-bit protocol from Theorem 25.2.11. The main difference
is that we have to change an entire message instead of only changing the single bit.

However, the crucial part is still the statistical security of the One Time Pad, which holds
also in the multi-bit case. To prove our claim we thus show that the transfer of a uniformly
random message cannot be distinguished efficiently from the transfer of the all-zero
bitstring without the receiver’s random tape.

In total we want to show that:

{𝜏 ← Transfer⟨R,P0,P1⟩ (crs, 𝜙, Σ)}
≈ {𝜏 ← Transfer⟨R,P0,P1⟩ (crs, 𝜙, 0⃗n)}

(26.4)

With that in mind we adjust the gamehops as follows:

GAME1(^): This is the original game (after replacing the obfuscated circuit with oracle
access to the circuit, the PRF with an actual random oracle and the adversary with
the simulator), where the sending party P𝜙 is chosen uniformly at random and the
sender uses the input message Σ.

GAME2(^): This game follows Game1(^), but with the following changes:

• During the simulation of the oracle P𝐹𝐺−𝐴𝑇 from Fig. 26.1 the simulation enforces
correctness of the challenge transcript 𝜏C : if the input transcript 𝜏 matches the
challenge transcript 𝜏C , it returns otpC ⊕ ΣC .

• During simulation of the circuit the adversary aborts if any of the first-round
messages from P0 or P1 differ from the messages reported in the challenge
transcript and the decryptions still match.

• During simulation of the circuit, if the first receiver message of the input tran-
script 𝜏 is the same as that of the challenge transcript 𝜏C , instead of decrypting
it the circuit directly sets otp = otpC and vkR = vkCR as the values used in the
creation of the challenge transcript.

• During simulation of the oracle, if the first-round messages of both parties
match the first-round messages in the challenge transcript 𝜏C . In this case,
the program compares the input transcript 𝜏 with the challenge transcript 𝜏C
until it finds the first round 𝜒∗ in which the input differs from the challenge
transcript. It then checks round 𝜒∗ + 1, and if it contains the same message from
the sending party, it adds one to 𝜒 .

Finally, the circuit flips a biased coin, which returns the correct message otpC ⊕
ΣC with probability p ≔ 𝜒∗/c and an error message ⊥ otherwise.

273

26. A fine-grained Anonymous Transfer for n-bit messages

Lemma 26.2.11. Let Pke be an IND$-CCA secure public-key encryption scheme. Let

Ske be an IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA

secure signature scheme. For all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing

advantage for Game1(^) and Game2(^) is bounded by:

|Pr[outGame1 (^) = 1] − Pr[outGame2 (^) = 1] | ∈ negl(^)

Proof. Follows from Lemmas 26.2.2 to 26.2.7.

GAME3(^): This game follows Game2(^) but the oracle is simulated slightly different: If
the first receiver message is the same as the one reported in the challenge transcript
and the input transcript is not the challenge transcript, then the circuit outputs an
error symbol ⊥.

Note that this does not work in the anonymity proof as there we assume that the
adversary is given access to the receivers random tape, and hence can create their
own new signature on the modified transcript.

Lemma 26.2.12. Let Pke be an IND$-CCA secure public-key encryption scheme. Let

Ske be an IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA

secure signature scheme. For all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing

advantage for Game3(^) and Game4(^) is bounded by:

|Pr[outGame3 (^) = 1] − Pr[outGame4 (^) = 1] | ∈ negl(^)

Proof. We reduce a distinguisher D between these two games to an adversary A on
the EUF-CMA security of the signature scheme Sig.

Creating the transcript. The creation of the transcript is straightforward and works
by sampling random messages for each party.

Simulating the oracle. The used verification key vkR is set to be the verification
key of the challenger. Thus the final signature 𝜎R on the entire transcript, which is
required for the circuit to not abort (by outputting a random bit), needs to be forged.
Hence for each input transcript the adversary first checks if the receiver message is
equivalent to that from the challenge transcript. If it isn’t then the transcript cannot
be used for distinguishing anyways. If it is, the adversary checks if the remaining
transcript is the same as well. If it is, the transcript cannot be used for distinguishing
and simulation just continues as the path taken is equivalent in both games. If it
isn’t then the adversary checks if the signature 𝜎R verifies under the used key. If it
doesn’t then both games act exactly the same and output an error state ⊥. Hence
to distinguish the signature has to verify. Then, however, the signature is a valid
forgery.

274

26.2. Security Analysis

Translating the result. Assuming that valid signature was queried then—as men-
tioned above—the distinguishing advantage must be negligible. For a non-negligible
advantage the distinguisher has to query at least one signature. This can be used as
forgery to break the EUF-CMA security of Sig.

As stated above, the advantage of the distinguisher is directly related to the probability
of successfully distinguishing. HenceA will have a valid forgery with non-negligible
advantage.

This would contradict the EUF-CMA security of the signature scheme and thus
completes our proof.

GAME4(^): This game is as Game3(^) but instead of using a uniformly random Σ for the
transferred message during simulation of the circuit we now fix Σ = 0⃗n as the all-zero
bitstring of appropriate size.

Lemma 26.2.13. Let Pke be an IND$-CCA secure public-key encryption scheme. Let

Ske be an IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA

secure signature scheme. For all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing

advantage for Game3(^) and Game4(^) is bounded by:

|Pr[outGame3 (^) = 1] − Pr[outGame4 (^) = 1] | ∈ negl(^)

Proof. Again indistinguishability follows for any adversary who does not have the
receivers random tape. The message is only ever used in its encrypted form via the
uniformly random One Time Pad, and distinguishing two bitstrings after they have
been masked is statistically impossible to do with non-negligible advantage. Thus
indistinguishability follows.

GAME5(^):This game followsGame4(^) but undoes all the changes from the first-to-second
gamehop and that from Game3(^).

Lemma 26.2.14. Let Pke be an IND$-CCA secure public-key encryption scheme. Let

Ske be an IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA

secure signature scheme. For all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing

advantage for Game4(^) and Game5(^) is bounded by:

|Pr[outGame4 (^) = 1] − Pr[outGame5 (^) = 1] | ∈ negl(^)

Proof. Follows from Lemmas 26.2.2 to 26.2.7 and 26.2.12.

Thus otp is hidden to any guessing algorithm and so is Σ.

Corollary 26.2.15. The Anonymous Transfer from Fig. 26.1 is 𝜍-secret with 𝜍 ∈ owhl(^).

In total, we thus have:

Corollary 26.2.16. The protocol ΠAT
n from Fig. 26.1 is a strong FC1-fine-grained (1 −

negl(^), 𝛿, 1 − negl(^))-AT in the fine-grained setting against FC2 ≔ o(c2/𝛿).

275

27. Undetectable Oblivious Transfer

For a candidate application of Anonymous Transfer we propose Undetectable Oblivious
Transfer (UOT): A K party protocol with N = 2 participants, one sender and one receiver,
performing classical Oblivious Transfer without (1) the sender knowing which of the
K − 1 other individuals is the receiver, (2) the receiver knowing which of the K − 1 other
individuals is the sender, and (3) the dummy friends knowing that a computation is in
progress at all.

Our construction necessarily requires the secrecy of AT which we defined in Section 23.6.
We define in Section 27.1 the security properties of an Undetectable Oblivious Transfer
scheme.

In Chapter 28 we will provide a candidate instantiation for K = 3 that can be canonically
extended to any number K > 3.

27.1. Definitions for Undetectable Oblivious Transfer

Towards our goal of Undetectable Multi-Party Computation we consider a notion of
Undetectable Oblivious Transfer. In Undetectable Oblivious Transfer we have a set of
K parties. Two of these parties want to run an Oblivious Transfer protocol without the
participants learning with whom they executed the OT, and without the K −2 other parties
realizing that the protocol is executed.

Definition 27.1.1 ((Y, 𝛿, c, n)-Undetectable Oblivious Transfer). An (Y, 𝛿, c, n)-Undetectable
Oblivious Transfer for Y, 𝛿 ∈ R[0,1] and n, c ∈ N is a tuple containing three PPT algorithms

(Setup,OT, Reconstruct). The number of rounds in the OT protocol is given as c and the

bitlength n defines the length of the transferred message Σb.

The algorithms are defined as follows:

Setup(1^) takes as input the security parameter 1^ in unary encoding and outputs a Common

Reference String crs.

OT(crs, 𝜛, Σ0, Σ1, b) is a c-round protocol that takes as input the Common Reference String

crs, a permutation 𝜛 ∈ SK to determine which of (P1, . . . , PK) is the sender, which
is the receiver and which are the dummy friends, two messages Σ0 and Σ1 ∈ {0, 1}n
from the sender and one bit b ∈ {0, 1} from the receiver and outputs a transcript 𝜏 . All

non-sender send independent uniformly distributed random strings in each round.

277

27. Undetectable Oblivious Transfer

Expanon-otΠ𝑈𝑂𝑇 ,A,𝜛 (^)
crs

$←Setup(1^)
(Σ0, Σ1, P, st) ← A𝑔𝑢𝑒𝑠𝑠0(crs)
𝜏

$←OT𝜛 (P1,...,PK) (crs, 𝜙, Σ)
return A𝑔𝑢𝑒𝑠𝑠1(𝜏, TP, st)

Figure 27.1.: Definition of the game Expanon-otΠ𝑈𝑂𝑇 ,A,𝜛 (^).

Reconstruct(crs, 𝜏, TR) is a local algorithm executed by the receiver that takes as input the

CRS crs, protocol transcript 𝜏 and the receiver’s random tape TR and outputs a message

Σb.

The algorithms additionally satisfy the Y-correctness, the 𝛿-anonymity and the privacy from

Definitions 27.1.2 to 27.1.4.

Definition 27.1.2 (Y-Correctness). An Undetectable Oblivious Transfer protocol between

players (P1, . . . , PK) is Y-Correct if for any 𝜛 ∈ SK , any (Σ0, Σ1) ∈ {0, 1}2n
, any b ∈ {0, 1}

and any crs← Setup(1^), it holds that

Pr
[︃
Σb = Σ′

b

|︁|︁|︁|︁ 𝜏 $←OT⟨𝜛(P1,...,PK)⟩ (crs, (Σ0, Σ1), b)
Σ′

b
← Reconstruct(crs, 𝜏, TR)

]︃
≥ Y (27.1)

This is quite similar to the definition of correctness for AT from Definition 23.2.2.

Definition 27.1.3 (𝛿-Anonymity). An Undetectable Oblivious Transfer protocol between

players (P1, . . . , PK) is𝛿-Anonymous if for any PPT guessing algorithmA𝑔𝑢𝑒𝑠𝑠 = (A𝑔𝑢𝑒𝑠𝑠0,A𝑔𝑢𝑒𝑠𝑠1),
it holds that |︁|︁|︁|︁ Pr

𝜛
$←SK

[︂
Exp

anon-ot
Π𝑈𝑂𝑇 ,A𝑔𝑢𝑒𝑠𝑠 ,𝜛 (^) = 𝜛

]︂
− 1/(K − 1)

|︁|︁|︁|︁ ≤ (1 − 𝛿) · (K − 2)
(K − 1) (27.2)

SK is the symmetric group over K elements alongside all possible bijections into themselves
and 𝜛 is a random permutation drawn from that set. This reflects the intuition that a
participant is trying to recover the permutation after finishing the execution. The guessing
algorithm A𝑔𝑢𝑒𝑠𝑠0 selects which party to corrupt (in a semi-honest setting, hence post-
execution) and which messages should be transferred. A𝑔𝑢𝑒𝑠𝑠1 gets the random tape of the
corrupted party and the state st of the adversary that selected which party to corrupt. The
definition implies uncertainty of each party regarding the role of each other individual;
the sender is unaware which of the two parties present acts as receiver, the receiver is
unable to determine the sender better than by guessing, and the dummy friend does not
know any of the other individuals roles either.

Definition 27.1.4 (Privacy). An Undetectable Oblivious Transfer protocol between players

(P1, . . . , PK) is private for the sender and the receiver if for any guessing algorithm A𝑔𝑢𝑒𝑠𝑠 ,

278

27.1. Definitions for Undetectable Oblivious Transfer

any 𝜛 ∈ SK , any (Σ0, Σ1) ∈ {0, 1}2n
, any b ∈ {0, 1} and any crs← Setup(1^), the following

two conditions hold against every PPT guessing algorithm A𝑔𝑢𝑒𝑠𝑠 :

Pr
[︃
Σ

b
= Σ′

b

|︁|︁|︁|︁ 𝜏 ← OT𝜛(P1,...,PK) (crs, (Σ0, Σ1), b)
Σ′

b

← A𝑔𝑢𝑒𝑠𝑠 (𝜏, TR)

]︃
∈ negl(^) (27.3)

|︁|︁|︁|︁ Pr
[︃

b = b
′
|︁|︁|︁|︁ 𝜏 ← OT𝜛(P1,...,PK) (crs, (Σ0, Σ1), b)

b
′← A𝑔𝑢𝑒𝑠𝑠 (𝜏, T S)

]︃
− 1/2

|︁|︁|︁|︁ ∈ negl(^) (27.4)

For the sender the requirement from Eq. (27.3) means that even with the random tape
TR of the receiver it is not efficiently possible for the guessing algorithm A𝑔𝑢𝑒𝑠𝑠 to predict
the message Σ

b
that was not transferred. For the receiver the requirement from Eq. (27.4)

implies security of the choice despite having the random tape T S of the sender.

279

28. Undetectable Oblivious Transfer
Instantiation

In this section we present an instantiation of Undetectable Oblivious Transfer based on any
two-round Covert Oblivious Transfer (COT) protocol with overwhelming correctness such
as the one from von Ahn, Hopper, and Langford [133, Protocol 4]. The protocol is fairly
canonical and basically just uses a different communication structure where messages are
sent via Anonymous Transfer.

In Fig. 28.1 we present a protocol that takes any two-round Covert Oblivious Transfer pro-
tocol and a strong (Y, 𝛿, 𝜍, c, n)-Anonymous Transfer and constructs an (Y, 𝛿)-Undetectable
Oblivious Transfer. For the sake of simplicity we only introduce a generic three-party
protocol (that has one dummy friend), but we stress that the same technique can easily be
modified to incorporate more parties at the cost of using 2 more ATs with the respective
dummy friend as the receiver.

28.1. Correctness

For analyzing the correctness we assume that the Covert Oblivious Transfer protocol recon-
structs the bit correctly with overwhelming probability. Then it holds for the correctness
of the Undetectable Oblivious Transfer:

Lemma 28.1.1 (Correctness of the Undetectable Oblivious Transfer protocol). Let Π𝐶𝑂𝑇
be a COT protocol that is correct with overwhelming probability. Let ΠAT

n be a strong

(Y, 𝛿, 𝜍, c, n)-AT. Then the Undetectable Oblivious Transfer protocol from Fig. 28.1 is correct

with Y𝑈𝑂𝑇 = Y2+2Y−1
2 .

Proof. When executed directly, i.e. with direct communication instead of using AT, Π𝐶𝑂𝑇
is correct as long as all messages are present, and it is wrong if a message was transferred
incorrectly. As our only change lies in the communication channels it holds that the
probability that the message has been transferred correctly corresponds to the probability
that both protocol messages have been transferred correctly—the first-round message by
the receiver to the sender and the second-round message by the sender to the receiver.

281

28. Undetectable Oblivious Transfer Instantiation

Protocol Π𝑈𝑂𝑇
Two-round protocol Π𝑈𝑂𝑇 . It is running with a set of three parties (P0, P1, P2), where
we denote by PS the sender, by PR the receiver, and by PD the non-participating party.
It is parameterized by a two-round Covert Oblivious Transfer protocol Π𝐶𝑂𝑇 and a
(Y, 𝛿, 𝜍)-Anonymous Transfer protocol Π𝐴𝑇 .

On input (Σ0, Σ1), PS stores both Σ0 and Σ1 and sets msg0 ≔ ⊥.

On input b ∈ {0, 1}, PR chooses msg1 as the first message the receiver sends to the
sender in Π𝐶𝑂𝑇 for bit b.

On input ⊥, PD sets msgD ≔ ⊥.

Each party P𝑖 sends msg𝑖 to both instances of Π𝐴𝑇 where party P 𝑗 for 𝑗 ≠ 𝑖 is the
receiver.

On input msg
∗
0 from Π𝐴𝑇 where PS is the receiver, PS computes msg0 according to

Π𝐶𝑂𝑇 on input (Σ0, Σ1) and first message msg
∗
0.

On input ⊥ from Π𝐴𝑇 where PR is the receiver, PR sets msg1 ≔ ⊥.

On input ⊥ from Π𝐴𝑇 where PD is the receiver, PD sets msg2 ≔ ⊥.

Each party P𝑖 sends msg𝑖 to both instances of Π𝐴𝑇 where party P 𝑗 for 𝑗 ≠ 𝑖 is the
receiver.

On input ⊥ from Π𝐴𝑇 where PS is the receiver, PS outputs ⊥.

On input msg0 from Π𝐴𝑇 where PR is the receiver, PR reconstructs Σb according to
Π𝐶𝑂𝑇 on inputs (msg0,msg1, b) and outputs Σb.

On input ⊥ from Π𝐴𝑇 where PD is the receiver, PD outputs ⊥.

Figure 28.1.: The two-round protocol Π𝑈𝑂𝑇 for Undetectable Oblivious Transfer with given protocols for
Anonymous Transfer and Covert Oblivious Transfer.

With the AT being Y-correct it follows from Eq. (23.1) that

Pr
⎡⎢⎢⎢⎢⎣ b = b

′

|︁|︁|︁|︁|︁|︁ b

$←{0, 1}
𝜏

$←⟨R, P0, P1⟩(𝜙, b)
b
′← f (𝜏, TR)

⎤⎥⎥⎥⎥⎦ ≥ (Y + 1)/2 (28.1)

282

28.2. Privacy

The probability that both messages are transferred correctly squares that value. As such it
holds that:

⎛⎜⎝ Pr
⎡⎢⎢⎢⎢⎣ b = b

′

|︁|︁|︁|︁|︁|︁ b

$←{0, 1}
𝜏

$←⟨R, P0, P1⟩(𝜙, b)
b
′← f (𝜏, TR)

⎤⎥⎥⎥⎥⎦ ⎞⎟⎠
2

≥((Y + 1)/2)2 = 1
4 (Y

2 + 2Y + 1) (28.2)

So we have for the correctness of the OT:

Pr

⎡⎢⎢⎢⎢⎢⎢⎣ msg
b
= msg

′
b

|︁|︁|︁|︁|︁|︁|︁|︁
𝜛

$←S3,(︁
msg0,msg1

)︁ $←{0, 1}2,
b

$←{0, 1},
msg

′
b
← Ot

(︁
𝜛{

(︁
msg0,msg1

)︁
, b,⊥}

)︁
⎤⎥⎥⎥⎥⎥⎥⎦

≥1
4 (Y

2 + 2Y + 1) = Y2

4 +
Y

2 +
1
4

(28.3)

and hence, in the form of Eq. (27.1),

Pr

⎡⎢⎢⎢⎢⎢⎢⎣ msg
b
= msg

′
b

|︁|︁|︁|︁|︁|︁|︁|︁
𝜛

$←S3,(︁
msg0,msg1

)︁ $←{0, 1}2,
b

$←{0, 1},
msg

′
b
← Ot

(︁
𝜛{

(︁
msg0,msg1

)︁
, b,⊥}

)︁
⎤⎥⎥⎥⎥⎥⎥⎦ −

1
2

≥Y
2

4 +
Y

2 −
1
4 =

1
2 ·

(︃
Y2 + 2Y − 1

2

)︃ (28.4)

Thus we get that according to Eq. (27.1) we have Y𝑈𝑂𝑇 ≔ Y2+2Y−1
2 .

28.2. Privacy

The analysis of (input-) privacy is pretty straightforward, simply because our transforma-
tion leaves no extra insecurities that would allow extraction of either the choice bit b or
the message Σ

b
not selected by the receiver. Yet in the following we provide a full proof of

privacy.

28.2.1. Sender Privacy

We first define the privacy notion of classical OT protocols in a game-based notion:

Definition 28.2.1 (Sender-Privacy in Oblivious Transfer). Let Ot be an oblivious transfer

protocol. Ot provides computational sender-privacy if for all PPT adversariesA it holds that

the following probability is negligible in the security parameter ^:

Pr

⎡⎢⎢⎢⎢⎢⎢⎣ (msg0,msg1) = (msg
∗
0,msg

∗
1)

|︁|︁|︁|︁|︁|︁|︁|︁
(msg0,msg1)

$←{0, 1}2n,

(b, st) ← A0(1^),
𝜏 ← Ot((msg0,msg1), b),
(msg

∗
0,msg

∗
1) ← A1(𝜏, st, TR)

⎤⎥⎥⎥⎥⎥⎥⎦ (28.5)

283

28. Undetectable Oblivious Transfer Instantiation

The definition enforces that the adversary cannot extract both bits input by the sender.
While the bit msg

b
is easy to extract given the transcript, the state of A0 and the random

tape TR, we enforce that the other bitmsg
b
cannot be determined better than by guessing.

Definition 28.2.2 (Receiver-Privacy in Oblivious Transfer). LetOt be an Oblivious Transfer
protocol. Ot provides computational receiver-privacy if for all PPT adversaries A it holds

that: |︁|︁|︁|︁|︁|︁|︁|︁ Pr

⎡⎢⎢⎢⎢⎢⎢⎣ b = b
∗

|︁|︁|︁|︁|︁|︁|︁|︁
(msg0,msg1, st) ← A0(1^),
b

$←{0, 1},
𝜏 ← Ot((msg0,msg1), b),
b
∗ ← A1(𝜏, st, T S)

⎤⎥⎥⎥⎥⎥⎥⎦ − 1/2

|︁|︁|︁|︁|︁|︁|︁|︁ ∈ negl(^) (28.6)

This definition is practically the same as that for sender-privacy in Definition 28.2.1 but
lets the adversary play as the (semi-honest) sender who has to recover the choice bit by
the receiver.

With that we can prove the following claim:

Lemma 28.2.3 (Privacy of the Undetectable Oblivious Transfer protocol). Let Π𝐶𝑂𝑇 be an

OT protocol with overwhelming sender-privacy. Then Π𝑈𝑂𝑇 from Fig. 28.1 is private for both

parties.

Proof. We show separately the sender and receiver privacy.

Sender-Privacy

Any COT protocol automatically fulfills the privacy requirement of an ordinary OT from
Definition 28.2.1, as such we reduce sender privacy of Π𝑈𝑂𝑇 to the sender privacy of Π𝐶𝑂𝑇 .
To that end, let A𝑔𝑢𝑒𝑠𝑠 be a guessing algorithm that breaks the sender privacy of Π𝑈𝑂𝑇 with
non-negligible advantage 𝛼 . From A𝑔𝑢𝑒𝑠𝑠 we construct an adversary A who breaks the
condition from Eq. (28.5) as follows:

A asks A𝑔𝑢𝑒𝑠𝑠0 for receiver input b and hands this to the challenger C𝐶𝑂𝑇 of the COT
sender privacy game. From C𝐶𝑂𝑇 , A obtains a transcript 𝜏 of sent messages. A simulates
inserting each sender message of 𝜏 into ΠATn with receivers PR and PD and each receiver
message into Π𝐴𝑇 with receivers PS and PD.

This results in a transcript of Π𝑈𝑂𝑇 which A hands to A𝑔𝑢𝑒𝑠𝑠 . Eventually A𝑔𝑢𝑒𝑠𝑠 returns a
tuple (msg

∗
0,msg

∗
1) which A hands directly to the challenger C𝐶𝑂𝑇 .

Note that if A𝑔𝑢𝑒𝑠𝑠 is correct, then so is A, and if A𝑔𝑢𝑒𝑠𝑠 is incorrect then the guess of A is
also wrong, as the simulation did not change the sent messages.

Thus if A𝑔𝑢𝑒𝑠𝑠 has non-negligible advantage then so has A, which it does not have by
requirement.

Receiver Privacy

284

28.3. Anonymity

P0 sender
Π𝐴𝑇 with receiver PS :
(msg𝐶𝑂𝑇 R,⊥)
Π𝐴𝑇 with receiver P0 :
(⊥,⊥)
Π𝐴𝑇 with receiver P1 :
(msg𝐶𝑂𝑇 R,⊥)
Π𝐴𝑇 with receiver PS :
(⊥,⊥)
Π𝐴𝑇 with receiver P0 :
(msg𝐶𝑂𝑇 S,⊥)
Π𝐴𝑇 with receiver P1 :
(msg𝐶𝑂𝑇 S,⊥)

P1 sender
Π𝐴𝑇 with receiver PS :
(msg𝐶𝑂𝑇 R,⊥)
Π𝐴𝑇 with receiver P0 :
(msg𝐶𝑂𝑇 R,⊥)
Π𝐴𝑇 with receiver P1 :
(⊥,⊥)
Π𝐴𝑇 with receiver PS :
(⊥,⊥)
Π𝐴𝑇 with receiver P0 :
(msg𝐶𝑂𝑇 S,⊥)
Π𝐴𝑇 with receiver P1 :
(msg𝐶𝑂𝑇 S,⊥)

Figure 28.2.: The two distributions we have to prove indistinguishable in case the adversary A𝑔𝑢𝑒𝑠𝑠 0 picks
the sender.

We let A𝑔𝑢𝑒𝑠𝑠 be a guessing algorithm attacking the receiver privacy of Π𝑈𝑂𝑇 and construct
an adversary A attacking the receiver privacy of Π𝐶𝑂𝑇 with the same success probability.
The adversary asks A𝑔𝑢𝑒𝑠𝑠 for the senders input (msg0,msg1) ∈ {0, 1}2 and forwards that
to the challenger C𝐶𝑂𝑇 . The obtained transcript 𝜏 is translated into a transcript for Π𝑈𝑂𝑇
by simulating the AT with the inputs being the messages reported by the respective parties,
where the input by the dummy friend is constantly ⊥.

A then hands the transcript over to A𝑔𝑢𝑒𝑠𝑠 who guesses a bit b. The bit is then forwarded
to C𝐶𝑂𝑇 .

Again, the transformation did not change any values, hence if A𝑔𝑢𝑒𝑠𝑠 is correct with
probability 1/2 + 𝛼 then A is also correct with probability 1/2 + 𝛼 . The latter, however, is
not possible by requirement from Π𝐶𝑂𝑇 , which concludes our proof.

28.3. Anonymity

As the adversary is given the choice to corrupt any party we consider each potential party
individually and show the two distributions that need to be indistinguishable.

285

28. Undetectable Oblivious Transfer Instantiation

28.3.1. Corrupted Sender

The guessing algorithm has to distinguish the following two distributions:

{(Σ0, Σ1)
$←{0, 1}2n, b

$←{0, 1} : 𝜏 $←⟨PR, P0, P1⟩(b, (Σ0, Σ1),⊥)}
≈{(Σ0, Σ1)

$←{0, 1}2n, b
$←{0, 1} : 𝜏 $←⟨PR, P0, P1⟩(b,⊥, (Σ0, Σ1))}

(28.7)

In this section we prove anonymity against any adversary that corrupts the sender after
the execution. This adversary then has to guess which of the remaining parties acted as a
receiver and which was the dummy friend.

The two possible transcripts if he sender is fixed are depicted in Fig. 28.2.

The single game required for that—which is actually the same as in Fig. 28.2.

The formal description is as follows:

GAME1(^): This is the original game where the sender is PS and the receiver is PR.

GAME2(^): This game is as Game1(^) but in providing the transcript the simulator follows
Game1(^) for the first round but inserts msg

(0)
R in the name of the dummy friend

and msg
(0)
D in the name of the receiver into Π𝐴𝑇 (S). Note that this corresponds to

the final distribution from Fig. 28.2.

Lemma 28.3.1. Let Pke be an IND$-CCA secure public-key encryption scheme. Let

Ske be an IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA

secure signature scheme. For all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing

advantage for Game1(^) and Game2(^) is bounded by:

|Pr[outGame1 (^) = 1] − Pr[outGame2 (^) = 1] | ∈ negl(^)

Proof. We reduce to the 𝛿-anonymity of Π𝐴𝑇 . If there was some distinguisher D
who can distinguish Game1(^) from Game2(^) with advantage 1/2 + 𝛼 then there is
some adversary A (which implies a guessing algorithm A𝑔𝑢𝑒𝑠𝑠) who can determine
the sender with advantage 𝛼 . The limit 𝛿 then provides an upper bound on 𝛼 .

Creating the transcript. We denote by C𝐴𝑇 the challenger for the anonymity-game
of Π𝐴𝑇 . A determines the message to-be-transferred as ΠR

𝐶𝑂𝑇
(b), that is, the first

message sent by a receiver in Π𝐶𝑂𝑇 who wants to receive msg
b
. From that C𝐴𝑇

returns a transcript of the Π𝐴𝑇 instance, whichA inserts into the transcript provided
to the distinguisher D instead of honestly simulating the first Π𝐴𝑇 instance where
the sender S of the AT is the receiver, the remainder is simulated as-is.

286

28.3. Anonymity

P0 sender
Π𝐴𝑇 with receiver P0 :
(msg𝐶𝑂𝑇 R,⊥)
Π𝐴𝑇 with receiver P1 :
(msg𝐶𝑂𝑇 R,⊥)
Π𝐴𝑇 with receiver PR :
(⊥,⊥)
Π𝐴𝑇 with receiver P0 :
(⊥,⊥)
Π𝐴𝑇 with receiver P1 :
(msg𝐶𝑂𝑇 S,⊥)
Π𝐴𝑇 with receiver PR :
(msg𝐶𝑂𝑇 S,⊥)

P1 sender
Π𝐴𝑇 with receiver P0 :
(msg𝐶𝑂𝑇 R,⊥)
Π𝐴𝑇 with receiver P1 :
(msg𝐶𝑂𝑇 R,⊥)
Π𝐴𝑇 with receiver PR :
(⊥,⊥)
Π𝐴𝑇 with receiver P0 :
(msg𝐶𝑂𝑇 S,⊥)
Π𝐴𝑇 with receiver P1 :
(⊥,⊥)
Π𝐴𝑇 with receiver PR :
(msg𝐶𝑂𝑇 S,⊥)

Figure 28.3.: The two distributions we have to prove indistinguishable in case the adversary A𝑔𝑢𝑒𝑠𝑠 0 picks
the receiver.

Translating the result. Eventually D returns a guess which is either Game1(^) or
Game2(^). In case D assumes to be in Game1(^) we assume the party we refer to
as PR is the sender, and if D assumes to be in Game2(^) we let A refer to PD as the
sender in the AT.

As can be seen the distributions match perfectly, as the only change is the sender
and that one perfectly translates to our problem of de-anonymization.

Thus it follows that D is correct with probability

Pr[D correct] ≤ 1/2 + 𝛼
=⇒ |Pr[D correct] − 1/2| = |𝛼 | = 𝛼 ≤ (1 − 𝛿)/2

(28.8)

and thus if the adversary corrupts the sender then the protocol provides 𝛿-Anonymity
where 𝛿 is inherited from Π𝐴𝑇 .

28.3.2. Corrupted Receiver

In this section we analyze the anonymity of the remaining parties provided that the
adversary corrupts the receiver of the message. In this case the party PR is fixed and the
adversary has to distinguish between the two cases depicted in Fig. 28.3: Either P0 is the

287

28. Undetectable Oblivious Transfer Instantiation

sender and P1 is the dummy friend or vice versa. The guessing algorithm has to distinguish
the following two distributions:

{(Σ0, Σ1)
$←{0, 1}2n, b

$←{0, 1} : 𝜏 $←⟨PR, P0, P1⟩(b, (Σ0, Σ1),⊥)}
≈{(Σ0, Σ1)

$←{0, 1}2n, b
$←{0, 1} : 𝜏 $←⟨PR, P0, P1⟩(b,⊥, (Σ0, Σ1))}

(28.9)

To prove the hardness of distinguishing these two cases we proceed as follows:

The formal description is as follows:

GAME1(^): This is the original game where the sender is PS and the receiver is PR.

GAME2(^): This game is as Game1(^) but in providing the transcript the simulator follows
Game1(^) for the first round but inserts msg

(1)
S in the name of the dummy friend and

msg
(1)
D in the name of the sender into Π𝐴𝑇 (R). Note that this corresponds to the final

distribution from Fig. 28.3.

Lemma 28.3.2. Let Pke be an IND$-CCA secure public-key encryption scheme. Let

Ske be an IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA

secure signature scheme. For all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing

advantage for Game1(^) and Game2(^) is bounded by:

|Pr[outGame1 (^) = 1] − Pr[outGame2 (^) = 1] | ∈ negl(^)

Proof. We reduce to the 𝛿-anonymity of Π𝐴𝑇 . If there was some distinguisher D
who can distinguish Game1(^) from Game2(^) with advantage 1/2 + 𝛼 then there is
some adversary A (which implies a guessing algorithm A𝑔𝑢𝑒𝑠𝑠) who can determine
the sender with advantage 𝛼 . The limit 𝛿 then provides an upper bound on 𝛼 .

Creating the transcript. We denote by C𝐴𝑇 the challenger for the anonymity-game
of Π𝐴𝑇 . A determines the message to-be-transferred as ΠS

𝐶𝑂𝑇
(msg0,msg1, Σ), that

is, the response sent by a sender in Π𝐶𝑂𝑇 after having received the first message
by the receiver. Note that Σ is the result of the first Π𝐴𝑇 instance where R inserts
the message, and we take the output of that which only corresponds to the desired
message ΠR

𝐶𝑂𝑇
(b) with probability 1/2 + Y/2. However, we stress that this is not

important to our proof, as the relevant part is only the insertion of that message as
transferred message into the instance of Π𝐴𝑇 where PR is the receiver and which is
played with the challenger C𝐴𝑇 .

C𝐴𝑇 returns a transcript of the Π𝐴𝑇 instance, which A inserts into the transcript
provided to the distinguisher D instead of honestly simulating the second Π𝐴𝑇
instance where the receiver R of the AT is also the receiver of the OT, the remainder
is simulated as-is.

288

28.3. Anonymity

P0 sender
Π𝐴𝑇 with receiver PD :
(msg𝐶𝑂𝑇 R,⊥)
Π𝐴𝑇 with receiver P0 :
(msg𝐶𝑂𝑇 R,⊥)
Π𝐴𝑇 with receiver P1 :
(⊥,⊥)
Π𝐴𝑇 with receiver PD :
(msg𝐶𝑂𝑇 S,⊥)
Π𝐴𝑇 with receiver P0 :
(⊥,⊥)
Π𝐴𝑇 with receiver P1 :
(msg𝐶𝑂𝑇 S,⊥)

P1 sender
Π𝐴𝑇 with receiver PD :
(msg𝐶𝑂𝑇 R,⊥)
Π𝐴𝑇 with receiver P0 :
(⊥,⊥)
Π𝐴𝑇 with receiver P1 :
(msg𝐶𝑂𝑇 R,⊥)
Π𝐴𝑇 with receiver PD :
(msg𝐶𝑂𝑇 S,⊥)
Π𝐴𝑇 with receiver P0 :
(msg𝐶𝑂𝑇 S,⊥)
Π𝐴𝑇 with receiver P1 :
(⊥,⊥)

Figure 28.4.: The two distributions we have to prove indistinguishable in case the adversary A𝑔𝑢𝑒𝑠𝑠 0 picks
the dummy friend.

Translating the result. Eventually D returns a guess which is either Game1(^) or
Game2(^). In case D assumes to be in Game1(^) we assume the party we refer to
as PS is the sender, and if D assumes to be in Game2(^) we let A refer to PD as the
sender in the AT.

As can be seen the distributions match perfectly, as the only change is the sender
and that one perfectly translates to our problem of de-anonymization.

Thus it follows that D is correct with probability

Pr[D correct] ≤ 1/2 + 𝛼
=⇒ |Pr[D correct] − 1/2| = |𝛼 | = 𝛼 ≤ (1 − 𝛿)/2

(28.10)

and thus if the adversary corrupts the sender then the protocol provides 𝛿-Anonymity
where 𝛿 is inherited from Π𝐴𝑇 .

28.3.3. Corrupted Dummy Friend

If the adversary corrupts the dummy friend after the execution of the Undetectable Oblivi-
ous Transfer protocol then it is guaranteed that the two remaining parties are the sender
and the receiver.

{(Σ0, Σ1)
$←{0, 1}2n, b

$←{0, 1} : 𝜏 $←⟨P0, P1, PD⟩((Σ0, Σ1), b,⊥)}
≈{(Σ0, Σ1)

$←{0, 1}2n, b
$←{0, 1} : 𝜏 $←⟨P0, P1, PD⟩(b, (Σ0, Σ1),⊥)}

(28.11)

289

28. Undetectable Oblivious Transfer Instantiation

However, distinguishing which is which is hard; to prove this claim we use the following
games:

GAME1(^): This game is the original game where the sender is PS and the receiver is PR.

GAME2(^): This game is as Game1(^) but in providing the transcript the simulator follows
Game1(^) for the first round but inserts msg

(0)
R in the name of the sender and msg

(0)
S

in the name of the receiver into Π𝐴𝑇 (D).

Lemma 28.3.3. Let Pke be an IND$-CCA secure public-key encryption scheme. Let

Ske be an IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA

secure signature scheme. For all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing

advantage for Game1(^) and Game2(^) is bounded by:

|Pr[outGame1 (^) = 1] − Pr[outGame2 (^) = 1] | ∈ negl(^)

Proof. We reduce to the 𝛿-anonymity of Π𝐴𝑇 . If there was some distinguisher D
who can distinguish Game1(^) from Game2(^) with advantage 1/2 + 𝛼 then there is
some adversary A (which implies a guessing algorithm A𝑔𝑢𝑒𝑠𝑠) who can determine
the sender with advantage 𝛼 . The limit 𝛿 then provides an upper bound on 𝛼 .

Creating the transcript. We denote by C𝐴𝑇 the challenger for the anonymity-game
of Π𝐴𝑇 . A determines the message to-be-transferred as ΠR

𝐶𝑂𝑇
(b), that is, the first

message sent by a receiver in Π𝐶𝑂𝑇 who wants to receive msg
b
. From that C𝐴𝑇

returns a transcript of the Π𝐴𝑇 instance, whichA inserts into the transcript provided
to the distinguisher D instead of honestly simulating the first Π𝐴𝑇 instance where
the sender S of the AT is the dummy friend, the remainder is simulated as-is.

Translating the result. Eventually D returns a guess which is either Game1(^) or
Game2(^). In case D assumes to be in Game1(^) we assume the party we refer to
as PR is the sender, and if D assumes to be in Game2(^) we let A refer to PS as the
sender in the AT.

As can be seen the distributions match perfectly, as the only change is the sender
and that one perfectly translates to our problem of de-anonymization.

Thus it follows that D is correct with probability

Pr[D correct] ≤ 1/2 + 𝛼
=⇒ |Pr[D correct] − 1/2| = |𝛼 | = 𝛼 ≤ (1 − 𝛿)/2

(28.12)

and thus if the adversary corrupts the sender then the protocol provides 𝛿-Anonymity
where 𝛿 is inherited from Π𝐴𝑇 .

GAME3(^): This game is as Game2(^) but in providing the transcript the simulator follows
Game2(^) but inserts msg

(1)
S in the name of the receiver and msg

(1)
R in the name of

the sender into Π𝐴𝑇 (D).

290

28.3. Anonymity

Lemma 28.3.4. Let Pke be an IND$-CCA secure public-key encryption scheme. Let

Ske be an IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA

secure signature scheme. For all PPT guessing algorithms A𝑔𝑢𝑒𝑠𝑠 , the distinguishing

advantage for Game2(^) and Game3(^) is bounded by:

|Pr[outGame2 (^) = 1] − Pr[outGame3 (^) = 1] | ∈ negl(^)

Proof. We reduce to the 𝛿-anonymity of Π𝐴𝑇 . If there was some distinguisher D
who can distinguish Game2(^) from Game3(^) with advantage 1/2 + 𝛼 then there is
some adversary A (which implies a guessing algorithm A𝑔𝑢𝑒𝑠𝑠) who can determine
the sender with advantage 𝛼 . The limit 𝛿 then provides an upper bound on 𝛼 .

Creating the transcript. We denote by C𝐴𝑇 the challenger for the anonymity-game
of Π𝐴𝑇 . A determines the message to-be-transferred as ΠS

𝐶𝑂𝑇
(msg0,msg1, Σ), that

is, the response sent by a sender in Π𝐶𝑂𝑇 after having received the first message
by the receiver. Note that Σ is the result of the first Π𝐴𝑇 instance where S inserts
the message and sends it to R since Game2(^) (where the roles for the first round
has been changed), and we take the output of that which only corresponds to the
desired message ΠR

𝐶𝑂𝑇
(b) with probability 1/2 + Y/2. However, we stress that this is

not important to our proof, as the relevant part is only the insertion of that message
as transferred message into the instance of Π𝐴𝑇 where PR is the receiver and which
is played with the challenger C𝐴𝑇 .

C𝐴𝑇 returns a transcript of the Π𝐴𝑇 instance, which A inserts into the transcript
provided to the distinguisher D instead of honestly simulating the second Π𝐴𝑇
instance where the receiver R of the AT is also the receiver of the OT, the remainder
is simulated as-is.

Translating the result. Eventually D returns a guess which is either Game2(^) or
Game3(^). In case D assumes to be in Game2(^) we assume the party we refer to
as PS is the sender, and if D assumes to be in Game3(^) we let A refer to PR as the
sender in the AT.

As can be seen the distributions match perfectly, as the only change is the sender
and that one perfectly translates to our problem of de-anonymization.

Thus it follows that D is correct with probability

Pr[D correct] ≤ 1/2 + 𝛼
=⇒ |Pr[D correct] − 1/2| = |𝛼 | = 𝛼 ≤ (1 − 𝛿)/2

(28.13)

and thus if the adversary corrupts the sender then the protocol provides 𝛿-Anonymity
where 𝛿 is inherited from Π𝐴𝑇 .

Given that this is the least efficient strategy it thus follows that the anonymity is bounded
by 𝛿 for any possible A𝑔𝑢𝑒𝑠𝑠0 corrupting any party.

291

29. Towards Undetectable Multi-Party
Computation

In this section, we make a first step to define Undetectable Multi-Party Computation by
providing an informal definition of the security requirement in Section 29.1 and a candidate
instantiation for Undetectable Two-Party Computation (U2PC) in Section 29.2.

29.1. Defining Undetectable Multi-Party Computation

In this section, we informally define the security requirements of Undetectable Multi-Party
Computation as the increment to the respective definition of Undetectable Oblivious
Transfer from Section 27.1.

Again, we have K individuals, but now N of them are trying to compute a function f on N

secret inputs.

Y-Correctness: This definition puts a lower bound on the probability that all players obtain
the correct result of f evaluated on the N inputs.

𝛿-Anonymity: This definition puts an upper bound on the advantage of any of theK players
to determine which of the

(︁
K−1
N−1

)︁
subsets of remaining individuals has participated in

the execution.

Privacy: This definition limits the amount of information that can be extracted on the
other participants inputs beyond what can be inferred from the function output.

29.2. Towards constructing Undetectable Two-Party
Computation from Undetectable Oblivious Transfer

We provide a candidate construction for the simpler case of N = 2 which we call Unde-
tectable Two-Party Computation. That is, two parties out of K try to compute a bivariate
function f on their respective secret inputs. To that end we use a covert two-party com-
putation protocol like that from von Ahn, Hopper, and Langford [133] that uses COT for
communication and replace all invocations of COT between the sender and the receiver
by invocations of Undetectable Oblivious Transfer between all participants. That way,

293

29. Towards Undetectable Multi-Party Computation

the message is transferred from the sender to the receiver without leaking information
regarding the identity of the respective parties.

Assuming an (Y, 𝛿, c, n)-Undetectable Oblivious Transfer with Y ∈ owhl(^), the protocol
Π𝑈𝑀𝑃𝐶 for computing a bivariate function f using Undetectable Two-Party Computation
we obtain by replacing all COTs by UOTs in [133, Protocol 3] is a (Y, 𝛿, c · |𝑓 |)-Undetectable
Two-Party Computation.

The protocol by von Ahn, Hopper, and Langford [133] essentially uses garbled circuits [139]
and distributes the keys using COT instead of using classical OT. The protocol we propose
replaces the COTs with UOTs where from the K parties only two are actually participating,
one as sender and one as receiver.

Assuming that each UOT is correct with overwhelming probability the correctness of the
entire scheme then follows from the correctness of garbled circuits.

Anonymity remains the same as in order to determine any of the participating parties, the
only way is to de-anonymize any of the UOTs, the success probability of which is bounded
by 𝛿 .

Privacy is inherited by the Garbled Circuits; since the Undetectable Oblivious Transfers
are private as well our changes induce no additional leakage.

Finally, note that for a garbled circuit we require |f | many OTs and each requires c rounds,
resulting in the new number of rounds.

294

30. Conclusion

While Secure Multi-Party Computation has been known as a tool to hide the inputs since
the 80s [139, 78], it was only in 2005 when the first methods were propose that would also
hide the computation itself. This was first proposed for the two-party setting [133] and
later extended to the K-party case [48]. Except for a fitness function that has to be fulfilled
and which decides whether the output is favorable to all parties or not, participants only
learn the output if all parties followed the protocol. While this implicitly makes sense for
a two-party protocol—if only one party follows the protocol then there is nothing to be
learned from the interaction—it comes as a restriction if we consider K > 2, as a single
non-participant can ruin the entire computation.

We investigated whether a stronger expansion to K is actually possible, where out of the
K parties present we know a priori that N parties are performing the computation; we
want the participants to learn the output while hiding their computation in the existing
communication, such that no participant knows the identity of the other individuals who
took part in the computation.

We defined what wemean by this in Chapter 29 and showed there that it can be instantiated
using a new tool called Undetectable Oblivious Transfer, which lets K parties perform an
OT where one party is the sender, one party is the receiver, and the remaining parties are
uninvolved bystanders. The protocol transfers the correct message chosen by the receiver,
but neither reveals the real identities of the parties, nor their respective inputs.

We instantiated an Undetectable Oblivious Transfer protocol based on Covert Oblivious
Transfer and Anonymous Transfer in Chapter 28. While Covert Oblivious Transfer al-
ready existed before and has been instantiated by von Ahn, Hopper, and Langford [133],
Anonymous Transfer is a new primitive that we defined in Chapter 23. It lets one of K − 1
potential senders send a bit (resp. a message) to the receiver, without revealing who the
actual sender was.

We investigated feasibility of Anonymous Transfer. We first provided a negative result
in Chapter 24 where we showed that in the asymptotic setting, Anonymous Transfer
with overwhelming correctness and anonymity is not possible, meaning that AT is in
Impossibilitopia in the extended worlds from Impagliazzo [89]. Then, in Chapters 25 and 26
we showed that in a weaker, fine-grained setting, AT with constant anonymity is indeed
possible when assuming idealized obfuscation. If the anonymity of this could be raised to
be overwhelming in the security parameter then AT would separate the extended worlds
of Impagliazzo [89] at the highest level.

295

Acronyms

AT Anonymous Transfer.

BK Bookkeeping.

BKA Bookkeeping and Analytics.

cf. confer.

CH Controlled Hadamard.

CMPC Covert Multi-Party Computation.

COT Covert Oblivious Transfer.

CRS Common Reference String.

e.g. exempli gratia.

EUF-CMA Existential Unforgeability under Chosen Message Attacks.

FHE Fully Homomorphic Encryption.

FP Function Parameter.

H Hadamard.

i.e. id est.

IND-CCA Indistinguishability under Chosen Ciphertext Attacks.

IND-CPA Indistinguishability under Chosen Plaintext Attacks.

IND$-CCA Indistinguishability from Random under Chosen Ciphertext Attacks.

IND$-CPA Indistinguishability from Random under Chosen Message Attacks.

INDD Indistinguishability from Random.

ITM Interactive Turing Machine.

LR Left-Right.

297

Acronyms

MPC Secure Multi-Party Computation.

NIZK Non-Interactive Zero Knowledge.

NIZKPoK Non-Interactive Zero-Knowledge Proof of Knowledge.

NP Nondeterministic Polyomial time.

OA Outsourced Analytics.

OMA Obfuscated Measurement Attack.

ORR Onion-Routing with Replies.

OS Outsource.

OT Oblivious Transfer.

OTP One Time Pad.

PAF Privacy Amplification Function.

pid Party Identifier.

PKE Public Key Encryption.

PKI Public-Key Infrastructure.

POV Positive Operator-Valued.

PPT Probabilistic Polyonmial time.

PRF Pseudorandom Function.

q-IND-CPA Quantum Indistinguishability under Chosen Plaintext Attacks.

QCom Quantum Commitment.

QD Quantum Decay.

QFHE Quantum Fully Homomorphic Encryption.

QFHET Quantum Fully Homomorphic Encryption Tuple.

QOT Quantum Oblivious Transfer.

QOTP Quantum One Time Pad.

QPT Quantum Polynomial time.

QRO Quantum Random Oracle.

QROM Quantum Random Oracle Model.

Reg Registration.

298

Acronyms

ROM Random Oracle Model.

RSS Robust Secret Sharing.

s.t. such that.

sEUF-CMA Strong Existential Unforgeability under Chosen Message Attacks.

SFE Secure Function Evaluation.

SFP Sign Function Parameter.

sid Session Identifier.

SKE Symmetric Key Encryption.

SMT Secure Message Transfer.

SRAT Silent Receiver Anonymous Transfer.

ssid Subsession Identifier.

T Toffoli.

TSA Trusted Signing Authority.

TTP Trusted Third Party.

U2PC Undetectable Two-Party Computation.

UC Universal Composability.

UH User History.

UI Update Information.

UMPC Undetectable Multi-Party Computation.

UOT Undetectable Oblivious Transfer.

Upd Update.

UReg User Registration.

w.l.o.g. without loss of generality.

ZK Zero Knowledge.

299

Symbols

A: The adversary, that is, a malicious party in any security framework.

A: A generic algorithm, that is, a set of instructions executed by a single party.

𝑎: Part of the result of a (direct two-party) computation between a user and the operator.
It represents a vector of Zo elements that should be added to the User History..

𝛼 : The advantage of an adversary, that is, a value quantifying how much better than
randomly guessing the adversary really is.

𝛼 : Part of the result of a (direct two-party) computation between a user and the operator.
It contains a permutation that should be applied to the User History.

B: The adversary, that is, a malicious party in any security framework. In Part II we use
this to denote the QPT adversary.

b⃗: The basis vector containing vectors from {+,×}.

b: A bit.

B: The bases (1/2 · |0⟩ + 1/2 · |+⟩, 1/2 · |1⟩ + 1/2 · |−⟩).

×: The diagonal basis states (|+⟩, |−⟩).

+: The rectangular basis states (|0⟩, |1⟩).

bC: The transferred bit in the challenge transcript.

Ber: A bernoulli-distribution which returns 1 with probability p.

𝛽: The bit that is sampled by a challenger C in a security game which has to be guessed
by the adversary.

C: The challenger in a game-based reduction.

C: The challenge a challenger C provides to the adversary in a game-based proof.

𝒞: A linear code.

C: The committer.

c: The number of rounds in an interactive protocol.

𝒸: A codeword from a code 𝒞.

301

Symbols

CAdd: The method of a (homomorphic) commitment scheme to homomorphically add
two commitments.

cb: A (classical) control bit that is used to trigger a quantum gate in Part II of this thesis.

cct: The control bit ciphertext, that is, an encryption of a classical control bit that is used
to trigger a quantum gate in Part II of this thesis.

𝜒: An intermediate round in an interactive protocol.

cod: The codomain, that is, the (finite) output space of a method or oracle.

CointossS: A function realizing a (biased) coin toss. We write CointossS(r)(p) (𝑥,𝑦) to denote
the coin toss that returns 𝑥 with probability p and 𝑦 with probability (1 − p), where
the randomness is extracted from the input r .

COM: A commitment scheme.

Com: The method of a commitment scheme to commit to a message.

com: The message that commits a party to a bit (or a string of bits).

crs: The common reference string, that is, a global string accessible to all parties that was
sampled from a known distribution.

CS: The ciphertext space.

ct: A cipher text, that is, an encrypted message.

𝒟: The codeword distance, that is, the minimum distance of two codewords (𝒸,𝒸′) ∈ 𝒞.

D: The distinguisher, i.e. a QPT algorithm which distinguishes two distributions.

D: A distribution.

D: The dummy friend who is not participating in any protocol but is still present for some
reason.

Dec: A method of an encryption scheme to decrypt a given ciphertext with a given key to
obtain a message.

𝛿: The measurement of anonymity for an AT or UOT protocol.

dH: TheHellinger Distance, defined over two probability distributions𝑝 and𝑞 as dH(𝑝, 𝑞) ≔
1√
2

√︂∑︁
𝑖

(︁√
𝑝𝑖 −
√
𝑞𝑖

)︁2.

dHam: The hamming distance between two bit strings.

dTV: The Total Variational Distance, defined over two probability dis tributions 𝑝 and 𝑞 as
dTV(𝑝, 𝑞) ≔ 1

2
∑︁
𝑖 |𝑝𝑖 − 𝑞𝑖 |.

dom: The (preimage) domain of a method or oracle, that is, the (finite) input space.

302

Symbols

e: A pairing equation as part of a pairing group.

ek: The evaluation key of a homomorphic encryption scheme, can be used to deliberately
manipulate the clear text given only its ciphertext.

Enc: A method of an encryption scheme to encrypt a given message with a given key to
obtain a ciphertext.

encode: The encode function which encodes a given classical string into a quantum state
using Wiesners encoding in Part II of this thesis.

Y: The measurement of correctness for an AT or UOT protocol.

𝜖: The error rate, that is, the difference between the received codeword𝒸 and the measured
codeword 𝒸

′ in percent.

ES: The evaluation key space for a homomorphic encryption scheme.

Eval: Evaluation method of homomorphic encryption schemes. Enables manipulation of
a ciphertext such that the messages before and after the evaluation are in a (known)
relation to each other but the messages themselves remain hidden throughout the
process.

Evaluate: The method of an obfuscator O to evaluate a given program given only the
handle.

EXP: An experiment as part of a game.

ExtractWit: The method of a Zero Knowledge scheme that a simulator uses to (partially)
extract the witness from a zero knowledge proof given that SetupExt was used
instead of Setup.

F: The fidelity of two density matrices 𝜌1 and 𝜌2, that is, tr
(︂
(√𝜌1𝜌2

√
𝜌1)

1
2

)︂
.

F: A finite field.

F : An ideal functionality in a simulation-based framework.

f : The function that is to be evaluated in Secure Multi-Party Computation.

FC: A function class, that is, the set of functions that belong in a certain complexity class.

FHE: A fully homomorphic encryption scheme.

fp: The function parameters, that is, the set of parameters that define the computation.

�⃗� : A generator matrix spanning a linear code.

G: A (finite cyclic) group.

g: The generator of a group G.

GAME: The game in a game-hop based proof.

303

Symbols

𝛾 : The parameter defining the probability in a Bernoulli distribution to return 1.

Gen: The generate method to create the groups for a zero knowledge scheme.

H: The entropy of a random variable.

H: Quantum-gate for Hadamard-Transformation.

H: A helper that coordinates computations involving the data of several users and is
capable of more hardware-consuming computations in Part I of this thesis.

H : The hilbert space.

H: A hybrid game in a game-based proof system. Induces a slight change compared to its
neighbors that can not be distinguished.

h: The handle an obfuscator returns that enables evaluating the program.

𝒦: The dimenson of the vector space spanned by codewords 𝒸 ∈ 𝒞.

K : The number of individuals present during an MPC execution. Note that these parties
do not necessarily participate or know that a computation is in progress.

k: The number of inputs on which the value table of the random oracle provides different
outputs than the actual oracle would have provided.

k: The signing key of a signature scheme, can be used to sign a given message such that
third parties can verify the authenticity.

^: The security parameter.

|𝜓 ⟩: A quantum state.

|𝜙⟩: A quantum state that was encrypted using a Quantum One Time Pad.

KeyGen: A generic key generation method used for encryption and signature schemes.

ℓ: Running variable for the function parameters.

Λ: The language of a zero knowledge proof.

_: The logbook, that is, the amount of information the user stores regarding its current
state in Part I of this thesis.

lin: The linking number which is stored in a logbook in Part I of this thesis. If it is 0 then
no outsourcing-triplet has been started by the owner of the logbook. Otherwise, it is
some Zo-element which is shared with helper and operator and used for connecting
subsequent executions of Outsource, Outsourced Analytics and Update that belong
to the same user.

M: A mix-server for mix-nets such as TOR in Part I of this thesis.

304

Symbols

msg: A generic (plain text) message.

m: The length of the protocol messages.

measure: The measure function which measures a quantum state using provided bases b⃗

in Part II of this thesis.

MS: The message space.

msg
C: A message reported in the challenge transcript.

𝒩: The length of a codeword 𝒸 ∈ 𝒞.

N : The number of parties (actively) participating in a Secure Multi-Party Computation.

n: Bit-length of input messages.

negl: The set of functions that are negligible with respect to a given argument (usually
the security parameter ^), that is, the set of functions that asymptotically decrease
faster than any polynomial in the given argument.

a: A nonce (number used once).

O: An ideal obfuscator that obfuscates a given program.

O: The operator of the system in Part I.

O: An oracle. That is, a machine than can be queried and that returns the output in O(1).

o: The order of a group.

Obfuscate: The method of an obfuscator O to obfuscate a given program.

OT: Transfer protocol for an OT and UOT scheme.

OT: An Oblivious Transfer scheme.

otp: A one time pad, that is, binary string that information-theoretically hides a message.

otpC: The used One-Time-Pad in the challenge transcript.

out: Output of a party playing a cryptographic game.

owhl: The set of functions that are overwhelming with respect to a given argument
(usually the security parameter ^), that is, the set of functions that asymptotically
increase faster than any polynomial.

P: A party that is present during a protocol execution.

P: An obfuscated program that takes as input a transcript 𝜏 outputs a message Σ for the
receiver.

p: A probability distribution, i.e. a vector of probabilities where p[𝑖] = Pr[outp = 𝑖].
We sometimes write p𝑖 instead of p[𝑖] when convenient.

305

Symbols

p: A given probability.

𝜑: A quantum channel.

𝜙 : A value between 1 and K describing which player P𝜙 participates in the protocol.

𝜙C: The challenge player in a game-based proof.

Π: A protocol, that is, a set of instructions on how parties in a system interact and which
messages they send to each other.

𝜛: A random permutation on a given set.

𝜋 : The proof message of a (non-interactive) zero knowledge proof.

pid: The party identifier that is unique to each party.

pk: The public key of an encryption scheme, can be used to encrypt a message into a
cipher text.

PKE: A public key / asymmetric encryption scheme.

poly: The set of polynomials with respect to a given argument, that is, poly(^) denotes all
functions which can be described as 𝑎𝑐^𝑐 + 𝑎𝑐−1^

𝑐−1 + · · · + 𝑎1^ + 𝑎0 for any constant
𝑐 .

pp: The parameter for defining a (pairing) group.

PRF: A (quantum-resistant) Pseudorandom Function.

Proof : The method of a Zero Knowledge scheme a prover uses in order to create the proof
of a statement.

Ψ : The number of hops, i.e., intermediate mixservers, in the path for Onion-Routing with
Replies.

q: An other probability distribution, see the entry for p.

QD: The quantum distance, that is, the distance of two initially equivalent quantum states
after t oracle queries, each following a unitary transformation.

QFHE: A fully homomorphic encryption scheme over quantum inputs.

R: The receiving party.

r: A random value.

Rand: The rerandomization of the last round of an AT.

RC: A compressed oracle due to Zhandry [142].

Reconstruct: Reconstruction algorithm for an AT.

Rel A statement-witness-relation of an NP-language..

306

Symbols

RH : Random Oracle.

𝜌: A density matrix.

RQ: Quantum Random Oracle, that is, a Random Oracle that can be queried in superposi-
tion.

RS: The simulated (random) oracle a reduction algorithm provides for the distinguisher.

rs: The robust share of a value. A robust share for one party contains the additive share
itself, a commitment on the other parties share and unveil information on the com-
mitment the other party has on the own share.

S: The sending party.

S: The simulator in a simulation-based framework. The task of the simulator is to interact
witth an ideal functionality and create a transcript of an interaction for honest parties
in such a way, that this transcript can not be distinguished from one that honest
parties create when interacting according to a protocol – the interaction of honest
parties is simulated based on the interaction with the ideal functionality only.

S: A symmetric group, that is, the group of elements alongside all bijections/permutations
onto itself.

𝑠: Part of the result of a (direct two-party) computation between a user and the operator.
It represents a vector of Zo elements (or ⊥) that the User History should be set to
(except for the slots marked with ⊥).

s: The slack, that is, the difference between two variables x and y: if x < y, we can write
x + s = y, allowing for an easier analysis..

ser: The serial number to specify a revision of a logbook in Part I.

Setup: The setup method to create relevant parameters of a zero knowledge scheme.

SetupExt: The setup method to create relevant parameters of a zero knowledge scheme
such that the witness can be (partially) extracted by a simulator.

SetupSim: The setup method of a Zero Knowledge scheme to create relevant parameters
such that a simulator can forge a valid proof without knowing the witness.

sid: The session identifier.

SIG: A signature scheme.

Σ: The to-be-transferred message of a protocol.

𝜍 : The measurement of secrecy for an AT, which is high if the non-receiver is unable to
reconstruct the transferred bit better than by guessing.

𝜎: A signature that ensures authenticity of a message.

ΣC: The transferred message in the challenge transcript.

307

Symbols

Sign: A method of a signature scheme to create a signature of a given message for a given
signing key.

SimZK: The method of a Zero Knowledge scheme a simulator uses to forge a zero-
knowledge proof without the witness that will be accepted by the verifier if SetupSim
was used instead of Setup.

sk: The secret key of an encryption scheme, can be used to decrypt a cipher text.

SKE: A symmetric encryption scheme.

ssid: The subsession identifier.

st: The state of a party containing its memory storage and random tape.

stmt: The statement of a zero knowledge proof.

T: A third party in Part I that signs valid operator function parameters if they meet certain
security requirements.

T : The (random) tape of a player.

t: The number of queries allowed on a given oracle.

𝜏 : Transcript of a protocol.

𝜏C: The challenge transcript of a game-based proof.

td: A trapdoor with respect to a given CRS, that is, additional information from the
creation of the string that can be used in a simulation.

\ : A qubit that is used as control qubit for a quantum state.

𝜗 : The token (called temp by Kuhn et al. [103]) that links the message sent through the
onion network with its reply.

Transfer: The transfer protocol for an AT.

U: The uniform distribution.

U: The user of the system in Part I who collects validated data.

UAdd: The method of a (homomorphic) commitment scheme to homomorphically add
two unveil informations.

UH : The User History, that is, the set of authenticated data.

UI : The Update Information to update the User History.

Unv: The method of a commitment scheme to unveil a commitment to a message.

unv: The message that opens a given commitment message to its bit (or string of bits).

308

Symbols

Verify: The method of a Zero Knowledge scheme a verifier uses to verify a given proof of
a known statement.

Vfy: Amethod of a signature scheme to verify the integrity of a message given a signature
and a verification key.

view: The view of a given party, that is, the set of inputs, outputs and messages visible
to that party in a protocol execution or security game.

vk: The verification key of a signature scheme, suffices to check auth enticity of a signature
over a known message.

vkC: The verification key used in the challenge transcript.

w: A generic n-bit string we refer to as a word.

wit: The witness of a zero knowledge proof.

X : Parameterized by a value 𝜙 ∈ [K − 1], this is the value obtained in the program P𝐹𝐺−𝐴𝑇
after decrypting the message msg𝜙 with the supposed secret key sk𝜙 .

X: Quantum-gate for Negation.

x: The input that is given to a function f during a Secure Multi-Party Computation.

x: The binary (classic) key of a Quantum One Time Pad triggering the negation gate in
Part II of this thesis.

poly: An arbitrary polynomial used for the impossibility result in Part III of this thesis.

b: The noise rate of the quantum channel.

y: The output obtained from a function f during a Secure Multi-Party Computation.

Z: The environment in a simulation-basedmodel; models everything that happens outside
of the current execution.

Z: Quantum-gate for Phase Flip.

Z : The number of inputs (i.e. UHs from different users) a given function f requires for the
computation in Part I of this thesis.

z: The binary (classic) key of a Quantum One Time Pad triggering the phase shift gate in
Part II of this thesis.

Z : The current index of inputs (i.e. UHs from different users) a given function f requires
for the computation in Part I of this thesis.

ZK: A zero knowlege scheme.

309

Bibliography

[1] Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. “Optimal
Structure-Preserving Signatures in Asymmetric Bilinear Groups”. In: Advances in
Cryptology – CRYPTO 2011. Ed. by Phillip Rogaway. Vol. 6841. Lecture Notes in
Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug.
2011, pp. 649–666. doi: 10.1007/978-3-642-22792-9_37.

[2] Masayuki Abe, Markulf Kohlweiss, Miyako Ohkubo, and Mehdi Tibouchi. “Fully
Structure-Preserving Signatures and Shrinking Commitments”. In: Advances in
Cryptology – EUROCRYPT 2015, Part II. Ed. by Elisabeth Oswald and Marc Fischlin.
Vol. 9057. Lecture Notes in Computer Science. Sofia, Bulgaria: Springer, Heidelberg,
Germany, Apr. 2015, pp. 35–65. doi: 10.1007/978-3-662-46803-6_2.

[3] Ittai Abraham, Benny Pinkas, and Avishay Yanai. “Blinder - Scalable, Robust Anony-
mous Committed Broadcast”. In: ACM CCS 2020: 27th Conference on Computer and

Communications Security. Ed. by Jay Ligatti, Xinming Ou, Jonathan Katz, and
Giovanni Vigna. Virtual Event, USA: ACM Press, Nov. 2020, pp. 1233–1252. doi:
10.1145/3372297.3417261.

[4] Mark Adcock and Richard Cleve. “A Quantum Goldreich-Levin Theorem with
Cryptographic Applications”. In: STACS 2002, 19th Annual Symposium on Theoretical

Aspects of Computer Science, Antibes - Juan les Pins, France, March 14-16, 2002,

Proceedings. Ed. by Helmut Alt and Afonso Ferreira. Vol. 2285. Lecture Notes in
Computer Science. Springer, 2002, pp. 323–334. doi: 10.1007/3-540-45841-7_26.

[5] Thomas Agrikola, Geoffroy Couteau, and SvenMaier. “AnonymousWhistleblowing
over Authenticated Channels”. In: TCC 2022. Ed. by Eike Kiltz and Vinod Vaikun-
tanathan. Lecture Notes in Computer Science. To appear. Springer, Heidelberg,
Germany, Nov. 2022.

[6] Dorit Aharonov and Michael Ben-Or. “Fault-Tolerant Quantum Computation With
Constant Error”. In: 29th Annual ACM Symposium on Theory of Computing. El Paso,
TX, USA: ACM Press, May 1997, pp. 176–188. doi: 10.1145/258533.258579.

[7] Miklós Ajtai. “Generating Hard Instances of Lattice Problems (Extended Abstract)”.
In: 28th Annual ACM Symposium on Theory of Computing. Philadephia, PA, USA:
ACM Press, May 1996, pp. 99–108. doi: 10.1145/237814.237838.

[8] Gorjan Alagic, Yfke Dulek, Christian Schaffner, and Florian Speelman. “Quantum
Fully Homomorphic Encryption with Verification”. In: Advances in Cryptology –

ASIACRYPT 2017, Part I. Ed. by Tsuyoshi Takagi and Thomas Peyrin. Vol. 10624.
Lecture Notes in Computer Science. Hong Kong, China: Springer, Heidelberg,
Germany, Dec. 2017, pp. 438–467. doi: 10.1007/978-3-319-70694-8_16.

311

https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/978-3-662-46803-6_2
https://doi.org/10.1145/3372297.3417261
https://doi.org/10.1007/3-540-45841-7_26
https://doi.org/10.1145/258533.258579
https://doi.org/10.1145/237814.237838
https://doi.org/10.1007/978-3-319-70694-8_16

Bibliography

[9] Romain Alléaume, Jan Bouda, Cyril Branciard, Thierry Debuisschert, Mehrdad
Dianati, Nicolas Gisin, Mark Godfrey, Philippe Grangier, Thomas Länger, Anthony
Leverrier, Norbert Lütkenhaus, Philippe Painchault, Momtchil Peev, Andreas Poppe,
Thomas Pornin, John G. Rarity, Renato Renner, Gregoire Ribordy, Michel Riguidel,
Louis Salvail, Andrew Shields, Harald Weinfurter, and Anton Zeilinger. SECOQC
White Paper on Quantum Key Distribution and Cryptography. arXiv e-prints, Report
quant-ph/0701168. https://arxiv.org/abs/quant-ph/0701168. 2007.

[10] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. “Quantum Attacks
on Classical Proof Systems: The Hardness of Quantum Rewinding”. In: 55th An-

nual Symposium on Foundations of Computer Science. Philadelphia, PA, USA: IEEE
Computer Society Press, Oct. 2014, pp. 474–483. doi: 10.1109/FOCS.2014.57.

[11] Megumi Ando and Anna Lysyanskaya. “Cryptographic Shallots: A Formal Treat-
ment of Repliable Onion Encryption”. In: TCC 2021: 19th Theory of Cryptography

Conference, Part III. Ed. by Kobbi Nissim and Brent Waters. Vol. 13044. Lecture
Notes in Computer Science. Raleigh, NC, USA: Springer, Heidelberg, Germany,
Nov. 2021, pp. 188–221. doi: 10.1007/978-3-030-90456-2_7.

[12] Suzanna Andrews, Bryan Burrough, and Sarah Ellison. “The Snowden Saga: A
shadowland of secrets and light”. In: Vanity Fair 23 (2014).

[13] Diego F. Aranha, Conrado Porto Lopes Gouvêa, Tobias Markmann, Riad S. Wahby,
and Kevin Liao. RELIC is an Efficient LIbrary for Cryptography. https://github.
com/relic-toolkit/relic. 2020.

[14] Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebotys, and Julio
Cesar López-Hernández. “Faster Explicit Formulas for Computing Pairings over
Ordinary Curves”. In:Advances in Cryptology – EUROCRYPT 2011. Ed. by Kenneth G.
Paterson. Vol. 6632. Lecture Notes in Computer Science. Tallinn, Estonia: Springer,
Heidelberg, Germany, May 2011, pp. 48–68. doi: 10.1007/978-3-642-20465-4_5.

[15] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph Bardin, Rami Barends,
Rupak Biswas, Sergio Boixo, Fernando Brandao, David Buell, Brian Burkett, Yu
Chen, Jimmy Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew
Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Michael Gidney,
Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew Harrigan,
Michael Hartmann, Alan Ho, Markus Rudolf Hoffmann, Trent Huang, Travis Hum-
ble, Sergei Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi,
Julian Kelly, Paul Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, Dave
Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod
Ryan McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen,
Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Mur-
phy Yuezhen Niu, Eric Ostby, Andre Petukhov, John Platt, Chris Quintana, Eleanor
G. Rieffel, Pedram Roushan, Nicholas Rubin, Daniel Sank, Kevin J. Satzinger, Vadim
Smelyanskiy, Kevin Jeffery Sung, Matt Trevithick, Amit Vainsencher, Benjamin
Villalonga, Ted White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven,
and John Martinis. “Quantum Supremacy using a Programmable Superconducting
Processor”. In: Nature 574 (7779 Oct. 2019), pp. 505–510. doi: s41586-019-1666-5.

312

https://arxiv.org/abs/quant-ph/0701168
https://doi.org/10.1109/FOCS.2014.57
https://doi.org/10.1007/978-3-030-90456-2_7
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://doi.org/10.1007/978-3-642-20465-4_5
https://doi.org/s41586-019-1666-5

Bibliography

[16] Gilad Asharov, Shai Halevi, Yehuda Lindell, and Tal Rabin. “Privacy-Preserving
Search of Similar Patients in Genomic Data”. In: Proceedings on Privacy Enhancing

Technologies 2018.4 (2018), pp. 104–124. doi: 10.1515/popets-2018-0034.
[17] Michael Backes, Aniket Kate, Matteo Maffei, and Kim Pecina. “ObliviAd: Provably

Secure and Practical Online Behavioral Advertising”. In: 2012 IEEE Symposium on

Security and Privacy. San Francisco, CA, USA: IEEE Computer Society Press, May
2012, pp. 257–271. doi: 10.1109/SP.2012.25.

[18] European Central Bank. Average number of cash and card transactions per person

per day in the Euro Area in 2016, by country. Website. https://www.statista.com/
statistics/893459/average-number-of-transactions-per-person-per-day-

by-method/, last visited 2021-11-18. Nov. 2017.
[19] European Central Bank. Fifth Report on card fraud, September 2018. Website. https:

//www.ecb.europa.eu/pub/cardfraud/html/ecb.cardfraudreport201809.en.

html, last visited 2020-04-27. Sept. 2018.
[20] Paulo S. L. M. Barreto and Michael Naehrig. “Pairing-Friendly Elliptic Curves of

Prime Order”. In: SAC 2005: 12th Annual International Workshop on Selected Areas

in Cryptography. Ed. by Bart Preneel and Stafford Tavares. Vol. 3897. Lecture Notes
in Computer Science. Kingston, Ontario, Canada: Springer, Heidelberg, Germany,
Aug. 2006, pp. 319–331. doi: 10.1007/11693383_22.

[21] Donald Beaver, Silvio Micali, and Phillip Rogaway. “The Round Complexity of
Secure Protocols (Extended Abstract)”. In: 22nd Annual ACM Symposium on Theory

of Computing. Baltimore, MD, USA: ACM Press, May 1990, pp. 503–513. doi: 10.
1145/100216.100287.

[22] Mihir Bellare and Phillip Rogaway. “Entity Authentication and Key Distribution”.
In: Advances in Cryptology – CRYPTO’93. Ed. by Douglas R. Stinson. Vol. 773.
Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, Aug. 1994, pp. 232–249. doi: 10.1007/3-540-48329-2_21.

[23] Michael Ben-Or, Ran Canetti, and Oded Goldreich. “Asynchronous secure compu-
tation”. In: 25th Annual ACM Symposium on Theory of Computing. San Diego, CA,
USA: ACM Press, May 1993, pp. 52–61. doi: 10.1145/167088.167109.

[24] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. “Privacy Amplification
by Public Discussion”. In: SIAM Journal on Computing 17.2 (Apr. 1988), pp. 210–229.
doi: 10.1137/0217014.

[25] Charles Berret. Guide to SecureDrop. 2016. doi: 10.7916/D84178B2.
[26] Eli Biham, Yaron J. Goren, and Yuval Ishai. “Basing Weak Public-Key Cryptography

on Strong One-Way Functions”. In: TCC 2008: 5th Theory of Cryptography Con-

ference. Ed. by Ran Canetti. Vol. 4948. Lecture Notes in Computer Science. San
Francisco, CA, USA: Springer, Heidelberg, Germany, Mar. 2008, pp. 55–72. doi:
10.1007/978-3-540-78524-8_4.

313

https://doi.org/10.1515/popets-2018-0034
https://doi.org/10.1109/SP.2012.25
https://www.statista.com/statistics/893459/average-number-of-transactions-per-person-per-day-by-method/
https://www.statista.com/statistics/893459/average-number-of-transactions-per-person-per-day-by-method/
https://www.statista.com/statistics/893459/average-number-of-transactions-per-person-per-day-by-method/
https://www.ecb.europa.eu/pub/cardfraud/html/ecb.cardfraudreport201809.en.html
https://www.ecb.europa.eu/pub/cardfraud/html/ecb.cardfraudreport201809.en.html
https://www.ecb.europa.eu/pub/cardfraud/html/ecb.cardfraudreport201809.en.html
https://doi.org/10.1007/11693383_22
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1145/167088.167109
https://doi.org/10.1137/0217014
https://doi.org/10.7916/D84178B2
https://doi.org/10.1007/978-3-540-78524-8_4

Bibliography

[27] Johannes Blömer, Jan Bobolz, Denis Diemert, and Fabian Eidens. “Updatable Anony-
mous Credentials and Applications to Incentive Systems”. In: ACM CCS 2019: 26th

Conference on Computer and Communications Security. Ed. by Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz. London, UK: ACM Press,
Nov. 2019, pp. 1671–1685. doi: 10.1145/3319535.3354223.

[28] Manuel Blum. “Coin Flipping by Telephone”. In:Advances in Cryptology – CRYPTO’81.
Ed. by Allen Gersho. Vol. ECE Report 82-04. Santa Barbara, CA, USA: U.C. Santa
Barbara, Dept. of Elec. and Computer Eng., 1981, pp. 11–15.

[29] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler, Thomas
Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen,
Jakob Pagter, Michael I. Schwartzbach, and Tomas Toft. “Secure Multiparty Com-
putation Goes Live”. In: FC 2009: 13th International Conference on Financial Cryp-

tography and Data Security. Ed. by Roger Dingledine and Philippe Golle. Vol. 5628.
Lecture Notes in Computer Science. Accra Beach, Barbados: Springer, Heidelberg,
Germany, Feb. 2009, pp. 325–343.

[30] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner,
and Mark Zhandry. “Random Oracles in a Quantum World”. In: Advances in Cryp-

tology – ASIACRYPT 2011. Ed. by Dong Hoon Lee and Xiaoyun Wang. Vol. 7073.
Lecture Notes in Computer Science. Seoul, South Korea: Springer, Heidelberg,
Germany, Dec. 2011, pp. 41–69. doi: 10.1007/978-3-642-25385-0_3.

[31] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures from the Weil
Pairing”. In: Journal of Cryptology 17.4 (Sept. 2004), pp. 297–319. doi: 10.1007/
s00145-004-0314-9.

[32] Zvika Brakerski. “Quantum FHE (Almost) As Secure As Classical”. In: Advances
in Cryptology – CRYPTO 2018, Part III. Ed. by Hovav Shacham and Alexandra
Boldyreva. Vol. 10993. Lecture Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 2018, pp. 67–95. doi: 10.1007/978-3-319-
96878-0_3.

[33] Zvika Brakerski and Vinod Vaikuntanathan. Efficient Fully Homomorphic Encryption

from (Standard) LWE. Cryptology ePrint Archive, Report 2011/344. https://eprint.
iacr.org/2011/344. 2011.

[34] Zvika Brakerski and Vinod Vaikuntanathan. “Efficient Fully Homomorphic En-
cryption from (Standard) LWE”. In: 52nd Annual Symposium on Foundations of

Computer Science. Ed. by Rafail Ostrovsky. Palm Springs, CA, USA: IEEE Computer
Society Press, Oct. 2011, pp. 97–106. doi: 10.1109/FOCS.2011.12.

[35] Howard E. Brandt. “Quantum decoherence and qubit devices”. In: Noise and In-

formation in Nanoelectronics, Sensors, and Standards. Ed. by Laszlo B. Kish, Fred-
erick Green, Giuseppe Iannaccone, and John R. Vig. SPIE, 2003, pp. 308–344. doi:
10.1117/12.488482.

314

https://doi.org/10.1145/3319535.3354223
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/978-3-319-96878-0_3
https://doi.org/10.1007/978-3-319-96878-0_3
https://eprint.iacr.org/2011/344
https://eprint.iacr.org/2011/344
https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.1117/12.488482

Bibliography

[36] Gilles Brassard, Claude Crépeau, Richard Jozsa, and Denis Langlois. “A Quantum
Bit Commitment Scheme Provably Unbreakable by both Parties”. In: 34th Annual

Symposium on Foundations of Computer Science. Palo Alto, CA, USA: IEEE Computer
Society Press, Nov. 1993, pp. 362–371. doi: 10.1109/SFCS.1993.366851.

[37] Sergey Bravyi and Alexei Kitaev. “Universal quantum computation with ideal
Clifford gates and noisy ancillas”. In: Physical Review A 71 (2 Feb. 2005), p. 022316.
doi: 10.1103/PhysRevA.71.022316.

[38] Anne Broadbent and Stacey Jeffery. “Quantum Homomorphic Encryption for
Circuits of Low T-gate Complexity”. In: Advances in Cryptology – CRYPTO 2015,

Part II. Ed. by Rosario Gennaro and Matthew J. B. Robshaw. Vol. 9216. Lecture Notes
in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 2015, pp. 609–629. doi: 10.1007/978-3-662-48000-7_30.

[39] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. “Bulletproofs: Short Proofs for Confidential Transactions and More”.
In: 2018 IEEE Symposium on Security and Privacy. San Francisco, CA, USA: IEEE
Computer Society Press, May 2018, pp. 315–334. doi: 10.1109/SP.2018.00020.

[40] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic

Protocols. Cryptology ePrint Archive, Report 2000/067. https://eprint.iacr.org/
2000/067. 2000.

[41] Ran Canetti. “Universally Composable Security: ANewParadigm for Cryptographic
Protocols”. In: 42nd Annual Symposium on Foundations of Computer Science. Las
Vegas, NV, USA: IEEE Computer Society Press, Oct. 2001, pp. 136–145. doi: 10.
1109/SFCS.2001.959888.

[42] Ran Canetti. “Universally Composable Signature, Certification, and Authentication”.
In: 17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004), 28-30 June

2004, Pacific Grove, CA, USA. IEEE Computer Society, 2004, p. 219. doi: 10.1109/
CSFW.2004.24.

[43] Ran Canetti and Marc Fischlin. “Universally Composable Commitments”. In: Ad-
vances in Cryptology – CRYPTO 2001. Ed. by Joe Kilian. Vol. 2139. Lecture Notes in
Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug.
2001, pp. 19–40. doi: 10.1007/3-540-44647-8_2.

[44] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. “Obfuscation
of Probabilistic Circuits and Applications”. In: TCC 2015: 12th Theory of Cryptogra-

phy Conference, Part II. Ed. by Yevgeniy Dodis and Jesper Buus Nielsen. Vol. 9015.
Lecture Notes in Computer Science. Warsaw, Poland: Springer, Heidelberg, Ger-
many, Mar. 2015, pp. 468–497. doi: 10.1007/978-3-662-46497-7_19.

[45] Rémi Canillas, Rania Talbi, Sara Bouchenak, Omar Hasan, Lionel Brunie, and
Laurent Sarrat. “Exploratory Study of Privacy Preserving Fraud Detection”. In:
19th International Middleware Conference 2018. ACM, 2018. doi: 10.1145/3284028.
3284032. url: https://doi.org/10.1145/3284028.3284032.

315

https://doi.org/10.1109/SFCS.1993.366851
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1007/978-3-662-48000-7_30
https://doi.org/10.1109/SP.2018.00020
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/CSFW.2004.24
https://doi.org/10.1109/CSFW.2004.24
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1145/3284028.3284032
https://doi.org/10.1145/3284028.3284032
https://doi.org/10.1145/3284028.3284032

Bibliography

[46] Gizem S Cetin, Hao Chen, Kim Laine, Kristin Lauter, Peter Rindal, and Yuhou Xia.
Private Queries on Encrypted Genomic Data. Cryptology ePrint Archive, Report
2017/207. https://eprint.iacr.org/2017/207. 2017.

[47] Siu-on Chan, Ilias Diakonikolas, Paul Valiant, and Gregory Valiant. “Optimal Algo-
rithms for Testing Closeness of Discrete Distributions”. In: 25th Annual ACM-SIAM

Symposium on Discrete Algorithms. Ed. by Chandra Chekuri. Portland, OR, USA:
ACM-SIAM, Jan. 2014, pp. 1193–1203. doi: 10.1137/1.9781611973402.88.

[48] Nishanth Chandran, Vipul Goyal, Rafail Ostrovsky, and Amit Sahai. “Covert Multi-
Party Computation”. In: 48th Annual Symposium on Foundations of Computer Science.
Providence, RI, USA: IEEE Computer Society Press, Oct. 2007, pp. 238–248. doi:
10.1109/FOCS.2007.21.

[49] David Chaum. “The Dining Cryptographers Problem: Unconditional Sender and
Recipient Untraceability”. In: Journal of Cryptology 1.1 (Jan. 1988), pp. 65–75. doi:
10.1007/BF00206326.

[50] David Chaum. “Untraceable ElectronicMail, ReturnAddresses andDigital Pseudonyms”.
In: Secure Electronic Voting. Ed. by Dimitris Gritzalis. Vol. 7. Advances in Informa-
tion Security. Springer, Heidelberg, Germany, 2003, pp. 211–219. doi: 10.1007/978-
1-4615-0239-5_14. url: https://doi.org/10.1007/978-1-4615-0239-5%5C_14.

[51] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted Backdoor
Attacks on Deep Learning Systems Using Data Poisoning. arXiv e-prints, Report
1712.05526. https://arxiv.org/abs/1712.05526. 2017.

[52] Benny Chor and Lior Moscovici. “Solvability in Asynchronous Environments
(Extended Abstract)”. In: 30th Annual Symposium on Foundations of Computer

Science. Research Triangle Park, NC, USA: IEEE Computer Society Press, Oct. 1989,
pp. 422–427. doi: 10.1109/SFCS.1989.63513.

[53] Kai-MinChung, Serge Fehr, Yu-HsuanHuang, and Tai-Ning Liao. “On the Compressed-
Oracle Technique, and Post-Quantum Security of Proofs of Sequential Work”. In:
Advances in Cryptology – EUROCRYPT 2021, Part II. Ed. by Anne Canteaut and
François-Xavier Standaert. Vol. 12697. Lecture Notes in Computer Science. Zagreb,
Croatia: Springer, Heidelberg, Germany, Oct. 2021, pp. 598–629. doi: 10.1007/978-
3-030-77886-6_21.

[54] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas
Stebila. “A Formal Security Analysis of the Signal Messaging Protocol”. In: Journal
of Cryptology 33.4 (Oct. 2020), pp. 1914–1983. doi: 10.1007/s00145-020-09360-1.

[55] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. “Riposte: An Anonymous
Messaging SystemHandlingMillions of Users”. In: 2015 IEEE Symposium on Security

and Privacy. San Jose, CA, USA: IEEE Computer Society Press, May 2015, pp. 321–
338. doi: 10.1109/SP.2015.27.

[56] Geoffroy Couteau. Revisiting Covert Multiparty Computation. Cryptology ePrint
Archive, Report 2016/951. https://eprint.iacr.org/2016/951. 2016.

316

https://eprint.iacr.org/2017/207
https://doi.org/10.1137/1.9781611973402.88
https://doi.org/10.1109/FOCS.2007.21
https://doi.org/10.1007/BF00206326
https://doi.org/10.1007/978-1-4615-0239-5_14
https://doi.org/10.1007/978-1-4615-0239-5_14
https://doi.org/10.1007/978-1-4615-0239-5%5C_14
https://arxiv.org/abs/1712.05526
https://doi.org/10.1109/SFCS.1989.63513
https://doi.org/10.1007/978-3-030-77886-6_21
https://doi.org/10.1007/978-3-030-77886-6_21
https://doi.org/10.1007/s00145-020-09360-1
https://doi.org/10.1109/SP.2015.27
https://eprint.iacr.org/2016/951

Bibliography

[57] Claude Crépeau. “Quantum Oblivious Transfer”. In: Journal of Modern Optics 41
(Dec. 1994), pp. 2445–2454. doi: 10.1080/09500349414552291.

[58] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. “Multiparty
Computation from Somewhat Homomorphic Encryption”. In: Advances in Cryp-

tology – CRYPTO 2012. Ed. by Reihaneh Safavi-Naini and Ran Canetti. Vol. 7417.
Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, Aug. 2012, pp. 643–662. doi: 10.1007/978-3-642-32009-5_38.

[59] Ivan Damgård and Tomas Toft. “Trading Sugar Beet Quotas - Secure Multiparty
Computation in Practice”. In: ERCIM News 2008.73 (2008). url: http://ercim-
news.ercim.eu/trading-sugar-beet-quotas-secure-multiparty-computation-

in-practice.
[60] Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan. “Fine-

Grained Cryptography”. In: Advances in Cryptology – CRYPTO 2016, Part III. Ed. by
Matthew Robshaw and Jonathan Katz. Vol. 9816. Lecture Notes in Computer Science.
Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 2016, pp. 533–562.
doi: 10.1007/978-3-662-53015-3_19.

[61] Daniel Demmler, Thomas Schneider, and Michael Zohner. “ABY - A Framework
for Efficient Mixed-Protocol Secure Two-Party Computation”. In: ISOC Network

and Distributed System Security Symposium – NDSS 2015. San Diego, CA, USA: The
Internet Society, Feb. 2015.

[62] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. “Tor: The Second-
Generation Onion Router”. In: USENIX Security 2004: 13th USENIX Security Sym-

posium. Ed. by Matt Blaze. San Diego, CA, USA: USENIX Association, Aug. 2004,
pp. 303–320.

[63] Nico Döttling, Alexander Koch, Sven Maier, Jeremias Mechler, Anne Müller, Jörn
Müller-Quade, and Marcel Tiepelt. Towards Everlasting Bit Commitment from Quan-

tum Decay. Unpublished manuscript. 2022.
[64] Tamara M. Dugan and Xukai Zou. “A Survey of Secure Multiparty Computation

Protocols for Privacy Preserving Genetic Tests”. In: Proceedings of the First IEEE
International Conference on Connected Health: Applications, Systems and Engineering

Technologies, CHASE 2016, Washington, DC, USA, June 27-29, 2016. IEEE Computer
Society, 2016. doi: 10.1109/CHASE.2016.71. url: https://doi.org/10.1109/
CHASE.2016.71.

[65] Paul Dumais, Dominic Mayers, and Louis Salvail. “Perfectly Concealing Quantum
Bit Commitment from any Quantum One-Way Permutation”. In: Advances in
Cryptology – EUROCRYPT 2000. Ed. by Bart Preneel. Vol. 1807. Lecture Notes in
Computer Science. Bruges, Belgium: Springer, Heidelberg, Germany, May 2000,
pp. 300–315. doi: 10.1007/3-540-45539-6_21.

[66] DWave.DWaveQuantumComputer. https://web.archive.org/web/20210702142326/
https://www.dwavesys.com/sites/default/files/D-Wave%202000Q%20Tech%

20Collateral_0117F.pdf. Archived; accessed 20 Oct 2021. 2015.

317

https://doi.org/10.1080/09500349414552291
https://doi.org/10.1007/978-3-642-32009-5_38
http://ercim-news.ercim.eu/trading-sugar-beet-quotas-secure-multiparty-computation-in-practice
http://ercim-news.ercim.eu/trading-sugar-beet-quotas-secure-multiparty-computation-in-practice
http://ercim-news.ercim.eu/trading-sugar-beet-quotas-secure-multiparty-computation-in-practice
https://doi.org/10.1007/978-3-662-53015-3_19
https://doi.org/10.1109/CHASE.2016.71
https://doi.org/10.1109/CHASE.2016.71
https://doi.org/10.1109/CHASE.2016.71
https://doi.org/10.1007/3-540-45539-6_21
https://web.archive.org/web/20210702142326/https://www.dwavesys.com/sites/default/files/D-Wave%202000Q%20Tech%20Collateral_0117F.pdf
https://web.archive.org/web/20210702142326/https://www.dwavesys.com/sites/default/files/D-Wave%202000Q%20Tech%20Collateral_0117F.pdf
https://web.archive.org/web/20210702142326/https://www.dwavesys.com/sites/default/files/D-Wave%202000Q%20Tech%20Collateral_0117F.pdf

Bibliography

[67] Alex Escala and Jens Groth. “Fine-Tuning Groth-Sahai Proofs”. In: PKC 2014: 17th

International Conference on Theory and Practice of Public Key Cryptography. Ed. by
Hugo Krawczyk. Vol. 8383. Lecture Notes in Computer Science. Buenos Aires,
Argentina: Springer, Heidelberg, Germany, Mar. 2014, pp. 630–649. doi: 10.1007/
978-3-642-54631-0_36.

[68] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, and Dan Boneh. “Express:
Lowering the Cost of Metadata-hiding Communication with Cryptographic Pri-
vacy”. In: USENIX Security 2021: 30th USENIX Security Symposium. Ed. by Michael
Bailey and Rachel Greenstadt. USENIX Association, Aug. 2021, pp. 1775–1792.

[69] Shimon Even, Oded Goldreich, and Abraham Lempel. “A Randomized Protocol for
Signing Contracts”. In: Advances in Cryptology – CRYPTO’82. Ed. by David Chaum,
Ronald L. Rivest, and Alan T. Sherman. Santa Barbara, CA, USA: Plenum Press,
New York, USA, 1982, pp. 205–210.

[70] Valerie Fetzer, Marcel Keller, Sven Maier, Markus Raiber, Andy Rupp, and Rebecca
Schwerdt. “PUBA: Privacy-Preserving User-Data Bookkeeping and Analytics”. In:
Proceedings on Privacy Enhancing Technologies 2022.2 (Apr. 2022), pp. 447–516. doi:
10.2478/popets-2022-0054.

[71] Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland.
“Surface codes: Towards practical large-scale quantum computation”. In: Physical
Review A 86 (3 Sept. 2012), p. 032324. doi: 10.1103/PhysRevA.86.032324.

[72] Yansong Gao, Bao Gia Doan, Zhi Zhang, Siqi Ma, Jiliang Zhang, Anmin Fu, Surya
Nepal, and Hyoungshick Kim. Backdoor Attacks and Countermeasures on Deep

Learning: A Comprehensive Review. arXiv e-prints, Report 2007.10760. https://
arxiv.org/abs/2007.10760. 2020.

[73] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: 41st Annual
ACM Symposium on Theory of Computing. Ed. by Michael Mitzenmacher. Bethesda,
MD, USA: ACM Press, May 2009, pp. 169–178. doi: 10.1145/1536414.1536440.

[74] Craig Gentry, Amit Sahai, and Brent Waters. “Homomorphic Encryption from
Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-
Based”. In: Advances in Cryptology – CRYPTO 2013, Part I. Ed. by Ran Canetti
and Juan A. Garay. Vol. 8042. Lecture Notes in Computer Science. Santa Barbara,
CA, USA: Springer, Heidelberg, Germany, Aug. 2013, pp. 75–92. doi: 10.1007/978-
3-642-40041-4_5.

[75] Oded Goldreich. Foundations of Cryptography: Basic Applications. Vol. 2. Cambridge,
UK: Cambridge University Press, 2004. isbn: ISBN 0-521-83084-2 (hardback).

[76] Oded Goldreich. Foundations of Cryptography: Basic Tools. Vol. 1. Cambridge, UK:
Cambridge University Press, 2001, pp. xix + 372. isbn: 0-521-79172-3 (hardback).

[77] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to Play any Mental Game
or A Completeness Theorem for Protocols with Honest Majority”. In: 19th Annual

ACM Symposium on Theory of Computing. Ed. by Alfred Aho. New York City, NY,
USA: ACM Press, May 1987, pp. 218–229. doi: 10.1145/28395.28420.

318

https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.2478/popets-2022-0054
https://doi.org/10.1103/PhysRevA.86.032324
https://arxiv.org/abs/2007.10760
https://arxiv.org/abs/2007.10760
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1145/28395.28420

Bibliography

[78] Oded Goldreich, Silvio Micali, and Avi Wigderson. “Proofs that Yield Nothing But
their Validity and a Methodology of Cryptographic Protocol Design (Extended
Abstract)”. In: 27th Annual Symposium on Foundations of Computer Science. Toronto,
Ontario, Canada: IEEE Computer Society Press, Oct. 1986, pp. 174–187. doi: 10.
1109/SFCS.1986.47.

[79] Shafi Goldwasser and Silvio Micali. “Probabilistic Encryption”. In: Journal of Com-

puter and System Sciences 28.2 (1984), pp. 270–299.
[80] Google AI Blog.On the Path to Cryogenic Control of Quantum Processors. https://ai.

googleblog.com/2019/02/on-path-to-cryogenic-control-of-quantum.html.
Online; accessed 21 Oct 2021. 2019.

[81] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and AkshayWadia.
“Founding Cryptography on Tamper-Proof Hardware Tokens”. In: TCC 2010: 7th

Theory of Cryptography Conference. Ed. by Daniele Micciancio. Vol. 5978. Lecture
Notes in Computer Science. Zurich, Switzerland: Springer, Heidelberg, Germany,
Feb. 2010, pp. 308–326. doi: 10.1007/978-3-642-11799-2_19.

[82] Matthew Green, Watson Ladd, and Ian Miers. “A Protocol for Privately Reporting
Ad Impressions at Scale”. In: ACM CCS 2016: 23rd Conference on Computer and

Communications Security. Ed. by Edgar R.Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi. Vienna, Austria: ACM Press, Oct. 2016,
pp. 1591–1601. doi: 10.1145/2976749.2978407.

[83] Jens Groth and Amit Sahai. “Efficient Non-interactive Proof Systems for Bilinear
Groups”. In: Advances in Cryptology – EUROCRYPT 2008. Ed. by Nigel P. Smart.
Vol. 4965. Lecture Notes in Computer Science. Istanbul, Turkey: Springer, Heidel-
berg, Germany, Apr. 2008, pp. 415–432. doi: 10.1007/978-3-540-78967-3_24.

[84] Saikat Guha, Bin Cheng, and Paul Francis. “Privad: Practical Privacy in Online
Advertising”. In: Proceedings of the 8th USENIX Symposium on Networked Systems

Design and Implementation, NSDI 2011, Boston, MA, USA, March 30 - April 1, 2011.
Ed. by David G. Andersen and Sylvia Ratnasamy. USENIX Association, 2011. url:
https://www.usenix.org/conference/nsdi11/privad- practical- privacy-

online-advertising.
[85] Gunnar Hartung, Max Hoffmann, Matthias Nagel, and Andy Rupp. “BBA+: Im-

proving the Security and Applicability of Privacy-Preserving Point Collection”. In:
ACM CCS 2017: 24th Conference on Computer and Communications Security. Ed. by
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu. Dallas,
TX, USA: ACM Press, Oct. 2017, pp. 1925–1942. doi: 10.1145/3133956.3134071.

[86] Nicholas J. Hopper, John Langford, and Luis von Ahn. “Provably Secure Steganog-
raphy”. In: Advances in Cryptology – CRYPTO 2002. Ed. by Moti Yung. Vol. 2442.
Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, Aug. 2002, pp. 77–92. doi: 10.1007/3-540-45708-9_6.

319

https://doi.org/10.1109/SFCS.1986.47
https://doi.org/10.1109/SFCS.1986.47
https://ai.googleblog.com/2019/02/on-path-to-cryogenic-control-of-quantum.html
https://ai.googleblog.com/2019/02/on-path-to-cryogenic-control-of-quantum.html
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1145/2976749.2978407
https://doi.org/10.1007/978-3-540-78967-3_24
https://www.usenix.org/conference/nsdi11/privad-practical-privacy-online-advertising
https://www.usenix.org/conference/nsdi11/privad-practical-privacy-online-advertising
https://doi.org/10.1145/3133956.3134071
https://doi.org/10.1007/3-540-45708-9_6

Bibliography

[87] Klaus Hornberger. “Introduction to Decoherence Theory”. In: Entanglement and

Decoherence: Foundations and Modern Trends. Ed. by Andreas Buchleitner, Carlos
Viviescas, and Markus Tiersch. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 221–276. isbn: 978-3-540-88169-8. doi: 10.1007/978-3-540-88169-8_5.

[88] Lane P. Hughston, Richard Jozsa, and William K. Wootters. “A Complete Classifi-
cation of Quantum Ensembles Having a Given Density Matrix”. In: Physics Letters
A 183 (1993), pp. 14–18. issn: 0375-9601.

[89] Russell Impagliazzo. “A Personal View of Average-Case Complexity”. In: Proceed-
ings of the Tenth Annual Structure in Complexity Theory Conference, Minneapolis,

Minnesota, USA, June 19-22, 1995. IEEE Computer Society, 1995, pp. 134–147. doi:
10.1109/SCT.1995.514853.

[90] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. “Founding Cryptography on
Oblivious Transfer - Efficiently”. In: Advances in Cryptology – CRYPTO 2008. Ed. by
David Wagner. Vol. 5157. Lecture Notes in Computer Science. Santa Barbara, CA,
USA: Springer, Heidelberg, Germany, Aug. 2008, pp. 572–591. doi: 10.1007/978-3-
540-85174-5_32.

[91] Fayaz Itoo, Meenakshi, and Satwinder Singh. “Comparison and analysis of logistic
regression, Naïve Bayes and KNN machine learning algorithms for credit card
fraud detection”. In: International Journal of Information Technology (2020), pp. 1–9.
doi: 10.1007/s41870-020-00430-yj. url: https://doi.org/10.1007/s41870-
020-00430-y.

[92] Tibor Jager and Andy Rupp. “Black-Box Accumulation: Collecting Incentives in a
Privacy-Preserving Way”. In: Proceedings on Privacy Enhancing Technologies 2016.3
(July 2016), pp. 62–82.

[93] Stanislaw Jarecki. “Efficient Covert Two-Party Computation”. In: PKC 2018: 21st

International Conference on Theory and Practice of Public Key Cryptography, Part I.
Ed. by Michel Abdalla and Ricardo Dahab. Vol. 10769. Lecture Notes in Computer
Science. Rio de Janeiro, Brazil: Springer, Heidelberg, Germany, Mar. 2018, pp. 644–
674. doi: 10.1007/978-3-319-76578-5_22.

[94] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. “GAZELLE:
A Low Latency Framework for Secure Neural Network Inference”. In: USENIX
Security 2018: 27th USENIX Security Symposium. Ed. by William Enck and Adrienne
Porter Felt. Baltimore, MD, USA: USENIX Association, Aug. 2018, pp. 1651–1669.

[95] Marcel Keller. “MP-SPDZ: A Versatile Framework for Multi-Party Computation”.
In: ACM CCS 2020: 27th Conference on Computer and Communications Security.
Ed. by Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna. Virtual Event,
USA: ACM Press, Nov. 2020, pp. 1575–1590. doi: 10.1145/3372297.3417872.

[96] Marcel Keller, Emmanuela Orsini, and Peter Scholl. “MASCOT: Faster Malicious
Arithmetic Secure Computation with Oblivious Transfer”. In: ACM CCS 2016: 23rd

Conference on Computer and Communications Security. Ed. by Edgar R. Weippl, Ste-
fan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi. Vienna,
Austria: ACM Press, Oct. 2016, pp. 830–842. doi: 10.1145/2976749.2978357.

320

https://doi.org/10.1007/978-3-540-88169-8_5
https://doi.org/10.1109/SCT.1995.514853
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/s41870-020-00430-yj
https://doi.org/10.1007/s41870-020-00430-y
https://doi.org/10.1007/s41870-020-00430-y
https://doi.org/10.1007/978-3-319-76578-5_22
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/2976749.2978357

Bibliography

[97] Adrian Kent. “Unconditionally Secure Bit Commitment”. In: Physical Review Letters

83 (Aug. 1999), pp. 1447–1450. doi: 10.1103/PhysRevLett.83.1447.
[98] Navanshu Khare and Saad Yunus Sait. “Credit Card Fraud Detection Using Machine

Learning Models and Collating Machine Learning Models”. In: International Journal
of Pure and Applied Mathematics 118.20 (2018), pp. 825–838.

[99] Joe Kilian. “Founding Cryptography on Oblivious Transfer”. In: 20th Annual ACM

Symposium on Theory of Computing. Chicago, IL, USA: ACM Press, May 1988,
pp. 20–31. doi: 10.1145/62212.62215.

[100] Robert Koenig, Stephanie Wehner, and Jürg Wullschleger. “Unconditional Security
From Noisy Quantum Storage”. In: IEEE Transactions on Information Theory 58.3
(2012), pp. 1962–1984. doi: 10.1109/TIT.2011.2177772.

[101] Vladimir Kolesnikov, Ranjit Kumaresan, and Abdullatif Shikfa. “Efficient Verifi-
cation of Input Consistency in Server-Assisted Secure Function Evaluation”. In:
CANS 12: 11th International Conference on Cryptology and Network Security. Ed. by
Josef Pieprzyk, Ahmad-Reza Sadeghi, and Mark Manulis. Vol. 7712. Lecture Notes
in Computer Science. Darmstadt, Germany: Springer, Heidelberg, Germany, Dec.
2012, pp. 201–217. doi: 10.1007/978-3-642-35404-5_16.

[102] Takeshi Koshiba and Takanori Odaira. “Statistically-Hiding Quantum Bit Commit-
ment from Approximable-Preimage-Size Quantum One-Way Function”. In: Theory
of Quantum Computation, Communication, and Cryptography, 4th Workshop, TQC

2009, Waterloo, Canada, May 11-13, 2009, Revised Selected Papers. Ed. by Andrew M.
Childs and Michele Mosca. Vol. 5906. Lecture Notes in Computer Science. Springer,
2009, pp. 33–46. doi: 10.1007/978-3-642-10698-9_4.

[103] Christiane Kuhn, Dennis Hofheinz, Andy Rupp, and Thorsten Strufe.Onion Routing
with Replies. Cryptology ePrint Archive, Report 2021/1178. https://eprint.iacr.
org/2021/1178. 2021.

[104] Christiane Kuhn, Dennis Hofheinz, Andy Rupp, and Thorsten Strufe. “Onion
Routing with Replies”. In: Advances in Cryptology – ASIACRYPT 2021, Part II. Ed.
by Mehdi Tibouchi and Huaxiong Wang. Vol. 13091. Lecture Notes in Computer
Science. Singapore: Springer, Heidelberg, Germany, Dec. 2021, pp. 573–604. doi:
10.1007/978-3-030-92075-3_20.

[105] Hoi-Kwong Lo and Hoi-Fung Chau. “Is Quantum Bit Commitment Really Possi-
ble?” In: Physical Review Letters 78 (17 Apr. 1997), pp. 3410–3413. doi: 10.1103/
PhysRevLett.78.3410.

[106] Urmila Mahadev. “Classical Homomorphic Encryption for Quantum Circuits”.
In: 59th Annual Symposium on Foundations of Computer Science. Ed. by Mikkel
Thorup. Paris, France: IEEE Computer Society Press, Oct. 2018, pp. 332–338. doi:
10.1109/FOCS.2018.00039.

[107] Dominic Mayers. The Trouble with Quantum Bit Commitment. arXiv e-prints, Report
quant-ph/9603015. https://arxiv.org/abs/quant-ph/9603015. 1996.

321

https://doi.org/10.1103/PhysRevLett.83.1447
https://doi.org/10.1145/62212.62215
https://doi.org/10.1109/TIT.2011.2177772
https://doi.org/10.1007/978-3-642-35404-5_16
https://doi.org/10.1007/978-3-642-10698-9_4
https://eprint.iacr.org/2021/1178
https://eprint.iacr.org/2021/1178
https://doi.org/10.1007/978-3-030-92075-3_20
https://doi.org/10.1103/PhysRevLett.78.3410
https://doi.org/10.1103/PhysRevLett.78.3410
https://doi.org/10.1109/FOCS.2018.00039
https://arxiv.org/abs/quant-ph/9603015

Bibliography

[108] Dominic Mayers. “Unconditionally Secure Quantum Bit Commitment is Impos-
sible”. In: Physical Review Letters 78 (17 Apr. 1997), pp. 3414–3417. doi: 10.1103/
PhysRevLett.78.3414.

[109] Ralph C. Merkle. “Secure Communications Over Insecure Channels”. In: Commu-

nications of the ACM 21.4 (1978), pp. 294–299. doi: 10.1145/359460.359473.
[110] MIT Technology Review. IBM Raises the Bar with a 50-Qubit Quantum Computer.

https://www.technologyreview.com/2017/11/10/147728/ibm-raises-the-bar-

with-a-50-qubit-quantum-computer/. Online; accessed 21 Oct 2021. 2017.
[111] Payman Mohassel and Peter Rindal. “ABY3: A Mixed Protocol Framework for

Machine Learning”. In: ACM CCS 2018: 25th Conference on Computer and Commu-

nications Security. Ed. by David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang. Toronto, ON, Canada: ACM Press, Oct. 2018, pp. 35–52. doi:
10.1145/3243734.3243760.

[112] Jörn Müller-Quade and Dominique Unruh. “Long-Term Security and Universal
Composability”. In: TCC 2007: 4th Theory of Cryptography Conference. Ed. by Salil P.
Vadhan. Vol. 4392. Lecture Notes in Computer Science. Amsterdam, The Nether-
lands: Springer, Heidelberg, Germany, Feb. 2007, pp. 41–60. doi: 10.1007/978-3-
540-70936-7_3.

[113] Zachary Newman, Sacha Servan-Schreiber, and Srinivas Devadas. “Spectrum: High-
bandwidth Anonymous Broadcast”. In: 19th USENIX Symposium on Networked

Systems Design and Implementation, NSDI 2022, Renton, WA, USA, April 4-6, 2022.
Ed. by Amar Phanishayee and Vyas Sekar. USENIX Association, 2022. url: https:
//www.usenix.org/conference/nsdi22/presentation/newman.

[114] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum

Information (10th Anniversary edition). Cambridge University Press, 2016. isbn:
978-1-10-700217-3. url: https://www.cambridge.org/de/academic/subjects/
physics/quantum-physics-quantum-information-and-quantum-computation/

quantum-computation-and-quantum-information-10th-anniversary-edition?

format=HB.
[115] Dave Philipps. “Reality Winner, former NSA translator, gets more than 5 years in

leak of Russian hacking report”. In: New York Times 23 (2018).
[116] Michael O. Rabin. How To Exchange Secrets with Oblivious Transfer. Cryptology

ePrint Archive, Report 2005/187. https://eprint.iacr.org/2005/187. 2005.
[117] Oded Regev. “On lattices, learning with errors, random linear codes, and cryptog-

raphy”. In: 37th Annual ACM Symposium on Theory of Computing. Ed. by Harold N.
Gabow and Ronald Fagin. Baltimore, MA, USA: ACM Press, May 2005, pp. 84–93.
doi: 10.1145/1060590.1060603.

[118] Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. “On data banks and
privacy homomorphisms”. In: Foundations of secure computation. Vol. 4. 11. 1978,
pp. 169–180.

322

https://doi.org/10.1103/PhysRevLett.78.3414
https://doi.org/10.1103/PhysRevLett.78.3414
https://doi.org/10.1145/359460.359473
https://www.technologyreview.com/2017/11/10/147728/ibm-raises-the-bar-with-a-50-qubit-quantum-computer/
https://www.technologyreview.com/2017/11/10/147728/ibm-raises-the-bar-with-a-50-qubit-quantum-computer/
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1007/978-3-540-70936-7_3
https://doi.org/10.1007/978-3-540-70936-7_3
https://www.usenix.org/conference/nsdi22/presentation/newman
https://www.usenix.org/conference/nsdi22/presentation/newman
https://www.cambridge.org/de/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition?format=HB
https://www.cambridge.org/de/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition?format=HB
https://www.cambridge.org/de/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition?format=HB
https://www.cambridge.org/de/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition?format=HB
https://eprint.iacr.org/2005/187
https://doi.org/10.1145/1060590.1060603

Bibliography

[119] Phillip Rogaway. “Nonce-Based Symmetric Encryption”. In: Fast Software Encryp-
tion – FSE 2004. Ed. by Bimal K. Roy and Willi Meier. Vol. 3017. Lecture Notes in
Computer Science. New Delhi, India: Springer, Heidelberg, Germany, Feb. 2004,
pp. 348–359. doi: 10.1007/978-3-540-25937-4_22.

[120] Kamyar Saeedi, Stephanie Simmons, Jeff Z. Salvail, Phillip Dluhy, Helge Riemann,
Nikolai V. Abrosimov, Peter Becker, Hans-Joachim Pohl, John J. L. Morton, andMike
L. W. Thewalt. “Room-Temperature Quantum Bit Storage Exceeding 39 Minutes
Using Ionized Donors in Silicon-28”. In: Science 342.6160 (2013), pp. 830–833. issn:
0036-8075. doi: 10.1126/science.1239584.

[121] AndrewW. Senior, Sharath Pankanti, Arun Hampapur, Lisa M. Brown, Ying-li Tian,
Ahmet Ekin, Jonathan H. Connell, Chiao-Fe Shu, and Max Lu. “Enabling Video
Privacy through Computer Vision”. In: IEEE Security & Privacy 3.3 (2005). doi:
10.1109/MSP.2005.65. url: https://doi.org/10.1109/MSP.2005.65.

[122] Yaoyun Shi. Both Toffoli and Controlled-NOT need little help to do universal quantum

computation. arXiv e-prints, Report quant-ph/0205115. https://arxiv.org/abs/
quant-ph/0205115. 2002.

[123] Peter W. Shor. “Fault-Tolerant Quantum Computation”. In: 37th Annual Symposium

on Foundations of Computer Science. Burlington, Vermont: IEEE Computer Society
Press, Oct. 1996, pp. 56–65. doi: 10.1109/SFCS.1996.548464.

[124] Gustavus J. Simmons. “The Prisoners’ Problem and the Subliminal Channel”. In:
Advances in Cryptology – CRYPTO’83. Ed. by David Chaum. Santa Barbara, CA,
USA: Plenum Press, New York, USA, 1983, pp. 51–67.

[125] Krysta M. Svore, Alfred V. Aho, Andrew W. Cross, Isaac L. Chuang, and Igor L.
Markov. “A Layered Software Architecture for Quantum Computing Design Tools”.
In: Computer 39.1 (2006), pp. 74–83. doi: 10.1109/MC.2006.4.

[126] Swamit S. Tannu and Moinuddin K. Qureshi. “Not All Qubits Are Created Equal:
A Case for Variability-Aware Policies for NISQ-Era Quantum Computers”. In:
International Conference on Architectural Support for Programming Languages and

Operating Systems. Ed. by Iris Bahar, Maurice Herlihy, Emmett Witchel, and Alvin
R. Lebeck. ACM, 2019, pp. 987–999. doi: 10.1145/3297858.3304007.

[127] Vincent Toubiana, Arvind Narayanan, Dan Boneh, Helen Nissenbaum, and Solon
Barocas. “Adnostic: Privacy Preserving Targeted Advertising”. In: ISOC Network

and Distributed System Security Symposium – NDSS 2010. San Diego, CA, USA: The
Internet Society, Feb. 2010.

[128] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
“Stealing Machine Learning Models via Prediction APIs”. In: USENIX Security 2016:

25th USENIX Security Symposium. Ed. by Thorsten Holz and Stefan Savage. Austin,
TX, USA: USENIX Association, Aug. 2016, pp. 601–618.

[129] Dominique Unruh. “Everlasting Multi-party Computation”. In: Advances in Cryp-

tology – CRYPTO 2013, Part II. Ed. by Ran Canetti and Juan A. Garay. Vol. 8043.
Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, Aug. 2013, pp. 380–397. doi: 10.1007/978-3-642-40084-1_22.

323

https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1126/science.1239584
https://doi.org/10.1109/MSP.2005.65
https://doi.org/10.1109/MSP.2005.65
https://arxiv.org/abs/quant-ph/0205115
https://arxiv.org/abs/quant-ph/0205115
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1109/MC.2006.4
https://doi.org/10.1145/3297858.3304007
https://doi.org/10.1007/978-3-642-40084-1_22

Bibliography

[130] Dominique Unruh. “Non-Interactive Zero-Knowledge Proofs in the Quantum Ran-
dom Oracle Model”. In: Advances in Cryptology – EUROCRYPT 2015, Part II. Ed. by
Elisabeth Oswald and Marc Fischlin. Vol. 9057. Lecture Notes in Computer Sci-
ence. Sofia, Bulgaria: Springer, Heidelberg, Germany, Apr. 2015, pp. 755–784. doi:
10.1007/978-3-662-46803-6_25.

[131] Leslie G. Valiant. “Universal Circuits (Preliminary Report)”. In: Proceedings of the 8th
Annual ACM Symposium on Theory of Computing. Ed. by Ashok K. Chandra, Detlef
Wotschke, Emily P. Friedman, and Michael A. Harrison. Hershey, Pennsylvania,
USA: ACM, May 1976, pp. 196–203. doi: 10.1145/800113.803649.

[132] Luis von Ahn and Nicholas J. Hopper. “Public-Key Steganography”. In: Advances
in Cryptology – EUROCRYPT 2004. Ed. by Christian Cachin and Jan Camenisch.
Vol. 3027. Lecture Notes in Computer Science. Interlaken, Switzerland: Springer,
Heidelberg, Germany, May 2004, pp. 323–341. doi: 10.1007/978-3-540-24676-
3_20.

[133] Luis von Ahn, Nicholas J. Hopper, and John Langford. “Covert two-party computa-
tion”. In: 37th Annual ACM Symposium on Theory of Computing. Ed. by Harold N.
Gabow and Ronald Fagin. Baltimore, MA, USA: ACM Press, May 2005, pp. 513–522.
doi: 10.1145/1060590.1060668.

[134] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng, and Ben Y. Zhao. “Neural Cleanse: Identifying and Mitigating Backdoor
Attacks in Neural Networks”. In: 2019 IEEE Symposium on Security and Privacy. San
Francisco, CA, USA: IEEE Computer Society Press, May 2019, pp. 707–723. doi:
10.1109/SP.2019.00031.

[135] YeWang, Mark Um, Zhang Junhua, Shuoming An, Ming Lyu, Jing-ning Zhang, L.-M.
Duan, Dahyun Yum, and Kihwan Kim. “Single-qubit quantum memory exceeding
10-minute coherence time”. In: Nature Photonics 11.10 (Sept. 2017), pp. 646–650.
issn: 1749-4893. doi: 10.1038/s41566-017-0007-1.

[136] Stephen Wiesner. “Conjugate Coding”. In: SIGACT News 15.1 (Jan. 1983), pp. 78–88.
doi: 10.1145/1008908.1008920.

[137] Douglas Wikström. “A Universally Composable Mix-Net”. In: TCC 2004: 1st Theory

of Cryptography Conference. Ed. byMoni Naor. Vol. 2951. Lecture Notes in Computer
Science. Cambridge, MA, USA: Springer, Heidelberg, Germany, Feb. 2004, pp. 317–
335. doi: 10.1007/978-3-540-24638-1_18.

[138] Thomas Winkler and Bernhard Rinner. “A systematic approach towards user-
centric privacy and security for smart camera networks”. In: 2010 Fourth ACM/IEEE

International Conference on Distributed Smart Cameras, Atlanta, GA, USA - August

31 - September 4, 2010. Ed. by Marilyn Wolf, Gian Luca Foresti, and Horst Bischof.
ACM, 2010. doi: 10.1145/1865987.1866009. url: https://doi.org/10.1145/
1865987.1866009.

324

https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1145/800113.803649
https://doi.org/10.1007/978-3-540-24676-3_20
https://doi.org/10.1007/978-3-540-24676-3_20
https://doi.org/10.1145/1060590.1060668
https://doi.org/10.1109/SP.2019.00031
https://doi.org/10.1038/s41566-017-0007-1
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1007/978-3-540-24638-1_18
https://doi.org/10.1145/1865987.1866009
https://doi.org/10.1145/1865987.1866009
https://doi.org/10.1145/1865987.1866009

Bibliography

[139] Andrew Chi-Chih Yao. “How to Generate and Exchange Secrets (Extended Ab-
stract)”. In: 27th Annual Symposium on Foundations of Computer Science. Toronto,
Ontario, Canada: IEEE Computer Society Press, Oct. 1986, pp. 162–167. doi: 10.
1109/SFCS.1986.25.

[140] Andrew Chi-Chih Yao. “Protocols for Secure Computations (Extended Abstract)”.
In: 23rd Annual Symposium on Foundations of Computer Science. Chicago, Illinois:
IEEE Computer Society Press, Nov. 1982, pp. 160–164. doi: 10.1109/SFCS.1982.38.

[141] Hyunwoo Yu, Jaemin Lim, Kiyeon Kim, and Suk-Bok Lee. “Pinto: Enabling Video
Privacy for Commodity IoT Cameras”. In: ACM CCS 2018: 25th Conference on

Computer and Communications Security. Ed. by David Lie, Mohammad Mannan,
Michael Backes, and XiaoFeng Wang. Toronto, ON, Canada: ACM Press, Oct. 2018,
pp. 1089–1101. doi: 10.1145/3243734.3243830.

[142] Mark Zhandry. “How to Record Quantum Queries, and Applications to Quan-
tum Indifferentiability”. In: Advances in Cryptology – CRYPTO 2019, Part II. Ed. by
Alexandra Boldyreva and Daniele Micciancio. Vol. 11693. Lecture Notes in Com-
puter Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 2019,
pp. 239–268. doi: 10.1007/978-3-030-26951-7_9.

[143] Mark Zhandry. “Secure Identity-Based Encryption in the Quantum Random Oracle
Model”. In: Advances in Cryptology – CRYPTO 2012. Ed. by Reihaneh Safavi-Naini
and Ran Canetti. Vol. 7417. Lecture Notes in Computer Science. Santa Barbara, CA,
USA: Springer, Heidelberg, Germany, Aug. 2012, pp. 758–775. doi: 10.1007/978-3-
642-32009-5_44.

[144] Shuaining Zhang, Yao Lu, Kuan Zhang, Wentao Chen, Ying Li, Jing-Ning Zhang,
and Kihwan Kim. “Error-mitigated quantum gates exceeding physical fidelities in
a trapped-ion system”. In: Nature Communications 11.1 (Jan. 2020). issn: 2041-1723.
doi: 10.1038/s41467-020-14376-z.

[145] Manjin Zhong, Morgan Hedges, Rose Ahlefeldt, John Bartholomew, Sarah Beavan,
Sven Wittig, Jevon Longdell, and Matthew Sellars. “Optically addressable nuclear
spins in a solid with a six-hour coherence time”. In: Nature 517 (Jan. 2015), pp. 177–
180. doi: 10.1038/nature14025.

325

https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1145/3243734.3243830
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1038/s41467-020-14376-z
https://doi.org/10.1038/nature14025

	Abstract
	Zusammenfassung
	Own Publications
	List of Figures
	List of Tables
	Introduction
	Modelling Business Models and Legal Regulations with *MPC
	An Instantiation of Stronger Commitments
	*UMPC

	Preliminaries
	Notation
	Commitments
	Definition
	Correctness
	Hiding Commitment Schemes
	Binding Commitment Schemes

	Signature Schemes
	Definition
	Correctness
	*EUF-CMA

	Encryption Schemes
	Definition
	Correctness
	*IND-CPA

	*MPC for Business Models and Legal Regulations
	Introduction
	Our Contribution
	Related Work

	Preliminaries
	Notation
	Commitments
	Additively Homomorphic Commitment Schemes
	Structure Preserving Commitment Schemes

	Signature Schemes
	Structure Preserving Signature Schemes

	*ZK Schemes
	Perfect Completeness
	Perfect Soundness
	*CRS Indistinguishability
	Perfect FPairingParameterGroup-Extractability
	Dual-Mode
	Dual-Mode *ZK Scheme

	The *UC Framework
	Description
	*UC Subfunctionalities

	Overview
	Parties and Roles
	Tasks
	Preparatory Tasks
	Bookkeeping
	Outsourcing Analytical Computations

	Cryptographic Building Blocks
	Set-Up Assumptions
	Computation of Benign Functions Function
	The User Logbook
	General Principles
	Security Guarantees
	Operator
	User

	Realizing the Individual Tasks
	Limitations of our scheme
	Verification by the *TSA
	The Trouble of Aborts

	Ideal Functionality
	Protocol
	Benign Functions
	*BK
	*OA

	*RSS
	Anonymous Communication
	Our Protocol

	Security
	User Security
	Operator Security

	Example Applications
	Fraud Detection for Mobile Payments
	Targeted Advertisement System

	Implementation
	Setup
	Evaluation
	Discussion
	Performance of Fraud Detection

	Conclusion

	An Instantiation of Everlasting Secure Commitments
	Introduction
	Contribution
	Related Work

	Preliminaries
	Notation
	Quantum Information
	Security Notion
	Conjugate Coding
	Quantum Bit Commitment
	*FHE
	*qINDCPA
	*QFHE

	Security Model
	*QROM
	Everlasting Security
	*QRO with Everlasting Security

	Impossibility Result
	*QD
	Motivating the Assumption
	Mathematical Description
	Simulating *QRO

	Everlasting Quantum Commitment Protocol
	The BCJL Protocol
	Everlasting Quantum Commitment Protocol
	The protocol

	Instantiating the Classical Commitment in the *QROM
	Closeness-Testing of *QRO
	A Classical Commitment Protocol
	Security Analysis
	Unconditional Binding Property
	Quantum-Computational Hiding Property

	Proof of Security of ProtocolQCom
	Sender Security
	Receiver Security

	An *OMA
	The High-level Idea
	A Partially Homomorphic Commitment Scheme
	Sender Security
	Receiver Security

	An *OMA
	Description

	Conclusion

	Anonymous Whistleblowing
	Introduction
	Contribution
	Related Work

	Preliminaries
	Steganography
	Distribution Testing
	*COT
	*INDD-CCA
	*sEUF-CMA
	Ideal Obfuscation

	*AT
	Network Model and Non-Participating Parties
	The Model
	Fine-grained Anonymous Transfer
	Trivial Anonymous Transfers
	Reductions Among AT Protocols
	AT implies silent-receiver AT.

	Strong *AT

	Impossibility of Anonymous Transfer
	The Attacker
	Putting the Pieces Together
	Impossibility of *AT for NumberOfIndividuals> 3
	Security Analysis of ProtocolAT'

	Extensions and Limitations
	Limitations of the impossibility result.

	Fine-Grained AT from Ideal Obfuscation
	The Protocol
	Security Analysis
	Correctness
	Anonymity.
	Secrecy

	A fine-grained *AT for MessageLength-bit messages
	The Protocol
	Security Analysis
	Correctness
	Anonymity
	Secrecy

	*UOT
	Definitions for *UOT

	*UOT Instantiation
	Correctness
	Privacy
	Sender Privacy

	Anonymity
	Corrupted Sender
	Corrupted Receiver
	Corrupted Dummy Friend

	Towards *UMPC
	Defining *UMPC
	Towards constructing *U2PC from *UOT

	Conclusion
	Bibliography

