
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Platform for Authorised Sharing of
Health Data using Proxy Re-Encryption

Bruno Filipe Oliveira Ribeiro Noverça Rodrigues

Mestrado em Engenharia de Software

Supervisor: Prof. Alexandra Sofia Ferreira Mendes

Second Supervisor: Prof. Ivone de Fátima da Cruz Amorim

July 24, 2023

© Bruno Filipe Oliveira Ribeiro Noverça Rodrigues, 2023

Platform for Authorised Sharing of Health Data using
Proxy Re-Encryption

Bruno Filipe Oliveira Ribeiro Noverça Rodrigues

Mestrado em Engenharia de Software

Approved in oral examination by the committee:

Chair: Prof. Nuno Honório Rodrigues Flores

External Examiner: Prof. António Alberto dos Santos Pinto
Supervisor: Prof. Ivone de Fátima da Cruz Amorim

July 24, 2023

Resumo

Com a crescente digitalização de serviços, há uma quantidade cada vez maior de dados recol-
hidos por esses serviços. Na área da saúde, esta é uma componente fundamental para a correta
colaboração, comunicação e coordenação entre os diferentes profissionais e entidades de saúde.

Dada a sensibilidade dos dados partilhados nos sistemas de saúde e a diversidade de enti-
dades que tratam esses dados, garantir um controlo de acesso adequado e salvaguardar a segurança
torna-se uma necessidade e um desafio. As técnicas criptográficas tradicionais não permitem um
controlo de acesso aos dados que seja granular. Isto porque requerem que se confie totalmente na
entidade com a qual esses dados são partilhados.

Uma solução com potencial para solucionar este problema é o recurso a esquemas de Proxy
Re-Encryption, que têm provado ser frutíferos nas mais diversas áreas, nomeadamente na gestão
de direitos digitais, encaminhamento de emails e redes ad-hoc para veículos.

Neste trabalho é apresentado o desenvolvimento de uma abordagem privacy-first que permite
suprimir a necessidade de confiar nas entidades envolvidas no processo de partilha. Para tal, é
utilizado como recurso um esquema criptográfico que permite ao paciente encriptar a informação
e partilhar a mesma com um prestador de cuidados de saúde através da utilização de uma entidade
intermediária denominada proxy.

Além disso, um controlo de acesso granular sobre os dados é conseguido permitindo ao pa-
ciente partilhar os seus dados apenas com consentimento explícito, assegurando a possibilidade de
revogar o acesso aos mesmos a qualquer altura.

É também realizado um estudo dos diferentes mecanismos existentes que salvaguardam cenários
de autorização em situações de emergência, sendo proposta uma abordagem break-glass baseada
numa entidade de confiança responsável por autorizar o acesso nesses mesmos cenários.

Finalmente é desempenhada uma avaliação da solução proposta através da realização de uma
análise de segurança permitindo aferir vulnerabilidades e medidas de mitigação implementadas.
Posteriormente são apresentados os testes de performance realizados assim como os respetivos
resultados e discussão.

i

Abstract

With the growing digitisation of services, there is an increasing amount of data that is collected by
these services. In the healthcare area, this is a fundamental component for the correct collabora-
tion, communication and coordination between the different health professionals and entities.

Given the sensitivity of the data that is shared in healthcare systems, and the number of dif-
ferent entities that process these data, ensuring proper access control and safeguarding security
becomes a necessity and challenge.

Traditional encryption methods do not offer the ability to ensure granular access control of
data, as they require trusting the entity with whom that data is shared.

A potential solution to this problem is the use of Proxy Re-Encryption schemes. This schemes
have proven to be fruitful in a wide variety of areas, namely in digital rights management, emails
forwarding, and ad-hoc networks for vehicles.

This work presents the development of a privacy-first approach, which suppresses the need to
trust the entities involved in the sharing process. This is done by resorting to an encryption scheme
that allows a patient to encrypt the information and share it with a health provider through the use
of an intermediary entity called proxy.

Furthermore, granular control over the data is achieved by enabling the patient to share its
medical data solely through explicit consent, while enforcing revocability at any given time, if
needed.

Also, a study of the existing mechanisms that safeguard authorisation in emergency scenarios
is carried out, being proposed a break-glass approach that employs a trusted entity as a resource to
authorise access to the medical records in those scenarios.

Finally, an evaluation of the proposed solution is performed by conducting a security analysis
to assess the vulnerabilities of the system and implemented mitigation measures. This is followed
by the presentation of the conducted performance tests, respective results, and discussion.

ii

Acknowledgements

At the end of another chapter of my life, I would like to thank all those who somehow helped me
to walk this path and overcome all the obstacles it provided me with.

First of all, I would like to thank my supervisor Prof. Alexandra Mendes for the assistance and
guidance provided throughout the development of the dissertation.

A very special thanks to my co-supervisor Prof. Ivone Amorim, with whom I worked closely,
and who proposed me challenges that incited me to leave my comfort zone. Thank you for your
unconditional help and the knowledge which you willingly offered me.

To Ivan Vasconcelos for the scientific and literary cooperation that resulted in some of the
work portrayed in this dissertation.

I would also like to thank the whole MESW faculty for the knowledge and experience they
have transmitted to me and my colleagues throughout these two years, an experience that will
certainly be useful in the challenges that lie ahead.

To my colleagues at MESW, with whom I had the opportunity to work. Special thanks to
my friend Rita Veiga, with whom I shared countless memorable moments over these two years,
moments that I treasure with great affection and will certainly take with me.

To my grandparents for the fondness, wisdom and experiences conveyed from an early age,
wisdom that only someone with such life experience can impart and that somehow shape the
decisions I take today.

To my parents and sister for being my pillars. For all the unconditional love, effort and dedi-
cation deposited in me, which in a certain way, contributed so that today I have the required tools
to thrive in the future. There are no words that can express my appreciation for everything they
provided and for the values they have instilled in me, values that define who I was, am and will
be. If today this dissertation exists, it is definitely thanks to them.

To the remaining family members and friends who directly or indirectly contributed to the
achievement of my objectives.

To all of you without whom this would not be possible, I dedicate nothing less than my most
profound gratitude.

Bruno Filipe Rodrigues

iii

“The most satisfying thing in life
is to have been able to give a large part of one’s self to others”

Pierre Teilhard de Chardin

iv

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Problem Background . 3
1.4 Aims and Objectives . 4
1.5 The CYBERSSECIP Project . 5
1.6 Thesis Organization . 5

2 Background 7
2.1 Cryptography . 7

2.1.1 Symmetric Encryption . 9
2.1.2 Diffie-Hellman Key Exchange . 11
2.1.3 Asymmetric Encryption . 13
2.1.4 Identity and Attribute-Based Encryption 15
2.1.5 Hybrid Encryption . 16
2.1.6 Authenticated Encryption . 17
2.1.7 Hashing Functions . 19
2.1.8 Shamir Secret Sharing . 21
2.1.9 Security Models . 22

2.2 Proxy Re-encryption . 23
2.2.1 Syntax and basic definitions . 24
2.2.2 Main Properties . 25
2.2.3 Classification of PRE schemes . 26
2.2.4 Primordial PRE advancements and foundations 27

3 State of the Art 30
3.1 Cloud-Based E-Health Systems . 30

3.1.1 Cloud E-health models . 31
3.1.2 Access delegation challenge . 32

3.2 Achieving e-health data security . 34
3.2.1 Non-Cryptographic techniques . 34
3.2.2 Cryptographic techniques . 35
3.2.3 Regulatory Standards . 36

3.3 Proxy Re-encryption in the Context of E-Health 37
3.3.1 Open Source frameworks and implementations 43

3.4 Safeguarding Emergencies in E-Health Environments 44

v

CONTENTS vi

4 Proxy Re-encryption Module 48
4.1 Umbral PRE shceme . 48

4.1.1 Procedural Overview . 49
4.2 pyUmbral . 50

4.2.1 Encapsulation . 51
4.2.2 Encryption . 52
4.2.3 Generating Re-encryption key fragments 53
4.2.4 Re-encapsulation . 54
4.2.5 Decapsulation and Decryption . 54

5 Proposed Solution 56
5.1 Problem Statement . 56
5.2 Requirements format . 57

5.2.1 Use Cases Description Model . 57
5.2.2 Actors Description Model . 57
5.2.3 Functional Requirements Description Model 57
5.2.4 Non-Functional Requirements Description Model 58

5.3 Actors and Use Cases . 59
5.3.1 Actors . 59
5.3.2 Use Cases . 60

5.4 System Requirements . 71
5.4.1 Functional Requirements . 71
5.4.2 Requirements Traceability Matrix . 73
5.4.3 Non-Functional Requirements . 74

5.5 System Architecture . 74
5.5.1 Overview . 74
5.5.2 Main Design Decisions . 76

6 Implementation 78
6.1 Business Logic . 78

6.1.1 Overall Architecture and Organisation 78
6.1.2 Richardson Maturity Model . 79
6.1.3 Authorisation/Authentication . 80
6.1.4 Upload/Access Delegation of EHRs . 82
6.1.5 Supporting emergency or inability situations 87
6.1.6 Data Modelling . 90
6.1.7 Middleware . 91
6.1.8 API Routes . 92

6.2 Presentation Logic . 93
6.2.1 Client-side Application . 94
6.2.2 Pages . 94
6.2.3 Components . 97
6.2.4 State Management . 99

7 Evaluation, Testing and Validation 101
7.1 Security Evaluation and Risk Assessment . 101

7.1.1 Authentication and Authorisation . 101
7.1.2 Server-side logic . 104
7.1.3 Client-side application . 105

CONTENTS vii

7.2 Performance Tests . 107
7.2.1 Testing Environment . 108
7.2.2 Results and Analysis . 108

7.3 Final Remarks . 114

8 Conclusions and Future Work 115
8.1 Conclusions . 115

8.1.1 Achieved milestones and contributions 115
8.1.2 Assessed challenges . 116

8.2 Future Work . 117

References 119

A User Interface Screenshots 128

B Performance Tests Results 132

List of Figures

2.1 Elliptic Curve Diffie Hellman Exchange . 13
2.2 Chacha20-Poly1305 morphology (Inc., 2017) 19
2.3 Shamir Secret Sharing curve . 21
2.4 Proxy re-encryption scenario . 25
2.5 Classification of PRE schemes based on directionality. Adapted from (Khan, 2016) 28

3.1 Access delegation scenario in e-health . 33
3.2 Comparison of time taken between conjunctive search and a combination of con-

junctive and similar search (Bhateja et al., 2017) 40
3.3 Architecture of the solution proposed by (Thilakanathan et al., 2014) 40
3.4 Exchange of messages in on-road emergency scenario (Rabieh et al., 2018) . . . 42

4.1 Procedural overview of pyUmbral PRE scheme 49
4.2 DEM mechanism in pyUmbral . 52

5.1 Deployment diagram of the idealised architecture 75

6.1 Layered Architecture . 79
6.2 Richardson Maturity Levels (Jones et al., 2021) 80
6.3 Authentication/Authorisation flow . 81
6.4 Access delegation flow - File Upload . 83
6.5 Access delegation flow - Bob requests access to a file 83
6.6 Access delegation flow - Alice answers the share request 84
6.7 Access delegation flow - Bob retrieves the file 85
6.8 Emergency scenario delegation flow . 88
6.9 Entity Relationship Diagram . 91
6.10 Client-side application navigation flow . 95
6.11 Requests Page UI . 96
6.12 Resource Page UI . 97
6.13 Prop drilling in State Management (React) . 100

7.1 Performance Tests - File Size Uploads Bar Chart 110
7.2 Performance Tests - Re-encryption key generation time for each run 111
7.3 Performance Tests - Average Time Taken for File Retrieval 112
7.4 Performance Tests - Average Impact of PRE in Same Sized Files 113
7.5 Performance Tests - Average Impact of PRE in Different Sized Files 114

A.1 Login Page . 128
A.2 MyFiles Page . 128

viii

LIST OF FIGURES ix

A.3 MyFiles Page on upload file step . 129
A.4 Requests Page . 129
A.5 Requests Page on accept request step . 130
A.6 Resource Page . 130
A.7 SharedWithMe Page . 131
A.8 Profile Page . 131

B.1 Performance Tests - File Size Uploads Bar Chart 133
B.2 Performance Tests - Average time taken to generate the re-encryption key 134
B.3 Performance Tests - Average Time Taken for File Retrieval 136
B.4 Performance Tests - Average Impact of PRE in Same Sized Files 136
B.5 Performance Tests - Average Impact of PRE in Different Sized Files 136

List of Tables

3.1 Comparison of strengths and weaknesses of the different cloud models 31
3.2 PRE schemes strengths and weaknesses comparison 38

5.1 Use cases description model . 57
5.2 Actors description model . 57
5.3 Functional requirements description model . 58
5.4 Non-functional requirements model . 58
5.5 Non-functional requirements categories . 58
5.6 Requirements priority . 59
5.7 Description of actors . 59
5.8 Use case UC-01 . 60
5.9 Use case UC-02A . 61
5.10 Use case UC-02B . 62
5.11 Use case UC-03 . 63
5.12 Use case UC-04 . 64
5.13 Use case UC-05 . 65
5.14 Use case UC-06 . 66
5.15 Use case UC-07 . 67
5.16 Use case UC-08 . 68
5.17 Use case UC-09 . 69
5.18 Functional Requirement RF-01 . 71
5.19 Functional Requirement RF-02 . 71
5.20 Functional Requirement RF-03 . 71
5.21 Functional Requirement RF-04 . 72
5.22 Functional Requirement RF-05 . 72
5.23 Functional Requirement RF-06 . 72
5.24 Functional Requirement RF-07 . 72
5.25 Functional Requirement RF-08 . 73
5.26 Functional Requirement RF-09 . 73
5.27 Requirements traceability matrix . 73
5.28 Non-functional requirement RNF-01 . 74
5.29 Non-functional requirement RNF-02 . 74

6.1 Authorisation/authentication routes . 92
6.2 Resource Routes . 93
6.3 Share Routes . 93
6.4 List of UI Components . 98

7.1 Performance Tests - File upload performance for different file sizes 109

x

LIST OF TABLES xi

7.2 Performance Tests - Average time taken to generate the re-encryption key 112

B.1 Performance Tests - File upload performance for different file sizes 132
B.2 Performance Tests - Generating the re-encryption key 133
B.3 Performance Tests - Average time taken to generate the re-encryption key 135
B.4 Performance Tests - File retrieval for different file sizes 135

Abbreviations

ABAC Attribute-Based Access Control
ABE Attribute-Based Encryption
ABPRE Attribute-based Proxy Re-encryption
AEAD Authenticated Encryption with Associated Data
AES Advanced Encryption Standard
API Application Programming Interface
ARRA American Recovery and Reinvestment Act
BSON Binary JSON
CA Certification Authority
CCA Chosen-ciphertext attacks
CDN Content Delivery Network
CDS Cloud Data Service
CP-ABE Ciphertext-Policy ABE
CP-ABPRE Cipher-text Policy Attribute-based Proxy Re-encryption
CPA Chosen-plaintext attacks
CRUD Create, Read, Update and Delete
CSDB Cloud Storage Database
CSP Cloud Service Provider
CSRF Cross-Site Request Forgery
CSS Cascading Style Sheets
DDH Decision Diffie-Hellman
DES Data Encryption Standard
DKDB Data key Database
DLP Discrete Logarithm Problem
DOM Document Object Model
DSS Data Sharing Service
DTO Data Transfer Object
e-PHI Electronic Protected Health Information
ECC Elliptic Curve Encryption
ECDH Elliptic Curve Diffie-Hellman
EHR Electronic Health Record
EMR Electronic Medical Record
EICS-KEM Elliptic Curve Integrated Encryption Scheme
EXIF Exchangeable Image File Format
GDPR General Data Protection Regulation
HATEOAS Hypermedia as the Engine of Application State
HCA Healthcare Certification Authority
HE Homomorphic Encryption

xii

ABBREVIATIONS xiii

HIPAA Health Insurance Portability and Accountability Act
HITECH Health Information Technology for Economic and Clinical Health
HKDF HMAC Key Derivation Function
HTTP Hypertext Transfer Protocol
IBAC Identity-Based Access Control
IBBE Identity-Based Broadcast Encryption
IBE Identity-Based Encryption
IND Indistinguishability
JSX Javascript Syntax Extension
JWT JSON Web Token
KDF Key Derivation Function
KEM Key Encapsulation Mechanism
KGC Key Generation Centre
KP-ABE Key-Policy Attribute-Based Encryption
KS Key Service
MAC Message Authentication Code
MI Medical Institute
MIME Multipurpose Internet Mail Extensions
NIST National Institute of Standards and Technology
NoSQL "Not only SQL" or “Non-SQL”
PDF Portable Document Format
PHI Personal Health Information
PKE Public Key Encryption
PKG Private Key generator
PKI Public Key Infrastructure
PRE Proxy Re-Encryption
PRKS Proxy Re-Encryption with keyword Search
RBAC Role-Based Access Control
REST Representation State Transfer
RFC Request for Comments
RMM Richardson Maturity Model
RSA Rivest-Shamir-Adleman
SID Identity Seed
SKE Secret Key Encryption
SQL Structured Query Language
SSL Secure Socket Layer
SSS Shamir Secret Sharing
TLS Transport Layer Security
TPKE Threshold Public Key Encryption
UI User Interface
UML Unified Modeling Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
UX User Experience

Chapter 1

Introduction

1.1 Context

With the digitisation of the various services we know, there is a greater need to store and process

a large volume of data. In recent years, there has been an exponential increase in the use of

information technologies, leading to greater reliance on data.

This exponential adoption and use of digital services also foster the interest in cooperation

between these same services in order to improve and create new business opportunities arising

from the crossing and sharing of data.

All this raises some questions, namely how this data is handled and processed. The European

Union has a significant contribution to the development and dissemination of laws and incentives

that propose rules and directives in order to standardise and regulate the way data is treated and

made available, namely standards such as the European Governance Act (edg, 2022), which try

to use data as a tool to produce benefits for citizens and businesses in Europe by promoting the

availability and sharing of data in various sectors.

One of the sectors that can benefit from data sharing and crossing is the healthcare sector.

In fact, it is estimated that a data-driven approach can bring benefits such as the development of

better treatments for rare or chronic diseases, allowing savings of approximately 120 billion euros

a year (edg, 2023).

Although these data relate to the European sector, other efforts are made across borders,

namely the Health Insurance Portability and Accountability Act (HIPAA), an American federal

law that aims to enforce proper guidelines when it comes to ensuring the privacy and security of

the so-called Personal Health Information (PHI) and HITECH, also an American initiative that

aims to promote the digitisation of health services.

However, this is a meticulous and complex process. Given the sensitivity of the data present

in the healthcare sector and since they are part of another strand also contemplated by the EU,

namely personal data, there is a need to ensure compliance with a set of directives contemplated

in the General Data Protection Regulation (GDPR).

1

Introduction 2

This promotes a paradigm in which the control of data should be on the user’s side, thus

allowing the owner of the data to have greater control over it.

Different approaches have been taken regarding safeguarding the security and privacy of data

shared through e-health systems. This includes conventional encryption techniques like Advanced

Encryption Standard (AES), Rivest-Shamir-Adleman (RSA) and Elliptic Curve Cryptography

(ECC) (Edemacu et al., 2019).

The problem of using conventional cryptography, lies mostly in cases where there is a need to

share data with multiple entities. With a traditional approach, this would require encrypting the

data repeatedly for each entity it is shared with, which adds a significant computational burden.

Another consideration is redundancy, specifically, the requirement to store keys for each of these

entities, effectively establishing a certain level of trust between both parties.

Another crucial factor that dictates and justifies the need to use more advanced solutions is the

fact of not knowing in advance with whom the data will be shared. Solutions like Attribute-Based

Encryption try to solve the problem, however, they end up falling short due to the infrastructure

and complexity that attribute-based keys may introduce, namely at the level of key management,

as well as revoking and emergency situations that require overriding of standard attributes.

Proxy re-encryption is another solution that contemplates data sharing without prior knowl-

edge of the recipient. Unlike Attribute-Based encryption, it is not based on policies or attributes,

although it is possible to combine both approaches (Luo et al., 2010), which eliminates the need to

categorise the data upfront. This is something that may not be pertinent depending on the context

in which it is inserted. This solution allows an intermediate entity, called a proxy, to transform

ciphertext under a key into ciphertext under a different key, without learning anything about the

plaintext content. It brings advantages, namely in a scenario where data is shared in an untrusted

cloud environment.

With that said, there is a need to have an e-health-oriented platform that can cope with all

the aforementioned limitations. This brings more control over the way data is delegated and sup-

presses the need to fully trust the health entities and cloud providers with which health records are

shared.

1.2 Motivation

In traditional health systems, access to patients’ medical records is made by an authorised and

centralised health entity, without any intervention or restriction by the patient regarding when and

with whom these records are shared.

With the introduction of the GDPR, the treatment of personal data requires express consent in

order for an entity to process someone’s data. Nevertheless, once consent is given, an individual

cannot control the data in a granular manner. Although GDPR enables some level of transparency

regarding how data is treated, it does not address the possibility of controlling who that same data

is shared with from the point consent is given. Despite the data subject being able to revoke access

at any time, according to the Art.7 of the GDPR regarding conditions for consent, "withdrawal of

1.3 Problem Background 3

consent shall not affect the lawfulness of processing based on consent before its withdrawal" (art,

2018), meaning that the data processing performed prior to the revoking is not illegal nor can be

undone. This results in inflexible control, and therefore there is a need to find an intermediate

solution that can cope with the aforementioned concerns.

Therefore, the motivation for this work is the development of a solution that allows the patient

to control the entities (patients, doctors, healthcare centres, health providers) with whom it shares

data as well as enabling it to revoke access to those entities at any time. This is a step forward in

providing granular access control over patients’ personal data. This is because it eliminates the

need to blindly trust any entity that wishes to access the data. By switching control to the patient,

we ensure that data is only shared with those entities that the patient trusts and that actually need

access to it.

Another important aspect that is still underdeveloped, and addressed in works in this field, is

the contemplation of emergency situations where the patient is unable to make decisions, either

by incapacity or unconsciousness.

Although there are some solutions that contribute to granular access control with respect to

medical records, there is still a lack of maturity with respect to safeguarding emergency situa-

tions (Yüksel et al., 2017). Assessing approaches and possible shortcomings of viable solutions

as well as the former implementation of one of those approaches would contribute to this still pre-

maturely explored concern. This is of great value when it comes to cloud-based e-health systems.

1.3 Problem Background

E-health systems keep centralised storage of Electronic Health Records (EHRs). This enables pa-

tients to move between locations seeking medical treatment without having to worry about whether

their medical records are available to different healthcare services or entities.

Cloud platforms enable this collaborative aspect of e-health systems since, with the patient’s

consent, different parties and entities can access this information with minimal effort. The multi-

tude of different parties that have access to this data introduces security concerns. This is because

it is challenging to enforce and ensure that all the parties that have access to the data have proper

means to ensure their safe storage.

With that, a naive approach to the problem would be to use symmetric encryption to encrypt

and further decrypt the data using a symmetric key. Using this method implies that to share the in-

formation, the data owner needs to download and decrypt the requested information and re-encrypt

it before uploading it to the cloud. This introduces extra computational and communication over-

head. Moreover, it can ensure confidentiality but not access control, disregarding this approach as

optimal to our problem (Qin et al., 2016).

Another approach uses Attribute-Based Encryption, which is widely adopted in cloud Based

E-Health systems (Li et al., 2013). In ABE, the secret key of a given user is tied to an access

policy. This enables the data to be decrypted only by the users whose private key meets the con-

straints defined by the access policy (P et al., 2018). Although ABE can provide granular access

Introduction 4

control, scalability, and data integrity, in the case of ever-changing access policies, the data owner

must download and re-encrypt the data, posing the identical computational and communication

overhead as asymmetric encryption.

One other strand of the problem is that most e-health platforms implemented across different

governmental entities do not allow them to have true control of medical records. Usually, a trusted

entity is responsible for arbitrarily authorising access to these files (Tertulino et al., 2023; Li et al.,

2013, 2010; Yang et al., 2019; Au et al., 2017) to all the health providers as they wish, being the

patient notified about the access at most.

Developing a platform that can invert the control to the patient’s hands while safeguarding the

information contained in its medical records is a paramount feature.

Furthermore, ensuring no party involved in the sharing process can access that information

without explicit consent, becomes a vital step forward regarding the security and privacy of elec-

tronic medical records.

1.4 Aims and Objectives

In order to solve the problems and caveats identified in Section 1.3, this thesis aims to study the

modus operandi of Proxy Re-encryption systems, as well as their typology and characteristics.

It is also expected to analyse how they are integrated into the e-health context, understanding

the contributions and advantages they provide for the security and privacy of medical data.

Regarding the development of the solution itself, it is expected the choice and in-depth study

of a framework based on a PRE scheme, including the primitives and mechanisms inherent to it.

This will contribute to a better understanding of the framework, as well as the implementation of

a solution that enables the sharing of medical records in a semi-trusted environment. Moreover, it

should contemplate the following aspects and characteristics:

• The development of a user-centric platform that inverts the access control to the patient’s

side allowing the same to not only fully manage who accesses its data but also enable the

revoking of access’s rights.

• Ensure compliance with the latest standards regarding data protection, ensuring integrity,

privacy and confidentiality of the data.

• Safeguard emergency scenarios through the implementation of a break-glass mechanism

that is robust and reliable.

In order to validate some of the characteristics of the developed platform, an evaluation and

study of the platform should be made in order to understand how it behaves and how suitable it is

to a hypothetical adoption of this e-health platform by a governmental entity.

1.5 The CYBERSSECIP Project 5

1.5 The CYBERSSECIP Project

The scope of this work integrates into the Research Line 2 (RL2) of the “CYBERSecurity SciEn-

tific Competences and Innovation Potential” (CYBERSSCIP) project1. This project is funded by

the Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020

Partnership Agreement, through the European Regional Development Fund (ERDF) and with the

reference NORTE-01-0145-FEDER-000044.

The main goal of CYBERSSECIP is to strengthen the scientific competences and innovation

potential of the North region of Portugal by tackling the cybersecurity challenge. Its two main

applications domains are Digitisation of SMEs and Health Applications.

This project is divided in two research lines, namely: RL1 - Secure Digital Systems and RL2 -

Data Security and Privacy. The latter is focused in the development of techniques to protect data,

and control its uses, as well as identity management and access authorisation, covering confiden-

tiality, integrity, and authenticity, but also identity management and access authorisation. This

thesis work is a part of RL2, as mentioned discussed.

1.6 Thesis Organization

The present thesis is structured by chapters and respective sections. Each of these chapters presents

a key stage of the work developed here, starting with the (i) Introduction, (ii) Background, (iii)

State of the Art, (iv) Proxy Re-encryption Module, (v) Proposed Solution, (vi) Implementation,

(vii) Evaluation, Testing and Validation, and, last but not the least, a chapter dedicated to (viii)

Conclusions and Future work.

• Chapter 1: Introduction — Introduces the context of this work, describing the motivation

and the problem at hand, as well as the objectives to be accomplished through the work

development.

• Chapter 2: Background — This chapter introduces some theorems, definitions, and prim-

itives needed to better understand the concepts and topics further discussed and presented

in the rest of the document.

• Chapter 3: State of the Art — Describes the overall studies, advancements, and related

work regarding the concepts and themes discussed throughout the following chapters.

• Chapter 4: Proxy Re-encryption Module — Details the primitives, logic, and mechanisms

of the adopted framework and subsequent proxy re-encryption module that serves as a base

for developing the solution presented in this work.

• Chapter 5: Proposed Solution — Breaks down several details communed to the solution

proposal, including the problem statement, requirements engineering, idealised architecture,

and related key design decisions.
1https://cyberssecip.portic.ipp.pt/

https://cyberssecip.portic.ipp.pt/

Introduction 6

• Chapter 6: Implementation — This chapter depicts the different implementation counter-

parts, dividing them by nodes, and detailing relevant implementation aspects of each one of

those nodes.

• Chapter 7: Evaluation, Testing and Validation — Presents a security evaluation of the

developed platform as well as different performed tests, results obtaines, and their analysis.

• Chapter 8: Conclusions and Future Work — This last chapter details the drawn conclu-

sions from the project as a whole, as well as future improvements and features that could be

developed to enhance further and complement the work portrayed in this thesis.

Chapter 2

Background

This section introduces the concepts needed to support the rest of the work presented here, in

terms of operational aspects, syntax, and definitions related to security, encryption, and proxy

re-encryption.

2.1 Cryptography

Cryptography is the practice and study of techniques aimed at ensuring the privacy of a mes-

sage by preventing any third party from reading it. It involves transforming readable information

into an unreadable form, a concept known as “encryption”, and the reverse process of converting

unreadable information back into readable form, known as “decryption”.

The advancements and current state of cryptography have been heavily influenced by relentless

studies aimed at finding ways to hide information securely.

Motivated by political and military reasons, ancient civilisations developed multiple mech-

anisms to hide information, enabling them to manage their governments and troops without in-

advertently revealing their plans to the enemy in the event that the message fell into the wrong

hands.

Some civilisations, such as the Greeks and Romans, were pioneering in this aspect. They are

known for their mathematical advancements and formulations, being Mathematics the foundation

of Cryptography up to the present day.

The Spartan military utilised a cipher called the "scytale" in 500 BC (Hill, 2008). Although

considered simple by modern standards, it was highly effective at the time, providing protection

against interceptions and ensuring secure message delivery (Das et al., 2013).

This cipher was based on the concept of using a strip of cloth wrapped around a tool with the

shape of a cylinder called a scytale, with the secret message written on it. The courier would wear

the strip of cloth as a belt and deliver it to the intended recipient. In order to read the message,

the strip of cloth had to be wrapped around a scytale of the exact same length as the original one,

ensuring its readability.

7

Background 8

The Romans made significant contributions to classical Cryptography, including the adoption

of Caesar’s cipher during the reign of Julius Caesar to transmit messages securely (Luciano and

Prichett, 1987). This is an example of what is called a substitution cipher.

The modus operandi of this cipher involved replacing each letter in the original message with

the letter some fixed number of positions ahead in the alphabet. To decrypt the cipher, one simply

needed to reverse the process by moving those same number of positions back for each letter in

the encrypted message.

In reality, there was no secret involved, but just the assumption that whoever had access to the

message did not possess the faculties to perceive the linearity of always performing a three-places

backward shift (Aumasson, 2017).

Vigenère cryptographic system was introduced in the 16th century and is seen by some authors

as the first relevant cryptographic system (Hill, 2008). This can be seen as an improvement over

the Caesar cipher. This is because an identical shifting concept is used. The difference relies on

the fact that the number of shifts is not fixed, but defined by an alphabetic key. Each letter of the

message will be shifted by the letter resulting from the interception between the letter from the

plaintext and the letter from the key. This is performed in a grid called Vigenère square.

After the introduction of cryptographic systems, new advancements emerged, particularly dur-

ing World War II.

Vernam cipher, introduced by Gilbert Vernam in 1917, played an important role in ensuring

secure communication among troops during this time. It was based on the boolean exclusive

(XOR1), where a 5-channel punched tape key was integrated with a plaintext message, to produce

the resulting ciphertext (Hill, 2008).

Since then, with the advent of the digital era, computers have been introduced, offering in-

creased computational capabilities. This implied a change in the paradigm of cryptography.

The emergence of algorithms such as RSA and Diffie Hellman, in the 70s, was the turning

point between classical cryptography and modern Cryptography.

Modern cryptography has evolved to incorporate mathematical primitives and number theory,

employing various invertible integer operations such as exponentiation, discrete logarithms, and

modular arithmetic (Desoky, 2005). This allows for the formulation of computational hardness

assumptions, which pertain to the concept that while a problem is solvable, it cannot be efficiently

solved within a reasonable timeframe. Examples of such assumptions include the factoring prob-

lem and the discrete logarithm problem (Katz, 2010).

In order to contextualise and facilitate the explanation of some primitives and algorithms pre-

sented throughout this section, two entities (Alice and Bob) are used.

Alice and Bob are depicted in a scenario where they want to exchange confidential information

through an insecure channel. To achieve such a feat Alice must encrypt the information so that no

third party can read its plaintext content. To do so, Alice resorts to a key A and a cipher which

permits the conversion of a plaintext message into a ciphertext. In order for Bob to obtain the

content of the message, it must decrypt the ciphertext using a key B. The secrecy of the ciphertext

1Logical operation that returns true if, and only if, only one of the conditions is true

2.1 Cryptography 9

depends on the secrecy of the key B, which must be safeguarded in order to prevent third parties

from having unauthorised access to the information.

With that said, the following sections present an overview of the different cryptographic

schemes that are most relevant to the work described herein.

For a deeper knowledge of some of the primitives and concepts portrayed in the following

sections, the referenced bibliography can be consulted.

2.1.1 Symmetric Encryption

Symmetric encryption or secret key encryption (SKE) is a scheme that uses the same key to per-

form both encryption and decryption of data. If Alice wants to send a message to Bob, she will

encrypt the message with the same key that Bob will use to decrypt that message. This means that

they both have to agree on the key beforehand.

Definition 2.1 (Secret Key Encryption). An SKE scheme is composed of the following algorithms

according to (Lee, 2020):

• Setup(n)→ params — On input of a security parameter n, outputs a set of public parame-

ters including the message space M and the ciphertext space C.

• KeyGen(n)→ k — On input security parameter n, outputs a symmetric key k.

• Encrypt(k,m)→ c — Encrypts a message m using a symmetric key k, outputting a cipher-

text c.

• Decrypt(k,c)→ m′ — Decrypts a ciphertext c using a symmetric key k, outputting a mes-

sage m′ of the message space.

A secret key encryption scheme is said correct if for all m ∈M and all k← KeyGen(n):

Decrypt(k,Encrypt(k,m))→ m.

Examples of SKE schemes include the well-known Data Encryption Standard (DES) devel-

oped by (National Institute of Standards and Technology, 1979), the Advanced Encryption Stan-

dard (AES), and the ChaCha family.

DES, even though had an important role in the advancement of Cryptography, is now consid-

ered insecure because it is vulnerable to brute-force attacks. It uses a key length of 56 bits, and, as

computing power evolved, it became trivial to decrypt a DES ciphertext in a timely manner.

2.1.1.1 AES

The Advanced Encryption Standard (AES, 2001) is a widely used symmetric key encryption

(SKE) scheme that was adopted as a standard by the National Institute of Standards and Tech-

nology (NIST) in 2001.

Background 10

AES operates on fixed-size blocks, making it a block cipher. The plaintext is divided into

chunks and encrypted independently. The algorithm processes data in blocks of 128 bits, or 16

bytes, using 4×4 matrices called states.

AES supports key lengths of 128, 192, and 256 bits, which determine the number of rounds

applied by the algorithm. A 128-bit key uses 10 rounds, a 192-bit key uses 12 rounds, and a

256-bit key uses 14 rounds.

Each round applies four phases to each byte of the state. The first phase, called AddRoundKey,

applies a bitwise XOR between the shifted key and each cipher state. The second phase, known

as SubBytes, utilises a Rijndael S-box, which is a substitution box or lookup table, to replace each

byte with a corresponding value from the table. ShiftRows performs a cyclic row transposition on

the last three rows of the state, rotating the bytes within each row. The final phase, MixColumns,

operates on each column of the state, combining the four bytes within it through a linear operation.

To decrypt the information, the inverse process of the encryption phases is applied. The S-

box substitution is inverted to revert the SubBytes operation. The MixColumns and ShiftRows

operations are reversed by applying the mixing and shifting process in the opposite direction,

respectively.

2.1.1.2 ChaCha Family

The Chacha family is a family of symmetric encryption schemes based on the design principles of

the original Salsa20. Actually, Chacha20 is an analogue modification of Salsa 20/20 being a more

performant alternative to AES in software-only implementations as stated in (Nir and Langley,

2015).

The main premise of the ChaCha block function is to perform transformations over a ChaCha

state. This state can be characterised as a matrix or vector, and for the sake of this work, states are

considered matrices. These matrices are nothing more than what is called column transpositions.

The scheme proposed by Berstein (Bernstein, 2008), features two types of rounds, column rounds

and diagonal rounds.

The column rounds, also called quarter rounds, are named after the fact that ChaCha states are

4x4 matrices composed of elements represented as 32-bit unsigned integers, where the rounds are

performed in only 4 of the 16 integer numbers that compose the state(Nir and Langley, 2015).

To perform the encryption process, ChaCha requires a 256-bit key K, a 96-bit nonce N a 32-bit

counter C, and a message M. A set of 20 rounds are performed, where column and diagonal rounds

are applied to the ChaCha state by recurrently invoking the Chacha block function in each counter

incrementation. The resulting state is then serialised in little-endian order originating keystream

blocks that compose a keystream.

Regarding the construction itself, and according to (Inc., 2017), provided with K and N, an

algorithm generates a keystream of pseudo-random elements Z denoted as Z = KS(K,N, len(M))

where KS is the keystream generation algorithm, M the message and len(m) the length. The length

of the message is used to determine the value of the counter C that represents the number of rounds

that will be performed by Chacha over K, N and the counter C, thus producing keystream blocks

2.1 Cryptography 11

of 512-bit. Afterwards, the ciphertext C is computed by XORing each block of the message M

with each corresponding block of the keystream Z as C = M⊕Z.

Concerning decryption, the Chacha block function enables the derivation of the keystream

through the key, which is XORed with the ciphertext and outputs the plaintext (Nir and Langley,

2015).

2.1.2 Diffie-Hellman Key Exchange

Diffie-Hellman proposed in 1976 (Diffie and Hellman, 1976) a way of sharing a symmetric key

through an insecure or public channel without previous communication between two entities,

known as Diffie-Hellman key exchange. Its security relies on the hardness of solving the Dis-

crete Logarithm problem (DLP).

Definition 2.2 (Discrete logarithm problem). The Discrete Logarithm Problem (DLP) can be de-

fined as follows (Amorim, 2008): given a prime number p, a generator g of F∗p, and an element

y ∈ F∗p, find the integer x, 0≤ x≤ n−1, such that gx ≡ y(pmod p).

Determining y ≡ xk(pmod p) is computationally easy. However, choosing k such that y ≡
xk(pmod p) with x and y being known, is infeasible since there is no mathematical relationship

to perform this calculation and thus, presenting a higher complexity when it comes to finding

the value of k since that would imply testing every single value of k until finding one that would

suffice.

The Diffie-Hellman key exchange process can now be described, in the context of multiplica-

tive groups of finite fields, as follows:

Alice and Bob intend to establish a key for exchanging confidential information using a sym-

metric encryption scheme, over a public channel without previously exchanging any kind of infor-

mation. To do so:

1. Alice and Bob agree on a large prime number p and a generator g of F∗p, where 2≤ g≤ p−2.

2. Alice and Bob select random integers, a and b respectively, with 2≤ a,b≤ p−2, to be their

private keys.

3. Alice and Bob compute their public keys, ga (mod p) and gb (mod p) respectively.

4. Alice and Bob exchange their public keys.

5. Alice computes
(
gb
)a

(mod p) and Bob computes (ga)b (mod p).

Alice and Bob now share the secret gab (mod p), which they can use as their key.

Note that the publicly known information includes the group F∗p , the generator g, the value of

ga mod p, and the value of gb (mod p). Private information includes the numbers a and b, as

well as the value of gab (mod p).

With the publicly available information, in order for an attacker to obtain the shared key be-

tween Alice and Bob, it would have to be able to solve something like the discrete logarithm

Background 12

problem. Therefore, the security provided by this system depends on the difficulty of solving

the DLP in F∗p. Choosing an appropriate prime number, p, is a crucial security factor to ensure

message integrity.

2.1.2.1 Elliptic Curve Diffie-Hellman

The original work of Diffie-Hellman was adapted to accommodate Elliptic Curves (ECs), therefore

materialising a new variant of the Diffie-Hellman protocol, named Elliptic Curve Diffie-Hellman

(ECDH).

Definition 2.3 (Elliptic Curve). Let K be a field such that its characteristic is not 2 nor 3. An

elliptic curve E defined over K is the set of points of x,y ∈K that satisfy an equation of the form

y2 = x3 +Ax+B,

where A,B ∈ K, and such that x3 +Ax+B is a cubic polynomial without multiple roots, together

with an abstract point, the point at infinity, ∞

It is well-known that it is possible to define an operation (referred to as addition and repre-

sented as +E) on the set of points of an elliptic curve, E(K), such that (E(K),+E) forms an

Abelian group (Amorim, 2008), which is said to be addictive. Because of this algebraic structure,

ECs have been playing an increasingly important role in cryptography (Washington, 2008). In

fact, there is a specific field named Elliptic Curve Cryptography (ECC) that studies cryptographic

primitives based on ECs.

The popularity of ECs has raised in recent years because they provide security equivalent to

classical systems, such as RSA, while using keys of fewer bits. Its adoption has been carried out

in several areas namely secure communications protocols such as Transport Layer Security (TLS)

and Secure Sockets Layer (SSL), aiding the achievement of perfect forward secrecy2 (Sullivan,

2013). Other purposes include digital signatures and key exchange protocols such as the Diffie-

Hellman Key Exchange, as mentioned before. It is important to note that the choice of the curve

type and the size of the prime p are essential to guarantee the security of the chosen protocols.

Using as an example a scenario, depicted in Figure 2.1, where Alice and Bob want to exchange

a secret message without having previously communicated with each other, Elliptic Curve Diffie-

Hellman’s algorithm would work as follows:

1. Alice and Bob choose an elliptic curve E on a finite body Fp and a point P ∈ E(Fp) such

that the group generated by it has a large order.

2. Alice and Bob select a random integer, SkA and SkB respectively, to be their private keys.

3. A point in the curve is generated for Alice through scalar multiplication of the secret key

and the point G (A = SkAG). Bob does the same process using his secret key (B = SkBG).

2Cryptographic model that makes use of ephemeral keys. That way even if a key is compromised, the past encrypted
information is future-proofed against attacks

2.1 Cryptography 13

4. Alice and Bob exchange the points in the curve (A and B) with each other

5. Alice computes a new point in the curve using his private key and point B from Bob. On the

other hand, Bob does the same process using Alice’s point A and his private key.

Figure 2.1: Elliptic Curve Diffie Hellman Exchange

This new point P in the curve is a common point between Alice and Bob (SkASkBG= SkBSkAG).

With this, they can use this information as they wish.

Notice that the choice of the curve type and the size of the prime p are essential to guarantee

the security of this protocol.

Note: Regarding the secrecy of the information, SkA, SkB and SkASkBG are kept private. The

curve E, the point G, the finite body Fp as well as the points A and B computed on the curve by

Alice and Bob respectively, are public.

If an attacker wants to intercept the information exchange between Alice and Bob, he will have

to know SkA or SkB or solve the discrete logarithm problem.

2.1.3 Asymmetric Encryption

Asymmetric encryption or Public Key Encryption (PKE) is a scheme that uses a pair of crypto-

graphic keys, namely a public key known to the public, and a private key that must remain secret.

When Alice wants to send a message to Bob, it must first encrypt the information with Bob’s pub-

lic key, then Bob uses his own private key to decrypt the message. In this case, there is no need

for both parties to know each other previously or make any agreement beforehand.

Background 14

Definition 2.4 (Public Key Encryption). A PKE scheme is composed of the following algorithms

according to (Lee, 2020):

• Setup(n)→ params — On input security parameter n, outputs a set of public parameters

including the message space M and the ciphertext space C.

• KeyGen(n)→ (pk,sk) — On input security parameter n, outputs a public/private key pair.

• Encrypt(pk,m)→ c — Encrypts a message m using a public key pk outputting a ciphertext

c.

• Decrypt(sk,c)→ m′ — Decrypts a ciphertext c using a secret key sk outputting a message

of the message space m′.

A public key encryption scheme is said correct if for all m ∈M and all (pk,sk)←KeyGen(n):

Decrypt(sk,Encrypt(pk,m))→ m.

2.1.3.1 RSA

The RSA cryptosystems, due to Rivest, Shamir, and Adleman (Rivest et al., 1978) was one of

the first asymmetric cryptographic systems. With its appearance in 1977, RSA revolutionised the

paradigm of cryptographic systems, being used until today for different purposes, such as digital

signatures.

RSA security is focused on the concept of trapdoor permutations, where computing a cipher-

text from a plaintext is easy, but deriving a plaintext from a ciphertext without knowing the private

key (trapdoor) is infeasible by today’s standards and computational power.

Since Rivest Shamir Adleman’s key generation relies on prime factorisation, the first step

involves choosing two large prime numbers p and q followed by the computation of what is called

the modulus denoted as n = p ∗ q. This modulus is shared by the public and private key and

used across multiple intermediary operations in the encryption and decryption processes. The

computing hardness problem of RSA relies on the assumption that is hard to factor large numbers

which are the product of two prime numbers. This is the reason why RSA strength is related to

key length, a larger key means a larger modulus which in turn represents a larger number to be

factored.

After computing n, the same is fed to the totient function φ(n) = (p− 1) ∗ (q− 1) which

calculates the number of positive integers less than n and that are co-prime to n.

Finally, an exponent e is chosen. This exponent represents a positive integer that should meet

two criteria. The first criterion is that e should be a positive integer such that 1 ≤ e ≤ φ(n). The

second criterion is that e must be co-prime to φ(n), meaning they have no other common factors

besides 1.

Last but not least, a private exponent d is calculated based on the inverse of e modulo φ(n),

denoted as d ≡ e−1(pmodφ(n)).

2.1 Cryptography 15

Regarding the allocation of each previously calculated component, the modulus n and e com-

pose the public key, meaning they are shared with those who intend to send encrypted data to the

owner of the private key. The private key itself is composed of the modulus n and the private

exponent d which should be kept secret. RSA keys are usually 1024, 2048 or 4096 bits, although

2048 or 4096 bits are recommended to future-proof computational power advancements.

Concerning encryption and decryption operations, a ciphertext c is calculated by performing

c = me(pmodn) where m is the plaintext message and decrypted using m = cd(pmodn).

2.1.3.2 ElGamal with Elliptic Curves

In 1985, ElGamal introduced another public-key cryptographic system that, like the Diffie-Hellman

key exchange system, is based on the DLP. Our focus in this work is specifically on the application

of ElGamal with elliptic curves, which is the most relevant aspect for our study.

In the context of ECs, the ElGamal cryptosystem can be formulated as follows.

To define its public key, Bob should:

1. Choose an elliptic curve E defined over a finite field Fq and a point P ∈ E(Fq) such that the

group generated by it has a large order.

2. Randomly choose a secret integer a ∈ {2, . . . ,n− 2}, where n is the order of point P, and

calculate aP.

3. Publish his public key, which consists off: E, Fq, P and aP.

To send a message to Bob, Alice should:

1. Obtain Bob’s public key.

2. Express her message as a point M ∈ E(Fq).

3. Randomly choose a secret integer b ∈ {2, . . . ,n−2} and compute bP and M+aP

4. Send the pair (bP,M+baP) to Bob.

To decrypt the message, Bob calculates:

(M+baP)−abP.

2.1.4 Identity and Attribute-Based Encryption

The notion of Identity-Based Encryption (IBE) was first introduced by (Shamir, 1985). Nonethe-

less, it was only formalised in 2001 by (Boneh and Franklin, 2001) commonly referred to as the

Boneh-Franklin scheme. The main objective of this scheme was to suppress the need to distribute

public keys before an exchange of encrypted data, thus relying on Public Key Infrastructures

(PKIs). This scheme resorted to a unique identifier, (e.g. an email), where this is used to compute

Background 16

a public key for the recipient of the data. Aided by a Private Key Generator (PKG), the recipient

is then able to obtain the private key corresponding to the public key based on its identifier.

This is possible since the PKG holds a set of master cryptographic keys, namely the master

public key sent to the sender and the private key kept by the PKG. The identity-based public key

can be generated by combining the master public key and the identifier. For the sender to decrypt

the data, it resorts to the PKG which, based on the master secret key and the identifier, computes

an identity-based private key that enables to obtain the plaintext content of that same data.

IBE is used in several implementations, some referenced in this work, such as (Luo et al.,

2010; Rabieh et al., 2018; Sakai and Furukawa, 2007).

The notion of Attribute-Based Encryption (ABE) arose with the introduction of Fuzzy Identity-

Based Encryption due to (Sahai and Waters, 2004). It can be seen as a generalisation of IBE since

it reuses many of the ideas and considerations inherent to those cyclosystems (Goyal et al., 2006).

In ABE, data is encrypted using a set of attributes. These attributes represent access policies

that enable the decryption of the data by the recipient. The attributes can be uniquely identifiable

information, roles, or other types of clearances that might be important to restrain user permis-

sions. ABE aims to provide fine-grained access control to encrypted data and has been used in

implementations that use PRE (Maganti and Chouragade, 2019a) and that safeguard emergency

situations, such as (Au et al., 2017; Tuler de Oliveira et al., 2020).

2.1.5 Hybrid Encryption

Hybrid encryption is a cryptographic technique that aims to bring the performance benefits of SKE

with the convenience of PKE.

Since achieving the same level of security provided by PKE in a SKE scheme is a heftier task,

PKE ends up being a more convenient solution. Nevertheless, PKE presents weaker performance

when compared with SKE. This is because the security of PKE depends on the length of the keys.

However, using larger keys requires more extensive computations, which can result in weaker

performances.

In order to achieve the convenience of PKE and the performance of SKE, while resorting to

SKE, there is a need to protect the symmetric key through encapsulation. The encapsulation pro-

cess can be defined as a two-step process, where the first one concerns the encapsulation of the

symmetric key and is called the Key Encapsulation Mechanism (KEM). The second one is called

Data Encapsulation Mechanism (DEM), and it enables to perform encryption with the encapsu-

lated key generated by the KEM.

2.1.5.1 Key Encapsulation Mechanism

The KEM is responsible for the encapsulation process of a given symmetric key through the use

of PKE. This enables the secure transmission of a secret key in an SKE scenario.

A KEM is defined based on three algorithms according to (Shoup, 2001):

2.1 Cryptography 17

• A key generation algorithm responsible for generating an asymmetric encryption key pair

(PK,SK).

• The KEM encryption algorithm such that KEM.Encrypt(PK,options) outputs (K,C0) where

K is a symmetric key and C0 the ciphertext or encapsulated symmetric key K.

• The KEM decryption algorithm defined as KEM.Decrypt(SK,C0), which computes the

symmetric key K by taking as input the secret key SK and the ciphertext C0.

There are various EC-based KEMs, which include ECIES-KEM, ACE-KEM and PSECKEM.

Their security relies on different problems related to the elliptic curve discrete logarithm (Shoup,

2001).

2.1.5.2 Data Encapsulation Mechanism

Although the KEM is a key operation in a hybrid encryption scheme, it does not handle the en-

cryption of the message itself, being only concerned with the safety of the symmetric key.

The DEM enables the encryption of a given message with a symmetric key. Furthermore,

being a digital envelope, it enables authentication and integrity of the information through the use

of encryption.

A DEM is defined based on two algorithms according to (Shoup, 2001):

• An encryption algorithm DEM.Encrypt(K,L,M) such that, K is the symmetric key, L is

a public label and M is an arbitrary message. This algorithm computes the ciphertext C1

which is the encrypted version of the message M.

• A decryption algorithm DEM.Decrypt(K,L,C1) that outputs the initial message M.

2.1.6 Authenticated Encryption

Traditional encryption provides confidentiality. Nonetheless, when it is desirable to have integrity

and authenticity, regular encryption falls short of this requirement.

With that, authenticated encryption seeks to bring together the aforementioned properties by

attaching a tag or signature based on a Message Authentication Code (MAC). Authenticated En-

cryption is therefore nothing more than the junction of the benefits of traditional encryption and

MACs. This ensures that messages are not tampered with or modified by unauthorised parties

since the recipient of the message can verify the integrity and authenticity while decrypting it.

There is also another strand of authenticated encryption that figures additional data, Authen-

ticated Encryption with Associated Data (AEAD). There may be scenarios where it is necessary

to authenticate each part of a message without encrypting it entirely. This algorithm allows for

the appending of plaintext data (associated data) to a ciphertext (authenticated encryption). If the

associated data becomes corrupted, the authentication tag becomes invalid, and as a result, the

message cannot be decrypted.

Background 18

To combine an encryption scheme and a MAC, three approaches can be considered: Encrypt-

and-MAC-plaintext, MAC-then-encrypt, Encrypt-then-MAC (Jimale et al., 2022).

The Encrypt-and-MAC-plaintext approach computes a ciphertext and MAC separately. Given

a plaintext P, the ciphertext C is computed as C = E(K1,P), where K1 is a secret key and E is an

encryption algorithm. The authentication tag T is also computed as T = MAC(K2,P) where K2 is

a session key.

After both the ciphertext C and the authentication tag T are generated, they are sent to the cor-

respondent recipient. To obtain the plaintext content P, the recipient performs P = D(K1,C) where

D is a decryption algorithm, followed by MAC(K2,P) which is essentially a new authentication

tag used to compare against T . If a match does not occur or if C or T are corrupted, the message

is considered invalid.

The MAC-then-encrypt inverts the order of the previous approach by computing first the au-

thentication tag T = MAC(K2,P) where P is a plaintext message. This time, the ciphertext C is

going to be generated by encrypting P and T together as C = E(K1,P ∥ T).

Once C is computed, it is sent to the recipient, which decrypts C by performing P ∥ T =

D(K1,C). This return both the plaintext P and the authentication tag T . The final step is similar to

the previous approach where a new authentication tag is computed from P using MAC(K2,P) and

compared against the original authentication tag T .

Encrypt-then-MAC operates by computing the ciphertext C and the authentication tag T as

C = E(K1,P) and T = MAC(K2,C), respectively.

The receiver equipped with C and T computes a new authentication tag based as MAC(K2,C)

and compares it against T . If there is a match, the plaintext P is obtained by performing P =

D(K1,C).

This last approach is more performant since it only performs the decryption of the ciphertext

after validating the MAC. In this way, it eliminates the need to decrypt a corrupted ciphertext.

It is also the most secure since forging C and T and sending them to the recipient would imply

breaking the MAC (Aumasson, 2017).

2.1.6.1 ChaCha20-Poly1305

The Chacha20-Poly1305 is an AEAD scheme that makes use of symmetric encryption combined

with HMAC. This scheme is depicted in Figure 2.2

The symmetric encryption portion of the scheme is provided by the stream cipher Chacha20

already mentioned in Section 2.1.1.2.

The second piece of the puzzle is the MAC algorithm Poly1305 (Bernstein, 2005) which takes

as input a 256-bit one-time key, and a message. The output is a 128-bit tag that can be appended

to a ciphertext for integrity-checking purposes. Given the ciphertext, Poly21305 performs the

authentication portion of the scheme. For that, it needs to be fed an authenticated data A, which

together with the secret key K, the nonce N and the ciphertext C compute a 128-bit authentication

tag as T (K,N,A,C) where T is the tag generation algorithm. This tag will be appended to the

ciphertext and act as a MAC.

2.1 Cryptography 19

Figure 2.2: Chacha20-Poly1305 morphology (Inc., 2017)

2.1.7 Hashing Functions

Hashing functions are extremely useful when it comes to cryptography being used for a multi-

tude of purposes such as digital signatures, pseudo number generation, digital stenography, and

others (Sobti and Ganesan, 2012).

Definition 2.5 (Hashing Functions). A hash function, h, is a mathematical function that converts

an arbitrary input of data into a fixed-length output string. These type of functions can be defined

as follows (Sobti and Ganesan, 2012):

h : {0,1}∗→{0,1}n,

where n≥ 1.

There is a wide set of hashing functions namely the MDx family like MD4 and MD5 (now

considered obsolete and insecure) and also MD6 (Rivest et al., 2008), being the latter an unsuc-

cessful attempt to bring improvements over the existing MD5 and compete with SHA-3. There is

also the SHA-2 family such as SHA-256 and SHA-512 (Aumasson, 2017).

2.1.7.1 SHA

The SHA hash family is a family of hash functions initially developed by NIST. These are func-

tions used for purposes such as guaranteeing the authenticity and integrity of data.

Its first version was presented in 1993 and called SHA-0. Although it had a short life due

to collision problems found shortly after its release. With that, a corrected version was released

under the name SHA-1 (3rd and Jones, 2001) in 1995, producing 160-bit values. It was based on

the merge of Merkle (Merkle, 1990) and Damgård’s (Damgård, 1990) hashing functions with a

Davies-Meyer compression algorithm. This version lasted for many years and was adopted until

Background 20

collision problems were discovered in 2005. Consequently, its adoption has been reduced and the

gradual transition to SHA-2, which is considered the safest so far.

SHA-2 (Dang, 2013) was released by NSA in 2001, and it became a standard according to

NIST. It was developed with the need to fulfil the void of SHA-1 by creating functions that would

output longer hashes and so increase security exponentially.

This family of hashes comprises a set of four hash functions: SHA-224, SHA-256, SHA-384,

and SHA-512, being the number representative of the length of the hash in bits. SHA-256 and

SHA-512 are the more commonly used. Although SHA-1 and SHA-256 use 512-bit blocks, SHA-

256 increases the length of the message block from 16 to 64 words due to the increased number

of rounds, 80 versus 64 in SHA-1 (Aumasson, 2017).

Later on, in 2007, NIST organised a competition with the objective of developing a hash

function at least as strong and performant as SHA-2, but that could not reminisce SHA-1 or SHA-

2 so that future attacks or vulnerabilities on those two hashing functions could not affect SHA-3.

The winner of that competition was Keccak (Bertoni et al., 2013), a sponge construction which

performs permutations at the bitwise level.

Currently, both SHA-2 and SHA-3 are used, and both are considered safe. With the computa-

tional power advancements, it is expected that SHA-3 might become more prominent.

2.1.7.2 HMAC

Although Hash-Based Message Authenticated Codes (HMAC) are not hashing functions, their

construction is aided by cryptographic hash functions. The purpose of a MAC is to provide a

way of ensuring the authenticity and integrity of a message so that it can not be tampered with or

modified by unauthorised parties.

The construction of a MAC is based on a message M and a secret key K such that T =

MAC(K,M) where T is the authentication tag, the component that enables the authenticity and

integrity validation.

HMAC embodies hashing capabilities in a traditional MAC through the use of any crypto-

graphic function like MD5 or SHA (Krawczyk et al., 1997). This brings improvements over

the traditional MAC, namely the integration of a secret key into the hashing function, or keyed-

hashing. This means that authenticity and integrity are now tied to a shared secret key. Therefore,

this prevents unauthorised parties from tampering or forging MAC values. It also provides resis-

tance to length extension attacks (Aumasson, 2017).

The construction of an HMAC H can be defined as

Hk(x) = H(k̄⊕opad ∥ H(k̄⊕ ipad ∥ x)),

where k is a secret key of length l, and k̄ is the completion by adding 0’s of k to a full b-bit

block-size of the interated hash function. The ∥ symbolises concatenation, the opad represents the

repetition of the byte x′36′ as many times as needed to reach the hash block size, and the ipad is

the repetition of the byte x′5c′ for similar purposes (Bellare et al., 1996).

2.1 Cryptography 21

2.1.8 Shamir Secret Sharing

Shamir Secret Sharing (SSS) scheme is what is called a threshold scheme. It was proposed

by (Shamir, 1979) and aims to solve the problem of securely sharing a secret between multiple

parties by splitting that secret into n shares, and defining a threshold k for the minimum number

of shares needed to reconstruct the original secret.

Shamir tackled this problem by defining a bi-dimensional space where the secret is a point in

space, and the shares are points located in a secret curve.

Settling the problem in a Euclidean space and defining a (k,n)-threshold scheme, with k,N ∈
N, and k ≤ n− 1, a secret s represents a point that lives in the y-axis, and k− 1 random points.

This set of points allows us to define a secret curve that can be generalised as a polynomial,

f (x) = f 0+ f1x+ f2x2 + ...+ f k−1
k−1 ,

meaning the polynomial degree is k−1, and the total number of points required to define the curve

matches the minimum number of shares to obtain the secret (threshold).

Taking as an example a (3,n)-threshold scheme as depicted in Figure 2.3, where a minimum

of three shares are needed to reconstruct a secret. In this case, the secret curve is a second-degree

polynomial which is defined as

f (x) = ax2 +bx+ c. (2.1)

Figure 2.3: Shamir Secret Sharing curve

To perform the construction of the secret curve, we need the secret, which is defined as s = f0,

and a set of two randomly chosen points. These three points match the minimum number of

shares needed to retrieve the content of the secret, meaning these three points alone are sufficient

to reconstruct the polynomial and thus find the intersection of the curve with the y-axis where the

Background 22

secret lies. This is achieved by gathering the secret shares and their indexes, allowing retrieval of

the coefficients, and applying interpolation to compute s = f (0).

Knowing the coordinates of the three points that constitute the curve, it is possible to obtain

the a,b,c in Equation 2.1. Since the secret lies in the y-axis, f (0) = c, meaning that knowing the

value of c is analogous to knowing the y coordinate of the intersection of the curve with the y-axis

and thus the secret value.

2.1.9 Security Models

Since PRE is seen as a special kind of PKE, it inherits many of the security concepts related to

PKE, namely the security game concept. This concept involves some key components: a chal-

lenger, an adversary, and the challenge itself (or game).

The premise of a security game is that a challenger runs some experiments against an ad-

versary. Although that may look considerably linear, some details play an important role when

defining a security game, such as the assumptions made regarding a given adversary’s knowledge

beforehand. This includes information such as the encryption algorithm being used and "the pub-

lic parameters used by the cryptographic scheme being assessed" (Lee, 2020). One way to provide

adversary information is through oracles. Oracles can be seen as capabilities that are given to an

adversary. Mapping this concept to a SKE scenario, if the adversary has access to the encryption

oracle, it is assumed it can execute a chosen plaintext attack (CPA). In the same manner, if the

attacker has access to both the encryption and decryption oracles, it is said that it can perform a

chosen ciphertext attack (CCA). With that, we can say that oracles work by outputting informa-

tion according to the inputs made by the adversary. Another strand where oracles are vital is trivial

wins. Oracles play a major role in ensuring that an adversary does not easily thrive in a security

game by enforcing a set of restrictions on what the adversary can learn (Lee, 2020).

Based on this concept, different types of security notions are defined, namely indistinguisha-

bility (IND). It relates to the concept that ciphertexts should be indistinguishable from random

strings, that is, an attacker with no decryption capabilities should not be able to distinguish a

ciphertext solely based on the plaintext (Aumasson, 2017). Having that in mind, three types of

attacks will be considered, chosen-plaintext attack (CPA), non-adaptive chosen ciphertext attack

(CCA1), and adaptive chosen ciphertext attack (CCA2). In CPA, the adversary can choose ci-

phertexts from plaintexts, along with the public key. Although significant and helpful for many

applications, IND-CPA security is frequently insufficient (Coretti et al., 2016). On the other hand,

Canetti and Hohenberger (Canetti and Hohenberger, 2007a) defined a more robust notion (IND-

CCA) where the attacker is allowed unrestrained access to a decryption oracle. This ensures that

regardless of the ciphertexts obtained by the attacker, it does not allow obtaining information about

the message associated with the challenge ciphertext (Fan and Liu, 2019).

In IND-CCA1, the adversary performs decryption queries in a ciphertext of its choice, but not

directly to the decryption oracle. The restriction here is that the adversary can only access this

oracle before it actually gets access to the challenge ciphertext. On the other hand, IND-CCA2

2.2 Proxy Re-encryption 23

presents a variation regarding this restriction. In the latter, the adversary can query the decryption

oracle even on the challenge ciphertext (Bellare et al., 1998).

2.2 Proxy Re-encryption

Proxy re-encryption (PRE) is a relatively recent technology having been introduced in Euro-

crypt’98. This was the first notion of PRE termed atomic proxy encryption and featured a so-called

multi-use and bi-directional PRE scheme based on ElGamal public key encryption (Blaze et al.,

1998).

PRE enables a proxy to convert a ciphertext encrypted with one key into another ciphertext

encrypted with a different key. The main objective is to place as little trust as possible in the proxy

while ensuring that the least amount of information is disclosed to perform that conversion (Ate-

niese et al., 2009).

Since its introduction, Proxy Re-Encryption (PRE) has gained popularity, and several organi-

sations have shown interest in this technology by developing patents based on it. Companies like

Toshiba, Nokia, and Apple have explored and utilised PRE (Nuñez et al., 2017). It has been ap-

plied to various applications, including Digital Rights Management (DRM) protection, vehicular

ad hoc networks (VANETs), and encrypted email forwarding (Qin et al., 2016).

This popularity is largely due to its flexibility, performance improvements, and the elimination

of the need for trust among the participants involved in the data-sharing process. Moreover, the in-

tention is to use the cloud to store encrypted information in a manner that sharing this information

with other entities, apart from the data owner, does not compromise data security.

Going back to Alice and Bob, two entities that want to share data between them, Alice the one

that sends the encrypted data, and Bob the one that wants to have access to it, we may have a first

solution. Alice can retrieve the encrypted data from the cloud, decrypt it, and encrypts it again

with Bob’s public key so that Bob can decrypt it later with his private key. This is what is called a

decrypt-then-encrypt method (Alagheband and Mashatan, 2022).

Another possibility, the so-called Proxy-based method (Alagheband and Mashatan, 2022),

which involves trusting the proxy that acts as an intermediary entity, is to share with it the private

keys of Alice and Bob. In this way, the proxy has at its disposal the necessary resources to perform

the transformation process directly in the cloud, i.e., Alice’s information is decrypted, and the

original message is again encrypted using Bob’s public key. This whole process is done in the

proxy itself, which results in a lower communication overhead but requires full confidence in it.

The last possibility, and the one that is the focus of the research work portrayed here, is the

use of PRE.

PRE makes it possible to transform data encrypted with Alice’s public key into data encrypted

with a cryptographic key that allows Bob to decrypt it without ever sharing its private key or

the plaintext content of the message. This reduces trust in the proxy since it cannot decrypt the

information. It is also advantageous in terms of performance since it reduces the communication

cost between clients and the cloud.

Background 24

All of these advantages are the result of an evolutionary process that has led to the development

of various types of PRE schemes, as presented in Section2.2.4.

2.2.1 Syntax and basic definitions

In this section are presented the basic definitions and syntax that make part of PRE schemes, in-

cluding the labeling of the parties involved in the process and the review of the different algorithms

that compose a PRE encryption scheme.

PRE might be seen as a way to delegate decryption rights to a party. Thus, the different parties

involved are labelled according to the delegation relation that they have with each other:

• Delegator — The delegator is the actor responsible for delegating access rights to the infor-

mation.

• Proxy — The proxy is the middleman in the whole operation. It is responsible for trans-

forming the ciphertext encrypted under the delegator’s public key into a ciphertext that can

be decrypted with the delegatee’s private key. This is possible through the use of a re-

encryption key which allows the transformation without the need for the proxy to learn the

cryptographic keys of both ends.

• Delegatee — The delegatee is the actor that requests access to the information. It receives

decryption rights under delegator permission.

Describing the scenario presented in Figure 2.4, which depicts the different relations and in-

teractions of these actors in an PRE scenario, the delegator starts by encrypting the information

and sends it to the cloud server so that it is stored in an encrypted form.

The delegatee sends his public key pkB and the access request to the delegator. In order to fulfill

this request, the delegator generates a re-encryption key using his private key and the delegatee’s

public key. Note that in this step, there may be slight changes to the way the re-encryption key is

generated, depending on the properties of the PRE scheme defined in Section 2.2.2.

Provided with the re-encryption key generated by the delegator, the proxy is now able to

transform the ciphertext encrypted under the public key of the delegator into one encrypted under

the delegatee’s public key. This enables the delegator to decrypt and download the information by

using his own private key (Qin et al., 2016).

Definition 2.6 (Proxy Re-Encryption). A proxy re-encryption scheme can be formulated based on

the following algorithms according to (Qin et al., 2016):

• KeyGen — On input security parameter n, the key generation algorithm KeyGen outputs a

public/private key pair (pkA, skA) for a given user A.

• ReKey — On input of a public/private key pair (pkA, skA) for user A and a public/private

key pair (pkB, skB) for user B, a re-encryption key rk A→B is computed.

2.2 Proxy Re-encryption 25

Figure 2.4: Proxy re-encryption scenario

• Encrypt — Given the input of a public key pkA and a message m ∈ M, the encryption

algorithm outputs a ciphertext cA ∈C1.

• ReEncrypt — On input of a ciphertext cA ∈ C1 and a re-encryption key rk A→B, the re-

encryption algorithm ReEncrypt transforms a ciphertext cA ∈C1 into a ciphertext cB ∈C2.

• Decrypt — Given a private key skA from user A and a ciphertext cA ∈ CS (S ∈ {1,2}) from

user A, the same executes the decryption algorithm and outputs the original message m∈M.

2.2.2 Main Properties

This section discusses the different properties that a PRE scheme may have. Based on the work

of (Qin et al., 2016), we consider the following properties:

• Directionality — This property focus on the re-encryption directionality of the ciphertext.

When the scheme enables the possibility for the delegator’s ciphertext to be re-encrypted

into the delegatee’s ciphertext but not vice-versa, we say that the scheme is uni-directional.
Conversely, if the delegator’s ciphertext can be re-encrypted into the delegatee’s ciphertext

and vice-versa, we are faced with a bi-directional scheme. A caveat of this property is

that, on a uni-directional scheme, only the delegator’s private key is needed to generate the

re-encryption key, while in a bi-directional scheme, both parties are required to provide their

private keys.

Background 26

• Multi-Use / Single-Use — Focus on whether the output of the ReKey algorithm can be

used again as input of. In multi-use schemes, the ReEncrypt algorithm accepts as input

ciphertexts from both the Encrypt and ReEncrypt algorithms. In the case of a single-use
scheme, only ciphertexts generated by the Encrypt algorithm are accepted as input.

• Transparency — Transparency exposes the concept that it should not be possible to distin-

guish a ciphertext generated by the delegator using the Encrypt algorithm from a ciphertext

generated by the proxy using the ReEncrypt algorithm. In other words, both the delega-

tor and the delegatee are unaware of the participation of the proxy in the whole encryption

process.

• Key-optimal — This property enunciates the fact that the number of decryption delegations

issued by a user should not influence the quantity of secret data stored by it. Similarly, the

size and number of cryptographic keys stored by the proxy should also remain constant.

• Key-privacy — A scheme is said to be key-private if anonymity is kept regarding the iden-

tity of the delegator and the delegatee. That said, is not possible to derivate the identity of

the delegator or delegatee by just comparing the ciphertexts and re-encryption keys.

• Interactivity — As stated in Section 2.2.1, the ReKey algorithm takes as input a public/pri-

vate key pair from the delegator and a public and/or private key pair from the delegatee. The

decision between using both the public and private key of the delegatee or just the public

key defines the interactivity of the PRE scheme, that is, if the re-encryption is computed

using just the private key from the delegatee, then we are facing a non-interactive scheme.

• Temporary — Temporary PRE schemes enable the possibility of revoking decryption rights

anytime the delegator wishes. More formally, both the re-encryption rights for the proxy and

the decryption rights for the delegatee should be revocable by the delegator.

• Transitivity — A PRE scheme is said to be transitive when the proxy can produce new

re-encryption keys from previously generated ones, that is, the proxy can re-delegate re-

encryption rights.

• Collusion-Resistance — This property safeguards the possibility of collusion between the

proxy and the delegatee. It enables the possibility to guarantee that even in the occurrence of

collusion between these two parties, the secrecy of the delegator’s private key is safeguarded

in case of an occurrence of a delegation scenario to a compromised proxy or delegatee.

2.2.3 Classification of PRE schemes

The following classification of PRE schemes is based on the definitions presented in the work

of (Inbarani et al., 2013) and (Khan, 2016):

• Identity-Based — An identity-based PRE scheme uses arbitrary strings to generate public

keys by encrypting a message using the delegatee identity (email, for example) as the public

2.2 Proxy Re-encryption 27

key. It is based on the premise of encrypting a message using an identity string from the

delegatee.

• Key Private — Ensures the secrecy of the cryptographic keys. In a scenario of collusion

between two parties that participate in an access delegation scenario, the underlying PRE

scheme prevents both the proxy and the involved parties from inferring the keys or content

of the message by just observing them.

• Attribute-Based — Allows transforming a cryptogram defined by a set of attributes into

another cryptogram with a different set of attributes. Can be seen as a generalisation of

identity-based and has two variants: Ciphertext-Policy Attribute-Based Encryption (CP-

ABE) and Key-Policy Attribute-Based Encryption (KP-ABE). In ABE, the information is

stored in an encrypted form. However, different users can decrypt different parts of the

information according to the security policy defined for each.

• Conditional — It is similar to the traditional concept of PRE in the sense that it features

three main actors: delegator, proxy, and delegatee. The difference is that the information is

initially encrypted using the delegator’s public key and a condition. Then the proxy performs

the transformation using the re-encryption and condition keys. The delegator must generate

both the public key and the condition key.

• Time-Based — The information is tied to attributes and an expiration time. This allows

the definition of a group of attributes and a group of time intervals for which certain access

rights are valid for a given user. This enables the possibility of providing exclusive access to

users who satisfy the defined attribute structure and have valid access rights in the defined

time frame.

• Type-Based — Ensures confidentiality and granular access control over the data allowing

the delegator to implement fine-grained policies where the delegator strips down ciphertexts

into smaller groups. With that, the decryption rights are delegated to each delegatee in a

subgroup manner. ciphers are generated based on the public key and the message type.

Figure 2.5 schematises the aforementioned classification of PRE schemes.

2.2.4 Primordial PRE advancements and foundations

Proxy re-encryption has gone through several studies and advancements since its debut in 1998.

Afterward, a lot of different notions and variations have emerged. Examples of this are the work

of (Ateniese et al., 2005), which further defined and formalised the initial definition of PRE pro-

posed by Blaze et al. in 1998. They also contributed to several new proxy re-encryption schemes

with properties such as unidirectionality and non-interactivity, paired with bilinear pairings. Ad-

ditionally, they introduced the concept of temporary proxy re-encryption schemes, allowing dele-

gation relationships to be updated without altering the public key or re-encryption key of the data

Background 28

Figure 2.5: Classification of PRE schemes based on directionality. Adapted from (Khan, 2016)

delegator. The authors also presented the first empirical performance studies by applying the im-

proved proxy re-encryption scheme to a secure file system that utilised a centralised access control

server for content management.

In 2007, Canetti (Canetti and Hohenberger, 2007b) introduced a stronger security notion

against chosen ciphertext attacks for PRE schemes based on game and simulation-based defini-

tions. They presented an efficient construction for bi-directional schemes based on the Decisional

Bilinear Diffie-Hellman assumption, which represented an improvement over semantic security.

They also suggested as future work the idealization of a CCA-secure uni-directional scheme, as

well as constructions that simultaneously provide uni-directional and multi-hop properties.

In 2009, (Shao and Cao, 2009) established that idealisation by proposing a uni-directional and

single-use PRE scheme featuring both CCA security and collusion resistance in a random oracle

of Decision Diffie-Hellman (DDH). This scheme was also achieved without relying on pairings

by resorting to a signature of knowledge and Fujisaki-Okamoto3 conversion.

In 2012, (Hanaoka et al., 2012) claimed they had developed the most secure scheme against

CCA attacks to date by conceiving a single-use uni-directional PRE scheme whose foundations

relied on a construction composed of a threshold public key encryption (TPKE), public key encryp-

tion and digital signatures. The authors also introduced a new variant of TPKE called resplittable

threshold public key encryption. Although stronger than the previous works, their scheme did not

fully capture the notion of CCA security.

3Cryptographic technique used for password-based key derivation proposed by Tatsuaki Fujisaki and Eiichiro
Okamoto in 1999

2.2 Proxy Re-encryption 29

Two years later (Kirshanova, 2014) proposed a new approach to PRE schemes, by introducing

a novel proxy re-encryption scheme based on the hardness of lattice-based problems. This enabled

the development of a single-hop and uni-directional scheme that is CCA-1 secure in the selective

model of (Ateniese et al., 2005). A CCA-2 secure lattice-based construction was left open as a

future challenge.

In 2016 (Fan and Liu, 2016) proposed a new lattice-based single-hop CCA-1 secure PRE

scheme. The authors also identified a flaw in the CCA-1 security assumption of the previous work

from (Kirshanova, 2014), thus reopening CCA-1 secure lattice-based constructions. Lastly, the

proposed PRE scheme was adapted to support multi-hop re-encryptions across different security

levels.

As it was possible to observe from the aforementioned works and advances, PRE schemes have

undergone a long process of metamorphosis where new notions and constructions have been intro-

duced. These have defined the foundations of the PRE schemes that were subsequently developed,

some of which are discussed further in Section 3.2 and 3.3.

Chapter 3

State of the Art

This chapter aims to provide a literature review conducted to enhance the theoretical knowledge

of proxy re-encryption and its application in e-health systems. It also presents the current state-of-

the-art, highlighting the advancements and techniques employed to ensure the security of cloud-

based solutions, particularly in e-health systems, and the use of proxy re-encryption to ensure

data privacy. Emergency situations are also assessed in the state-of-the-art, as they represent an

exceptional case of authorisation by the patient, thus being of paramount importance in the context

of e-health.

3.1 Cloud-Based E-Health Systems

The evolution of technology has brought several improvements in many different areas. One

area that has particularly benefited from digitisation is healthcare. It has not only enhanced the

overall processes but also brought improvements in the quality of life for all individuals involved.

For instance, telemedicine has made it possible to provide medical care to rural and inaccessible

areas (Idoga et al., 2016). Additionally, the use of paper-based documentation has been reduced

by facilitating the distribution of information, enabling a more detailed follow-up of each patient’s

condition.

To enable the scalability, widespread adoption, and effectiveness of these electronic health

(e-health) solutions, cloud-based platforms emerge as highly suitable options. These platforms

facilitate the centralisation of information, which is crucial in the healthcare sector due to the col-

laborative nature between different medical entities and professionals. This is because various ser-

vice providers and insurance organisations utilise electronic medical records, while patients may

seek services from multiple providers such as physicians, specialists, or therapists, and participate

in various insurance plans (Bhateja et al., 2017).

However, it is important to ensure adequate security measures when it comes to sharing and

storing health data in the cloud.

30

3.1 Cloud-Based E-Health Systems 31

3.1.1 Cloud E-health models

Cloud-based e-health systems are implemented in different ways and according to specific needs.

The different interactions, parties and architecture used allow us to define and derive different

models. (Alanazi, 2022) presented the following classification for e-health models:

• Private cloud — In this model, data storage, management, and access are handled exclu-

sively by a single organisation. Medical records are stored on servers located within the in-

ternal network and are protected by a firewall. Access is restricted to authorised physicians

and personnel belonging to the organisation. Authentication and authorisation typically rely

on digital signatures, and the entire system is isolated from the outside.

• Public cloud — In this model, there is no control over the cloud since it is provided and con-

trolled by Cloud Service Providers (CSP) themselves. Here the different entities (hospitals,

pharmacies, and others) can access data remotely via the Internet. There is also Electronic

Health Records (EHRs) sharing between entities. This approach is extremely sensitive to

security flaws, it requires efficient encryption and access control methods to ensure its fea-

sibility.

• Hybrid cloud — Presents itself as a combination of both public and private cloud models.

It favours the use of multiple cloud services, and it is advantageous for e-health in general

in terms of “integration, composition and organisational impact and housing big medical

data” (Alanazi, 2022).

Table 3.1 depicts the strengths and weaknesses of each type of cloud model.

Table 3.1: Comparison of strengths and weaknesses of the different cloud models

Cloud Model Strengths Weaknesses
Public No maintenance costs

Low complexity
Flexibility
Cost-Effective

Low availability and security
Lack of control over the data

Private High Scalability
Regulations Compliant
High security
High control over the data

High Maintenance costs
Expensive to scale
Limitations in terms of infrastructure

Hybrid High Flexibility and Scalability
Great level of security

Increased complexity
Compatibility and integration chal-
lenges

In e-health, the Public Cloud model is the one more often used. In this approach, medical

records are stored by cloud providers and shared with other entities. It is the most cost effective

of the three solutions presented here because there are no deployment and infrastructure mainte-

nance costs. However, storing data with third parties also raises concerns about data control and

State of the Art 32

security, being the model more prone to attacks and vulnerabilities. Another significant aspect is

the potential for outages. For example, if the services responsible for storing the data experience

downtime, it compromises access to that data, which is critical in healthcare.

The private cloud is the most secure type of model, offering total control over data and security

implementations. In this model, the entity or organisation takes full responsibility for the infras-

tructure and data storage, making it particularly valuable for maintaining strict control over Per-

sonal Health Information (PHI). Despite the advantages in terms of security and privacy, scaling

this type of model to accommodate increased demand or meet organisational needs and regulatory

laws can be both complex and expensive.

The hybrid cloud represents a middle ground between the two approaches discussed before,

providing a combination of advantages and disadvantages from both. By utilising public and

private features within the cloud, it becomes possible to apply a public model for storing frequently

accessed information. From a risk assessment perspective, this data may not justify the costs

and scalability complexities associated with a private model. Conversely, a private model can

be employed for handling highly sensitive and valuable data. The hybrid approach also offers a

balance between security and cost. Only the most sensitive data requires infrastructure maintained

by the organisation or entity itself. In the event that scaling is needed in a public environment, it

can be done without compromising the integrity of private data (Raza, 2020).

3.1.2 Access delegation challenge

One of the most critical and challenging aspects of cloud-based systems is ensuring granular ac-

cess control over shared information. In the context of e-health, a doctor may require access to a

patient’s complete medical record to make a specific diagnosis or prescribe a particular treatment.

However, a nurse might only need to know the prescribed medication for that patient. Implement-

ing mechanisms that ensure this segregation and division of privileges illustrates the enormous

challenge of ensuring granular access control. Although several operations can be performed on

encrypted data, one of the most complex and difficult operations to implement correctly, securely,

and efficiently is managing access to information.

In an access delegation scenario, usually, there are three main parties involved, according

to (Nuñez et al., 2017):

• Data producers — Entities that produce data and that may or may not participate in the

protection of that data. This is because they can encrypt it from the source and subsequently

persist it in data storage;

• Data owner — Responsible for delegating access to the data. This entity authorises access

to the data consumers;

• Data consumers — This entity represents the recipients of the information provided by

the Data owner. The information is usually obtained from data storage. Consumers are

composed of people, devices, and third-party services;

3.1 Cloud-Based E-Health Systems 33

Figure 3.1 represents the main parties of an access delegation scenario as well as the relations

and interactions between them.

Figure 3.1: Access delegation scenario in e-health

From a simplified perspective, one of the most straightforward interactions in the access del-

egation process involves data producers. Their responsibility is to produce data and encrypt it

before uploading it to the cloud.

The data owners, as the name implies, are the individuals or entities who own the data, regard-

less of whether it is generated by data producers or by the data owners themselves. They hold the

responsibility of granting access rights to parties interested in accessing the data. These parties

referred to as data consumers, utilise the data produced by the data producers/owners.

In an e-health scenario, let’s consider a practical case where a hospital acts as a data producer.

The hospital generates an electronic health record for a patient who is the data owner. This record

is encrypted and transmitted to the cloud for storage and to be made available to third parties.

When a healthcare centre requires access to the patient’s record for ongoing treatment or to review

the medical history, it becomes the data consumer. However, prior authorisation from the patient,

who owns the record, is necessary for access to be granted. If the access request is approved, the

data is retrieved from the cloud by the health centre.

Despite the apparent simplicity of the process demonstrated in the given example, there are

concerns regarding the assurance of e-health security, which will be discussed in the following

section.

State of the Art 34

3.2 Achieving e-health data security

This section introduces the different techniques currently used to safeguard the security of medical

data and discusses the progress made in this field.

As previously mentioned, ensuring data security in a cloud environment is one of the biggest

challenges to be solved. According to the Protenus Breach Barometer, approximately 41.4 million

patient records were exposed in 2019 (Oh et al., 2021).

In October 2021, Broward Health experienced a data breach resulting from the exploitation of

a vulnerability in a third-party healthcare provider’s system. This breach granted unauthorised ac-

cess to their network, compromising personal information such as phone numbers, social security

numbers, emails, driver’s licenses, and more. Around 1.3 million individuals were affected by this

attack (McKeon, 2022).

Another notable attack occurred in 2021, targeting Eye Care Leaders. This ransomware attack,

considered one of the most damaging that year, exposed the data of approximately 3.6 million

patients. The attackers gained access to the databases and carried out the attack by deleting data

and system configuration files (Davis, 2022).

Given the sensitivity and value of personal health records, it is crucial to ensure proper mea-

sures to maintain confidentiality, integrity, and availability. Data availability is a key factor in

uninterrupted access to information by both patients and health professionals, especially in critical

or emergency situations. Regarding integrity and confidentiality, the first one focuses on ensuring

the data is not tampered with by third parties, and the second one ensures that only authorised

parties can access it. These two requirements need to be fulfilled in the handling and storage

of medical data. Failure to do so can have severe consequences, such as the leakage of patient-

related information, mistreatment, or misdiagnosis, leading to further complications and deterio-

ration of the patient’s clinical condition. This jeopardises both their physical and psychological

well-being (Razaque et al., 2019).

Several advancements and techniques have been developed to ensure these and other security

requirements in e-health. Many survey papers have been published focusing on the security and

privacy of e-health systems (Oh et al., 2021). (YADAV and Behera, 2018) and (Chenthara et al.,

2019) present a review of the security requirements, concerns, and solutions regarding e-health

cloud environments. They classify the security mechanisms into two types: non-cryptographic

techniques and cryptographic techniques. These mechanisms will be further discussed in the up-

coming section.

3.2.1 Non-Cryptographic techniques

Non-cryptographic techniques for controlling access to information usually are based on access

control policies. These policies include Discretionary Access Control, where access is determined

by the owner group and/or subjects of an object; Mandatory Access Control which defines access

based on the sensitivity of the information and user’s authorisation level, defined by security labels;

Attribute-based Access Control (ABAC), which grants access based on the fulfilment of a set of

3.2 Achieving e-health data security 35

attributes specified by the policy; Identity Based Access Control (IBAC), which grants access to an

object based on the authenticated user’s identity; and Role-based Access Control (RBAC), which

determines access based on the subject’s role. In RBAC, roles are associated with permissions that

restrict the operations that can be performed on specific objects

These policies are essential as they define the limits of privileges and thus help ensure the

privacy of information. However, on their own, they only offer partial security. Therefore, they

are commonly combined with cryptography to ensure proper security (YADAV and Behera, 2018).

The secure sharing scheme proposed by (Gardiyawasam Pussewalage and Oleshchuk, 2016)

uses ABAC as a base for granting access to EHR data. This scheme introduces the concept of

multiple attribute authorities, which issue attributes to users after validating them. When a user

wants access to an EHR, it must first provide proof that it meets the right conditions for obtaining

the necessary attributes. The communication with the health centre is made through a secure

channel established using a public key infrastructure.

Other works, such as the study of (Tasatanattakool and Techapanupreeda, 2017) use RBAC

for securing health records. Asymmetric encryption and anonymisation are used to encrypt health

records and ensure their security. Additionally, role-based access policies are implemented to

verify access rights, categorising them into two types of roles: patients, whose identity is verified,

and medical staff, whose access is based on their respective roles.

3.2.2 Cryptographic techniques

Cryptographic methods generally involve two types of encryption, as mentioned in Section2.1:

symmetric and asymmetric. Symmetric Key Encryption (SKE) involves using the same key for

both the encryption and decryption processes. It requires careful consideration of policies, roles,

and privilege management when assigning keys to specific users. There are various well-known

encryption algorithms, including the Data Encryption Standard (DES). However, DES has been

deprecated due to its weakness according to modern standards. The Advanced Encryption Stan-

dard (AES), on the other hand, is considered the standard encryption algorithm by the National

Institute of Standards and Technology (NIST) (Smirnoff and Turner).

The secure sharing scheme introduced by (Li et al., 2011) in the e-health context utilises SKE

as its foundation. This scheme operates within a centralised cloud platform, where each hospital

has a cloud server to which it can upload medical records. These records can be accessed not only

by healthcare professionals but also by patients and can be shared between hospitals.

To ensure security, electronic medical records are signed using a doctor’s private key issued

by a Healthcare Certification Authority (HCA). Encryption is performed using the health record’s

identification number and the Identity Seed (SID) obtained from the patient’s health card, which

safeguards against unauthorised access. This brings some advantages such as increased confiden-

tiality since each key is only used to encrypt a unique medical record. Additionally, the use of the

SID derived from the patient’s smart card, which remains physically in their possession, further

reduces the feasibility of an attack.

State of the Art 36

On the other hand, asymmetric encryption or PKE uses a pair of keys with the public key

used to encrypt the information and the private key to decrypt it. Algorithms such as RSA, Diffie-

Hellman, and El Gamal are based on this type of encryption.

On the other hand, asymmetric encryption, also known as Public Key Encryption (PKE), uses

a pair of keys, namely a private and a public key. The latter is employed for encrypting the

information, while the former is used for decrypting it. Algorithms such as RSA, Diffie-Hellman,

and El Gamal are examples of asymmetric encryption algorithms, as mentioned in Section 2.1.

An implementation introduced by (Ibrahim et al., 2016) features both the use of SKE and PKE.

It relies on a Public Key Infrastructure (PKI) to establish the relationship between the public keys

and the user identities. These unique identities are part of a digital certificate issued by a Certificate

Authority (CA) together with some other useful data such as a public key and validity. It enables

the retrieval of EHRs in a partial or full form being this retrieval authenticated between the cloud

server and the healthcare provider through a digital signature where the EHR is signed using the

sender’s private key, enabling only the corresponding health provider to verify the authenticity of

the retrieval request.

This scheme brings advantages namely confidentiality as the records are always encrypted us-

ing a symmetric key, scalability which is inherent to a cloud environment and is also in accordance

with the security standards defined by the HIPAA security rule further discussed in Section 3.2.3.

There are other solutions that involve more than one type of technique and can be seen as

alternative cryptographic methods or hybrid-based techniques. These include attribute-based en-

cryption, homomorphic encryption, and PRE, as well as biometric-based techniques.

Recently there has also been a trend to introduce diverse technologies, such as Big Data, Inter-

net of Medical Things and Wireless Body Area Networks that bring improvements and advanced

functionalities to e-health services (Oh et al., 2021).

3.2.3 Regulatory Standards

Cryptographic and hybrid-based techniques are potentially the most effective way of ensuring

data privacy and security. However, it is necessary to define regulatory standards to introduce laws

and guidelines regarding how security must be approached from different points of view. There

are already several regulatory efforts proposed by governments and security-related organisations.

Their primary goal is to achieve consensus on techniques that guarantee the security, reliability,

and integrity of data. This is expected to facilitate and increase the adoption rate of those same

measures by different companies that offer these types of services and can boost, in this way, their

own reputation.

In 2009, Health Information Technology for Economic and Clinical Health (HITECH) was

introduced as part of the American Recovery and Reinvestment Act (ARRA) to accelerate the

process of EHR adoption by phasing out paper records. Recognising that this transition was costly

for many organisations, HITECH offered incentives for faster EHR digitisation and increased

public trust by enforcing proper security and safety measures in the healthcare context (hit, 2022).

3.3 Proxy Re-encryption in the Context of E-Health 37

The standard is divided into four sections. The first section focuses on enhancing healthcare

quality, safety, and efficiency, as well as the implementation and utilisation of health information

technology standards and reporting. The second section deals with health information technology

testing. The third section is related to grant and loan funding. Lastly, the fourth section is con-

cerned with strengthening the privacy and security of health information, as well as discussing the

interaction of the HITECH Act with other legislation (hit, 2022).

HIPAA is a regulatory framework designed for healthcare systems. It encompasses two main

rules: the HIPAA privacy rule and the HIPAA security rule. The privacy rule is mainly focused

on the use and disclosure of health information. It establishes standards to protect individuals’

rights to understand and control how their health information is used. This rule aims to strike a

balance between implementing appropriate safety measures and still allowing access to important

information so that the different healthcare providers can offer suitable health services (hip, 2022).

In order to achieve these objectives, the privacy rule introduces the concept of covered entities.

These entities include healthcare providers, plans, clearinghouses, and business associates who are

subject to this rule. The privacy rule also outlines the conditions under which covered entities can

use or share data without explicit authorisation from the data owner. Additionally, it grants certain

rights to patients, such as the ability to correct inaccurate information and request copies of their

own data (hip, 2022).

Regarding the latter rule, it covers a subset of information outlined in the privacy rule, specifi-

cally referring to individually identifiable health information that is generated, received, transmit-

ted, or maintained by a covered entity. This type of information is commonly known as e-PHI

(Electronic Protected Health Information). Compliance requirements for e-PHI include ensuring

confidentiality, integrity, and availability, proactively addressing potential threats and vulnerabil-

ities, protecting against unauthorised use of health data, and enforcing these regulations consis-

tently across healthcare providers and entities (hip, 2022).

3.3 Proxy Re-encryption in the Context of E-Health

The capabilities of PRE are particularly useful in the context of e-health since ensuring granular

access control becomes a difficult task using only traditional encryption methods. The reason

is that it is not possible to know in advance which healthcare entities will require access to the

data. In a PKE scenario, it would be necessary to encrypt the information with a public key of the

data owner before uploading it to the cloud server. Then, when a data consumer is authorised to

have access to that information, the data owner needs to retrieve it from the cloud, decrypt it and

encrypt again with the data consumer’s public key (Nuñez et al., 2017). This approach requires the

data owner to be online all the time, and this decrypt-encrypt operation is computationally very

expensive.

Similarly, expecting all parties who handle or store health data to consistently follow proper

guidelines regarding the storage and disclosure of that data is not feasible. Therefore, it is funda-

mental to never expose the plaintext content of the data.

State of the Art 38

Proxy re-encryption presents itself as a great candidate to address these challenges. It has

already demonstrated its effectiveness in several applications, including Searchable Encryption

with Attribute and Identity-based Encryption, Proxy Re-encryption with Keyword Search (PRKS),

as well as newer solutions based on Blockchain technology, Edge computing, and Fog comput-

ing (Rawal et al., 2021; Zhang et al., 2022; Hassan et al., 2021).

Table 3.2 provides a summary of the strengths and weaknesses of each of the works presented

below.

Table 3.2: PRE schemes strengths and weaknesses comparison

Techniques Strengths Weaknesses References

Proxy Re-encryption

Searchable Encryption

Similarity and Conjunc-

tive search

Satisfactory complex-

ity of the key update

phase

Flexible revoking of

rights

Computational

overhead

Bhateja et al.

(2017)

Proxy Re-encryption Handle large volumes

of data effectively

Satisfactory records re-

trieval time

Efficient access rights

revoking

Collusion safety de-

pends on the number

of proxies

Computational over-

head when encrypting

uploaded records

Thi-

lakanathan

et al. (2014)

Identity Based Proxy

Re-encryption

Autonomous detection

of critical situations

Secure access control

Lack of scalability Rabieh et al.

(2018)

Identity-Based Broad-

cast Encryption

Attribute-based Proxy

Re-encryption

Ciphertext Policy

Attribute-Based Proxy

Re-encryption

Identity-Based En-

cryption with Equality

Test

Flexible authorisa-

tion while ensuring

integrity and confiden-

tiality

Fine-grained access

control provided by

CP-APBRE

Not tested for col-

lusions between the

cloud server and the

emergency centre

Maganti and

Chouragade

(2019a,b)

3.3 Proxy Re-encryption in the Context of E-Health 39

(Bhateja et al., 2017) proposed an enhanced timing-enabled PRE model that allows data access

during specific time periods and introduces a more computationally efficient searchable scheme.

Users are authorised to access the data based on a set of attributes and a valid time period. More

particularly, contributes to a timing-based search algorithm.

In this model, data owners publish data in a database and generate a keyword for each docu-

ment. This keyword is encrypted and will be useful when performing searches as it will act as a

search index. The EHRs are stored in an encrypted form in the cloud where search servers and

storage servers are located. These are important when performing searches by different users,

where the decision to access the data is made based on the validity of the private key.

This algorithm uses three spaces (I,T,M), which are the identity space, the time-space, and

the message space respectively. Based on a security parameter k and a number of users U , master

(msk) and public key pairs are generated. These pairs will be used to generate a private key Skid

for each user together with a user identity id. The re-encryption process features a re-encryption

key and the ciphertext. The re-encryption process involves a re-encryption key and the ciphertext.

The re-encryption key is generated using a re-encryption token formulated with Skid , Ti, T ′i , msk,

where i ∈ [1, poly(1k)], Ti is a time period and Skid,i the decryption key.

On the other hand, the decryption process requires the Skid,i and the ciphertext. The differ-

entiating factor is the revoking process that uses the identity and the time period Ti to revoke the

access and update a revocation list.

This approach presents some advantages when compared with other searchable schemes.

Firstly, it simplifies the key update phase by generating a secret key only for users who are not

listed in the revocation list. Additionally, the token generation process does not include the user’s

identity, which makes it easier to determine which users can be revoked. Moreover, in the event

of a decryption key compromise, any attempts by an adversary to modify the records will be de-

tected. These updates are then propagated to the cloud, triggering the re-encryption process and

effectively preventing unauthorised access. One aspect to note that plays a major role in improv-

ing the performance over other searchable schemes is the use of a combination of similarity and

conjunctive search. Instead of applying conjunctive search over the different requirements and

computing a trapdoor function for each one of those requirements, the similarity is applied first to

fetch all the related and similar keywords and only then the trapdoor function is generated. This

approach reduces computational costs and improves the retrieval time of results, as depicted in

Figure 3.2.

(Thilakanathan et al., 2014) proposed a general-purpose data-sharing system that is specifically

designed for e-health applications, enabling efficient data sharing between patients, doctors, and

nurses. The system focuses on addressing two key roles: data owners and data consumers. One of

the main challenges it tackles is related to proxy re-encryption-based systems, specifically when

a user revokes access to certain data. This challenge involves the need to re-encrypt the data and

distribute new cryptographic keys.

The architecture of the proposed solution, illustrated in Figure 3.3, mainly consists of two web

services: Cloud Data Service (CDS) and Data Sharing Service (DSS). Additionally, there is a Key

State of the Art 40

Figure 3.2: Comparison of time taken between conjunctive search and a combination of conjunc-
tive and similar search (Bhateja et al., 2017)

Service (KS) responsible for storing the encrypted health data keys and the data consumer’s keys.

Each user has a key that enables the decryption of the keys stored in the Data Key Database

(DKDB). These keys are divided into n+ 1 pieces, with n of those pieces stored in each proxy

and one part retained by the user. Consequently, no user knows the complete key necessary for

decryption. When access to the information is required, a request is made to the DSS, which

decrypts the relevant data using the DKDB pieces associated with a specific user.

Figure 3.3: Architecture of the solution proposed by (Thilakanathan et al., 2014)

At the revoking level, the key pieces are removed from the proxy, this has advantages since the

data does not need to be re-encrypted nor the keys need to be redistributed. Moreover, other data

consumers will not be affected as their key pieces remain intact in the proxy and with themselves.

This solution also features a four-phase secure data-sharing protocol which includes initialisa-

tion, consumer authorisation, authorised data access, and data consumer revocation.

Initialisation is the first phase and involves generating the keys required for data encryption

and partitioning the private key. The data owner sends a request to the DSS, which generates a

cryptographic key pair using El Gamal. The private key is then partitioned into n+ 1 pieces and

3.3 Proxy Re-encryption in the Context of E-Health 41

these pieces are stored in the proxies present for this purpose. Furthermore, the DSS also creates a

user id for the data owner and sends back all the information generated so far (user id, key piece,

and public key). Next, the data owner creates a symmetric key and encrypts the information using

this key. The symmetric key itself is also encrypted using the public key provided by the DSS.

Finally, the DSS sends its user id, encrypted data, and keys back to the Data Owner. This allows

the Data Owner to generate a data id for this data. The data id and the encrypted data are then

sent to the CDS, and the KS receives the same data id and the encrypted key. The data id, user id,

and key piece are crucial for the data owner’s data access authorisation processes. They are used

by the DSS to validate their accuracy and retrieve the remaining key pieces related to the specific

request. When a consumer wants to access encrypted data, it sends its key piece along with data

identifiers. The encrypted key is retrieved from the DKDB via the key service that stores them.

The DSS then fetches each key piece from each proxy and uses those same key pieces along with

the data consumer’s key piece to reveal the entire key. The encrypted data is fetched by the CDS

from the Cloud Storage Database (CSDB) and this data is finally decrypted using the whole key,

revealing the plaintext content.

At the revocation level, the process is relatively simple. In this case, all that is required is a

request from the data owner to the DSS. Consequently, the DSS deletes all the key pieces associ-

ated with the user in question from each proxy. By doing so, the key pieces of the other users are

preserved, eliminating the need for operations like re-encrypting the data and assigning new keys

to all users. This approach offers performance advantages since its complexity is O(n), where n

represents the number of proxies. There are some other advantages to this implementation, namely

regarding the fact that the data owner generates the symmetric key. While El Gamal cryptography

is limited to a certain data size, the same is only used for the process of encryption and the de-

cryption of the symmetric key itself, making this model well-suited for handling large volumes of

data.

Regarding privacy, collusion between the user and proxy is also protected. While it is tech-

nically possible to obtain the secret key in the event of collusion with this implementation, the

likelihood of such an event occurring decreases as more proxies are utilised. By distributing these

proxies across various locations and modelling them according to different CSPs, the chances of

successful collusion are minimised.

The paper by (Rabieh et al., 2018) presents a secure access scheme for medical records in on-

road emergency situations. The scheme allows accessing the medical records of a specific patient

while ensuring that the private key used for encryption remains protected and confidential.

This approach uses a patient’s smartphone as an intermediary, assuming it is used as a tool

for continuously monitoring the patient’s status through wearable devices and sensors. To en-

sure complete autonomy in initiating the re-encryption process and accessing data from a specific

emergency centre, the authors have developed a heuristic algorithm that tries to predict such sit-

uations. When an emergency is declared, the smartphone provides the re-encryption key to the

ambulance personnel and transmits the key and credentials to a cloud server to verify the identity

of the emergency centre. Once validated, the information is re-encrypted and can only be accessed

State of the Art 42

by the specific emergency centre. Figure 3.4 depicts the different steps of the process.

Proxy re-encryption plays a crucial role in addressing the challenge in question, which involves

granting emergency centres access to medical records that were initially encrypted by a healthcare

provider, even without possessing the private key used for encryption. In this case, an identity-

based proxy re-encryption scheme was used paired with bilinear pairing, which allows both the

cloud server and the patient’s smartphone to contribute to the re-encryption process without having

the key that previously encrypted the data.

However, this implementation of PRE to safeguard emergency situations raises some issues

that question the efficiency of the solution proposed by the authors.

The fact that the re-encryption keys are persisted in a smartphone, which is a personal de-

vice, raises concerns regarding the device’s ability to respond in an emergency situation. It is

not possible to assess the conditions of the device or ensure that it will not fail in such a crucial

situation.

Another concern is the dependence on sensors and a heuristic algorithm to assess an emer-

gency scenario. These two components can fail and thus provide false readings or an imprecise

estimation of the current clinical picture of a given patient.

Figure 3.4: Exchange of messages in on-road emergency scenario (Rabieh et al., 2018)

(Maganti and Chouragade, 2019a,b) proposed models for mobile applications in e-health with

the aim of enabling secure data sharing between doctors and patients in a cloud environment. The

differentiating factor in these works is the possibility for patients to discover other patients with

the same health conditions using a private data-matching method while guaranteeing the integrity

and confidentiality of the data.

Patient health records are encrypted using Identity-Based Broadcast Encryption (IBBE) (Sakai

and Furukawa, 2007), in which, at the time of registration on the platform, each patient is assigned

a set of secret keys based on their identity.

A central authority also plays an important role in the model described here, since it is re-

sponsible for generating the secret and attribute keys used in Attribute-based Proxy Re-encryption

(ABPRE) when a specialist needs to access a patient record. A central authority also plays a cru-

cial role in the model described here, as it is responsible for generating the secret and attribute

keys used in Attribute-based Proxy Re-encryption (ABPRE) when a specialist needs to access a

3.3 Proxy Re-encryption in the Context of E-Health 43

patient record. In this process, the doctor generates a key that is used to re-encrypt the informa-

tion and sends it to the CSP. The CSP, in turn, performs the encryption process using Cipher-text

Policy Attribute-based Proxy Re-encryption (CP-ABPRE) (Luo et al., 2010) and grants access to

the specialist.

This model also takes into account the integrity of the data, which is ensured through hashing

techniques. In this particular case, SHA-256 is used, making it possible to check whether the data

has been tampered with or not.

Regarding the functionality of meeting and engaging in conversations with other patients, who

have similar health conditions, this process is done in a completely anonymous way. that is, none

of the patients knows the identity of the others at any time. In other words, none of the patients

are aware of the identities of the others at any time. This approach is based on a scheme that

incorporates flexible authorisation, as proposed by (Huang et al., 2018). It uses Identity-based

Encryption with Equality Test (IBEET) (Batamuliza and Hanyurwimfura, 2021).

This scheme presents three ways of authorisation: user to user, user to ciphertext, and cipher-

text to ciphertext. Each one defines to which extent trapdoors are generated for the ciphertexts.

That is, trapdoors can be generated for every ciphertext of a given user or just for a specific type

of record.

In terms of the general functioning of data matching, the patient sends a trapdoor (one-way

function) to the proxy. The proxy then performs similarity matching on the different ciphertexts

of the different patients. If a match is found, the patients can communicate with each other anony-

mously.

3.3.1 Open Source frameworks and implementations

During the investigation of technologies and potential approaches for designing and implementing

the solution resulting from this work, an analysis of various open-source frameworks utilising

different proxy re-encryption implementations was made.

The first implementation of a PRE scheme is pyUmbral (NuCypher, 2018), which is a Python-

based implementation of the Umbral threshold proxy re-encryption scheme. Umbral incorpo-

rates a Key Encapsulation Mechanism (KEM) inspired by the Elliptic Curve Integrated Encryp-

tion Scheme (EICS-KEM) implementation described in (ANSI X9.63), as well as the proxy re-

encryption scheme proposed by (Blaze et al., 1998). Moreover, it includes enhancements to these

two works, enabling several useful properties such as unidirectionality, non-interactivity, and ver-

ifiability in the context of re-encryption. pyUmbral allows a delegator to assign decryption rights

to a specific delegatee by employing semi-trusted proxies. The concept of a threshold-based en-

cryption system is used to determine the minimum number of proxies required to participate in the

re-encryption process. As a result, the delegatee receives the necessary components to decrypt the

file using their private key.

Recrypt, from (IronCoreLabs, 2023), is a library that implements a set of cryptographic prim-

itives for building a multi-use PRE, named by the authors as Transform Encryption. This type of

encryption allows data encrypted with the delegator’s public key to be changed such that it may

State of the Art 44

be decrypted with the delegatee’s private key through the utilisation of a transform key. The trans-

form key is generated by combining the delegator’s private key with the delegatee’s public key.

Having a transform key and conducting the transformation prevents the ability of an attacker to

decrypt the data or recover either party’s private key. With that, this library covers properties such

as unidirectionality, non-interactivity, non-transitivity, collusion safety, and multi-usability.

The implementation of (Fotiou, 2023) shares several properties with Recrypt, including unidi-

rectionality, non-interactivity and multi-usability. It sets its foundation on an identity-based proxy

re-encryption scheme proposed by (Green and Ateniese, 2007). This scheme enables the proxy

to convert a ciphertext encrypted under the delegator’s identity into one computed under the dele-

gatee’s identity. In this scheme, instead of generating private keys individually, they are provided

by a private key generator. Access rights are delegated using a delegation key, which serves as

a re-encryption key provided to the proxy for performing the re-encryption (Green and Ateniese,

2007).

3.4 Safeguarding Emergencies in E-Health Environments

Security, privacy and confidentiality are concerns that are prominent with regard to the design and

implementation of various e-health systems.

An extremely important component that is still in an embryonic phase with regard to the explo-

ration and development of innovative solutions for the context of e-health systems is emergency

situations (Yüksel et al., 2017).

Emergency situations can be defined as occurrences where a healthcare professional or provider

requires access to a patient’s personal health information due to the patient facing a life-threatening

situation that necessitates immediate intervention. In such cases, the patient is unable to grant ac-

cess to their information independently.

According to regulatory standards and national laws, an e-health system must at all times

contemplate the notion that PHI-related data must be accessible without the express and explicit

consent of a given patient. This is justified due to the relevance of this information in a situa-

tion of emergency where the life of the patient may depend on decisions based on their medical

records (Tertulino et al., 2023).

Designing emergency safeguarding mechanisms that can manage proper access control while

obeying standards and laws, is a hefty and meticulous task that possesses many caveats and details

that can play a major outcome regarding the proper usability of the system in an emergency sce-

nario. With that, there are some restrictions that must be met in order to cope with all the needed

properties that are desirable in a system of this kind without, at the same time, jeopardising its

functioning.

One imperative restriction relates to the granularity and revocability of the information. A

health professional or provider must only have access to the information that it needs to provide

the necessary treatment. Additionally, once the patient is out of danger and the situation is no

3.4 Safeguarding Emergencies in E-Health Environments 45

longer considered an emergency, the access delegation must be deemed as expired and, thus, the

health provider loses access to that information (Yüksel et al., 2017).

Another restriction, this time enforced by standards and directives such as the EU Directive

95/46/EC (Communities, 1995) and the fourth part of ISO/EN 13606 standard (iso, 2023), dictate

recommendations and procedures that should be followed regarding overriding of access poli-

cies (Fernández-Alemán et al., 2013). This is due to the fact that emergency scenarios are special

occurrences that deviate from the standard policies and procedures, and so, further auditing and

justification are needed when overriding these policies. There are also more sensible concerns,

namely in the case where a patient is a minor, or the same possesses some kind of mental ill-

ness (Yüksel et al., 2017).

All things considered, there is a prominent term that is associated with approaches that safe-

guard emergency scenarios, the so-called break-glass. This term is referenced across the different

works that somewhat contemplate emergency situations in their implementation.

However, there is no consensus on the scenarios that the break-glass concept covers. While it

may initially appear that the concept is limited to healthcare-related emergency situations, some

works, such as (Scafuro, 2019), consider break-glass in other scenarios, such as situations involv-

ing the loss of cryptographic keys by a patient.

One other challenge of break-glass approaches is revoking mechanisms. Some works such

as (Li et al., 2010) and (Brucker et al., 2010) feature break-glass capabilities but leave open the

implementation of a revoking mechanism.

In (Au et al., 2017), ABE is used to provide break-glass capabilities to a cloud system for the

secure sharing of PHRs. In this framework, a patient’s PHR is encrypted using an access policy,

that contains an attribute dedicated to an emergency department. This attribute is always appended

to the policy that encrypts the PHR, thus granting access to an external entity from the moment

the record is encrypted.

Every time the record is needed in an emergency situation, a health professional needs to

authenticate against the emergency department. Once authenticated, the ciphertext is decrypted to

grant access to the health professional, allowing them to proceed with the treatment.

Another approach, proposed by (Tuler de Oliveira et al., 2020), resorts to a variant of ABE,

Ciphertext-Policy ABE, for issuing secret keys based on user attributes and thus delegating access

to Electronic Medical Records (EMR).

This is done through a master entity, which besides the aforementioned role, also possesses

the capabilities of issuing tokens for dynamic access control, something useful to revoke access to

the records once an emergency scenario is deemed as finished. In order to achieve a break-glass

mechanism that only provides access to an EMR during an emergency situation and to selected

medical teams, the authors introduce the concept of an emergency session. This session starts the

moment a call to an emergency call centre is made and ends when the treatment is concluded.

Throughout this time, the master authority delegates access to a specific medical team. This is

done through the generation of a CP-ABE emergency key together with an access control token,

which can be revoked manually or after a default expiration time by the master authority.

State of the Art 46

Despite attribute-based solutions being very common in break-glass scenarios, they present

some downsides. The first is inherent to ABE: key management using attribute-based keys is more

complex due to the whole process of assigning and revoking attributes to different users. This

escalates when facing larger-scale systems.

Furthermore, ABE often relies on central authorities or third-party providers for attribute man-

agement which might introduce a single point of failure. Consequently, it may undermine the

availability of a given platform, something that is not desirable in emergency scenarios.

Another strand, where ABE falls short, is the fact that it might need to resort to other mecha-

nisms when overriding policies in break-glass occurrences. Since break-glass means an exception

to a policy, overriding that same policy becomes a challenge in some of the implementations. The

other factor that is also dependent on other mechanisms is revocability. As stated on (Li et al.,

2010), revoking attributes and users efficiently is a hefty challenge.

With that said, there are other implementations besides ABE that rely on different approaches

such as password-based break-glass mechanisms.

The self-adaptive access control idealised by (Yang et al., 2019), aims to provide access control

even when facing emergency situations. To do so, a password-based mechanism is implemented

in order to provide access to the encrypted medical files. The premise of this mechanism involves

the existence of trusted contacts, i.e. relatives or friends, to whom a password is entrusted. This

password is transmitted secretly to those same contacts, residing in the private cloud of the medical

institute (MI) of each patient the list of trusted contacts.

This MI is checked through a Key Generation Centre (KGC) which validates the authenticity

of each MI. The KGC is a trusted entity responsible for delegating key pairs to the different MIs.

Besides a password, each patient also has a break-glass key which is used to decrypt all the

medical records of a given patient.

In an emergency scenario, the medical institute contacts the trusted contact which possesses the

password for deriving the break-glass key, which consequently can provide access to the plaintext

content of the medical record.

This approach might raise concerns, particularly in the assumption that the individual selected

as an emergency contact has the means to safely store the password that enables the derivation of

the break-glass key. Likewise, trusting an individual means that the same might or might not be

available at the exact moment its intervention is needed, undermining the efficiency of the whole

break-glass mechanism.

As it was possible to observe, different approaches are used when it comes to safeguarding

emergency situations. Something that is transversal to all implementations is the existence of a

trusted entity that plays the role of making the most critical decisions.

From establishing a bridge between the patient and the trusted contact to assigning attributes to

different health professionals or providers, there is always a need for the intervention of a trusted

entity that makes the final decision regarding the provision of data access on behalf of a patient.

Regarding the application of PRE to emergency situations, and PRE-based solutions as a

whole, only one work, due to (Rabieh et al., 2018), was found in the literature addressing this

3.4 Safeguarding Emergencies in E-Health Environments 47

matter. Although, as discussed in Section 3.3, it presents some concerns that undermined the

trustability of the implemented solution in an emergency scenario.

Despite the deep analysis of the literature on safeguarding emergency scenarios, no other work

was discovered that addresses emergency situations by utilising proxy re-encryption primitives

As such, given that most of the works presented in Section 3.3 do not contemplate break-glass

mechanisms, and those that do, do not present a fully reliable solution, it reinforces the lack of

development in this area particularly to PRE-oriented solutions, thus the need to devise solutions

that can encompass all the aspects mentioned above.

Chapter 4

Proxy Re-encryption Module

The re-encryption module is the module dedicated to the whole re-encryption process. It is sup-

ported by the pyUmbral framework and is the core of the file-sharing process using proxy re-

encryption.

This chapter aims to introduce the fundamental concepts and processes performed by this

framework, along with the mathematical primitives on which these concepts and processes rely.

Firstly, we provide a procedural overview of Umbral PRE, including a brief explanation of

how the main processes and mechanisms intertwine to enable access delegation scenarios. After-

wards, each one of these key processes is further explained, providing details on the inputs and

mathematical primitives they rely on.

It is important to note that the definitions and concepts presented here are derived from a

careful analysis of both the pyUmbral framework’s source code and the corresponding white pa-

per (Nuñez, 2017).

4.1 Umbral PRE shceme

Umbral is a threshold proxy re-encryption scheme, which, as mentioned before, was introduced by

(Nuñez, 2017). It brings significant advancements over the initial research of Blaze et al. (1998),

by introducing properties such as non-interactivity, meaning that the delegatee does not need to

share its secret key during the delegation process, and unidirectionality, which guarantees that the

re-encryption key only allows the transformation from the delegator to the delegatee and not vice-

versa. Furthermore, it also incorporates verifiability, allowing for the verification of re-encryption

operations.

The threshold mechanism present in Umbral aims to promote aspects such as distributed trust

since no entity owns the entire key, as well as the collaborative aspect where several proxies,

referred to as Ursulas in Umbral’s documentation, work together to allow the delegatee to decrypt

the information. This brings advantages namely in the fact that there is not a single point of failure,

in case of a malfunction or compromise of one of the proxies, the re-encryption key is still safe.

48

4.1 Umbral PRE shceme 49

4.1.1 Procedural Overview

The basic idea of Umbral’s system is to leverage symmetric encryption for a secure and efficient

method of protecting Alice’s messages, while also utilising encapsulation techniques to re-encrypt

the symmetric key, allowing Alice to encrypt a message using a symmetric key instead of di-

rectly using asymmetric encryption. The rationale and benefits of this approach are related to

the objective of combining the performance of symmetric encryption with the security offered by

asymmetric encryption, as detailed in Section 2.1.5.

Figure 4.1 presents an overview of the key processes and data flows involved in the Umbral

PRE scheme. This system comprises seven main processes: Encapsulation, Encryption, Generate

re-encryption key fragments, Re-encapsulation, Decapsulation and Decryption. These processes

are supported by three major cryptographic methods: Key Encapsulation Mechanism (KEM), Data

Encapsulation Mechanism (DEM), and Shamir Secret Sharing (SSS).

Figure 4.1: Procedural overview of pyUmbral PRE scheme

The first step of this access delegation approach is Encapsulation. This process is supported

by a KEM, which uses Alice’s public key pkA, to output a symmetric key K and a capsule. The

symmetric key and the capsule are both used in the encryption of the message Alice intends to

store in the cloud, and the capsule is also used in the re-encryption process.

For Alice to securely store her message, the next step is Encryption, which is supported by

a DEM which uses an Authenticated Encryption with Associated Data (AEAD) scheme, the pre-

viously generated symmetric key K, and the capsule to produce the ciphertext. Further details

regarding the DEM and AEAD scheme are provided in Section 2.1.5.

Once the encrypted message is stored in the cloud, in order for the proxy to facilitate access

for Bob, a re-encryption key is needed. This re-encryption key allows the proxy to transform the

capsule in such a way that Bob can reconstruct the symmetric key K and access Alice’s message,

while still maintaining the security and integrity of the original encryption.

This procedure of generating the re-encryption key is performed by the Generate re-encryption

key fragments process, which, supported by an SSS method, enables the creation of re-encryption

Proxy Re-encryption Module 50

key fragments, named Kfrags, which are signed by Alice. The number of fragments is based on

the number of predefined shares, and this process requires Alice’s private key, Alice’s signing key

signkA, and Bob’s public key pkB. This fragmentation is an inherent characteristic of threshold-

based PRE schemes that aim to distribute the key among different proxies so that no single proxy

possesses the complete re-encryption key. The set of computations that are performed by this

process are further defined in Section 4.2.3. The Kfrags generated in this step are stored by the

proxy to be used in the next process, which is Re-encapsulation.

It is important to notice that this PRE scheme performs the transformations and re-encryption

process always over the capsule and not over the ciphertext. As such, the ciphertext does not

participate in the Re-encapsulation step, since only the capsule and the K f rags are needed. In that

process, the capsule is re-encrypted with each Kfrag, forming a set of capsule fragments or Cfrags.

These Cfrags are necessary for the final step of the access delegation scenario, referred to as

Decapsulation. Once Bob requests the proxy to re-encrypt the capsule and obtain the Cfrags, a

final step must be carried out. To derive the symmetric key K, this step involves utilising the SSS

method, detailed in Section 2.1.8, along with Alice’s public key, Alice’s verifying key vkA for

signature verification of the Cfrags, Bob’s private key skB, and the capsule. By employing the

key derivation function within the KEM and utilising the DEM method with the symmetric key K

and the ciphertext, the Decryption process can be executed to obtain the plaintext content of the

message, which Bob can now access and utilise.

4.2 pyUmbral

pyUmbral is a Python implementation of the Umbral PRE scheme, which leverages two libraries

to perform cryptographic operations, namely OpenSSL1 via Criptography.io2.

Criptography.io makes use of OpenSSL to provide some of the low-level implementations of

known cryptographic-related primitives. The elliptic curve constructions used in pyUmbral are

based on the primitives provided by these two libraries.

pyUmbral uses a loosely inspired implementation of the ECIES-KEM introduced by (Shoup,

2001), which is a key encapsulation mechanism based on an Elliptic Curve Integrated Encryption

Scheme (ECIES), supported by Diffie-Hellman primitives already detailed in Section 2.1.2.

Umbral KEM follows a similar approach by generating a derivation key from Elliptic Curve

Diffie-Hellman (ECDH) primitives and a capsule that retrieves that same derivation key when

needed. Section 4.2.1 further details the encapsulation process.

Before introducing the details of the main seven processes involved in pyUmbral, we need to

introduce the setup parameters of the system. Let G be a cyclic group of prime order q, which

is an Elliptic curve. Let P,U be generators of G, and let H2 : G2 −→ Zq, H3 : G3 −→ Zq, and

H4 :G4−→Zq be hash functions (SHA256). Let KDF :G−→{0,1}l be a key derivation function.

The global public parameters are represented by the tuple:

1https://www.openssl.org/
2https://cryptography.io/

https://www.openssl.org/
https://cryptography.io/

4.2 pyUmbral 51

(G,P,U,H2,H3,H4,KDF)

To generate Alice’s pair (private key, public key), it is necessary to randomly generate an

element of Zq, let us say a, and compute aP. Note that a is a scalar, and P is a point in the elliptic

curve G. Then,

(skA, pkA) = (a,aP)

constitute Alice’s key pair, where skA is the private key and pkA is the public key. Similarly, Bob’s

key pair is defined by

(skB, pkB) = (b,bP),

where b is a randomly chosen element of Zq.

4.2.1 Encapsulation

The encapsulation process involves the generation of a symmetric key and a capsule.

To that purpose, Alice’s public key pkA = ag is fed through the pyUmbral KEM in order

to produce the capsule through the so-called encapsulation process. As mentioned before, the

KEM is a method used in a hybrid encryption scheme that uses public key encryption to encrypt a

symmetric key. Roughly speaking, the way it works is similar to a PKE scheme, but it has as input

the recipient’s public key, and it generates a pair (C,K), where K is the symmetric key and C is

the encryption of K, or K can easily be obtained from C, which is the capsule. In pyUmbral, the

KEM is based in an ECIES, and it produces a signature for each capsule, which allows verifying

if it has been produced by Alice.

In this process, firstly two elements in Zq are randomly generated, r and u, which constitute

the private keys. Then, two points are computed using the generator P:

E = rP and V = uP,

which are the corresponding public keys. A signature s is then computed in the following way:

s = u+ rH2(E,V).

Now, through an Elliptic Curve Diffie-Hellman key agreement (see Section 2.1.2.1), it is pos-

sible to establish a shared secret by computing ruP. Then, using Alice’s public key and the shared

secret, the symmetric (or derivation) key K is computed by using pyUmbral KDF, more specifi-

cally, the HMAC Key Derivation Function, as follows:

K = KDF ((r+u)pkA) .

This derivation key is the symmetric key that is used to encrypt Alice’s plaintext data before

uploading it to the cloud server. The output of the Encapsulation process is the capsule

Proxy Re-encryption Module 52

C = (E,V,s),

and the derivation key K.

It is important to notice that this derivation key is unique for each message shared by Alice,

which means that different messages will be encrypted using a different symmetric key K. This

guarantees that once Bob obtains a symmetric key, he can only use it to decrypt the message

that Alice has granted him access to, rather than being able to decrypt every single piece of data

encrypted by Alice. Therefore, the delegation is limited to each specific message. Additionally,

even though a different symmetric key is generated for each message Alice wants to encrypt and

store in the cloud, Alice does not need to store all those keys. In fact, she only needs to store her

private key skA, since each encrypted message is stored together with the corresponding capsule,

and Alice can easily obtain K from its own secret key, skA = a, and the capsule as follows:

K = KDF(a(E +V)).

This describes Alice’s decapsulation process.

4.2.2 Encryption

Before delegating decryption rights, Alice needs to encrypt and upload the data she wants to share

with a specific party. To do that, Alice uses Umbral’s DEM, which is formed by an encrypted au-

thentication scheme called Chacha20Poly1305, as detailed in Section 2.1.6.1. This scheme takes

a 256-bit key and a 96-bit value (nonce) as input, with the nonce being used only once. Addi-

tionally, the scheme can include Additional Authenticated Data (AAD) besides the plaintext and

derivation key. The capsule is also passed to the DEM, which performs Authenticated Encryption

with Additional Data (AEAD), as illustrated in Figure 4.2.

Figure 4.2: DEM mechanism in pyUmbral

AEAD ensures two crucial aspects regarding the ciphertext. Firstly, the authenticated encryp-

tion component of the scheme provides both confidentiality and authentication. Secondly, the

AAD serves as a tag for the encrypted data. That is, the AAD can be seen as a context to which a

4.2 pyUmbral 53

ciphertext is tied. This means that if two messages are encrypted with the same key, it is not possi-

ble to replace the ciphertext of one message with the other. Each ciphertext is bound to a specific

AAD, restricting decryption to the particular combination of ciphertext and additional data.

Finally, Alice can upload the ciphertext to the proxy, which consists of the capsule and the

encrypted message. This means that she is now capable of delegating access to the data she

uploaded.

4.2.3 Generating Re-encryption key fragments

When Alice wants to grant Bob access to his data, the former needs to generate the re-encryption

key so that the proxy can perform the re-encryption or, in this case, the re-encapsulation process.

Since pyUmbral is based on a threshold-based proxy re-encryption scheme, the re-encryption

key needs to be divided into pieces or shares. The minimum number of these shares required for

Bob to decrypt Alice’s encrypted data is determined by the threshold.

Particularising the key generation process of the framework presented in this work, Alice

requires her secret key skA, Bob’s public key pkB, the total number of shares N, and the threshold

t, to generate the shares of the re-encryption key, referred to as key fragments or kFraks for

short. In addition to these keys, a signing key can also be used to produce a digital signature of

Alice, which is used to sign the re-encryption key fragments and capsule fragments. This ensures

that they can be verified for tampering during transmission between Alice and Bob. The share’s

signature process will not be discussed further in this context, but the details can be found in the

official documentation of pyUmbral (NuCypher, 2018; Nuñez, 2017).

The first step of the re-encryption algorithm is the generation of an ephemeral key pair for

Alice by randomly choosing an integer xA as the private key, and XA = xAP as the public key. This

ephemeral key pair, together with Bob’s key pair, allows defining a shared secret between Alice

and Bob by using a non-interactive Diffie-Hellman Key exchange, namely bXA = xA pkB. This

shared secret is here used to ensure that the system is non-interactive, meaning that Bob’s private

key is not needed to perform the re-encryption process. Then, Alice computes

d = H3(XA, pkB,xA pkB).

In order to split the re-encryption key into multiple fragments, pyUmbral uses the concept of

Shamir Secret Sharing, further detailed in Section 2.1.8.

A polynomial function is defined by sampling random t − 1 elements fi in Zq, where 1 ≤
i ≤ t − 1. These random values, together with the shared secret, allow defining a t − 1 degree

polynomial

f (x) = f0 + f1x+ f2x2 + f3x3 + ...+ ft−1xt−1,

where f0 = ad−1 (mod q).

With the secret curve defined by the polynomial, it is now possible to define the secret shares

along that curve.

Proxy Re-encryption Module 54

For N shares, a random index id is generated in Zq and attributed to a re-encryption key

fragment. Each key fragment is formed by its id, and rk = f (sx), with sx = H2(id,D), and the

ephemeral public key XA, together with other parameters involved in the Kfrags signature process,

here represented by W . That is, each re-encryption key fragment is defined by

K f rag = (id,rk,XA,W).

In the end, this algorithm outputs the set formed by the N Kfrags, which will be used to re-

encrypt the capsule and obtain the Cfrags. Further details will be provided in the next section.

4.2.4 Re-encapsulation

In pyUmbral, the re-encryption process, known as re-encapsulation, involves utilising the re-

encryption key to modify the capsule. This key is formed by a set of key fragments generated

earlier in the Generate re-encryption key fragments process. Consequently, the re-encapsulation

process is divided into multiple steps, where each key fragment is used to re-encrypt the capsule.

This results in a collection of re-encrypted capsule fragments, known as Cfrags, which are then

shared, by the proxy, with Bob. It is worth noting that, as discussed in Section 4.2.1, the derivation

key K can be extracted from the re-encrypted capsule, which, in this case, comprises the set of

Cfrags.

With this in mind, the re-encapsulation process takes the capsule C = (E,V,s) and the key

fragments as inputs. Each key fragment comprises a tuple (id,rk,XA,W), where (id,rk) represents

a point on the polynomial function obtained using the SSS method, XA represents the ephemeral

public key, and W the set of other parameters required for the signature verification process.

The proxy can then start by checking the validity of the capsule, by verifying if the following

equation holds

sg =V +H2(E,V)E.

If it succeeds, then it computes E1 = rkE and V1 = rkV , and returns the capsule fragment

C f rag = (E1,V1, id,XA).

4.2.5 Decapsulation and Decryption

In the decapsulation process, Bob needs his own secret key skB and Alice’s public key pkA,

as well as a set of t capsule fragments. Consider each capsule fragment being represented by

C f ragi = (E1,i,V1,i, idi,XA).

Firstly, the Diffie-Hellman shared secret bpkA is computed using Alice’s public key, pkA, and

Bob’s secret key, skB = b. Then, Bob computes D = H3(pkA, pkB,bpkA), and iterates over the set

of Cfrags to reconstruct the polynomial function obtained from SSS by computing its coefficients

4.2 pyUmbral 55

λi using the idi of each C f ragi, and D. After obtaining the coefficients λi, Bob computes

E ′ =
t

∑
i=1

λiE1,i and V ′ =
t

∑
i=1

λiV1,i.

Finally, the shared secret bXA obtained from the non-interactive key exchange between the

key pair of Bob (b, pkB) and the ephemeral key pair of Alice (xA,XA) is calculated, as well as

d = H3(XA, pkB,bXA). Then, the symmetric key K is computed as

K = KDF(d(E ′+V ′).

Equipped with the symmetric key and Alice’s ciphertext, Bob is now able to use the decryption

function of AEAD with key K and the capsule as associated data to have access to the plaintext

content of the message, which is designated as the decryption process.

Chapter 5

Proposed Solution

This chapter is dedicated to the presentation of the proposed solution. The problem statement will

be presented as well as the requirements and use cases that define the properties and functionalities

of the platform in question. Finally, the idealised architecture will be presented as well as an

overview of the design decisions that were made.

5.1 Problem Statement

As discussed in Section 3.3, the area of e-health presents several challenges with regard to access

to information. Not only may a patient need medical treatment in different hospitals and health

centres, but the many entities that need access to that data are extensive. As such, it is not possible

to guarantee that all entities are trustworthy, i.e. that they have no malicious motives to use or

manipulate that data for the purposes they wish. Also, it is not possible to guarantee that they use

adequate infrastructures and security measures to safeguard that data.

As such, there is a need to pass the control of access to the data to the patient so that they

have the ability to choose with whom it shares his medical data while safeguarding emergency

scenarios where explicit consent to the data can not be given by the patient, the so-called break-

glass mechanisms.

The proposed solution has as its premise the secure sharing of EHRs between a patient and a

health professional, using as a resource an intermediary (proxy) entity to perform the delegation

of access. This intermediary entity should allow the patient to delegate access to an EHR with-

out needing to share sensitive information with that entity. This means that it serves just as an

intermediary and does not possess the means to obtain the plaintext content of the encrypted EHR,

nor any secret from both parties involved in the sharing process. Furthermore, a break glass ap-

proach is implemented to cope with consent exceptions and therefore safeguard access delegation

in emergency scenarios.

56

5.2 Requirements format 57

5.2 Requirements format

This section aims to introduce the models and classification criteria adopted to present and define

the requirements and use cases set out in Sections 5.3 and 5.4.

5.2.1 Use Cases Description Model

In Table 5.1, it is depicted the model that is used to further present the different use cases of the

proposed solution, briefly detailing the meaning of each parameter presented.

Table 5.1: Use cases description model

Section Content
Identifier Unique identifier
Name Use case name
Priority Defines the priority of the use case: Low, Medium, High
Short description Presents a short description of the use case
Goal(s) Defines the aims of the portrayed use case
Primary Actor Defines the main actor
Other Actors Defines the secondary actors involved
Pre-condition Defines conditions that must be met before performing the operation asso-

ciated to the use case in question
Post-condition Defines conditions that must be verified after the execution of the operation

associated to the use case in question
Result The result of the use case
Scenario(s) The depiction of the steps performed by the actors throughout the execu-

tion of the use case. These can include more than one scenario, covering
alternative and exception scenarios

5.2.2 Actors Description Model

Table 5.2 presents the model that will be used to identify the various actors involved in the our use

cases.

Table 5.2: Actors description model

Actor Short description
Name of the actor Brief description of the function or role performed by the same

5.2.3 Functional Requirements Description Model

In Table 5.3 it is depicted the model that is used to further present the different functional require-

ments of the proposed solution, briefly detailing the meaning of each parameter.

Proposed Solution 58

Table 5.3: Functional requirements description model

Section Content
Identifier Unique identifier
Description Describes the requirement in clear and unambiguous language
Priority Requirement priority: Essential, Conditional or Optional
Use cases Refers to the use cases associated with this requirement, if already defined

5.2.4 Non-Functional Requirements Description Model

In Table 5.4 it is depicted the model that is used to further present the different non-functional

requirements of the proposed solution, briefly detailing the meaning of each parameter.

The categories into which the non-functional requirements fall are also presented (see Ta-

ble 5.5), as well as the priority they may have (depicted in Table 5.6).

Table 5.4: Non-functional requirements model

Section Content
Identifier Unique identifier
Description Describes the requirement in clear and unambiguous language
Category Describes the category the requirement falls into: Performance, Availability, Se-

curity, Interoperability, Usability, Shared, Integrity
Motivation Describes the need that led to the inclusion of the requirement

Table 5.5: Non-functional requirements categories

Category Meaning
Performance Refers to all requirements related to the performance of the system.
Availability Refers to measuring the time that the system is available, that is, guaranteeing

the uninterruption of the service.
Security Refers to the methodologies and measures implemented in order to guarantee

the safety of the software in question
Interoperability Refers to the communication and operation of the software with other soft-

ware/services from third parties
Usability Refers to the ease of learning the dynamics of the software as well as the

ease of use by the user
Compatibility Establishes and defines the system requirements that satisfy the operating

needs of the software
Integrity Refers to the ability to ensure that unauthorised access or unauthorised up-

dates occur

5.3 Actors and Use Cases 59

Table 5.6: Requirements priority

Priority Meaning
Essential The product cannot be accepted until the requirement is not implemented
Conditional The acceptance of the product does not depend on the implementation of the

requirement
Optional Interesting functionality, giving the opportunity to propose functionalities, not

foreseen in the initial specification

5.3 Actors and Use Cases

In this section, the different use cases and their actors will be listed. The different scenarios will

be described as well as a listing of all the actors involved.

5.3.1 Actors

Table 5.7 identifies the several actors involved in our use cases. These include: Patient, Health

Professional, Trusted Entity, Resource Server, Proxy Server, and Authorisation Server.

Table 5.7: Description of actors

Actor Short description
Patient User to whom an EHR belongs. This user publishes EHRs to the sys-

tem so that health centres and health professionals can access them and
provide appropriate medical care.

Health Professional User who wants to have access to a patient’s EHR. This user requires
full access to a medical record in order to make a certain diagnosis or
prescribe a certain treatment.

Trusted Entity User who has access to the EHRs of all the patients in an emergency
scenario. It is an entity responsible for providing Health Professionals
with access to EHRs on behalf of the patient.

Resource Server Server responsible for assisting operations requested by the client ap-
plication, namely in the upload and retrieval of EHRs as well as share
requests.

Proxy Server Server responsible for handling re-encryption and access delegation-
related operations.

Authorisation Server Server responsible for handling authentication and authorisation-
related operations namely issuing and verification of credentials and
tokens.

Proposed Solution 60

5.3.2 Use Cases

In this section, we identify and describe our use cases. A total of nine use cases are detailed,

covering a wide range of scenarios.

Table 5.8 depicts a use case of an EHR upload. This use case has high priority and involves

the patient and the resource server.

Table 5.8: Use case UC-01

Section Content

Identifier UC-01

Name Upload EHR to the cloud server

Priority High

Short description A patient wants to be able to upload an EHR to the cloud, in order

to make it available for future access by health entities.

Goal(s) The patient is able to successfully upload

Primary Actor Patient

Other Actors Resource Server

Pre-condition The user must be authenticated and of the type of patient

Post-condition An EHR is successfully uploaded by the patient

Result An encrypted EHR from a patient

Main Scenario

1 The patient entity selects the option to upload an EHR

2 The application asks for the desired EHR file

3 The patient selects a file from his device

4 The application uploads the file to the resource server

5 The resource server encrypts the file and stores it in the cloud

6 The application informs the patient that the operation was success-

fully performed

Exception Scenario 5a

The application fails to upload the file to the resource server

5a1 The application informs the patient about the exception

5a2 The application asks the patient to try again

5.3 Actors and Use Cases 61

Table 5.9 depicts an access delegation request acceptance scenario performed by the patient

and assisted by resource and proxy servers.

Table 5.9: Use case UC-02A

Section Content

Identifier UC-02A

Name Delegate access to an EHR

Priority High

Short description A patient wants to delegate access to an EHR, so that a specific

health professional can access the information contained in it.

Goal(s) The patient is able to successfully delegate access to an EHR by

accepting the share request

Primary Actor Patient

Other Actors Resource Server, Proxy Server

Pre-condition The user must be authenticated and of the type Patient

The health centre/health professional must be registered on the

authorisation server

Post-condition A health centre/ health professional is able to access a specific EHR

from the patient

Result An accepted share request for a given EHR

Main Scenario

1 The patient retrieves the list of requests regarding the EHR

2 The application fetches from the resource server the list of requests

3 The patient selects a share request

4 The application displays the details of the file to be shared along

with the controls for accepting or rejecting the share request

5 The patient accepts the request

6 The application sends the acceptance request to the resource server

7 The resource server generates the re-encryption key needed for the

delegation

8 The resource server sends the key to the proxy server

9 The proxy server stores the key

10 The resource server updates the share request details

11 The application displays a success message

Continued on next page

Proposed Solution 62

Table 5.9: Use case UC-02A (Continued)

Alternative

Scenario
5a

The patient sets an expiration date for the access delegation of the

EHR

5a1 The patient introduces the expiration date on the form

5a2 The patient submits the form

Proceed with step 6

Table 5.10 presents a more refined version of an access delegation scenario where a patient

can defined the extent of the information it wants to share based on roles.

Table 5.10: Use case UC-02B

Section Content

Identifier UC-02B

Name Delegate role-based access to an EHR

Priority Medium

Short description A patient wants to be able to define the extent of sharing of the

information contained in the EHR based on the role played, so that

it only provides the information strictly necessary for each role to

perform its function.

Goal(s) The patient is able to successfully delegate role-based access to an

EHR by accepting the share request

Primary Actor Patient

Other Actors Resource Server, Proxy Server

Pre-condition The user must be authenticated and of the type Patient

Post-condition A health centre/ health professional with the correct role is able to

access a specific EHR from the patient

Result An accepted share request for a given EHR

Main Scenario

1 The patient retrieves the list of requests regarding the EHR

2 The application fetches from the resource server the list of requests

3 The patient selects a share request

4 The application displays the details of the file to be shared along

with the controls for accepting or rejecting the share request

Continued on next page

5.3 Actors and Use Cases 63

Table 5.10: Use case UC-02B (Continued)

5 The patient selects a role and the attributes it wants to share for each

role

6 The patient submits the form

7 The application sends the acceptance request to the resource server

8 The resource server generates the re-encryption key needed for the

delegation

9 The resource server sends the key to the proxy server

10 The proxy server stores the key

11 The resource server updates the share request details

12 The application displays a success message

Exception Scenario 7a

The application fails to send the acceptance request

7a1 The application informs the patient

7a2 The share request is kept the same and the patient tries

again

Proceed with step 3

Revocability of an EHR is expressed in Table 5.11 figuring a patient and the resource server

as actors in this process.

Table 5.11: Use case UC-03

Section Content

Identifier UC-03

Name Revoke access to an EHR

Priority High

Short description A patient wants to revoke access to an EHR, so that a specific health

professional stops having access to the information on the same.

Goal(s) The patient is able to successfully revoke access to an EHR

Primary Actor Patient

Other Actors Resource Server

Pre-condition The user must be authenticated and of the type Patient

Post-condition A health professional loses access to the EHR

Continued on next page

Proposed Solution 64

Table 5.11: Use case UC-03 (Continued)

Result The patient revoked the access right of the EHR in question

Main Scenario

1 The patient retrieves the list of requests regarding the EHR

2 The application fetches from the resource server the list of requests

3 The patient selects a share request

4 The application displays the details of the file to be shared along

with the controls for accepting or rejecting the share request

5 The patient submit the form with the revoke intent

6 The application sends the revoke request to the resource server

7 The resource server deletes the re-encryption key associated with

the share request in question

8 The resource server updates the share request details

9 The application displays a success message

Exception Scenario 6a

The application fails to send the revoke request

6a1 The application informs the patient

6a2 The share request is kept the same and the patient tries

again

Proceed with step 3

Table 5.12 presents an use case related to the visualisation of an EHR, focused on the access

by an healthcare provider.

Table 5.12: Use case UC-04

Section Content

Identifier UC-04

Name Visualise the EHR information

Priority High

Short description A health professional wants to be able to see the EHR information,

so that it can get acquainted with the clinical picture of the patient

Goal(s) Visualise the EHR information

Primary Actor Health Professional, Trusted Entity

Other Actors Resource Server, Proxy Server

Continued on next page

5.3 Actors and Use Cases 65

Table 5.12: Use case UC-04 (Continued)

Pre-condition The user must be authenticated and of the type Health Professional

or Trusted Entity

The EHR in question must be shared with the health professional or

trusted entity

Post-condition The health professional/trusted entity must be able to see the EHR

information

Result An EHR from a patient

Main Scenario

1 The application displays a list of the EHRs shared with the health

professional

2 The health professional/trusted entity selects a file

3 The application retrieves the file from the resource server

4 The resource server asks the proxy server to perform the re-

encryption process for the file in question

5 The proxy server performs the re-encryption process and returns the

re-encrypted data

6 The resource server performs the final decryption of the file

7 The application displays the plaintext content of the file

Exception Scenario 6a

The system fails to perform the decryption of the file

6a1 The application informs the health professional that the

same cannot access the EHR

Proceed with step 2

Table 5.13 adresses a medium priority requirement regarding advanced search capabilities of

EHRs.

Table 5.13: Use case UC-05

Section Content

Identifier UC-05

Name Search for embedded information in an EHR

Priority Medium

Short description A patient/health professional wants to be able to find an EHR by the

information embedded in the same

Goal(s) Visualise an EHR by embedded information

Continued on next page

Proposed Solution 66

Table 5.13: Use case UC-05 (Continued)

Primary Actor Patient, Health Professional

Other Actors Resource Server

Pre-condition The user must be authenticated

The user must have access to the EHR he is searching for

Post-condition The patient/health professional must be able to see the EHRs related

to the inserted search criteria

Result A list of EHRs that match the inserted search criteria

Main Scenario

1 The patient/health professional inputs the desired search string

2 The application searches through the records for the specified

search criteria

3 The application displays a list of results

Exception Scenario 2a

The application fails to find records according to the specified

search criteria

2a1 The application informs the patient/health professional

that could not find any records

Proceed with step 1

Table 5.14 depicts a sign in scenario for the different types of users that interact with the

application.

Table 5.14: Use case UC-06

Section Content

Identifier UC-06

Name Authenticate a patient/health professional

Priority High

Short description A patient/health professional wants to authenticate itself so that it

can manage or upload its EHRs

Goal(s) The patient/health professional is able to successfully authenticate

using his credentials

Primary Actor Patient, Health Professional

Other Actors Authorisation Server

Continued on next page

5.3 Actors and Use Cases 67

Table 5.14: Use case UC-06 (Continued)

Pre-condition The patient/ health professional must be registered in the authorisa-

tion server

Post-condition The user is authenticated and is able to access and perform all the

actions tied to his role

Result The patient/ health professional is authenticated with his credentials

Main Scenario

1 The patient/ health professional inputs his credentials

2 The authorisation server validates the patient credentials

3 The application redirects the patient/health professional to the main

page upon successful authentication

Exception Scenario 3a

The application acknowledges that the credentials are wrong

3a1 The application informs the user of incorrect credentials

3a2 The application asks the patient to try again

Proceed with step 1

The following use case, figured in Table 5.15, presents the ability to delete an EHR in case of

an error or oversight by the patient.

Table 5.15: Use case UC-07

Section Content

Identifier UC-07

Name Delete an EHR

Priority Medium

Short description A patient wants to be able to delete an EHR, so that it can delete the

same in case of an error or oversight.

Goal(s) Delete a given EHR

Primary Actor Patient

Other Actors Resource Server

Pre-condition The user must be authenticated and of type Patient

The EHR must have been previously uploaded

Post-condition The patient must be able to delete the selected EHR

Result The selected EHR is deleted

Continued on next page

Proposed Solution 68

Table 5.15: Use case UC-07 (Continued)

Main Scenario

1 The application displays the EHR

2 The patient selects the delete option

3 The application asks the patient to confirm his action

4 The patient confirms the action

5 The application server sends the delete request to the resource

server

6 The resource server deletes the selected EHR

7 The application informs the patient the EHR was successfully

deleted

Exception Scenario 5a

The application fails to delete the selected EHR

5a1 The application informs the patient that could not delete

the EHR

due to some error

5a2 The application asks the patient to try again

Proceed with step 2

In Table 5.16, it is depicted the ability to download an EHR. This requirements was deemed

as high priority due to the increased flexibility it provides to the patient regarding choices to what

it can do with its data.

Table 5.16: Use case UC-08

Section Content

Identifier UC-08

Name Download the EHR

Priority High

Short description A patient wants to be able to download the EHR file, so that it can

use it or store it elsewhere

Goal(s) Download a specific EHR

Primary Actor Patient

Other Actors Resource Server

Pre-condition The user must be authenticated and of the type Patient

The EHR in question must be shared with the health professional

Continued on next page

5.3 Actors and Use Cases 69

Table 5.16: Use case UC-08 (Continued)

Post-condition The health professional must be able to see the EHR information

Result An EHR from a patient

Main Scenario

1 The application displays a list EHRs uploaded by the patient

2 The patient selects a file

3 The application retrieves the file from the resource server

4 The resource server performs the decryption of the EHR

5 The resource server returns the EHR

6 The application starts the download of the EHR

Exception Scenario 4a

The application fails to perform the decryption of the file

4a1 The application informs the patient that the same cannot

access the EHR

Proceed with step 2

Table 5.17, depicts an interaction involving a health professional and the resource server with

the purpose of requesting access to an EHR.

Table 5.17: Use case UC-09

Section Content

Identifier UC-09

Name Request access to an EHR

Priority High

Short description A health professional wants to be able to request access to an EHR,

so that it can get acquainted with his medical condition

Goal(s) Request access to an EHR

Primary Actor Health Professional

Other Actors Resource Server

Pre-condition The user must be authenticated and of the type Health Professional

The EHR in question must be previously uploaded

Post-condition The access request must be performed successfully

Result An EHR from a patient

Continued on next page

Proposed Solution 70

Table 5.17: Use case UC-09 (Continued)

Main Scenario

1 The health professional inputs a search criterion for the file it wants

to gain access to

2 The application sends the search request to the resource server

3 The resource server retrieves the list of files and sends to the

application

4 The health professional selects the EHR

5 The application sends a fetch request to the resource server

6 The resource server checks that the health professional does not

have access to the EHR

7 The application informs the health professional it does not have ac-

cess to the EHR

8 The health professional requests access to the EHR

9 The application sends the access request to the resource server

10 The resource server stores the access request

Exception Scenario 3a

The resource server cannot find any file matching the search criteria

3a1 The application informs the health professional of the

event

Proceed with step 1

Exception Scenario 10a

The resource server fails to store the access request

10a1 The application informs the health professional of the

event

Proceed with step 8

5.4 System Requirements 71

5.4 System Requirements

This section is dedicated to the presentation of the idealised functional and non-functional re-

quirements for the system in question. The latter represent characteristics that define the system’s

behaviour as well as its quality attributes.

5.4.1 Functional Requirements

This section details the different functional requirements that represent the capabilities and features

of the proposed solution.

Table 5.18: Functional Requirement RF-01

Section Content
Identifier RF-01
Description The user must be able to upload EHR into the system
Priority Essential
Use cases UC-01

Table 5.19: Functional Requirement RF-02

Section Content
Identifier RF-02
Description The user must be able to delegate access to an EHR based on the entities and

health centres that he/she trusts or that need that same information to provide
health services.

Priority Essential
Use cases UC-02A, UC-02B, UC-09

Table 5.20: Functional Requirement RF-03

Section Content
Identifier RF-03
Description The user must be able to revoke individual access to an EHR based on a time

constraint or immediate action.
Priority Essential
Use cases UC-03

Proposed Solution 72

Table 5.21: Functional Requirement RF-04

Section Content
Identifier RF-04
Description The system must allow searching for EHR files according to different filters and

criteria.
Priority Conditional
Use cases UC-04, UC-05, UC-08, UC-09

Table 5.22: Functional Requirement RF-05

Section Content
Identifier RF-05
Description A user must be able to access only the information needed to perform the actions

they are bound to.
Priority Essential
Use cases UC-02B

Table 5.23: Functional Requirement RF-06

Section Content
Identifier RF-06
Description The system must safeguard scenarios where there is an error or oversight regard-

ing the upload of an EHR or veracity of the information of the same.
Priority Conditional
Use cases UC-07

Table 5.24: Functional Requirement RF-07

Section Content
Identifier RF-07

Description
The user identity must be validated before performing any operations
offered by the system.

Priority Essential
Use cases UC-06

5.4 System Requirements 73

Table 5.25: Functional Requirement RF-08

Section Content
Identifier RF-08

Description

The system should notify all the individuals involved in an access delegation
scenario regarding the following events:
- Permission to access an EHR
- Access granted/revoked/expired

Priority Conditional
Use cases UC-02A, UC-02B, UC-03, UC-09

Table 5.26: Functional Requirement RF-09

Section Content
Identifier RF-09

Description
The system must be able to safeguard break-glass scenarios where a patient is
unable to autonomously delegate access to an EHR

Priority Essential
Use cases UC-04

5.4.2 Requirements Traceability Matrix

In order to improve the traceability and the easier understanding of the intertwining and correlation

of use cases and functional requirements, it is presented in Table 5.27 the requirements traceability

matrix.

Table 5.27: Requirements traceability matrix

Use Cases
Functional
Requirements UC-01 UC-02A UC-02B UC-03 UC-04 UC-05 UC-06 UC-07 UC-08 UC-09

RF-01 X
RF-02 X X X
RF-03 X
RF-04 X X X X
RF-05 X
RF-06 X
RF-07 X
RF-08 X X X X
RF-09 X

Proposed Solution 74

5.4.3 Non-Functional Requirements

This section details the non-functional requirements responsible for characterising the system in

terms quality constraints that the proposed solution must meet.

Table 5.28: Non-functional requirement RNF-01

Section Content
Identifier RNF-01
Description The system must have an easy-to-use interface.
Category Usability
Motivation The system is going to be used by a multitude of people of different age groups

and different levels of acquaintance with e-health platforms and technology in
general. An easy-to-use interface helps to flatten the learning curve and the ac-
quaintance time with the platform.

Table 5.29: Non-functional requirement RNF-02

Section Content
Identifier RNF-02
Description The system must be able to prevent unauthorised access to the resources that the

same hosts, ensuring proper access control.
Category Security
Motivation The system is going to host information with a high degree of sensivity due to

the nature of the business area it falls into. Ensuring proper encryption of the
files so that they are safeguarded even in the context of information leakage is of
extreme importance.

5.5 System Architecture

This section presents the architecture of the idealised solution through a Unified Modeling Lan-

guage (UML) deployment diagram, shown in Figure 5.1, as well as an overview of the components

and their responsibilities within the proposed architecture and a discussion of some of the design

decisions that were made.

5.5.1 Overview

The deployment diagram depicted in Figure 5.1 presents four main nodes representing the client,

the resource server, the proxy server and the authorisation server respectively. The division of

business logic and authorisation/authentication strives for a better division and segregation of re-

sponsibilities and greater security in case one of the servers is compromised.

The communication between client and server nodes is done by Representation State Transfer

(REST) which relies on Hypertext Transfer Protocol (HTTP). This brings advantages characteris-

tic of the REST communication protocol such as format agnostic, which allows the use of various

5.5 System Architecture 75

Figure 5.1: Deployment diagram of the idealised architecture

data formats, as well as the use of a standard that is agreed upon in the industry. In this way, it

standardises the communication interface between the different nodes.

Regarding the business logic, it is divided between the resource server and proxy server nodes.

The resource server node uses the FastAPI1 framework and runs in a Python environment. It is

a server entrusted by the data delegator and it has to assist all the operations performed by the

client node, namely uploading the EHR, initial encryption and storing the same in the database

server node hosted in a cloud environment (MongoDB2), managing the accepting or denying of

the delegation requests as well as retrieving lists of files, details and their content. There is also

the generation of the re-encryption key which is subsequently provided to the proxy server node,

verification of the signature of capsule fragments and the final decryption with the private key by

the delegatee.

The proxy server, on the other hand, also running in a Python environment is responsible for

re-encrypting the capsules and storing the re-encryption key it needs to perform its function. Its

main role is therefore to assist the process of EHR delegation.

Both the resource and proxy server share a MongoDB instance where the data is persisted.

1https://fastapi.tiangolo.com/
2https://www.mongodb.com/

https://fastapi.tiangolo.com/
https://www.mongodb.com/

Proposed Solution 76

Concerning the authentication/authorisation server, its role is to manage the users and tokens

needed to authorise access to the APIs provided by both the resource and proxy nodes. This node

is therefore used to perform login as well as token issuing, revoking and validity checks.

The same is associated with two persistence nodes. A fast access database (REDIS3 instance)

for storing and retrieving refresh tokens and supporting some mitigation techniques, and a Mon-

goDB instance for storing general-purpose user information such as name, email, password and

public keys.

5.5.2 Main Design Decisions

The division of the system into four main nodes (client, authorisation, proxy and resource) aims

to better segregate and separate the responsibilities of each node of the system.

Separating the authorisation server from the resource server contributes not only to a better

distribution of the load between servers, since all issues related to issuing and revoking tokens

are exclusively the authorisation server’s responsibility. Also, this allows for an independent and

decentralised manner with regard to authorisation and business logic.

Should the need arise, for example, to create new functionality in the future or to create a

new system that makes use of the same authorisation mechanism, the effort required to implement

such a feat resides solely on the resource server side since the authorisation server is completely

agnostic to these details.

Still regarding the authorisation server, it possesses two sources of data. One is a MongoDB

instance for storing general-purpose user data (name, email, password and such) and another one

is a REDIS instance for operations related to token issuing and revoking.

Since the tokens have a short-lived time for security reasons and having the need to refresh

them very frequently, a REDIS instance is a great choice.

Authorisation is a recurring operation that needs to be carried out quickly since the access to

the platform and the consumption of the APIs depends on the issuing and renewal of the tokens

by the authorisation server. Having an in-memory database like REDIS makes the process faster

and more performant when compared with a traditional Structured Query Language (SQL) or

Non-SQL (NoSQL) solution.

This is particularly useful when the authorisation server checks if the token has been compro-

mised (token reuse detection) covered in more detail in Section 6.1.3. Since the operation of this

feature requires comparing the current token with a list of valid tokens, indexing and checking it

is faster on an in-memory database than a traditional one, which reduces the time needed to check

and consequently obtain a new token pair.

There is also the separation between the resource and the proxy server. Not only is needed for

security purposes further discussed in Section 6.1.4, but it is also important for the correctness of

the implementation of the Umbral PRE scheme provided by pyUmbral.

3https://redis.com/

https://redis.com/

5.5 System Architecture 77

Finally, the use of a NoSQL database (MongoDB) was chosen because it is a schemaless

database that allows for a more flexible and dynamic data model as well as faster query times

when compared with its SQL counterparts. Besides that, it favours horizontal scalability in favour

of vertical scalability, which means that as the storage needs grow, there isn’t a need to acquire

larger and more expensive hardware.

This is a great cost-effective compromise if it is taken into consideration in a hypothetical

scenario where the system is adopted by government institutions or health centres with limited

financial resources.

Furthermore, Mongo supports the concept of sharding out of the box, where data is split across

different servers, thus expanding storage capacity and eliminating a single point of failure. In case

a given server cannot handle the size of the data, the workload is distributed across other servers.

Chapter 6

Implementation

This chapter addresses implementation-related aspects and provides a comprehensive description

of the most relevant and pertinent elements involved in the implementation of the platform devel-

oped in this work, including details on both the business and presentation logic.

Firstly, a comprehensive overview is provided of the architectural patterns used to implement

the business logic, as well as a description of each layer and its corresponding responsibilities.

The implementation description of the business logic is divided into authentication/authori-

sation, resource, and proxy server components. Each of these components is provided with an

overview and a detailed flow of the most relevant operations performed by them.

Additionally, the endpoints of each API provided by the servers and the overall data model of

the system are presented.

6.1 Business Logic

Business logic is the essence of the platform. It consists of two main modules, authentication/au-

thorisation and upload/access delegation of EHRs further detailed in Sections 6.1.3 and 6.1.4 re-

spectively.

Both modules are implemented as a REST API that follows a layered architecture. This ap-

proach aims to better segregate responsibilities and abstract the different layers of the implemen-

tation.

6.1.1 Overall Architecture and Organisation

The layered architecture is divided into 4 main layers which are presented in Figure 6.1:

• Presentation Layer — This is the layer responsible for the communication between exter-

nal entities and the API. It is the topmost layer where the Routes reside and provides the

API endpoints to be consumed by those entities (see Section 6.1.8). This layer is also re-

sponsible for invoking Services located in the Business Layer and returning the appropriate

responses to external requests.

78

6.1 Business Logic 79

• Business Layer — The business layer is concerned with handling all business logic pro-

cesses. This layer communicates with the Repository implemented in the Data Access
Layer in order to obtain the necessary data to perform the business operations.

• Data Access Layer — The data access layer is responsible for abstracting the services of

Create, Read, Update and Delete (CRUD) operations from the database. Through the use of

Repositories, they are responsible for managing the communication and queries to the Data
Layer. In this way, Services do not need to be aware of the specific details of the queries to

be performed, being provided only with an abstraction to perform those operations.

• Data Layer — The data layer is the layer where the data resides and is accessed by the

Repository whenever a business logic operation needs to be performed.

Figure 6.1: Layered Architecture

6.1.2 Richardson Maturity Model

Richardson Maturity Model (RMM) (Fowler), is a maturity model developed by Leonard Richard-

son that aims to quantify the conformity of a web service to the REST paradigm. It uses three main

factors to classify and attribute a maturity rating:

Implementation 80

• Uniform Resource Identifier (URI)

• HTTP Methods

• Hypermedia as the Engine of Application State (HATEOAS)

The RMM is composed of four levels (see Figure 6.2) that define the maturity of a REST API

based on the number of criteria that the API satisfies out of all the REST criteria.

Regarding the conformity of the proposed solution with the REST paradigm, the implemented

APIs have Level 2 Maturity according to this model.

Having a Level 2 maturity means that the operations are identified through the HTTP verbs

(GET, POST, PUT, PATCH, DELETE) and that they can be performed over business entities (re-

sources) through the network supported by multiple URIs for each resource. It also contemplates

error scenarios, where adequate status codes should be returned so that external entities can deal

with the error appropriately.

Figure 6.2: Richardson Maturity Levels (Jones et al., 2021)

6.1.3 Authorisation/Authentication

The authorisation scheme implemented in this work is token-based, specifically relying on JSON

Web Tokens1 (JWT), which enable secure transmission of claims between parties.

These tokens can be signed or encrypted, and for the purpose of this work, they are signed

using HMAC SHA256, meaning the content of the token can be seen, but cannot be changed or

tampered, unless someone possesses the secret key used to sign them. This signature is also used

to verify the validity of the token together with other parameters such as expiration time and issuer

when the API is consumed.

Upon successful login, after providing a valid email and password, the authorisation server

issues a set of tokens (access/refresh), being the access token sent in the response and the refresh

token in a cookie with the httpOnly and secure flags for security purposes (see Section 7.1.1).
1https://jwt.io/

https://jwt.io/

6.1 Business Logic 81

This token pair is sent to the client to be used in future requests to the application server that

contains all the endpoints needed for the EHR sharing platform. As already stated, these tokens

are signed with a secret key using HMAC SHA256. This ensures that they cannot be modified, and

their veracity can be validated on the server side whenever necessary. Another important aspect is

that the tokens are generated according to the Request for Comments (RFC) 7519 standard (Jones

et al., 2015), which defines restrictions regarding the information and claims that are defined there.

Along with the access and refresh token, an additional Cross-Site Request Forgery (CSRF)

token is also sent to protect further requests. In this case, a double-submitting cookie pattern was

used (OWASP), since it provides a stateless solution to mitigate CSRF attacks.

Figure 6.3 depicts how the authentication/authorisation flow is performed.

Figure 6.3: Authentication/Authorisation flow

Given the self-contained nature of the tokens, there is a need to implement measures to min-

imise the possibility of theft, misuse and abuse of the tokens. One of these measures is the use

of a pair of tokens instead of just a single token. This measure allows using the short-lived token

access to authorise the use of the API and the long-lived token to generate a new access/refresh

token pair, meaning that if the access token is stolen, it can only be used for a short period of time

Implementation 82

until it is invalidated. On the other hand, the long refresh token allows to renew the credentials in

an uninterrupted and transparent way to the user, the so-called silent refresh.

Still, relative to the issuing of a new pair of tokens, it makes use of another measure called

refresh token rotation. What this permits is to renew not only the access token but also the

refresh token, which is necessary to invalidate the previous one. To do so, it is necessary to

maintain a blacklist or whitelist of refresh tokens that have been issued. In the implementation

presented here, a whitelist approach was used, i.e., each generated refresh token is stored in an

in-memory database (RedisDB) and associated with a user. Whenever a token is used to obtain a

new pair, the previous one is eliminated from that list, invalidating it.

This approach of using a list to store the tokens offers another convenience which is to keep

track of the tokens that are issued, which leads to another measure named token reuse detection.

This measure aims to detect tokens with a valid time slot and signature that have been previously

used to obtain a new set of credentials. By detecting that the token is valid but is not in the whitelist

of tokens, theft or abuse of the system is assumed, which causes the entire family of tokens issued

to a user to be invalidated, forcing the user to re-enter the credentials.

6.1.4 Upload/Access Delegation of EHRs

The implementation of the module related to the upload and sharing of EHRs is divided between

two servers, Resource and Proxy, respectively.

As already discussed in Section 5.5.1, the Resource Server acts as a helper in client-side

operations. It is considered a trusted server by the delegator and responsible for processing and

performing most of the operations on the client-side, being the Proxy Server used only for re-

encrypting the capsule using the re-encryption key fragments, hence generating the so-called

Cfrags.

Although the initial file upload and encryption with the delegator public key is done on the

resource server, having the resource server perform the remaining re-encryption operations is not

sufficient. This is because the access delegation must be decentralised and generally accessible

to external entities, thus the motivation and the need to resort to a proxy server to perform those

remainder operations. Also, in order to be aligned and to provide full correctness with the way

pyUmbral was idealised and meant to be implemented, this separation needs to be present.

In order to better understand the process behind the upload and access delegation of EHRs

in the presented solution, the step-by-step process of sharing an EHR between two entities, Alice

(delegator) and Bob (delegatee), is presented.

The first step is the file upload of an EHR (see Figure 6.4). This can be an image or a Portable

Document Format (PDF) file. This file is initially validated to ensure it is in the right format, this

is done using a file validation middleware detailed in Section 6.1.7. After being validated, the file

is encrypted using Alice’s public key and stored in bytes format in the database along with the

capsule and an associated userId, which represents the identification of the user who owns the file.

In order to safeguard emergency or incapacity scenarios (see Section 6.1.5), one extra step is

performed. Together with the encryption of the file, a re-encryption key is generated and assigned

6.1 Business Logic 83

Figure 6.4: Access delegation flow - File Upload

to a predefined trusted entity. This ensures that the file is accessible to a trusted party from the

moment that it is uploaded, granting that no further user input is necessary in emergency situations.

Figure 6.5: Access delegation flow - Bob requests access to a file

When Bob wants to access the file, as depicted in Figure 6.5, it needs to perform a request to

the Resource Server to formalise his sharing request.

Bob specifies the resource to which he intends to be granted access using the resourceId,

which uniquely identifies each resource in the platform. Before saving the share request, a check

is performed regarding the ownership of the file in question. This is made to prevent a file owner

to try to make a share request to itself, which would violate the business rules of the platform.

With the resourceId the resource server generates a share request and saves it to the database.

This share request includes the resourceId, the delegatorId and the delegateeId as well as a status

that by default is set to pending.

Implementation 84

Figure 6.6: Access delegation flow - Alice answers the share request

Now that Bob made the access request to the file, Alice is now capable of answering the share

request (see Figure 6.6). This answer can have two outcomes, depending on whether Alice accepts

or declines the share request two distinct processes are performed:

• Accept scenario — In the case of Alice accepting the request, it is generated the re-

encryption key needed for the proxy to re-encrypt the capsule and further allow Bob to

decrypt the file using his private key at a later stage.

The generation of the re-encryption key fragments implies the use of Alice’s secret key. This

is the reason why the request is not made to the proxy server directly, since it is assumed

that it is not trusted. Thus, it is not desirable that the secret key is manipulated by that server.

Along with the secret key, Bob’s public key and a signature using a signing key pair from

Alice are needed, this signing key pair will be useful to validate the signature of the Kfrags

and Cfrags at a later stage. Finally, the threshold, which defines the minimum number of key

fragments needed to decrypt the capsule, and the number of shares (number of re-encryption

key fragments that are going to be outputted) are also required.

The result of this process is the Kfrags which are sent to the proxy along with a shareId,

which binds the re-encryption key to a specific share request so that the proxy is now

equipped with the tools needed to delegate the access to Bob when it retrieves the file. Fi-

nally, the share request is updated with an accepted status and an expiration date arbitrarily

defined by Alice.

6.1 Business Logic 85

This expiration date is optional and represents the revocability aspect of the implemented

solution. A patient can choose between sharing the request indefinitely or temporarily,

meaning it can set the date until the EHR is available to the health professional or entity

if he wishes to do so, being the share request deemed as expired and the access revoked

automatically through the use of a cron job, after transposition of that date.

• Decline scenario — In case of a decline scenario, the share request is updated with a de-

clined status and no other action is performed.

Independently of the scene that takes place the resource server responds to the client with the

result of the share request, so that the client app can update its User Interface (UI).

Figure 6.7: Access delegation flow - Bob retrieves the file

With the re-encryption key and an accepted request, Bob can now retrieve the file (see Fig-

ure 6.7). To fulfil the request, the resource server needs to be fed Bob’s secret key and the target

resourceId, which identifies the file to be retrieved.

With that information the resource server fetches the file information from the database, fol-

lowed by an ownership verification. This validation is performed always, independently of the

Implementation 86

user that requests the file since the owner has no need to re-encrypt the capsule. Depending on if

the actor performing the operation is a data owner or not the following will happen:

• Data owner — In case of the file is being retrieved by the data owner, the same is decrypted

using the data owner’s secret key being, therefore, a traditional case of hybrid encryption.

With that, the plaintext content of the message is obtained and the file together with the

remaining metadata is returned in the response to the client.

• Not a data owner — In case of not being a data owner, a re-encryption process needs to

happen. For that, Bob needs to ask the proxies or Ursulas to apply re-encryption over the

capsule in order to be able to decrypt the ciphertext using just his private key.

The resource server sends the capsule retrieved previously with the rest of the file informa-

tion to the proxy server. In turn, the proxy retrieves the re-encryption parameters associated

with the shareId of the file in question.

Before performing the re-encryption over the capsule, the Kfrags need to be verified using

Alice verifying key in order to guarantee that there was no tampering or manipulation while

stored or during transmission. Having the re-encryption key fragments verified, the re-

encryption is applied over the capsule.

This process results in the capsule fragments (Cfrags), which are returned to the resource

server so that Bob can decrypt the file.

Before Bob decrypts the file, a last verification needs to be done. Similar to the signature

verification of the Kfrags, the capsule fragments also need to be verified to ensure they were

not tampered with while being transmitted back to the resource server.

Upon successful verification, Bob can finally open the capsule, meaning it can decrypt the

information in the file ciphertext using the Cfrags, Alice’s verifying key and its own private

key.

With this, the resource server returns the file content to the client and the remaining meta-

data.

Some aspects to consider are the fact that the secret key of both of the ends of the sharing

process, in this case, Alice and Bob, are never shared with the proxy itself.

Another consideration is that the proxy is only provided with the re-encryption key, which

means it cannot decrypt the information on its own without knowledge of Alice’s secret key. The

secret key is not provided to the proxy at any point, eliminating the need to trust it.

Last but not least, the database only stores the re-encryption key for the proxy, the capsule

and the ciphertext content of the file. Therefore it cannot retrieve the plaintext content of the file

without Alice’s secret key. In case of a database leak, the content of the file is still safeguarded.

6.1 Business Logic 87

6.1.5 Supporting emergency or inability situations

The need for a health-related platform to support emergency situations is paramount as previously

discussed in Section 3.4. Regarding the delegation of access to a particular EHR, it requires the

consent of the patient at all times.

In situations where the patient is unable to take action to allow access to a specific record

essential for their treatment, it is necessary for the platform to enable health professionals to ac-

cess it on behalf of the patient, the so-called break-glass. However, this requires some security

considerations to ensure that this mechanism is not abused.

To this end, three possibilities were considered:

1. Having family members registered in the system to act as trusted contacts/entities

2. Providing a security code to a set of trusted contacts/entities to be used to re-encrypt the

information on behalf of the patient.

3. Having a trustworthy entity that does all the management and authorisation in emer-
gency scenarios

The first possibility introduces a challenge, namely that the family member needs to be reg-

istered in the platform, which might not be its will. Besides that, relying on an individual might

have unexpected outcomes, since it might be unavailable during an emergency.

The second alternative contemplates the generation of a security pin, which is sent to trusted

contacts or entities selected by the patient. This pin serves as proof that a particular user can act

on behalf of the patient.

In the previous scenario, there are still entities that have constant access to medical records

by using the code provided by the patient. However, in this case, the entities can only access the

data of patients that trust them, resulting in less information available to them. This distribution

of power among more entities can help limit the amount of compromised information in case of

malicious intent. This is because the entity is only able to access a subset of information and

not all the information available in the platform. Additionally, registration on the platform is not

necessary; only an email is required.

Since this was the most prominent solution at the time, and in an attempt to eliminate trust in

a single entity, a deeper study and proof of concept were implemented to test how this mechanism

would work.

To enable such a mechanism, where file access is granted only during emergency scenarios and

upon explicit request from a health professional or entity, the system needs to store the patient’s

private key. This is necessary because the system cannot anticipate when autonomous access

delegation will be required.

Given its sensitivity, there was a need to safeguard the private key. The idealised solution, as

shown in Figure 6.8, contemplated the initial registration of a set of trusted contacts of the patient,

to whom the security pin would be sent as soon as it was generated. This was a random pin of an

arbitrary size composed of digits between 0-9.

Implementation 88

Figure 6.8: Emergency scenario delegation flow

After the generation of the security pin, the same would be sent by email to the trusted contacts

which would become responsible for securely storing it.

If an emergency situation occurred, the healthcare professional would ask one of the trusted

contacts for the security pin and enter it into the platform. This pin along with a randomly gener-

ated salt, to ensure that no two hashes are identical, produced a derivative key through a KDF that

could subsequently be used to encrypt the patient’s secret key.

The encryption would be done using a symmetric key implementation with authenticated data

through the module Fernet2 provided by Python’s Cryptography package, using as base AES-128

in CBC mode with SHA256 HMAC message authentication code.

With the previously generated derivation key and the plaintext data, an encrypted version of

the patient secret key would be returned.

By having the encrypted secret key of the patient, the system would now have the necessary

tools to autonomously delegate access, requiring only the security pin provided by trusted contacts.

Focusing on a hypothetical emergency situation, if there was a need for access by a health

professional, it would have to introduce the security pin provided by the system when registering

the contacts of trust on the part of the patient. This code together with the salt stored in the

database would permit the KDF to compute the hash used as the derivation key and, if the password

matched, the output would be equal to the derivative key used to perform the encryption.

With this information, the system had in its possession the derivation key needed to decrypt

the encrypted secret key and obtain the plaintext version. This would enable the system to have

2https://cryptography.io/en/latest/fernet/

https://cryptography.io/en/latest/fernet/

6.1 Business Logic 89

access to the secret key of the data owner, meaning it could proceed to re-encrypt and consequent

delegate access to the medical record in question.

Although this alternative was promising, it was deemed infeasible due to several factors.

The first one is the need to rely on external contacts for the success of this mechanism, which

was a problem that the previous alternative already had. Assuming a hypothetical scenario where

none of the contacts was available would undermine the whole purpose and effectiveness of this

mechanism since the access would remain to be granted or could be given later on, which could

be too late depending on the type of emergency.

Another concern was the security pin. Having the safeness of Alice’s secret key safeguarded

solely by a numeric pin presented low randomness and entropy. Besides that, the generated pin

would be the same for every emergency contact assigned to a given patient, meaning the emer-

gency contacts would now have the power to access all the files of the patient they are tied to. This

is true because they would possess the pin that enables access to Alice’s secret key.

This can pose several concerns, namely in the context of a compromised contact. Since these

might be individuals and not proper organisations, there is no fail proof way of enforcing measures

and restrictions regarding how the information is treated.

Finally, there is the revocability aspect of this mechanism. In case the patient needed to revoke

access to an emergency contact, a new pin was required to be generated for every contact assigned

to that patient since the pin is the same for every contact of a given patient, and it is not possible

to revoke the current one due to the fact that it lies in the personal email of the emergency con-

tact. It also would imply performing the whole encryption process described previously due to its

dependence on the pin.

This would be an inconvenient process, since now there would be multiple emails with differ-

ent pins that could cause confusion when it came to the selection by the emergency contact and

other management issues.

With that in mind, the last alternative was the one that was definitively implemented as a

break-glass approach.

This approach figures a central trustworthy entity which manages all the access and authorisa-

tion in a break-glass scenario. This introduces some concerns, mainly in the amount of power that

this entity possesses, being able to access all the files of all the patients at any point. Neverthe-

less, after a thorough examination of the alternatives, this was deemed as the most fitted solution.

Besides that, this paradigm is already present in other health systems, and with proper regulations

and audits, it is possible to have a sane amount of trust in an entity of this kind.

As a result, the idealised solution figures a trusted entity, which is assumed to be a governmen-

tal entity responsible for handling these types of issues and which has full access to all the files

submitted in the platform.

The implementation is very similar to the business logic present in the scenario depicted in

Figure 6.6. The difference is that there is no need for acceptance of a share request. The following

business logic is performed when the file is uploaded, allowing the trusted entity to have access

out of the box without requiring any additional or special interaction from the patient.

Implementation 90

When a patient uploads the file, in addition to the encryption and persistence process detailed

in Section 6.1.4 and Figure 6.4, a re-encryption key is generated and stored by the proxy for further

use when the trusted entity needs to retrieve the file.

This way, every time an emergency or incapacity scenario occurs, there is always an entity with

instant access to the information needed to treat a given patient irrespective of their condition.

Regarding the retrieval of the file, the process is the same as a regular retrieval from a patient

or health professional.

As it was possible to observe, this implementation remains the most fitted and less invasive

when it comes to the interaction with external actors. The ability to have a trusted entity dedicated

to the purpose of managing access in emergency situations vastly reduces the dependency on

external actors, thus increasing the reliability and availability of this last approach. Also, this

solution allows the reuse of most of the business logic already implemented, meaning less code

and thus lower maintainability and overall complexity.

6.1.6 Data Modelling

Concerning data modelling (see Figure 6.9), the overall data can be organised into four main

entities: Share, Resource, Re-encrytion Params and User.

• Share - This entity stores the relationship between users, resources and share requests.

Each share request has associated a unique user identifier user_id of the delegator and the

delegatee as well as the status and expiration time if applicable.

• Resource - The resource entity contains the content and some metadata of the EHR as well

as a user_id which indicates which user owns the file.

• User - This entity holds user-related data such as the name, email, hashed password, public

key and a verifying key for signature verification purposes, as well as the roles to which the

user is tied to.

• Re-encryption Params - The re-encryption params entity contains the parameters needed

for the access delegation and re-encryption operations such as the re-encryption key frag-

ments. Each set of key fragments is associated with a unique share request identifier

share_id which binds the kfrags to a unique share request.

Regarding constraints, each resource can participate in multiple share requests at a time. Nev-

ertheless, each share request is tied to only one resource, delegator and delegatee, at a time, mean-

ing a share request can only be requested once for a given file, delegator and delegatee, while the

status is pending or accepted. Once revoked or rejected, a new share request can be made.

Users can own multiple resources and participate in multiple share requests at a time. Regard-

less, a resource can only be owned by one user.

Re-encryption parameters can be tied to only one share request, and in a similar manner, a

share request can only have a set of re-encryption parameters.

6.1 Business Logic 91

Figure 6.9: Entity Relationship Diagram

6.1.7 Middleware

Middleware functions consist of operations that intercept and process requests and responses.

They lie on the boundary between the client and the server and are responsible for performing

tasks such as authorisation, validation, error handling and logging.

These middleware functions are used for two main purposes in the context of the conceived

solution: authorisation and validation. Regarding authorisation, two middleware functions were

developed: is_authenticated() and is_role().

The first one retrieves the JWT token from the authorisation header and checks it against sig-

nature, issuer and expiration. The second one also retrieves the JWT token from the authorisation

header and sends a request to the authorisation server to validate if the roles presented in the token

are still valid for the given user. This is because the tokens are valid for a couple of minutes, and so

the roles’ information inside the token can become outdated. That is, a role is revoked in between

those couple of minutes. This middleware ensures the roles are in sync with the information stored

in the database.

If so, the role is then checked against the list of valid roles for the route the request was made

to, ensuring the user has the proper permissions to perform the operations.

Regarding validation, the is_file_safe() middleware validates the file’s content. Supported

by the library File Validator3. This middleware function checks the file’s declared content type

with the actual content type. To do so, the content type header is extracted from the request and

compared against the content type resulting from the evaluation performed by the library. This

3https://pypi.org/project/file-validator/

https://pypi.org/project/file-validator/

Implementation 92

library performs validations using techniques such as the Multipurpose Internet Mail Extensions4

(MIME), the extension, size and magic numbers. All of those validations are performed, resorting

to other libraries provided within the main library.

With this it is possible to ensure that, for example, a file inserted as an image is actually an

image, eliminating the need to blindly trust the extension of the file or the content type header,

which can both be easily manipulated by a malicious user.

6.1.8 API Routes

This section is dedicated to presenting the different API route groups as well as the HTTP methods,

paths, and roles performed by each route. In FastAPI, each route is associated with a method re-

sponsible for performing a given operation. Moreover, each route has a similar structure, defined as

follows: https://<host_ip>:<host_port>/<route_group>/<route_name>. The route_group clus-

ters requests by subject, in this case (Auth, Resources and Share) further elaborated in Sec-

tions 6.1.8.1, 6.1.8.2 and 6.1.8.3 respectively, followed by the route_name, which can be anything

from a name to a resource identifier.

Furthermore, each route must also have an HTTP method associated, which dictates the type

of CRUD operation to be performed. This is a key factor in ensuring conformity with the REST

principle as stated in Section 6.2.

6.1.8.1 Authorisation/Authentication Routes

The authentication/authorisation routes, depicted in Table 6.1, are responsible for performing all

the operations related to authorised access to the APIs consumed by the client.

They perform operations related to issuing, revoking, verifying and validating the tokens.

Table 6.1: Authorisation/authentication routes

HTTP Method Route Endpoint Role
POST /auth Login
POST /auth/verify Validation of the access token claims
POST /auth/refresh Issues a new pair of tokens
POST /auth/logout Logout

6.1.8.2 Resource Routes

Resource routes (see Table 6.2) are responsible for handling operations related to resources. From

file uploads to file lists retrieval, details and file downloads, all are managed by the endpoints in

this group.

These routes group’s main purpose is to assist the operations requested by the client and to

feed data to the UI presented in the client-side application (see Section 6.2).

4https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types

6.2 Presentation Logic 93

Table 6.2: Resource Routes

HTTP Method Route Endpoint Role
GET /resources Get all the resources owned by a user
GET /resources/shared Get all the resources shared with a user
POST /resources/upload Manage file uploads
POST /resources/:resourceId Retrieves a file with a given resourceId
POST /resources/:resourceId/download Allow the download of a file with a given

resourceId
GET /resources/:resourceId/details Retrieves the details of a file with a given

resourceId

6.1.8.3 Share Routes

This group of routes, illustrated in Table 6.3, is responsible for creating and managing the accep-

tance and declining of share requests, as well as facilitating joint operations between the resource

server and the proxy server to perform access delegation through proxy re-encryption. It is vital

not only for the communication between the client and the resource server but also possesses a

crucial role in the business logic of the platform since it relies on the operations defined in this

group of routes.

Table 6.3: Share Routes

HTTP Method Route Endpoint Role
GET /share/requests Get all the share requests where a given user is

delegator or delegatee
POST /share/resource/:shareId Create a share request for a resource with a given

resourceId
PUT /share/request/:shareId Manages the request acceptance of a given re-

quest by shareId
DELETE /share/request/:shareId Revokes access to a file associated with a given

shareId
POST /share/reKey Stores the re-encryption key
POST /share/reenc/:shareId Re-encrypts the capsule using the re-encryption

key fragments bound to a given shareId

6.2 Presentation Logic

This section is dedicated to formalising the client-side application of the EHR sharing platform.

A brief introduction of the frameworks used as a basis for its development will be made, as well

as the different pages and their function, the different components that compose each of the pages

provided by the client-side application and an approach to the state management solution used.

Implementation 94

6.2.1 Client-side Application

The client-side application is essential for the proper interaction between a patient and a health

professional. This component enables a user-friendly interface to interact with the business logic

presented in the resource and proxy server.

Next.js5 framework was chosen for this purpose. It uses React under the hood and presents

itself as an all-in-one solution for web development. It brings all the advantages present in React,

such as component-based development, Javascript Syntax Extension (JSX) and performance en-

hancements, particularly with the use of a virtual Document Object Model (DOM) instead of the

actual DOM provided by the browser.

Next.js works on top of those functionalities, bringing features such as file system routing,

which eases the structuring of the clients-side routes by following the paths defined in the actual

folder structure of the source code.

Furthermore, it also features automatic code bundling and code splitting in smaller chunks,

meaning as the project grows larger more granularity is achievable concerning which blocks of

code are downloaded to the browser, thus reducing the bandwidth needed to render the page layout

and client-side operations.

Still, performance-related improvements include enhanced compiling and bundling using tech-

nologies such as TurboRepo6 and Speedy Web Compiler7.

In terms of UI design and styling, a Cascading Style Sheets (CSS) framework like Tailwind8

was paramount for faster development of the User Experience (UX) and overall look and feel of

the client-side application.

Above all, the adopted frameworks mentioned in this section aim to ease and assist the client-

side development process, and setup improving faster development periods, enforcing better web

development paradigms and overall improvements to the end user.

6.2.2 Pages

This section is dedicated to briefly detailing each page present in the client-side application. The

navigation between pages can be seen in Figure 6.10.

6.2.2.1 Login Page

The Login Page (see Figure A.1) is responsible for performing the authentication of a given user.

This page possesses a form where the user must introduce his credentials (email and password).

These credentials are then sent to the authorisation server using the designated endpoint. Depend-

ing on the HTTP status code and the role claims present in the token returned from the API, the

user will be redirected to the MyFiles or SharedWithMe Page according to his role.

5https://nextjs.org/
6https://turbo.build/
7https://swc.rs/
8https://tailwindcss.com/

https://nextjs.org/
https://turbo.build/
https://swc.rs/
https://tailwindcss.com/

6.2 Presentation Logic 95

Figure 6.10: Client-side application navigation flow

In case of wrong credentials, the user will have to re-insert his credentials again in a new

attempt.

On the other hand, in case of a successful login, the pair of tokens as well as user information

returned from the authentication endpoint is stored in a state for further use throughout all the

pages in the platform.

Likewise, this information is also persisted in the browser in order to retrieve the information

when the state gets lost between page refreshes.

6.2.2.2 MyFiles Page

The MyFiles Page (see Figure A.2) displays all the files a given user uploads, presenting a view of

the type of each file and the name.

In case the user selects a file, it will be redirected to the Resource Page for a more complete

visualisation of the file.

This page also allows uploading a file using the drag and drop feature, where PDFs and image

files are supported (see Figure A.3).

Once the file is loaded into the form and submitted, the user is presented with a progress modal

which gives some feedback regarding the progress of the file upload.

According to the end result of the upload (successful or failed), a feedback icon is displayed

to the user.

Implementation 96

6.2.2.3 Requests Page

Requests are one core feature of the platform presented in this work. This page is accessible to

both patients and health professionals, where information such as the issuer, the filename, the file

type and the status of a given share request is displayed (see Figure 6.11).

Each request also contains controls to accept, reject or revoke at any time a share request,

being only available for the patient role which owns the files.

In case a user wants to accept an EHR, an additional form is also displayed in case the user

pretends to add a time constraint to the access delegation as depicted in Figure A.5.

When a new request arrives or is updated, the requests list is updated accordingly using HTTP

polling.

Figure 6.11: Requests Page UI

6.2.2.4 SharedWithMe Page

The SharedWithMe Page (see Figure A.7) displays all the files shared with a health professional,

therefore being a Page accessible only to health professionals role.

This gives an overview of the files a patient gave access to. It is similar to the layout used in

the MyFiles Page and also redirects the user to the Resource Page for further details on the content

of the file.

6.2.2.5 Resource Page

The resource page depicted in Figure 6.12 is another page that is vital for the platform. This page

is accessible for both a patient and a health professional in case they have permission to access the

file, and is also responsible for rendering the content of the file that needs to be displayed.

It also provides controls for downloading and expanding the details of the file in question.

Regarding the details, they include the filename, the content type, created date, and a list of

users who have access to the file. This list is only available to the file owner.

6.2 Presentation Logic 97

Figure 6.12: Resource Page UI

6.2.2.6 Profile Page

The profile page (see Figure A.8) is also available for all types of users and it is a simple layout

presenting the basic information of a given user namely the name, email and roles associated with

it.

It also provides the ability to introduce the secret key and signing key needed for encryption

operations.

6.2.3 Components

Components are reusable blocks of code that might or not be re-used for different purposes inside

an application. The choice of using a component-based paradigm in the client-side application is

strongly motivated by the inherent nature of a component-based architecture enforced by React.js.

Although the client-side application portrayed in this work does not possess high complexity

when it comes to the structuring of the layouts and the number of needed elements, the separation

of key elements into reusable components prevents code duplication and improved scalability and

maintainability in the future when new features are developed or extended.

With that in mind, Table 6.4 presents the different components, their placement in the different

pages already discussed in Section 6.2.2, and a brief description of the role played in the UI.

Implementation 98

Table 6.4: List of UI Components

Component
Name

Used in Description

Navbar MyFiles Page

Requests Page

SharedWithMe Page

Resource Page

Profile Page

Features all the navigation links provided

by the platform aiding the user in navigat-

ing between pages

RequestResultsItem Requests Page This component is used to display each re-

quest details in the requests results list pre-

sented in the Requests Page. Includes con-

trols for accepting or rejecting requests if

applicable

ResourceCard MyFiles page

SharedWithMe Page

Used in MyFiles and SharedWithMe page,

due to the similar design of the UI, this

component is responsible for displaying

brief details about each file, namely the con-

tent type and the name.

SearchResultsItem SearchBar

component

This component is used to display each

search result detail in the SearchBar

component.

SearchBar MyFiles Page

Requests Page

SharedWithMe Page

Resource Page

Profile Page

The SearchBar component is used for per-

forming searches and displaying search re-

sults of the files stored in the platform.

SharedListItem Resource Page This component is present in the Details

section of the Resource Page. It displays the

basic information of a file to the delegator

concerning with whom a certain resource is

shared.

Continued on next page

6.2 Presentation Logic 99

Table 6.4: List of UI Components (Continued)

StatusItem Requests Page Responsible for showing the status of

a given request in the Request Page

and RequestResultItem component. Since

this component has different statuses and

colours, a reusable component reduces the

duplication of code.

SubmitFileForm MyFiles Page Form is responsible for the upload of the

file. Features drag and drop capabilities as

well as controls for closing the form.

SubmitFileRequestForm Requests Page Form presented when accepting or rejecting

a share request in the Requests Page

UploadProgressModal MyFiles Page Modal responsible for giving the user feed-

back on the upload status of the file. It

shows loading, success and failed states in

order to keep the user updated all the time

throughout the upload process.

6.2.4 State Management

State management is one the most prominent tasks in a React application, being also one that can

become difficult to handle once there are multiple components and complex states that need to be

shared across multiple components.

One of the paradigms recommended by React itself is "lift the state up". This means that the

state should always be managed by a parent component instead of residing in the child compo-

nent so that, in case a new component needs that state, it just needs to add a child of the parent

component to access the state.

Nevertheless, there are occasions where multiple components are nested in other components,

meaning the state needs to be passed all the way from the parent node to the child leaf node. This

increases complexity in the code because it generates dependency between components since the

props need to be passed throughout the whole tree of components, the so-called "prop drilling"

(see Figure 6.13), and also might promote the passing of props between components that do not

need them, resulting in some unnecessary component updates.

To solve this issue some known libraries, like Redux9 and the Context API10, try to minimise

the problem as further detailed in Section 6.2.4.1. Regarding the choices that were made, the

Context API was the chosen one mainly because it suffices for the complexity of states that need

to be kept across pages. Since the majority of the states kept across pages are user information

related, Redux was deemed as a bit over the top for the platform in question.

9https://redux.js.org/
10https://legacy.reactjs.org/docs/context.html

https://redux.js.org/
https://legacy.reactjs.org/docs/context.html

Implementation 100

Figure 6.13: Prop drilling in State Management (React)

6.2.4.1 Context API

As stated in the previous section, state management in React might become a waterfall of props

being passed between the parent and child components.

To solve this issue React developed an API that introduces the concepts of context, provider

and consumer.

The context is responsible for holding the state data and the provider is responsible for man-

aging and creating the context. The consumer on the other hand is responsible for as hinted by the

name, consuming and retrieving the state of the context provider.

Making a parallelism with the platform present in this work, on successful login, the user data

and pair of tokens are stored in AuthContext.

When a page or component needs to access user information it just consumes it invoking the

previously mentioned AuthContext.

This way, the state can be kept in the parent component and accessed by all the children

components directly.

Chapter 7

Evaluation, Testing and Validation

Conducting evaluation, testing, and validation of the developed solution is crucial to ensure that it

aligns with the intended design, accomplishes the desired objectives, and works as expected.

This chapter details the evaluation methodology and the tests carried out on the solution pre-

sented in this study, as well as the obtained results and a discussion of their implications.

7.1 Security Evaluation and Risk Assessment

In order to evaluate the solution, a security analysis was conducted to assess the vulnerabilities of

the system at points with a broader attack surface and potential for higher rewards when success-

fully exploited. These points are more likely to be targeted by malicious attackers. It is crucial to

make a detailed evaluation of the advantages, disadvantages, and trade-offs of each decision made

for addressing the security of these points.

In the solution outlined in this work, the three main attack vectors are the authentication/au-

thorisation mechanisms, the server-side logic, and the client-side application.

7.1.1 Authentication and Authorisation

Authentication and authorisation rely on JWT tokens to grant access to the APIs that support the

developed platform. Token-based authentication has gained popularity in recent years and has

been widely adopted in web applications. This methodology offers several advantages when com-

pared with a session-based authentication mechanism, namely in terms of scalability. Traditional

sessions imply keeping a session for each user in memory on the back-end server, while JWTs are

self-contained, meaning they possess all the information on their own to authorise a given user.

With JWTs, the responsibility of storing the token shifts to the client, eliminating the need for

database queries or persistent storage on the server side.

Additionally, these tokens are also signed using SHA256 in our implementation. This means

that the information contained in the tokens can be seen, but cannot be tampered with or manip-

ulated. Consequently, the token and its information can be trusted as long as the secret key used

for signing the token is not disclosed. Although other types of tokens encrypt the information

101

Evaluation, Testing and Validation 102

they contain such as the so-called JSON Web Encryption (JWE) as described in RFC75161, it was

determined that encrypting the claims within the tokens was unnecessary for the specific use case

of this platform since the claims do not contain sensitive information.

Session-based authentication, on the other hand, is stateful and overall easier to implement.

The basic premise is to store session information on the server temporarily and attribute a unique

session id, which is then sent to the client in a cookie for further requests.

We chose a token-based approach for the APIs developed for the business logic because it

aligns well with the REST paradigm. To ensure its effectiveness, we conducted a comprehensive

analysis of the potential drawbacks and vulnerabilities associated with a token-based approach

compared to a session-based one. We also implemented appropriate measures and mitigation

techniques to address these concerns.

One of the downsides of using a token-based approach, when compared with a session-based

one, is revocability. In a token-based system, once a token is issued and as long as it remains

valid and signed with a specific secret key, it can be used by the user. This creates a potential

vulnerability if a malicious attacker gains access to the token.

In order to mitigate this and thus reduce the risk of a theft scenario, two mechanisms were

implemented as stated in Section 6.1.3: token-reuse detection and refresh token rotation.

Refresh token rotation enables the issuance of a new pair of tokens each time the access token

expires, thereby providing enhanced security. Since the access token has a short lifespan, typically

a few minutes, even if a refresh token, which has a longer lifespan, is stolen, the potential for an

attack is significantly reduced. This is because both the refresh token and the access token are

rotated every couple of minutes, minimising the likelihood of a successful attack.

However, it is important to note that the rotation mechanism is effective only when combined

with the invalidation of expired tokens. Even if the refresh token is rotated, it remains valid until

it reaches its expiration time and retains a valid signature. This means that if an attacker manages

to steal the token before the rotation occurs, they can still utilise it.

With that in mind, there is a need to introduce persistence to accommodate the aforementioned

safety mechanisms, namely storing a blacklist or whitelist of tokens. A blacklist of tokens holds

expired tokens that have been rotated and thus should not be further used. On the other hand, a

whitelist of tokens keeps all the valid refresh tokens for a given user.

The decision to follow a whitelist approach was made due to its ability to facilitate the manage-

ment of multiple tokens across different devices, allowing for both granting and revoking access.

Portraying a scenario where a user logs in on two devices, the same has two refresh tokens,

one per device. If one of the devices is stolen, the user has the ability to revoke the corresponding

token since, with a whitelist approach, all the valid tokens are known. Consequently, it is possible

to revoke the entire set of tokens issued for that user and prevent unauthorised access.

Using a blacklist of tokens would not be possible to achieve such a feat since only revoked

tokens are tracked. This is because, in such an approach, only revoked tokens are monitored

and tracked. Consequently, if a token is stolen, it can not be revoked because its value would

1https://datatracker.ietf.org/doc/html/rfc7516

https://datatracker.ietf.org/doc/html/rfc7516

7.1 Security Evaluation and Risk Assessment 103

be unknown. Therefore, implementing a logic that could invalidate the stolen token would be

challenging.

Session-based approaches are not free from similar scenarios, and theft is still possible through-

out attacks such as session fixation, which hijack the user session id through some other vulnerabil-

ities such as CRLF injection2, Man-in-the-Middle3 (MITM), Cross-Site Scripting4 (XSS), Social

Engineering and others. This requires further measures to prevent this attack, namely in how

cookies are configured and ensuring other vulnerabilities are not present.

The whitelist approach, regarding token-based authentication, also supports the token reuse

detection, which acts as an anti-theft measure. This detection mechanism checks if the refresh

token sent in the request is part of the validly issued tokens whitelist. If there is no match and the

token is correctly signed and valid, it is assumed a case of reuse attempt, considered a suspicious

activity.

In order to safeguard the platform and keep in mind the sensitivity of the information it handles,

when a case of this kind is detected, the whole family of tokens for a given user is deleted. This

forces the user to re-authenticate on all devices.

Using such mechanisms slightly defeats the true stateless approach of JWTs and token-based

authentication. Nevertheless, the same is needed for proper security and to further reduce the

attack surface area in this kind of authentication scheme.

Still, regarding keeping the state of the tokens and focusing on the storage safety of the same

in a database, one could argue that keeping the valid tokens in a database might pose a risk in case

of database leakage.

However, it is important to note that databases are also susceptible to data breaches, which

means that storing valid tokens can be risky. Nevertheless, valid tokens can be easily revoked in

order to recover from the situation. A possible solution to not store the tokens in plaintext could be

hashing the refresh tokens before persisting them into the database. When there is a requirement

to verify a token against a whitelist, the token provided by the client should be hashed and then

compared to the collection of hashed refresh tokens stored in the database. Since hashes are one-

way functions, even if the tokens are exposed, the content of the same could not be retrieved.

Considering the likelihood of someone’s token being stolen and the potential for a database

leak, the probability of the latter is lower because the token resides on the client’s side. However,

various factors can still raise the chances of token theft, such as social engineering attacks and

similar threats. For these reasons, adopting a whitelist approach was considered the most suitable

solution.

Regarding the authentication process in the sense of checking user credentials prior to tokens

issuing, the same is a traditional email/password sign-in.

Each time a user logs in, his email and password are checked against the records stored in the

database. Regarding the safety of the passwords, the same are hashed using bcrypt (Provos and

2https://owasp.org/www-community/vulnerabilities/CRLF_Injection
3https://owasp.org/www-community/attacks/Manipulator-in-the-middle_attack
4https://owasp.org/www-community/attacks/xss/

https://owasp.org/www-community/vulnerabilities/CRLF_Injection
https://owasp.org/www-community/attacks/Manipulator-in-the-middle_attack
https://owasp.org/www-community/attacks/xss/

Evaluation, Testing and Validation 104

Mazières, 1999). This means that, in case of leakage, passwords are not compromised. Some con-

straints were also imposed concerning passwords, namely, forcing the user to choose a password

that has a minimum complexity and entropy (at least 8 characters long, containing at least one

uppercase letter, one lowercase letter, one number, and one special character).

On successful login, a pair of tokens are returned, the access token in the response body, and

the refresh token in a cookie with httpOnly and secure flags, to instruct the browser and the client

side application how to handle the cookie (in this case, ensuring the same cannot be accessed

through JavaScript and can only be transmitted through HTTPS). This ensures that the refresh

token cannot be stolen in case of an XSS vulnerability on the client side, and the cookie cannot be

stolen through MITM attacks (see Section 7.1.3).

7.1.2 Server-side logic

Regarding server-side vulnerabilities and mitigation techniques, user input is the most prominent

source of possible exploitation.

User input must be validated and should never be trusted in any scenario. With that in mind,

every user input in each request is data typed using Data Transfer Objects (DTOs). This helps to

prevent scenarios where exceptions may arise due to a mismatch between the expected data types

for a method and the data type provided by the user. By doing so, it mitigates information dis-

closure attacks that exploit exceptions and errors generated on the server side to gather additional

knowledge about an application.

Another strand where enforcing correct data types is important is in preventing NoSQL injec-

tions when using MongoDB.

MongoDB, the technology that hosts most part of the stored data generated by this platform,

handles queries as Binary JSON (BSON) objects instead of strings. This means that traditional

SQL injections are not possible by default. However, there are scenarios where JavaScript-enabled

operators, such as $where, mapReduce and group, can be used and may introduce the possibil-

ity of SQL injections (MongoDB).

These operators are not used to construct the queries illustrated in this work. Furthermore,

as a result of data type enforcement, all user input is evaluated as strings before being passed to

queries. This means that Mongo always interprets the input as strings, eliminating the potential for

user input to be interpreted as query commands and preventing NoSQL injection vulnerabilities.

Special validations were implemented to mitigate the risk of uploading malicious files. The

content of the files is extracted and converted into bytes for encryption convenience. However,

it is necessary to validate both the file types and the file content in order to enforce the formats

supported by the platform. This helps prevent the submission of file types that the back-end logic

is not prepared to handle, as well as any files that may contain malicious scripts or code that could

be exploited or executed.

As mentioned in Section 6.1.7, a library was utilised for this purpose, which tries to determine

the content type of the file by conducting a series of validations and assessments on its content.

It relies on information such as MIME type, file extension, size, and magic numbers. This is

7.1 Security Evaluation and Risk Assessment 105

crucial because relying solely on the file extension and headers set in the request can be easily

manipulated by the client.

Although this is not a fail proof method for validating files against code injection vulnerabili-

ties, it is a step in the right direction.

Nonetheless, ensuring proper file validation and sanitisation is a difficult task due to the mul-

titude of file formats and the different ways that some malicious code can be embedded in files;

relying on the creativity of whom performs the attack, and so, more thorough validations could be

performed as future work.

7.1.3 Client-side application

The client-side application has a crucial role in ensuring the proper functioning of the entire system

by serving as a bridge between user operations and back-end services.

As the client operates in an environment accessible to all users, extra care is needed to prevent

any unintended errors or malicious actions that could compromise the system’s integrity.

When considering the impact on the system’s integrity, two main components come into play.

On one hand, it is essential to ensure that the data provided by the client does not compromise

the proper functioning and integrity of the back-end services. On the other hand, it is necessary

to safeguard scenarios where certain actions performed by a particular user may not pose a direct

threat to the back-end services but can harm other users. This includes client-side targeted attacks

such as XSS.

Ensuring proper data validation and sanitisation on the client side is crucial to improve user

experience.

Relying solely on client-side validation is a significant security vulnerability because every-

thing that runs on the client side is downloaded to the user’s device. Therefore, all the source code

can be manipulated as desired by anyone. In the client-side application of the solution described

in this work, basic validations have been implemented primarily for UI/UX purposes, aiming to

provide input guidance to the user and ensure an error-free experience. Server-side validations

have already been discussed in Section 7.1.2.

Regarding the second component, client-side targeted attacks can take various forms. Due to

the limited interactions and constrained user input imposed by the nature of the business logic,

which does not involve high-risk features like rendering source code or allowing arbitrary text

input through comments, the range of potential attacks is relatively limited.

The most obvious and common types of attacks that could occur, considering the nature and

features of the client-side application, would be JavaScript-leveraged attacks such as XSS and

CSRF.

When it comes to XSS, there are three main potential sources of attack:

• User input — A malicious user can create a harmful input or payload that, when displayed

in an HTML context, can be interpreted as code.

Evaluation, Testing and Validation 106

• Files code injection — Code injection in files is a known method for embedding malicious

scripts disguised as other types of files, hoping that they are executed as code.

• Third-party scripts or Content Delivery Networks (CDNs) — Certain functionalities are

supported by third-party scripts or dependencies and distributed over CDNs. Trusting the

origin of those same scripts and making sure they do not contain any type of malicious code

or backdoor can be a hefty task.

Bridging these three possible sources of XSS with the platform developed in this work, con-

cerning user input, there is server-side validation in place as stated in Section 7.1.2. However,

those validations are not intended to prevent and sanitize content for an HTML context, which is

the fundamental basis of an XSS attack.

The responsibility for sanitising and escaping lies with the party that performs the HTML

binding and rendering. In this case, since the client-side consumes a REST API and only deals

with JSON data in the responses, the server is not involved in the server-side rendering of HTML.

Therefore, it is not the server’s responsibility to perform this type of validation. Additionally,

performing escaping on both the server side and the client side can be problematic. It can result in

double-escaping, which may cause HTML entities to be displayed incorrectly. This can negatively

impact the user experience and make it difficult to understand the content presented to the client.

In order to mitigate XSS regarding user input, JSX5 was used. React JSX includes auto-

escaping features where everything rendered inside a certain context is interpreted as strings.

When using JSX to bind user input to HTML, it is possible to separate the HTML code from

the user input. Thus, all the data injected inside the HTML context is seen as text, eliminating the

possibility of being interpreted as Javascript code. Some special HTML attributes like src, href

which allow the use of the javascript: protocol, and some tags like iframe allow arbitrary

execution of Javascript, and thus, in this case, React escaping might not sufficient.

Regarding href attributes, no user input is passed to them. Instead, there are dynamic Uniform

Resource Locators (URLs) present in the client-side application. These URLs are populated with

unique identifiers that are generated server-side and do not rely on user input. As for vulnerabilities

related to src and iframe, they are also mitigated, as discussed in the following paragraphs.

File code injection vulnerabilities refer to the act of injecting code into a file. For example,

it is possible to inject JavaScript code or code in any programming language into an image by

manipulating its metadata. By inserting carefully crafted payloads into the Exchangeable Image

File Format (EXIF) data of an image, it becomes possible to execute the embedded code. However,

the success of this execution depends on the server configurations and how the browser interprets

the content type of the file.

Since file uploads are a core feature of the platform described in this work, some validations

are performed on them. These validations are performed using a dedicated library, as mentioned

in Section 6.1.7, and further elaborated upon in Section 7.1.2. The library applies a series of

transformations to the files to access their content.
5https://react.dev/learn/writing-markup-with-jsx

https://react.dev/learn/writing-markup-with-jsx

7.2 Performance Tests 107

For client-side mitigations, every file reaches the client as base64 encoded bytes. Together

with the content, additional metadata is returned in the response body, such as the file’s con-

tent type that needs to be rendered. This is needed since the response’s content type is set to

application/json, and thus, there is a need to hint to the client side as to how the file should

be represented when converted from bytes to the desired content type. Note that the content type

contained in the response is set server-side and based on the library evaluation that performs file

validation on upload, thus eliminating any user input or interaction.

This ensures that the interpretation of the file type comes from the back-end, which is assumed

to be safe, eliminating any guessing that may take place by the browser.

Finally, these objects are converted to a blob object based on the bytes and the content type,

and a temporary URL is generated using native browser methods. In the case of images, the URL

is then passed to the src attribute of an img tag. Since the browser itself generates the URL and the

back-end server sets the content type, no input of the user is needed for both the src and content

type of the image. This eliminates the possibility of code execution in the URL that is passed as

an attribute. Moreover, since the browser interprets the file based on the content-type set during

the conversion from Blob, even if there is code injected into the file, it should not be interpreted.

The same applies to PDF files with an exception. PDFs use iframe and embed tags in order to

be displayed. Since these types of tags can be used to run Javascript code, there could be or not be

a possibility of code injection, which would require further analysis in future work.

Last but not least, concerning third-party libraries and CDNs, the libraries we have chosen

are popular and open-source. However, ensuring their complete safety and the absence of any

malicious code would require a deep dive into the source code for each of these libraries. Such

an analysis falls beyond the scope of this thesis. Nonetheless, to reduce the risk of potential

vulnerabilities from external libraries and dependencies, a comprehensive assessment could be

conducted to evaluate them further.

Regarding CSRF vulnerabilities, they are mitigated by utilising CSRF tokens in requests that

involve cookies. This aims to prevent attacks that rely on the browser’s default behaviour re-

garding sending cookies automatically in every request. A malicious actor could forge a request

with the same parameters and, through a social engineering attack, unknowingly trick a user into

performing the request. Requests that do not rely on cookies do not need such protection since

all of them are manually attached by the client application, defeating the purpose of a cross-site

triggering of the request.

With that in mind, CSRF vulnerabilities are mitigated in the platform developed in this work,

as explained before.

7.2 Performance Tests

Performance tests are a crucial aspect of the platform developed in this work because of their

significance in a platform of this nature.

Evaluation, Testing and Validation 108

A health-related platform might be deployed in government infrastructures that lack optimal

hardware in terms of processing power. In addition, safeguarding this system for emergencies

must be supported in part by quick response times that allow swift access to information.

Given this, there is a need to evaluate the platform’s efficiency in terms of response times.

Thus, performance tests were developed for the key operations of the platform.

The main purpose of these tests is to make a quantitative assessment of the agility of the

developed platform when performing the most critical and computationally expensive operations

in a sub-optimal environment, as well as analyse the impact that a proxy re-encryption scheme

introduces.

Since there is not much information regarding the average response times, and, as far as we

know, there are no regulations, indications, or suggestions regarding satisfactory average response

times for this kind of platform, the analysis presented in this section is purely quantitative and

based on known factors and conditions.

In the end, a summary is presented to wrap up the results obtained and present an overview of

the conclusions drawn from the tests.

7.2.1 Testing Environment

Before conducting the tests, it is necessary to properly set up the testing environment. In order

to simulate production environment conditions, all the APIs were deployed in Microsoft Azure6,

using a Free F1 tier running Linux and Python 3.10.

This tier has basic specifications, but it is sufficient for simulating a production environment.

Additionally, since this is a health-related platform, in a hypothetical situation where it is adopted

by a governmental entity, it is expected that due to cost-cutting measures and financial restrictions,

it would be deployed in an infrastructure with sub-optimal resources and hardware.

With the testing infrastructure defined, the next step is to specify the testing tools that will be

used to execute the requests and measure the relevant parameters as required.

To conduct performance tests on the APIs, Apache JMeter7 was the chosen tool due to its

flexibility, amount of information provided, and the extensibility it conveys.

7.2.2 Results and Analysis

This section is dedicated to presenting the tests that were performed regarding the three key op-

erations of the platform presented in this work and the re-encryption process: (i) File Upload, (ii)

Accepting a share request, and (iii) File Retrieval. Additionally, We analyse the results obtained.

6https://azure.microsoft.com/
7https://jmeter.apache.org/

https://azure.microsoft.com/
https://jmeter.apache.org/

7.2 Performance Tests 109

7.2.2.1 File Upload

The first performance tests aim to compare how different file sizes affect the upload performance

of the files. In this case, the upload endpoint is responsible for encrypting the file using pyUmbral

and storing its content in the database.

Twenty runs were made for file sizes of 1 megabyte and 10 megabytes to perform the tests.

These values represent an average file size of a small document and a file ten times bigger for

convenience and scale purposes.

It is important to note that since medical records can have a multitude of factors that impact

their size, including the number of images, the type of exams, the output quality of the machines

performing those exams, as well as the patient’s history, it is difficult to estimate a median value

for file size, and so, it can fluctuate considerably.

Table 7.1 and Figure 7.1 present the results obtained during the test. It also provides a com-

parison of the time taken to perform each request in each run for both file sizes. Additionally, it

includes the percentage difference between the file sizes, indicating the increase in time from one

size to another.

Table 7.1: Performance Tests - File upload performance for different

file sizes

Runs File size (MB)

Difference (%)
#

1MB 10MB

Time (ms)

1 1391 4743 241%

2 1474 3694 151%

3 1112 4187 277%

4 1064 3482 227%

5 1118 3705 231%

6 1080 4252 294%

7 1187 4073 243%

8 1186 3590 203%

9 1108 4155 275%

10 1042 2796 168%

11 1164 3547 205%

12 1090 4127 279%

13 1054 3518 234%

Continued on next page

Evaluation, Testing and Validation 110

Table 7.1: Performance Tests - File upload performance for different

file sizes (Continued)

14 938 4314 360%

15 1260 3246 158%

16 1032 4214 308%

17 1196 4097 243%

18 1139 3321 192%

19 1341 3895 190%

20 1109 4437 300%

Overall, a tenfold increase in file size represents an average 239% increase in response time,

Specifically, the 1 MB file takes an average of 1154 milliseconds to be uploaded, while the 10 MB

files take an average of 3870 milliseconds.

Although a time of almost four seconds is not ideal considering the average response time

provided by a REST API, it must be taken into account that this operation performs encryption on

files and that the test was performed in an infrastructure with limited hardware. Considering this is

a non-critical operation in terms of performance, the waiting time is acceptable, given the weight

of the procedures performed to encrypt the file.

Figure 7.1: Performance Tests - File Size Uploads Bar Chart

One aspect to note is consistency across the tests. Generally, the performance remained con-

stant during the whole test sequence, which can be confirmed by the low standard deviation for

7.2 Performance Tests 111

both file sizes, 126 and 461 milliseconds, respectively. This means that the requests were per-

formed within the average and that there is no wide dispersion, thus increasing trust in the consis-

tency and reliability of the platform for this given operation.

7.2.2.2 Accepting a share request

Accepting a share request is a scenario of interest when it comes to evaluating the performance of

this platform.

This is not primarily because of the significance of this operation. Although it plays a central

role in the EHR sharing process, it does not require a critical response time. Instead, it serves as a

means to assess the performance of pyUmbral in terms of re-encryption key generation.

Considering this, a set of twenty runs (see Figure 7.2) were made to test the average response

time of a sharing request scenario.

In this sharing request scenario, the re-encryption key is generated for a given delegatee and

sent to the proxy server for storing purposes.

For re-encryption key generation purposes, a set of 20 shares were generated for each re-

encryption key with a threshold of 10 shares.

Also, particularly in this test case, there is no need to perform this test for different file sizes.

This is because the re-encryption process relies solely on cryptographic keys, and therefore, con-

ducting the test with different file sizes would not yield any additional benefits or insights.

Figure 7.2: Performance Tests - Re-encryption key generation time for each run

Moving on to the obtained results, as it can be seen from the bar chart presented in Figure 7.2,

and supported by the data presented in Table 7.2, on average the results did not vary significantly

across the twenty runs, which can be corroborated by the standard deviation of just 188 millisec-

onds.

Evaluation, Testing and Validation 112

Table 7.2: Performance Tests - Average time taken to generate the re-encryption key

Runs Average Time (ms) Standard Deviation (ms)
[1-20] 869 188

In terms of raw performance benchmarks, the average response time settled at 869 millisec-

onds. This is expected since the re-encryption key generation is a relatively simple operation that

depends only on cryptographic keys from both parties, the signature and the number of shares.

7.2.2.3 File Retrieval

This section aims to evaluate the impact of both PRE and file sizes on file retrieval times and how

these factors intertwine regarding performance. To conduct this study, a set of twenty runs were

made to simulate a file retrieval scenario. The tests were performed for both regular decryption

(the one that is performed by the data owner as explained in Section 6.1.4) and decryption with

access delegation using proxy re-encryption. In order to assess the impact of the same in larger

files, the tests were also performed for file sizes of 1MB and 10 MB.

Starting with an overview of the obtained results depicted in Figure 7.3 and Table B.4, the

process of file retrieval without proxy re-encryption took an average of 903 milliseconds for the 1

MB file and 2529 milliseconds for the 10MB file.

Regarding file retrieval with proxy re-encryption, a 1MB file took an average of 1245 millisec-

onds and 2877 milliseconds for the 10 MB one.

Figure 7.3: Performance Tests - Average Time Taken for File Retrieval

In terms of the impact of the PRE on file retrieval operations, directly measuring the difference

between regular decryption and PRE decryption for each file size corresponded to an average

increase of 342 milliseconds for the 1MB file and 348 milliseconds for the 10MB one, as depicted

in Figure 7.4.

7.2 Performance Tests 113

Figure 7.4: Performance Tests - Average Impact of PRE in Same Sized Files

The differences when directly comparing operations with different file sizes can be explained

by the fact that the only difference between regular decryption and PRE decryption is the re-

encryption process itself. This is due to the nature of the pyUmbral PRE scheme, where the

re-encryption is only applied to the key and not to the file.

With that in mind, it is easy to understand that since the symmetric key responsible for decrypt-

ing the file has the same length in both scenarios, and the file size is also the same, the difference

between the values lies in the overhead of the roundtrip performed between the resource server and

the proxy server. This roundtrip is necessary to request the Cfrags for further decapsulation, as

well as to perform signature verification steps for the Cfrags and Kfrags. However, when it comes

to the final step of symmetric key decryption, this process is common to both regular decryption

and proxy re-encryption scenarios. Therefore, no difference should be expected in either scenario.

This same behaviour is observable when comparing directly the time taken for regular decryp-

tion between both file sizes and PRE decryption for both file sizes and seen in Figure 7.5. The

regular decryption between file sizes of 1MB and 10MB reflected an average increase of 1626

milliseconds for a regular decryption process, followed by a similar 1633 milliseconds increase

for the PRE decryption process.

Again, the marginal average time difference between comparisons corroborates that the PRE

operation itself has a minimum impact on the file retrieval process. The only factor influencing

the process is the additional processing required due to the file’s size.

These differences reflect a 196% increase for the regular decryption and 133% for the PRE

decryption, which is expected due to the tenfold increase in file size. These increases are expected

because the file size has increased tenfold. The time difference includes both fetching the file from

the database and the actual decryption process. It should be noted that other elements involved in

the decryption process, such as the capsule and the symmetric key, have the same length for both

regular and PRE decryption and therefore do not significantly contribute to this time difference.

Evaluation, Testing and Validation 114

Figure 7.5: Performance Tests - Average Impact of PRE in Different Sized Files

7.3 Final Remarks

This chapter started by making a security evaluation and risk assessment of the three main compo-

nents of the platform described here, where each one of these components has been the subject of a

detailed review of possible attack vectors, along with the implementation of mitigation measures.

As could be seen, most common vulnerabilities and attacks have been addressed, but some of

them need further analysis to be sure they are fully mitigated. This is obviously due to the diverse

range of ways through which they can be performed. An extended time frame and future work can

further improve this topic.

Regarding performance tests, test cases were conducted for the three main operations of the

platform. The objective was to assess the response times of the platform under various variables

and scenarios, as well as to evaluate the performance of the PRE process itself.

Overall, the results were satisfactory considering that most operations are not critical and

do not require swift response times. Having supporting data from similar platforms could have

brought value to the tests since it would enable the comparison of the performance with similar

platforms.

Regarding more critical operations such as file retrievals, when considering the computational

effort and overall infrastructure complexity, the use of a threshold proxy re-encryption scheme

ensures full correctness. In addition, taking into account the modest specifications of the infras-

tructure on which the tests were conducted, the obtained results are good.

There were also fluctuations observed in some of the runs during the various tests conducted.

These fluctuations can be attributed to the fact that the free tier provided by Azure operates on

a shared infrastructure. This means that the performance and availability of the server may be

influenced by the current workload when the tests are conducted. It is important to note that this

external factor cannot be controlled and should be considered when analysing the results.

There is also an opportunity to carry out further tests regarding performance, namely with

different network conditions and environments, to cover more possibilities and use case scenarios.

Chapter 8

Conclusions and Future Work

This last chapter presents the conclusions derived from the development of this work and its sub-

sequent materialisation in the thesis, as well as the challenges faced. It also discusses the desirable

functionalities and features that would enhance this work, but that could not be implemented

within the given time frame and scope. Therefore, they are interpreted as future work.

8.1 Conclusions

The main purpose of this work was to develop a platform for the authorised sharing of health

records on a cloud that is not trusted, resorting to a proxy re-encryption scheme which enables a

patient to have fine-grained control over whom it shares his data. The core premise was to shift

the authorisation to the patient enabling the share of medical records only with express consent.

Furthermore, the followed access delegation approach should also contemplate the safeguarding

of consent exceptions, where the patient might not be able to autonomously delegate access to

medical data, the so-called break-glass mechanisms.

8.1.1 Achieved milestones and contributions

Concerning the fulfilment of the idealised features, all high-priority requirements were imple-

mented.

The developed platform enables the upload and access delegation of an EHR. Regarding the

upload (see Table 5.18: RF-01), the EHR provided by the patient is uploaded and stored in an

encrypted form thus providing confidentiality and integrity of the data at all times. Regarding

access delegation, the same is achieved by resorting to a proxy server which is responsible for

performing the delegation requests between a patient and a healthcare provider (see Table 5.19:

RF-02).

The nature of a proxy re-encryption scheme and the idealised access delegation mechanism,

ensures that even the proxy, the entity that performs the delegation, is not capable of obtaining

the plaintext content of EHRs by itself, thus allowing it to be semi-trusted and therefore ensures

privacy and security. With this, a patient can be treated across different health providers, resting

115

Conclusions and Future Work 116

assured that its data is treated by the providers that it trusts the most, while at the same time never

risking losing control of where its data ended up nor blindingly trusting the safety measures and

guidelines of a given provider. This maximises the collaborative aspect of e-health and therefore

enables more efficient and informed treatments due to the easier crossing of information between

the different providers.

Furthermore, the way access delegation is achieved in the present solution, enables the patient

to be the only one to authorise access to their medical records. That is, only when express consent

is provided, a health professional or provider is able to access those records. This is a step further

with regard to privacy and enables patients to have improved control over their personal data.

This is further expanded with the capability of being able to choose if the data must be shared

for an indefinite period of time or only for a period defined by the patient, at the end of which

access is automatically revoked. Another aspect worth mentioning is that independently of the

type of authorisation a given patient gives to a healthcare provider, it is always in control of its

data, allowing the same to manually revoke access to a medical record with immediate effect

(see Table 5.20: RF-03). This proves that the proposed solution has indeed a robust revoking

mechanism in that it promotes a user-centric approach by providing the same full control over its

data, something that was stated as an objective in Section 1.4.

A paramount feature of a system operating in an e-health environment is safeguarding emer-

gency situations (see Table 5.26: RF-09). As stated in Section 3.4, there is indeed a lack of devel-

opment regarding this topic. The implementations that exist often fall short in terms of revocability

and only a few contemplate a proxy re-encryption scheme in the context of a break-glass scenario.

The proposed approach for tackling this kind of situation features a trusted entity that has access

to every EHR uploaded to the platform. This simplifies the process of delegation in a break-glass

scenario not only from a business logic perspective but also from a practical perspective. This is

something vital in a life-threatening situation where all the seconds count.

Likewise, it suppresses the need to rely on external actors or trusted contacts, which might not

be available at the time of an emergency, thus completely undermining the efficiency of an ap-

proach of this kind. Having a trusted authority enables swift and reliable access to the information

by a healthcare provider, if necessary.

With that in mind, the implemented solution features and responds to all the needs initially

foreseen, presenting improvements regarding safeguarding the privacy, security and integrity of

medical records from a given patient. This intertwines with the concept of a user-centric platform

also seen as an objective in the initial proposal. Last but not least, great improvements were made,

regarding break-glass mechanisms, by providing a deep study of the possible solutions.

8.1.2 Assessed challenges

The re-encryption module was the most challenging portion of the development since it required

reverse engineering of the source code of the selected framework. It also required studying the

respective white paper and some mathematical concepts for further realisation of the architecture

of the platform and knowledge materialisation into the writing of the dissertation.

8.2 Future Work 117

The fact that proxy re-encryption possesses a vast number of mathematical primitives and

concepts which fall outside the area of expertise, and the fact that the specific framework used

as a base for the implementation of the threshold-based proxy re-encryption scheme uses other

cryptographic notions and concepts besides the traditional PRE ones to further improve upon the

same, provide an amalgam of factors that result in a complex and time-consuming process to fully

understand the under the hood functioning of this scheme.

Another challenge was the safeguarding of emergency situations. Since the focus was to try to

come up with an approach that did not need to rely on a trusted entity, a deeper analysis was needed

regarding the existent works in that subject as well as the evaluation of the multiple perspectives

that made sense in the context of the platform portrayed in this work. In the end, a trusted entity

remained the predominant solution after studying and revising the existing implementations, and

so, it was adopted as the final solution.

Regarding the client-side application, the development was performed in a timely manner

without any hick-ups. This can be related to the strong acquaintance with the front-end technolo-

gies in place and also because the client-side application did not have very strict requirements

since it was not the core focus of this work, and thus, more features and considerations can be

done in future work.

Overall, the development and writing of the depicted work provided a deeper knowledge re-

garding proxy re-encryption schemes and their respective concepts and physiology as well as

the design and architectural decisions that need to be made when working with these schemes.

Moreover, it enabled further expansion of the barriers of knowledge concerning cryptography in

general, particularly in the mathematical concepts and primitives that set the foundations of the

security that it provides.

8.2 Future Work

The presented solution represents a part of the potential that proxy re-encryption can bring to e-

health solutions. Due to time and scope constraints, additional functionality and features may be

added as future work to elevate the work developed here and consolidate a platform for possible

adoption by a governmental entity in the near future.

Some of the functionalities and features that were foreseen but not fully or partially imple-

mented are:

• Granular access control — Although access control is implemented in this work, it does

not permit the sharing of just certain parts of an EHR with a given entity or health profes-

sional (see Table 5.10: UC-02B) based on a role and the extent of the information needed to

perform the adequate medical treatment. An Attribute-Based proxy re-encryption scheme

could be a suitable addition to solve this kind of problem.

• Search embedded information in an EHR — Searching for medical records it is possible

in the current state of this work, nevertheless is limited to filename-based search. It would

Conclusions and Future Work 118

be interesting and advantageous to be able to search the content of a medical record (see

Table 5.13: UC-05). This was not implemented since to properly implement this feature

safely and without exposing the plaintext content of the medical record searchable encryp-

tion capabilities needed to be introduced, something that would require further study and

evaluation.

• Possibility of deleting EHRs — This feature was deemed as not that useful. Although it

would be a great capability from an end-user perspective, it would bring forward certain

concerns regarding medical treatment, i.e., a patient could delete an EHR that could be

a vital piece of information for a certain treatment that it is currently participating in or

could participate in later on. Since patients do not have the full knowledge to support the

discernment of taking such a decision, this feature was left out for further evaluation.

• Use of multiple proxies — The presented work makes use of just one proxy since the

focus is to present a proof of concept of the application of a PRE scheme in an e-health

environment. To fully take advantage of a threshold proxy re-encryption scheme, several

proxies should be used, where each share of the re-encryption key is stored across those

same proxies. This way, the proxy stops being a single point of failure, as well as, in case

of a compromise, is not possible to obtain the full re-encryption key, although even so that

is not enough to decrypt the EHR.

A blockchain network would be a great addition to the current architecture since would

enable the computation of the re-encryption of the capsule to be spread across different

proxies.

• Notification system — A notification system was foreseen as depicted in RF-08 (see Table

5.25), nevertheless it could not be implemented in time. The inclusion of a notification

system would be of great value, nonetheless, it would mean that the same would need to be

developed from scratch since the use of third-party services would defeat the privacy aspect

of the platform developed in this work. Due to the complexity of achieving such a feat, it

was deemed as future work.

• Front-end filters — The client-side application would benefit from filters namely on the

requests page, where adding the functionality of filtering requests by status, issuer or file-

name, could further improve the usability of the application. Although the support for these

filters where implemented in the back-end logic, due to time constraints they were not im-

plemented in the front-end.

As it was observed, all the use cases and high-priority requirements considered essential have

been implemented. Additionally, there is a set of functionalities that have been identified but not

classified as high priority. Their future implementation will complement and enhance the potential

of the developed solution.

References

Specification for the advanced encryption standard (aes). Federal Information Processing Stan-
dards Publication 197, 2001. URL http://csrc.nist.gov/publications/fips/
fips197/fips-197.pdf.

Art. 7 GDPR - Conditions for consent, November 2018. URL https://gdpr.eu/
article-7-how-to-get-consent-to-collect-personal-data/. Section: Uncat-
egorized.

Regulation (EU) 2022/868 of the European Parliament and of the Council of 30 May 2022 on
European data governance and amending Regulation (EU) 2018/1724 (Data Governance Act)
(Text with EEA relevance), May 2022. URL http://data.europa.eu/eli/reg/2022/
868/oj/eng. Legislative Body: CONSIL, EP.

Health insurance portability and accountability act of 1996 (hipaa), Jun 2022. URL https:
//www.cdc.gov/phlp/publications/topic/hipaa.html.

What is the hitech act? 2022 update, Dec 2022. URL https://www.hipaajournal.com/
what-is-the-hitech-act/.

European Data Governance Act | Shaping Europe’s digital future, June 2023. URL https:
//digital-strategy.ec.europa.eu/en/policies/data-governance-act.

Iso/en 13606, June 2023. URL https://www.iso.org/home.html.

Donald E. Eastlake 3rd and Paul Jones. US Secure Hash Algorithm 1 (SHA1). RFC 3174, Septem-
ber 2001. URL https://www.rfc-editor.org/info/rfc3174.

Mahdi Alagheband and Atefeh Mashatan. Advanced encryption schemes in multi-tier heteroge-
neous internet of things: taxonomy, capabilities, and objectives. The Journal of Supercomput-
ing, 78, 06 2022. doi: 10.1007/s11227-022-04586-1.

Reem Alanazi. Analysis of privacy and security challenges in e-health clouds. International
Journal of Advanced Computer Science and Applications, 13(9), 2022. doi: 10.14569/IJACSA.
2022.0130955. URL http://dx.doi.org/10.14569/IJACSA.2022.0130955.

Ivone Amorim. Criptografia com curvas elípticas, September 2008. Faculty of Sciences of the
University of Porto.

ANSI X9.63. American National Standards Institute (ANSI) X9.F1 subcommittee. ANSI X9.63
Public key cryptography for the Financial Services Industry: Elliptic curve key agreement and
key transport schemes, July 5, 1998. Working draft version 2.0.

119

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://gdpr.eu/article-7-how-to-get-consent-to-collect-personal-data/
https://gdpr.eu/article-7-how-to-get-consent-to-collect-personal-data/
http://data.europa.eu/eli/reg/2022/868/oj/eng
http://data.europa.eu/eli/reg/2022/868/oj/eng
https://www.cdc.gov/phlp/publications/topic/hipaa.html
https://www.cdc.gov/phlp/publications/topic/hipaa.html
https://www.hipaajournal.com/what-is-the-hitech-act/
https://www.hipaajournal.com/what-is-the-hitech-act/
https://digital-strategy.ec.europa.eu/en/policies/data-governance-act
https://digital-strategy.ec.europa.eu/en/policies/data-governance-act
https://www.iso.org/home.html
https://www.rfc-editor.org/info/rfc3174
http://dx.doi.org/10.14569/IJACSA.2022.0130955

REFERENCES 120

Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy re-
encryption schemes with applications to secure distributed storage. volume 2005, 01 2005.

Giuseppe Ateniese, Karyn Benson, and Susan Hohenberger. Key-private proxy re-encryption. In
Marc Fischlin, editor, Topics in Cryptology – CT-RSA 2009, pages 279–294, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg. ISBN 978-3-642-00862-7.

Man Ho Au, Tsz Hon Yuen, Joseph K. Liu, Willy Susilo, Xinyi Huang, Yang Xiang, and
Zoe L. Jiang. A general framework for secure sharing of personal health records in cloud
system. Journal of Computer and System Sciences, 90:46–62, 2017. ISSN 0022-0000.
doi: https://doi.org/10.1016/j.jcss.2017.03.002. URL https://www.sciencedirect.
com/science/article/pii/S0022000017300296.

Jean-Philippe Aumasson. Serious Cryptography: A Practical Introduction to Modern Encryption.
No Starch Press, USA, 2017. ISBN 1593278268.

Jennifer Batamuliza and Damien Hanyurwimfura. Identity based encryption with equality
test. Information Security Journal: A Global Perspective, 30(2):111–124, 2021. doi:
10.1080/19393555.2020.1811924. URL https://doi.org/10.1080/19393555.2020.
1811924.

Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message authenti-
cation. In Neal Koblitz, editor, Advances in Cryptology — CRYPTO ’96, pages 1–15, Berlin,
Heidelberg, 1996. Springer Berlin Heidelberg. ISBN 978-3-540-68697-2.

Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among notions of
security for public-key encryption schemes. In Hugo Krawczyk, editor, Advances in Cryptology
— CRYPTO ’98, pages 26–45, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg. ISBN
978-3-540-68462-6.

Daniel Bernstein. Chacha, a variant of salsa20. January 2008. URL https://cr.yp.to/
chacha/chacha-20080120.pdf.

Daniel J. Bernstein. The poly1305-aes message-authentication code. In Fast Software Encryption
Workshop, 2005.

Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak. In Thomas
Johansson and Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, pages
313–314, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-38348-9.

Richa Bhateja, Debi Prasanna Acharjya, and Naman Saxena. Enhanced timing enabled proxy
re-encryption model for e-health data in the public cloud. In 2017 International Conference on
Advances in Computing, Communications and Informatics (ICACCI), pages 2040–2044, 2017.
doi: 10.1109/ICACCI.2017.8126145.

M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy cryptography.
Advances in Cryptology—EUROCRYPT’98, pages 127–144, 1998.

Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing. In Joe Kilian,
editor, Advances in Cryptology — CRYPTO 2001, pages 213–229, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg. ISBN 978-3-540-44647-7.

https://www.sciencedirect.com/science/article/pii/S0022000017300296
https://www.sciencedirect.com/science/article/pii/S0022000017300296
https://doi.org/10.1080/19393555.2020.1811924
https://doi.org/10.1080/19393555.2020.1811924
https://cr.yp.to/chacha/chacha-20080120.pdf
https://cr.yp.to/chacha/chacha-20080120.pdf

REFERENCES 121

Achim D. Brucker, Helmut Petritsch, and Stefan G. Weber. Attribute-based encryption with break-
glass. In Pierangela Samarati, Michael Tunstall, Joachim Posegga, Konstantinos Markanton-
akis, and Damien Sauveron, editors, Information Security Theory and Practices. Security and
Privacy of Pervasive Systems and Smart Devices, pages 237–244, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg. ISBN 978-3-642-12368-9.

Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-encryption. In Pro-
ceedings of the 14th ACM Conference on Computer and Communications Security, CCS ’07,
page 185–194, New York, NY, USA, 2007a. Association for Computing Machinery. ISBN
9781595937032. doi: 10.1145/1315245.1315269. URL https://doi.org/10.1145/
1315245.1315269.

Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-encryption. volume 2007,
pages 185–194, 01 2007b. doi: 10.1145/1315245.1315269.

Shekha Chenthara, Khandakar Ahmed, Hua Wang, and Frank Whittaker. Security and privacy-
preserving challenges of e-health solutions in cloud computing. IEEE Access, 7:74361–74382,
2019. doi: 10.1109/ACCESS.2019.2919982.

European Communities. Official journal of the european communities, l 281, November
1995. URL https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=
OJ:L:1995:281:FULL.

Sandro Coretti, Yevgeniy Dodis, Björn Tackmann, and Daniele Venturi. Non-malleable encryp-
tion: Simpler, shorter, stronger. In Eyal Kushilevitz and Tal Malkin, editors, Theory of Cryp-
tography, pages 306–335, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg. ISBN 978-3-
662-49096-9.

Ivan Bjerre Damgård. A design principle for hash functions. In Gilles Brassard, editor, Advances
in Cryptology — CRYPTO’ 89 Proceedings, pages 416–427, New York, NY, 1990. Springer
New York. ISBN 978-0-387-34805-6.

Quynh Dang. Changes in federal information processing standard fips 180-4, secure hash standard.
Cryptologia, 37:69–73, 01 2013. doi: 10.1080/01611194.2012.687431.

Debasis Das, Ujwal A. Lanjewar, and Sanjiv Sharma. The art of cryptology: From ancient number
system to strange number system. In International Journal of Application or Innovation in
Engineering & Management, 2013.

Jessica Davis. Most of the 10 largest healthcare data breaches in 2022 are tied to
vendors, Dec 2022. URL https://www.scmagazine.com/feature/breach/
most-of-the-10-largest-healthcare-data-breaches-in-2022-are-tied-to-vendors.

Ahmed Desoky. Cryptography: Algorithms and standards. volume 2005, page 924 –
929, 2005. doi: 10.1109/ISSPIT.2005.1577223. URL https://www.scopus.com/
inward/record.uri?eid=2-s2.0-33846954386&doi=10.1109%2fISSPIT.
2005.1577223&partnerID=40&md5=d0cacdfb2c83e50e0c88f1ee6017f001.

W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, 22(6):644–654, 1976. doi: 10.1109/TIT.1976.1055638.

Kennedy Edemacu, Hung Kook Park, Beakcheol Jang, and Jong Wook Kim. Privacy provision in
collaborative ehealth with attribute-based encryption: Survey, challenges and future directions.
IEEE Access, 7:89614–89636, 2019. doi: 10.1109/ACCESS.2019.2925390.

https://doi.org/10.1145/1315245.1315269
https://doi.org/10.1145/1315245.1315269
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:1995:281:FULL
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:1995:281:FULL
https://www.scmagazine.com/feature/breach/most-of-the-10-largest-healthcare-data-breaches-in-2022-are-tied-to-vendors
https://www.scmagazine.com/feature/breach/most-of-the-10-largest-healthcare-data-breaches-in-2022-are-tied-to-vendors
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33846954386&doi=10.1109%2fISSPIT.2005.1577223&partnerID=40&md5=d0cacdfb2c83e50e0c88f1ee6017f001
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33846954386&doi=10.1109%2fISSPIT.2005.1577223&partnerID=40&md5=d0cacdfb2c83e50e0c88f1ee6017f001
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33846954386&doi=10.1109%2fISSPIT.2005.1577223&partnerID=40&md5=d0cacdfb2c83e50e0c88f1ee6017f001

REFERENCES 122

Xiong Fan and Feng-Hao Liu. Various proxy re-encryption schemes from lattices. Cryptol-
ogy ePrint Archive, Paper 2016/278, 2016. URL https://eprint.iacr.org/2016/278.
https://eprint.iacr.org/2016/278.

Xiong Fan and Feng-Hao Liu. Proxy re-encryption and re-signatures from lattices. In Ap-
plied Cryptography and Network Security: 17th International Conference, ACNS 2019, Bo-
gota, Colombia, June 5–7, 2019, Proceedings, page 363–382, Berlin, Heidelberg, 2019.
Springer-Verlag. ISBN 978-3-030-21567-5. doi: 10.1007/978-3-030-21568-2_18. URL
https://doi.org/10.1007/978-3-030-21568-2_18.

José Luis Fernández-Alemán, Inmaculada Carrión Señor, Pedro Ángel Oliver Lozoya, and
Ambrosio Toval. Security and privacy in electronic health records: A systematic litera-
ture review. Journal of Biomedical Informatics, 46(3):541–562, 2013. ISSN 1532-0464.
doi: https://doi.org/10.1016/j.jbi.2012.12.003. URL https://www.sciencedirect.com/
science/article/pii/S1532046412001864.

Nikos Fotiou. IB-PRE, May 2023. URL https://github.com/nikosft/IB-PRE.

Martin Fowler. Richardson maturity model. URL https://martinfowler.com/
articles/richardsonMaturityModel.html.

Harsha Gardiyawasam Pussewalage and Vladimir Oleshchuk. An attribute based access control
scheme for secure sharing of electronic health records. 09 2016. doi: 10.1109/HealthCom.
2016.7749516.

Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Proceedings of the 13th ACM Conference on
Computer and Communications Security, CCS ’06, page 89–98, New York, NY, USA, 2006.
Association for Computing Machinery. ISBN 1595935185. doi: 10.1145/1180405.1180418.
URL https://doi.org/10.1145/1180405.1180418.

Matthew Green and Giuseppe Ateniese. Identity-based proxy re-encryption. In Jonathan Katz
and Moti Yung, editors, Applied Cryptography and Network Security, pages 288–306, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-72738-5.

Goichiro Hanaoka, Yutaka Kawai, Noboru Kunihiro, Takahiro Matsuda, Jian Weng, Rui Zhang,
and Yunlei Zhao. Generic construction of chosen ciphertext secure proxy re-encryption. In Orr
Dunkelman, editor, Topics in Cryptology – CT-RSA 2012, pages 349–364, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg. ISBN 978-3-642-27954-6.

Junaid Hassan, Danish Shehzad, Insaf Ullah, Fahad Algarni, Muhammad Umar Aftab, Muham-
mad Asghar Khan, M. Irfan Uddin, and Chinmay Chakraborty. A lightweight proxy re-
encryption approach with certificate-based and incremental cryptography for fog-enabled e-
healthcare. Sec. and Commun. Netw., 2021, jan 2021. ISSN 1939-0114. doi: 10.1155/2021/
9363824. URL https://doi.org/10.1155/2021/9363824.

Peter C. J. Hill. Vigenère through shannon to planck — a short history of electronic cryptographic
systems. In 2008 IEEE History of Telecommunications Conference, pages 41–46, 2008. doi:
10.1109/HISTELCON.2008.4668712.

Qinlong Huang, Wei Yue, Yue He, and Yixian Yang. Secure identity-based data sharing and
profile matching for mobile healthcare social networks in cloud computing. IEEE Access, 6:
36584–36594, 2018. doi: 10.1109/ACCESS.2018.2852784.

https://eprint.iacr.org/2016/278
https://eprint.iacr.org/2016/278
https://doi.org/10.1007/978-3-030-21568-2_18
https://www.sciencedirect.com/science/article/pii/S1532046412001864
https://www.sciencedirect.com/science/article/pii/S1532046412001864
https://github.com/nikosft/IB-PRE
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1155/2021/9363824

REFERENCES 123

Ahmed Ibrahim, Baban A. Mahmood, and Mukesh Singhal. A secure framework for sharing
electronic health records over clouds. 2016 IEEE International Conference on Serious Games
and Applications for Health (SeGAH), pages 1–8, 2016.

Patience E. Idoga, Mary Agoyi, Elizabeth Y. Coker-Farrell, and Ogazi L. Ekeoma. Review of
security issues in e-healthcare and solutions. In 2016 HONET-ICT, pages 118–121, 2016. doi:
10.1109/HONET.2016.7753433.

W Sharon Inbarani, G Shenbagamoorthy, and C Kumar Charlie. Proxy re-encryption schemes
for data storage security in cloud- a survey. INTERNATIONAL JOURNAL OF ENGINEERING
RESEARCH & TECHNOLOGY (IJERT), 02(01), 2013.

KDDI Research Inc. Security analysis of chacha20-poly1305 aead. 2017. URL https://www.
cryptrec.go.jp/exreport/cryptrec-ex-2601-2016.pdf.

IronCoreLabs. Recrypt, May 2023. URL https://github.com/IronCoreLabs/recrypt.

Mohamud Ahmed Jimale, Muhammad Reza Z’aba, Miss Laiha Binti Mat Kiah, Mohd Ya-
mani Idna Idris, Norziana Jamil, Moesfa Soeheila Mohamad, and Mohd Saufy Rohmad. Au-
thenticated encryption schemes: A systematic review. IEEE Access, 10:14739–14766, 2022.
doi: 10.1109/ACCESS.2022.3147201.

Leo Jones, Marcjae Persigas, PranDev, Admin, and Phyo Kyaw San. Richardson maturity model,
Dec 2021. URL https://restfulapi.net/richardson-maturity-model/.

Michael B. Jones, John Bradley, and Nat Sakimura. Rfc ft-ietf-oauth-json-web-token: Json web
token (jwt), May 2015. URL https://datatracker.ietf.org/doc/html/rfc7519#
section-4.1.1.

Jonathan Katz. Cryptographic Hardness Assumptions, pages 35–66. Springer US, Boston, MA,
2010. ISBN 978-0-387-27712-7. doi: 10.1007/978-0-387-27712-7_2. URL https://doi.
org/10.1007/978-0-387-27712-7_2.

Fiaz Khan. A comparison of proxy re-encryption schemes – a survey. International Journal of
Computer Science and Information Security (IJCSIS), 14:392–397, 07 2016.

Elena Kirshanova. Proxy re-encryption from lattices. In PKC, pages 77–94. Springer,
2014. doi: 10.1007/978-3-642-54631-0_5. URL https://www.iacr.org/archive/
pkc2014/83830204/83830204.pdf.

Dr. Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-Hashing for Message Au-
thentication. RFC 2104, February 1997. URL https://www.rfc-editor.org/info/
rfc2104.

Elizabeth Lee. Advancements in Proxy Re-Encryption: Defining Security for wider Applications.
PhD thesis, Royal Holloway, University of London, 2020.

Ming Li, Shucheng Yu, Kui Ren, and Wenjing Lou. Securing personal health records in cloud
computing: Patient-centric and fine-grained data access control in multi-owner settings. In
Sushil Jajodia and Jianying Zhou, editors, Security and Privacy in Communication Networks,
pages 89–106, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-642-16161-
2.

https://www.cryptrec.go.jp/exreport/cryptrec-ex-2601-2016.pdf
https://www.cryptrec.go.jp/exreport/cryptrec-ex-2601-2016.pdf
https://github.com/IronCoreLabs/recrypt
https://restfulapi.net/richardson-maturity-model/
https://datatracker.ietf.org/doc/html/rfc7519#section-4.1.1
https://datatracker.ietf.org/doc/html/rfc7519#section-4.1.1
https://doi.org/10.1007/978-0-387-27712-7_2
https://doi.org/10.1007/978-0-387-27712-7_2
https://www.iacr.org/archive/pkc2014/83830204/83830204.pdf
https://www.iacr.org/archive/pkc2014/83830204/83830204.pdf
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104

REFERENCES 124

Ming Li, Shucheng Yu, Yao Zheng, Kui Ren, and Wenjing Lou. Scalable and secure sharing of
personal health records in cloud computing using attribute-based encryption. IEEE Transactions
on Parallel and Distributed Systems, 24(1):131–143, 2013. doi: 10.1109/TPDS.2012.97.

Zhuo-Rong Li, En-Chi Chang, Kuo-Hsuan Huang, and Feipei Lai. A secure electronic medical
record sharing mechanism in the cloud computing platform. 2011 IEEE 15th International
Symposium on Consumer Electronics (ISCE), pages 98–103, 2011.

Dennis Luciano and Gordon D. Prichett. Cryptology: From caesar ciphers to public-key cryp-
tosystems. College Mathematics Journal, 18:2–17, 1987.

Song Luo, Jianbin Hu, and Zhong Chen. Ciphertext policy attribute-based proxy re-encryption.
In Miguel Soriano, Sihan Qing, and Javier López, editors, Information and Communications
Security, pages 401–415, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-
642-17650-0.

Praneeta K. Maganti and P. M. Chouragade. Secure application for sharing health records using
identity and attribute based cryptosystems in cloud environment. In 2019 3rd International
Conference on Trends in Electronics and Informatics (ICOEI), pages 220–223, 2019a. doi:
10.1109/ICOEI.2019.8862540.

Praneeta K. Maganti and P. M. Chouragade. Secure health record sharing for mobile health-
care in privacy preserving cloud environment. In 2019 IEEE International Conference on
Electrical, Computer and Communication Technologies (ICECCT), pages 1–4, 2019b. doi:
10.1109/ICECCT.2019.8869390.

Jill McKeon. Biggest healthcare data breaches reported this year, so
far, Oct 2022. URL https://healthitsecurity.com/features/
biggest-healthcare-data-breaches-reported-this-year-so-far.

Ralph C. Merkle. One way hash functions and des. In Gilles Brassard, editor, Advances in
Cryptology — CRYPTO’ 89 Proceedings, pages 428–446, New York, NY, 1990. Springer New
York. ISBN 978-0-387-34805-6.

MongoDB. FAQ: MongoDB Fundamentals — MongoDB Manual. URL https://www.
mongodb.com/docs/manual/faq/fundamentals/.

National Institute of Standards and Technology. FIPS-46: Data Encryption Standard (DES). Re-
vised as FIPS 46-1:1988, FIPS 46-2:1993, FIPS 46-3:1999. Technical report, 1979. URL
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.

Yoav Nir and Adam Langley. ChaCha20 and Poly1305 for IETF Protocols. RFC 7539, May 2015.
URL https://www.rfc-editor.org/info/rfc7539.

NuCypher. pyumbral. https://github.com/nucypher/pyumbral, 2018.

David Nuñez. Umbral: A threshold proxy re-encryption scheme, 2017. URL https://raw.
githubusercontent.com/nucypher/umbral-doc/master/umbral-doc.pdf.

David Nuñez, Isaac Agudo, and Javier Lopez. Proxy re-encryption: Analysis of construc-
tions and its application to secure access delegation. Journal of Network and Com-
puter Applications, 87:193–209, 2017. ISSN 1084-8045. doi: https://doi.org/10.1016/
j.jnca.2017.03.005. URL https://www.sciencedirect.com/science/article/
pii/S1084804517301078.

https://healthitsecurity.com/features/biggest-healthcare-data-breaches-reported-this-year-so-far
https://healthitsecurity.com/features/biggest-healthcare-data-breaches-reported-this-year-so-far
https://www.mongodb.com/docs/manual/faq/fundamentals/
https://www.mongodb.com/docs/manual/faq/fundamentals/
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
https://www.rfc-editor.org/info/rfc7539
https://github.com/nucypher/pyumbral
https://raw.githubusercontent.com/nucypher/umbral-doc/master/umbral-doc.pdf
https://raw.githubusercontent.com/nucypher/umbral-doc/master/umbral-doc.pdf
https://www.sciencedirect.com/science/article/pii/S1084804517301078
https://www.sciencedirect.com/science/article/pii/S1084804517301078

REFERENCES 125

Se-Ra Oh, Young-Duk Seo, Euijong Lee, and Young-Gab Kim. A comprehensive survey on
security and privacy for electronic health data. International Journal of Environmental Re-
search and Public Health, 18(18), 2021. ISSN 1660-4601. doi: 10.3390/ijerph18189668. URL
https://www.mdpi.com/1660-4601/18/18/9668.

OWASP. Cross-Site Request Forgery Prevention - OWASP Cheat Sheet Series. URL
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_
Forgery_Prevention_Cheat_Sheet.html#double-submit-cookie.

Praveen Kumar P, Syam Kumar P, and Alphonse P.J.A. Attribute based encryption in cloud
computing: A survey, gap analysis, and future directions. Journal of Network and Com-
puter Applications, 108:37–52, 2018. ISSN 1084-8045. doi: https://doi.org/10.1016/
j.jnca.2018.02.009. URL https://www.sciencedirect.com/science/article/
pii/S1084804518300547.

Niels Provos and David Mazières. A Future-Adaptable Password Scheme. 1999. URL https:
//www.usenix.org/legacy/events/usenix99/provos/provos.pdf.

Zhiguang Qin, Hu Xiong, Shikun Wu, and Jennifer Batamuliza. A survey of proxy re-encryption
for secure data sharing in cloud computing. IEEE Transactions on Services Computing, pages
1–1, 2016. doi: 10.1109/TSC.2016.2551238.

Khaled Rabieh, Kemal Akkaya, Umit Karabiyik, and Jennifer Qamruddin. A secure and cloud-
based medical records access scheme for on-road emergencies. In 2018 15th IEEE Annual
Consumer Communications & Networking Conference (CCNC), pages 1–8, 2018. doi: 10.
1109/CCNC.2018.8319175.

Bharat S. Rawal, Poongodi M., Gunasekaran Manogaran, and Mounir Hamdi. Multi-tier stack of
block chain with proxy re-encryption method scheme on the internet of things platform. ACM
Trans. Internet Technol., 22(2), oct 2021. ISSN 1533-5399. doi: 10.1145/3421508. URL
https://doi.org/10.1145/3421508.

Muhammad Raza. Public vs private vs hybrid: Cloud differences explained, Aug 2020. URL
https://www.bmc.com/blogs/public-private-hybrid-cloud/.

Abdul Razaque, Fathi Amsaad, Meer Jaro Khan, Salim Hariri, Shujing Chen, Chen Siting, and
Xingchen Ji. Survey: Cybersecurity vulnerabilities, attacks and solutions in the medical domain.
IEEE Access, 7:168774–168797, 2019. doi: 10.1109/ACCESS.2019.2950849.

React. Passing data deeply with context. URL https://react.dev/learn/
passing-data-deeply-with-context.

R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-
key cryptosystems. Commun. ACM, 21(2):120–126, feb 1978. ISSN 0001-0782. doi: 10.1145/
359340.359342. URL https://doi.org/10.1145/359340.359342.

Ronald Rivest, Benjamin Agre, Daniel Bailey, Sarah Cheng, Christopher Crutchfield, Yevgeniy
Dodis, Kermin Elliott, Fleming Khan, Jayant Krishnamurthy, Yuncheng Lin, Leo Reyzin, Emily
Shen, Jim Sukha, Drew Sutherland, Eran Tromer, and Yiqun Yin. The md6 hash function. 11
2008.

Amit Sahai and Brent Waters. Fuzzy Identity Based Encryption, 2004. URL https://eprint.
iacr.org/2004/086.pdf.

https://www.mdpi.com/1660-4601/18/18/9668
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#double-submit-cookie
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#double-submit-cookie
https://www.sciencedirect.com/science/article/pii/S1084804518300547
https://www.sciencedirect.com/science/article/pii/S1084804518300547
https://www.usenix.org/legacy/events/usenix99/provos/provos.pdf
https://www.usenix.org/legacy/events/usenix99/provos/provos.pdf
https://doi.org/10.1145/3421508
https://www.bmc.com/blogs/public-private-hybrid-cloud/
https://react.dev/learn/passing-data-deeply-with-context
https://react.dev/learn/passing-data-deeply-with-context
https://doi.org/10.1145/359340.359342
https://eprint.iacr.org/2004/086.pdf
https://eprint.iacr.org/2004/086.pdf

REFERENCES 126

Ryuichi Sakai and Jun Furukawa. Identity-based broadcast encryption. IACR Cryptology ePrint
Archive, 2007:217, 01 2007.

Alessandra Scafuro. Break-glass Encryption, pages 34–62. 04 2019. ISBN 978-3-662-46665-0.
doi: 10.1007/978-3-030-17259-6_2.

Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, nov 1979. ISSN 0001-0782.
doi: 10.1145/359168.359176. URL https://doi.org/10.1145/359168.359176.

Adi Shamir. Identity-based cryptosystems and signature schemes. In George Robert Blakley
and David Chaum, editors, Advances in Cryptology, pages 47–53, Berlin, Heidelberg, 1985.
Springer Berlin Heidelberg. ISBN 978-3-540-39568-3.

Jun Shao and Zhenfu Cao. Cca-secure proxy re-encryption without pairings. In Stanisław Jarecki
and Gene Tsudik, editors, Public Key Cryptography – PKC 2009, pages 357–376, Berlin, Hei-
delberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-00468-1.

Victor Shoup. A proposal for an iso standard for public key encryption. Cryptology ePrint
Archive, Paper 2001/112, 2001. URL https://eprint.iacr.org/2001/112. https:
//eprint.iacr.org/2001/112.

Peter Smirnoff and Dawn M. Turner. Symmetric key encryption - why, where and how
it’s used in banking. URL https://www.cryptomathic.com/news-events/blog/
symmetric-key-encryption-why-where-and-how-its-used-in-banking.

Rajeev Sobti and Geetha Ganesan. Cryptographic hash functions: A review. International Journal
of Computer Science Issues, ISSN (Online): 1694-0814, Vol 9:461 – 479, 03 2012.

Nick Sullivan. A (Relatively Easy To Understand) Primer on Ellip-
tic Curve Cryptography, 2013. URL http://blog.cloudflare.com/
a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/.

Pinyaphat Tasatanattakool and Chian Techapanupreeda. User authentication algorithm with role-
based access control for electronic health systems to prevent abuse of patient privacy. In 2017
3rd IEEE International Conference on Computer and Communications (ICCC), pages 1019–
1024, 2017. doi: 10.1109/CompComm.2017.8322697.

Rodrigo Tertulino, Nuno Antunes, and Higor Morais. Privacy in electronic health records: a
systematic mapping study. Journal of Public Health, Jan 2023. ISSN 1613-2238. doi: 10.1007/
s10389-022-01795-z. URL https://doi.org/10.1007/s10389-022-01795-z.

Danan Thilakanathan, Shiping Chen, Surya Nepal, Rafael Calvo, and Leila Alem. A plat-
form for secure monitoring and sharing of generic health data in the cloud. Future Genera-
tion Computer Systems, 35:102–113, 2014. ISSN 0167-739X. doi: https://doi.org/10.1016/
j.future.2013.09.011. URL https://www.sciencedirect.com/science/article/
pii/S0167739X13001908. Special Section: Integration of Cloud Computing and Body
Sensor Networks; Guest Editors: Giancarlo Fortino and Mukaddim Pathan.

Marcela Tuler de Oliveira, Alex Bakas, Eugene Frimpong, Adrien Groot, Henk Marquering, An-
tonis Michalas, and Silvia Olabarriaga. A break-glass protocol based on ciphertext-policy
attribute-based encryption to access medical records in the cloud. Annals of Telecommuni-
cations, 75, 03 2020. doi: 10.1007/s12243-020-00759-2.

https://doi.org/10.1145/359168.359176
https://eprint.iacr.org/2001/112
https://eprint.iacr.org/2001/112
https://eprint.iacr.org/2001/112
https://www.cryptomathic.com/news-events/blog/symmetric-key-encryption-why-where-and-how-its-used-in-banking
https://www.cryptomathic.com/news-events/blog/symmetric-key-encryption-why-where-and-how-its-used-in-banking
http://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
http://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
https://doi.org/10.1007/s10389-022-01795-z
https://www.sciencedirect.com/science/article/pii/S0167739X13001908
https://www.sciencedirect.com/science/article/pii/S0167739X13001908

REFERENCES 127

Lawrence C. Washington. Elliptic Curves: Number Theory and Cryptography, Second Edition.
Chapman & Hall/CRC, 2 edition, 2008. ISBN 9781420071467.

DILIP YADAV and Sephali Behera. A survey on secure cloud-based e-health systems. EAI
Endorsed Transactions on Pervasive Health and Technology, 5:163308, 07 2018. doi: 10.4108/
eai.13-7-2018.163308.

Yang Yang, Xianghan Zheng, Wenzhong Guo, Ximeng Liu, and Victor Chang. Privacy-preserving
smart iot-based healthcare big data storage and self-adaptive access control system. In-
formation Sciences, 479:567–592, 2019. ISSN 0020-0255. doi: https://doi.org/10.1016/j.
ins.2018.02.005. URL https://www.sciencedirect.com/science/article/pii/
S0020025518300860.

Buket Yüksel, Alptekin Küpçü, and Öznur Özkasap. Research issues for privacy and secu-
rity of electronic health services. Future Generation Computer Systems, 68:1–13, 2017.
ISSN 0167-739X. doi: https://doi.org/10.1016/j.future.2016.08.011. URL https://www.
sciencedirect.com/science/article/pii/S0167739X16302667.

Qingyang Zhang, Jie Cui, Hong Zhong, and Lu Liu. Toward data transmission security based on
proxy broadcast re-encryption in edge collaboration. ACM Trans. Sen. Netw., 18(3), aug 2022.
ISSN 1550-4859. doi: 10.1145/3529510. URL https://doi.org/10.1145/3529510.

https://www.sciencedirect.com/science/article/pii/S0020025518300860
https://www.sciencedirect.com/science/article/pii/S0020025518300860
https://www.sciencedirect.com/science/article/pii/S0167739X16302667
https://www.sciencedirect.com/science/article/pii/S0167739X16302667
https://doi.org/10.1145/3529510

Appendix A

User Interface Screenshots

Figure A.1: Login Page

Figure A.2: MyFiles Page

128

User Interface Screenshots 129

Figure A.3: MyFiles Page on upload file step

Figure A.4: Requests Page

User Interface Screenshots 130

Figure A.5: Requests Page on accept request step

Figure A.6: Resource Page

User Interface Screenshots 131

Figure A.7: SharedWithMe Page

Figure A.8: Profile Page

Appendix B

Performance Tests Results

Table B.1: Performance Tests - File upload performance for different

file sizes

Runs File size (MB)

Difference (%)
#

1MB 10MB

Time (ms)

1 1391 4743 241%

2 1474 3694 151%

3 1112 4187 277%

4 1064 3482 227%

5 1118 3705 231%

6 1080 4252 294%

7 1187 4073 243%

8 1186 3590 203%

9 1108 4155 275%

10 1042 2796 168%

11 1164 3547 205%

12 1090 4127 279%

13 1054 3518 234%

14 938 4314 360%

15 1260 3246 158%

16 1032 4214 308%

Continued on next page

132

Performance Tests Results 133

Table B.1: Performance Tests - File upload performance for different

file sizes (Continued)

17 1196 4097 243%

18 1139 3321 192%

19 1341 3895 190%

20 1109 4437 300%

Figure B.1: Performance Tests - File Size Uploads Bar Chart

Table B.2: Performance Tests - Generating the

re-encryption key

Runs
Time (ms)

#

1 878

2 766

3 918

4 659

5 1333

Continued on next page

Performance Tests Results 134

Table B.2: Performance Tests - Generating the

re-encryption key (Continued)

6 778

7 1167

8 1265

9 640

10 743

11 821

12 704

13 678

14 897

15 1012

16 778

17 754

18 902

19 885

20 793

Figure B.2: Performance Tests - Average time taken to generate the re-encryption key

Performance Tests Results 135

Table B.3: Performance Tests - Average time taken to generate the re-encryption key

Runs Average Time (ms) Standard Deviation (ms)
[1-20] 869 188

Table B.4: Performance Tests - File retrieval for different file sizes

Runs

Decryption Decryption PRE

File size (MB) File size (MB)

1 MB 10 MB 1 MB 10 MB

Time (ms) Time (ms)

1 762 2922 1600 3939

2 687 2876 1164 3852

3 597 1755 1620 3180

4 783 2206 1319 2876

5 909 2894 1341 2670

6 905 2652 1117 2781

7 1189 2323 1257 2826

8 788 3281 1294 3132

9 1623 2815 1100 3248

10 1284 2045 1121 3217

11 1004 1988 1114 2770

12 945 1899 1244 2456

13 851 2181 1177 2180

14 726 4046 1077 2950

15 846 2386 1327 2448

16 875 2258 1138 2503

17 802 2223 1280 2513

18 719 2520 1069 2816

19 854 2942 1235 2624

20 902 2368 1299 2568

Average 903 2529 1245 2877

Desv.pad 227 527 149 438

Performance Tests Results 136

Figure B.3: Performance Tests - Average Time Taken for File Retrieval

Figure B.4: Performance Tests - Average Impact of PRE in Same Sized Files

Figure B.5: Performance Tests - Average Impact of PRE in Different Sized Files

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Problem Background
	1.4 Aims and Objectives
	1.5 The CYBERSSECIP Project
	1.6 Thesis Organization

	2 Background
	2.1 Cryptography
	2.1.1 Symmetric Encryption
	2.1.2 Diffie-Hellman Key Exchange
	2.1.3 Asymmetric Encryption
	2.1.4 Identity and Attribute-Based Encryption
	2.1.5 Hybrid Encryption
	2.1.6 Authenticated Encryption
	2.1.7 Hashing Functions
	2.1.8 Shamir Secret Sharing
	2.1.9 Security Models

	2.2 Proxy Re-encryption
	2.2.1 Syntax and basic definitions
	2.2.2 Main Properties
	2.2.3 Classification of PRE schemes
	2.2.4 Primordial PRE advancements and foundations

	3 State of the Art
	3.1 Cloud-Based E-Health Systems
	3.1.1 Cloud E-health models
	3.1.2 Access delegation challenge

	3.2 Achieving e-health data security
	3.2.1 Non-Cryptographic techniques
	3.2.2 Cryptographic techniques
	3.2.3 Regulatory Standards

	3.3 Proxy Re-encryption in the Context of E-Health
	3.3.1 Open Source frameworks and implementations

	3.4 Safeguarding Emergencies in E-Health Environments

	4 Proxy Re-encryption Module
	4.1 Umbral PRE shceme
	4.1.1 Procedural Overview

	4.2 pyUmbral
	4.2.1 Encapsulation
	4.2.2 Encryption
	4.2.3 Generating Re-encryption key fragments
	4.2.4 Re-encapsulation
	4.2.5 Decapsulation and Decryption

	5 Proposed Solution
	5.1 Problem Statement
	5.2 Requirements format
	5.2.1 Use Cases Description Model
	5.2.2 Actors Description Model
	5.2.3 Functional Requirements Description Model
	5.2.4 Non-Functional Requirements Description Model

	5.3 Actors and Use Cases
	5.3.1 Actors
	5.3.2 Use Cases

	5.4 System Requirements
	5.4.1 Functional Requirements
	5.4.2 Requirements Traceability Matrix
	5.4.3 Non-Functional Requirements

	5.5 System Architecture
	5.5.1 Overview
	5.5.2 Main Design Decisions

	6 Implementation
	6.1 Business Logic
	6.1.1 Overall Architecture and Organisation
	6.1.2 Richardson Maturity Model
	6.1.3 Authorisation/Authentication
	6.1.4 Upload/Access Delegation of EHRs
	6.1.5 Supporting emergency or inability situations
	6.1.6 Data Modelling
	6.1.7 Middleware
	6.1.8 API Routes

	6.2 Presentation Logic
	6.2.1 Client-side Application
	6.2.2 Pages
	6.2.3 Components
	6.2.4 State Management

	7 Evaluation, Testing and Validation
	7.1 Security Evaluation and Risk Assessment
	7.1.1 Authentication and Authorisation
	7.1.2 Server-side logic
	7.1.3 Client-side application

	7.2 Performance Tests
	7.2.1 Testing Environment
	7.2.2 Results and Analysis

	7.3 Final Remarks

	8 Conclusions and Future Work
	8.1 Conclusions
	8.1.1 Achieved milestones and contributions
	8.1.2 Assessed challenges

	8.2 Future Work

	References
	A User Interface Screenshots
	B Performance Tests Results

