
CCA Security for Self-Updatable Encryption:
Protecting Cloud Data When Clients Read/Write Ciphertexts

Kwangsu Lee∗ Dong Hoon Lee† Jong Hwan Park‡ Moti Yung§

Abstract

Self-updatable encryption (SUE) is a new kind of public-key encryption, motivated by cloud com-
puting, which enables anyone (i.e. cloud server with no access to private keys) to update a past ciphertext
to a future ciphertext by using a public key. The main applications of SUE is revocable-storage attribute-
based encryption (RS-ABE) that provides an efficient and secure access control to encrypted data stored
in cloud storage. In this setting, there is a new threat such that a revoked user still can access past cipher-
texts given to him by a storage server. RS-ABE solves this problem by combining user revocation and
ciphertext updating functionalities. The mechanism was designed with semantic security (CPA).

Here, we propose the first SUE and RS-ABE schemes, secure against a relevant form of chosen-
ciphertext security (CCA). Due to the fact that some ciphertexts are easily derived from others, we
employ a different notion of CCA which avoids easy challenge related messages. Specifically, we define
“time extended challenge” (TEC) CCA security for SUE which excludes ciphertexts that are easily de-
rived from the challenge (over time periods) from being queried on (namely, once a challenge is decided
by an adversary, no easy modification of this challenge to future and past time periods is allowed to be
queried upon). We then propose an efficient SUE scheme with such CCA security, and we also define
similar CCA security for RS-ABE and present an RS-ABE scheme with this CCA security.

Keywords: Public-key encryption, Self-updatable encryption, Chosen-ciphertext security, Cloud storage.

∗Sejong University, Seoul, Korea. Email: kwangsu@sejong.ac.kr.
†Korea University, Seoul, Korea. Email: donghlee@korea.ac.kr.
‡Sangmyung University, Seoul, Korea. Email: jhpark@smu.ac.kr.
§Snapchat Inc. and Columbia University, New York, USA. Email: moti@cs.columbia.edu.

1

1 Introduction

In cloud storage, providing efficient access control to encrypted data is very important issue, since it extends
traditional data in organizations and services to the Internet based hosting paradigm. To provide simple
access control, sensitive data may be kept as the encrypted form of attribute based encryption (ABE) with
user revocation [4] in cloud storage which is controlled by some servers which do not have access to keys
nor are necessarily fully trusted (and may be accessible at times to some clients). Then, there could be
potential threats that are new to this setting, as nicely pointed out by Sahai et al. [30]. That is, a user
who is revoked from cloud storage may access old ciphertexts (generated before revocation) stored in cloud
storage by colluding with insiders, even if he cannot access new ciphertexts generated after revocation. To
provide stronger access control to encrypted data stored in cloud storage, revocable-storage attribute-based
encryption (RS-ABE) was introduced by Sahai, Seyalioglu, and Waters [30]. RS-ABE, which is a kind
of ABE [17, 31], can solve this problem by providing two functionalities: user revocation and ciphertext
updating. That is, the access to an old ciphertext with time T1 by a revoked user having an old private key
with time T2 can be prevented if a cloud sever updates the old ciphertext to new one with time T3 since the
old private key is not enough to decrypt the new ciphertext where T1 < T2 < T3.

Self-updatable encryption (SUE) is a new kind of public-key encryption (PKE) that realizes a time-
evolution mechanism by allowing anyone (and storage servers in particular) to update a past ciphertext to
a future ciphertext by using public keys (or public parameters). In SUE, a ciphertext and a private key are
associated with time Tc and Tk respectively and the ciphertext can be decrypted by the private key if Tc ≤ Tk.
Lee, Choi, Lee, Park, and Yung [22] introduced the concept of SUE and proposed an efficient SUE scheme
in bilinear groups by utilizing the properties of full binary trees. They also showed that an efficient RS-ABE
scheme can be built by combining an SUE scheme and an ABE scheme. That is, the initial RS-ABE scheme
of Sahai et al. [30] contains O(log2 Tmax) group elements in a ciphertext to support ciphertext updating where
Tmax is the maximum number of time units, while the modularly built RS-ABE scheme of Lee et al. [22]
just contains O(logTmax) group elements in a ciphertext to support ciphertext updating (due to the use of
an SUE scheme). As pointed in [22], SUE can also be used to build time-released encryption (TIE) and
key-insulated encryption (KIE) with certain properties.

The available RS-ABE schemes and SUE schemes only provide security (confidentiality) against chosen-
plaintext attacks (CPA security) [21, 22, 30]. CPA security provides sufficient security only for passive
attackers who do not modify ciphertexts. Cloud storage, however, allows multiple users to access stored
ciphertexts, and insiders who are managing cloud storage can also access these ciphertexts [19, 20]. For
example, consider the situation where electronic medical records of patients are stored in cloud storage and
these records can be accessed by doctors for a diagnosis or prescription. Using the RS-ABE scheme de-
scribed above, a patient creates a ciphertext by attaching a policy for accessing his/her medical data, and a
doctor who retrieved a private key for his/her own attribute can decrypts the ciphertext if the attributes in the
private key satisfy the policy in the ciphertext. In addition, it is possible to flexibly handle the access to these
ciphertexts using key revocation and ciphertext updating. In this case, the stored ciphertexts in the cloud
storage can be modified by some users (patients, doctors, or administrators) and this modified ciphertext can
be decrypted by a doctor if some medical service program is running on this cloud system.

Thus it is needed to guarantee stronger security (confidentiality and integrity) for these ciphertexts even
if they are modified due to external malicious users, internal malicious administrators, or unintended sys-
tem errors. In order to deal with such stronger attackers, it is necessary to consider a stronger security
model that considers active attackers instead of conventional passive attackers. For this reason, we consider
security against chosen-ciphertext attacks (CCA security), in which an adversary can adaptively request de-

2

cryption queries on ciphertexts. CCA security for PKE and its extensions was intensively studied by many
researchers and is a standard requirement by now e.g., [1, 12, 13, 26, 28, 34]. In addition, there are general
methods to achieve it [6, 7, 9]. However, constructing a CCA secure RS-ABE scheme (or CCA secure SUE
scheme) is paradoxical by definition, since CCA means non-malleability, but these schemes need to support
ciphertext updating functionality over time periods. Thus it seems an unusually hard requirement in this
case. Nevertheless, we ask whether and to what extent it is possible to construct some (properly adapted)
level of CCA-security for SUE and RS-ABE schemes.

1.1 Our Results

In this paper, we first define time extended challenge (TEC) CCA security for SUE by relaxing standard
CCA security. In a standard CCA security model, an adversary given a challenge ciphertext is not allowed
to probe on it when accessing the decryption oracle to prevent trivial attacks [28]. As mentioned before,
the standard CCA security cannot be used for SUE since it supports the ciphertext updating functionality.
We extend the restriction of standard CCA security by not allowing the adversary to ask a decryption query
on any ciphertext that is the challenge or updated from the challenge ciphertext. This is a natural extension
preventing trivial attacks due to the probing capabilities, but leaving non-trivial attacks scenario in place; it
is also in the spirit of similar limitations elsewhere [1,12,34]. We then propose an efficient SUE scheme that
provides TEC-CCA security under the decisional Bilinear Diffie-Hellman (DBDH) assumption by modi-
fying the SUE scheme of Lee [21]. The design idea of our SUE scheme is given in the later part of this
section.

Next, we similarly define TEC-CCA security for RS-ABE since it supports the ciphertext updating
functionality as well. We then propose an efficient RS-ABE scheme by combining our TEC-CCA secure
SUE scheme, a CCA secure ciphertext-policy ABE (CP-ABE) scheme derived from the CP-ABE scheme
of Rouselakis and Waters [29], and the complete subtree (CS) scheme of Naor et al. [25]. We basically
follow the design principle of Lee et al. [22] to build our RS-ABE scheme from building blocks, but we
propose a key encapsulation mechanism (KEM) of RS-ABE. Additionally, our RS-ABE scheme supports
public verifiability of ciphertexts that allows for anyone to check whether ciphertexts are legitimate (original
or legally updated) or not. Note that integrity of ciphertexts is easily obtained from public verifiability. We
prove that our RS-ABE scheme achieves TEC-CCA security in a selective security model described next.
Our RS-ABE scheme is the first one that achieves security beyond CPA, and gives an answer to the question
raised by Sahai et al. [30].

The selective revocation list model, introduced by Boldyreva et al. [4], was used in proving the CPA
security of revocable ABE (R-ABE) and RS-ABE if the partitioning technique is employed in the proof.
Note that the selective revocation list model in which an adversary should submit a revocation list before
receiving public parameters is weaker than the well-known selective model that is used for the security
proof of identity-based encryption (IBE) [5, 10] and ABE [17, 31, 35]. In the security proof of our RS-ABE
scheme, we show that the TEC-CCA security of our RS-ABE scheme can be proven in the selective TEC-
CCA model instead of the selective revocation list TEC-CCA model although the partitioning technique is
used. We note that as a result of independent interest, our new proof technique can also be used to prove the
selective CPA security of the R-ABE scheme of Boldyreva et al. [4] instead of the selective revocation list
CPA security.

3

1.2 Our Techniques

A naive approach for building a CCA secure SUE scheme is to employ the CHK method of Canetti et al. [9]
by combining a CPA secure SUE scheme of Lee [21] augmented by the Boneh-Boyen IBE scheme [5] and
a one-time signature scheme. To improve the efficiency, we use the BMW method of Boyen et al. [7] that
is a variant of the CHK method since the role of one-time signature can be replaced by the ciphertext of
the BB-IBE scheme and the SUE scheme is a key-encapsulation mechanism (KEM). In this approach, the
IBE scheme enables the simulation of the decryption oracle and the one-time signature scheme provides in-
tegrity of ciphertexts. However, the resulting CCA secure SUE scheme cannot provide ciphertext updating
any longer since the one-time signature scheme is unforgeable. Let (C0 = gt ,C1 = wt

∏vsi ,{Ci,1 = gsi ,Ci,2 =
Fi,L[i](L|i)si}) be a CPA secure (simple) SUE ciphertext header and e(g,g)β t be a session key. To solve the
problem mentioned before, we first divide the ciphertext components of a CPA secure SUE scheme into two
parts: the first part (C0 = gt) is related to a session key and the second part (C1 = wt

∏vsi ,{Ci,1,Ci,2}) is
related to ciphertext updating. We then apply the BMW method only to the first part of ciphertext compo-
nents by adding C3 = (uπ

S hS)
t where π = H(C0). The simulation of the decryption oracle and the ciphertext

integrity of the first part are achieved by the BMW method. The ciphertext updating functionality in the sec-
ond part is still preserved, but it is needed to verify that the second part components are correctly updated or
not. To provide the ciphertext verifiability of the second part, we observe that the well-formedness of these
components can be checked by bilinear maps since these components consist of Diffie-Hellman tuples. By
using these techniques, we can build an SUE scheme with TEC-CCA security.

As mentioned before, we combine a TEC-CCA secure SUE scheme, a CCA secure CP-ABE scheme,
and the CS scheme to build a TEC-CCA secure RS-ABE scheme motivated by the design principle of Lee
et al. [22]. To prove the security of our RS-ABE scheme, we use the well-known partitioning method.
However, we need the selective revocation list model to prove the security of RS-ABE as pointed by Lee
[21]. The reason is that an adversary can request many private key queries that match to the challenge
ciphertext in RS-ABE and these (matching) private keys should be placed on (fixed) leaf nodes in a binary
tree for consistency. The selective revocation list model, introduced by Boldyreva et al. [4], is weaker than
the well-known selective model [10]. To prove the security of our RS-ABE scheme in the selective model
instead of the selective revocation list model, we observe that if a simulator can predict the number of private
key queries that match the challenge ciphertext then the problem can be solved by placing a user’s private
key in a random leaf node of the binary tree. That is, if q̃ is the number of private keys such as S ∈A∗ where
S is the set of attributes in a private key and A∗ is the access structure in the challenge ciphertext, then the
simulator can fix the positions of these private keys by arbitrary selecting q̃ number of leaf nodes randomly.
In this case, the consistency of private keys and update keys is preserved.

1.3 Related Work

Cloud Storage. Cloud storage provides data storage services with high availability, easy accessibility, and
affordable cost to clients who can not maintain their own independent storage. Cloud storage should provide
at least confidentiality and integrity in order to ensure the security of users’ data. Classic cloud storage that
provides these two properties is a cryptographic file system [16,18]. To provide confidentiality and integrity,
this system takes a method of encrypting data with symmetric key encryption and signing data with public
key signature when the client stores data in the storage. This method can provide strong security and simple
access control functions by providing additional key management and key revocation methods [2], but it is
difficult for the cloud server to perform additional work on the encrypted data. In addition to confidentiality
and integrity, recent cloud storage additionally provides search (or query) on encrypted data and large file

4

integrity verification [19, 20]. These cloud storage systems use searchable symmetric key encryption to
support searching on encrypted data and proof-of-possession protocols to verify the integrity of large files.

Revocable IBE and Its Extensions. Providing an efficient user revocation in identity-based encryption
(IBE) and attribute-based encryption (ABE) is very important issue in real applications. A scalable and
efficient revocable IBE (R-IBE) scheme was first proposed by Boldyreva et al. [4] by using a fuzzy IBE
scheme and a full binary tree. After that numerous R-IBE schemes were presented in [23,24,27,32,33]. An
efficient revocable ABE (R-ABE) scheme also proposed in [4] and its security was claimed in the weaker
selective revocation list model. Sahai et al. [30] introduced the concept of RS-ABE to provide efficient
access control on encrypted data stored in cloud storage. After the introduction of RS-ABE, an efficient RS-
ABE schemes that incorporate SUE schemes were presented in [21,22]. Lee et al. [22] introduced the notion
of SUE and proposed an efficient SUE scheme with CPA security by modifying a hierarchical identity-based
encryption (HIBE) scheme [5] to apply the design strategy of forward-secure encryption (FSE) [10]. Then,
a number of different SUE schemes were proposed in [14, 21]. The main application of SUE is RS-ABE
for cloud storage [22]. However, SUE itself can be used for other interesting applications: timed-release
encryption and key-insulated encryption.

Chosen-Ciphertext Security. Security against (adaptively) chosen ciphertext attacks (or CCA security) is
the standard notion of PKE [28]. For some applications, more adversary constrained notions of CCA security
are considered since CCA security is too strong and immediately un-achievable. Such constrained adversary
notions have been used before: Dolev et al. introduced nonmalleable security [15], Shoup introduced benign
malleability [34], An et al. introduced generalized CCA security (or gCCA security) [1], and Canetti et
al. introduced Replayable CCA security (or RCCA security) [12]. Note that benign malleability, gCCA
security, and publicly detectable RCCA security are in fact the same notion. This (more adversarially
constrained) CCA security was used to prove the security of other cryptographic primitives [11, 36].

2 Preliminaries

In this section, we define full binary trees and bilinear groups, and then introduce complexity assumptions
in bilinear groups.

2.1 Full Binary Tree

For binary trees, we follow the notation in [22]. A full binary tree BT is a tree data structure where each
node except the leaf nodes has two child nodes. Let N be the number of leaf nodes in BT . The number of
all nodes in BT is 2N− 1. For any index 1 ≤ i ≤ 2N− 1, we denote by vi a node in BT . The depth of a
node vi is the length of the path from the root node to the node. The root node is at depth zero. The depth
of BT is the maximum depth of a leaf node. A level of BT is a set of all nodes at given depth. Siblings are
nodes that share the same parent node.

For each node vi ∈ BT , we associated vi with a unique label string L ∈ {0,1}∗. The label of each node
is assigned as follows: Each edge in the tree is assigned with 0 or 1 depending on whether the edge is
connected to its left or right child node. The label L of a node vi is defined as the bit string obtained by
reading all the labels of edges in the path from the root node to the node vi. We assign a special empty string
to the root node label. We define L(i) be a mapping from the index i of a node vi to a label L. We also use
L(vi) as L(i) if there is no ambiguity. For a label string L ∈ {0,1}≤n, we define some notations: L[i] is the
ith bit of L, L|i is the prefix of L with i-bit length, and L‖L′ is the concatenation of two strings L and L′.

5

For a full binary tree BT and a subset R of leaf nodes, ST (BT ,R) is defined as the Steiner Tree induced
by the set R and the root node, that is, the minimal subtree of BT that connects all the leaf nodes in R and
the root node. We simply denote ST (BT ,R) by ST (R).

2.2 Bilinear Groups

Let G and GT be two multiplicative cyclic groups of prime order p. Let g be a generator of G. The bilinear
map is a map e : G×G→GT with the following properties:

1. Bilinearity: for all u,v ∈G and all a,b ∈ Zp, we have e(ua,vb) = e(u,v)ab.

2. Non-degeneracy: e(g,g) 6= 1.

We say that G is a bilinear group if the group operations in G and GT as well as the bilinear map e are all
efficiently computable.

2.3 Complexity Assumptions

Assumption 1 (Decisional Bilinear Diffie-Hellman, DBDH). Let (p,G,GT ,e) be a description of the bi-
linear group of prime order p. Let g be a random generator of G. The DBDH assumption is that if the
challenge tuple

D =
(
(p,G,GT ,e),g,ga,gb,gc) and Z,

are given, no probabilistic polynomial-time (PPT) algorithm A can distinguish Z = Z0 = e(g,g)abc from
Z = Z1 = e(g,g)d with more than a negligible advantage. The advantage of A is defined as AdvDBDH

A (λ) =∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) = 0]
∣∣ where the probability is taken over random choices of a,b,c,d ∈ Zp.

3 Self-Updatable Encryption

In this section, we first define the syntax and the chosen ciphertext security of SUE. After that we propose
an efficient SUE scheme in bilinear groups and prove its security under the standard assumption.

3.1 Definitions

Before we introduce SUE, we define ciphertext delegatable encryption (CDE) that is a building block of
SUE. The concept of CDE was introduced by Lee et al. [22] and it is public-key encryption (PKE) that
supports the delegation of ciphertexts. In CDE, a ciphertext header is associated with a label string L and a
private key is also associated with a label string L′. The ciphertext header with L can be delegated to a new
ciphertext header with a new label string L′ with the restriction that L is a prefix of L′. If L is a prefix of
L′, then the ciphertext header with L can be decrypted by the private key with L′. We slightly modify the
definition of CDE in [22]. The syntax of CDE is given as follows:

Definition 3.1 (Ciphertext Delegatable Encryption). A ciphertext delegatable encryption (CDE) scheme for
the set L of labels consists of eight PPT algorithms, Init, Setup, GenKey, RandKey, Encaps, DelegateCT,
VerifyCT, and Decaps, which are defined as follows:

Init(1λ). The initialization algorithm takes as input a security parameter 1λ and outputs a group description
string GDS.

6

Setup(GDS, `). The setup algorithm takes as input a group description string GDS and the maximum length
` of the label strings. It outputs a master key MK and public parameters PP.

GenKey(L,MK,PP). The key generation algorithm takes as input a label string L ∈ {0,1}n with n≤ `, the
master key MK, and the public parameters PP. It outputs a private key SKL.

RandKey(SKL,δ ,PP). The key randomization algorithm takes as input a private key SKL, an exponent δ ,
and the public parameters PP. It outputs a randomized private key SKL.

Encaps(L, t,~s,PP). The encapsulation algorithm takes as input a label string L ∈ {0,1}d with d ≤ `, an
exponent t, an exponent vector ~s, and the public parameters PP. It outputs a ciphertext header CHL

and a session key EK.

DelegateCT(CHL,c,PP). The ciphertext delegation algorithm takes as input a ciphertext header CHL for a
label string L ∈ {0,1}d with d < `, a bit value c ∈ {0,1}, and the public parameters PP. It outputs a
delegated ciphertext header CHL′ for the label string L′ = L‖c.

VerifyCT(CHL,L,PP). The ciphertext verification algorithm takes as input a ciphertext header CHL, a label
string L, and the public parameters PP. It outputs 1 if the ciphertext header is valid or 0 otherwise.

Decaps(CHL,SKL′ ,PP). The decapsulation algorithm takes as input a ciphertext header CHL, a private key
SKL′ , and the public parameters PP. It outputs a session key EK or the distinguished symbol ⊥.

The correctness property of CDE is defined as follows: For all PP,MK generated by Setup, any SKL′ gener-
ated by GenKey, any CHL and EK generated by Encaps or DelegateCT, it is required that:

• If L is a prefix of L′, then Decaps(CHL,SKL′ ,PP) = EK.

• If L is not a prefix of L′, then Decaps(CHL,SKL′ ,PP) =⊥ with all but negligible probability.

Additionally, it requires that the delegated ciphertext header of DelegateCT is a valid ciphertext header
under the new label string.

SUE, introduced by Lee et al. [22], is new PKE that supports the updating of ciphertexts by using a
public key (or public parameters). In SUE, a ciphertext header is associated with time T and a private key
is associated with time T ′. If T ′ ≥ T , then the ciphertext header with T can be decrypted by a private key
with T ′. That is, the ciphertext header with T can be updated to a new ciphertext header with T ′ and then
the private key with T ′ can decrypt the updated ciphertext header. We slightly modify the definition of SUE
in [22]. The syntax of SUE is given as follows:

Definition 3.2 (Self-Updatable Encryption). A self-updatable encryption (SUE) scheme consists of eight
PPT algorithms, Init, Setup, GenKey, RandKey, Encaps, UpdateCT, VerifyCT, and Decaps, which are
defined as follows:

Init(1λ). The initialization algorithm takes as input a security parameter 1λ and outputs a group description
string GDS.

Setup(GDS,Tmax). The setup algorithm takes as input a group description string GDS and the maximum
time Tmax. It outputs a master key MK and public parameters PP.

GenKey(T,MK,PP). The key generation algorithm takes as input time T , the master key MK, and the
public parameters PP. It outputs a private key SKT .

7

RandKey(SKT ,δ ,PP). The key randomization algorithm takes as input a private key SKT , an exponent δ ,
and the public parameters PP. It outputs a randomized private key SKT .

Encaps(T, t,PP). The encapsulation algorithm takes as input time T , an exponent t, and the public param-
eters PP. It outputs a ciphertext header CHT and a session key EK.

UpdateCT(CHT ,T + 1,PP). The ciphertext update algorithm takes as input a ciphertext header CHT for
time T , next time T +1, and the public parameters PP. It outputs an updated ciphertext header CHT+1.

VerifyCT(CHT ,T,PP). The ciphertext verification algorithm takes as input a ciphertext header CHT , time
T , and the public parameters PP. It outputs 1 if the ciphertext header is valid or 0 otherwise.

Decaps(CHT ,SKT ′ ,PP). The decapsulation algorithm takes as input a ciphertext header CHT , a private key
SKT ′ , and the public parameters PP. It outputs a session key EK or the distinguished symbol ⊥.

The correctness property of SUE is defined as follows: For all PP,MK generated by Setup, all T,T ′, any
SKT ′ generated by GenKey, and any CHT and EK generated by Encaps or UpdateCT, it is required that:

• If T ≤ T ′, then Decaps(CHT ,SKT ′ ,PP) = EK.

• If T > T ′, then Decaps(CHT ,SKT ′ ,PP) =⊥ with all but negligible probability.

Additionally, it requires that the updated ciphertext header of UpdateCT is a valid ciphertext header under
the new time.

Remark 1. The syntax of SUE in [22] additionally includes the ciphertext randomization algorithm RandCT,
but we omit this algorithm in the above syntax of SUE. The RandCT algorithm ensures that the ciphertext
distribution of UpdateCT is statistically equal to that of Encaps by completely re-randomizing the output
of UpdateCT. However, we weaken this strong requirement in this paper by just requiring that the output
of UpdateCT is just a valid ciphertext header because of the reason in Remark 4. In this case, we do not
need to completely re-randomize the updated ciphertext header of UpdateCT.

Remark 2. If a ciphertext header CHT with time T is updated to multiple ciphertext headers CHT1 ,CHT2 , and
CHT3 where T1,T2,T3 ≥ T , then those updated ciphertext headers should be re-randomized to remove the
relationship between ciphertext headers. That is, an adversary who obtained the session key of a ciphertext
header can use this session key to break other ciphertext headers if they are not re-randomized. However, in
most applications we can ensure that a ciphertext header CHT is updated to a new single ciphertext header
CHT+1 and completely delete the previous one. In this case, we can prevent the previous attack since there
is only one ciphertext header that is related to the original ciphertext header.

Security against chosen plaintext attacks (CPA security) for SUE was introduced by Lee et al. [22]. We
define security against chosen ciphertext attacks (CCA security) for SUE by modifying their definition of
CPA security. To be precise, there are several notions of CCA security: security against lunchtime attacks
(or CCA1 security) and security against adaptively chosen ciphertext attacks (or CCA2 security) [26, 28].
We simply use CCA security for CCA2 security. Although CCA security is regarded as the standard notion
for security of encryption schemes, it is too strong for SUE since CCA security cannot be achievable in SUE.
In CCA security, an adversary is allowed to request a decryption query with the restriction that the challenge
ciphertext given to the adversary cannot be queried. However, an adversary attacking an SUE scheme can
query an updated ciphertext to the decryption oracle after obtaining the updated ciphertext by updating the
challenge ciphertext. Thus, the adversary can easily break CCA security of SUE. To solve this problem in

8

security definition, we relax the CCA security by restricting that the adversary cannot query the decryption
oracle on a ciphertext that is the challenge or updated from the challenge ciphertext. We may view these
ciphertexts that are the challenge or updated from the challenge ciphertext as time extended challenge (TEC)
ciphertexts. The TEC-CCA security of SUE is given as follows:

Definition 3.3 (Selective TEC-CCA Security). The selective TEC-CCA security for SUE schemes is defined
in terms of the indistinguishability under time extended challenge chosen plaintext attacks (IND-TEC-CCA).
The security game is defined as the following game between a challenger C and a PPT adversary A:

Init: A first submits the challenge time T ∗.

Setup: C runs the initialization and setup algorithms to generate MK and PP. It gives PP to A.

Query 1: A adaptively requests a polynomial number of private key and decryption queries. C handles the
queries as follows:

• If this is a private key query for time T subject to the restriction T < T ∗, then it creates the
private key SKT for the time T by calling the key generation algorithm. It responses the query
with SKT to A.
• If this is a decryption query for a ciphertext header CHT , then it computes the decapsulated

session key EK by calling the decryption algorithm and responses the query with EK to A.

Challenge: A requests a challenge ciphertext header and a challenge session key. C creates a ciphertext
header CH∗T ∗ and a session key EK∗ by calling the encryption algorithm under the challenge time
T ∗. It flips a random bit γ ∈ {0,1}. If γ = 0, then it gives CH∗T ∗ and EK∗ to A. Otherwise, it gives
CH∗T ∗ and a random session key EK′ to A. Note that A can obtain updated ciphertext headers that are
derived from the challenge ciphertext header since the ciphertext update algorithm can be performed
by anyone.

Query 2: A continues to request private key and decryption queries. C handles the private key queries as
the same as before. It handles the decryption queries as follows:

• If this is a decryption query for a ciphertext header CHT subject to the restriction that CHT is
not updated from CH∗T ∗ in case of T ≥ T ∗, then it computes the decapsulated session key EK by
calling the decryption algorithm. It responses the query with EK to A.

Guess: Finally A outputs a bit γ ′.

The advantage of A is defined as AdvSUE
A (λ) =

∣∣Pr[γ = γ ′]− 1
2

∣∣ where the probability is taken over all
the randomness of the game. An SUE scheme is selectively secure under time extended challenge chosen
ciphertext attacks if for all PPT adversaries A, the advantage of A in the above game is negligible in the
security parameter λ .

Remark 3. The above TEC-CCA security for SUE is closely related to the relaxed CCA security notions:
the benign malleability of Shoup [34], the generalized CCA (gCCA) security of An et al. [1], and the public
detectable Replayable CCA (RCCA) security of Canetti et al. [12]. In these relaxed CCA security models,
there exists an efficiently computable relation R(−,−) on ciphertext headers and the decryption results of
two ciphertext headers CH1 and CH2 are equal if R(CH1,CH2) = True. Thus, the decryption query on any
ciphertext header CH ′ that satisfies R(CH∗,CH ′) = True where CH∗ is the challenge ciphertext header is
not allowed in this model. In TEC-CCA, the relation R(−,−) checks whether a ciphertext header is updated
from another ciphertext header or not.

9

Remark 4. If an SUE scheme can re-randomize the output of the UpdateCT algorithm, then this re-
randomizable SUE scheme cannot satisfy the TEC-CCA security. The reason is that there is no efficiently
computable relation R(−,−) that can check whether a ciphertext header is updated from the challenge ci-
phertext header or not. Therefore, the syntax of SUE for TEC-CCA security only requires for the UpdateCT
algorithm to output a just valid ciphertext header.

3.2 Managing the Time Structure

To efficiently manage the time structure, we use a full binary tree as in [10, 22, 30]. We define some useful
notations for a binary tree. Let v be a node in BT . Parent(v) is the parent node of the input node v. Path(v)
is the set of path nodes from the root node to the input node v. RightSibling(v) is the right sibling node of
v. That is, RightSibling(v) = RightChild(Parent(v)) where RightChild(v) is the right child of v. We also
define TimeNodes(v) = {v}∪RightSibling(Path(v)) \Path(Parent(v)) where RightSibling(Path(v)) is
the set of right sibling nodes of Path(v). Let L be the label string of a node v. We also define Parent(L),
Path(L), RightSibling(L), and TimeNodes(L) similarly except that these are defined by using the label
string L of v.

For each node in BT , we assign a unique time value T ∈ {1, . . . ,Tmax} by using pre-order traversal that
recursively visits the root node, the left subtree, and the right subtree. That is, the root node is assigned to
1, the left most leaf node is assigned to d + 1, and the right most leaf node is assigned to Tmax = 2d+1− 1
where d is the depth of the tree. We let vT be a node associated with time T . We define a mapping ψ from
time T to a label L. That is, ψ(T) returns the label L of a node vT associated with time T . The following
theorem guarantees that we can handle the time components efficiently.

Theorem 3.1 ([30]). Let BT be a full binary tree of depth d and vT be a node associated with time T by
pre-order traversal. For any node vT ∈ BT , TimeNodes(vT) satisfies the following properties:

• Property 1. TimeNodes(vT)∩Path(vT ′) 6= /0 if and only if T ≤ T ′

• Property 2. If v ∈ TimeNodes(vT+1), then there is an ancestor of v in TimeNodes(vT).

• Property 3. |TimeNodes(vT)| ≤ d +1

Remark 5. In pre-order traversal, if vT is an internal node, then vT+1 = LeftChild(vT). If vT is a leaf node,
then vT+1 =RightChild(vT ′) where vT ′ ∈Path(vT) is a node with the largest depth such that LeftChild(vT ′)∈
Path(vT).

3.3 Construction

We use the CPA secure CDE scheme of Lee [21] as the building block of our TEC-CCA secure SUE scheme.
The main challenge when devising a TEC-CCA secure SUE scheme is providing the integrity of ciphertexts
while the updating of ciphertexts is also provided. To solve this problem, we observe that ciphertext elements
can be divided into two parts: one part is related to the ciphertext updating and another part is related to the
session key of the ciphertext. The validity of ciphertext elements for the ciphertext updating can be easily
checked by using bilinear maps since these elements are composed of Diffie-Hellman (DH) tuples. The
integrity of ciphertext elements for the session key can be achieved by using the well-known transformation
of Canetti et al. [9]. To be precise, we use the direct method of Boyen et al. [7] to improve the efficiency.
The modified CDE scheme of Lee [21] is described as follows:

10

CDE.Init(1λ): It first generates bilinear groups G,GT of prime order p. It chooses a random generator
g ∈G and outputs GDS = ((p,G,GT ,e), g).

CDE.Setup(GDS, `): It chooses a random exponent β ∈ Zp and random elements w,v,u,{hi,0,hi,1}`i=1 ∈G.
Let Fi,b(L)= uLhi,b where i∈ [`] and b∈{0,1}. It outputs a master key MK = β and public parameters
PP =

(
(p,G,GT ,e), g, w, v, u, {hi,0,hi,1}`i=1, Λ = e(g,g)β

)
.

CDE.GenKey(L,MK,PP): Let L be an n-bit label string. It chooses random exponents r,r1, . . . ,rn ∈ Zp

and outputs a private key SKL =
(
K0 = gβ wr, K1 = g−r,

{
Ki,1 = vrFi,L[i](L|i)ri , Ki,2 = g−ri

}n
i=1

)
.

CDE.RandKey(SKL,δ ,PP): Let SKL = (K0,K1,{Ki,1,Ki,2}) and δ be an exponent in Zp. It selects random
exponents r′,r′1, . . . ,r

′
n ∈ Zp and outputs a re-randomized private key SKL =

(
K′0 = K0 · gδ wr′ , K′1 =

K1 ·g−r′ ,
{

K′i,1 = Ki,1 · vr′Fi,L[i](L|i)r′i , K′i,2 = Ki,2 ·g−r′i
}n

i=1

)
.

CDE.Encaps(L, t,~s,PP): Let L be a d-bit label string. By using the given exponent t ∈Zp and the vector~s=
(s1, . . . ,sd) ∈ Zd

p, it outputs a ciphertext header CHL =
(
C0 = gt , C1 = wt

∏
d
i=1 vsi ,

{
Ci,1 = gsi , Ci,2 =

Fi,L[i](L|i)si
}d

i=1

)
and a session key EK = Λt .

CDE.DelegateCT(CHL,c,PP): Let CHL = (C0,C1,{Ci,1,Ci,2}) where L ∈ {0,1}d . It first sets a new label
string L′ = L‖c where c ∈ {0,1}. It selects a random exponent sd+1 ∈ Zp and outputs a delegated ci-
phertext header CHL′ =

(
C′0 =C0, C′1 =C1 ·vsd+1 , {C′i,1 =Ci,1, C′i,2 =Ci,2}d

i=1, C′d+1,1 = gsd+1 , C′d+1,2 =

Fd+1,c(L′)sd+1
)
.

CDE.VerifyCT(CHL,L,PP): Let CHL = (C0,C1,{Ci,1,Ci,2}) for a label string L ∈ {0,1}d . It checks that

e(C1,g)
?
= e(C0,w) · e(∏d

i=1Ci,1,v) and e(Ci,2,g)
?
= e(Ci,1,Fi,L[i](L|i)) for all i ∈ {1, . . . ,d}. If all tests

pass, then it outputs 1. Otherwise, it outputs 0.

CDE.Decaps(CHL,SKL′ ,PP): Let CHL = (C0,C1,{Ci,1,Ci,2}d
i=1) for a label string L ∈ {0,1}d and SKL′ =

(K0,K1,{Ki,1,Ki,2}n
i=1) for a label string L′ ∈ {0,1}n. If L is a prefix of L′, then it outputs a session

key EK by computing e(C0,K0) · e(C1,K1) ·∏d
i=1
(
e(Ci,1,Ki,1) · e(Ci,2,Ki,2)

)
. Otherwise, it outputs ⊥.

Remark 6. Compared to the CDE scheme of Lee [21], we added the VerifyCT algorithm and modified the
Decaps algorithm. The VerifyCT algorithm simply checks the validity of CDE ciphertext headers by using
bilinear maps since the group elements in a CDE ciphertext header consist of DDH tuples. The Decaps
algorithm derives a session key without running the DelegateCT algorithm.

Let H be a family of collision resistant hash functions Hz, indexed by some finite index set {z}. Our
SUE scheme is described as follows:

SUE.Init(1λ): It outputs GDS by running CDE.Init(1λ).

SUE.Setup(GDS,Tmax): It first chooses random elements uS,hS ∈G and obtains MKCDE and PPCDE by run-
ning CDE.Setup(GDS, `) where Tmax = 2`+1−1. It also chooses a random index z for a hash function
Hz ∈H. It outputs a master key MK = MKCDE and public parameters PP =

(
PPCDE , z, uS,hS

)
.

SUE.GenKey(T,MK,PP): It outputs SKT by running CDE.GenKey(ψ(T),MK,PP).

SUE.RandKey(SKT ,δ ,PP): It outputs SKT by running CDE.RandKey(SKT ,δ ,PP).

SUE.Encaps(T, t,PP): It sets a label string L = ψ(T) and proceeds as follows:

11

1. It first obtains T L = (L(0),L(1), . . . ,L(d)) by computing TimeNodes(L) where L = L(0). Let d(j)

be the length of the label L(j). Note that the labels in T L are ordered according to pre-order
traversal.

2. For each label L(j) in T L such that 0≤ j ≤ d, it proceeds the following steps:

(a) If j = 0, then it sets a vector~s = (s1, . . . ,sd(0)) by selecting random exponents s1, . . . ,sd(0) ∈
Zp. It obtains CH(0)=(C0,C1,{Ci,1,Ci,2}d(0)

i=1) and EK by running CDE.Encaps(L(0), t,~s,PP).
(b) If j ≥ 1, then it sets a new vector ~s′ = (s′1, . . . ,s

′
d(j)−1,s

′
d(j)) where s′1, . . .s

′
d(j)−1 are copied

from ~s and s′d(j) is randomly selected in Zp. It obtains CH(j) = (C′0,C
′
1,{C′i,1,C′i,2}d(j)

i=1) by

running CDE.Encaps(L(j), t,~s′,PP). Next, it removes redundant elements C′0,{C′i,1,C′i,2}
d(j)−1
i=1

from CH(j) since they are contained in CH(0).

3. It computes π = Hz(C0) and sets C3 = (uπ
S hS)

t .

4. It outputs a ciphertext header CHT =
(
CH(0),CH(1), . . . ,CH(d),C3

)
and EK.

SUE.UpdateCT(CHT ,T +1,PP): Let CHT = (CH(0), . . . ,CH(d),C3) and L(j) be the label of CH(j). It
proceeds as follows:

1. If the length d of L(0) is less than `, then it first obtains CHL(0)‖0 and CHL(0)‖1 by running
CDE.DelegateCT(CH(0),c,PP) for all c ∈ {0,1} since CHL(0)‖0 is the ciphertext for the next
time T + 1 by pre-order traversal. Next, it prunes redundant elements in CHL(0)‖1. It out-
puts an updated ciphertext header CHT+1 =

(
CH ′(0) = CHL(0)‖0,CH ′(1) = CHL(0)‖1,CH ′(2) =

CH(1), . . . ,CH ′(d+1) =CH(d),C3
)
.

2. Otherwise, it copies common elements in CH(0) to CH(1) and simply removes CH(0) since CH(1)

is the ciphertext header for the next time T + 1 by pre-order traversal. It outputs an updated
ciphertext header CHT+1 =

(
CH ′(0) =CH(1), . . . ,CH ′(d−1) =CH(d),C3

)
.

SUE.VerifyCT(CHT ,T,PP): Let CHT = (CH(0), . . . ,CH(d),C3). It sets a label string L = ψ(T) and pro-
ceeds as follows:

1. It first obtains T L = (L(0),L(1), . . . ,L(d)) by computing TimeNodes(L) where L = L(0). Note
that the labels in T L are ordered according to pre-order traversal. It checks that the number of
labels in T L is the same as the number of CDE ciphertext headers in CHT .

2. For each label L(j) in T L, it checks 1 ?
= CDE.VerifyCT(CH(j),L(j),PP). Note that the common

elements of CH(0) should be copied to CH(j) when j > 0.

3. Next, it computes π = Hz(C0) and checks e(C3,g)
?
= e(C0,uπ

S hS) where C0 is the element in
CH(0).

4. It outputs 1 if all checking pass. Otherwise, it outputs 0.

SUE.Decaps(CHT ,SKT ′ ,PP): If T > T ′, then it outputs ⊥ since it cannot decrypt. Otherwise, it proceeds
as follows: It first checks 1 ?

= SUE.VerifyCT(CHT ,T,PP). If the checking fails, then it outputs ⊥.
Next, it finds CH(j) from CHT such that L(j) is a prefix of L′ = ψ(T ′) and outputs EK by running
CDE.Decaps(CH(j),SKT ′ ,PP).

12

Remark 7. Compared to the SUE scheme of Lee [21], the Encaps and Decaps algorithms of our SUE
scheme are different. The Encaps algorithm additionally generates a group element C3 to provide the in-
tegrity of the group element C0 by using the direct method of Boyen et al. [7]. The Decaps algorithm checks
the validity of the ciphertext header before it derives a session key by running the VerifyCT algorithm. The
VerifyCT algorithm first checks the validity of CDE ciphertext headers by running CDE.VerifyCT and then
checks the integrity of C0 by using bilinear maps.

Remark 8. Let CHT and CH ′T ′ be two valid SUE ciphertext headers with group elements C0 and C′0 respec-
tively. The efficiently computable relation R(CHT ,CH ′T ′) in Remark 3 returns True if CHT and CH ′T ′ are
valid SUE ciphertext headers, T ≤ T ′, and C0 =C′0 since the integrity of C0 and C′0 is preserved after running
the ciphertext update algorithm.

3.4 Correctness

The correctness of the CDE scheme was shown by Lee [21]. Note that the modified Decaps algorithm
preserve the correctness. Let CHT be a ciphertext header with time T generated by SUE.Encaps and SKT ′

be a private key with time T ′ generated by SUE.GenKey. To show the correctness of the above SUE scheme,
we should show that SUE.Decaps derives a valid session key EK from CHT and SKT ′ if T ≤ T ′ and that
CHT+1 generated by SUE.UpdateCT is a valid ciphertext header with time T +1.

We first show that SUE.Decaps can derive a valid session key by presenting that SUE.VerifyCT can
check the validity of CHT and CDE.Decaps can be used to derive a session key. The algorithm SUE.VerifyCT
checks that the number of CDE ciphertext headers in CHT , the validity of each CDE ciphertext header by
running CDE.VerifyCT, and the validity of C3. The validity of CDE ciphertext headers can be easily
checked by using bilinear maps since a CDE ciphertext header consists of elements composed of Diffie-
Hellman (DH) tuples and bilinear maps can check the validity of DDH tuples. The validity of C3 also can
be easily checked by using bilinear maps since (C0,uπ

S hs,C3) is also a DDH tuple.
The CDE.Decaps algorithm only can derive a valid session key if the label of a CDE ciphertext header is

a prefix of the label of a CDE private key. From the property 2 of Theorem 3.1, we have TimeNodes(ψ(T))∩
Path(ψ(T ′)) 6= /0 if T ≥ T ′ where T and T ′ are times associated to the SUE ciphertext header and the SUE
private key respectively. Thus, CDE.Decaps can derive a session key since the SUE ciphertext header con-
sists of many CDE ciphertext header with labels in TimeNodes(ψ(T)) and the SUE private key is equal to
the CDE private key.

We now show that the output of SUE.UpdateCT is a valid ciphertext header. Recall that an SUE ci-
phertext header CHT with time T consists of CDE ciphertext headers that are associated with labels in
TimeNodes(ψ(T)). Let vT be a node in BT associated with time T by pre-order traversal. If vT is an
internal node, we have vT+1 = LeftChild(vT) from Remark 5. Thus we have TimeNodes(ψ(T + 1)) \
TimeNodes(ψ(T)) = {LeftChild(vT),RightChild(vT)} since RightSibling(vT+1) = RightChild(vT) by
the definition of TimeNodes. If vT is a leaf node, vT+1 = RightChild(vT ′) where vT ′ ∈ Path(vT) is a node
with the largest depth such that LeftChild(vT ′)∈Path(vT) from Remark 5. Thus we have TimeNodes(ψ(T))\
TimeNodes(ψ(T +1)) = vT . Therefore, the correctness of SUE.UpdateCT is easily obtained if the output
of CDE.DelegateCT is a valid CDE ciphertext header.

3.5 Security Analysis

To prove the TEC-CCA security of the above SUE scheme, we use the well-known partitioning method.
To simplify the security proof, we use the meta-simulation technique of Lee [21]. In the meta-simulation
technique, a simulator (meta-simulator) for the TEC-CCA security proof uses the previous simulator for

13

the CPA security proof as a sub-simulator. Recall that the original SUE scheme of the above SUE scheme
was proven to be selectively secure under the DBDH assumption by Lee [21]. If the meta-simulator use the
previous simulator as a sub-simulator, then it can use the power of the sub-simulator to generate private keys
and some elements of a challenge ciphertext header.

Theorem 3.2 ([21]). The original SUE scheme is selectively secure under chosen plaintext attacks if the
DBDH assumption holds.

The simulator of this proof sets the element g in the assumption (g,ga,gb,gc) as the generator of public
parameters, implicitly sets ab as the master key β , and sets gc in the assumption as the element gt in a
challenge ciphertext header. Note that these three settings are essential for the correctness of the meta-
simulation. Now we can prove the TEC-CCA security of our SUE scheme as follows:

Theorem 3.3. The above SUE scheme is selectively secure under time extended challenge chosen ciphertext
attacks if the DBDH assumption holds. That is, for any PPT adversary A, we have that AdvSUE

A (λ) ≤
AdvDBDH

B (λ)+negl(λ).

Proof. Suppose there exists an adversary A that attacks the above SUE scheme with a non-negligible
advantage. A simulator B that solves the DBDH assumption using A is given: a challenge tuple D =
((p,G,GT ,e),g,ga,gb,gc) and Z where Z = Z0 = e(g,g)abc or Z = Z1 ∈GT . Let BSUE be a simulator in the
security proof of Theorem 3.2. Then B that interacts with A is described as follows:

Init: A initially submits challenge time T ∗. B first runs BSUE by giving D and Z.
Setup: B submits T ∗ to BSUE and receives PPSUE = ((p,G,GT ,e),g,w,v,u,{hi, j},Λ = e(g,g)β). Note
that BSUE implicitly sets β = ab. It chooses random exponents u′S,h

′
S ∈ Zp. It also chooses a random

index z for Hz and calculates π∗ = Hz(gc). It implicitly sets β = ab and publishes public parameters PP =(
PPSUE , z, uS = gagu′S , hS = (ga)−π∗gh′S

)
.

Query 1: A adaptively requests a polynomial number of private key queries and decryption queries. If A
requests a private key query for time T such that T < T ∗, then B receives a private key SKT by requesting a
private key query to BSUE and responses SKT to A. If A requests a decryption query for a ciphertext header
CHT with time T , then B handles this query as follows:

1. Let CHT = (CH(0), . . . ,CH(d),C3) and CH(0) = (C0,C1,{Ci,1,Ci,2}). It first checks whether the ci-
phertext header CHT is valid or not by running SUE.VerifyCT(CHT ,T,PP). If the ciphertext header
is not valid, then it responds with ⊥. Otherwise, the ciphertext header is well-formed such as C0 = gt

for some unknown t ∈ Zp.

2. If T < T ∗, then it receives a private key SKT by requesting a private key query to BSUE and obtains a
session key EK by running SUE.Decaps(CHT ,SKT ,PP).

3. If T ≥ T ∗, then it calculates π =Hz(C0) and performs the following steps: If π = π∗, then it terminates
the simulation with A and halts since it cannot response. If π 6= π∗, then it selects a random exponent
r′ ∈ Zp and computes the session key by implicitly setting r3 =−(u′Sπ +h′S)/(π−π∗)+ r′ as

EK = e
(
C0,(gb)−

u′Sπ+h′S
π−π∗ (uπ

S hS)
r′) · e(C3,(gb)

1
π−π∗ g−r′)

= e(gt ,gab(uπ
S hS)

r3) · e((uπ
S hS)

t ,g−r3) = e(ga,gb)t .

4. It responds to the query with the session key EK.

14

Challenge: To create the challenge ciphertext header and the session key for the challenge time T ∗, B
proceeds as follows:

1. It first requests a challenge query to BSUE and receives CH∗ = (CH(0),CH(1), . . . ,CH(d)) and EK∗.
Recall that BSUE sets the group element C0 in CH∗ as gc in the challenge tuple.

2. It sets C3 =(gc)u′Sπ∗+h′S . Note that this component is valid since (gc)u′Sπ∗+h′S =
(
(gagu′S)π∗ ·(ga)−π∗gh′S

)c
=

(uπ∗
S hS)

c for π∗ = Hz(C0) = Hz(gc).

3. It sets the challenge ciphertext header CH∗T ∗ =
(
CH(0),CH(1), . . . ,CH(d),C3

)
and gives CH∗T ∗ and EK∗

to A.

Query 2: This phase is handled as the same as the query 1 phase since B can fix the group element C0 = gc

for the challenge ciphertext header at the setup phase in the selective model. Note that R(CH∗T ∗ ,CHT)= True
if CHT is a valid SUE ciphertext header, T ∗ ≤ T , and C∗0 = C0 from the Remark 8. By the restriction
of the TEC-CCA security model, A can request the decryption of any ciphertext header CHT such that
R(CH∗T ∗ ,CHT) = False and these ciphertext headers are correctly handled in the query 1 phase since π 6= π∗.
Guess: A outputs a guess µ ′. B also outputs µ ′.

To finish the proof, we show that the meta-simulator B correctly handles the queries of A. The public
parameters PP is correct since PPSUE is correct and uS,hS are properly randomized. The private key is also
correct since it is generated by BSUE . Now, we will show that the decryption query is correctly handled.
From the correctness of the SUE.VerifyCT algorithm, we confirm that the ciphertext header CHT is asso-
ciated with claimed time T . The decryption only fails when T ≥ T ∗ and π = π∗ where π = Hz(C0) and
π∗ = Hz(gc). The probability of this collision event is negligible since Hz is a collision resistant function
and C0 6= gc from the restriction of the security model. Finally, the challenge ciphertext is also correct since
C3 can be easily calculated. This completes our proof.

Corollary 3.4. The above SUE scheme is fully secure under time extended challenge chosen ciphertext
attacks if the DBDH assumption holds and Tmax is a polynomial value. That is, for any PPT adversary A,
we have that AdvSUE

A (λ)≤ Tmax ·AdvDBDH
B (λ)+negl(λ).

3.6 Discussions

Efficiency Analysis. The proposed SUE scheme composed of O(logTmax) group elements in the public
parameters, a private key, and a ciphertext header since it utilizes the CDE scheme proposed by Lee [21].
Note that our SUE scheme additionally includes two group elements in the public parameters and one
group element in a ciphertext header to provide the TEC-CCA security. Unlike the existing CPA secure
SUE scheme, our TEC-CCA secure SUE scheme should check the validity of the ciphertext header in
the decapsulation algorithm. If the SUE decapsulation algorithm checks the validity of CDE ciphertext
headers by running the the CDE verification algorithm in a simple manner, then it requires O(log2 Tmax)
pairing operations since the CDE verification algorithm requires O(logTmax) pairing operations and one
SUE ciphertext header consists of O(logTmax) CDE ciphertext headers. However, since there are duplicate
values in CDE ciphertext headers, it is possible to reduce the pairing operation from O(log2 Tmax) times to
O(logTmax) times during verification. See below in this section for this improvement.

Reducing Public Parameters. Since our SUE scheme uses the CDE scheme of Lee [21] secure under the
DBDH assumption, the public parameter is composed of O(logTmax) group elements. In order to reduce
the size of the public parameter of the SUE scheme, another efficient CDE scheme having a short public

15

parameter proposed by Lee [21] can be used. The public parameter of a TEC-CCA secure SUE scheme
constructed in this way has O(1) group elements instead of O(logTmax) group elements, and the private key
and the ciphertext are all kept in the same number of group elements as the previous SUE scheme. However,
the security of this SUE scheme with short public parameters is only proven to be TEC-CCA secure under
the q-type assumption instead of the standard DBDH assumption.

Time-Interval SUE. By combining two CPA secure SUE schemes, a CPA secure time-interval SUE (TI-
SUE) scheme can be constructed as presented by Lee [21]. In TI-SUE, a ciphertext header is associated with
a time range specified by two times TL and TR and a private key is associated with time T ′. If TL ≤ T ′ ≤ TR,
then the ciphertext with TL and TR can be decrypted by a private key with T ′. By following the design
principle of Lee, we can also build a TEC-CCA secure TI-SUE scheme by combining two TEC-CCA secure
SUE schemes. That is, the master key is simply shared between two SUE schemes to prevent collusion
attacks, the ciphertext header of one SUE scheme is used for future-time SUE, and the ciphertext header of
another SUE scheme is used for past-time SUE. This TI-SUE scheme also can be proven to be secure under
the DBDH assumption. Note that we can also reduce the size of public parameters if the CDE scheme with
short public parameters is used.

Improving Ciphertext Verification. The ciphertext header of the proposed SUE scheme consists of max-
imum logTmax CDE ciphertext headers and the verification of one CDE ciphertext header requires up to
2logTmax + 3 pairing operations. Therefore, if the validity of the SUE ciphertext header is checked by a
simple method, at most 2 log2 Tmax +3logTmax +2 pairing operations are required. As described above, one
method of reducing the number of pairing operations in ciphertext verification is to omit the verification
of duplicate elements. In other words, since the CDE ciphertext headers contained in one SUE ciphertext
header share random exponents, the ciphertext elements associated with these shared random exponents can
be performed only once at the time of CH(0) CDE ciphertext header verification, and can be omitted at a
later time. In this case, 2 logTmax +3 pairing operations are required for the verification of the CH(0) CDE
ciphertext header and the verification of the CH(i) CDE ciphertext header requires 4 pairing operations.
Therefore, at most 6 logTmax +5 pairing operations are required for the SUE ciphertext header verification.

Fast Verification by Batching. Another way to improve the performance of SUE ciphertext header ver-
ification is to use batch verification. Batch verification is a way of verifying the validity of all signatures
by processing multiple signatures at once, rather than verifying individual signatures one at a time when
multiple signatures are given [3, 8]. In the SUE scheme, since one SUE ciphertext header consists of mul-
tiple CDE ciphertext headers, the total number of pairing operations can be reduced by performing batch
verification using the small exponent test method on the CDE ciphertext headers after removing redundant
elements. However, to properly use batch verification, we need to perform additional group membership
tests to make sure that the group elements of ciphertext headers belong to the group. If batch verification
is performed to one SUE ciphertext header, approximately 2logTmax + 8 pairing operations and 5logTmax

group membership test operations are required. At this time, since the group membership test in a bilinear
group is almost the same as the exponentiation operation, batch verification is effective only for the bilinear
group in which the group exponentiation operation is faster than the pairing operation. Typically, in the case
of the MNT curve, which is a Type 3 pairing, it is possible to perform more efficient ciphertext verification
by using batch verification.

Lazy Ciphertext Updating. The ciphertext update algorithm of the proposed SUE scheme is very efficient
because it performs only ciphertext delegation without performing ciphertext re-randomization. That is, in
order to update one ciphertext of time T to a ciphertext of time T +1, only a maximum of 3 exponentiation
operations need be performed. However, when a large number of ciphertexts are stored in a repository and

16

a server needs to update the ciphertexts every time, there is a problem that the total amount of computation
for updating the ciphertexts is considerably large. One way to solve this problem is to not update the
ciphertexts every time, but the server updates the ciphertext of past time T1 to a ciphertext of current time
T2 when the ciphertext access occurs. In addition, when updating the ciphertext from time T1 to time T2, it
is possible to update the ciphertext more efficiently by directly obtaining delegated ciphertexts from the set
of TimeNode(T2) and TimeNode(T1) instead of performing the ciphertext updating algorithm for T2−T1
times.

4 Revocable-Storage Attribute-Based Encryption

In this section, we define the syntax and the TEC-CCA security of RS-ABE. We also propose an RS-ABE
scheme and prove its TEC-CCA security.

4.1 Definitions

Revocable-Storage ABE (RS-ABE) is ABE that supports user revocation and ciphertext updating. The
concept of RS-ABE was introduced by Sahai et al. [30] to handle the access control problem on ciphertexts
in cloud storage. In this paper, we follow the RS-ABE syntax of Lee [21]. In RS-ABE with ciphertext-policy,
a user’s private key is associated with a set of attributes S and an index u and a ciphertext is associated with
an access structure A and time T . A center periodically broadcast an update key that excludes a set of
revoked users R on time T . If a user is not revoked (u 6∈ R) and the set of attributes satisfies the access
structure (S ∈ A), then the user with a private key and an update key can decrypt the ciphertext. The syntax
of RS-ABE is given as follows:

Definition 4.1 (Revocable-Storage Attribute-Based Encryption). A revocable-storage (ciphertext-policy)
attribute-based encryption (RS-ABE) scheme for the universe of attributes U consists of seven PPT algo-
rithms, Setup, GenKey, UpdateKey, DeriveKey, Encaps, UpdateCT, and Decaps, which are defined as
follows:

Setup(1λ ,Tmax,Nmax). The setup algorithm takes as input a security parameter 1λ , the maximum time Tmax,
and the maximum number of users Nmax, and it outputs a master key MK and public parameters PP.

GenKey(S,u,MK,PP). The key generation algorithm takes as input a set of attributes S⊆ U , a user index
u ∈N , the master key MK, and the public parameters PP. It outputs a private key SKS,u.

UpdateKey(T,R,MK,PP). The key update algorithm takes as input time T ≤ Tmax, a set of revoked users
R⊆N , the master key MK, and the public parameters PP. It outputs an update key UKT,R.

DeriveKey(SKS,u,UKT,R,PP). The decryption key derivation algorithm takes as input a private key SKS,u,
an update key UKT,R, and the public parameters PP. It outputs a decryption key DKS,T or the distin-
guished symbol ⊥.

Encaps(A,T,PP). The encapsulation algorithm takes as input an access structure A, time T ≤ Tmax, and
the public parameters PP. It outputs a ciphertext header CHA,T and a session key EK.

UpdateCT(CHA,T ,T +1,PP). The ciphertext update algorithm takes as input a ciphertext header CHA,T ,
new time T +1 such that T +1≤ Tmax, and the public parameters PP. It outputs an updated ciphertext
header CHA,T+1.

17

Decaps(CHA,T ,DKS,T ′ ,PP). The decapsulation algorithm takes as input a ciphertext header CHA,T , a de-
cryption key DKS,T , and the public parameters PP. It outputs a session key EK or the distinguished
symbol ⊥.

The correctness of RS-ABE is defined as follows: For all PP,MK generated by Setup, all S and u, any
SKS,u generated by GenKey, all A, T , any CHA,T ,EK generated by Encaps or UpdateCT, all T ′ and R, any
UKT ′,R generated by UpdateKey, it is required that:

• If u /∈ R, then DeriveKey(SKS,u,UKT ′,R,PP) = DKS,T ′ .

• If u ∈ R, then DeriveKey(SKS,u,UKT ′,R,PP) =⊥ with all but negligible probability.

• If (S ∈ A)∧ (T ≤ T ′), then Decaps(CHA,T ,DKS,T ′ ,PP) = EK.

• If (S /∈ A)∨ (T ′ < T), then Decaps(CHA,T ,DKS,T ′ ,PP) =⊥ with all but negligible probability.

Additionally, it requires that the updated ciphertext header of UpdateCT is a valid ciphertext header under
the new time.

Remark 9. The previous definition of CPA secure RS-ABE additionally contains the RandCT algorithm that
randomizes a ciphertext header [21, 22, 30]. However, our definition of RS-ABE with TEC-CCA security
omits the RandCT algorithm because of the reason in Remark 11. Thus, the output of the UpdateCT
algorithm is a just valid ciphertext header, and the randomness of an updated ciphertext header may be
correlated to that of the original ciphertext header. Because of this correlation, if a ciphertext header is
updated from an original one by using UpdateCT, then the original one should be deleted.

Remark 10. We define RS-ABE as a key encapsulation mechanism (KEM) version, in which the Encaps
algorithm derives a session key, instead of a full encryption version. Note that if a KEM scheme is combined
with a symmetric key encryption scheme, then a full encryption scheme can be easily derive by using the
hybrid encryption technique.

The CPA security of RS-ABE was introduced by Sahai et al. [30] and refined by Lee [21] to consider
the decryption key exposure attack. We define the TEC-CCA security of RS-ABE by modifying their CPA-
security model. Similar to the CCA security of SUE, RS-ABE also cannot achieve the traditional CCA2
security since the ciphertexts of RS-ABE can be updated by anyone. Thus, we also relax the definition
of CCA2 security by restricting that an adversary cannot request a decryption query on a ciphertext that is
updated from the challenge ciphertext given to the adversary. In this paper, we define selective time extended
challenge (TEC) CCA security of RS-ABE where the adversary should submit a challenge access structure
and a challenge time before he receives public parameters. The TEC-CCA security of RS-ABE is given as
follows:

Definition 4.2 (Selective TEC-CCA Security). The selective security of RS-ABE is defined in terms of the
indistinguishability under time extended challenge chosen ciphertext attacks (IND-TEC-CCA). The security
game is defined as the following experiment between a challenger C and a PPT adversary A:

Init: A first submits a challenge access structure A∗ and challenge time T ∗.

Setup: C generates a master key MK and public parameters PP by calling the setup algorithm, and then it
gives PP to A.

Query 1: A may adaptively request a polynomial number of private key, update key, decryption key, and
decryption queries. C handles the queries as follows:

18

• If this is a private key query for a set of attributes S and a user index u, then it creates a private
key SKS,u by calling the key generation algorithm and gives SKS,u to A. Note that A is allowed
to query only one private key for each user u.
• If this is an update key query for time T and a set of revoked users R, then it creates an update

key UKT,R by calling the key update algorithm and gives UKT,R to A. Note that A is allowed to
query only one update key for each time T .
• If this is a decryption key query for a set of attributes S and time T , then it creates a decryption

key DKS,T by calling the decryption key derivation algorithm and gives DKS,T to A.
• If this is a decryption query for a ciphertext header CHA,T , then it computes the decapsulated

session key EK by calling the decryption algorithm and gives EK to A.

We require the following restrictions on the queries of A:

1. If an update key for T and R was queried, then R ⊆ R j for all update key queries on Tj and R j

such that T < Tj.
2. If a private key for S and u such that S ∈ A∗ was queried, then an update key for Tj and R j such

that u ∈ R j and Tj ≤ T ∗ should be queried to revoke this user index u.
3. If a decryption key for S and T was queried, then it is required that S 6∈ A∗ or T < T ∗.

Challenge: C creates a ciphertext header CH∗A∗,T ∗ and a session key EK∗ by calling the encryption algo-
rithm under the challenge access structure A∗ and the challenge time T ∗. It then flips a random bit
µ ∈ {0,1}. If µ = 0 it sets EK∗0 = EK∗, otherwise it sets EK∗1 to a random session key. It gives
CH∗A∗,T ∗ and EK∗µ to A. Note that A can obtain updated ciphertext headers that are derived from the
challenge ciphertext header since the ciphertext update algorithm can be performed by anyone.

Query 2: A continues to request private key, update key, decryption key, and decryption queries. C
handles the queries as the same as before. In addition to the restrictions in query 1 step, we require
the following additional restriction on the queries of A:

4. If a decryption for a ciphertext header CHA∗,T was queried, then it is required that T < T ∗ or
CHA∗,T is not updated from CH∗A∗,T ∗ for T ≥ T ∗.

Guess: Finally A outputs a bit µ ′.

The advantage of A is defined as AdvRS-ABE
A (λ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over all
the randomness of the game. An RS-ABE scheme is secure in the selective model under time extended
challenge chosen ciphertext attacks if for all PPT adversaries A, the advantage of A in the above game is
negligible in the security parameter λ .

Remark 11. The adversary of the above TEC-CCA security model cannot request a decryption on an updated
ciphertext header that is updated from the challenge ciphertext header. Thus, there should be an efficiently
computable relation R(−,−) that checks whether a ciphertext header is derived from another one or not. If
an RS-ABE scheme supports perfect ciphertext re-randomization, then the security of this scheme cannot
be proven in the above model since there is no efficiently computable relation R(−,−).
Remark 12. Selective TEC-CCA security can be weakened to selective revocation list TEC-CCA security,
in which an adversary should additionally submits a set of revoked users on the challenge time. Selective
revocation list CPA security was introduced by Boldyreva et al. [4] to prove the security of their RS-ABE
scheme and this is employed in RS-ABE by Lee [21]. Note that selective TEC-CCA security is stronger
than selective revocation list TEC-CCA security.

19

4.2 Subset Cover Framework

The subset cover (SC) framework, introduced by Naor, Naor, and Lotspiech [25], is a general methodology
to construct an efficient revocation system. The complete subtree (CS) scheme is one instance of the SC
framework. We follow the definition of CS in [22]. The CS scheme is given as follows:

CS.Setup(Nmax): This algorithm takes as input the maximum number of users Nmax. Let Nmax = 2d for
simplicity. It first sets a full binary tree BT of depth d. Each user is assigned to a different leaf node
in BT . The collection S is defined as {Si : vi ∈ BT }. Recall that Si is the set of all the leaves in a
subtree Ti. It outputs BT .

CS.Assign(BT ,u): This algorithm takes as input the tree BT and a user u ∈ N . Let vu be the leaf node of
BT that is assigned to the user u. Let (v j0 ,v j1 , . . . ,v jd) be the path from the root node v j0 = v0 to the
leaf node v jn = vu. It sets PVu = {S j0 , . . . ,S jd} and outputs the private set PVu.

CS.Cover(BT ,R): This algorithm takes as input the tree BT and a revoked set R of users. It first computes
the Steiner tree ST (R). Let Ti1 , . . .Tim be all the subtrees of BT that hang off ST (R), that is all subtrees
whose roots vi1 , . . .vim are not in ST (R) but adjacent to nodes of outdegree 1 in ST (R). It outputs a
covering set CVR = {Si1 , . . . ,Sim}.

CS.Match(CVR,PVu): This algorithm takes input as a covering set CVR = {Si1 , . . . ,Sim} and a private set
PVu = {S j0 , . . . ,S jd}. It finds a subset Sk with Sk ∈ CVR and Sk ∈ PVu. If there is such a subset, it
outputs (Sk,Sk). Otherwise, it outputs ⊥.

Lemma 4.1 ([25]). Let Nmax be the number of leaf nodes in a full binary tree and r be the size of a
revoked set. In the CS scheme, the size of a private set is logNmax and the size of a covering set is at most
r log(Nmax/r).

4.3 Construction

Before we construct an RS-ABE scheme, we present a CCA secure CP-ABE scheme from the CPA secure
CP-ABE scheme of Rouselakis and Waters [29]. To convert the CPA secure CP-ABE scheme to a CCA
secure one, we follow the transformation of Canetti et al. [9]. To improve the efficiency, we actually employ
the direct conversion method of Boyen et al. [7]. The KEM version of the CP-ABE scheme is given as
follows:

CP-ABE.Setup(GDS): This algorithm takes as input a group description string GDS. It chooses ran-
dom elements wA,vA,uA,hA,uB,hB ∈ G, and a random exponent γ ∈ Zp. It also chooses a ran-
dom index z for a hash function Hz ∈ H. It outputs a master key MK = γ and public parameters
PP =

(
(p,G,GT ,e),g,wA,vA,uA,hA,z,uB,hB,Λ = e(g,g)γ

)
.

CP-ABE.GenKey(S,MK,PP): Let S = {A1,A2, . . . ,Ak} be a set of attributes. It chooses random exponents
r,r1, . . . ,rk ∈ Zp and outputs a private key SKS =

(
K0 = gγwr

A,K1 = g−r,{Ki,2 = vr
A(u

Ai
A hA)

ri ,Ki,3 =
g−ri}k

i=1

)
.

CP-ABE.RandKey(SKS,δ ,PP): Let SKS = (K0,K1,{Ki,2,Ki,3}) for S = {A1,A2, . . . ,Ak}. It chooses ran-
dom exponents r′,r′1, . . . ,r

′
k ∈Zp and outputs a re-randomized private key SKS =

(
K′0 =K0 ·gδ wr′

A ,K
′
1 =

K1 ·g−r′ ,{K′i,2 = Ki,2 · vr′
A(u

Ai
A hA)

r′i ,K′i,3 = Ki,3 ·g−r′i}k
i=1

)
.

20

CP-ABE.Encaps(A, t,PP): Let A= (M,ρ) be an LSSS access structure where M is an l×n matrix and ρ

is a map from each row M j of M to an attribute ρ(j). It first sets a random vector~v = (t,v2, . . . ,vn) by
selecting random exponents v2, . . . ,vn ∈ Zp. It selects random exponents s1, . . . ,sl ∈ Zp and computes
C0 = gt ,{C j,1 =wM j·~v

A vs j
A ,C j,2 = gs j ,C j,3 =(uρ(j)

A hA)
s j}1≤ j≤l . Next, it calculates π =Hz(C0,C1,1, . . . ,Cl,3)

and sets C3 = (uπ
BhB)

t . It outputs a ciphertext header CHA =
(
C0,{C j,1,C j,2,C j,3}l

j=1,C3
)

and a ses-
sion key EK = Λt .

CP-ABE.VerifyCT(CHA,PP): Let CHA = (C0,{C j,1,C j,2,C j,3},C3). It first computes π = Hz(C0,C1,1, . . . ,

Cl,3) and checks e(C3,g)
?
= e(C0,uπ

BhB). It outputs 1 if the check passes. Otherwise, it outputs 0.

CP-ABE.Decaps(CHA,SKS,PP): Let CHA = (C0,{C j,1,C j,2,C j,3},C3) and SKS = (K0,K1,{K j,2,K j,3}). It

first checks 1 ?
= CP-ABE.VerifyCT(CHA,PP). If the checking fails, then it outputs ⊥. If S ∈ A,

then it computes constants ω j ∈ Zp such that ∑ρ(j)∈S ω jM j = (1,0, . . . ,0) and outputs a session key
as EK = e(C0,K0) ·∏ρ(j)∈S

(
e(C j,1,K1) · e(C j,2,K j,2) · e(C j,3,K j,3)

)ω j . Otherwise, it outputs ⊥.

Remark 13. Compared to the CPA secure CP-ABE scheme [29], the above CP-ABE scheme additionally
contains a hash function index z and two group elements uB,hB in public parameters, and a group element
C3 in a ciphertext header for integrity. We also added the RandKey algorithm to randomize a private key
and the VerifyCT algorithm to check the validity of ciphertext headers. These two additional algorithms are
used in the construction of an RS-ABE scheme.

To construct an RS-ABE scheme, we follow the design principle of Lee et al. [22]. Our RS-ABE scheme
that uses the above CP-ABE scheme, our SUE scheme, and the CS scheme is described as follows:

RS-ABE.Setup(1λ ,Tmax,Nmax): It first generates bilinear groups G,GT of prime order p. Let g be the
generator of G. It sets GDS = ((p,G,GT ,e),g). It obtains MKABE ,PPABE and MKSUE ,PPSUE by run-
ning CP-ABE.Setup(GDS) and SUE.Setup(GDS,Tmax) respectively. It also obtains BT by running
CS.Setup(Nmax) and assigns a random exponent γi ∈ Zp to each node vi in BT . It selects a random
exponent α ∈ Zp, and outputs a master key MK = (MKABE ,MKSUE ,α,BT) and public parameters
PP =

(
PPABE ,PPSUE ,Ω = e(g,g)α

)
.

RS-ABE.GenKey(S,u,MK,PP): Let MK = (MKABE ,MKSUE ,α,BT). It first assigns the index u to a ran-
dom leaf node vu ∈BT . It obtains a private set PVu = {S′j0 , . . . ,S

′
jd} by running CS.Assign(BT ,u) and

retrieves {γ j0 , . . . ,γ jd} from BT where S′jk is associated with a node v jk and γ jk is assigned to the node
v jk . For 0≤ k≤ d, it sets MK′ABE = γ jk and obtains SKABE,k by running CP-ABE.GenKey(S,MK′ABE ,
PPABE). It outputs a private key SKS,u =

(
PVu,SKABE,0, . . . ,SKABE,d

)
.

RS-ABE.UpdateKey(T,R,MK,PP): Let MK = (MKABE ,MKSUE ,α,BT). It obtains a covering set CVR =
{S′i1 , . . . ,S

′
im} by running CS.Cover(BT ,R) and retrieves {γi1 , . . . ,γim} from BT where S′ik is asso-

ciated with a node vik and γik is assigned to the node vik . For 1 ≤ k ≤ m, it sets MK′SUE = α − γik
and obtains SKSUE,k by running SUE.GenKey(T,MK′SUE ,PPSUE). It outputs an update key UKT,R =(
CVR,SKSUE,1, . . . ,SKSUE,m

)
.

RS-ABE.DeriveKey(SKS,u,UKT ′,R,PP): Let SKS,u =(PVu,SKABE,0, . . . ,SKABE,d) and UKT ′,R =(CVR,SKSUE,1,
. . . ,SKSUE,m). If u /∈ R, then it obtains (Si,S j) by running CS.Match(CVR,PVu). Otherwise, it outputs
⊥. It selects a random exponent δ ∈Zp and obtains SKABE by running CP-ABE.RandKey(δ ,SKABE, j,
PPABE). It also obtains SKSUE by running SUE.RandKey(−δ ,SKSUE,i,PPSUE). It outputs a decryp-
tion key DKS,T ′ =

(
SKABE ,SKSUE

)
.

21

RS-ABE.Encaps(A,T,PP): It selects a random exponent t ∈Zp and obtains CHABE and CHSUE by running
CP-ABE.Encaps(A, t,PPABE) and SUE.Encaps(T, t,PPSUE) respectively. Note that it ignores two
partial session keys that are returned by CP-ABE.Encaps and SUE.Encaps. It outputs a ciphertext
header CHA,T = (CHABE ,CHSUE) and a session key EK = Ωt .

RS-ABE.UpdateCT(CHA,T ,T +1,PP): Let CHA,T = (CHABE ,CHSUE). It first obtains CH ′SUE by run-
ning SUE.UpdateCT(CHSUE ,T + 1,PPSUE). It outputs an updated ciphertext header CHA,T+1 =(
CHABE ,CH ′SUE

)
.

RS-ABE.VerifyCT(CHA,T ,PP): Let CHA,T =(CHABE ,CHSUE), CHABE =(C0, . . .), and CHSUE =(CH(0), . . .)

where CH(0)=(C′0, . . .). It first checks C0
?
=C′0. It also checks that 1 ?

=SUE.VerifyCT(CHSUE ,T,PPSUE)

and 1 ?
= CP-ABE.VerifyCT(CHABE ,PPABE). If all checking pass, it outputs 1. Otherwise, it outputs

⊥.

RS-ABE.Decaps(CHA,T ,DKS,T ′ ,PP): Let CHA,T = (CHABE ,CHSUE) and DKS,T ′ = (SKABE ,SKSUE). Let

CHABE = (C0, . . .) and CHSUE = (CH(0), . . .) where CH(0) = (C′0, . . .). It first checks C0
?
= C′0. If the

checking fails, it outputs⊥. Next, it obtains EKABE and EKSUE by running CP-ABE.Decaps(CHABE ,
SKABE ,PPABE) and SUE.Decaps(CHSUE ,SKSUE ,PPSUE) respectively. If EKABE 6=⊥ and EKSUE 6=⊥,
then it outputs a session key EK = EKABE ·EKSUE . Otherwise, it outputs ⊥.

Remark 14. Let CHA,T and CH ′A′,T ′ be two valid RS-ABE ciphertext headers with SUE ciphertext headers
CHSUE and C′SUE respectively. The efficiently computable relation R(CHA,T ,CH ′A′,T ′) in Remark 11 returns
True if R(CHSUE ,CH ′SUE) = True in Remark 8.

Remark 15. In contrast to CPA secure RS-ABE schemes [21,22,30], our RS-ABE scheme does not provide
a ciphertext re-randomization algorithm RandCT. Because of this, the outputted (future) ciphertext header
of UpdateCT maybe correlated to the original (past) ciphertext header. Thus, the (past) original cipher-
text header should be deleted after running the UpdateCT algorithm to remove the correlation between
ciphertext headers.

4.4 Correctness

We first show the correctness of the above CP-ABE scheme. Compared to the original CP-ABE scheme
of Rouselakis and Waters [29], the above CP-ABE scheme additionally contains elements uB,hB in public
parameters and an element C3 in a ciphertext header. The validity of C3 can be easily checked by using
bilinear maps since C3 is a DDH tuple. Thus the above CP-ABE scheme is correct since the ciphertext
header can pass CP-ABE.VerifyCT and the original CP-ABE scheme is correct.

The correctness of the above RS-ABE scheme can be shown by using the correctness of the CP-ABE
scheme, SUE scheme, and CS scheme. Let SKS,u be a private key and UKT ′,R be an update key. If u 6∈ R, then
there are SKABE in SKS,u and SKSUE in UKT,R that are associated with the same node vi by the correctness
of the CS scheme. The decryption key DKS,T ′ = (SK′ABE ,SK′SUE) is obtained from SKABE and SKSUE after
additional randomization. Note that the master key part of SK′ABE is γi +δ and the master key part of SK′SUE
is α − γi− δ . Let CHA,T = (CHABE ,CHSUE) be a ciphertext header. If S ∈ A, then CP-ABE.Decaps can
derive a partial session key EKABE from the correctness of the CP-ABE scheme. If T ≤ T ′, then SUE.Decaps
can derive a partial session key EKSUE from the correctness of the SUE scheme. By multiplying two partial
session keys, we obtain a valid session key since the original master key α can be derived from the master
key parts of ABE and SUE.

22

4.5 Security Analysis

To prove the TEC-CCA security of the above RS-ABE scheme, we use the n-RW1 assumption introduced
by Rouselakis and Waters [29]. Rouselakis and Waters proposed an efficient CP-ABE scheme and prove
its CPA security under the n-RW1 assumption. The definition of n-RW1 assumption and the security of the
original CP-ABE scheme are given as follows:

Assumption 2 (n-RW1, [29]). Let (p,G,GT ,e) be a description of the bilinear group of prime order p. Let
g be a random generator of G. The n-RW1 assumption is that if the challenge tuple

D =
(
(p,G,GT ,e),g,gc,

{
gai

,gd j ,gcd j ,gaid j ,gai/d2
j
}
∀1≤i, j≤n,

{
gai/d j

}
∀1≤i≤2n,i6=n+1,∀1≤ j≤n,{

gaid j/d2
j′
}
∀1≤i≤2n,∀1≤ j, j′≤n, j′ 6= j,

{
gaicd j/d j′ ,gaicd j/d2

j′
}
∀1≤i, j, j′≤n, j′ 6= j

)
and Z,

are given, no PPT algorithmA can distinguish Z = Z0 = e(g,g)an+1c from Z = Z1 = e(g,g) f with more than a
negligible advantage. The advantage of A is defined as Advn-RW1

A (λ) =
∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) =

0]
∣∣ where the probability is taken over random choices of a,c,{d j}1≤ j≤n, f ∈ Zp.

Lemma 4.2 ([29]). The n-RW1 assumption holds in the generic bilinear group model.

Theorem 4.3 ([29]). The original CP-ABE scheme is selectively secure under chosen plaintext attacks if
the n-RW1 assumption holds where n is the number of columns in the challenge matrix.

To prove the CCA security of the above CP-ABE scheme, we use the meta-simulation technique that
uses the previous CPA simulator in Theorem 4.3 as a sub-simulator. As pointed by Lee [21], the simulator
in Theorem 4.3 cannot be directly used as a sub-simulator in meta-simulation since it sets γ = an+1 + γ ′ and
wA = ga. To use this simulator in meta-simulation, we modify the simulator to set γ = an+1 and wA = gagw′

by selecting a random exponent w′. Note that this modification is easy. To handle decryption queries of
an adversary, we use a variation of the CHK transformation, in which a CPA secure IBE scheme can be
converted to a CCA secure PKE scheme [7, 9]. The CCA security of the above CP-ABE scheme is given as
follows:

Theorem 4.4. The above CP-ABE scheme is selectively secure under chosen ciphertext attacks if the n-RW1
assumption holds. That is, for any PPT adversary A, we have that AdvABE

A (λ) ≤ Advn-RW1
B (λ)+negl(λ)

where n is the number of columns in the challenge matrix.

Proof. Suppose there exists an adversary A that attacks the above CP-ABE scheme with a non-negligible
advantage. A meta-simulator B that solves the n-RW1 assumption using A is given: a challenge tuple
D =

(
(p,G,GT ,e),g,gc,

{
gai

,gd j ,gcd j ,gaid j ,gai/d2
j
}
,
{

gai/d j
}
,
{

gaid j/d2
j′
}
,
{

gaicd j/d j′ ,gaicd j/d2
j′
})

and Z where
Z = Z0 = e(g,g)an+1c or Z = Z1 ∈ GT . Let BABE be a modified simulator in the security proof of Theorem
4.3. Then B that interacts with A is described as follows:

Init: A initially submits a challenge access structure A∗. B first runs BABE by giving D and Z.
Setup: B submits A∗ to BABE and receives PPABE = ((p,G,GT ,e),g,wA,vA,uA,hA,Λ = e(g,g)an+1

). It also
requests a challenge ciphertext toBABE and receives a challenge ciphertext header CHA∗ =(C∗0 ,{C∗j,1,C∗j,2,C∗j,3})
and a challenge session key EK∗ where C∗0 = gc and EK∗ = Z. It selects a random index z for a hash
function Hz. It computes π∗ = Hz(C0,C1,1, . . . ,Cl,3) and sets uB = gaq

gu′B ,hB = (gaq
)−π∗gh′B by select-

ing random exponents u′B,h
′
B ∈ Zp. It implicitly sets γ = an+1 and gives the public parameters PP =(

(p,G,GT ,e),g,wA,vA,uA,hA,z,uB,hB,Λ
)

to A.

23

Query 1: A adaptively requests a polynomial number of private key and decryption queries. If this is a
private key query for a set of attributes S, then B receives a private key SKS from BABE by requesting a
private key query and gives SKS to A.
If this is a decryption query for a ciphertext header CHA, then B proceeds as follows:

1. Let CHA=(C0,{C j,1,C j,2,C j,3},C3). It first checks the validity of CHA by running CP-ABE.VerifyCT
(CHA,PP). If the ciphertext header is not valid, then it responds the query with ⊥. Otherwise, the
ciphertext header is valid and formed as CHA =

(
C0 = gt ,{C j,1,C j,2,C j,3},C3 = (uπ

BhB)
t
)

for some
unknown t ∈ Zp.

2. It calculates π = Hz(C0,C1,1, . . . ,Cl,3). If π = π∗, then it terminates the simulation with A and
outputs a random bit since it cannot response. If π 6= π∗, then it can use the IBE technique of
Boneh and Boyen [5] to decrypt the ciphertext header. It sets D0 = (ga)−(u

′
Bπ+h′B)/(π−π∗)(uπ

BhB)
r′

and D3 = (ga)−1/(π−π∗)gr′ by selecting a random exponent r′ ∈ Zp and it computes the session key as

EK = e(C0,D0) · e(C3,D3) = e
(
gt ,gan+1

(uπ
BhB)

r) · e((uπ
BhB)

t ,g−r)= e(g,g)an+1t .

3. It responses the query with EK as a decapsulated session key.

Challenge: A requests a challenge ciphertext header and a challenge session key. B computes C∗3 =
(gc)u′Bπ∗+h′B since (uπ∗

B hB)
c = (gan

)(π
∗−π∗)c(g)(u

′
Bπ∗+h′B)c. It sets CH∗ = (C∗0 ,{C∗j,1,C∗j,2,C∗j,3},C∗3) and EK∗

and gives the challenge tuples to A.
Query 2: Same as Query 1. Note that A cannot request the decryption query on the challenge ciphertext
header CH∗.
Guess: A outputs a guess µ ′. B also outputs µ ′.

To finish the proof, we show that B can handle decryption queries correctly. The decryption of B only
fails when π = π∗ even if CHA 6= CH∗. However, the probability of this collision event is negligible since
Hz is a collision resistant hash function. This completes our proof.

To prove the TEC-CCA security of the above RS-ABE scheme, we also apply the partitioning method
by using the meta-simulation technique. As mentioned before, we use the CCA simulator of the CP-ABE
scheme and the TEC-CCA simulator of the SUE scheme as sub-simulators to simplify the description of a
reduction algorithm (meta-simulator). Compared with the security proof of Lee’s RS-ABE scheme in [21],
the security proof of our RS-ABE scheme shows the TEC-CCA security instead of the CPA security and
proves the security in the selective model instead of the selective revocation list model. An adversary should
submit a challenge access structure A∗ and challenge time T ∗ before he receives the public parameters in
the selective model, whereas the adversary additionally submits a set of revoked users RL∗ on the challenge
time before he receives the public parameters in the selective revocation list model. The selective revocation
list model was introduced by Boldyreva et al. [4] to prove the security of their revocable ABE scheme and
used in other systems in [21, 22, 27].

The main idea of proving the security in the selective model instead of the selective revocation list
model is to assigning a user index to a random leaf node in a binary tree and to predicting the number of
the adversary’s private key queries with the condition S ∈ A∗ where S is a set of attributes in a private key.
The meta-simulator can easily generate a private key with S 6∈ A∗ since it can use the CP-ABE simulator by
creating an ABE private key that contains the master key α . However, it simply cannot generate a private key
with S ∈A∗ by using the CP-ABE simulator because of the restriction in the CP-ABE security model. Thus

24

it creates a private key by setting a random γi in a binary tree as the master key part of CP-ABE. To preserve
the consistency of private key and update key generations, the meta-simulator should know the positions of
user’s private keys with S ∈ A∗ in a binary tree. If the number of private key with S ∈ A∗ is known, then the
simulator can handle the private key queries by assigning user indexes to random leaf nodes. The TEC-CCA
security of our RS-ABE scheme is described as follows:

Theorem 4.5. The above RS-ABE scheme is selectively secure under time extended challenge chosen cipher-
text attacks if the n-RW1 assumption holds. That is, for any PPT adversaryA, we have that AdvRS-ABE

A (λ)≤
q ·Advn-RW1

B (λ)+negl(λ) where n is the number of columns in the challenge matrix and q is the number of
private key queries.

Proof. Suppose there exists an adversary A that attacks the above RS-ABE scheme with a non-negligible
advantage. A meta-simulator B that solves the n-RW1 assumption using A is given: a challenge tuple
D =

(
(p,G,GT ,e),g,gc,

{
gai

,gd j ,gcd j ,gaid j ,gai/d2
j
}
,
{

gai/d j
}
,
{

gaid j/d2
j′
}
,
{

gaicd j/d j′ ,gaicd j/d2
j′
})

and Z where
Z = Z0 = e(g,g)an+1c or Z = Z1 ∈ GT . Note that a challenge tuple DDBDH = (g,ga,gan

,gc) for the DBDH
assumption can be easily derived from the challenge tuple D of the n-RW1 assumption by setting b= an. Let
BABE be a modified simulator in the security proof of Theorem 4.4 and BSUE be a simulator in the security
proof of Theorem 3.3. Then B that interacts with A is described as follows:

Init: A initially submits a challenge access structure A∗ and challenge time T ∗. B first runs BABE by giving
D and Z, and it also runs BSUE by giving DDBDH and Z. Let q be the maximum number of private key
queries of A. Let q̃ be the number of private key queries for a set of attributes S and a user index u that
satisfy S ∈ A∗. B randomly guesses q̃ by selecting a random integer in {0, . . . ,q}. Note that it can correctly
guess q̃ with 1/(q+ 1) probability. Next, it obtains BT by running CS.Setup(Nmax) where Nmax ≥ q and
assigns a random exponent γi ∈ Zp to each node vi ∈ BT . Let SN∗ be a set of random leaf nodes in BT
with |SN∗| = q̃. Recall that Path(v) is the set of path nodes from the root node to the leaf node v. That
is, Path(v) = {v j0 , . . . ,v jd} where v j0 is the root node and v jd = v. Let SteinerTree(SN∗) be the minimal
subtree that connects the root node to all leaf nodes in SN∗. That is, SteinerTree(SN∗) =

⋃
v j∈SN∗ Path(v j).

Setup: B submits A∗ to BABE and receives PPABE , and it submits T ∗ to BSUE and receives PPSUE . It
queries an ABE challenge ciphertext header to BABE and receives CH∗ABE and EK∗ABE . It also queries an
SUE challenge ciphertext header to BSUE and receives CH∗SUE and EK∗SUE . It randomizes Λ of PPABE and
Λ of PPSUE by selecting random exponents γ ′,β ′ ∈ Zp. It implicitly sets α = an+1 and gives the public
parameters PP =

(
PPABE ,PPSUE ,Ω = e(ga,gan

)
)

to A.
Query 1: A adaptively requests a polynomial number of private key, update key, decryption key, and de-
cryption queries.
If this is a private key query for a set of attributes S and a user index u, then B proceeds as follows:

• Case S ∈ A∗: In this case, it can creates ABE private keys for path nodes by using γi of BT for the
master key of ABE.

1. If there is an unassigned leaf node in SN∗, then it randomly assigns a leaf node vu ∈ SN∗ to u.
Otherwise, it aborts the simulation since it failed to guess q̃.

2. It obtains PVu by running CS.Assign(BT ,u). Let Path(vu) = {v j0 , . . . ,v jd} be the set of nodes
that is associated with PVu where vu is the leaf node assigned to u and v jd = vu. It retrieves
exponents {γ j0 , . . . ,γ jd} from BT that are associated with Path(vu).

3. For all v jk ∈ Path(vu), it obtains SKABE,k by running CP-ABE.GenKey(S,γ jk ,PPABE)

25

4. It responses the query with the private key SKS,u =
(
PVu,SKABE,0, . . . ,SKABE,d

)
.

• Case S 6∈ A∗: In this case, it can use BABE to generate ABE private keys since A can only request S
such that S 6∈ A∗.

1. It randomly assigns a leaf node vu 6∈ SN∗ to u.

2. It obtains PVu by running CS.Assign(BT ,u). Let Path(vu) = {v j0 , . . . ,v jd} be the set of nodes
that is associated with PVu where vu is the leaf node assigned to u and v jd = vu. It retrieves
exponents {γ j0 , . . . ,γ jd} from BT that are associated with Path(vu).

3. It queries an ABE private key for S to BABE and receives SK′S.

4. For each v jk ∈ Path(vu), it performs the following steps: If v jk ∈ SteinerTree(SN∗), then it
obtains SKABE,k by running CP-ABE.GenKey(S,γ jk ,PPABE). Otherwise, it obtains SKABE,k by
running CP-ABE.RandKey(SK′S,−γ jk ,PPABE).

5. It responses the query with the private key SKS,u =
(
PVu,SKABE,0, . . . ,SKABE,d

)
.

If this is an update key query for time T and a revoked set R, then B proceeds as follows:

• Case T < T ∗: In this case, it can use BSUE to generate SUE private keys since T < T ∗.

1. It obtains CVR by running CS.Cover(BT ,R). Let Cover(R) = {vi1 , . . . ,vim} be the set of nodes
that is associated with CVR. It retrieves exponents {γi1 , . . . ,γim} from BT that are associated with
Cover(R).

2. It queries an SUE private key for T to BSUE and receives SK′SUE .

3. For each vik ∈ Cover(R), it performs the following steps: If vik ∈ SteinerTree(SN∗), then it
obtains SKSUE,k by running SUE.RandKey(SK′SUE ,−γik ,PPSUE). Otherwise, it obtains SKSUE,k
by running SUE.GenKey(T,γik ,PPSUE).

4. It responses the query with the update key UKT,R = (CVR,SKSUE,1, . . . ,SKSUE,m).

• Case T ≥ T ∗: In this case, it can create SUE private keys by using γi for the master key of SUE. Let
R∗ be the set of revoked users on the time T ∗ and RN∗ be the set of revoked leaf nodes on the time
T ∗. We first have SN∗ ⊆ RN∗ since a revealed private key for S ∈ A∗ should be revoked at some time
T ≤ T ∗. We also have SteinerTree(RN∗)∩Cover(R) = /0 since R∗ ⊆ R if T ≥ T ∗. Thus, we have
SteinerTree(SN∗)∩Cover(R) = /0 if T ≥ T ∗.

1. If T = T ∗, then it counts the number of leaf nodes q′ in RN∗ that satisfy S ∈ A∗ and stops the
simulation if q′ 6= q̃ since it failed to guess q′.

2. It obtains CVR by running CS.Cover(BT ,R). Let Cover(R) = {vi1 , . . . ,vim} be the set of nodes
that is associated with CVR. It retrieves exponents {γi1 , . . . ,γim} from BT that are associated with
Cover(R).

3. For each vik ∈ Cover(R), it obtains SKSUE,k by running SUE.GenKey(T,γik ,PPSUE).

4. It responses the query with the update key UKT,R = (CVR,SKSUE,1, . . . ,SKSUE,m).

If this is a decryption key query for a set of attributes S and time T , then B proceeds as follows:

• Case S /∈ A∗: In this case, it can use BABE to generate an ABE private key since S /∈ A∗.

1. It queries an ABE private key for S to BABE and receives SK′ABE .

26

2. It selects a random exponent δ ∈Zp and obtains SKABE and SKSUE by running CP-ABE.RandKey
(SK′S,−δ ,PPABE) and SUE.GenKey(T,δ ,PPSUE) respectively.

3. It responds the query with the decryption key DKS,T =
(
SKABE ,SKSUE

)
.

• Case S ∈ A∗: In this case, it uses BSUE to generate an SUE private key since T < T ∗ from the
restriction of the security model.

1. It queries an SUE private key for T to BSUE and receives SK′SUE .

2. It selects a random exponent δ ∈Zp and obtains SKABE and SKSUE by running CP-ABE.GenKey
(S,δ ,PPABE) and SUE.RandKey(SK′SUE ,−δ ,PPSUE) respectively.

3. It responds the query with the decryption key DKS,T =
(
SKABE ,SKSUE

)
.

If this is a decryption query for a ciphertext header CHA,T = (CHABE ,CHSUE), then B proceeds as follows:

1. Let CHABE = (C0, . . .) and CHSUE = (CH(0), . . .) where CH(0) = (C′0, . . .). It first checks C0 = C′0.
If the check fails, then it responds with ⊥. It checks the validity of CHABE and CHSUE by run-
ning CP-ABE.VerifyCT(CHABE ,PPABE) and SUE.VerifyCT(CHSUE ,T,PPSUE) respectively. If two
ciphertext headers are not valid, then it responds with ⊥.

2. If CHABE 6=CH∗ABE , then it queries the decryption of CHABE to BABE and receives EK. Otherwise, it
queries the decryption of CHSUE to BSUE and receives EK.

3. It responses the query with EK as a decapsulated session key.

Challenge: A requests a challenge ciphertext header and a challenge session key for A∗ and T ∗. It sets the
challenger ciphertext header CH∗ = (CH∗ABE ,CH∗SUE) and the challenge session key EK∗ = Z. Recall that
CH∗ABE and CH∗SUE were received from sub-simulators BABE and BSUE at the setup stage. It gives CH∗ and
EK∗ to A.
Query 2: B handles this phase as the same as the query 1 phase since two sub-simulators BABE and BSUE

can handle this phase as the same as the query 1 phase.
Guess: A outputs a guess µ ′. B also outputs µ ′.

To finish the proof, we show that the meta-simulator B correctly handles the queries ofA. We first show
that private keys are correctly generated. A user with an index u is randomly assigned to a unique leaf node
vu in BT and the private key of the user consists of ABE private keys, in which each ABE private key is
associated with a node v jk in path nodes from the root node to the leaf node. If v jk ∈ SteinerTree(SN∗), an
ABE private key for v jk is generated by setting γ jk as the master key of ABE. Otherwise, an ABE private key
for v jk is generated by setting α − γ jk as the master key of ABE. If S ∈ A∗ where S is the set of attributes
in a private key, then B simply uses γ jk stored in BT although it cannot use BABE . If S 6∈ A∗, then B can
use BABE to generate an ABE private key with the master key α and then it can later add −γ jk in the master
key part. Thus, ABE private keys for private key generation are consistently generated depending on the
condition v jk ∈ SteinerTree(SN∗).

We next show that update keys are correctly generated by presenting that the master key parts of SUE
private keys in update keys are consistent with those of ABE private keys in private keys. An update key
for T and R consists of SUE private keys, in which each SUE private key is associated with a node vik in
Cover(R). If vik ∈ SteinerTree(SN∗), then an SUE private key should be generated by setting α− γik as the
master key of SUE. If vik 6∈ SteinerTree(SN∗), then an SUE private key should be generated by setting γik
as the master key of SUE. In this case, the consistency of private keys and update keys is preserved since

27

the master key α can be derived from the master keys α− γ jk and γ jk of ABE private key and SUE private
key for the same node v jk . If T < T ∗, then B can easily generate SUE private keys since it can use BSUE .
If T ≥ T ∗, then B should generate SUE private keys by using γik stored in BT since it cannot use BSUE

from the restriction of SUE. However, there is no problem to generate SUE private keys from the fact that
Cover(R)∩SteinerTree(SN∗) = /0 if T ≥ T ∗. Thus, SUE private keys are also consistent with ABE private
keys.

Decryption keys are correctly generated since B can use BABE if S 6∈ A∗ or BSUE if T < T ∗ by the
restriction of the security model. The decryption queries are also correctly handled since both BABE and
BSUE can handle their own decryption queries with non-negligible probability. The challenge ciphertext
header is correctly generated since CH∗ABE and CH∗SUE are generated by BABE and BSUE respectively and two
sub-simulators set C0 = gc. This completes our proof.

4.6 Discussions

Efficiency Analysis. Our RS-ABE scheme is similar to the RS-ABE scheme of Lee [21] in terms of effi-
ciency except that the size of public parameters is increased and pairing operations are added to check the
validity of the ciphertext header in our RS-ABE scheme. That is, our RS-ABE scheme has O(logTmax) group
elements in public parameters, O(logNmax ∗ |S|) group elements in a private key, O(r log(Nmax/r)∗ logTmax)
group elements in an update key, and O(l + logTmax) group elements in a ciphertext header. The decryption
algorithm of SUE requires O(|S|+ logTmax) pairing operations since the SUE ciphertext verification can be
done in O(logTmax) pairing operations.

Key-Policy ABE. Our RS-ABE scheme combines the CP-ABE scheme of Rouselakis and Waters [29] and
our SUE scheme. There is another kind of ABE, called key-policy ABE (KP-ABE) in which a private key is
associated with an access structure and a ciphertext is associated with a set of attributes [17]. We can build
a TEC-CCA secure RS-ABE scheme with key-policy by using a CCA secure KP-ABE scheme instead of
using a CCA secure CP-ABE scheme. For instance, a CCA secure KP-ABE scheme can be derived from
the KP-ABE scheme of Rouselakis and Waters [29]. This RS-ABE scheme with key-policy can be proven
to be selectively TEC-CCA secure under a q-type assumption. We omit the details of the construction and
the security proof.

Revocable ABE. A revocable ABE (R-ABE) scheme is an ABE scheme with user revocation. Boldyreva
et al. [4] introduced the concept of R-ABE and they presented an R-ABE with key-policy and claimed it
security in the selective revocation list model. R-ABE is a special type of RS-ABE since R-ABE only
supports user revocation whereas RS-ABE supports both user revocation and ciphertext updating. Thus an
R-ABE scheme can be built by combining an ABE scheme, an IBE scheme, and the CS scheme. Note that an
SUE scheme for RS-ABE is replaced by an IBE scheme for R-ABE. Boldyreva et al. [4] originally claimed
that their R-ABE scheme can be secure in the selective model, but they later corrected it by claiming that
their R-ABE scheme is secure in the selective revocation list model, in which an adversary should submit a
challenge set of attributes, challenge time, and a set of revoked users on the challenge time. If we use the
proof technique of our RS-ABE scheme, we can prove the security of the R-ABE scheme in the selective
model instead of the selective revocation list model.

5 Conclusion

In this paper, we focused on the CCA security of SUE and RS-ABE since previous SUE and RS-ABE
schemes only provide CPA security. In the first part of this work, we defined TEC-CCA security for SUE,

28

and then we proposed an efficient SUE scheme and proved its TEC-CCA security under the DBDH as-
sumption. In the second part of this work, we also defined TEC-CCA security for RS-ABE and proposed a
TEC-CCA secure RS-ABE scheme in the selective model instead of the selective revocation list model. Our
SUE and RS-ABE schemes are the first constructions that achieve (relaxed) CCA security.

There are many interesting problems. The first one is to construct SUE and RS-ABE schemes that
support (perfect) ciphertext re-randomization. As mentioned before, encryption schemes with ciphertext
re-randomization cannot be proven in TEC-CCA security model since there is no relation between a re-
randomized ciphertext and the original one. The second one is to build an RS-ABE scheme that supports a
designated entity who can update ciphertexts by using his private key. Note that the designated entity can
update ciphertexts, but he cannot decrypt ciphertexts. In cloud storage, we may require the cloud sever only
to update ciphertexts instead anyone to update ciphertexts.

References

[1] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint signature and encryption. In
Lars R. Knudsen, editor, Advances in Cryptology - EUROCRYPT 2002, volume 2332 of Lecture Notes
in Computer Science, pages 83–107. Springer, 2002.

[2] Michael Backes, Christian Cachin, and Alina Oprea. Secure key-updating for lazy revocation. In Dieter
Gollmann, Jan Meier, and Andrei Sabelfeld, editors, Computer Security - ESORICS 2006, volume 4189
of Lecture Notes in Computer Science, pages 327–346. Springer, 2006.

[3] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for modular exponentiation and
digital signatures. In Kaisa Nyberg, editor, Advances in Cryptology - EUROCRYPT ’98, volume 1403
of Lecture Notes in Computer Science, pages 236–250. Springer, 1998.

[4] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. Identity-based encryption with efficient
revocation. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, CCS 2008, pages 417–426.
ACM, 2008.

[5] Dan Boneh and Xavier Boyen. Efficient selective identity-based encryption without random oracles.
J. Cryptology, 24(4):659–693, 2011.

[6] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-
based encryption. SIAM J. Comput., 36(5):1301–1328, 2007.

[7] Xavier Boyen, Qixiang Mei, and Brent Waters. Direct chosen ciphertext security from identity-based
techniques. In Vijay Atluri, Catherine Meadows, and Ari Juels, editors, ACM Conference on Computer
and Communications Security, pages 320–329. ACM, 2005.

[8] Jan Camenisch, Susan Hohenberger, and Michael Østergaard Pedersen. Batch verification of short
signatures. J. Cryptology, 25(4):723–747, 2012.

[9] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryp-
tion. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004,
volume 3027 of Lecture Notes in Computer Science, pages 207–222. Springer, 2004.

[10] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. J.
Cryptology, 20(3):265–294, 2007.

29

[11] Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-encryption. In Peng Ning,
Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, CCS 2007, pages 185–194. ACM,
2007.

[12] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-ciphertext security. In Dan
Boneh, editor, Advances in Cryptology - CRYPTO 2003, volume 2729 of Lecture Notes in Computer
Science, pages 565–582. Springer, 2003.

[13] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against adap-
tive chosen ciphertext attack. In Hugo Krawczyk, editor, Advances in Cryptology - CRYPTO ’98,
volume 1462 of Lecture Notes in Computer Science, pages 13–25. Springer, 1998.

[14] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Fully secure self-updatable encryption in
prime order bilinear groups. In Sherman S. M. Chow, Jan Camenisch, Lucas Chi Kwong Hui, and
Siu-Ming Yiu, editors, ISC 2014, volume 8783 of Lecture Notes in Computer Science, pages 1–18.
Springer, 2014.

[15] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM J. Comput.,
30(2):391–437, 2000.

[16] Eu-Jin Goh, Hovav Shacham, Nagendra Modadugu, and Dan Boneh. SiRiUS: Securing remote un-
trusted storage. In NDSS 2003. The Internet Society, 2003.

[17] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani
di Vimercati, editors, ACM Conference on Computer and Communications Security, pages 89–98.
ACM, 2006.

[18] Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, Qian Wang, and Kevin Fu. Plutus: Scalable
secure file sharing on untrusted storage. In Jeff Chase, editor, FAST 2003. USENIX, 2003.

[19] Seny Kamara and Kristin E. Lauter. Cryptographic cloud storage. In Radu Sion, Reza Curtmola,
Sven Dietrich, Aggelos Kiayias, Josep M. Miret, Kazue Sako, and Francesc Sebé, editors, Financial
Cryptography and Data Security - FC 2010, volume 6054 of Lecture Notes in Computer Science, pages
136–149. Springer, 2010.

[20] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. CS2: A searchable cryptographic cloud
storage system. Technical Report MSR-TR-2011-58, May 2011.

[21] Kwangsu Lee. Self-updatable encryption with short public parameters and its extensions. Des. Codes
Cryptogr., 79(1):121–161, 2016.

[22] Kwangsu Lee, Seung Geol Choi, Dong Hoon Lee, Jong Hwan Park, and Moti Yung. Self-updatable en-
cryption: Time constrained access control with hidden attributes and better efficiency. Theor. Comput.
Sci., 667:51–92, 2017.

[23] Kwangsu Lee, Dong Hoon Lee, and Jong Hwan Park. Efficient revocable identity-based encryption
via subset difference methods. Des. Codes Cryptogr., 85(1):39–76, 2017.

30

[24] Benoı̂t Libert and Damien Vergnaud. Adaptive-id secure revocable identity-based encryption. In Marc
Fischlin, editor, Topics in Cryptology - CT-RSA 2009, volume 5473 of Lecture Notes in Computer
Science, pages 1–15. Springer, 2009.

[25] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for stateless receivers.
In Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 41–62. Springer, 2001.

[26] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext at-
tacks. In Harriet Ortiz, editor, STOC 1990, pages 427–437. ACM, 1990.

[27] Seunghwan Park, Kwangsu Lee, and Dong Hoon Lee. New constructions of revocable identity-based
encryption from multilinear maps. IEEE Trans. Inf. Forensic Secur., 10(8):1564–1577, 2015.

[28] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen
ciphertext attack. In Joan Feigenbaum, editor, Advances in Cryptology - CRYPTO ’91, volume 576 of
Lecture Notes in Computer Science, pages 433–444. Springer, 1991.

[29] Yannis Rouselakis and Brent Waters. Practical constructions and new proof methods for large universe
attribute-based encryption. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM
Conference on Computer and Communications Security, pages 463–474. ACM, 2013.

[30] Amit Sahai, Hakan Seyalioglu, and Brent Waters. Dynamic credentials and ciphertext delegation for
attribute-based encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume
7417 of Lecture Notes in Computer Science, pages 199–217. Springer, 2012.

[31] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor, Advances in
Cryptology - EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 457–473.
Springer, 2005.

[32] Jae Hong Seo and Keita Emura. Efficient delegation of key generation and revocation functionalities
in identity-based encryption. In Ed Dawson, editor, CT-RSA 2013, volume 7779 of Lecture Notes in
Computer Science, pages 343–358. Springer, 2013.

[33] Jae Hong Seo and Keita Emura. Revocable identity-based encryption revisited: Security model and
construction. In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of Lecture
Notes in Computer Science, pages 216–234. Springer, 2013.

[34] Victor Shoup. A proposal for an ISO standard for public key encryption. Cryptology ePrint Archive,
Report 2001/112, 2001. http://eprint.iacr.org/2001/112.

[35] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably
secure realization. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors,
PKC 2011, volume 6571 of Lecture Notes in Computer Science, pages 53–70. Springer, 2011.

[36] Rui Zhang, Goichiro Hanaoka, Junji Shikata, and Hideki Imai. On the security of multiple encryption
or cca-security+cca-security=cca-security? In Feng Bao, Robert H. Deng, and Jianying Zhou, editors,
Public-Key Cryptography - PKC 2004, volume 2947 of Lecture Notes in Computer Science, pages
360–374. Springer, 2004.

31

http://eprint.iacr.org/2001/112

	Introduction
	Our Results
	Our Techniques
	Related Work

	Preliminaries
	Full Binary Tree
	Bilinear Groups
	Complexity Assumptions

	Self-Updatable Encryption
	Definitions
	Managing the Time Structure
	Construction
	Correctness
	Security Analysis
	Discussions

	Revocable-Storage Attribute-Based Encryption
	Definitions
	Subset Cover Framework
	Construction
	Correctness
	Security Analysis
	Discussions

	Conclusion

