20 research outputs found

    CCA Security for Self-Updatable Encryption: Protecting Cloud Data When Clients Read/Write Ciphertexts

    Get PDF
    Self-updatable encryption (SUE) is a new kind of public-key encryption, motivated by cloud computing, which enables anyone (i.e. cloud server with no access to private keys) to update a past ciphertext to a future ciphertext by using a public key. The main applications of SUE is revocable-storage attribute-based encryption (RS-ABE) that provides an efficient and secure access control to encrypted data stored in cloud storage. In this setting, there is a new threat such that a revoked user still can access past ciphertexts given to him by a storage server. RS-ABE solves this problem by combining user revocation and ciphertext updating functionalities. The mechanism was designed with semantic security (CPA). Here, we propose the first SUE and RS-ABE schemes, secure against a relevant form of CCA, which allows ciphertexts submitted by attackers to decryption servers. Due to the fact that some ciphertexts are easily derived from others, we employ a different notion of CCA which avoids easy challenge related messages (we note that this type of idea was employed in other contexts before). Specifically, we define time extended challenge (TEC) CCA security for SUE which excludes ciphertexts that are easily derived from the challenge (over time periods) from being queried on (namely, once a challenge is decided by an adversary, no easy modification of this challenge to future and past time periods is allowed to be queried upon). We then propose an efficient SUE scheme with such CCA security, and we also define similar CCA security for RS-ABE and present an RS-ABE scheme with this CCA security

    Federated Secure Data Sharing by Edge-Cloud Computing Model*

    Get PDF
    Data sharing by cloud computing enjoys benefits in management, access control, and scalability. However, it suffers from certain drawbacks, such as high latency of downloading data, non-unified data access control management, and no user data privacy. Edge computing provides the feasibility to overcome the drawbacks mentioned above. Therefore, providing a security framework for edge computing becomes a prime focus for researchers. This work introduces a new key-aggregate cryptosystem for edge-cloud-based data sharing integrating cloud storage services. The proposed protocol secures data and provides anonymous authentication across multiple cloud platforms, key management flexibility for user data privacy, and revocability. Performance assessment in feasibility and usability paves satisfactory results. Therefore, this work directs a new horizon to detailed new edge-computing-based data sharing services based on the proposed protocol for low latency, secure unified access control, and user data privacy in the modern edge enabled reality

    Attribute-based encryption for cloud computing access control: A survey

    Get PDF
    National Research Foundation (NRF) Singapore; AXA Research Fun

    SEA-BREW: A scalable Attribute-Based Encryption revocable scheme for low-bitrate IoT wireless networks

    Get PDF
    Attribute-Based Encryption (ABE) is an emerging cryptographic technique that allows one to embed a fine-grained access control mechanism into encrypted data. In this paper we propose a novel ABE scheme called SEA-BREW (Scalable and Efficient Abe with Broadcast REvocation for Wireless networks), which is suited for Internet of Things (IoT) and Industrial IoT (IIoT) applications. In contrast to state-of-the-art ABE schemes, ours is capable of securely performing key revocations with a single short broadcast message, instead of a number of unicast messages that is linear with the number of nodes. This is desirable for low-bitrate Wireless Sensor and Actuator Networks (WSANs) which often are the heart of (I)IoT systems. In SEA-BREW, sensors, actuators, and users can exchange encrypted data via a cloud server, or directly via wireless if they belong to the same WSAN. We formally prove that our scheme is secure also in case of an untrusted cloud server that colludes with a set of users, under the generic bilinear group model. We show by simulations that our scheme requires a constant computational overhead on the cloud server with respect to the complexity of the access control policies. This is in contrast to state-of-the-art solutions, which require instead a linear computational overhead

    Towards Cyber Security for Low-Carbon Transportation: Overview, Challenges and Future Directions

    Full text link
    In recent years, low-carbon transportation has become an indispensable part as sustainable development strategies of various countries, and plays a very important responsibility in promoting low-carbon cities. However, the security of low-carbon transportation has been threatened from various ways. For example, denial of service attacks pose a great threat to the electric vehicles and vehicle-to-grid networks. To minimize these threats, several methods have been proposed to defense against them. Yet, these methods are only for certain types of scenarios or attacks. Therefore, this review addresses security aspect from holistic view, provides the overview, challenges and future directions of cyber security technologies in low-carbon transportation. Firstly, based on the concept and importance of low-carbon transportation, this review positions the low-carbon transportation services. Then, with the perspective of network architecture and communication mode, this review classifies its typical attack risks. The corresponding defense technologies and relevant security suggestions are further reviewed from perspective of data security, network management security and network application security. Finally, in view of the long term development of low-carbon transportation, future research directions have been concerned.Comment: 34 pages, 6 figures, accepted by journal Renewable and Sustainable Energy Review
    corecore