
On the use of Attribute-based Encryption in Publicly

Verifiable Outsourced Computation

James Alderman

Thesis submitted to the University of London

for the degree of Doctor of Philosophy

Information Security Group

School of Mathematics and Information Security

Royal Holloway, University of London

2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/77297903?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

These doctoral studies were conducted under the supervision of Professor Jason Crampton.

The work presented in this thesis is the result of original research I conducted, in collabo-

ration with others, whilst enrolled in the School of Mathematics and Information Security

as a candidate for the degree of Doctor of Philosophy. This work has not been submitted

for any other degree or award in any other university or educational establishment.

James Alderman

February, 2016

2

Abstract

Publicly verifiable outsourced computation (PVC) allows devices with restricted resources
to delegate computations to external servers, and to verify the correctness of results.
Servers may be rewarded per computation, and so have an incentive to cheat rather than
devote resources to a computation. Also, within an organisation, it is likely that individual
user permissions will vary and so outsourced actions should be restricted accordingly. This
gives rise to two interesting problems in the PVC setting addressed in this thesis: finding
a method to revoke and punish cheating servers; and enforcing access control policies that
restrict the computations each entity may outsource, compute or read the results of.

In this thesis, we use primitives traditionally used to cryptographically enforce access
control policies to construct secure PVC systems that meet these requirements. We first
extend prior PVC schemes based on key-policy attribute-based encryption (ABE) to ac-
commodate a broader system model where servers may compute multiple functions and
be prevented from performing further computations if found cheating. We then show how
a key assignment scheme can provide flexible access control over entities. Finally, we
consider an alternative scenario in which input data is held by the server rather than the
client, and construct a provably secure instantiation based on ciphertext-policy ABE. We
conclude by showing that dual-policy ABE can accommodate both models of outsourced
computation and provide a level of access control within a single system.

3

Contents

1 Introduction 12

1.1 Motivation . 12

1.2 Thesis Structure . 14

1.3 Author Contributions . 17

2 Background Material 18

2.1 Notation . 18

2.1.1 Terminology for Binary Trees . 20

2.2 Verifiable Outsourced Computation . 21

2.3 Access Control Policies . 28

2.3.1 Information Flow Policies . 29

2.3.2 Role-based Access Control Policies 29

2.3.3 Attribute-based Access Control Policies 30

2.3.4 General Representation of Access Control Policies. 32

2.4 Key Assignment Schemes . 32

2.5 Encryption Schemes . 34

2.5.1 Symmetric Encryption Schemes . 35

2.5.2 Asymmetric Encryption Schemes . 36

2.6 Attribute-based Encryption . 37

2.6.1 Key-policy Attribute-based Encryption 37

2.6.2 Ciphertext-policy Attribute-based Encryption 38

2.6.3 Dual-Policy Attribute-Based Encryption 39

2.6.4 Instantiating Attribute-based Encryption Schemes 40

2.7 Digital Signatures . 44

2.8 Notions of Security . 45

2.8.1 Verifiable Outsourced Computation 47

2.8.2 Key Assignment Schemes . 48

2.8.3 Symmetric Encryption . 52

4

CONTENTS

2.8.4 Symmetric Authenticated Encryption 54

2.8.5 Ciphertext-policy Attribute-based Encryption 56

2.8.6 Dual-policy Attribute-based Encryption 59

2.8.7 Digital Signatures . 59

2.8.8 One-way Functions . 60

3 Revocation in Publicly Verifiable Outsourced Computation 62

3.1 Introduction . 62

3.2 Background Material . 65

3.2.1 Construction of Publicly Verifiable Computation Schemes 65

3.2.2 Revocable Key-Policy Attribute-based Encryption 68

3.3 Revocable Publicly Verifiable Computation 72

3.3.1 Key Distribution Centre . 73

3.3.2 Handling Multiple Functions . 74

3.3.3 Standard Model . 74

3.3.4 Manager Model . 75

3.3.5 Formal Definition . 77

3.4 Security Models . 82

3.4.1 Ideal Security Properties . 83

3.4.2 Restricted Security Notions . 92

3.5 Construction . 99

3.5.1 Technical Details . 100

3.5.2 Instantiation . 103

3.6 Proofs of Security . 108

3.7 Conclusion . 126

4 Access Control in Publicly Verifiable Outsourced Computation 128

4.1 Introduction . 128

4.2 Access Control Policies for PVC Environments 132

4.2.1 Delegation and Computation Policies 134

4.2.2 Verification Policies . 139

4.3 PVC with Access Control . 141

4.4 Security Models . 146

4.4.1 Authorised Outsourcing . 147

4.4.2 Authorised Computation . 149

5

CONTENTS

4.4.3 Authorised Verification . 150

4.4.4 Weak Input Privacy . 152

4.5 Construction . 153

4.5.1 Informal Overview . 154

4.5.2 Instantiation . 155

4.6 Proofs of Security . 158

4.7 Conclusion . 165

5 Verifiable Delegable Computation 167

5.1 Introduction . 167

5.2 Related Work . 169

5.3 Verifiable Delegable Computation . 170

5.4 Potential Applications for VDC . 178

5.5 Security Model . 180

5.6 Construction . 181

5.7 Proof of Security . 187

5.8 Conclusion . 192

6 Hybrid Publicly Verifiable Outsourced Computation 194

6.1 Introduction . 194

6.2 Hybrid Publicly Verifiable Computation . 197

6.2.1 Informal Overview . 198

6.2.2 Supporting Different Modes . 199

6.2.3 Formal Definition . 202

6.3 Construction . 206

6.3.1 Revocable Dual-policy Attribute-based Encryption 206

6.3.2 Instantiation of HPVC . 210

6.4 Conclusion . 215

7 Conclusion 216

Bibliography 218

A Additional Material for Access Control in Publicly Verifiable Outsourced

Computation 230

A.1 Proof of Authorised Computation . 230

A.2 Proof of Authorised Verification . 236

6

CONTENTS

A.3 Proof of Weak Input Privacy . 240

B Additional Material for Hybrid Publicly Verifiable Outsourced Compu-

tation 244

B.1 Construction of Revocable Dual-policy Attribute-based Encryption 244

B.1.1 Proof of Security . 250

B.2 Security Models . 260

B.2.1 Selective Public Verifiability . 260

B.2.2 Selective, Semi-static Revocation . 261

B.2.3 Selective Authorised Computation 263

B.3 Proofs of Security . 264

B.3.1 Proof of Public Verifiability . 264

B.3.2 Proof of Revocation . 271

B.3.3 Proof of Authorised Computation 275

7

List of Figures

2.1 Example Hasse diagrams . 19

2.2 The operation of a verifiable computation scheme 23

2.3 The operation of a publicly verifiable computation scheme 26

3.1 The operation of a revocable publicly verifiable outsourced computation

scheme . 76

4.1 Example posets for publicly verifiable outsourced computation with access

control . 135

5.1 Comparison between PVC and VDC . 174

List of Tables

3.1 Mapping between PVC and KP-ABE parameters. 67

5.1 Example database for VDC . 171

5.2 Example list Fi . 171

6.1 Parameter definitions for different modes . 199

8

List of Security Games

2.1 Verifiability (Verif) of a verifiable outsourced computation scheme 47

2.2 Public verifiability (PubVerif) of a publicly verifiable outsourced compu-

tation scheme . 48

2.3 Adaptive key-indistinguishability (KI) of a key assignment scheme 49

2.4 Adaptive strong key-indistinguishability (S-KI) of a key assignment scheme 52

2.5 Indistinguishability under chosen plaintext attack (IND-CPA) of a sym-

metric encryption scheme . 53

2.6 Indistinguishability under chosen ciphertext attack (IND-CCA) of a sym-

metric encryption scheme . 53

2.7 Integrity of plaintexts (INT-PTXT) of an authenticated symmetric en-

cryption scheme . 55

2.8 Indistinguishability against chosen plaintext attack (IND-CPA) of a ciphertext-

policy attribute-based encryption scheme 57

2.9 Selective indistinguishability against chosen plaintext attack (sIND-CPA)

of a ciphertext-policy attribute-based encryption scheme 57

2.10 Selective indistinguishability against chosen plaintext attack (sIND-CPA)

of a dual-policy attribute-based encryption scheme 59

2.11 Existential unforgeability against chosen message attacks (EUF-CMA) of

a digital signature scheme . 60

2.12 Inversion resistance (Invert) of a one-way function 60

3.1 Indistinguishability against selective-target with semi-static query attack

(IND-sHRSS) of a indirectly revocable key-policy attribute-based encryp-

tion scheme . 72

3.2 Public verifiability (PubVerif) of a revocable publicly verifiable outsourced

computation scheme . 83

3.3 Public verifiability with multiple inputs (mPubVerif) of a revocable pub-

licly verifiable outsourced computation scheme 84

9

LIST OF SECURITY GAMES

3.4 Secure revocation (Rev) of a revocable publicly verifiable outsourced com-

putation scheme . 87

3.5 Security against vindictive servers (VindS) of a revocable publicly verifiable

outsourced computation scheme . 88

3.6 Security against vindictive managers (VindM) of a revocable publicly ver-

ifiable outsourced computation scheme . 91

3.7 Selective public verifiability (sPubVerif) of a revocable publicly verifiable

outsourced computation scheme . 94

3.8 Selective, semi-static revocation (sSS-Rev) of a revocable publicly verifi-

able outsourced computation scheme . 95

3.9 Selective security against vindictive managers (sVindM) of a revocable

publicly verifiable outsourced computation scheme 98

4.1 Authorised outsourcing (AuthO) of an RPVC scheme with access control . 147

4.2 Authorised computation (AuthC) of an RPVC scheme with access control 149

4.3 Authorised verification (AuthV) of an RPVC scheme with access control . 151

4.4 Weak input privacy (wIP) of an RPVC scheme with access control 153

5.1 Public verifiability (PubVerif) of a publicly verifiable delegable computa-

tion scheme . 180

6.1 Indistinguishability against selective-target with semi-static query attack

(IND-sHRSS) of a indirectly revocable dual-policy attribute-based encryp-

tion scheme . 209

B.1 Selective public verifiability (sPubVerif) of a hybrid publicly verifiable

outsourced computation scheme . 260

B.2 Selective, semi-static revocation (sSS-Rev) of a hybrid publicly verifiable

outsourced computation scheme . 261

B.3 Selective authorised computation (sAuthC) of a hybrid publicly verifiable

computation scheme . 263

10

Acknowledgements

Firstly, I would like to thank my supervisor Jason Crampton for his invaluable support

and guidance over the course of my PhD, and for his always detailed feedback, even when

I pulled him away from his area of expertise.

I am grateful to BAE Systems Advanced Technology Centre and the EPSRC for their

financial support.

I have been very fortunate to make some great friends within the department. Thank you

especially to Susan for always surpassing my expectations, to Dale for the rants, massages

and gifts, to Shahram for the maple syrup, and to Gordon for the pictures. Thanks to

Christian for being a wonderful co-author and for teaching me German, to Dan and Rachel

for the Tuesday outings and for their constant lookout for llamas and to Naomi, for being

there.

Finally, thank you to my family for their love and support, during my PhD and always.

11

Chapter 1

Introduction

Contents

1.1 Motivation . 12

1.2 Thesis Structure . 14

1.3 Author Contributions . 17

This chapter provides the motivation for, and structure of, the thesis.

1.1 Motivation

It is increasingly common for mobile devices to be used as general purpose computing de-

vices and for low-power sensors to be deployed to collect and analyse data. There is also

a trend towards cloud computing and performing computations over enormous volumes

of data (“big data”), which means that many computations of practical interest may re-

quire considerable computing resources. In short, there is a growing discrepancy between

the computing resources of end-user devices and the resources required to perform com-

plex computations on large datasets. This discrepancy, in part, has led to the increasing

use of software-as-a-service, where computing applications are provided by an external,

potentially untrusted, cloud service provider.

Consider, for example, a company that operates a “bring your own device” policy, or where

employees must be able to perform work duties when not in the office; thus, employees

may use devices such as smartphones and tablets for work purposes. Due to resource

limitations, it may not be possible for these devices to perform complex computations

locally, as perhaps would have been the case on a company-issued desktop device. Instead,

the company subscribes to a cloud service provider offering software-as-a-service and allows

employees to outsource their computations over some network to the more powerful cloud

12

1.1 Motivation

servers. Computational results are returned to the client device. More precisely, given a

function F to be computed by a server S, the client sends an input x to S, which should

return y = F (x) to the client. However, there may be an incentive for the server (or an

imposter) to cheat and to return an invalid result y′ 6= F (x) to the client. The server

may wish to convince a client of incorrect information, or the server may be too busy or

may not wish to devote resources to perform the computation, particularly if servers are

rewarded per computation performed. Thus, it is important that the client gains some

assurance that the result y returned by the server is, in fact, F (x).

Another example arises in the context of battlefield communications [57] where a setup

operation is performed by a trusted server within a military base and then each member of

a squadron of soldiers is deployed into the field with a reasonably light-weight computing

device. The soldiers gather data from their surroundings and send it to regional servers

for analysis before receiving tactical commands based on results. Those servers may not

be fully trusted, e.g. the servers may be hosted in enemy territory or the soldiers may

be part of a (weak) coalition. Thus, soldiers must have an assurance that the command

has been computed correctly before making tactical decisions. A final example is that

of sensor networks where lightweight sensors transmit readings to a more powerful base

station that computes statistics that can be verified by an experimenter.

Solutions to the above problems are known as verifiable computation (VC) schemes. VC

schemes enable the outsourcing of computation requests to a more powerful server and

verification of the results of such computations. In particular, the outsourcing and verifi-

cation stages (both run by the client) must be more efficient (require less computational

resources) than computing the function itself. Otherwise there is little to gain from out-

sourcing such computations; indeed, it is assumed that client devices lack these resources.

These efficient outsourcing and verification operations may follow an expensive, one-time

setup phase to initialise the system, the aim being to amortise this cost over many out-

sourced computations. For example, the setup phase could be performed on an employee’s

desktop device so that a lightweight, mobile device can be used outside the office environ-

ment, or the setup could be performed by a trusted server within a military base [57].

Recent work in this area has led to the notion of publicly verifiable computation (PVC)

where, once a system is initialised, any entity may outsource computations or verify com-

putational results using only public information. PVC distributes the heavy setup cost

13

1.2 Thesis Structure

by allowing many users to reap the benefits of one client’s effort, rather than every sin-

gle user having to exert the effort themselves; thus PVC provides a more practical and

cost-effective alternative to VC. PVC schemes in particular lend themselves to practical

environments such as those discussed in the examples above wherein multiple users (e.g.

employees, soldiers or sensors within a network) may wish to outsource computations and

do not wish to each perform the expensive setup operation. Indeed, it may well be the

case that it is difficult to amortise the cost of setup over the computations outsourced by

a single client device but, when distributed over multiple clients, the joint cost is easier to

justify. Additionally, particularly in a multi-user environment, many users may be inter-

ested in the same results and may all wish to verify correctness before using the results in

further work; PVC allows a single computation to be performed, the results of which can

be used by all interested clients. In this thesis, we focus on PVC as a desirable alternative

to VC and aim to enhance the existing solutions in terms of practicality and functionality.

1.2 Thesis Structure

In this thesis, we aim to explore PVC in more detail. In Chapter 2, we introduce rele-

vant background material and notation that is required throughout the remainder of the

thesis. We then, in Chapter 3, take a closer look at the system architecture considered in

current PVC schemes and see that there exists a distinguished client that must perform

the system setup operations. This client, in effect, becomes an authority on computa-

tional servers that may be used by other clients. Current schemes consider only a single

server, whereas we believe it to be a realistic model that multiple, competing, cloud ser-

vice providers may be employed by a large set of clients, e.g. a company may wish to

change providers without re-initialising the entire system, or may prefer certain servers

for particular computational tasks (e.g. based on cost, latency to the current location of

a mobile device, or the security classification of the computation in question). Thus, we

extend the current schemes to allow multiple servers to be certified for multiple functions,

and allow the distinguished client, as the authority on servers, to add new servers and

to revoke misbehaving servers, preventing them from performing further computations if

they are known not to be trustworthy. This chapter is based on a paper by Alderman et

al. [5].

14

1.2 Thesis Structure

In Chapter 4, we consider the need for access control in PVC systems, building upon our

revised system model from Chapter 2, where we consider multiple clients outsourcing com-

putations to multiple servers, each of which can be certified to perform multiple functions.

As a multi-user, distributed system operating over potentially sensitive data and results,

we believe the cryptographic enforcement of access control policies is both a natural and

necessary requirement. We discuss policies that limit:

• the operation of clients such that they can only outsource computations that they

are authorised to perform locally (given the necessary resources) or to require clients

to hold a valid subscription for the computation (based on the required resources to

perform the computation);

• the set of computations a server may perform;

• the set of computational results a verifier may read (as such results may reveal

sensitive information).

We discuss how these requirements can be expressed in terms of graph-based information

flow policies and provide appropriate security models for their cryptographic enforcement.

We also provide an example instantiation which uses a symmetric key assignment scheme

(KAS) as the enforcement mechanism. As the distinguished setup entity is an authority

on servers within the system, we again extend its duties to be authoritative on all entities

in the system and to issue keys corresponding to appropriate access rights. Since the

proofs of security for this scheme are quite similar in their line of argument, we include

one exemplar proof in full in the main body of this thesis, and then include the remaining

proofs in Appendix A to avoid repetition. The work presented in this chapter is based on

a paper by Alderman et al. [3].

In Chapter 5, we extend the PVC construction to consider a reversed model of outsourced

computation. Previously, we considered client devices that were data owners but lacked

the resources to perform expensive computations on their data and so outsourced the

relevant input data, along with a request for a particular computation, to an external

server. In contrast, in Chapter 5, we consider servers that own some data and make it

available for specific sets of public queries. We discuss this reversed system architecture

and relevant security notions, and see that it has natural applications to verifiable queries

on remote databases and verifiable parallel processing using the MapReduce framework.

15

1.2 Thesis Structure

This notion is similar in some regards to notions such as memory delegation [42]; in this

thesis, we observe that the techniques used in the constructions of PVC can be adapted

to this setting too.

Finally, in Chapter 6, we unify the work in prior chapters using the new notion of hybrid

PVC (HPVC). An HPVC scheme requires only a single setup stage but provides a flexible

outsourced computing solution. The notions of security for HPVC generally combine

notions from the previous chapters with updated notation; as such, to avoid repetition,

we defer these and their proofs to Appendix B.

We also show that HPVC provides a natural application for dual-policy attribute-based

encryption (DP-ABE). In fact, we will require a new primitive which we call revocable

key dual-policy attribute-based encryption scheme which combines DP-ABE with a revo-

cation mechanism to disable decryption keys. We introduce and define this primitive in

Section 6.3.1 but defer the construction and proof of security to Appendix B due to the

length and the fact that the construction of HPVC can be followed only with knowledge

of the definition. Chapters 5 and 6 are based on a paper by Alderman et al. [4].

To date, DP-ABE has not attracted much attention in the literature, which we believe to be

primarily due to its applications being less obvious than for other forms of attribute-based

encryption (particularly in regards to the cryptographic enforcement of access control

policies). Thus, one outcome of this thesis is to show that DP-ABE can be a useful tool in

other settings (namely in outsourced computation protocols as well as in cryptographically

protected file systems).

Indeed, a theme throughout this work is to look at expanding the applications of primitives

(both symmetric and asymmetric) primarily designed for cryptographic access control.

Such primitives are generally only considered in a static, file-system environment where

files are encrypted and users granted decryption keys that allow them to read only those

files for which they are authorised. In this work, we show how such primitives are also of

practical use in interactive (dynamic) protocols to protect messages sent between entities.

Furthermore, we use these primitives not only to prove authorisation to perform specific

operations within the system (in effect, using read access control to enable a form of

execution access control), but also as a proof mechanism for the outcome of an outsourced

computation of a Boolean function.

16

1.3 Author Contributions

1.3 Author Contributions

The work presented in this thesis is derived from three published papers [3–5] which I

co-authored with three others; Crampton and Cid acted in a supervisory role to Christian

Janson and I, as PhD students. The contents are therefore derived (although in many

cases edited) from collaborative work with Christian Janson, arising from joint discussions,

proof-reading and iterative editing by both. This section is intended to indicate instances

where I was the main author or had a significant contribution.

The idea, first arising in Chapter 3, to use labels to enable servers to perform multiple

functions (without allowing them to use an evaluation key for an alternate function to

cheat) was my own, as was the novel use of dual-policy attribute-based encryption to both

enable computation and enforce access control in Chapter 6.

In Chapter 3, the security model and proof for public verifiability and vindictive managers

were primarily developed by me, whilst the definition and construction of revocable PVC

was developed during joint meetings. I was responsible for the formulation of access control

policies in Chapter 4 with guidance from Jason Crampton. I also created the security

model and proof for the notions of authorised outsourcing and weak input privacy.

The notion of verifiable delegable computation, and the resulting definition, in Chapter 5

arose from discussions with Christian Janson about whether ciphertext-policy attribute-

based encryption could be used in a similar fashion to the key-policy variant used in

previous chapters. I was the main author of the instantiation of VDC and the discussion

of the system model in Section 5.3 (with input from Jason Crampton).

Finally, as mentioned, I had the idea to combine the notions of the prior chapters and to

instantiate Hybrid PVC using dual-policy attribute-based encryption (DP-ABE). Thus,

the definitions and instantiation are mainly my own work. The instantiation relies on a new

primitive known as revocable DP-ABE; this was mainly developed by Christian Janson

(and hence many of the details can be found in Appendix B.1 rather than the main thesis

body), however I was heavily involved in discussions to formulate the definition and basic

ideas, as well as in completing the details of the security proof.

17

Chapter 2

Background Material

Contents

2.1 Notation . 18

2.2 Verifiable Outsourced Computation 21

2.3 Access Control Policies . 28

2.4 Key Assignment Schemes . 32

2.5 Encryption Schemes . 34

2.6 Attribute-based Encryption . 37

2.7 Digital Signatures . 44

2.8 Notions of Security . 45

This chapter introduces the notation, cryptographic primitives and security notions that

will be used throughout the remainder of this thesis. We defer discussion of the security

notions for each primitive to Section 2.8 where we introduce the format of the notions that

shall be used throughout the thesis.

2.1 Notation

First we introduce some notation to be used in the remainder of this thesis. The set of

integers is denoted Z, the set of non-zero integers is denoted Z? = Z \ {0}, the set of reals

is denoted R, and we let the set of natural numbers be the set of non-negative integers,

denoted N = {z ∈ Z : z ≥ 0}. We write [i, j], for integers i 6 j, to denote the set of

consecutive integers {i, . . . , j}, [n] to denote the set {1, . . . , n} for n > 1, and ∅ to denote

the empty set. When X is a set, we denote the powerset of X by 2X which is the set

of all subsets of X. A partially ordered set, or poset, is a set L equipped with a binary

18

2.1 Notation

4

3

2

1

(a) C4

{1, 2}

{1} {2}

∅

(b) 2[2]

[1, 2] [2, 3] [3, 4]

[1, 3] [2, 4]

[1, 4]

[1, 1] [2, 2] [3, 3] [4, 4]

(c) T4

Figure 2.1: Example Hasse diagrams

relation 6 such that for all x, y, z ∈ L the following conditions hold: x 6 x (reflexivity);

if x 6 y and y 6 x then x = y (anti-symmetry); and if x 6 y and y 6 z, then x 6 z

(transitivity). We may write x < y if x 6 y and x 6= y, and write y > x if x 6 y. We say

that x covers y, written y l x, if y < x and no z exists in L such that y < z < x. The

Hasse Diagram of a poset (L,6) is the directed acyclic graph (L,l) wherein vertices are

labelled by the elements of L and an edge connects vertex v to w if and only if wl v. We

write Cn to denote the chain (total order) on n elements and Tn to denote the temporal

poset ({[i, j] : 1 6 i 6 j 6 n},⊆). Figure 2.1 shows Hasse diagrams for C4, 2[2] and T4.

For the purposes of this thesis, a binary Boolean operator O : {0, 1} × {0, 1} → {0, 1}

takes two bits as input and outputs a single bit result. We use the notation 1 and true

(and similarly 0 and false) interchangeably to denote the outcome of such operations.

We denote by ∨ the binary OR operator which returns 1 if at least one input is 1, and

denote by ∧ the binary AND operator which returns 1 if and only if both inputs is 1. A

Boolean function F : {0, 1}n → {0, 1} of arity n takes n bits as input and outputs a single

bit result. Every Boolean function can be written as a propositional formula made from

binary Boolean operators over n variables where the truth value of the result is determined

by assigning truth values to each variable and evaluating each Boolean operator. Two such

formulae are equivalent if and only if they express the same Boolean function (i.e. agree on

the output of F for all possible inputs). If F evaluates to true on a set of input variables

I, we say that I is a satisfying input set. F can also be completely described as a set

of satisfying sets, which we shall term an access structure. We say a Boolean function

is monotone if, for any satisfying input sets, changing any input values from false to

true does not change the truth of the function. That is, adding additional true variables

to a satisfying input set, or increasing the Hamming weight of the input, does not cause

the set to become unsatisfying. We denote by Fn the family of n-ary monotone Boolean

functions closed under complement — that is, if F : {0, 1}n → {0, 1} belongs to Fn then

19

2.1 Notation

F , where F (x) = F (x)⊕1, also belongs to Fn. When n is clear from the context, we shall

refer to Fn simply as F . A more formal mathematical treatment of Boolean functions can

be found in [47]. We denote the domain of a function F by Dom(F) and the range by

Ran(F). A function, f : N → R, is negligible on its input if, for every non-constant real-

valued polynomial p(·), there exists an N such that for all integers n > N , f(n) < 1
p(n) .

Throughout this thesis, we shall denote an arbitrary negligible function by negl(·).

When specifying algorithms, we write y ← x to denote assigning the value x to the

variable y, and write y
$← S to denote choosing an element from a finite set S uniformly

at random and assigning it to the variable y. If A is a deterministic algorithm, we write

y ← A(x1, . . . xn) for the action of running A on the inputs x1 to xn and assigning the

result to an output y. Similarly, if A is a probabilistic algorithm, we write y
$← A(·) to

denote the output of A being assigned to the variable y. This can be read as sampling an

output y from the range of possible outputs of A according to a distribution defined by

the input arguments — that is, for a particular input x, A may produce one of a set of

outputs Sx, and we sample y
$← Sx. Equivalently, one can consider A taking an additional

input R of random coins which determine the outcomes of probabilistic choices during the

algorithm execution — in this case, we would write y ← A(· ;R) since the explicit choice

of R renders A deterministic.

For a particular cryptographic scheme we denote the message space by M, the keyspace

by K, the security parameter by ` ∈ Z? and its unary representation as 1` (that is, a

bitstring of length ` where all the bits are 1). Often the keyspace will be all bitstrings of

length ` and ` can be increased to asymptotically strengthen the cryptographic primitive.

Informally, a larger security parameter defines a larger keyspace and hence increases the

cost of performing an exhaustive search of possible keys. We let ε denote the empty string

(or an empty list where relevant), ⊥6∈ M denote a distinguished failure symbol output by

an algorithm, and PPT denotes probabilistic polynomial-time.

2.1.1 Terminology for Binary Trees

A tree is a connected acyclic graph (i.e. a unique path exists between all pairs of vertices

in the graph). We may produce a directed tree by orienting each edge to flow from a

parent to a child vertex, and then consider the in-degree (resp. out-degree) of a vertex v

20

2.2 Verifiable Outsourced Computation

as the number of edges beginning (resp. ending) at v. A binary tree is a directed, rooted

tree (i.e. a unique vertex exists with in-degree 0) where each vertex has at most 2 children

(i.e. each vertex has out-degree at most 2) such that there exists a unique path from the

root to each vertex. A leaf is a vertex with out-degree 0.

Let L = {1, . . . , n} be the set of leaves of a tree. Let X be a set of labels labelling each

vertex in the tree according to some ordering, and we can identity a vertex with its unique

label.. For a leaf i ∈ L, let Path(i) ⊂ X be the set of labels for vertices on the (unique)

path from the root to i (including i and the root).

For R ⊆ L, let Cover(R) ⊂ X be defined as follows [16]. First mark all all the vertices in

Path(i) if i ∈ R. Then Cover(R) is the set of all unmarked children of marked vertices. It

can be shown that Cover(R) is the minimal set that contains no vertex in Path(i) if i ∈ R

but contains at least one vertex in Path(i) if i /∈ R.

2.2 Verifiable Outsourced Computation

Verifiable computation (VC) may be seen as a protocol between two polynomial-time

parties, a client, C, and a server, S. A successful run of the protocol results in C being

provided with a (correct) proof of the computation of F (x) by the server for an input x

supplied by the client. As mentioned in Chapter 1, the need for such protocols is motivated

by resource constrained devices that need to perform computationally intensive tasks, and

so employ a more powerful, yet potentially untrusted, computational server. In many

settings, the client must be assured of the correctness of the computation before results

can be used in further computations to ensure accidental or malicious errors have not

been introduced. A malicious sever may wish to convince a client of incorrect results to

affect future client behaviour or, if it believes incorrect results will not be detected, the

server may try to avoid expending computational resources to perform the computation

and instead return a random result.

Some solutions to this problem rely on auditing [21,79] (that is, the client will either employ

multiple servers or recompute itself some portion of the computation) to verify correctness.

However, such solutions may be infeasible for the client (which is assumed to have limited

resources), require detailed knowledge of the server hardware [88] (which is impractical

21

2.2 Verifiable Outsourced Computation

in many cloud environments), or require redundantly employing multiple servers (thus

increasing the cost) which are required not to collude. Other solutions [39] rely on the

computational servers holding trusted platform modules [70] or other secure computing

environments, which clearly restricts the cloud servers that may be employed and adds to

the cost of employing them. Finally, some VC solutions use interactive proofs [61, 63, 75]

or the more efficient probabilistic checkable proofs (PCPs) [11, 23] (where the verifier is

able to check a proof in only a small number of places).

Non-interactive verifiable computation was introduced by Gennaro et al. [57]. Non-interactivity

requires that there be only one round of interaction between the client and the server each

time a computation is performed, and thus rules out approaches based on repeated prob-

abilistic challenge-response protocols.

Definition 2.1. A non-interactive VC scheme to compute a single function F comprises

four algorithms as follows:

• (EKF , SKF)
$← Setup(1`, F): takes as input the unary representation of the security

parameter and the function F to be computed, and outputs a public evaluation key

EKF which the server will use to compute F and a key SKF which is kept secret by

the client;

• (σF,x, V KF,x)
$← ProbGen(x, SKF): takes as input an input value x and the secret

key SKF and generates a public encoded input σF,x and a verification key V KF,x

which is kept secret by the client;

• θF (x)
$← Compute(σF,x, EKF): takes the encoded input σF,x and the evaluation key

for F and computes an output θF (x) encoding the result F (x);

• y ← Verify(θF (x), V KF,x, SKF): takes the encoded output θF (x), the verification key

V KF,x and the secret key SKF as input and generates an output y which is either

F (x) if θF (x) is valid, or else a distinguished failure symbol ⊥ if the result is incorrect.

The operation of a VC scheme is illustrated in Figure 2.2. Note that Setup is performed

once whilst the remaining algorithms may be performed many times. Setup is run by

the client and may be computationally expensive but the remaining operations should

be efficient for the client. In other words the cost of the setup phase (to the client)

22

2.2 Verifiable Outsourced Computation

SC

1. EKF

2. σF,x

3. θF (x)

4. Verify

Figure 2.2: The operation of a verifiable computation scheme

is amortised over multiple computations of F . The cost of outsourcing a computation

must, in particular, be cheaper than performing it locally. Different VC schemes are able

to evaluate different families of functions, denoted F (e.g. Boolean circuits, arithmetic

circuits etc.).

A VC scheme is correct if the client will always accept and recover the value F (x) if all

algorithms are run honestly. A more formal correctness definition follows.

Definition 2.2. A verifiable computation scheme for a family of functions F is correct

if for all functions F ∈ F , for all inputs x ∈ Dom(F),

Pr[(EKF , SKF)
$← Setup(1`, F),

(σF,x, V KF,x)
$← ProbGen(x, SKF),

θF (x)
$← Compute(σF,x, EKF),

F (x)← Verify(θF (x), V KF,x, SKF)] = 1.

A VC scheme is secure if a malicious server cannot convince a client of an incorrect result.

This is defined more formally in Section 2.8.1.

A trivial solution to verifiable computation is to redundantly outsource the same com-

putation to multiple servers and compare the results, taking the majority answer to be

correct. Most VC schemes [9,18,19,26] attempt to improve on this solution to remove the

redundancy, improve collusion resilience and to use only a single server per computation.

Gennaro et al. [57] introduced a construction based on Yao’s garbled circuits [97] which

provides a “one-time” verifiable computation scheme allowing a client to outsource the

evaluation of a function on a single input. It is, however, insecure if the circuit is reused

on a different input; thus the cost of Setup cannot be amortised. Moreover, the cost

23

2.2 Verifiable Outsourced Computation

of generating a new garbled circuit is approximately equal to the cost of evaluating the

function itself. The authors suggest using a fully homomorphic encryption scheme [59] to

re-randomise the garbled circuit for multiple executions on different inputs, but this too

is currently impractical.

In independent and parallel work to that described in Chapter 3, Carter et al. [34] intro-

duced a more powerful third party to generate garbled circuits for such schemes. However,

they required this entity to be online throughout the computation and modelled the sys-

tem as a secure multi-party computation between the client, server and third-party. We

do not believe this solution is practical in general since trusted third parties may not

always be available to take an active part in computations. For example, VC schemes are

sometimes motivated in the context of battlefield communications where soldiers deployed

with a reasonably light-weight computing device gather data from their surroundings and

send it to regional servers for analysis [57]. In this setting, the trusted third party could

be physically located within a high security base or governmental building and soldiers

may receive relevant keys before being deployed. However, it may not be feasible, or desir-

able, for a remote soldier to contact the headquarters and maintain a communication link

with them for the duration of the computation. It seems a reasonable assumption that

in a VC system there could be many available servers but only a single (or small number

of) trusted third parties. The third party, then, could easily become a bottleneck in the

system and limit the number of computations that can take place at any one time.

Some authors have considered the multi-client case in which the input data sent to the

server is jointly formed by multiple clients, where notions such as input privacy become

more important. Choi et al. [40] extended the garbled circuit approach [57] using a proxy

oblivious-transfer primitive to achieve input privacy in a non-interactive scheme. Recent

works [60,60] allow multiple clients to provide input to a functional encryption algorithm.

Parno et al. [84] introduced another notion of VC termed multi-function verifiable com-

putation to allow servers to apply multiple functions to a single input, as opposed to the

above notions defined for a single function F . Thus, a client can encode an input once,

yet request multiple functions to be evaluated upon it. This is clearly useful if the client

data is likely to remain static and be used multiple times for different purposes.

Definition 2.3. A non-interactive, multi-function verifiable outsourced computation (MF-

VC) scheme consists of five algorithms as follows:

24

2.2 Verifiable Outsourced Computation

• (PP,MK)
$← Setup(1`): takes as input the unary representation of the security pa-

rameter, and outputs some public parameters PP and a secret key MK which are

independent of any function to be computed;

• (EKF , SKF)
$← KeyGen(F,MK,PP): takes a function F to be computed, the master

secret key MK and the public parameters PP and outputs an evaluation key EKF

and a secret verification key SKF for F ;

• (σx, V Kx)
$← ProbGen(x,MK,PP): takes as input an input value x, the master

secret key and the public parameters, and generates an encoded input σx and a secret

verification key V Kx. Note that the inputs to this algorithm are independent of F ;

• θF (x)
$← Compute(σx, EKF ,PP): takes an encoded input σx for input x and both

public values (the evaluation key for a function F and the public parameters), and

computes an output θF (x) encoding the result F (x);

• y ← Verify(θF (x), V Kx, SKF): takes the encoded output θF (x), the secret, input spe-

cific verification key V Kx and the secret, function specific key SKF as input, and

generates an output y which is either F (x) if θF (x) is valid, or else a distinguished

failure symbol ⊥ if the result is incorrect.

Definition 2.4. A non-interactive, multi-function verifiable outsourced computation (MF-

VC) scheme for a family of functions F is correct if for all functions F ∈ F , for all inputs

x ∈ Dom(F),

Pr[(PP,MK)
$← Setup(1`),

(EKF , SKF)
$← KeyGen(F,MK,PP),

(σx, V Kx)
$← ProbGen(x,MK,PP),

θF (x)
$← Compute(σx, EKF ,PP),

F (x)← Verify(θF (x), V Kx, SKF)] = 1.

Parno et al. [84] introduced publicly verifiable computation (PVC) which we will extend

in this thesis. This notion extends the prior VC notion to include multiple clients. A

single client C1 computes EKF , as well as publishing information PKF that enables any

other client to encode inputs, meaning that only one client has to run the expensive pre-

processing stage. Each time a client submits an input x to the server, it may publish

V KF,x, which enables any other client to verify that the output is correct. Thus, in PVC,

25

2.2 Verifiable Outsourced Computation

SC1 C2

Public

EKF

σF,x1

θF (x1)

σF,x2

θF (x2)

PKF , V KF,x1 V KF,x2

Verify Verify

Figure 2.3: The operation of a publicly verifiable computation scheme

outsourcing and verifying computations rely only on public information, and Setup need

only be run once per function rather than once per function per client; we say that PVC

achieves public delegation and public verification.

Definition 2.5. A non-interactive publicly verifiable outsourced computation (PVC)

scheme to compute a single function F comprises four algorithms as follows:

• (EKF , PKF)
$← Setup(1`, F): takes as input the unary representation of the security

parameter and the function F to be computed, and outputs a public evaluation key

EKF which can be used to compute F and a public key PKF which allows delegation

of computations of F ;

• (σF,x, V KF,x)
$← ProbGen(x, PKF): takes as input an input value x and the public

delegation key PKF and generates a public encoded input σx and a public verification

key V Kx;

• θF (x)
$← Compute(σF,x, EKF): takes the encoded input σF,x and the evaluation key

for F and computes an output θF (x) encoding the result F (x);

• y ← Verify(θF (x), V KF,x): takes the encoded output θF (x) and the verification key

V KF,x as input and generates an output y which is either F (x) if θF (x) is valid, or

else a distinguished failure symbol ⊥ if the result is incorrect.

The operation of a publicly verifiable outsourced computation scheme is illustrated in

Figure 2.3 and can be compared to the standard version of VC illustrated in Figure 2.2.

Note that in both this definition and Definition 2.1 for ‘standard’ verifiable computation,

the Setup operation is run by the client for a single function F and can be expensive

26

2.2 Verifiable Outsourced Computation

(approximately the cost of executing the function F itself). Given that the client is

assumed to have restricted resources (to motivate the use of VC in the first place) and

that a client is likely to be interested in computing multiple functions, this definition is

somewhat restrictive. The primary differences between the two definitions are that the

secret key SKF generated in Setup for a VC scheme is published in a PVC scheme to allow

any entity to outsource a computation of F , and that the verification key V KF,x is also

published as a result of ProbGen to allow any entity to verify a result.

A PVC scheme is correct if, as with VC schemes, a honest run of the protocol will always

return the correct value of F (x).

Definition 2.6. A publicly verifiable computation scheme for a family of functions F is

correct if for all functions F ∈ F , for all inputs x ∈ Dom(F),

Pr[(EKF , PKF)
$← Setup(1`, F),

(σF,x, V KF,x)
$← ProbGen(x, PKF),

θF (x)
$← Compute(σF,x, EKF),

F (x)← Verify(θF (x), V KF,x)] = 1.

Parno et al. motivate PVC in the setting of a scientific lab where the lead researcher

determines the complex data analysis function that should be computed whilst a team

of researchers decide the inputs for each trial and verify results. Results could also be

verified by interested third parties, e.g. patients or funding bodies.

Public verification leads to a stronger notion of security since any entity, including the com-

putational server, can perform verification. Thus, the server itself is able to tell whether

a result will be accepted or rejected by a client. In some constructions of non-publicly

verifiable VC (meeting Definition 2.1), this knowledge could lead to an attack (known

as ‘the rejection problem’) — knowledge of whether previous proofs were accepted could

reveal information about secret verification keys that would aid future forgeries [62].

Some prior work also allows public delegation [30, 61, 62] but are mostly in the random

oracle model or rely on non-standard assumptions; public verifiability does not seem to

have been considered prior to the work of Parno et al. (with the exception of a scheme

limited to set operations [82]), but has been since [53, 83]. Parno et al. mentioned that

27

2.3 Access Control Policies

a VC scheme could be multi-function, publicly verifiable or both, but left it as an open

problem to find a multi-function PVC scheme.

2.3 Access Control Policies

Throughout this thesis we will make extensive use of cryptographic primitives primarily

designed to enforce access control policies. As mentioned in Chapter 1, one theme of this

thesis is to consider the use of such primitives in new settings and to protect messages

transmitted during an interactive protocol (rather than static documents in a file system).

In this section, we briefly review current access control policies that are of practical interest

which will inform both our choice of policy representation in Chapter 4 and the description

of attribute-based encryption later in this background chapter. More detailed general

introductions to access control can be found in [28,87].

Let U be a set of users or entities within a system, O be a set of objects or resources

that should be protected from unauthorised access, and A be a set of actions that may be

performed by a user on an object. An access control request is a tuple of the form (u, o, a)

representing the user u ∈ U requesting to perform action a ∈ A on the object o ∈ O.

An access control policy dictates whether such a request should be considered authorised

or unauthorised. A request is generally made to some form of policy enforcement point

(PEP) that employs an access control mechanism to respond to requests. When the access

control mechanism is some form of cryptographic primitive, it is usual to restrict A to be

the read action, and then objects can be identified with performing the read action on

the object, and requests become a pair (u, o).

Early access control policies were formulated directly on the members of the sets U and

O. For example, access control lists [28, 87] are defined over objects in O and define for

each o ∈ O, a set of authorised users Uo ⊆ U . Any user u within this authorised set may

read o — that is, a request (u, o) is deemed authorised if and only if u ∈ Uo. Similarly,

capability lists [28, 87] are defined over users in U . For each user u ∈ U , a capability list

Ou is defined as a set of objects that u may read — Ou ⊆ O. A request (u, o) is authorised

if and only if o ∈ Ou.

More recent forms of access control policies have attempted to be more flexible and fine-

28

2.3 Access Control Policies

grained by introducing levels of indirection between users and objects in the form of

attributes. The set of attributes is called the attribute universe, U .

2.3.1 Information Flow Policies

One example of such attribute-based policies are information flow policies [28] where the

set of attributes is an ordered set of security labels, one of which is associated to every

user and object. Let λ : U ∪ O → U , where U is the set of labels, be a labelling function

assigning attributes to users and objects. The access control policy then states that a

request (u, o) is authorised if and only if λ(u) > λ(o) according to the ordering relation

on labels.

Example 2.1. An example information flow policy is the Bell-LaPadula model [22] for

multi-level security policies. Consider a totally ordered set (chain) of security labels

{Unclassified < Classified < Secret < Top Secret}. A user with label Secret

is permitted to access (read) all objects associated with the labels Secret, Classified and

Unclassified, but not any objects labelled as Top Secret.

2.3.2 Role-based Access Control Policies

Another example of policies being defined over attributes is role-based access control

(RBAC) policies where the set of attributes is now a set of roles, U . Users are per-

mitted to act in certain roles, and objects may be acted upon only by specified roles. In

core RBAC (or RBAC0) [6, 86], an access control policy is defined by a user-role assign-

ment relation, UA ⊆ U × U , and an object-role assignment relation, OA ⊆ O × U . Note

that RBAC policies generally define UA and PA, where PA ⊆ P ×U is a permission-role

assignment relation, and a permission is defined to be an object-action pair. Since we

consider only read actions, we can associate permissions with objects and define OA as

above. A request (u, o) is authorised if and only if there exists a role r ∈ U such that

(u, r) ∈ UA and (o, r) ∈ OA.

Equivalently, define a labelling function λ : U ∪ O → 2U . For users u ∈ U and objects

o ∈ O, let λ(u) = {r1, . . . , rn} ∈ 2U and λ(o) = {r′1, . . . , r′m} ∈ 2U . Then a request (u, o)

is authorised if and only if there exists a role r ∈ U such that r ∈ λ(u) and r ∈ λ(o) i.e.

29

2.3 Access Control Policies

λ(u) ∩ λ(o) 6= ∅.1 Further, as with information flow policies, we may define a (partial)

order relation over U , resulting in hierarchical RBAC (or RBAC1) [6,86]. A request (u, o)

is authorised if and only if there exists roles r, r′ ∈ U such that (u, r) ∈ UA, r > r′, and

(o, r′) ∈ OA.

Definition 2.7. Let (L,6) be a poset and X ⊆ L. The downset of X is ↓ X = {l ∈

L : ∃x ∈ X such that l 6 x}. Similarly, the upset of X is ↑ X = {l ∈ L : ∃x ∈

X such that x 6 l}. For singleton sets, we denote ↓{x} as ↓x and ↑{x} as ↑x.

Given these definitions, one can again write λ : U ∪ O → 2U where (2U ,6) is a partial

order, and say that a request (u, o) is authorised if and only if ↓λ(u) ∩ ↑λ(o) 6= ∅.

2.3.3 Attribute-based Access Control Policies

A more general formulation of access control policies defined in terms of attributes is known

as attribute-based access control (ABAC) [68], as used in the XACML 3.0 access control

markup language [95] for example. This is motivated by the observation that in many large

distributed systems, the user and object populations cannot feasibly be described explicitly

in terms of individual identifiers (as in access control lists for example). Generally, ABAC

schemes associate either the user population or the object population with policies and

the other with attribute sets. When policies are associated with objects, we refer to them

as object-centric and when policies are associated to users we term them user-centric. The

attributes sets are also generally unordered (in contrast to information flow policies for

example), and policies are usually satisfied based on subset inclusion — as we shall describe

below, a policy can take the form of an access structure which comprises a collection of

satisfying attribute sets; a set of attributes should be a subset of the access structure in

order for access to be granted. As such, we usually consider only monotonic policies in

this setting, where any superset of an authorised set of attributes is also authorised —

granting additional attributes does not revoke access.

Example 2.2. Consider a university system with attribute universe U ={Professor,

Admin, Student, Mathematics, Computer Science, Information Security}. The re-

source space, O, is all publications, lecture notes and assignments, while the user space, U ,

is all students and staff. Both of these spaces could be too large, or change too frequently,

1Notice that users and objects can be assigned to multiple roles.

30

2.3 Access Control Policies

to formulate policies over individual identities. Thus, policies are defined as Boolean

formulas over U , e.g. the policy Admin ∧ (Mathematics ∨ Computer Science) defines

authorised users to be administrative staff in the Mathematics or Computer Science groups.

A policy can be represented in many forms (e.g. access trees, monotone span programs

or Boolean formulae). In this thesis, we will primarily consider policies represented as

monotone Boolean formulae F : 2U → {0, 1}, which is a very natural way to describe

authorised sets of users in terms of logical AND and OR gates.

Any policy (represented as a Boolean formula F defined over a subset of an attribute

universe U) can be written as a set of satisfying sets — that is, the satisfying sets A = {Si}

where Si ⊆ U for all i where F (Si) = 1 (i.e. the policy is satisfied by inputs Si) for all

Si ∈ A, and F (Sj) = 0 for all Sj /∈ A. This says that the formula F is satisfied by the

inputs S1 or S2 or . . . or S|A| i.e. it has been written in disjunctive normal form. A non-

empty collection of satisfying sets, A ⊆ 2U \{∅}, is called an access structure [20, Definition

3.5]. Note that, equivalently, A can be said to be an element of the set 22
U \ {∅}.

A is monotone if S′ ∈ A whenever S ∈ A and S ⊆ S′ i.e. all supersets of satisfying sets are

also satisfying. Equivalently, one may say that a monotone access structure is an order

filter in (2U \ {∅},⊆) [49, Definition 1.27]. If U is finite then an access structure can be

uniquely defined by the set of minimal elements (those Si that are not supersets of any

other Sj ∈ A). These minimal elements may be viewed as an antichain in (2U \ {∅},⊆).

Example 2.3. In Example 2.2, the minimal elements of the access structure are

A = {{Admin, Mathematics}, {Admin, ComputerScience}}.

We may associate each user with a set of descriptive attributes. Each object (or resource

to be protected) may be associated with a policy, effectively specifying the attribute sets

(and hence the users assigned such attribute sets) that should be considered authorised

to access the object. In other words, for such “object-centric” policies, we can define a

labelling function λ : U ∪O → 22
U \{∅}. Then, each user u is assigned a label λ(u) = {A}

for some attribute set A ⊆ U \{∅}. Each object o is assigned a policy, or access structure,

31

2.4 Key Assignment Schemes

λ(o) = A = {S1, . . . , Sn} ⊆ 22
U \ {∅}. An access control request (u, o) is authorised if and

only if λ(u) ∈ λ(o) (if A is the full access structure) or if and only if A ∩ Si = Si for some

1 6 i 6 n (if A is represented by its minimal elements).

Similarly, we can define “user-centric” policies wherein objects are associated with a de-

scriptive attribute set (describing their contents and classification levels) and users are

associated with policies (describing which sets of attributes, and therefore associated ob-

jects, they should be allowed to access). Such policies can be formulated in terms of a

labelling function as above with the roles of the user and object reversed.

2.3.4 General Representation of Access Control Policies.

We have seen that, by using an appropriate labelling function, RBAC policies can be

written in the same format as information flow policies — that is, access is granted if

and only if λ(u) ∩ λ(o) 6= ∅. It is trivial to see that access control lists and capability

lists fit this format. Crampton [44] has also shown that by redefining the poset order

relation appropriately, ABAC policies can also be written in this form. Thus, assuming an

appropriate order relation and labelling function, we have a simple way to describe many

forms of flexible access control policy in terms of information flow policies. Additionally,

efficient, symmetric cryptographic enforcement mechanisms for information flow policies

exist in the form of key assignment schemes, which we introduce in Section 2.4. For this

reason, when discussing access control policies in the setting of PVC in Chapter 4, we

focus our attention on information flow policies only.

2.4 Key Assignment Schemes

Let (L,6, U,O, λ) denote an information flow policy (see Section 2.3) on a set of users U

and a set of objects O with a labelling function λ assigning labels from the poset (L,6).

The policy can be represented by the Hasse diagram H(L,6). Henceforth we may refer to

such policies as graph-based access control policies. The policy requires that information

flow from objects to users preserves the partial ordering relation; a user u ∈ U may read an

object o ∈ O if and only if λ(u) > λ(o). Equivalently, there must exist a directed path from

λ(u) to λ(o) in the Hasse diagram. Note that this statement is the simple security property

32

2.4 Key Assignment Schemes

of the Bell-LaPadula security model [22]. The enforcement of a graph-based access control

policy prevents an entity assigned clearance label x from accessing objects classified with

label y if x 6> y. Posets of the form shown in Figure 2.1 have been used extensively as

the basis for graph-based access control policies, notably in the Bell-LaPadula model [22]

(Figure 2.1a) and in temporal access control [45] (Figure 2.1c).

A key assignment scheme provides a generic, cryptographic enforcement mechanism for

graph-based access control policies in which a unique cryptographic key is associated

to each node (representing a security label) in the graph H(L,6). Akl and Taylor [1]

introduced the idea of a KAS to manage the problem of key distribution by allowing

a trusted setup authority to distribute a single cryptographic key, κ(x), to each entity

assigned label x ∈ L. The entity may then combine knowledge of this secret key with

some publicly available information to derive all additional keys κ(y) that he is authorised

to hold. Henceforth, we write κx to represent the cryptographic key κ(x).

Definition 2.8. A key assignment scheme (KAS) for an information flow policy over the

poset (L,6) is defined by the following four algorithms [46]:

• κL
$← MakeKeys(1`, (L,6)) : takes the security parameter and the label poset as input

and returns a labelled set of cryptographic keys {κx : x ∈ L}, denoted κL;

• ωL
$← MakeSecrets(1`, (L,6)) : takes as input the unary representation of the security

parameter and the label poset and returns a labelled set of secret values {ωx : x ∈ L},

denoted ωL;

• Pub(L,6)
$← MakePublicData(1`, (L,6)) : takes the security parameter and the label

poset as input and returns a set of data Pub(L,6) that is published by the trusted

setup authority to aid key derivation;

• K ← GetKey(x, y, ωx, Pub(L,6)): takes as input x, y ∈ L, the secret information ωx

for x, and the public information, Pub(L,6). The algorithm returns a value K which

is either κy if y 6 x, or a distinguished failure symbol ⊥ otherwise.

Definition 2.9. A key assignment scheme is correct if for all posets (L,6), for all x ∈ L

33

2.5 Encryption Schemes

and for all y 6 x,

Pr[κL
$← MakeKeys(1`, (L,6)),

ωL
$← MakeSecrets(1`, (L,6)),

Pub(L,6)
$← MakePublicData(1`, (L,6)),

κy ← GetKey(x, y, ωx, Pub(L,6))] = 1.

A well-known KAS construction, known as iterative key encrypting (IKE) KAS [46], pub-

lishes encrypted keys. In particular, for each directed edge (x, y) in the Hasse diagram,

Enc(κy, κx) (i.e. the encryption of κy under κx) is published. Then for any x > y, there

is a (directed) path in the Hasse diagram from x to y and the key associated with each

node on that path can be derived (in an iterative fashion) by an entity that knows κx.

Specific choices of the poset of security labels give rise to the information flow policies made

famous in the Bell-LaPadula model [22] and temporal access control policies, wherein an

entity is permitted to derive cryptographic keys referring to specific intervals. A survey of

existing generic schemes is given in [46] whilst further details of temporal access control

and more general interval-based schemes can be found in [45] and [13]. Notions of security

for KASs are discussed in Section 2.8.

2.5 Encryption Schemes

Encryption is a technique primarily for preserving the confidentiality of messages ex-

changed between a sender and receiver (or writer and reader respectively). As such, it is

often a key component of cryptographic enforcement mechanisms for access control poli-

cies to prevent unauthorised entities from reading the contents of protected objects. In

this section, we review several forms of encryption that we will make use of, or build from,

later in the thesis.

34

2.5 Encryption Schemes

2.5.1 Symmetric Encryption Schemes

Symmetric encryption [69] relies on a secret key k held by both the sender and recipient

(or writer and reader) of a ciphertext.

Definition 2.10. A symmetric encryption scheme comprises three algorithms:

• k $← KeyGen(1`): takes the security parameter as input and randomly selects a sym-

metric key k from K;

• CT $← Encrypt(m, k): takes the symmetric key k and a message m from M as input

and outputs a ciphertext CT ;

• m ← Decrypt(CT, k): takes the ciphertext CT and the symmetric key k as input

and returns the message m encrypted in CT . Note that the decryption algorithm is

deterministic.

Correctness of a symmetric encryption scheme requires that for all security parameters

and all messages, decryption of an honestly ciphertext using an honestly generated key

will return the correct message. More formally,

Definition 2.11. A symmetric encryption scheme is correct if for all security parameters

` and all m ∈M,

Pr[k
$← KeyGen(1`),

CT
$← Encrypt(m, k),

m← Decrypt(CT, k)] = 1.

A symmetric authenticated encryption scheme is syntactically almost identical to Defini-

tion 2.10, but considers integrity as well as privacy of messages. That is, it is possible to

detect if a ciphertext has been modified since encryption (e.g. by a malicious eavesdrop-

per or through a faulty/noisy transmission medium). Authenticated encryption therefore

assures the integrity of received messages, and also provides data origin authentication

(i.e. assurance that a particular entity generated the ciphertext) since it should not be

possible for anyone other than the alleged encryptor to create a valid ciphertext, else an

35

2.5 Encryption Schemes

adversary could similarly create modified ciphertexts. The only change to Definition 2.10

is that Decrypt returns an element PT which is either the correct plaintext message m or

a distinguished symbol ⊥ if the ciphertext is deemed ‘inauthentic’.

2.5.2 Asymmetric Encryption Schemes

Asymmetric, or public key, encryption (PKE) [71] removes the requirement (from symmet-

ric encryption) for both the encryptor and decryptor to share the same key. Instead, each

entity A is associated with two keys: a public key used by an encryptor to send a message

to A; and a private key used by A to decrypt messages encrypted using A’s public key.

Thus, the sender is not required to know the decryption key. Additionally, the public key

may be transmitted or published in the clear so there is no requirement for confidential

channels before transmitting a message (although, distribution channels for the public key

must still be authenticated).

Aside from easing key distribution, PKE also leads to increased functionality as it is pos-

sible to write objects (encrypt) without being authorised to read (decrypt) such objects.

It also allows a recipient to receive messages from multiple senders whilst keeping only

a single secret decryption key. However, in general, public key cryptosystems are signif-

icantly slower than symmetric key schemes and, as a result, hybrid encryption is widely

adopted. In hybrid encryption, an object is (efficiently) encrypted using a symmetric en-

cryption scheme (this is termed the data encapsulation mechanism) and the symmetric

key used for object encryption is itself encrypted using a public key scheme (termed a key

encapsulation mechanism). Thus, the slower public key scheme is only used to encrypt a

reasonably short symmetric key, whilst the more efficient symmetric key scheme is used

to encrypt the larger object.

Public key schemes are defined in a very similar way to symmetric schemes, but the key

generation algorithm outputs two keys: a public key and a private key. Correctness is

defined analogously and must hold with all but negligible probability.

36

2.6 Attribute-based Encryption

2.6 Attribute-based Encryption

Attribute-based encryption (ABE) is a public key primitive that allows the decryption

of a ciphertext if and only if the encrypted data and decrypting entity satisfy certain

properties defined in terms of attribute sets. As such, it is well-suited to the cryptographic

enforcement of attribute-based access control policies (see Section 2.3.3). We define a

universe U of “attributes” which are labels that may describe data or entities. We then

form a set of attributes A ∈ 2U and a policy or access structure A ∈ 22
U \{{∅}}. Decryption

succeeds if and only if {A} ∈ A. Recall the example access structure in Examples 2.2

and 2.3.

There exist several variants of ABE that vary in the association of attribute sets and

access structures to ciphertexts and decryption keys. In key-policy ABE (KP-ABE) [66],

a policy is associated with the decryption key and a set of attributes is associated with each

ciphertext. Conversely, in ciphertext-policy ABE (CP-ABE) [27], a policy is associated to

a ciphertext and decryption keys are associated with sets of attributes. Finally, in dual-

policy ABE (DP-ABE) [15], both ciphertexts and decryption keys are associated with both

a policy and an attribute set, and the key attributes must satisfy the ciphertext policy

and vice versa.

2.6.1 Key-policy Attribute-based Encryption

In KP-ABE [66], each private key is associated with a family of satisfying attribute sets

A = {A1, . . . , An}, while each ciphertext is computed using a single, system-wide public

key and associated with a single subset of attributes A. Decryption succeeds if the access

structure A associated with the private key includes the attribute set under which the

message was encrypted: that is Ai = A for some i ∈ [n]. Since the access structure

describes objects that the key may be used to access, such policies are referred to as

objective. In most schemes, the access structures considered are monotonic, meaning

A′ ∈ A whenever there exists A ⊂ A′ such that A ∈ A. A notable non-monotonic scheme

was given by Ostrovsky et al. [80].

Definition 2.12. A key-policy attribute-based encryption scheme comprises the following

algorithms:

37

2.6 Attribute-based Encryption

• (PP,MK)
$← ABE.Setup(1`,U): takes the unary representation of the security pa-

rameter ` and the attribute universe U as input and outputs public parameters PP

and a master key MK;

• CT $← ABE.Encrypt(m,A,PP): takes as input a message m, a set of attributes A

and the public parameters PP, and outputs a ciphertext CT ;

• SKA
$← ABE.KeyGen(A,MK,PP): takes as input an access structure A, the master

key MK and the public parameters PP, and outputs a private decryption key SKA

for this access structure;

• PT ← ABE.Decrypt(CT, SKA,PP): takes as input a ciphertext CT of a message m

associated with a set of attributes A, a decryption key SKA and the public parameters.

It outputs a plaintext PT which is either the message m encrypted in CT , if A ∈ A

(i.e. if A is a satisfying set of A), or a distinguished failure symbol, ⊥, otherwise

(i.e. ⊥ is returned if the policy is unsatisfied).

We do not give the correctness or security properties in this background section as we

will be interested in using a revocable extension of KP-ABE, which we introduce in Sec-

tion 3.2.2. The reader is referred to the cited prior literature for more details.

2.6.2 Ciphertext-policy Attribute-based Encryption

In CP-ABE [27], attributes are used to describe users and each ciphertext is associated

with an access structure. In this regard, CP-ABE may be more closely related than KP-

ABE to traditional access control policies such as access control lists and RBAC that

describe authorised entities for each protected object. The policies in CP-ABE are said

to be subjective.

Definition 2.13. A ciphertext-policy attribute-based encryption scheme comprises four

algorithms as follows:

• (PP,MK)
$← Setup(1`,U): takes the security parameter and the attribute universe U

as input and generates public parameters PP and a master secret key MK;

• CT $← Encrypt(m,A,PP): takes a plaintext m, an access structure A and the public

parameters and outputs a ciphertext CT ;

38

2.6 Attribute-based Encryption

• SKA
$← KeyGen(A,MK,PP): takes as input an attribute set A, the master secret

key and the public parameters, and outputs a secret decryption key SKA for this

attribute set;

• PT ← Decrypt(CT, SKA,PP): takes a ciphertext for an access structure A, a secret

key for an attribute set A and the public parameters as input, and outputs a plaintext

PT which is m if and only if the attribute set A satisfies the access structure A (that

is, A ∈ A), and the distinguished failure symbol ⊥ otherwise.

Definition 2.14. A CP-ABE scheme is correct if for all messages m ∈M, access struc-

tures A ⊆ 2U \ {∅} and attribute sets A ⊆ U where A ∈ A,

Pr[(PP,MK)
$← ABE.Setup(1`),

SKA
$← ABE.KeyGen(A,A,MK,PP),

CT
$← ABE.Encrypt(m,A,PP),

m← ABE.Decrypt(CT, SKA,PP)]

= 1− negl(`).

2.6.3 Dual-Policy Attribute-Based Encryption

Recall that KP-ABE enforces objective policies whilst CP-ABE enforces subjective poli-

cies. Dual-policy attribute-based encryption (DP-ABE), introduced by Attrapadung and

Imai [16], combines these approaches such that both the ciphertext and the decryption

key comprise an attribute set and an access policy. Thus, the ciphertext is associated with

both a subjective access policy (as per CP-ABE) detailing which entities may decrypt it

and an objective attribute set describing the data. Decryption keys comprise an objective

access policy (as per KP-ABE) and a subjective attribute set. Decryption succeeds if and

only if both attribute sets satisfy their corresponding access policies.

Definition 2.15. A dual-policy attribute-based encryption scheme comprises four algo-

rithms as follows:

• (PP,MK)
$← Setup(1`,U): takes the security parameter and attribute universe as

input and generates public parameters PP for the system, and a master secret key

MK which is kept by the executor of this algorithm;

39

2.6 Attribute-based Encryption

• CTω,S
$← Encrypt(m, (ω,S),PP): takes a message m to be encrypted, an objective

attribute set ω, a subjective access policy S and the public parameters PP, as input.

The algorithm outputs a ciphertext CTω,S;

• SKO,ψ
$← KeyGen((O, ψ),MK,PP): takes as input an objective access policy O and

a subjective attribute set ψ, as well as the master secret key MK and the public

parameters PP. The algorithm outputs a secret decryption key SKO,ψ;

• PT ← Decrypt(CTω,S, SKO,ψ,PP): takes as input a ciphertext CTω,S and a secret

key SKO,ψ as well as the public parameters PP. The algorithm outputs a plaintext

PT which is the correct plaintext m if and only if the set of objective attributes

ω satisfies the objective access structure O and the set of subjective attributes ψ

satisfies the subjective policy S — that is, ω ∈ O and ψ ∈ S. If not, PT is defined

to be a distinguished failure symbol ⊥. We assume throughout that the policies and

attributes are implicit from the relevant keys and ciphertexts (otherwise these can

also be given as arguments to this function).

Definition 2.16. A DP-ABE scheme is correct if for all messages m ∈M, for all access

structures O, S ⊆ 2U \ {∅}, and for all attribute sets ω, ψ ⊆ U where ω ∈ O and ψ ∈ S,

Pr[(PP,MK)
$← Setup(1`,U),

SKO,ψ
$← KeyGen((O, ψ),MK,PP),

CTω,S
$← Encrypt(m, (ω,S),PP),

m← Decrypt(CTω,S, SKO,ψ,PP)]

= 1− negl(`).

2.6.4 Instantiating Attribute-based Encryption Schemes

Many ABE schemes choose a secret value uniformly at random during the encryption

or key generation algorithms and use a linear secret sharing scheme to split this secret

over a set of attributes or clauses in a policy. They then use Lagrange interpolation to

reconstruct the secret if and only if a satisfying set of attributes are provided to the

decryption algorithm. Additionally, many schemes are built using bilinear pairings which

give rise to hardness assumptions based on the Diffie-Hellman problem in bilinear groups.

40

2.6 Attribute-based Encryption

In Appendix B.1 we shall construct a new revocable DP-ABE primitive. In this section,

we introduce some additional preliminary notions that we shall require to do so. We first

provide more details regarding secret sharing schemes and Lagrange interpolation, as well

as bilinear maps and the associated hardness problems we shall use to prove security of

our primitive. We end by discussing some terminology for binary trees which we shall

use to determine the appropriate update material to issue such that revoked user keys are

rendered useless.

2.6.4.1 Linear Secret Sharing Schemes

Secret sharing is a fundamental cryptographic tool that enables a secret value s to be

divided amongst a set of entities in such a way that all authorised sets of entities may

combine their individual shares to reconstruct the value of s, for example, any k out of the

n entities may form an authorised set. Any set of entities that does not form an authorised

set learns nothing more than their respective shares, and cannot reconstruct s. A secret

sharing scheme is linear if the reconstruction operation is a linear function of the shares;

almost all known secret sharing schemes are linear [20].

Recall from Section 2.3.3, the definition of an access structure as a collection of satisfying

sets of a Boolean formula. Equivalently, an access structure can be generically defined as

follows [20].

Definition 2.17. Let P = {P1, P2, . . . , Pn} be a set of parties (or attributes). A collection

A ⊆ 2P is monotone if for all B,C, if B ∈ A and B ⊆ C then C ∈ A. An access

structure (resp., monotonic access structure) is a collection (resp., monotone collection)

A ⊆ 2P \ {∅}. The sets in A are called the authorised sets and the sets not in A are called

the unauthorised sets.

A linear secret sharing scheme can then be defined as follows [92].

Definition 2.18. Let P be a set of parties. Let M be a matrix of size l × k. Let

π : {1, . . . , l} → P be a function that maps a row to a party for labelling. A secret

sharing scheme Π for a monotone access structure A over a set of parties P is a lin-

ear secret-sharing scheme (LSSS) in Zp, and is represented by (M,π), if it consists of two

polynomial-time algorithms:

41

2.6 Attribute-based Encryption

• Mv
$← Share(s, (M,π)): takes as input s ∈ Zp to be shared and the LSSS (M,π). It

randomly chooses y2, . . . , yk ∈ Zp and sets v = (s, y2, . . . , yk). It outputs Mv as a

vector of l shares. The share λπ(i) := Mi · v belongs to party π(i), where we denote

the ith row in M by Mi;

• {(i, µi)}i∈I ← ReconS, {λπ(i)}π(i)∈S , (M,π): takes as input an authorised set S ∈ A,

the set of shares for this set, and the LSSS (M,π). Let I = {i : π(i) ∈ S}. It outputs

reconstruction constants {(i, µi)}i∈I such that the secret can be linearly reconstructed

as s =
∑

i∈I µi · λπ(i). The set {µi}i∈I can be found in polynomial time in the size

of M [20, 92].

In Appendix B.1,we will require the following fact [92]:

Proposition 2.1. Let (M,ρ) be an LSSS for an access structure A over a set of parties P,

where M is a matrix of size l× k. For any authorised set S, the target vector (1, 0, . . . , 0)

is in the span of I = {i : π(i) ∈ S}. For all unauthorised set S /∈ A, the target vector is

not in the span of I, and there exists a polynomial time algorithm that outputs a vector

w = (w1, . . . , wk) ∈ Zkp such that w1 = −1 and for all i ∈ I it holds that w · Mi = 0.

In Appendix B.1, we will make use of a particular reconstruction algorithm for LSSSs

known as Lagrange interpolation. This formed the basis for Shamir’s well-known secret

sharing scheme [89] for threshold policies (requiring k out of n shares to reconstruct the

secret). The reconstruction procedure can be defined as follows [14].

Definition 2.19. For i ∈ Z and S ⊆ Z, the Lagrange basis polynomial is defined as

∆i,S(z) =
∏

j∈S,j 6=i

z − j
i− j

.

Let f(z) ∈ Z[z] be a d-th degree polynomial. If |S| = d+ 1 then, from a set of d+ 1 points

{(i, f(i))}i∈S , one can reconstruct f(z) as

f(z) =
∑
i∈S

f(i) ·∆i,S(z).

In Appendix B.1, we will use Lagrange interpolation for a first degree polynomial. In

particular, if f(z) is a first degree polynomial, one can obtain f(0) from two any points

42

2.6 Attribute-based Encryption

(i1, f(i1)), (i2, f(i2)) where i1 6= i2 by computing

f(0) = f(i1)
i2

i2 − i1
+ f(i2)

i1
i1 − i2

.

2.6.4.2 Bilinear Maps and Hardness Assumptions

Most ABE schemes are built over groups with efficiently computable bilinear maps. These

allow various parameters to be combined together in a secure fashion. In this section,

we define bilinear maps and groups [14] , as well as a cryptographic hardness assump-

tion [15, 33] upon which we shall base the security on our revocable DP-ABE scheme in

Appendix B.1.

Definition 2.20. Let G and GT be multiplicative groups of prime order p, and let g be a

generator of G. A bilinear map (of type 1 [56]) is a map e : G×G→ GT such that:

1. e is bilinear: for all u, v ∈ G and a, b ∈ Z, e(ua, vb) = e(u, v)ab

2. e is non-degenerate: e(g, g) 6= 1

We say that G is a bilinear group if the group action in G can be computed efficiently and

there exists GT for which the bilinear map e : G×G→ GT is efficiently computable.

Definition 2.21. Let G be a bilinear group of prime order p. The Decisional q-Bilinear

Diffie-Hellman Exponent problem (q-BDHE) in G is stated as follows. Given a vector

(
g, h, ga, g(a

2), . . . , g(a
q), g(a

q+2), . . . , g(a
2q), Z

)
∈ G2q+1 ×GT

as input, determine whether Z = e(g, h)a
q+1

. For ease of notation, we write gi to denote

ga
i ∈ G. Let yg,a,q = (g1, . . . , gq, Gq+2, g2q). An algorithm A that outputs b ∈ {0, 1} has

advantage ε in solving the Decisional q-BDHE problem in G if

|Pr[0
$← A

(
g, h,yg,a,q, e(gq+1, h)

)
]− Pr[0

$← A(g, h,yg,a,q, Z)]| ≥ ε,

where the probability is over the random choice of generators g, h ∈ G, the random choice

of a ∈ Zp, the random choice of Z ∈ GT , and the randomness of A. We refer to the

distribution on the left as PBDHE and the one on the right hand side as RBDHE. We say

43

2.7 Digital Signatures

that the Decision q-BDHE assumption holds in G if no polynomial-time algorithm has a

non-negligible advantage in solving the problem.

2.7 Digital Signatures

Digital signatures provide a proof of message integrity, as well as data origin authentication

(since keys can be associated to particular users). A message is signed using a private

signing key owned by a particular entity, and a public verification key can be used to

verify that the signature was actually generated using the corresponding signing key and

that the contents of the message have not changed since the signature was computed.

A digital signature scheme Sig comprises three polynomial-time algorithms Sig.KeyGen,

Sig.Sign and Sig.Verify defined as follows [74]:

• (SK, V K)
$← Sig.KeyGen(1`): takes as input the security parameter and generates a

signing key SK and a verification key V K;

• γ $← Sig.Sign(m,SK): takes as input a message to be signed and the signing key,

and outputs a signature γ of m;

• D ← Sig.Verify(m, γ, V K): takes as input a message and corresponding signature to

be verified as well as the verification key, and outputs a decision D which is accept

if γ is a valid signature on m and reject otherwise.

Definition 2.22. A digital signature scheme is correct if for all security parameters `

and all m ∈M,

Pr[(SK, V K)
$← Sig.KeyGen(1`),

γ
$← Sig.Sign(m,SK),

accept← Sig.Verify(m, γ, V K)] = 1.

44

2.8 Notions of Security

2.8 Notions of Security

Thus far in this chapter, we have defined several cryptographic primitives and associated

notions of correctness that will be required throughout the remainder of this thesis. As

well as being correct, a cryptographic primitive must be secure. In this section, we define

notions of security for a number of the previously discussed primitives (some primitives,

such as KP-ABE are not discussed here as we will define and use variants of these in later

chapters instead).

We will define notions of security for each cryptographic scheme as a game (or algorithm)

written in pseudo-code. The game is run by a entity known as the challenger, C. The

execution of the game is designed to reflect realistic system evolution and threats. Each

game takes as input the particular construction being proved secure and the unary repre-

sentation of the security parameter.

An adversary against a particular scheme is modelled as a PPT algorithm A which is

called at relevant points by C. The inputs to the adversary are chosen to represent the

knowledge a real attacker may learn by observing the execution of the system and by

corrupting relevant parties. The adversary algorithm may be multi-stage (i.e. be called

several times by the challenger, with different input parameters) and may maintain state

between invocations. This represents the adversary performing tasks at different points

during the execution of the system. For simplicity and generality, we do not explicitly

provide the state as an input or output of the adversary or distinguish between single-stage

and multi-stage adversaries; we also refer to both simply as A, noting that a multistage

adversary could be thought of as a single adversary A = {A1, . . . ,An} comprising sub-

algorithms for each stage.

The challenger may provide oracle access to an adversary for a specified set of functions.

This allows the adversary to query C for the results of these functions run over inputs

chosen by the adversary as well as secret values only known to C. Thus, the adversary

is able to learn the outcome of some functions without holding the secret values needed

to run them itself. This models the adversary monitoring the system to observe various

messages and activity, as well as corrupting entities to learn their local secrets (e.g. in the

case of querying a user key generation algorithm) or to cause particular events to occur.

Providing the adversary with oracle access to a function F on inputs x1, . . . , xn held by the

45

2.8 Notions of Security

challenger is denoted AOF(·,...,·,x1,...,xn); we use the notation · to denote parameters where

the adversary has free choice of input value. Sometimes, when providing oracle access to

multiple functions, we will use the notation AO and describe the specific functions in the

accompanying text.

Many oracles simply run the relevant algorithm and return the result to the adversary. If

the challenger is required to perform additional steps (e.g. to perform ‘housekeeping’ on

its state to reflect changes arising from the query or to check whether the result of a query

would lead to a trivial win for A) then the oracle is given as an additional pseudo-code

algorithm alongside the relevant games. No oracle query should allow the adversary to gain

information that it would not usually be able to observe in practice or that would lead to a

trivial win (e.g. an oracle should not issue the decryption key for a challenge ciphertext as

the adversary would be able to win the game, even though this does not model a realistic

attack as the adversary would not be an authorised decryptor in practice).

Each game ends with the challenger outputting either 1 or 0 based on the output of the

adversary algorithm; the output 1 (synonymous with true) denotes that the adversary

output was ‘correct’. In some games, we may write return (b′ = b) to denote the output

of the game; this denotes an equality comparison between the variables b′ and b, and the

game will return true if and only if these variables are identical.

Formally, we write ExpX
A[Y, 1`, args] to refer to a game for a security notion X, inter-

acting with an adversary A, against a construction Y when run with security parameter

` and additional arguments args. We denote the advantage of such an adversary A as

AdvXA(Y, 1`, args′). For each game, we define the advantage of A in terms of the probabil-

ity that the security game results in true (i.e. the adversary was correct) which we denote

Pr
[
1

$← ExpX
A[Y, 1`, args]

]
. Informally, the advantage is defined to be the difference be-

tween the adversary’s success probability and the probability of success one would expect

to achieve by making a simple guess. We usually define a scheme to be secure if all PPT

adversaries have at most a negligible advantage in terms of the security parameter.

46

2.8 Notions of Security

Game 2.1 ExpVerif
A

[
VC, 1`, F

]
1: (EKF , SKF)

$← Setup(1`, F)

2: x
$← AOProbGen(·,SKF)(EKF)

3: (σF,x, V KF,x)
$← ProbGen(x, SKF)

4: θF (x)
$← AOProbGen(·,SKF)(σF,x, EKF)

5: y ← Verify(θF (x), V KF,x, SKF)
6: if ((y 6=⊥) and (y 6= F (x))) then return 1
7: else return 0

Oracle 2.1 OProbGen(z, SKF)

1: (σF,z, V KF,z)
$← ProbGen(z, SKF)

2: return σF,z

2.8.1 Verifiable Outsourced Computation

As mentioned in Section 2.2, security notions for VC schemes have focussed on verifiability

— that is, ensuring that a server cannot return an incorrect computational result and have

it accepted by a client. This is shown for the VC setting in Game 2.1 and Oracle 2.1 for

a function F in the family of admissible functions F , where the ProbGen oracle simply

runs the ProbGen algorithm and returns the σF,x part of the result. The adversary is

given the public parameters from the Setup algorithm and access to the ProbGen oracle

(to simulate the adversary observing client behaviour in a real system). The adversary

chooses an input x and the challenger honestly produces an encoded input and verification

key, both of which are given to the adversary. We require the challenger to perform this

step to ensure that it knows the correct verification key corresponding to the computation.

The adversary wins if it can produce an encoded output which is accepted by the Verify

algorithm but does not in fact encode the value F (x).

Definition 2.23. The advantage of a PPT adversary A in the Verif game for a VC

construction VC and a function F is defined as:

AdvVerif
A (VC, 1`, F) = Pr

[
1

$← ExpVerif
A

[
VC, 1`, F

]]
.

A VC scheme, VC, is verifiable for a function F if for all PPT adversaries A,

AdvVerif
A (VC, 1`, F) 6 negl(`).

Gennaro et al. [57] also consider notions of input and output privacy such that an adversary

47

2.8 Notions of Security

Game 2.2 ExpPubVerif
A

[
PVC, 1`, F

]
1: (EKF , PKF)

$← Setup(1`, F)

2: x
$← A(EKF , PKF)

3: (σF,x, V KF,x)
$← ProbGen(x, PKF)

4: θF (x)
$← A(EKF , PKF , σF,x, V KF,x)

5: y ← Verify(θF (x), V KF,x)
6: if ((y 6=⊥) and (y 6= F (x))) then return 1
7: else return 0

cannot distinguish from σF,x which input value x was encoded, and that θF (x) does not

reveal the value F (x).

Verifiability in the PVC setting is defined similarly in Game 2.2. Compared to Game 2.1,

this game does not require a ProbGen oracle as the outsourcing of computations is based

purely on public information and hence can be run by the adversary itself. Again, the ad-

versary wins if it can produce an encoded output which is accepted by the Verify algorithm

but is not in fact a valid encoding of F (x).

Definition 2.24. The advantage of a PPT adversary A in the PubVerif game for a

PVC construction PVC and a function F is defined as:

AdvPubVerif
A (PVC, 1`, F) = Pr

[
1

$← ExpPubVerif
A

[
PVC, 1`, F

]]
.

A PVC scheme, PVC, is publicly verifiable for F if for all PPT adversaries A,

AdvPubVerif
A (PVC, 1`, F) 6 negl(`).

2.8.2 Key Assignment Schemes

Atallah et al. [12] proposed two fundamental security properties for KASs — key recovery

(KR) and key indistinguishability (KI). Key recovery is the weaker of the two notions and

requires that the derivation of κv? from a set of keys κv1 , . . . , κvn should be possible if and

only if there exists i such that vi > v?. This property asserts that a set of users cannot

recover a key that no one of them is not already authorised to derive. An interactive key

encrypting KAS is known to be secure against key recovery provided that the encryption

function is chosen appropriately [12].

48

2.8 Notions of Security

Game 2.3 ExpKI
A
[
KAS, 1`, (L,6)

]
1: κL

$← MakeKeys(1`, (L,6))

2: ωL
$← MakeSecrets(1`, (L,6))

3: Pub(L,6)
$← MakePublicData(1`, (L,6))

4: Q← ε

5: v?
$← AOCorrupt(·,⊥)(Pub(L,6))

6: for all vi ∈ Q do
7: if (v? 6 vi) then return 0

8: b
$← {0, 1}

9: if (b = 0) then κ? ← κv?

10: else κ?
$← K

11: b′
$← AOCorrupt(·,v?)(κ?, Pub(L,6))

12: return (b′ = b)

Oracle 2.2 OCorrupt(vi, v
?)

1: if (vi > v?) then return ⊥
2: Q← Q ∪ vi
3: return (κvi , ωvi)

Key indistinguishability requires that, given a set of keys κv1 , . . . , κvn , an adversary should

not be able to distinguish between the key for a challenge node v? (not a descendent of

any vi) and a randomly chosen key. This property is crucial if derived keys are to be used

in other cryptographic protocols.

Both notions can be viewed in terms of static or adaptive adversaries. A static adversary

will be provided with the graph H(L,6) and must first select a node v? ∈ L that will form

the challenge before the challenger has initiated the KAS and hence before receiving the

public and (appropriate) secret information. An adaptive (or dynamic) adversary, on the

other hand, may make oracle queries to the challenger to request keys and secrets for nodes

chosen in an adaptive fashion before selecting the challenge node v? (subject to v? not being

a descendant of any queried node for which secret information was given, to avoid a trivial

win). The adversary may similarly make such oracle queries after choosing the challenge

node (again requiring that the returned values do not allow the trivial derivation of the

challenge key κv?). Adaptive key indistinguishability is presented formally in Game 2.3,

with the associated oracle being given in Oracle 2.2.

The game begins with the challenger running the setup algorithms for the KAS scheme

and initialising an empty list Q of queried nodes. The adversary algorithm is then called

with the KAS public information as input. The adversary algorithm may make oracle

queries to the Corrupt algorithm, given in Oracle 2.2, for the adversary’s choice of input

vi. For this query phase, the challenger fixes the second input parameter, v?, to be a

49

2.8 Notions of Security

distinguished symbol ⊥ (to identify that this is the first query phase, in which the second

parameter is not required). The oracle first performs a check as to whether the query

would lead to a trivial win (if vi > v?). As v? has been fixed to be ⊥, these elements are

incomparable and the if statement is not satisfied. The queried node is added to the list

Q and the key and secret for the node is returned to A.

After making a polynomial number of queries, A will output a choice of challenge node v?.

The challenger then checks if this choice is a valid challenge — that is, it is not a descendent

of any queried node, as this would trivially allow the adversary to derive the challenge

key and win. If the choice is invalid, then the adversary loses the game and the game

returns 0. Otherwise, the challenger chooses a bit b uniformly at random. If b = 0 then

the challenge key κ? is set to be the real key, κv? , for the challenge label. Otherwise, the

challenge key is chosen uniformly at random from the keyspace. The adversary algorithm

is then called again, this time with inputs κ? and the public information again, and given

access to the Corrupt oracle again. This time, the second input to Corrupt is set to be the

challenge node v? chosen by A such that the oracle can check whether responding to a

query would lead to a trivial win (if the queried node is an ancestor of the challenge node

and therefore would allow derivation of the key κv?).

Finally, the adversary returns a bit b′ which is its guess of the bit b chosen by C — that is,

whether the challenge key was a real key or a randomly chosen key. If this guess is correct

then the challenger returns 1 as the output of the game, and otherwise C returns 0.

The advantage of an adversary is defined to be the difference between the probability that

the adversary guesses whether the key is real or random correctly (that is, the probability

that the game outputs 1) and the probability of an adversary randomly guessing the correct

outcome (which occurs with probability 1
2). For a KAS to be secure in the sense of key

indistinguishability, we require this advantage to be negligible in the security parameter

— the adversary should almost certainly not do better than randomly guessing.

Definition 2.25. The advantage of a PPT adversary A against the KI game for a par-

ticular KAS construction KAS is defined as:

AdvKI
A (KAS, 1`, (L,6)) = Pr

[
1

$← ExpKI
A
[
KAS, 1`, (L,6)

]]
− 1

2 .

A KAS construction, KAS, is secure in the sense of key indistinguishability against adap-

50

2.8 Notions of Security

tive adversaries if for all PPT adversaries A,

AdvKI
A (KAS, 1`, (L,6)) 6 negl(`).

As observed by Freire et al. [55], it is straightforward to see that the static and adaptive

notions of key indistinguishability are polynomially equivalent. A dynamic adversary can

clearly choose its oracle queries and challenge node to be consistent with that of a static

adversary. A static adversary can also be constructed that, before the KAS is instantiated,

makes a guess for the node v? that a corresponding adaptive adversary would choose. Such

a guess is correct with probability at least 1
|L| (where L must be polynomial in size for the

KAS to be efficiently instantiable), and the static adversary aborts the game if the guess is

revealed to be incorrect. Thus, the static adversary succeeds with probability at least 1
|L|

times the success probability of the dynamic adversary, and hence a scheme secure against

static adversaries is also secure against dynamic adversaries (with a polynomial loss in

the advantage). As a result, many papers focus only on static adversaries. In this thesis,

however, we will primarily consider adaptive adversaries as this is more straightforwardly

applicable to the interactive protocol settings we consider.

Freire et al. [55] introduced the notions of strong key recovery (S-KR) and strong key

indistinguishability (S-KI) to reflect realistic attacks where the keys for nodes vi > v?

may leak (through key misuse or cryptanalysis, for example). Thus, the adversary is able

to learn all keys κvi for vi 6= v? and the secret information ωvi for all nodes where v? 66 vi

and, respectively, must recover κv? or distinguish between κv? and a random key. Strong

key indistinguishability is shown for an adaptive adversary in Game 2.4 and Oracle 2.3.

The game proceeds as in Game 2.3 except for the Corrupt oracle which now returns (only)

the key for nodes vi > v?.

Definition 2.26. The advantage of a PPT adversary A against the S-KI game for a

particular KAS construction KAS is defined as:

AdvS-KI
A (KAS, 1`, (L,6)) = Pr

[
1

$← ExpS-KI
A

[
KAS, 1`, (L,6)

]]
− 1

2 .

A KAS construction, KAS, is secure in the sense of strong key indistinguishability against

51

2.8 Notions of Security

Game 2.4 ExpS-KI
A

[
KAS, 1`, (L,6)

]
1: b

$← {0, 1}
2: κL

$← MakeKeys(1`, (L,6))

3: ωL
$← MakeSecrets(1`, (L,6))

4: Pub(L,6)
$← MakePublicData(1`, (L,6))

5: Q← ε

6: v?
$← AOCorrupt(·,⊥)(Pub(L,6))

7: for all vi ∈ Q do
8: if (v? 6 vi) then return 0
9: if (b = 0) then k? ← kv?

10: else k?
$← K

11: b′
$← AOCorrupt(·,v?)(k?, Pub(L,6))

12: return (b′ = b)

Oracle 2.3 OCorrupt(vi, v
?)

1: if (v? 66 vi) then
2: Q← Q ∪ vi
3: return (κvi , ωvi)
4: else if (vi > v?) then
5: return κvi
6: else
7: return ⊥

adaptive adversaries (S-KI) if for all PPT adversaries A,

AdvS-KI
A (KAS, 1`, (L,6)) 6 negl(`).

Although Freire et al. formally separated the notions of key recovery and strong key recov-

ery, Castiglione et al. [35] showed polynomial equivalence between key indistinguishability

and strong key indistinguishability. However, as we shall see in Chapter 4, the format of

the adaptive S-KI game is well suited to some settings, particularly security reductions

for interactive protocols where keys must be used before the challenge period, and so we

shall continue to consider the strong key indistinguishability game.

2.8.3 Symmetric Encryption

There are many notions of security for symmetric encryption (see [11] for relations amongst

four notions of security). Perhaps the most commonly discussed, and the one that we

shall use later in this thesis, is indistinguishability against chosen plaintext attacks (IND-

CPA). This notion requires that an adversary running in polynomial time, and with the

ability to request the encryptions of arbitrary messages, can not distinguish which of two

messages of his choice has been encrypted. Informally, the encryption scheme should hide

52

2.8 Notions of Security

Game 2.5 ExpIND-CPA
A

[
SE , 1`

]
1: b

$← {0, 1}
2: k?

$← KeyGen(1`)

3: b′
$← AOLoR(·,·,k?)(1`)

4: return (b′ = b)

Oracle 2.4 OLoR(m0,m1, k
?)

1: if (|m0| 6= |m1|) then return ⊥
2: else return Encrypt(mb, k

?)

Game 2.6 ExpIND-CCA
A

[
SE , 1`

]
1: b

$← {0, 1}
2: L← ε
3: k?

$← KeyGen(1`)

4: b′
$← AOLoR(·,·,k?),Decrypt(·,k?)(1`)

5: return (b′ = b)

Oracle 2.5 OLoR(m0,m1, k
?)

1: CT
$← Encrypt(mb, k

?)
2: if (m0 6= m1) then L← L ∪ CT
3: return CT

Oracle 2.6 ODecrypt(CT,k?)

1: if (CT ∈ L) then return ⊥
2: return Decrypt(CT, k?)

all information about the underlying plaintext so that a ciphertext reveals nothing about

which message was encrypted.

The IND-CPA notion is formally defined in Game 2.5, Oracle 2.4 and Definition 2.27.

The game begins with the challenger choosing a bit b uniformly at random and running

the KeyGen algorithm to generate a challenge key k?. The adversary algorithm is then

called with the security parameter as input, and it is given access to an LoR oracle, which

implements the encryption functionality. This oracle takes two messages of the adversary’s

choice. It first checks that the messages are of the same length and then chooses one of

the messages according to the bit b which is encrypted under the key k? and the resulting

ciphertext returned to the adversary. Eventually, the adversary returns a bit b′ and the

game outputs 1 if b′ is the bit b chosen by the challenger. Note that the adversary may

generate challenge ciphertexts using the LoR oracle by submitting two distinct messages

of the same length, but may also use LoR as a simple encryption oracle by submitting the

same message twice, m0 = m1.

Similarly, one can consider Indistinguishability against Chosen Ciphertext Attacks (IND-

CCA) defined in Game 2.6 and Oracles 2.5 and 2.6. The game proceeds as in Game 2.5 but

the challenger additionally maintains a list L of ciphertexts which is initially empty. As

53

2.8 Notions of Security

shown in Oracle 2.5, the LoR oracle is modified to add generated ciphertexts to the list L

if the input messages are distinct — that is, if the query forms a challenge ciphertext based

on the value of b (which clearly is not the case if both message options are identical). The

adversary is additionally given a decryption oracle (Oracle 2.6) to which it can submit

ciphertexts to recover the corresponding plaintexts. However, to avoid trivial wins, a

distinguished failure symbol ⊥ is returned if the queried ciphertext has previously been

generated by the LoR oracle as a result of a query for two distinct messages. Clearly,

given the decryption of such a ciphertext, it would be possible to determine the value of

b based on which message is returned.

For both notions, we define the advantage of an adversary to be the difference between

the probabilities of the adversary guessing the bit b correctly (indicating which message

was encrypted) and randomly guessing (which is correct with probability 1
2).

Definition 2.27. The advantage of a PPT adversary A against a notion

X ∈ {IND-CPA, IND-CCA}

for a symmetric encryption scheme SE is defined as:

AdvXA(SE , 1`) = Pr
[
1

$← ExpX
A
[
SE , 1`

]]
− 1

2 .

A symmetric encryption scheme, SE, is secure in the sense of notion X if for all PPT

adversaries A,

AdvXA(SE , 1`) 6 negl(`).

The choice of security property for a symmetric encryption scheme will depend on the

context in which the scheme is used and what information an adversary is likely to observe

in practice. Security in the sense of IND-CPA and IND-CCA can also be defined for the

public key setting where the adversary is given the challenge public key and can use this

as an encryption oracle to select the challenge messages.

2.8.4 Symmetric Authenticated Encryption

Bellare and Namprempre [24] considered two notions of integrity for authenticated sym-

54

2.8 Notions of Security

Game 2.7 ExpINT-PTXT
A

[
SE , 1`

]
1: L← ε
2: k?

$← KeyGen(1`)

3: CT ?
$← AOEncrypt(·,k?),Ver(·)

(1`)
4: return ((Ver(CT ?) = 1) and (Decrypt(CT ?, k?) /∈ L))

Oracle 2.7 OEncrypt(m, k?):

1: CT
$← Encrypt(m, k?)

2: L← L ∪m
3: return CT

Oracle 2.8 OVer(CT) :
1: if (⊥6← Decrypt(CT, k?)) then return 1
2: else return 0

metric encryption schemes: integrity of plaintexts (INT-PTXT) and integrity of cipher-

texts (INT-CTXT) under chosen message attacks. INT-PTXT requires it to be hard to

create a ciphertext which decrypts to a message never encrypted by a legitimate sender,

while INT-CTXT requires it to be hard to create a ciphertext that was not previously

generated by a legitimate sender (regardless of the underlying plaintext). We will only

require the first notion in this thesis, which is given in Game 2.7 and Oracles 2.7 and 2.8.

The challenger initialises a list of queried messages L which is initially empty, and gener-

ates a symmetric key k?. The adversary is given the security parameter and access to both

an encryption oracle and a verification oracle. The encryption oracle, Oracle 2.7, encrypts

the adversary’s choice of message m under k? and adds m to the list of queried messages,

L. The verification oracle, Oracle 2.8, attempts to decrypt a ciphertext provided by the

adversary. It returns 1 if the queried ciphertext is deemed authentic (i.e. Decrypt does not

return ⊥) and 0 otherwise; thus the adversary is able to tell whether a given ciphertext

would be accepted in the game or not, without being given the functionality of a decryp-

tion oracle (it cannot learn the plaintext for a given ciphertext using Oracle 2.8). The

adversary wins if it can produce a ciphertext that is deemed authentic and that decrypts

to a message not previously queried to the encryption oracle (i.e. not stored in L).

Definition 2.28. The advantage of a PPT adversary A against the INT-PTXT game

for an authenticated symmetric encryption scheme SE is defined as:

AdvINT-PTXT
A (SE , 1`) = Pr

[
1

$← ExpINT-PTXT
A

[
SE , 1`

]]
.

An authenticated symmetric encryption scheme, SE, is secure with respect to INT-PTXT

55

2.8 Notions of Security

if for all PPT adversaries A,

AdvINT-PTXT
A (SE , 1`) 6 negl(`).

In this thesis, we will require an authenticated symmetric encryption scheme that is secure

in the sense of IND-CPA∧INT-PTXT. As noted by Bellare and Namprempre [24], such a

scheme can be constructed from an IND-CPA symmetric encryption scheme and a weakly

or strongly unforgeable message authentication code MAC [72] using the generic compo-

sition techniques of MAC-then-Encrypt or Encrypt-then-MAC. As this latter composition

is shown to be secure for all security choices of the encryption and MAC schemes, we will

adopt this construction in this paper. Thus, let SE = (KeyGen,Encrypt,Decrypt) be a sym-

metric authenticated encryption scheme constructed from a symmetric encryption scheme

SE ′ = (KeyGen′,Encrypt′,Decrypt′) and a MAC MAC = (KeyGen′′,Tag,Verify). KeyGen

outputs two keys: SKE corresponding to KeyGen′ and SKM relating to KeyGen′′2. The

key for the authenticated encryption scheme is defined to be the concatenation SK =

SKE‖SKM . The encryption operation is defined as Encrypt(m,SK) = C‖Tag(C, SKM)

for C
$← Encrypt′(m,SKE).

2.8.5 Ciphertext-policy Attribute-based Encryption

As CP-ABE is an encryption mechanism, the security goals are very similar to those for

symmetric (and in particular asymmetric) encryptions schemes — namely, the adversary

should not be able to distinguish which of two messages was encrypted.

Recall that different CP-ABE keys grant access to different classes of documents; cipher-

texts are no longer generated with a particular user in mind but rather a class of users.

An important consideration in ABE schemes, therefore, is that users may not collude in

order to decrypt a ciphertext which no one of them could decrypt alone. In the CP-ABE

setting, consider a ciphertext encrypted with the policy Professor ∧ Maths; two users

assigned attribute sets {Professor, Physics} and {Student, Maths} respectively should

not be able to pool their Professor and Maths attributes to decrypt the ciphertext as

neither of them actually satisfy the policy. To model collusion between users, we provide

2Note that when keys are derived from a KAS, the KAS could simply output strings that can be split
into SKE and SKM .

56

2.8 Notions of Security

Game 2.8 ExpIND-CPA
A

[
CPABE , 1`,U

]
1: A? ← {∅}, Q← ε

2: (PP,MK)
$← Setup(1`,U)

3: (m0,m1,A?)
$← AOKeyGen(·,MK,PP)(PP)

4: if (|m0| 6= |m1|) then return 0
5: for all A ∈ Q do
6: if (A ∈ A?) then return 0

7: b
$← {0, 1}

8: CT ?
$← Encrypt(mb,A?,PP)

9: b′
$← AOKeyGen(·,MK,PP)(CT ?,PP)

10: return (b′ = b)

Oracle 2.9 OKeyGen(A,MK,PP)

1: if A /∈ A? then
2: Q← Q ∪A
3: return KeyGen(A,MK,PP)
4: else
5: return ⊥

Game 2.9 ExpsIND-CPA
A

[
CPABE , 1`,U

]
1: A? $← A(1`,U)

2: (PP,MK)
$← Setup(1`,U)

3: (m0,m1)
$← AOKeyGen(·,MK,PP)(PP)

4: if ((|m0| 6= |m1|)) then return 0

5: b
$← {0, 1}

6: CT ?
$← Encrypt(mb,A?,PP)

7: b′
$← AOKeyGen(·,MK,PP)(CT ?,PP)

8: return (b′ = b)

the adversary with an additional KeyGen oracle so that he can request multiple decryp-

tion keys for different attribute sets. To avoid trivial wins, we require that all queried

attribute sets do not satisfy the challenge policy (else the adversary holds a valid key and

can decrypt the challenge ciphertext himself).

Security for ABE schemes in general can be classed as full or selective security. Full

security is the ideal notion that we would like to achieve, whilst selective security has

traditionally been more readily achievable and gives more of a sense of heuristic security.

The notions differ based on whether the adversary is given the public parameters before

or after making a choice of challenge. The selective notion (where the challenge access

structure in CP-ABE or challenge attribute set in KP-ABE) allows the challenger to

partition the system into queries that it must be able to answer and those it will not

(as some queries will be restricted to avoid giving the adversary a trivial win); thus, the

challenger is able to embed secrets for a reductive proof, for example, a Diffie-Hellman

challenge group element, such that it need not know the corresponding trapdoor.

57

2.8 Notions of Security

Oracle 2.10 OKeyGen(A,MK,PP)

1: if (A /∈ A?) then return KeyGen(A,MK,PP)
2: else return ⊥

The full notion of indistinguishability against chosen plaintext attacks (IND-CPA) for a

CP-ABE scheme is given in Game 2.8 and Oracle 2.9. The selective IND-CPA notion

(sIND-CPA) given in Game 2.9 and Oracle 2.10. The full game begins with the challenger

initialising the challenge access structure and an empty list Q of queried attribute sets.

The selective game, on the other hand, begins with the adversary algorithm, given the

security parameter and attribute universe, selecting an access structure A? that it will

attempt to attack. Then, in both games, the challenger runs the Setup algorithm and calls

the adversary with the generated public parameters as input. The adversary is also given

access to a KeyGen oracle which returns a valid decryption key for the adversary’s choice

of attribute set A only if A does not satisfy the challenge access structure A?. Otherwise,

a distinguished failure symbol ⊥ is returned to avoid allowing the adversary a trivial win.

After a polynomial number of queries, the adversary will return two messages of equal

length (if the lengths differ then the adversary loses the game). In the full IND-CPA

game, the adversary also chooses the challenge access structure A? at this point. If A?

is satisfied by any attribute set queried to the KeyGen oracle (i.e. listed in Q), then the

adversary loses the game as it has not found a valid attack target.

The challenger chooses a bit b uniformly at random and uses this to choose one of the

two messages to be encrypted under the challenge access structure. The adversary is

called again with the resulting ciphertext and again given access to the KeyGen oracle.

Eventually, A must return a guess b′ of the value b (i.e. which message was encrypted).

The game returns 1 if this guess is correct, and 0 otherwise.

Definition 2.29. The advantage against a notion X ∈ {IND-CPA, sIND-CPA} of a

PPT adversary A for a CP-ABE construction CP-ABE is defined as:

AdvXA(CP-ABE , 1`,U) = Pr
[
1

$← ExpXA
[
CP-ABE , 1`,U

]]
− 1

2 .

A CP-ABE scheme, CP-ABE, is secure with respect to X if for all PPT adversaries A,

AdvXA(CP-ABE , 1`,U) 6 negl(`).

58

2.8 Notions of Security

Game 2.10 ExpsIND-CPA
A

[
DPABE , 1`,U

]
1: (ω?,S?) $← A(1`,U)

2: (PP,MK)
$← Setup(1`,U)

3: (m0,m1)
$← AOKeyGen((·,·),MK,PP)(PP)

4: if (|m0| 6= |m1|) then return 0

5: b
$← {0, 1}

6: CT ?
$← Encrypt(mb, (ω

?,S?),PP)

7: b′
$← AOKeyGen((·,·),MK,PP)(CT ?,PP)

8: return (b′ = b)

Oracle 2.11 OKeyGen((O, ψ),MK,PP)

1: if (ω? /∈ O or ψ /∈ S?) then return KeyGen((O, ψ),MK,PP)
2: else return ⊥

2.8.6 Dual-policy Attribute-based Encryption

Security for DP-ABE is defined similarly to security for CP-ABE. Selective security for

DP-ABE is defined in Game 2.10 and Oracle 2.11. As before, a full notion of security

(or adaptive security) can be defined where the adversary receives the public parameters

before selecting the challenge input. Note that notions of sIND-CPA for both KP-ABE

and CP-ABE can be defined by ignoring the relevant attribute sets and access structures.

Definition 2.30. The advantage of a PPT adversary A against the sIND-CPA game

for a DP-ABE construction DP-ABE is defined as:

AdvsIND-CPA
A (DP-ABE , 1`,U) = Pr

[
1

$← ExpsIND-CPA
A

[
DP-ABE , 1`,U

]]
− 1

2 .

A DP-ABE scheme, DP-ABE, is selectively secure in the sense of indistinguishability

against chosen plaintext attack (sIND-CPA) if for all PPT adversaries A,

AdvsIND-CPA
A (DP-ABE , 1`,U) 6 negl(`).

2.8.7 Digital Signatures

We define a signature scheme to be existentially unforgeable under an adaptive chosen

message attack (EUF-CMA) if an adversary, given polynomially many signatures on

messages of its choice, cannot create a message m? with a valid signature where m? was

not one of the messages that it saw a signature for. More formally, this is defined in

Game 2.11 and Oracle 2.12.

59

2.8 Notions of Security

Game 2.11 ExpEUF-CMA
A

[
SIG, 1`

]
1: Q = ε

2: (SK, V K)
$← Sig.KeyGen(1`)

3: (m?, γ?)
$← AOSign(·,SK)(V K)

4: if (accept← Sig.Verify(m?, γ?, V K) and m? /∈ Q) then return 1
5: else return 0

Oracle 2.12 OSign(m,SK)

1: Q← Q ∪m
2: return Sig.Sign(m,SK)

Game 2.12 ExpInvertA
[
1`, g

]
1: w

$← {0, 1}`
2: z ← g(w)

3: w′
$← A(1`, g, z)

4: return (g(w′) = z)

Definition 2.31. The advantage of a PPT adversary A against the EUF-CMA game

for a particular digital signature construction SIG is defined as:

AdvEUF-CMA
A (SIG, 1`) = Pr

[
1

$← ExpEUF-CMA
A

[
SIG, 1`

]]
.

A digital signature construction, SIG, is existentially secure against chosen message at-

tacks (EUF-CMA) if for all PPT adversaries A,

AdvEUF-CMA
A (SIG, 1`) 6 negl(`).

2.8.8 One-way Functions

A one-way function g is characterised by being easy to compute, but hard to invert. The

first condition is given by the requirement that g is computable in polynomial time. The

second condition is formalised by requiring that it is infeasible for any PPT algorithm to

invert g (that is, to find a pre-image of a given value y) except with negligible probability.

This requirement is captured in the inverting experiment (Game 2.12) where we consider

the experiment for a function g. The challenger chooses an input uniformly at random

from the domain of g, applies g to this input and gives the adversary both the result

and a description of the function. It suffices for A to find any value of x′ for which

g(x′) = y = g(x).

Definition 2.32. A function g is one-way if the following two conditions hold [74]:

60

2.8 Notions of Security

1. (Easy to compute) there exists a polynomial-time algorithm Mg computing g; i.e.

Mg(w) = g(w) for all w ∈ Dom(g);

2. (Hard to invert) for every PPT algorithm A, there exists a negligible function negl

such that

Pr
[
1

$← ExpInvert
A

[
1`, g

]]
6 negl(`).

61

Chapter 3

Revocation in Publicly Verifiable Out-
sourced Computation

Contents

3.1 Introduction . 62

3.2 Background Material . 65

3.3 Revocable Publicly Verifiable Computation 72

3.4 Security Models . 82

3.5 Construction . 99

3.6 Proofs of Security . 108

3.7 Conclusion . 126

This chapter looks at the setting of publicly verifiable outsourced computation (PVC) in

which it has been shown that attribute-based encryption can be used, not as an access

control enforcement primitive, but instead to prove correctness of a computation. We

investigate the current proposal and propose improvements to achieve a more practical

system model, including a simple method for servers to compute multiple functions and a

method to revoke misbehaving servers.

3.1 Introduction

As discussed in Section 2.2, verifiable outsourced computation (VC), has attracted a lot

of attention in the community recently. VC aims to allow a single client with limited

resources to outsource computations to an external server and to verify whether returned

results are correct. Publicly verifiable computation (PVC) [84] aims to provide a more

practical VC solution wherein only one client must perform an expensive setup operation

62

3.1 Introduction

and subsequently any other entity may use only public information to outsource compu-

tations and to verify results; thus PVC aims to be a multi-client system. However, in our

opinion, the current PVC schemes do not support multiple servers computing multiple

functions particularly well.

We believe that both of these are important requirements for many PVC systems that

might be used in practice. It may be desirable for a set of clients to be able to choose from

a set of servers on a per computation basis. For example, certain computations may re-

quire different computational resources (e.g. a certain amount of RAM or processor cores)

that are only found in some cloud service providers, or clients may wish to outsource a

computation to servers which are geographically nearby to minimise latency (if compu-

tation/retrieval time is important). If multiple servers are able to provide computational

services within a PVC system, they may compete amongst themselves to reduce costs

or may be able to bid on computations based on whether they currently have resources

readily available; as a client is assumed to set up a PVC system and is therefore the sys-

tem owner, it is in the client’s interest to introduce multiple servers to enable this cost

reduction.

We believe that it is unlikely that a client would be willing to expend the resources to

initialise a PVC system (in terms of computational resources, and in terms of the monetary

cost of contracting a cloud server provider) to outsource computations of only a single

function. Indeed, we also believe it unlikely that an outsourced computation solution

for a single function would provide the level of functionality required in practice — if

company employees are to rely only on mobile or lightweight devices, then any provided

PVC solution should enable them to perform all of their duties. In existing schemes,

to outsource a second function, either an entirely new PVC system would need to be

initialised or more complex primitives must be used to instantiate the scheme [84].

It is also conceivable that multiple sets of clients (e.g. multiple companies) will be largely

interested in outsourcing similar sets of computations (e.g. common statistical computa-

tions), albeit on different, client-specific input data. In current PVC proposals, it is likely

that each group of clients would have a distinguished client that performs the expensive

Setup operation and issue delegation and evaluation keys for specific functions on behalf

of their own group. Given that the functions of interest to these groups may overlap,

it could be that much of this effort is redundantly replicated by multiple distinguished

63

3.1 Introduction

clients. In addition, the introduction of multiple computational servers and multiple func-

tions to PVC systems results in an increase workload for the distinguished clients (who

must issue evaluation keys to servers for each function); the role of these clients becomes

akin to an authority on entities within the system. We therefore suggest the introduction

of a single trusted party which we call a key distribution centre (KDC); the KDC initialises

the system and issues evaluation keys on behalf of all entities in the system.

Finally, given that we have enabled multiple untrusted servers to enrol in a PVC system,

we may wish to revoke servers that are detected as misbehaving (either maliciously or

through poor performance which introduces errors to computations) such that they are

prevented from performing future computations. In the traditional, single-client setting of

VC, the client itself would simply choose to no longer use the server, and in both VC and

prior PVC schemes, a new system would need to be initialised. However, in the multi-

client setting, it is important that all clients are informed that a server is known not to

be trustworthy. In our new model of PVC, the system may include other servers that can

still be used, so initialising a new system is not a desirable option. Note that if other

clients were to outsource a computation to a misbehaving server, any errors would still

be detected due to the verification property, but we wish to prevent clients wasting their

(limited) resources delegating to a ‘bad’ server and to discourage servers from cheating in

the first place, as they know they will be detected, revoked and therefore potentially incur

a significant (financial) penalty from not receiving future work.

Our main contribution in this chapter, then, is to introduce the new notion of revocable

publicly verifiable computation (RPVC). We allow multiple servers to enrol in a PVC

system and allow the outsourced computation of multiple functions within a single PVC

system. In some sense, enabling the evaluation of multiple functions can be seen as a

shift from SIMD- to MIMD-style (that is, single instruction, multiple data to multiple

instructions, multiple data [54]) PVC environments, where servers can compute multiple

functions on multiple inputs provided by clients, albeit not necessarily in parallel. We give

a rigorous definitional framework for RPVC that we believe more accurately reflects real

environments than existing proposals. This new framework both removes redundancy and

facilitates additional functionality, leading to several new security notions.

In Section 3.2, we briefly review the PVC construction of Parno et al. [84] and the revo-

cable key-policy attribute-based encryption scheme of Attrapadung and Imai [14], both

64

3.2 Background Material

of which will inform our construction of RPVC later in this chapter. In Section 3.3, we

define our system model and framework for RPVC and in Section 3.4 we define relevant

security models. In Section 3.5, we provide an overview, technical details and a concrete

instantiation of our framework using attribute-based encryption and finally, in Section 3.6,

we provide full security proofs for our construction.

3.2 Background Material

3.2.1 Construction of Publicly Verifiable Computation Schemes

Parno et al. [84] provide a PVC construction using key-policy attribute-based encryption

(KP-ABE) [66], for the family of monotone Boolean functions.1 Our construction of RPVC

will be based on this construction, and therefore we discuss the basic principles here.

The idea of Parno et al. was to use the KP-ABE decryption functionality as a proof

that a monotone Boolean function is satisfied (i.e. outputs 1) on a given input. Recall

that in KP-ABE, decryption keys are associated with access structures and ciphertexts

are associated with attribute sets. Decryption succeeds if and only if the attribute set

in the ciphertext satisfies the access structure in the user’s decryption key. Recall also

that an access structure is a collection of satisfying attribute sets, and that any monotone

Boolean formula F can also be written in a similar form (the set of all inputs x such that

F (x) = 1). If inputs to Boolean functions can be written as attribute sets then we may

identify monotone access structures and monotone Boolean formulas. In the PVC setting,

we can view functions to be computed as access structures and issue computational servers

with corresponding decryption keys. Note that there may be exponentially many x such

that F (x) = 1 and, thus, the initial phase can indeed be computationally expensive for the

client. Input data can be represented as an attribute set and associated with ciphertexts;

we shall discuss this representation shortly.

To outsource a computation of F (x), Parno et al. select a random message m0 from the

message space of the ABE scheme and encrypt it under the attribute set Ax, corresponding

to x. A computational server is issued an evaluation key in the form of an ABE decryption

1If input privacy is required then a predicate encryption scheme could be used in place of the KP-ABE
scheme.

65

3.2 Background Material

key for the access structure encoding F . If the server can correctly decrypt the ciphertext

and return the correct message then the client can be assured (by the correctness and

security of the ABE scheme) that F (x) = 1. If the message space is large enough (which

it must be for the ABE scheme to be secure) then the server is unable to guess the correct

message to return with significant probability.

However, a malicious server could return the distinguished symbol ⊥ in the hope of con-

vincing the client that F (x) = 0 — that is, the input attributes did not satisfy the access

structure. Therefore, Parno et al. initialise a second ABE system and perform the same

operations as above to encrypt a random message m1 under the input set corresponding

to x, and to issue the server a decryption key corresponding to the complement function

F (x) = F (x) ⊕ 1, which always outputs the opposite result to F (x). Thus, exactly one

of F (x) or F (x) will output 1 and therefore exactly one of the messages will be output

by the decryption algorithm. By observing which message is returned and which ABE

system the message was encrypted with, the client can determine whether F (x) or F (x)

was satisfied and therefore whether F (x) = 1 or 0 respectively. A valid response from a

server, therefore, comprises the outputs (d0, d1) from two decryption operations and is of

the following form:

(d0, d1) =

(m0,⊥), if F (x) = 1;

(⊥,m1), if F (x) = 0.

(3.1)

Note that because KP-ABE is a public-key encryption primitive, any entity can form

ciphertexts and hence the construction achieves public delegability. Public verifiability,

on the other hand, is achieved using a one-way function g (e.g. a pre-image resistant

hash function). When outsourcing a computation, a client publishes a verification key

comprising the result of applying g to each randomly chosen message m0 and m1. On

receipt of a computational result from the server (i.e. exactly one ‘decrypted’ message),

any entity may apply g to the returned message and compare this with the verification key

to verify correctness. Note that a malicious server gains no advantage from the verification

key as it cannot invert g to recover either message. The mapping between PVC and KP-

ABE parameters is shown in Table 3.1.

As mentioned above, we must be able to define input data to outsourced computations as

attribute sets. Parno et al. did not state how this should be done; in this thesis, we perform

66

3.2 Background Material

Abstract PVC parameter Parameter in KP-ABE instantiation

EKF SKAF
PKF Master public key PP
σF,x Encryption of m using PP and Ax
θF (x) m or ⊥
V KF,x g(m)

Table 3.1: Mapping between PVC and KP-ABE parameters.

the following encoding procedure. Define a universe U of n attributes and associate V ⊆ U

with a binary n-tuple where the ith bit is 1 if and only if the ith attribute is in V . We

call this the characteristic tuple of V . Thus, there is a natural one-to-one correspondence

between n-tuples and attribute sets; we write Ax to denote the attribute set associated with

a characteristic tuple x. An alternative way to view this is to let U = {A1, A2, . . . , An}.

Then, a bit string v = v1 . . . vn of length n is the characteristic tuple of the set V ⊆ U

where V = {Ai : vi = 1}. A function F : {0, 1}n → {0, 1} is monotonic if x 6 y implies

F (x) 6 F (y), where x = (x1, . . . , xn) is less than or equal to y = (y1, . . . , yn) if and

only if xi 6 yi for all i ∈ [n]. For a monotonic function F : {0, 1}n → {0, 1}, the set

AF = {x ∈ {0, 1}n : F (x) = 1} defines a monotonic access structure.

Throughout this thesis, we shall mainly refer to monotonic Boolean functions, in line

with the majority of the ABE literature which refer only to monotonic access structures.

However, we note that the use of a non-monotonic KP-ABE scheme [80] could easily

accommodate general Boolean functions, and hence our outsourcing schemes would be

able to outsource the NC1 class of functions. As the KP-ABE scheme is used in a black-

box manner in both our construction and that of Parno et al. [84], this change should

be largely transparent. A simple alternative to such schemes is to adjust our encoding

scheme for input data, as 0 values in the input bitstring can now affect the outcome of

the computation. Doing so is a straightforward extension where U is defined to have 2n

attributes {A0
i , A

1
i }ni=1. Then, a bit string v of length n is the characteristic tuple of the

set V ⊆ U where V = {Aji : vi = j}. By applying De Morgan’s laws to a non-monotonic

Boolean function F , any negations within the function can be moved such that they apply

only to the input variables, and hence by choosing the value of j ∈ {0, 1} for each attribute

appropriately in the input attribute set, a non-monotonic function can be satisfied.

67

3.2 Background Material

3.2.2 Revocable Key-Policy Attribute-based Encryption

Revocation is a key problem in cryptography, particularly in the attribute-based setting

where many users hold keys for the same functionality (that is, keys which grant access

to the same objects). Revocation mechanisms aim to disable this functionality for certain

users, for example, if they are dishonest or if they leave the system. In the attribute-

based setting, revocation can either target specific attributes (to disable certain policies

within the system) or specific users (to account for a changing user population). In this

thesis, we shall focus on the latter as we wish to prevent misbehaving servers (users) from

participating in the PVC system at all; not just to revoke certain functionality. User

revocation itself leads to two different modes [14]:

• Direct revocation allows users to specify a revocation list during the encryption

algorithm which lists all currently revoked users. Hence periodic rekeying is not

required, but encryptors must have knowledge of the current revocation list;

• Indirect revocation requires ciphertexts to be associated with a time period (as an

additional attribute) and for a key authority to issue key update material at each

time period. The update material enables non-revoked users to update their key to

be functional during the relevant time period. A revoked user will not be able to use

the update material and thus their key will not decrypt ciphertexts associated with

the current time period attribute. With indirect revocation, users need only know

the current time attribute during encryption, but increased communication costs are

incurred due to the dissemination of the key update material.

In this thesis, we use the indirectly revocable KP-ABE scheme of Attrapadung and Imai [14],

itself a more formal definition of a scheme due to Boldyreva et al. [31]. This choice will

enable the revocation of misbehaving servers in a PVC scheme such that they cannot

perform further computations. We choose indirect revocation to minimise the workload

(in terms of maintaining synchronised, up-to-date revocation lists) of the weak client

devices. Indirectly revocable KP-ABE schemes define the universe of attributes to be

U = Uattr ∪ Utime ∪ UID where:

• Uattr is the normal attribute universe for describing ciphertexts and forming access

control policies;

68

3.2 Background Material

• Utime comprises attributes representing time periods;

• UID contains attributes encoding user identities.

Definition 3.1. An indirectly revocable key-policy attribute-based encryption scheme

comprises the following algorithms:

• (PP,MK)
$← ABE.Setup(1`,U): takes the security parameter and the universe of

attributes as input and outputs public parameters PP and master secret key MK;

• CT $← ABE.Encrypt(m,A, t,PP): takes a message m, an attribute set A ⊆ Uattr, the

current time period t ∈ Utime and the public parameters, and outputs a ciphertext

that is valid for time t;

• SKid,A
$← ABE.KeyGen(id,A,MK,PP): takes as input an identity id ∈ UID for a

user, an access structure A encoding a policy, as well as the master secret key and

public parameters. It outputs a decryption key for the user id;

• UKR,t
$← ABE.KeyUpdate(R, t,MK,PP): takes a revocation list R ⊆ UID containing

the identities of currently revoked entities, the current time period t, as well as the

master secret key and public parameters. It outputs updated key material UKR,t;

• PT ← ABE.Decrypt(CT, SKid,A, UKR,t,PP): takes a ciphertext, a decryption key,

an update key and the public parameters as input. It outputs a plaintext PT which

is either m if the attributes associated with CT satisfy A and the value of t in the

update key matches that specified during the encryption of CT , or ⊥ otherwise to

denote decryption failure.

Correctness of a revocable KP-ABE scheme is defined as follows:

Definition 3.2. An indirectly revocable KP-ABE scheme is correct if for all m ∈M, all

id ∈ Uid, all R ⊆ Uid, all A ⊆ 2Uattr \ {∅}, all A ⊆ Uattr and all t ∈ Utime, if A ∈ A and

69

3.2 Background Material

id /∈ R, then

Pr[(PP,MK)
$← ABE.Setup(1`,U),

CT
$← ABE.Encrypt(m,A, t,PP),

SKid,A
$← ABE.KeyGen(id,A,MK,PP),

UKR,t
$← ABE.KeyUpdate(R, t,MK,PP),

m← ABE.Decrypt(CT, SKid,A, UKR,t,PP)]

= 1− negl(`).

The schemes [14, 31] mentioned above use the complete-subtree method to arrange users

as the leaves of a binary tree such that the size of the required key-update material can be

reduced from the naive method of O(n− r), where n is the number of users and r is the

number of revoked users, to O(r log(n2)). This approach works as follows for a revocation

list R. For a leaf node l ∈ UID, let Path(l) be the set of nodes on the path between the root

node and l inclusive. Then, for each l ∈ R, mark all nodes in Path(l). Define Cover(R)

to be the set of all unmarked children of marked nodes, and generate update material for

just these nodes.

Note that the time parameter in the above algorithms could be a literal clock value where

all entities have access to some synchronised, network clock. In this case, rekeying must

occur at every time period regardless of whether a revocation has occurred in the prior

period. Alternatively, the time parameter could simply be a counter that is updated when

a revocation takes place and the ABE.KeyUpdate algorithm is run. This would be more

akin to a “push” system where entities should be notified by the key authority when

newly updated key material is required. For generality, we assume a time source T from

which the current time period t (be that a literal time value, counter or otherwise) may

be efficiently sampled as t← T.

Attrapadung and Imai [14] defined several notions of security for revocable KP-ABE

schemes. The security property we will require in this thesis is indistinguishability against

selective-target with semi-static query attack (IND-sHRSS) [14], presented in Game 3.1

and Oracles 3.1 and 3.2. This is a selective notion where the adversary must declare at

the beginning of the game the set of attributes (t?, A?), including the time attribute t?, to

be challenged upon. It is also possible to define a stronger, full notion of security whereby

70

3.2 Background Material

the adversary may receive the public parameters and make oracle queries before selecting

the challenge attributes (provided no query would lead to a trivial win). As we use the

revocable KP-ABE scheme as a black box in our construction, it should be easy to change

to a fully secure scheme if found; to the best of our knowledge, current primitives for

indirect revocation in the KP-ABE setting only achieve selective security.

In Game 3.1, after the adversary chooses its challenge attributes (t?, A?), the challenger

runs Setup and gives the adversary the resulting public parameters. The adversary must

choose a target revocation set R which is the set of entities that should be revoked at time

t?. The semi-static restriction requires that this revocation list must be chosen before the

adversary is given oracle access to the ABE.KeyGen and ABE.KeyUpdate functions. Again,

a stronger notion of an adaptive adversary may be defined where the adversary may choose

the revocation list at the time of the challenge instead.

To prevent trivial wins, for a key generation query, the adversary may not query for any

key SKid,A where the target attribute set A? satisfies A and the identity is not revoked at

time t?. If this restriction was not enforced, the adversary would hold a secret decryption

key and would also receive update material for the challenge time period (as the identity

is not revoked) and could therefore successfully decrypt the challenge ciphertext.

Similarly, for an update key request, the adversary is prevented from learning an update

key UKR,t? for the challenge time period t? for a less restrictive revocation list R than

the challenge list R. Otherwise, an update key could be issued which the adversary could

combine with a queried secret key to form a functional decryption key for a server that

the adversary claimed would be revoked.

As in a standard IND-CPA notion, the adversary outputs two messages of equal length

and the challenger chooses one of them at random to encrypt and passes the resulting ci-

phertext to the adversary. The adversary, again given oracle access as before, then guesses

which message was encrypted. The advantage of the adversary is given in Definition 3.3.

Definition 3.3. The advantage of a PPT adversary A in the IND-sHRSS game for an

indirectly revocable KP-ABE construction KP-ABE is defined as:

AdvIND-sHRSS
A (KP-ABE , 1`,U) = Pr

[
1

$← ExpIND-sHRSS
A

[
KP-ABE , 1`,U

]]
− 1

2 .

71

3.3 Revocable Publicly Verifiable Computation

Game 3.1 ExpIND-sHRSS
A

[
ABE , 1`,U

]
1: (t?, A?)

$← A(1`,U)

2: (PP,MK)
$← Setup(1`,U)

3: R
$← A(PP)

4: (m0,m1)
$← AOKeyGen(·,·,MK,PP),OKeyUpdate(·,·,MK,PP)(PP)

5: if (|m0| 6= |m1|) then return 0

6: b
$← {0, 1}

7: CT ?
$← Encrypt(mb, A

?, t?,PP)

8: b?
$← AOKeyGen(·,·,MK,PP),OKeyUpdate(·,·,MK,PP)(CT ?,PP)

9: return (b′ = b)

Oracle 3.1 OKeyGen(id,A,MK,PP):

1: if ((A? ∈ A) and (id /∈ R)) then return ⊥
2: return KeyGen(id,A,MK,PP)

Oracle 3.2 OKeyUpdate(R, t,MK,PP):

1: if ((t = t?) and (R 6⊆ R)) then return ⊥
2: return KeyUpdate(R, t,MK,PP)

An indirectly revocable KP-ABE scheme is secure in the sense of indistinguishability

against selective-target with semi-static query attack (IND-sHRSS) if for all PPT adver-

saries A,

AdvIND-sHRSS
A (KP-ABE , 1`,U) 6 negl(`).

3.3 Revocable Publicly Verifiable Computation

As previously mentioned, our main goal in this chapter is to enhance the existing PVC

system model to reflect a more practical, multi-user, multi-server, multi-function setting.

We allow multiple servers to compute multiple functions in a secure manner. In particular,

a server cannot use an evaluation key for a function G to return a valid result for a

computation of F (x).

In the remainder of this section, we discuss in more detail the introduction and role of

the KDC and the mechanism by which we allow servers to compute multiple functions.

The introduction of a single trusted entity known as a key distribution centre (KDC)

that is an authority on entities enrolled in the system aims to make entity management

more straightforward. We also discuss two example system architectures that motivate

our construction, which we call the standard model and the manager model.

72

3.3 Revocable Publicly Verifiable Computation

3.3.1 Key Distribution Centre

Existing frameworks assume that a client or clients run the expensive phases of a VC

scheme and that a single server performs all outsourced computations. We believe that

this is undesirable for a number of reasons, irrespective of whether the client is sufficiently

powerful to perform the required operations. First, in a real-world system, we may wish to

outsource the setup phase to a trusted third party. In this setting, the third party would

operate rather similarly to a certificate authority, providing a trust service to facilitate

other operations of an organisation (in this case outsourced computation, rather than au-

thentication). Second, we may wish to limit the functions that some clients can outsource.

In other words, we may wish to enforce some kind of access control policy where an inter-

nal trusted entity will operate both as a facilitator of outsourced computation and as the

policy enforcement point. We will examine the integration of RPVC and access control in

Chapter 4.

The KDC that we introduce could, in fact, still be a distinguished client device (which

has the additional resources required to perform the expensive setup operations), but here

we consider it to be a separate entity to emphasise the distinction between the clients

that request computations, and the KDC that is authoritative on the system and users.

The KDC could be authoritative over many sets of clients (e.g. at an organisational level

as opposed to a work group level), and we minimise its workload to key generation and

revocation only.

It may be tempting to suggest that the KDC, as a trusted entity, performs all computations

itself. However we believe that this is not a practical solution in many real world scenarios,

e.g. the KDC could be an authority within the organisation responsible for user authori-

sation that wishes to enable workers to securely use cloud-based software-as-a-service. As

an entity within organisational boundaries, performing all computations would negate the

benefits gained from outsourcing computations to the cloud.

The basic idea of our scheme is to have the KDC perform the expensive setup operation.

The KDC provides each server with a distinct set of keys that allow the computation of

a set of functions. A client may request the computation of F (x) from any server that is

certified to compute F .

73

3.3 Revocable Publicly Verifiable Computation

3.3.2 Handling Multiple Functions

Recall that in the PVC model of Parno et al. [84], the system is initialised for a single

function, and that a new system must be initialised if a client wished to outsource the

computation of a different function. Recall also, from Definition 2.3, that Parno et al.

also introduced multi-function VC for the non-publicly verifiable setting; the authors

left it as an open problem to devise a multi-function PVC scheme. In multi-function

VC, the system is initialised independently of any functions, and evaluation keys and

delegation information for different functions can be generated separately. Input data can

be encoded once and used as input to multiple computations of different functions. To

instantiate multi-function VC in the non-publicly verifiable setting, Parno et al. used a

primitive known as KP-ABE with outsourcing where a trusted party can perform most of

the decryption process on behalf of a user.

In this chapter, we move towards a solution for multi-function PVC. We take a different

viewpoint than Parno et al. [84] did for multi-function VC and consider a ‘middle-ground’

model. In contrast to Parno et al., we require that clients encode their input per compu-

tation they outsource. We believe that, given an efficient outsourcing procedure, it is not

unreasonable for clients to perform some work per outsourcing request. Indeed, in some

cases, it could be that the data held by a client is updated as the result of each computa-

tion and so a persistent encoding would not be useful. As a result, we achieve a solution

which uses a “plain” ABE scheme (of which there are many efficient, well-studied con-

structions) instead of the somewhat more unusual ABE with outsourced decryption [67]

used by Parno et al. for the VC setting.

3.3.3 Standard Model

Our standard model extends the PVC architecture of Parno et al. [84] with the addition of

a KDC. The entities comprise a set of clients, a set of servers and a trusted KDC. The KDC

initialises the system and generates keys to enable verifiable computation. Keys to delegate

computations are published for the clients, whilst keys to evaluate specific functions are

given to individual servers. Clients submit computation requests, for a given input, to

a particular server and publish some verification information. Servers receive encoded

input values from clients and perform computations to generate an encoded result. Any

74

3.3 Revocable Publicly Verifiable Computation

party can verify the correctness of a server’s output. If the output is incorrect, the verifier

may report the server to the the KDC for revocation, which will prevent the server from

performing any further computations.

Figure 3.1 gives a table illustrating which entities are responsible for running each algo-

rithm in normal verifiable outsourced computation (VC), publicly verifiable outsourced

computation (PVC), the standard model of RPVC detailed in this section, and finally

RPVC in the manager model which we will discuss next. The figure also includes an

illustration of how the entities interact in the standard and manager models.

3.3.4 Manager Model

The manager model, in contrast, employs an additional entity known as the manager who

“owns” a pool of computation servers. Clients submit jobs to the manager, who will select

a server from the pool based on workload scheduling, available resources or as a result of

some bidding process if servers are to be rewarded per computation. A plausible scenario

is that servers enrol with a manager to “sell” the use of spare resources, whilst clients

subscribe to utilise these resources through the manager.

Results are returned to the manager who should be able to verify the server’s work. The

manager forwards correct results to the client; a misbehaving server may be reported

to the KDC for revocation, and the job assigned to another server. Due to the public

verifiability of current schemes, any party with access to the output and the verification

token can also verify and learn the result. However, in many situations we may not

desire external entities to learn sensitive computational results; yet, even so, there remain

legitimate reasons for certain entities, such as the manager, to just verify correctness,

without learning the result. Thus, we allow blind verification such that the manager (or

other entity) may verify the validity of the computation without learning the output —

that is, blind verification can determine whether a result should be accepted or rejected,

but does not reveal the value F (x). The delegating client generates an additional piece of

information, known as a retrieval key, which can be shared with authorised entities and

which enables the actual computational result to be learnt.

The interaction between entities in this model is illustrated in Figure 3.1b, where the

75

3.3 Revocable Publicly Verifiable Computation

Algorithm Run by

VC PVC RPVC Standard RPVC Manager

KeyGen C1 C1 KDC KDC
ProbGen C1 C1, C2, . . . C1, C2, . . . C1, C2, . . .
Compute S S S1, S2, . . . S1, S2, . . .
Verify C1 C1, C2, . . . C1, C2, . . . –
Blind Verify — — — M
Retrieve — — — C1, C2, . . .

KDCS1 S2 S3

PublicC1 C2

EKF,S1 EKF,S2

EKG,S3

σF,x1 θF (x1)

σF,x2 θF (x2)

σG,x3

θG(x3)

V KF,x1

V KF,x2

V KG,x3

Revoke PKF , PKG

Verify

Verify

(a) Standard model

KDCS1

M
S2

Public

C1

C2

EKF,S1

EKG,S2

σF,x1

θF (x1)

τθF (x1)

σ
G,x

2

θG(x2)

τθ
G
(x

2)

V KF,x1

PKF

PKG
V KG,x2

Revoke

BVerif
Retrieve

Retrieve

(b) Manager model

Figure 3.1: The operation of a revocable publicly verifiable outsourced computation
scheme

manager is denoted by M . The manager and computational servers are shown within a

dashed region to illustrate the boundaries of internal and external entities — that is, the

entities not within the dashed region could all be within an organisation that wishes to

utilise the external resources provided by the manager to outsource computational work.

Notice that in Figure 3.1b the manager performs a blind verification operation (denoted

BVerify) but only entities within the organisation may run the output retrieval algorithm

to learn the actual result of the computation; there is a distinction between the capabilities

76

3.3 Revocable Publicly Verifiable Computation

of entities external to the organisation (servers and the manager) and those internal entities

(such as the clients).

3.3.5 Formal Definition

Our scheme comprises four types of entity. Firstly, a key distribution centre is responsible

for setting up the system and being authoritative on other entities within the system. The

KDC is trusted by the other entities to act honestly. Note that in the prior PVC scheme

of Parno et al. [84], this role was played by a client device and would also be assumed to

act honestly on behalf of all other clients. In this work, we have expanded the duties of the

KDC to allow revocation of malicious servers and have referred to it as a distinct entity,

rather than a client device, to make the separation of duties explicit, however we have not

changed the underlying trust assumption regarding this entity. We assume that the KDC

can maintain state between the execution of each algorithm but, to ease readability, do

not explicitly show this as an input and output of each algorithm run by the KDC.

Secondly, the system includes a set of clients (which are assumed to possess limited com-

putational resources). These clients wish to outsource computations that they lack the

resources to compute locally. Each client is assumed to act honestly regarding a compu-

tation that they themselves outsource (as they wish to gain from a correct computation)

but need not trust each other.

Thirdly, the system includes a set of computational servers that are willing to perform

some set of computations on behalf of clients. These servers are not trusted by the clients to

perform the computation correctly and so the servers are required to produce an efficiently

verifiable proof of the correctness of their computation. We will assume that servers have

unique identifiers in the form of natural numbers (note that arbitrary identifiers can also

be efficiently mapped to unique natural numbers by a hash function or look up table).

The final type of entity within our system is verifiers. Verifiers can either be client devices

or other entities; they trust the client that outsourced a particular computation but do

not trust the server that actually performed the computation.

We now present a formal definition of the algorithms in a RPVC scheme.

77

3.3 Revocable Publicly Verifiable Computation

Definition 3.4. A revocable publicly verifiable outsourced computation scheme (RPVC)

comprises the following algorithms:

• (PP,MK)
$← Setup(1`,F): run by the KDC to initialise the system and establish

public parameters PP and a master secret key MK for a family of functions F ;

• PKF
$← FnInit(F,MK,PP): run by the KDC to generate a public delegation key,

PKF , allowing clients to outsource computations of a function F ;

• SKS
$← Register(S,MK,PP): run by the KDC to enrol a computation server S in

the system and generate a signing key SKS used to identify S;

• EKF,S
$← Certify(S, F,MK,PP): run by the KDC to generate an evaluation key

EKF,S enabling the computation server S to perform computations of a function F ;

• (σF,x, V KF,x, RKF,x)
$← ProbGen(x, PKF ,PP): run by a client to delegate the com-

putation of F (x) to a server. The output values are: the encoded input, σF,x, of x

for the function F ; a verification key, V KF,x, that is used (only) to verify correctness

of the result; and a retrieval key RKF,x which will enable the output value F (x) to

be read by authorised parties;

• θF (x)
$← Compute(σF,x, EKF,S , SKS ,PP): run by a server S holding an encoded

input σF,x of x for the function F , an evaluation key EKF,S for F and a signing key

SKS . The algorithm outputs an encoding, θF (x), of F (x);

• (y, τθF (x)
)← Verify(θF (x), V KF,x, RKF,x,PP): verification comprises two sub-algorithms

(which could be performed together in a single Verify operation as written here if

the blind verification property is not required). The sub-algorithms are:

– (RTF (x), τθF (x)
)← BVerif(θF (x), V KF,x,PP): run by any verifying party (in the

standard model), or by the manager (in the manager model), in possession of an

encoded output, θF (x) and a verification key V KF,x. The output is a retrieval

token, RTF (x), which encodes the actual output value (this can be thought of as

a partial translation from θF (x) to F (x)). It also outputs a token τθF (x)
which

is (accept, S) if the output is valid, or (reject, S) if S misbehaved;

– y ← Retrieve(τθF (x)
, RTF (x), V KF,x, RKF,x,PP): run by an authorised verifier

holding the retrieval key RKF,x to read the actual result y from the retrieval

token RTF (x). The value of y is either F (x) or the distinguished symbol ⊥ (i.e.

the algorithm fails if an invalid result is returned);

78

3.3 Revocable Publicly Verifiable Computation

• UM $← Revoke(τθF (x)
,MK,PP): run by the KDC to generate update material UM

if a misbehaving server is reported i.e. that the Verify algorithms returned a token

τθF (x)
= (reject, S). If τθF (x)

= (accept, S) then UM is set to be a distinguished

symbol ⊥ as no user is required to be revoked. Otherwise, this algorithm revokes

all evaluation keys EK·,S of the server S, thereby preventing S from performing any

further evaluations. The update material UM is a set of updated evaluation keys

EK·,S′ which are issued to all servers.2

Although not explicitly stated, the KDC may update the public parameters PP during

the execution of any algorithm. This reflects any changes that may be required to reflect

changes in the user population (e.g. servers are added or removed from the system, or

granted the ability to compute additional functions).

Note that if a server is not given the retrieval key RKF,x then it too cannot learn the

output value F (x) and we gain output privacy. In the above, we assume that RKF,x is

distributed to all authorised readers of the resulting value F (x) by the client that performs

ProbGen to outsource the computation. As an example, this could be performed using a

broadcast encryption scheme to the set of authorised users [52].

Intuitively, we say that a RPVC scheme is correct if, when all algorithms are run honestly

in any arbitrary execution sequence and the result is computed by a non-revoked server, the

verifying party always accepts the returned result and the result is correct. We can model

this as a cryptographic game between a challenger and a PPT adversary; the adversary

aims to find an (honestly generated) encoded output (from a non-revoked server) which

either does not encode the correct result, or which does encode the correct result yet which

will not be accepted by the verification algorithm.

The adversary is given access to a set of oracles; for each algorithm in Definition 3.4,

the adversary is given a corresponding oracle. Each oracle executes the corresponding

algorithm on arguments provided by the adversary, and returns the output of the algorithm

to the adversary, as well as maintaining some internal lists, which we shall detail below.

The adversary may call the Setup oracle only once (before making any other oracle queries),

but can thereon call the remaining oracles any number of times and in any order.

2In some instantiations, it may not be necessary to issue entirely new evaluation keys to each entity. In
Section 3.5, for example, we only need to issue a partially updated key.

79

3.3 Revocable Publicly Verifiable Computation

The challenger maintains two lists, LReg and LF ; LReg is a list of tuples comprising server

identities, S, and the resulting signing keys, SKS , that have been queried to the Register

oracle, whilst LF comprises tuples of the form (S, F,EKF,S) denoting that the server S

has been queried to the Certify oracle for the function F and that EKF,S was generated —

that is, S has been certified to compute F . When the adversary makes a Revoke query with

a revocation token that identifies a server S to be revoked (that is, if τθF (x)
= (reject, S) is

given as input to the Revoke oracle), the challenger removes all entries of the form (S, ·, ·)

(i.e. all entries for S for any function) from LF .

The challenger also creates and maintains a table T which records the parameters and

values relating to each computation performed through the oracle queries. T is updated

in the following oracles:

• ProbGen: the challenger creates a new row in T comprising 8 components, all of

which are initialised to be empty; it then assigns x, F , the result F (x) (computed

by the challenger itself), σF,x, V KF,x and RKF,x to the first 6 components;

• Compute: the challenger first searches T for all rows that contain the queried σF,x in

the 4th component and where the 7th component is empty (i.e. those rows relating

to computations on this encoded input that have not yet been performed). For each

such row, r, the challenger takes the second component (the function identifier, F̃),

and checks that there exists a server identity S̃ such that the tuple (S̃, SKS̃) ∈ LReg

(where SKS̃ is that given as input to the Compute oracle) and such that the tuple

(S̃, F̃ , EKF,S̃) ∈ LF (where EKF,S̃ is also that given as input to the Compute oracle).

This check ensures that there is a currently un-revoked server (as the entries of LF

for S̃ have not been removed) that holds the signing key and evaluation key being

used to perform the computation and which is certified for a function F̃ for which

the encoded input σF,x for this computation was generated3.

The challenger then performs the Compute algorithm on the queried σF,x, EKF,S

and SKS to produce an output θF (x). For each of the rows r of T found above,

the challenger writes θF (x) and S̃ to the 7th and 8th components of r respectively.

Thus, a row of T will only have a (non-empty) value in the 7th component if there

3Note that there could be multiple such identities S̃ satisfying this check, if the parameters SKS and
EKF,S are both generated for multiple identities; in practice, good randomised algorithms should ensure
that there is a negligible chance that this actually occurs. We are only interested in ensuring that there
exists at least one non-revoked server with these parameters to perform the computation, and so if multiple
such server identifiers are found then the challenger may choose S̃ from this set at random.

80

3.3 Revocable Publicly Verifiable Computation

exists a non-revoked, certified server to perform the computation for which σF,x was

generated.

Thus, when complete, the entries of T will be of the form

(x, F, F (x), σF,x, V KF,x, RKF,x, θF (x), S).

After a polynomial number of queries, the adversary will return a value θ?F (x) which he

believes either encodes an incorrect computational result or which encodes a correct com-

putational result yet which the Verify algorithm will reject (that is, an output for which

the protocol execution will not be correct). The challenger first performs a look up in T

for all entries containing θ?F (x) in the 7th position of the tuple, and stores any such entries

as another table T̃ . Note that this means that θ?F (x) must have been honestly generated

by the Compute oracle (else it would not be in T).

For each such row4, the challenger uses the 5th and 6th components of the row (the verifi-

cation key and retrieval key) to run Verify on θ?F (x) to generate the outputs y and τθF (x)
.

The challenger first checks whether y matches the 3rd component of the row (that is,

whether y is the correct computational result F (x)). If so, it then checks whether τθF (x)
=

(reject, S), and if so it ends the game by returning 1 to indicate that the adversary has

won the game (the adversary has found a valid encoding of a correct result, computed by

a certified, non-revoked server, that the Verify algorithm is incorrectly rejecting).

On the other hand, if y did not match the correct value of F (x), the challenger also ends

the game by returning 1 to indicate that the adversary has won the game (the adversary

in this case has found an incorrect result that was computed honestly by the algorithms).

If no row in T̃ allows the adversary to win, then the challenger outputs 0 to indicate

that the adversary has lost. An RPVC scheme is correct if, for all PPT adversaries, the

probability that the adversary wins the game described above is 0.

4Again, in practice it is unlikely that randomised algorithms will produce the same encoded output on
different inputs but we allow it in the correctness definition.

81

3.4 Security Models

3.4 Security Models

The introduction of the KDC, multiple servers and the ability to compute multiple func-

tions, and the subsequent changes in operation give rise to several new security concerns:

• Public verification. Since multiple servers may be certified to compute multiple

functions, it is important to ensure that servers cannot collude or otherwise cheat in

order to convince a client of an incorrect output;

• Revocation. We must ensure that neither an uncertified nor a revoked server can

convince a client to accept an output;

• Vindictive servers. We must ensure that a malicious server cannot convince a client

that an honest server has produced an incorrect output;

• Vindictive manager. We must ensure that, in the manager model, a malicious man-

ager cannot convince a client of an incorrect result;

Given these security concerns, we define four notions of security for RPVC, each mod-

elled as a cryptographic game. In the cases of public verifiability, revocation and vindic-

tive managers, we also define weaker notions of security which we term selective, semi-

static notions. This is due to the particular IND-sHRSS indirectly revocable key-policy

attribute-based encryption scheme we use in our construction, which requires similar re-

strictions. In other words, given the current primitives we use in our construction, we

cannot achieve full security for these notions, but can achieve the slightly weaker variants

presented here. As our construction uses the KP-ABE scheme as a black-box, if stronger

primitives are found it should be easy to swap to using these to achieve full security. In

this section, we will first introduce the ideal notions of security we would like an RPVC

scheme to achieve. We then, in Section 3.4.2, discuss the necessary modifications to the

above notions to define the selective and semi-static notions that we can currently achieve.

We also discuss their relation to the IND-sHRSS game, although it may be helpful to

refer back to this discussion after the construction has been introduced in Section 3.5.

82

3.4 Security Models

Game 3.2 ExpPubVerif
A

[
RPVC, 1`,F

]
1: (PP,MK)

$← Setup(1`,F)

2: (F, x?)
$← AO(PP)

3: PKF
$← FnInit(F,MK,PP)

4: (σF,x? , V KF,x? , RKF,x?)
$← ProbGen(x?, PKF ,PP)

5: θ?
$← AO(σF,x? , V KF,x? , RKF,x? , PKF ,PP)

6: (y, τθ?)← Verify(θ?, V KF,x? , RKF,x? ,PP)
7: if (((y, τθ?) 6= (⊥, (reject,A))) and (y 6= F (x?))) then
8: return 1
9: else return 0

3.4.1 Ideal Security Properties

In this section we discuss the ideal security notions we would like to achieve in the RPVC

setting. Even though we cannot currently achieve all of these notions completely, we

include them for completeness.

3.4.1.1 Public Verifiability

We extend the public verifiability game of Parno et al. [84] to formalise that servers should

not be able to cheat or collude to gain an advantage in convincing any verifying party of

an incorrect output (i.e. that Verify does not return accept on an encoded output θF (x)

that does not in fact encode the correct output F (x)).

Recall that Parno et al. [84] considered the case where the adversary is limited to learning

only one evaluation key (as the system is initialised for only one server and one function).

The motivation for this updated game is that there is a now a trusted party issuing keys

to multiple servers who may collude. Each server can request evaluation keys for multiple

functions and must not be able to use an evaluation key for a function G to produce a

valid looking result for a computation request for F (x). Thus, in our game, we allow

the adversary to learn multiple evaluation keys for different functions and associated to

different servers (since evaluation keys are server-specific in our setting to enable per-

server revocation). In our setting, it is likely that the set of servers will be performing

computations on behalf of multiple clients simultaneously, and so the adversary is also

able to learn multiple encoded inputs by performing the ProbGen algorithm.

The ideal notion of public verifiability for RPVC is presented in Game 3.2. The game

83

3.4 Security Models

Game 3.3 ExpmPubVerif
A

[
RPVC, 1`,F

]
1: (PP,MK)

$← Setup(1`,F);

2: {(Fi, x?i)}i∈[n]
$← AO(PP);

3: for i = 1 to n do
4: PKFi

$← FnInit(Fi,MK,PP);

5: (σFi,x?
i
, V KFi,x?

i
, RKFi,x?

i
)

$← ProbGen(x?i , PKFi
,PP);

6: θ?
$← AO({σFi,x?

i
, V KFi,x?

i
, RKFi,x?

i
, PKFi

},PP);
7: if (∃i ∈ [n] s.t. (((y, τθ?)← Verify(θ?, V KFi,x?

i
, RKFi,x?

i
,PP))

and ((y, τθ?) 6= (⊥, (reject,A))) and (y 6= Fi(x
?
i)))) then

8: return 1
9: else return 0

begins with the challenger setting up the system. The adversary, A, is given the result-

ing public parameters and given oracle access to FnInit(·,MK,PP), Register(·,MK,PP),

Certify(·, ·,MK,PP) and Revoke(·,MK,PP), denoted by O. All oracles simply run the

relevant algorithm. This models the adversary observing an existing RPVC system and

corrupting various servers to learn their evaluation keys.

Eventually, the adversary will finish this query phase and outputs a choice of challenge

function F with input x? — the adversary will attempt to convince the challenger of

an incorrect result for the computation of F (x?). The challenger will then run FnInit to

initialise the challenge function F and generate a challenge by running ProbGen on this

input, and give the resulting encoded input to A. The adversary is again given oracle

access and wins if it can produce an encoded output that verifies correctly but does not

encode the value F (x?) — that is, the challenger accepts an incorrect result.

Definition 3.5. The advantage of a PPT adversary A in the PubVerif game for an

RPVC construction, RPVC, for a family of functions F is defined as:

AdvPubVerif
A (RPVC, 1`,F) = Pr

[
1

$← ExpPubVerif
A

[
RPVC, 1`,F

]]
.

An RPVC scheme, RPVC, is secure with respect to public verifiability if, for all PPT

adversaries A,

AdvPubVerif
A (RPVC, 1`,F) 6 negl(`).

In practical environments, a server may be interacting with multiple clients simultaneously

and it could be that having multiple simultaneous interactions could provide an advantage

against any one of the computations. Thus, when modelling this scenario as a game, we

may wish the adversary to choose a polynomially sized set of n input values to be challenged

84

3.4 Security Models

upon to model these simultaneous inputs, and for the adversary to win against any one of

the inputs. This is shown for the case of public verifiability in Game 3.3. However, it is

easy to see that this is polynomially equivalent to the case where the adversary chooses a

single challenge input, as in Game 3.2.

Theorem 3.1. Let n ∈ N be polynomial in the security parameter `. Then public verifi-

ability where the adversary may target an arbitrary set of n challenge inputs (Game 3.3)

is polynomially equivalent to public verifiability where the adversary chooses a single chal-

lenge input (Game 3.2).

Proof. It is trivial to show that security with multiple choices implies security with a single

choice, since an adversary with multiple choices could simply choose n = 1 and output a

single choice.

To see that security with a single choice also implies security with multiple choices we can

perform the following reduction. Suppose that RPVC is an RPVC scheme secure when the

adversary AS makes a single choice of challenge input. In order to obtain a contradiction,

suppose AM is an adversary with non-negligible advantage δ against RPVC when it can

make multiple challenge choices. We show that AS could use AM as a sub-routine to gain

a non-negligible advantage against RPVC even with just a single challenge choice. Let C

be the challenger playing Game 3.2 with AS who in turn acts as the challenger for AM in

Game 3.3.

1. C runs Setup and sends the resulting public parameters to AS who simply forwards

them to AM .

2. AM makes oracle queries which AS passes to C and forwards the response to AM .

3. AM will return a set of n challenge inputs {(Fi, x?i)}i∈[n].

4. AS chooses one of these challenges at random, (F, x?)
$← {(Fi, x?i)}i∈[n], and sends

this to C.

5. C returns the results of running FnInit and ProbGen on F and x? respectively and

provides oracle access to AS .

6. AS can query the FnInit oracle for all other PKFi and run ProbGen for the remaining

inputs {x?i }i∈[n] \ x? (as ProbGen relies only on public information), and returns

85

3.4 Security Models

the whole set to AM . Since no other query was made between C generating the

challenge and these ProbGen queries, the system parameters have not changed and

all challenges are consistent.

7. AM makes oracle queries which AS again forwards to C, and then outputs a challenge

output θ?.

8. Let x?j be the challenge input that θ? corresponds to — that is, since AM is assumed

to be successful, Verify(θ?, V KFj ,x?j
, RKFj ,x?j

,PP) does not return (⊥, (reject, ·)) and

hence θ? is a valid encoding of F (x?j) for some x?j . If x?j = x? then AS forwards θ?

to C as its result. Otherwise, AS stops.

Hence,

AdvPubVerif
AS (RPVC, 1`,F) = Pr[x? = x?j] ·AdvmPubVerif

AM (RPVC, 1`,F) =
δ

n
.

Now, since we assumed δ was non-negligible and n is polynomial, we conclude that

AdvPubVerif
AS (RPVC, 1`,F) is non-negligible. However, we assumed that RPVC was se-

cure against a single challenge and hence the adversary making multiple challenges with

non-negligible advantage may not exist.

A similar argument holds for the remaining games, and henceforth we only consider single

challenges.

3.4.1.2 Revocation

The notion of revocation requires that, if a server is detected as misbehaving (i.e. a server

S returns a result that causes the Verify algorithm to output (⊥, (reject, S))), then any

subsequent computations by S should be rejected (even if the result is correct). We aim to

remove any incentive for an malicious server to attempt to provide an outsourcing service

since it knows the result will not be accepted, and we may punish and further discourage

malicious servers by removing their ability to perform work (and earn rewards). Finally,

from a privacy perspective, we may not wish to supply input data to a server that is known

to be untrustworthy.

86

3.4 Security Models

Game 3.4 ExpRev
A

[
RPVC, 1`,F

]
1: chall← false
2: QRev ← ε

3: (PP,MK)
$← Setup(1`,F)

4: (F, x?)
$← AO(PP)

5: PKF
$← FnInit(F,MK,PP)

6: chall← true

7: (σF,x? , V KF,x? , RKF,x?)
$← ProbGen(x?, PKF ,PP)

8: θ?
$← AO(σx? , V KF,x? , RKF,x? , PKF ,PP)

9: if ((((y, (accept, S))← Verify(θ?, V KF,x? , RKF,x? ,PP))
and (S ∈ QRev)) then

10: return 1
11: else return 0

Oracle 3.3 OCertify(S, F ′,MK,PP)

1: if (chall = false) then QRev ← QRev \ S
2: return Certify(S, F ′,MK,PP)

Oracle 3.4 ORevoke(τθF ′(x) , F
′,MK,PP)

1: UM
$← Revoke(τθF ′(x)

, F ′,MK,PP)

2: if (UM 6=⊥ and chall = false) then QRev ← QRev ∪ S
3: return UM

The ideal notion of revocation, presented in Game 3.4, begins by declaring a Boolean flag

chall which is initially set to false and an (empty) list QRev which servers will be added

to when revoked and removed from when re-certified. The chall flag will be set to true

when the challenge is created, and after this point QRev is no longer updated. Thus QRev

will comprise all servers that are revoked at the challenge time and hence all servers that,

if an adversary can output a result ‘from’ one of these servers and have it accepted, will

count as a win for the adversary.

The game proceeds in a similar fashion to public verifiability with the challenger running

Setup to initialise the system and providing the public parameters to the adversary. The

adversary is also given oracle access to the functions FnInit(·,MK,PP), Register(·,MK,PP),

Certify(·, ·,MK,PP) and Revoke(·,MK,PP), denoted by O. All oracles simply run the

relevant algorithms with the exception of Certify and Revoke which additionally maintain

the list of revoked entities as mentioned above and as specified in Oracles 3.3 and 3.4

respectively. After the adversary has finished this query phase, it outputs a choice of

challenge function F and challenge input x?. The challenger runs FnInit for F and sets

the chall flag to true. It then generates the challenge by running ProbGen on x? and

gives the resulting parameters to the adversary along with oracle access again (however,

since chall is set to true, QRev will no longer be updated). Eventually, the adversary

outputs a result θ? and wins if Verify outputs accept for a server that was revoked when

87

3.4 Security Models

Game 3.5 ExpVindS
A

[
RPVC, 1`,F

]
1: QReg ← ε
2: Qchall ← ε
3: S̃ ←⊥
4: (PP,MK)

$← Setup(1`,F)

5: (F, x?)
$← AO(PP)

6: PKF
$← FnInit(F,MK,PP)

7: (σF,x? , V KF,x? , RKF,x?)
$← ProbGen(x?, PKF ,PP)

8: S̃
$← AO(σF,x? , V KF,x? , RKF,x? , PKF ,PP)

9: if (S̃ ∈ Qchall) then return ⊥
10: θ?

$← AO,OCompute

(σF,x? , V KF,x? , RKF,x? , PKF ,PP)
11: (y, τθ?)← Verify(θ?, V KF,x? , RKF,x? ,PP)

12: if (((y, τθ?) = (⊥, (reject, S̃))) and (⊥8 Revoke(τθ? ,MK,PP))) then
13: return 1
14: else return 0

the challenge was generated (even if the result is correct).

Definition 3.6. The advantage of a PPT adversary A in the Rev game for an RPVC

construction, RPVC, for a family of functions F is defined as:

AdvRev
A (RPVC, 1`,F) = Pr

[
1

$← ExpRev
A

[
RPVC, 1`,F

]]
.

An RPVC scheme, RPVC, is secure with respect to revocation if, for all PPT adversaries

A,

AdvRev
A (RPVC, 1`,F) 6 negl(`).

3.4.1.3 Vindictive Servers

This notion is particularly relevant in the context of the manager model. Recall that

clients submit ‘jobs’ to a manager who distributes the work to a server selected from

a pool of available computational servers. Thus, the client may not a priori know the

identity of the selected server. Since an invalid result can lead to revocation, this reveals

a new threat model (particularly if servers are rewarded per computation). A malicious

server may return incorrect results but attribute them to a different server ID leading to

the revocation (and punishment) of an honest server. The pool of available servers for

future computations is therefore reduced in size, potentially to advantage of the malicious

server.

In Game 3.5, the challenger maintains a list of currently registered entities QReg, a list

88

3.4 Security Models

Oracle 3.5 ORegister(S,MK,PP)

1: if (S = S̃) then return ⊥
2: if (S, ·) /∈ QReg then

3: SKS
$← Register(S,MK,PP)

4: QReg ← QReg ∪ (S, SKS)
5: Qchall ← Qchall ∪ S
6: return SKS

Oracle 3.6 ORegister2(S,MK,PP)

1: if (S, ·) /∈ QReg then

2: SKS
$← Register(S,MK,PP)

3: QReg ← QReg ∪ (S, SKS)
4: return ⊥

Oracle 3.7 OCompute(σF ′,x, EKF ′,S̃ , SKS̃ ,PP)

1: if ((x = x?) and (F ′ = F)) then return ⊥
2: return Compute(σF ′,x, EKF ′,S̃ , SKS̃ ,PP)

Qchall of entities for which the adversary has learnt the signing key, and defines S̃, the

target server identity, to be initially ⊥ until the adversary chooses its target. The game

proceeds like the previous ones except that, on lines 8 and 10, the adversary selects the

ID for a target server, S̃, and then generates an encoded output that he hopes will result

in the revocation of S̃. He is given oracle access to FnInit(·,MK,PP), Register(·,MK,PP),

Register2(·,MK,PP), Certify(·, ·,MK,PP) and Revoke(·,MK,PP), denoted by O. These

oracles, described below, must ensure that the adversary is never issued the signing key

SKS̃ as he would then trivially be able to act like S̃ and win the game. For the same

reason, when choosing the target server S̃ on line 8, the adversary loses the game if he has

previously learnt the signing key SKS̃ (i.e. S̃ is listed on Qchall). On line 10, the adversary

is also given access to a Compute oracle OCompute(·, EK·,S̃ , SKS̃ ,PP) which allows the

adversary to view evaluation results generated (only) by the target server S̃; this models

the adversary observing S̃ prior to attacking.

The Register oracle, presented in Oracle 3.5, returns a failure symbol ⊥ if queried for

the challenge identity S̃, and otherwise adds the queried server S to the list Qchall (as

it will issue the signing key SKS). On line 8 the adversary is additionally given access

to a modified Register oracle, defined in Oracle 3.6. This Register2 oracle performs the

Register algorithm but does not return the resulting key SKS (it may, however, update the

public parameters to reflect the additional registered entity). The adversary may query

any identity to Register2 (including S̃). The purpose of this oracle is to allow the adversary

to enrol servers in the system without learning the corresponding server specific secrets;

this models the adversary observing uncorrupted servers within the RPVC system which

89

3.4 Security Models

he can target for revocation. Clearly, if the adversary corrupts a server and learns the

signing key, then it can output an incorrect answer and trivially cause the server to be

revoked; the goal in this game is to cause an honest, uncorrupted, server to be revoked.

Both Oracle 3.5 and 3.6 first check whether the queried server S has already been added to

the list QReg; if not, both algorithms run Register and add the server identity and signing

key to QReg. If the server was already listed in QReg then the Register oracle returns the

stored signing key for the server, whilst the Register2 oracle will return ⊥. Thus, both

oracles will, together, generate a single signing key per server.

Finally, to prevent a trivial win in which the adversary simply forwards a prior result

actually generated by S̃, we restrict queries to the Compute oracle in Oracle 3.7. The

adversary cannot ask for the evaluation of the challenge computation F (x?) from S̃. Note

that for all other servers, the adversary can run Compute itself using parameters learnt

from other queries.

The adversary wins if the challenger believes S̃ generated y and revokes S̃.

Definition 3.7. The advantage of a PPT adversary A in the VindS game for an RPVC

construction, RPVC, for a family of functions F is defined as:

AdvVindS
A (RPVC, 1`,F) = Pr

[
1

$← ExpVindS
A

[
RPVC, 1`,F

]]
.

An RPVC scheme, RPVC, is secure with respect to vindictive servers if, for all PPT

adversaries A,

AdvVindS
A (RPVC, 1`,F) 6 negl(`).

3.4.1.4 Vindictive Managers

The notion of vindictive managers is a natural extension of public verifiability to the

manager model where a vindictive manager may attempt to provide a client with an

incorrect answer. If clients subscribe to a pool of servers maintained by a manager, the

manager may not wish to own up to incorrect results to avoid losing business, but also may

not have the available resources within its system to recompute an incorrect computation.

90

3.4 Security Models

Game 3.6 ExpVindM
A

[
RPVC, 1`,F

]
1: (PP,MK)

$← Setup(1`,F)

2: (F, x?)
$← AO(PP)

3: PKF
$← FnInit(F,MK,PP)

4: S
$← UID

5: SKS
$← Register(S,MK,PP)

6: EKF,S
$← Certify(S, F,MK,PP)

7: (σF,x? , V KF,x? , RKF,x?)
$← ProbGen(x?, PKF ,PP)

8: θF (x?)
$← Compute(σF,x? , EKF,S , SKS ,PP)

9: (RTF (x?), τθF (x?)
)

$← AO(σF,x? , θF (x?), V KF,x? , PKF ,PP)

10: if ((y ← Retrieve(τθF (x?)
, RTF (x?), V KF,x? , RKF,x? ,PP))

and (y 6= F (x?)) and (y 6=⊥)) then
11: return 1
12: else return 0

Thus, occasionally, the manager may try to send an incorrect result to the client with

supposed assurance that it is correct.

We remark that instantiations may vary depending on the level of trust given to the

manager; a completely trusted manager may simply return the result to a client, whilst an

untrusted manager may have to provide the full response from the server so that the client

can execute Verify (in this case, security against vindictive managers will reduce to public

verifiability since the manager would need to forge a full encoded output that passes a full

verification step). Here, we consider a middle ground where the manager is semi-trusted

but clients would like a final, efficient check.

The ideal notion of security against vindictive managers, presented in Game 3.6, be-

gins with the challenger initialising the system as usual. The adversary is given oracle

access to the functions FnInit(·,MK,PP), Register(·,MK,PP), Certify(·, ·,MK,PP) and

Revoke(·,MK,PP), denoted by O. Each oracle simply runs the relevant algorithm. After

a polynomial number of queries, the adversary outputs a challenge function F and input

x?. The challenger runs FnInit and selects a server identity uniformly at random from the

space of all identities UID; this identity will be used to generate the challenge. It runs

Register and Certify for this server (if not already done during the oracle queries), creates

a problem instance by running ProbGen on x? and finally runs Compute on the generated

encoded input. The adversary is then given the encoded input, verification key, the output

from Compute and oracle access as above. The adversary must output a retrieval token

RTF (x?) and an acceptance token τθF (x?)
. The challenger runs Retrieve on RTF (x) to get an

output value y, and the adversary wins if the challenger accepts this output and y 6= F (x?)

91

3.4 Security Models

(i.e. the retrieved result is incorrect).

Definition 3.8. The advantage of a PPT adversary A in the VindM game for an RPVC

construction, RPVC, for a family of functions F is defined as:

AdvVindM
A (RPVC, 1`,F) = Pr

[
1

$← ExpVindM
A

[
RPVC, 1`,F

]]
.

An RPVC scheme, RPVC, is secure with respect to vindictive managers if, for all PPT

adversaries A,

AdvVindM
A (RPVC, 1`,F) 6 negl(`).

3.4.2 Restricted Security Notions

As mentioned, using current primitives, we cannot achieve the ideal notions of public

verifiability, revocation or vindictive managers. We therefore introduce slightly weakened

versions of these security notions to reflect the similar restrictions placed on our construc-

tion by the IND-sHRSS indirectly revocable KP-ABE scheme we use (see Section 3.2.2).

As we use this primitive as a black box, it should be easy to achieve the ideal security

notions if a fully secure primitive with the same functionality is found; this will be the

subject of future work.

These variants introduce two additional restrictions on the adversary. Firstly, a selective

restriction requires the adversary to declare the set of input values to be used in the

challenge stage before seeing the public parameters. This is in contrast to the full game

where the inputs are chosen after the adversary has oracle access to the system. As

mentioned in Section 2.8.5, this restriction has similarly been used in many ABE schemes

to give a heuristic level of security when full security is difficult to achieve, as it allows the

system to be initialised with a particular attack target in mind. A possible motivation for

this restriction in practice is when there are high-value targets within the system which

are most likely to be attacked.

Secondly, a semi-static restriction requires the adversary to declare a list R of servers

that must be revoked when the challenge encoded inputs are generated from ProbGen.

The adversary must do this before receiving oracle access. This restriction arises from

92

3.4 Security Models

the revocation mechanism of the revocable KP-ABE scheme and means that oracles are

able to refuse to respond to queries that would lead to a trivial win, e.g. that would issue

functional keys to users that should be revoked for the challenge time period.

To remove the first (selective) restriction, we require a fully secure indirectly revocable

KP-ABE scheme. To remove the second (semi-static) restriction, we require an adaptive

notion of revocation. At present, instantiating such a primitive is an open problem.5

To implement the semi-static restriction, we must add some additional steps to each

security notion. The challenger must now define two additional parameters: t and QRev.

The variable t models system time and is initialised to 1. It is incremented each time a

revocation query is made to illustrate that keys generated at prior time periods may no

longer function.

In the IND-sHRSS game [14], update keys are associated with a time period and queries

can be made for update keys for arbitrary time periods. However, in our setting, we

consider an interactive protocol; as such, time must increase monotonically. The time

period is important in the consideration of the revocation functionality — a user should

not have access to a secret decryption key and an update key for any time period which

together would form a functional decryption key for the challenge ciphertext and would

allow a trivial win. The adversary in the IND-sHRSS game selects a time period for the

challenge as well as a challenge input. In our game, however, we parametrise the adversary

on the number, q, of queries he may make to his oracles and define security over all choices

of q. In particular, we restrict the adversary to make qt 6 q queries to the Revoke oracle in

its first query phase (before the challenge is generated). Since t is incremented only when

a Revoke query is made, the challenge will occur at time t? = qt, and hence the challenger

may select t? as its challenge time in a reductive proof.

The other additional parameter, QRev, is a list (initialised to be empty) comprising all

servers that are revoked during the current time period. Servers are added to the list

when the Revoke oracle is queried with a reject token, and are removed from the list if

subsequently certified for a function. Thus, unless one server is added or removed as

mentioned, the revocation list remains consistent over consecutive oracle queries to model

realistic system evolution (whereas, in the IND-sHRSS game, the revocation list can be

5Attrapadung and Imai [14] defined a notion with adaptive queries but did not provide an instantiation.

93

3.4 Security Models

Game 3.7 ExpsPubVerif
A

[
RPVC, 1`,F

]
1: (F, x?)

$← A(1`,F)

2: (PP,MK)
$← Setup(1`,F)

3: PKF
$← FnInit(F,MK,PP)

4: (σF,x? , V KF,x? , RKF,x?)
$← ProbGen(x?, PKF ,PP)

5: θ?
$← AO(σF,x? , V KF,x? , RKF,x? , PKF ,PP)

6: (y, τθ?)← Verify(θ?, V KF,x? , RKF,x? ,PP)
7: if (((y, τθ?) 6= (⊥, (reject, ·))) and (y 6= F (x?))) then
8: return 1
9: else return 0

dynamically changed per query). By the semi-static restriction, the adversary must choose

a revocation list R detailing all servers that should be revoked at the challenge time. If

the actual list of revoked servers, QRev, at the challenge time t? is not a superset of this

list (i.e. there exists a server that the adversary claimed would be revoked but actually is

not) then the adversary has not requested a suitable sequence of oracle queries and loses

the game to avoid a trivial win — the oracles that responded to queries based on R may

well have issued key material that would allow the adversary to respond trivially to the

challenge.

To avoid other trivial wins, we must restrict the oracle queries that the adversary may

make such that he cannot obtain both a secret key and an update key (i.e. a full evaluation

key in our terminology) for a server that is revoked at the challenge time. Otherwise, if the

adversary could obtain a valid update key for the challenge time and a secret key, he can

form a full, functional evaluation key which will evaluate the challenge encoded input and

form a correct result; clearly, a revoked server would not have such an ability in practice.

Note that unlike the oracle queries in the IND-sHRSS game, both “KeyGen” (Certify)

queries and “Update KeyGen” (Revoke) queries include a notion of identity and Revoke

queries cannot be made for arbitrary time periods. Hence the oracle restrictions in these

games differ slightly from those in the IND-sHRSS game but capture the same principle.

3.4.2.1 Selective Public Verifiability

We define a selective notion of public verifiability in Game 3.7. The only difference between

this and the ideal notion in Game 3.2 is that, in the selective notion, the adversary chooses

the challenge inputs F and x? before Setup is run. Note that in this notion, we do not

94

3.4 Security Models

Game 3.8 ExpsSS-Rev
A

[
RPVC, 1`,F , qt

]
1: (F, x?)

$← A(1`,F , qt)
2: QRev ← ε
3: t← 1
4: (PP,MK)

$← Setup(1`,F)

5: PKF
$← FnInit(F,MK,PP)

6: R
$← A(PKF ,PP)

7: AO(PKF ,PP)
8: if (R 6⊆ QRev) then return 0

9: (σF,x? , V KF,x? , RKF,x?)
$← ProbGen(x?, PKF ,PP)

10: θ?
$← AO(σF,x? , V KF,x? , RKF,x? , PKF ,PP)

11: if ((((y, (accept, S))← Verify(θ?, V KF,x? , RKF,x? ,PP))

and (S ∈ R)) then
12: return 1
13: else return 0

Oracle 3.8 OCertify(S, F ′,MK,PP)

1: if ((F ′ = F and S /∈ R) or (t = qt and R 6⊆ QRev \ S)) then return ⊥
2: QRev ← QRev \ S
3: return Certify(S, F ′,MK,PP)

require the semi-static restriction since the revocation mechanism is not considered as part

of the winning condition.

Definition 3.9. The advantage of a PPT adversary A in the sPubVerif game for an

RPVC construction, RPVC, for a family of functions F is defined as:

AdvsPubVerif
A (RPVC, 1`,F) = Pr

[
1

$← ExpsPubVerif
A

[
RPVC, 1`,F

]]
.

An RPVC scheme, RPVC, is secure with respect to selective public verifiability if, for all

PPT adversaries A,

AdvsPubVerif
A (RPVC, 1`,F) 6 negl(`).

3.4.2.2 Selective, Semi-static Revocation

The selective, semi-static notion of revocation is given in Game 3.8 and Oracles 3.8 and 3.9.

Recall that an adversary wins in this notion if it can output any result that is formed

by a revoked entity yet is accepted by the challenger. Since revocation is an inherent

requirement in the winning condition, we require both the selective and the semi-static

restrictions to accommodate the IND-sHRSS game.

The adversary first selects an input value and function F to be outsourced. The challenger

95

3.4 Security Models

Oracle 3.9 ORevoke(τθF ′(x) ,MK,PP)

1: t← t+ 1
2: if (τθF ′(x)

= (accept, ·)) then return ⊥
3: if (t = qt and R 6⊆ QRev ∪ S) then return ⊥
4: QRev ← QRev ∪ S
5: return Revoke(τθF ′(x)

,MK,PP)

initialises an (empty) list of currently revoked entities QRev and a time parameter t before

running Setup and FnInit to create a public delegation key for the function F (lines 2

to 5). The adversary is given the generated public parameters and must output a list

R of servers to be revoked when the challenge is created. It is then, on line 7, given

oracle access to the functions FnInit(·,MK,PP), Register(·,MK,PP), Certify(·, ·,MK,PP)

and Revoke(·,MK,PP), denoted by O.

The challenger responds to Certify and Revoke queries as detailed in Oracles 3.8 and

3.9 respectively, whilst all other oracles simply run the relevant algorithm and return the

results to the adversary. C must ensure that QRev is kept up-to-date by adding or removing

the queried entity, and in the case of revocation must increment the time parameter. It

also ensures that issued keys will not lead to a trivial win. In Oracle 3.8, for the Certify

algorithm, this amounts to not issuing an evaluation key EKF,S for the challenge function

F and for a server S that may not be revoked at the time that the challenge is generated —

otherwise, an issued key may be valid and functional for the challenge and the adversary

can trivially evaluate the challenge computation as a non-revoked server.

Recall that the adversary is parameterised to make exactly qt revocation queries and that

the time period is incremented only during the revocation algorithm; the challenge time

period is therefore when t = qt. An evaluation key for a server S should also not be issued

by Oracle 3.8 if requested during the challenge time period qt and if there exists a server

(other than S as it is about to be certified and removed from QRev) that should be revoked

according to challenge revocation list R chosen by the adversary but has not actually been

revoked (is not listed on QRev). The intuition behind this restriction is that Certify issues

an evaluation key which is functional for the current time period (it may only be disabled

by revoking the server but this would increment the time period too). In particular, as

in our construction, Certify may reveal update material (such as that generated by the

latest revocation procedure) that enables evaluation keys to be functional for the current

time period. Therefore, if such update material is issued, any non-revoked evaluation key

may be updated for the current, challenge time period qt and may be used to evaluate

96

3.4 Security Models

computations and return valid results that are accepted by the challenger. If the updated

evaluation key belongs to a server that was listed on R, then this would count as a win

for the adversary (as the adversary claimed this server would be revoked at this point).

This counts as a trivial win as the accepted result was not generated by a revoked server.

Oracle 3.9 first increments the time parameter t and returns ⊥ if the queried token is

(accept, ·) i.e. there is no server to revoke; this replicates the expected behaviour of the

Revoke algorithm. Since t is still incremented, the adversary may query acceptance tokens

to Revoke in order to progress the system time without altering the revocation list if

desired. To avoid trivial wins, if a query is made at the challenge time i.e. t = t?, the

challenger must return ⊥ if the challenge revocation list R is not a subset of the current

revocation list QRev (including the queried server S as this is about to be revoked). That

is, ⊥ is returned if there exists a server, other than S, listed on R (and hence that should

be revoked at the challenge time period i.e. the current time period), but is not actually on

the list of currently revoked servers. This requirement stems from the same issue regarding

update material as above.

The adversary finishes this query phase on line 7 after making a polynomial number of

queries, q, including exactly qt Revoke queries. It does not return a value other than sig-

nalling the challenger that it may proceed with the remainder of the game. The challenger

checks that the queries made by the adversary has indeed generated a list of revoked en-

tities that is a superset of R. If not (i.e. there is a server that the adversary included on

R but is not currently revoked), then the adversary loses the game as it did not choose R

or its queries appropriately. Otherwise, the challenger generates the challenge by running

ProbGen on x?. The adversary is given the resulting encoded input and oracle access again,

and wins if it outputs any result (even a correct encoding of F (x?)) that is accepted as a

valid response from any server that was revoked at the time of the challenge, which the

adversary chose to be (at least) those servers on R.

Definition 3.10. The advantage of a PPT adversary A making a polynomial number,

q, of oracle queries, of which qt are Revoke queries, in the sSS-Rev game for an RPVC

construction, RPVC, for a family of functions F is defined as:

AdvsSS-Rev
A (RPVC, 1`,F , qt) = Pr

[
1

$← ExpsSS-Rev
A

[
RPVC, 1`,F , qt

]]
.

97

3.4 Security Models

Game 3.9 ExpsVindM
A

[
RPVC, 1`,F

]
1: (F, x?)

$← A(1`,F)

2: (PP,MK)
$← Setup(1`,F)

3: PKF
$← FnInit(F,MK,PP)

4: S
$← UID

5: SKS
$← Register(S,MK,PP)

6: EKF,S
$← Certify(S, F,MK,PP)

7: (σF,x? , V KF,x? , RKF,x?)
$← ProbGen(x?, PKF ,PP)

8: θF (x?)
$← Compute(σF,x? , EKF,S , SKS ,PP)

9: (RTF (x?), τθF (x?)
)

$← AO(σF,x? , θF (x?), V KF,x? , PKF ,PP)

10: y ← Retrieve(τθF (x?)
, RTF (x?), V KF,x? , RKF,x? ,PP)

11: if ((y 6= F (x?)) and (y 6=⊥)) then
12: return 1
13: else return 0

An RPVC scheme, RPVC, is secure with respect to selective, semi-static revocation if,

for all PPT adversaries A,

AdvsSS-Rev
A (RPVC, 1`,F , qt) 6 negl(`).

3.4.2.3 Selective Vindictive Managers

As with the public verifiability notion, vindictive managers does not rely on revocation for

the winning condition and so we only require the selective restriction, which is presented

in Game 3.9.

The adversary first selects its challenge pair of F and x?. The challenger sets up the

system, runs FnInit for F and then selects a server uniformly at random from the space

of server identities UID. This server will be used to generate the challenge parameters

for the adversary. The challenger registers and certifies S for F , and runs ProbGen on

the challenge input, before finally running Compute to generate an encoded output θF (x?).

The adversary is then given the encoded input, verification key and θF (x?), as well as

oracle access to the functions FnInit(·,MK,PP), Register(·,MK,PP), Certify(·, ·,MK,PP)

and Revoke(·,MK,PP), denoted by O. It must output a retrieval token RTF (x?) and an

acceptance token τθF (x?)
. The challenger runs Retrieve on RTF (x?) to get an output value

y; the adversary wins if the challenger accepts this output and y 6= F (x?).

Definition 3.11. The advantage of a PPT adversary A in the sVindM game for an

RPVC construction, RPVC, for a family of functions F is defined as:

98

3.5 Construction

AdvsVindM
A (RPVC, 1`,F) = Pr

[
1

$← ExpsVindM
A

[
RPVC, 1`,F

]]
.

An RPVC scheme, RPVC, is secure with respect to selective vindictive managers if, for

all PPT adversaries A,

AdvsVindM
A (RPVC, 1`,F) 6 negl(`).

3.5 Construction

We now provide an instantiation of an RPVC scheme. Our construction is based on that

used by Parno et al. [84] (summarised in Section 3.2.1) which uses key-policy attribute-

based encryption (KP-ABE) as a black-box to outsource the computation of a (monotone)

Boolean function. We restrict our attention to (monotone) Boolean functions closed un-

der complement, and in particular the complexity class NC1 which includes all circuits of

depth O(log n) [10]. Thus, functions we can outsource can be built from common opera-

tions such as AND and OR gates, NOT gates (if using a non-monotonic ABE scheme [80]),

equality and comparison operators, arithmetic operators and regular expressions. Note

that although our scheme only admits Boolean functions (with single bit output) and

therefore seems somewhat restrictive, it is possible to outsource the evaluation of func-

tions with n-bit outputs by outsourcing n different functions, each of which returns the

single bit in position i, 1 6 i 6 n.

Clearly, different function families will require different constructions from that presented

here for Boolean functions. As a trivial example, verifiable outsourced evaluation of the

identity function may only require the server to sign the input. On the other hand, despite

it seemingly being a natural choice for outsourcing, it is not clear how a VC scheme

for determining if a statement is in an NP-complete language could be instantiated. A

solution for such problems is by definition difficult to find so should be outsourced, whilst

a candidate solution can be verified efficiently. However, a malicious server could simply

claim that a solution cannot be found for the given problem instance, and the restricted

client could not verify the correctness of this statement without searching the solution

space itself.

Recall from Section 3.2.1 that, using a single ABE system, if a computational server returns

99

3.5 Construction

⊥ in response to a Boolean computation request then the verifier is unable to determine

whether F (x) = 0 or whether the server misbehaved. To avoid this issue, we restrict the

family of functions F we can evaluate to be the set of Boolean functions closed under

complement. That is, if F belongs to F then F , where F (x) = F (x) ⊕ 1, also belongs

to F . The client encrypts two random messages m0 and m1 and the server must decrypt

each using keys associated with policies for the functions F and F respectively. Since

exactly one of F and F will be satisfied by any given input, exactly one plaintext will be

successfully recovered by the Decrypt algorithm. Note that, to achieve blind verification in

our construction, the retrieval key RKF,x will be a single bit b which permutes the order of

the ciphertexts in σF,x and hence the order of the plaintexts in θF (x). Thus, a well-formed

response θF (x), comprising recovered plaintexts (db, d1−b), satisfies the following:

(db, d1−b) =

(mb,⊥), if F (x) = 1;

(⊥,m1−b), if F (x) = 0.

(3.2)

Hence, the client will be able to detect whether the server has misbehaved or deduce the

value of F (x) otherwise.

3.5.1 Technical Details

We use an indirectly revocable KP-ABE scheme comprising the algorithms ABE.Setup,

ABE.KeyGen, ABE.KeyUpdate, ABE.Encrypt and ABE.Decrypt. We also use a signature

scheme with algorithms Sig.KeyGen, Sig.Sign and Sig.Verify, and a one-way function g.

Let U = Uattr ∪UID ∪Utime ∪UF be the universe of attributes for the ABE scheme, formed

as the union of the following ‘sub-universes’:

• Uattr comprises attributes that form characteristic tuples for input data, as detailed

in Section 3.2.1;

• UID comprises attributes representing entity identifiers;

• Utime comprises attributes representing time periods output by a time source T;

• UF comprises attributes that represent functions in F .

100

3.5 Construction

3.5.1.1 Handling Multiple Servers

The PVC scheme of Parno et al. [84], which permitted the evaluation of only a single

function, required a one-key IND-CPA notion of security for the underlying KP-ABE

scheme. This is a more relaxed notion than considered in the vast majority of the ABE

literature, in which the adversary is limited to learning just one decryption key. Parno et

al. could use this property due to their restricted system model where a single server is

certified for a single function per set of public parameters (the client must set up a new

ABE system per function and per server).

In our setting, we aim to accommodate multiple computational servers and the outsourced

evaluation of multiple functions, and as such the adversary is given a KeyGen oracle which

allows the generation of polynomially many decryption keys for different servers and differ-

ent functions. The scheme must prevent collusion between holders of different decryption

keys and prevent keys for a particular function being used to ‘compute’ different func-

tions and have the results accepted by a client. Collusion is prevented by the standard

IND-CPA notions of security for ABE schemes, whereas the misuse of evaluation keys for

different functions in discussed in the next section.

3.5.1.2 Handling Multiple Functions

As we discussed in Section 3.3.2, we wish to handle multiple functions within a single

PVC system. To achieve multi-function VC (in the non-publicly verifiable setting), Parno

et al. required the somewhat complex primitive of KP-ABE with Outsourcing [67]. In

this work, we take a different approach. We believe that, in practical environments, it is

unrealistic to expect a server to compute just a single function (as this would presumably

have limited marketable applications for a cloud service provider), and we also believe

that it is a reasonable expectation of cost to prepare an encoded input per computation

(assuming the cost of doing so is reasonably low), especially given that the input data to

different functions may well differ. Thus, whereas Parno et al. use complex primitives to

allow an encoded input to be used for computations of different functions on the same

data, we apply a simple encoding trick which allows servers to hold decryption keys for

multiple functions in the publicly verifiable setting and which requires the more standard,

well-studied multi-key notion of security usually considered for ABE schemes.

101

3.5 Construction

We now describe our encoding to ensure that an adversary holding an evaluation key for

a function G cannot use this to forge a valid looking result for F (x). First note that

if one were to extend the scheme of Parno et al. trivially using KP-ABE and allow an

adversary access to multiple keys (through a KeyGen oracle), then this solution would

indeed be vulnerable to the above attack. A client would encrypt two random messages

both associated with the same attribute set x within different ABE systems. The malicious

server must successfully decrypt exactly one of these messages using its evaluation key

(comprising decryption keys for G and G). Now, any such pair of keys for a function and

its complement will be able to decrypt exactly one ciphertext because on a given input,

either G or G is satisfied. Thus, even without an evaluation key for F , a malicious server

can still decrypt one message and return the result G(x) which the client will accept (as

the plaintext matches the verification key) as the outcome of F (x).

Let us instead assume a bijective mapping φ : F → UF that maps functions in the

acceptable function family F for the RPVC scheme to attributes in the sub-universe UF .

We then add a conjunctive clause (an additional AND gate) to each Boolean function

F ∈ F requiring the presence of the appropriate function label φ(F) in the input attribute

set — that is, the Boolean function F is encoded in a decryption key for the policy F∧φ(F);

the complement function F is similarly encoded as an access structure for F ∧ φ(F).

Finally, we add an additional attribute φ(F) ∈ UF to the characteristic attribute set Ax

representing the input data x for the function F — that is, the input x is represented as

Ax ∪ φ(F).

Notice that the client must perform the ProbGen stage per computation as the function

label in the input data will differ (either the input data or the function label will change,

otherwise the computation is a repeat of a previously outsourced computation). Servers

can be certified for multiple functions and may not use a key for a function G to compute

on data intended for another function F since the evaluation key it holds is for the two

policies G ∧ φ(G) and G ∧ φ(G), whereas the input is associated with the attribute set

Ax∪φ(F); as φ(G) is not in Ax, neither policy is satisfied and the malicious server cannot

return any correct plaintext. As a result, and unlike the single function notion of Parno et

al., we are able to provide the adversary with oracle access in our security games using

only a simple KP-ABE scheme.

102

3.5 Construction

3.5.2 Instantiation

Our RPVC scheme operates as follows.

1. VC.Setup, presented in Algorithm 3.1, first forms the attribute universe for the func-

tion family F and establishes the public parameters and a master secret key by

calling the ABE.Setup algorithm twice. We require two distinct ABE systems to

enable the security proof to go through; one system will, informally, be linked to the

function F and the other to the function F . To avoid trivial wins in the security

proof, oracle queries are restricted such that the adversary cannot query a KeyGen

oracle for a key for a function (or policy) that is satisfied by the challenge input

(attribute set). Thus, we initialise two ABE systems such that one is maintained

by the challenger (and hence requires oracle access) and the other is maintained by

the adversary itself. We choose these systems carefully so that the one maintained

by the challenger is ‘linked’ to the unsatisfied function F or F and therefore ap-

propriate keys can be provided by the KeyGen oracle. We distinguish the public

parameters and master secret keys for these two ABE systems with a superscript 0

or 1 respectively.

VC.Setup also initialises a time source6 T, an empty list of revoked servers LRev,

and a two-dimensional array LReg indexed by server identities — for a server S,

LReg[S][0] will store a signature verification key for S and LReg[S][1] will store a list

of functions that S is authorised to compute.

The public parameters PP for the RPVC system are set to be the two sets of public

parameters MPK0
ABE,MPK1

ABE for the ABE systems, the array LReg and the time

source T such that any entity may check the current time period. The master secret,

MK, for the system is defined to be the two ABE master secrets and the revocation

list LRev.

2. VC.FnInit, presented in Algorithm 3.2, simply outputs the public parameters and is

the same for all functions. This step is not required in our particular construction,

but we retain the algorithm to maintain consistency with prior definitions; note that

other instantiations may require this step.

3. VC.Register, presented in Algorithm 3.3, is run by the KDC and creates a signature

6T could be a counter that is maintained in the public parameters or a networked clock.

103

3.5 Construction

Algorithm 3.1 (PP,MK)
$← Setup(1`,F)

1: U ← Uattr ∪ UID ∪ Utime ∪ UF
2: (MPK0

ABE,MSK0
ABE)

$← ABE.Setup(1`,U)

3: (MPK1
ABE,MPK1

ABE)
$← ABE.Setup(1`,U)

4: for S ∈ UID do
5: LReg[S][0]← ε
6: LReg[S][1]← {ε}
7: LRev ← ε
8: Initialise T
9: PP← (MPK0

ABE,MPK1
ABE, LReg,T)

10: MK← (MSK0
ABE,MSK1

ABE, LRev)

Algorithm 3.2 PKF
$← FnInit(F,MK,PP)

1: PKF ← PP

key pair by calling the KeyGen algorithm of a digital signature scheme. It gives the

signing key to the server S (privately) and updates the public list LReg to store the

verification key for S.

Algorithm 3.3 SKS
$← Register(S,MK,PP)

1: (SKSig, V KSig)
$← Sig.KeyGen(1`)

2: SKS ← SKSig

3: LReg[S][0]← V KSig

4. VC.Certify, presented in Algorithm 3.4, creates the evaluation key EKF,S that enables

a server S to compute F . It first updates the lists to remove S from the revocation

list and to add F to the list of functions S is authorised to compute. It reads the

current time t from the time source T and calls the ABE.KeyGen and ABE.KeyUpdate

algorithms twice — once for the policy encoding F and the ABE system parameters

indexed by 0, and once for F and the ABE parameters indexed by 1.

As mentioned previously, to prevent a server certified to perform two different func-

tions, F and G (that differ on their output) from using the key for G to retrieve the

plaintext and claim it as a result for F , we add an additional attribute to the input

set in ProbGen encoding the function the input should applied to, and add a con-

junctive clause for such an attribute to the key policies. Thus an input set intended

for F (including the label attribute φ(F) corresponding to F) will only satisfy a key

issued for F (including the φ(F) label conjunctive clause), and the policy in a key

for G will not be satisfied as the label φ(G) is not in the input set. The evaluation

key comprises the decryption keys and the update keys for the current time period.

5. VC.ProbGen for a computation F (x), presented in Algorithm 3.5, first samples the

current time period t from the time source T in the public parameters. It then

samples two (equal length) messages m0 and m1 uniformly at random from the

104

3.5 Construction

Algorithm 3.4 EKF,S
$← Certify(S, F,MK,PP)

1: LReg[S][1]← LReg[S][1] ∪ F
2: LRev ← LRev \ S
3: t← T
4: SK0

ABE
$← ABE.KeyGen(S, F ∧ φ(F),MSK0

ABE,MPK0
ABE)

5: SK1
ABE

$← ABE.KeyGen(S, F ∧ φ(F),MSK1
ABE,MPK1

ABE)

6: UK0
LRev,t

$← ABE.KeyUpdate(LRev, t,MSK0
ABE,MPK0

ABE)

7: UK1
LRev,t

$← ABE.KeyUpdate(LRev, t,MSK1
ABE,MPK1

ABE)

8: EKF,S ← (SK0
ABE, SK

1
ABE, UK

0
LRev,t

, UK1
LRev,t

)

message space and a bit b uniformly at random. This bit will form the retrieval key

and will randomly permute the ciphertexts within the encoded input such that the

position of a successfully recovered plaintext will not reveal whether F or F was

satisfied and therefore whether F (x) = 1 or 0 respectively.

The encoded input σF,x comprises two ciphertexts which we denote by cb and c1−b.

The ciphertext cb is formed by encrypting the message mb with attributes Ax∪φ(F)

where Ax is the characteristic tuple encoding of the input data x and φ(F) ∈ UF is

the attribute representing the function F . This encryption is performed using the

public parameters MPK0
ABE for the first ABE system. Similarly, c1−b is formed by

encrypting the message m1−b under the same attributes Ax ∪ φ(F) and the public

parameters MPK1
ABE for the second ABE system.

The verification key V KF,x is created by applying a one-way function g (such as a

pre-image resistant hash function [48,73]) to the messages. The verification key also

includes a copy of LReg from the public parameters incase the list is modified between

the current time period and the time of verification, e.g. a server is revoked. This

copy may be removed if verification is likely to be imminent or if results computed

even before a malicious server was revoked should be rejected.

Algorithm 3.5 (σF,x, V KF,x, RKF,x)
$← ProbGen(x, PKF ,PP)

1: t← T
2: (m0,m1)

$←M×M
3: b

$← {0, 1}
4: cb

$← ABE.Encrypt(mb, (Ax ∪ φ(F)), t,MPK0
ABE)

5: c1−b
$← ABE.Encrypt(m1−b, (Ax ∪ φ(F)), t,MPK1

ABE)
6: σF,x ← (cb, c1−b), V KF,x ← (g(mb), g(m1−b), LReg), RKF,x ← b

6. VC.Compute, presented in Algorithm 3.6, is run by a server S given an encoded input

σF,x and evaluation key EKF,S which it parses as (SK0
ABE, SK

1
ABE, UK

0
LRev,t

, UK1
LRev,t

).

S attempts to decrypt each ciphertext using the relevant keys. It returns (m0,⊥) if

F (x) = 1 or (⊥,m1) if F (x) = 0 (ordered according to the random bit RKF,x chosen

105

3.5 Construction

in VC.ProbGen), along with the server ID and a signature on the output.

Algorithm 3.6 θF (x)
$← Compute(σF,x, EKF,S , SKS ,PP)

1: Parse σF,x as (cb, c1−b)
2: db ← ABE.Decrypt(cb, SK

0
ABE,MPK0

ABE, UK
0
LRev,t

)

3: d1−b ← ABE.Decrypt(c1−b, SK
1
ABE,MPK1

ABE, UK
1
LRev,t

)

4: γ
$← Sig.Sign((db, d1−b, S), SKS)

5: θF (x) ← (db, d1−b, S, γ)

7. VC.Verify either accepts the encoded output θF (x) = (db, d1−b, S, γ) or rejects it. It

can be viewed as two algorithms as follows. In VC.BVerif, presented in Algorithm 3.7,

the verifier parses the verification key as V KF,x = (g(mb), g(m1−b), LReg) and checks

whether the server S that (it is claimed) generated the computation result is autho-

rised to compute F — that is, whether F is listed in LReg[S][1]. If not, the result is

immediately rejected.

Otherwise, the verifier next verifies that the signature on the computational result is

valid and was, indeed, generated by S. This is done using the signature verification

key stored in LReg[S][0]. Again, if this check fails, then the result is rejected.

Otherwise, the verifier checks whether the returned plaintext is correct. It applies

the one-way function g, to the first element db from the computational result and

compares to the first element of the verification key. If the results match, then

the verifier accepts the result and returns a retrieval token which is the matched

plaintext element db from the computation result. If not, the verifier checks the

result of applying g to the second returned element d1−b and comparing to the second

element of the verification key. Again, if this is a match, then d1−b is returned and

the result accepted. If neither comparison succeeds then the verifier rejects the result

and reports S for revocation.

Parno et al. [84] gave a one line remark that permuting the key pairs and ciphertexts

given out in ProbGen could give output privacy. We believe that doing so would re-

quire four decryptions in the Compute stage to ensure the correct keys have been

used (since an incorrect key, associated with different public parameters, but for a

satisfying attribute set will return an incorrect, random plaintext which is indistin-

guishable from a valid, random message). Since our construction fixes the order of

the key pairs, we do not have this issue and only require two decryptions.

In VC.Retrieve, presented in Algorithm 3.8, a verifier that has knowledge of RKF,x

can check whether the output from BVerif matches m0 or m1. If the token τθF (x)
says

106

3.5 Construction

Algorithm 3.7 (RTF (x), τθF (x)
)← BVerif(θF (x), V KF,x,PP)

1: if F ∈ LReg[S][1] then
2: if accept← Sig.Verify((db, d1−b, S), γ, LReg[S][0]) then
3: if g(mb) = g(db) then return (RTF (x) ← db, τθF (x)

← (accept, S))

4: else if g(m1−b) = g(d1−b) then return (RTF (x) ← d1−b, τθF (x)
← (accept, S))

5: else return (RTF (x) ←⊥, τθF (x)
← (reject, S))

6: (RTF (x) ←⊥, τθF (x)
← (reject,⊥))

that the result should be accepted, the verifier applies the one-way function g to the

retrieval token RTF (x) ∈ {db, d1−b} and compares to each element g(m0), g(m1) of

the verification key (note that as the verifier possesses RKF,x = b, it can resolve the

ordering of these elements in the verification key). If a match is made with g(m0)

then the function F was satisfied by the input x and the result y is set to be 1. On

the other hand, if the match is made with g(m1), then the complement function was

satisfied and y = 0.

Algorithm 3.8 y ← Retrieve(τθF (x)
, RTF (x), V KF,x, RKF,x,PP)

1: if (τθF (x)
= (accept, S) and g(RTF (x)) = g(m0)) then return y ← 1

2: else if (τθF (x)
= (accept, S) and g(RTF (x)) = g(m1)) then return y ← 0

3: else return y ←⊥

8. VC.Revoke, presented in Algorithm 3.9, is run by the KDC and redistributes fresh

keys to all non-revoked servers. If the token τθF (x)
does not specify a server S to be

revoked, then ⊥ is returned. Otherwise, the KDC first removes all functions from the

list LReg[S][1] (as S should no longer be authorised for any computations) and adds

S to the revocation list LRev. It then refreshes the time source T (e.g. increments T

if it is a counter) and samples the new time period. The ABE.KeyUpdate algorithm

is run twice (once for each ABE system) to generate new update key material for

the current time period with respect to the revocation list LRev. Finally, for all

servers, the KDC updates and redistributes the evaluation key to reflect the update

key material for non-revoked servers.

It is straightforward to see that correctness of this construction follows from the correctness

of the attribute-based encryption scheme and of the one-way function g.

107

3.6 Proofs of Security

Algorithm 3.9 UM
$← Revoke(τθF (x)

,MK,PP)

1: if τθF (x)
= (reject, S) then

2: LReg[S][1]← {ε}
3: LRev ← LRev ∪ S
4: Refresh T
5: t← T
6: UK0

LRev,t
$← ABE.KeyUpdate(LRev, t,MSK0

ABE,MPK0
ABE)

7: UK1
LRev,t

$← ABE.KeyUpdate(LRev, t,MSK1
ABE,MPK1

ABE)
8: for all S ∈ UID do
9: Parse EKF,S as (SK0

ABE, SK
1
ABE, UK

0
LRev,t−1, UK

1
LRev,t−1)

10: EKF,S ← (SK0
ABE, SK

1
ABE, UK

0
LRev,t

, UK1
LRev,t

)

11: return UM ← {EK(O,ψ),S′}S′∈UID
12: else
13: return UM ←⊥

3.6 Proofs of Security

Theorem 3.2. Given a revocable KP-ABE scheme secure in the sense of indistinguisha-

bility against selective-target with semi-static query attack (IND-sHRSS) [14] for a class

of (monotone) Boolean functions F closed under complement, an EUF-CMA secure sig-

nature scheme and a one-way function g. Let RPVC be the revocable publicly verifiable

computation scheme defined in Algorithms 3.1–3.9. Then RPVC is secure in the sense of

selective public verifiability, selective semi-static revocation, vindictive servers and selective

vindictive managers.

Informally, the proofs of public verifiability and vindictive managers rely on the IND-

CPA security of the underlying revocable KP-ABE scheme (note that IND-CPA security

is implied by IND-sHRSS) and the one-wayness of the function g. Revocation relies on

the IND-sHRSS security of the revocable KP-ABE scheme. Security against vindictive

servers relies on the EUF-CMA security of the signature scheme such that a vindictive

server cannot return an incorrect result with a forged signature claiming to be from an

honest server (note that chosen message attack is required since the vindictive client could

act like a client and submit computation requests to get a valid signature).

Lemma 3.1. The RPVC construction defined by Algorithms 3.1–3.9 is secure in the sense

of selective public verifiability (Game 3.7) under the same assumptions as in Theorem 3.2.

Proof. We begin by defining the following three games:

• Game 0. This is the selective public verifiability game as defined in Game 3.7;

108

3.6 Proofs of Security

• Game 1. This is the same as Game 0 with the modification that in ProbGen, we

no longer return an encryption of m0 and m1. Instead, we choose another random

message m′ 6= m0,m1 and, if F (x?) = 1, we replace c1 by the encryption of m′, and

otherwise we replace c0. In other words, we replace the ciphertext associated with

the unsatisfied function with the encryption of a separate random message unrelated

to the other system parameters, and in particular to the verification keys;

• Game 2. This is the same as Game 1 except that m′ is implicitly set to be the

challenge input w in the one-way function game.

Following partially in the fashion of Parno et al. [84], we aim to show that, from the point

of view of an adversary, Game 2 is indistinguishable from Game 0 except with negligible

probability. Thus, an adversary against the selective public verifiability game can, instead,

be run against Game 2. We then show that if an adversary has a non-negligible against

Game 2 then the adversary can be used to invert a one-way function.

Game 0 to Game 1. We begin by showing that there is a negligible distinguishing

advantage between Game 0 and Game 1, both with parameters (RPVC, 1`,F). To

achieve a contradiction, let us suppose otherwise, that AV C can distinguish the two games

with non-negligible advantage δ. We show that it is possible to construct an adversary

AABE that uses AV C as a sub-routine to break the IND-sHRSS security of the indirectly

revocable KP-ABE scheme. We consider a challenger C playing the IND-sHRSS game

(Game 3.1) with AABE , who in turn acts as a challenger for AV C . Given the security

parameter and function family F , the entities interact as follows.

1. AV C declares its choice of challenge function F and challenge input x?.

2. AABE computes r = F (x?). It then transforms AV C ’s challenge parameters into its

own choice of challenge for the IND-sHRSS game. It sets x? = Ax? ∪ φ(F) where

φ(F) ∈ UF is the attribute representing the challenge function F , and t? = 1, and

sends these to C.

3. C runs the ABE.Setup algorithm to generate (MPKABE,MSKABE) and sendsMPKABE

to AABE .

109

3.6 Proofs of Security

4. AABE sends R = ε (i.e. an empty list) to C. It then simulates running VC.Setup

such that the ABE system owned by C is used as the ABE system with param-

eters (MPKr
ABE,MSKr

ABE). The intuition here is that, as AABE does not hold

MSKABE generated by C, it will need to issue queries to oracles provided by C in

order to generate valid parameters to pass to AV C . However, to avoid trivial wins

in the IND-sHRSS game, AABE is prevented from querying the KeyGen oracle for

a function that evaluates to 1 on the challenge input x? (to prevent decryption of

the challenge ciphertext).

Now, recall that in the VC.Certify algorithm (Algorithm 3.4), a decryption key for the

function F is generated using the ABE parameters (MSK0
ABE,MPK0

ABE) associated

to the first ABE system that was initialised, while the key for the complement

function F is generated using the parameters (MSK1
ABE,MPK1

ABE) for the second

ABE system.

Thus, if F (x?) = 1, then the policy F ∧ φ(F) will also be satisfied by x? = Ax? ∪

φ(F). Therefore, one cannot make a KeyGen oracle query to C for the policy F ∧

φ(F). In this case, we must ensure that the ABE system “owned” by C is in fact

(MPK1
ABE,MSK1

ABE) so that AABE itself holds (MPK0
ABE,MSK0

ABE) and can

therefore generate a key for F ∧ φ(F) itself.

On the other hand, if F (x?) = 0 then the function F ∧ φ(F) may not be queried to

the KeyGen oracle. The key associated with this function should, according to Algo-

rithm 3.4 be generated using the parameters (MSK1
ABE,MPK1

ABE). Therefore, we

require AABE to “own” these parameters and that C “owns” (MPK0
ABE,MPK0

ABE).

Notice that in both cases, C must own the parameters (MPKr
ABE,MPKr

ABE) where

r = F (x?).

AABE simulates running VC.Setup by running Algorithm 3.1 as written, with the

exception of Line 2 and 3 where it sets MPKr
ABE to be that provided by C, and

implicitly sets MSKr
ABE to be that held by the challenger (by ‘implicitly’, we mean

that any subsequent uses of MSKr
ABE will be simulated using oracle queries to C,

but from the point of view of AV C , MSKr
ABE will appear to have been generated

by AABE).

5. AABE runs VC.FnInit as written and must then generate a challenge for AV C . To do

so, it samples three distinct messages m0,m1 and m′ uniformly at random from the

messagespace, and flips a random coin RKF,x? = b
$← {0, 1}. It submits m0 and m1

110

3.6 Proofs of Security

as its choice of challenge plaintexts to C, and receives back the encryption, CT ?, of

one of these messages (mb? for b?
$← {0, 1}), under attributes x? and time t?.

AABE must assign CT ? to be one of the ciphertexts cb, c1−b that form the encoded

challenge input σF,x? according to the correct ABE systems parameters (decryption

will fail if the wrong parameters are used). If r = 0, then AABE sets cb to be CT ?.

Otherwise, r = 1 and AABE sets c1−b to be CT ?.

AABE generates the remaining ciphertext (c1−b or cb respectively) itself by running

ABE.Encrypt(m′, x? = (Ax? ∪ φ(F)), t? = 1,MPK1−r
ABE).

Finally, AABE chooses a random bit s
$← {0, 1} (intuitively, s is a guess of the

value b? chosen by C). It forms a verification key correctly ordered according to

RKF,x? = b. Let V Kb = g(ms) and V K1−b = g(m′). Then the verification key

V K = (V K0, V K1, LReg).

6. AV C is given all outputs from the above ProbGen simulation, and is given oracle

access, to which AABE can respond as follows:

• Queries to VC.FnInit and VC.Register are performed as in Algorithms 3.2 and 3.3

respectively (as these do not rely on ABE parameters held by C).

• Queries of the form VC.Certify(S, F ′,MK,PP): AABE runs Algorithm 3.4 as

written with the exception that the KeyGen and KeyUpdate operations for the

ABE system with parameters (MSKr
ABE,MPKr

ABE) (owned by C) are replaced

by queries to the corresponding oracles provided by C.

To generate SKr
ABE, AABE queries the ABE.KeyGen oracle. If r = 0, the query

is of the form OKeyGen(S, F ′ ∧ φ(F ′),MSK0
ABE,MPK0

ABE), and if r = 1, the

query is of the form OKeyGen(S, F ′∧φ(F ′),MSK1
ABE,MPK1

ABE). In both cases,

C will return the decryption key unless x? satisfies the queried policy.

Notice that if the queried function F ′ is not the challenge function F then, due

to the bijective mapping φ, φ(F ′) 6= φ(F). Thus, neither of the possible queries

(which both require the presence of φ(F ′)) will be satisfied. If, however, the

query is for F , recall that we chose the ABE system owned by the challenger to

be unsatisfied by exactly this queried policy. Hence the first check performed

in Oracle 3.1 will never evaluate to true and therefore C will always be able to

return a valid key in response to a KeyGen query.

To generate UKr
LRev,t

, AABE makes a query to the ABE.KeyUpdate oracle of

the form OKeyUpdate(LRev, t,MSKr
ABE,MPKr

ABE). C returns a valid update

111

3.6 Proofs of Security

key unless the current time is the challenge time (which AABE chose to be 1)

and the queried revocation list does not contain the challenge revocation list

R which AABE chose to be empty. Since, R = ε is a subset of any LRev, the

second clause will not be satisfied and C may generate a valid update key.

Thus, AABE can request valid decryption keys and update keys from C and can

simulate Algorithm 3.4 exactly.

• Queries of the form VC.Revoke(τθF (x)
,MK,PP): AABE runs Algorithm 3.9 as

written with the exception of generating UKr
LRev,t

on line 6 or 7. To simulate

this line, AABE queries for OKeyUpdate(LRev, t,MSKr
ABE,MPKr

ABE). C returns

a valid update key unless t = 1 and the queried revocation list does not contain

the challenge revocation list R. However, as AABE chose R = ε, this second

clause is never satisfied and a valid update key is returned.

7. Eventually, AV C outputs a guess θ?. Let y be the non-⊥ plaintext contained in θ?.

If g(y) = g(ms), AABE outputs a guess b′ = s. Else, AABE guesses b′ = 1− s.

Notice that if s = b? (the challenge bit chosen by C), then the distribution of the above

coincides with Game 0 since the verification key comprises g(m′) and g(ms) where m′

and ms are the plaintexts corresponding to the ciphertexts in the encoded input (exactly

one of which AV C may recover). Otherwise, s = 1− b? and the distribution coincides with

Game 1 since the verification key comprises the one-way function applied to a legitimate

plaintext m′ and a random message m1−s that is unrelated to both ciphertexts.

Now, we consider the advantage of this constructed adversaryAABE playing the IND-sHRSS

game: Recall that by assumption, AV C has a non-negligible advantage δ in distinguishing

Game 0 from Game 1 — that is

|Pr
[
1

$← ExpGame 0
AV C

[
RPVC, 1`,F

]]
− Pr

[
1

$← ExpGame 1
AV C

[
RPVC, 1`

]
,F
]
| > δ

where ExpGame i
AV C

[
RPVC, 1`,F

]
denotes running AV C in Game i.

112

3.6 Proofs of Security

The probability of AABE guessing b? correctly, by the law of total probability, is:

Pr[b′ = b?] = Pr [s = b?] Pr
[
b′ = b?|s = b?

]
+ Pr [s 6= b?] Pr

[
b′ = b?|s 6= b?

]
=

1

2
Pr [g(y) = g(ms)|s = b?] +

1

2
Pr [g(y) 6= g(ms)|s 6= b?]

=
1

2
Pr
[
1

$← ExpGame 0
AV C

[
RPVC, 1`,F

]]
+

1

2
(1− Pr [g(y) = g(ms)|s 6= b?])

=
1

2
Pr
[
1

$← ExpGame 0
AV C

[
RPVC, 1`,F

]]
+

1

2

(
1− Pr

[
1

$← ExpGame 1
AV C

[
RPVC, 1`,F

]])
=

1

2

(
Pr
[
1

$← ExpGame 0
AV C

[
RPVC, 1`,F

]]
− Pr

[
1

$← ExpGame 1
AV C

[
RPVC, 1`,F

]]
+ 1
)

≥ 1

2
(δ + 1)

Hence,

AdvAABE ≥
∣∣∣∣Pr
[
b? = b′

]
− 1

2

∣∣∣∣
≥
∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
≥ δ

2

Since δ is assumed to be non-negligible, δ
2 is also non-negligible. If AV C has advantage

δ at distinguishing these games then AABE can win the IND-sHRSS game with non-

negligible probability. Thus since we assumed the ABE scheme to be IND-sHRSS secure,

we conclude that AV C cannot distinguish Game 0 from Game 1 with non-negligible

probability.

Game 1 to Game 2. The transition from Game 1 to Game 2 is to simply set the value

of m′ to no longer be random but instead to correspond to the challenge w in the one-way

function inversion game (Game 2.12). We argue that the adversary has no distinguishing

advantage between these games since the new value is independent of anything else in

the system bar the verification key g(w) and hence looks random to an adversary with

no additional information (in particular, AV C does not see the challenge for the one-way

function as this is played between C and AABE).

Final Proof We now show that using AV C in Game 2, AABE can invert the one-way

function g — that is, given a challenge z = g(w), AABE can recover w. Specifically, during

113

3.6 Proofs of Security

ProbGen, AABE chooses the messages as follows:

• if F (x?) = 1, we implicitly set m1−b to be w and the corresponding verification key

component to be z. We randomly choose mb and compute the remainder of the

verification key as usual.

• if F (x?) = 0, we implicitly set mb to be w and set the verification key component to

z. m1−b is chosen randomly and the remainder of the verification key computed as

usual.

Now, if AV C is successful, it will output a forgery comprising the plaintext that was

encrypted under the unsatisfied function (F or F). By construction, this will be w (and

the adversary’s view is consistent since the verification key is simulated correctly using z).

AABE can therefore forward this result to C in order to invert the one-way function with

the same non-negligible probability that AV C has against the selective public verifiability

game.

We conclude that if the ABE scheme is IND-sHRSS secure and the one-way function is

hard-to-invert, then the RPVC as defined by Algorithms 3.1–3.9 is secure in the sense of

selective public verifiability.

Lemma 3.2. The RPVC construction defined by Algorithms 3.1–3.9 is secure in the sense

of selective, semi-static revocation (Game 3.8) under the same assumptions as in Theorem

3.2.

Proof. We perform a reduction from selective, semi-static revocation to the IND-sHRSS

security of the underlying revocable KP-ABE scheme. To achieve a contradiction, let us

suppose that AV C is an adversary with non-negligible advantage against the selective,

semi-static revocation game (Game 3.8) when instantiated by Algorithms 3.1–3.9. We

show that we can construct an adversaryAABE that usesAV C as a sub-routine to break the

IND-sHRSS security of the indirectly revocable KP-ABE scheme. Let C be a challenger

playing the IND-sHRSS game (Game 3.1) with AABE , who in turn acts as a challenger

for AV C . Given the security parameter, function family F and qt, the number of queries

that AV C will make to the Revoke oracle, the entities interact as follows.

114

3.6 Proofs of Security

1. AV C selects its challenge inputs F and x?.

2. AABE initialises QRev = ε (an empty list) and t = 1. It then forms its own challenge

input to be t? = qt and A? = Ax ∪φ(F) where Ax is the attribute encoding of x and

φ(F) ∈ UF is the attribute representing the function F , and sends these to C.

3. C runs ABE.Setup and returns the resulting parameters MPKABE to AABE .

4. AABE simulates running Setup by running Algorithm 3.1 as written with the excep-

tion of line 2. It sets MPK0
ABE to be MPKABE generated by C, and implicitly sets

MSK0
ABE to be that held by the challenger. As it does not possess MSKABE, it

will make use of oracle queries to C wherever MSK0
ABE is required. AABE also runs

FnInit as written.

5. AV C is given PKF and PP and chooses a challenge revocation list R, which AABE

forwards to C.

6. AV C may now make oracle queries to which AABE can respond as follows:

• Queries to VC.FnInit and VC.Register are run as written in Algorithms 3.2

and 3.3.

• Queries of the form VC.Certify(S, F ′,MK,PP): AABE runs Oracle 3.8. If F ′ is

the challenge function F and S is not listed in R then it returns ⊥ to AV C . It

also returns ⊥ if the current time is the challenge time period qt and there is a

server (other than S) that is not currently revoked but should be in accordance

with the challenge revocation list. Otherwise, it removes S from QRev and

simulates running Certify. To do so, it runs Algorithm 3.4 as written with the

exception of lines 4 and 6.

To simulate line 4, AABE queries C for a query of the form OKeyGen(S, F ′ ∧

φ(F ′),MSK0
ABE,MPK0

ABE). C returns the decryption key unless the policy

F ′ ∧ φ(F ′) is satisfied by A? = Ax ∪ φ(F) and S /∈ R′. First, observe that this

policy will never be satisfied unless F ′ = F (since φ is a bijective mapping and

φ(F ′) is required for the policy to be satisfied). Hence, C will always return a

valid key if F ′ 6= F .

On the other hand, if the queried function F ′ = F , then by the checks performed

by AABE at the beginning of Oracle 3.8, S is included on R (else ⊥ would have

been returned prior to this point). Therefore, even if the challenge function is

queried, C will return a key. In particular, note that C never returns ⊥ in a

115

3.6 Proofs of Security

manner inconsistent with that expected by AV C in accordance with the Certify

oracle.

To simulate line 6, AABE queries OKeyUpdate(QRev, t,MSK0
ABE,MPK0

ABE). C

returns a valid update key unless the current time is the challenge time qt and

the queried revocation list does not contain the challenge revocation list R.

However, if this was the case then AABE would already have returned ⊥ by the

second clause of the if statement in Oracle 3.8. Hence, C will always return a

key which AABE can use to successfully simulate the Certify algorithm.

• Queries of the form VC.Revoke(τθF (x)
,MK,PP): As specified in Oracle 3.9,

AABE first increments t. If the token does not identify a server to revoke,

it outputs ⊥ (as would the Revoke algorithm). If the current time is qt, then

AABE returns ⊥ if QRev does not contain all servers listed on the challenge

revocation list R. Otherwise, S is added to QRev. AABE now simulates run-

ning the VC.Revoke algorithm by running Algorithm 3.9 as written with the

exception of line 6. To simulate this line, AABE makes a query of the form

OKeyUpdate(QRev, t,MSK0
ABE,MPK0

ABE). C returns a valid update key unless

t = qt and the queried revocation list does not contain the challenge revocation

list R. However, if this was so, AABE would have returned ⊥ above, and so a

valid update key is always returned which AABE can forward to AV C .

7. Eventually (after qt Revoke queries), AV C finishes the query phase. AABE checks

if AV C has made suitable Revoke queries. If there exists an entity in R that is not

currently revoked (listed in QRev), it returns 0 and stops.

8. AABE must now generate the challenge for AV C . It chooses three distinct, equal

length messages m0,m1 and m′ uniformly at random, and chooses a random bit

RKF,x? = b
$← {0, 1}. It sends m0 and m1 to C as its choice of challenge. C chooses

a random bit b?
$← {0, 1} and returns

CT ? ← ABE.Encrypt(mb? , A
? = (x? ∪ φ(F)), qt,MPK0

ABE).

AABE sets cb = CT ? and

c1−b ← ABE.Encrypt(m′, A? = (x? ∪ φ(F)), qt,MPK1
ABE).

AABE selects another bit s
$← {0, 1} and, if b = 0, sets V KF,x? = (g(ms), g(m′), LReg).

116

3.6 Proofs of Security

Otherwise, V KF,x? = (g(m′), g(ms), LReg). Note that s is AABE ’s guess for b?.

9. The resulting parameters from ProbGen are sent to AV C who is also given oracle

access. These queries are handled in the same way as previously, and eventually

AV C outputs its guess θ?.

10. Let y be the non-⊥ plaintext returned in θ?. If g(y) = g(ms), AABE guesses b′ = s.

If g(y) = g(m′), AABE makes a random guess b′ = b̃
$← {0, 1} (as AV C did not forge a

result for either m0 or m1 and hence is of no use in breaking the IND-sHRSS game).

Else, AABE aborts (since AV C did not succeed, it could be that AV C simply did

not win against the correctly formed challenge or AABE guessed incorrectly which

message was chosen by C and issued a malformed challenge to AV C).

Now, consider the advantage of AABE playing the IND-sHRSS game: By assumption,

AV C has a non-negligible advantage δ against the selective, semi-static revocation game.

That is, Pr [g(y) = g(ms)] + Pr [g(y) = g(m′)] = δ. Therefore, by the law of total proba-

bility,

Pr
[
b′ = b?

]
= Pr

[
b′ = b?|g(y) = g(ms)

]
Pr [g(y) = g(ms)]

+ Pr
[
b′ = b?|g(y) = g(m′)

]
Pr
[
g(y) = g(m′)

]
= Pr [s = b?] Pr [g(y) = g(ms)] + Pr

[
b̃ = b?

]
Pr
[
g(y) = g(m′)

]
=

1

2
Pr [g(y) = g(ms)] +

1

2
Pr
[
g(y) = g(m′)

]
=

1

2
(Pr [g(y) = g(ms)] + Pr

[
g(y) = g(m′)

]
)

=
δ

2
.

Hence,

AdvAABE ≥
∣∣∣∣Pr
[
b? = b′

]
− 1

2

∣∣∣∣
≥
∣∣∣∣δ2 − 1

2

∣∣∣∣
≥ 1

2
(δ − 1).

Since δ is non-negligible, 1
2(δ−1) is also non-negligible. If AV C has advantage δ at breaking

the selective, semi-static revocation game then AABE can win the IND-sHRSS game with

117

3.6 Proofs of Security

non-negligible probability. However, since the ABE scheme was assumed IND-sHRSS

secure, such an AV C cannot exist. We conclude that if the ABE scheme is IND-sHRSS

secure then the RPV C scheme defined by Algorithms 3.1–3.9 is secure in the sense of

selective, semi-static revocation.

Lemma 3.3. The RPVC construction defined by Algorithms 3.1–3.9 is secure against

vindictive servers (Game 3.5) under the same assumptions as in Theorem 3.2.

Proof. Suppose, for a contradiction, that AV C is an adversary with non-negligible advan-

tage against the vindictive servers game (Game 3.5) when instantiated by Algorithms 3.1–

3.9. We show that an adversary ASig with non-negligible advantage δ in the EUF-CMA

signature game (Game 2.11) can be constructed using AV C as a subroutine. ASig interacts

with the challenger C in the EUF-CMA security game and acts as the challenger for AV C

in the security game for vindictive servers for a function F as follows. The basic idea is

that ASig can create an RPVC instance and play the vindictive servers game with AV C

by executing Algorithms 3.1–3.9 himself. ASig will guess a server identity that he thinks

the adversary will select to vindictively revoke. The signature signing key that would be

generated during the Register algorithm for this server will be implicitly set to be the

signing key in the EUF-CMA game and any signatures for this identity will be formed

using oracle queries to C. Then, assuming that ASig guessed the correct server identity,

AV C will output a forged signature that ASig may output as its guess in the EUF-CMA

game.

1. C initialises Q ← ε to be an empty list of messages queried to the Sig.Sign oracle.

It runs Sig.KeyGen(1`) to generate a challenge signing key SK and verification key

V K, and sends V K to ASig.

2. ASig initialises the revocation list QReg ← ε and S̃ to be ⊥. Furthermore, it chooses

a server identity from UID which will be denoted by S. S will be a guess of the target

identity S̃ that AV C shall choose later. If this guess is correct, then any signing

operations related to S can be performed using the oracle provided by C, and hence

when AV C attacks this identity, his output can be used to break the EUF-CMA

game.

3. ASig runs VC.Setup and gives the resulting public parameters to AV C . AV C is also

provided with oracle access to which ASig can respond as follows

118

3.6 Proofs of Security

• Queries to VC.FnInit, VC.Register2, VC.Certify and VC.Revoke can all be handled

simply by running the relevant algorithm as these do not require signatures.

• Queries to VC.Register: Queries for a server S 6= S can be handled by ASig

running Oracle 3.5 as written. Note that ⊥ is returned if the query is for the

target server S̃. If, on the other hand, S = S, then C aborts the game, since

AV C may not choose its target server S̃ to be a server for which it previously

learnt the signing key, to avoid trivial wins. Therefore, AV C cannot choose

S̃ = S = S and hence, ASig’s guess of the target identity was wrong and

the EUF-CMA challenge parameters have been embedded incorrectly in the

reduction.

4. Eventually, AV C finishes this query phase and outputs its choice of challenge pa-

rameters F and x?. ASig runs VC.FnInit(F,MK,PP), as specified in Algorithm 3.2

and VC.ProbGen on the challenge x? as in Algorithm 3.5.

5. AV C is given the resulting values and oracle access which is handled as above. AV C

eventually outputs a target server identity S̃. If AV C has previously queried for the

signing key SKS̃ from the Register oracle then ASig returns ⊥.

6. If S̃ 6= S then ASig outputs ⊥ and stops, as it guessed incorrectly. Else, AV C

continues with oracle access as in Step 5 as well as a Compute oracle. AV C submits

queries OCompute(σF ′,x, EKF ′,S̃ , SKS̃ ,PP) for its choice of computation F ′(x) (note

that AV C may generate a valid σF ′,x using the public delegation key). If S 6= S then

ASig simply follows Algorithm 3.6 using the decryption and signing keys generated

during the oracle queries. Otherwise, S = S and ASig does not have access to the

signing key SKS . Thus, he runs the ABE.Decrypt operations correctly to generate

plaintexts db and d1−b, and submits m ← (db, d1−b, S) as a Sig.Sign oracle query to

C. C adds m to the list Q and returns γ
$← Sig.Sign(m,SK), which ASig uses to

return θF (x) ← (db, d1−b, S, γ), as a valid response to the Compute query.

7. AV C finally outputs θ? = (d?b , d
?
1−b, S̃, γ) which appears to be an invalid result com-

puted by S̃. Thus, Verify will output a reject token for S̃. However, accept ←

Sig.Verify((d?b , d
?
1−b, S̃), γ, V K). Thus, γ is a valid signature under key SKS̃ = SK.

8. ASig outputs m? = (d?b , d
?
1−b, S̃) and γ? = γ to C.

Note that due to the check performed on line 1 of Oracle 3.7, Compute was not simulated

119

3.6 Proofs of Security

(i.e. ASig did not make use of the Sig.Sign oracle provided by C) for the computation F (x?).

Thus the forgery (m?, γ?) output by ASig will satisfy the requirement in Game 2.11 that

m? /∈ Q. We argue that, assuming S = S̃ (i.e.ASig correctly guessed the challenge identity)

then ASig succeeds with the same non-negligible advantage δ as AV C . We assume that

n = |UID| is polynomial (else the KDC could not efficiently search the list LReg). The

probability that ASig correctly guesses S = S̃ is 1
n and

AdvASig > Pr
[
S = S̃

]
AdvAV C

>
1

n
AdvAV C

>
δ

n

> negl(`)

We conclude that, since n is polynomial, if AV C has a non-negligible advantage δ in the

vindictive servers game then ASig has non-negligible advantage in the EUF-CMA game,

but since the signature scheme is assumed EUF-CMA secure, AV C may not exist.

We note that we lose a polynomial factor in the advantage due to having to guess the

server S̃ that the adversary will attempt to revoke. This factor could be removed if we

formulated the security model in a selective fashion such that AV C must declare up front

which server he will target, and then ASig can implicitly set the signing key for that server

(in the Register step) to be the challenge key in the EUF-CMA game and forward any

Compute oracle requests to the challenger.

Lemma 3.4. The RPVC construction defined by Algorithms 3.1–3.9 is secure in the sense

of selective vindictive managers (Game 3.9) under the same assumptions as in Theorem

3.2.

Proof. This proof proceeds in a similar way to that of selective public verifiability. We

begin by defining the following three games:

• Game 0. This is the selective vindictive managers game as defined in Game 3.9.

• Game 1. This is the same as Game 0 except that in ProbGen, a random message

m′ 6= m0,m1 is chosen and, if F (x?) = 1, we replace c1 by the encryption of m′,

120

3.6 Proofs of Security

and otherwise we replace c0. In other words, the ciphertext associated with the

unsatisfied function is replaced by the encryption of a separate random message

unrelated to the verification keys.

• Game 2. This is the same as Game 1 with the exception that instead of choosing a

random message m′, we implicitly set m′ to be the challenge input w in the one-way

function game.

We show that, from the adversarial point of view, Game 2 is indistinguishable from

Game 0 except with negligible probability. Thus, an adversary can be run against Game

2. We show that if an adversary has a non-negligible advantage against Game 2 then the

adversary can be used to invert a one-way function.

Game 0 to Game 1. We begin by showing that there is a negligible distinguishing

advantage between Game 0 and Game 1, both with parameters (RPVC, 1`,F). For a

contradiction, let us suppose that AV C can distinguish the two games with non-negligible

advantage δ. We construct an adversary AABE that uses AV C as a sub-routine to break

the IND-sHRSS security of the indirectly revocable KP-ABE scheme. We consider a

challenger C playing the IND-sHRSS game (Game 3.1) with AABE , who in turn acts as

a challenger for AV C :

1. AV C declares its choice of challenge inputs F and x?.

2. AABE transforms this into its own challenge input x? = Ax? ∪ φ(F) where Ax? is

the characteristic tuple of attributes representing x? and φ(F) ∈ UF is the attribute

representing the challenge function F . It then sends this choice to C along with a

challenge time period t? = 1. It also computes r = F (x?) which will determine

which of the two ABE systems will be used for ‘positive’ functions and which for the

complement functions (since C will not issue a decryption key for a function satisfied

by the challenge input and so AABE must be sure that it will only be queried for

the non-satisfied function). In the following, we use the notation Fr as follows:

• If r = 0 then Fr = F and F1−r = F ;

• If r = 1 then Fr = F and F1−r = F .

121

3.6 Proofs of Security

That is, we choose r such that Fr(x
?) = 0. In other words, F0 = F and F1 = F and

we select between them based on r.

3. C runs ABE.Setup algorithm to generate MPKABE,MSKABE and sends MPKABE

to AABE .

4. AABE returns an empty challenge revocation list R = ε to C.

5. AABE simulates running VC.Setup by running Algorithm 3.1 as written, with the

exception that one of the sets of ABE system parameters is assigned to be those

generated by the challenger. Recall that r = F (x). AABE sets MPKr
ABE to be the

public parameters issued by C and MSKr
ABE is implicitly set to be that held by C

(any subsequent use of MSKr
ABE will be simulated using oracle access to C). It runs

ABE.Setup to generate MPK1−r
ABE,MSK1−r

ABE as usual.

6. AABE runs VC.FnInit as written. It must then generate a challenge encoded output

and to do so it must simulate a computation server. It first picks a server S uniformly

at random and runs Algorithm 3.3 as written to register S. It must then simulate

running the Certify algorithm for the sever S and challenge function F . However, as

it does not hold the full master secret key MK, it must use the oracle access provided

by C. It runs Algorithm 3.4 as written with the following exceptions:

• SKr
ABE is generated querying the ABE.KeyGen oracle with a query of the form

(S, Fr∧φ(F),MSKr
ABE,MPKr

ABE). C will return a valid decryption key unless

x? ∈ Fr ∧ φ(F) and S /∈ R.

Clearly, S is never in R as this was set to be empty so the second clause is

always satisfied. However, we chose r specifically such that Fr(x
?) = 0. Hence

Ax? /∈ Fr and x? = Ax? ∪ φ(F) /∈ Fr ∧ φ(F). Thus, C will return a valid

decryption key.

• SK1−r
ABE is generated by AABE running ABE.KeyGen using MSK1−r

ABE for the

function F1−r ∧ φ(F) as usual.

• UKr
LRev,t

is generated by making a query to the ABE.KeyUpdate oracle for

parameters (LRev, t,MSKr
ABE,MPKr

ABE). C returns a valid update key unless

the current time period t is the challenge time t? and R 6⊆ QRev. Now, t? was

chosen to be 1 and therefore, as no Revoke operations have been performed, t

does indeed equal t?. However, as R was chosen to be empty, R is certainly

122

3.6 Proofs of Security

a subset of LRev (in fact, both are empty). Therefore, C will return a valid

update key.

• UK1−r
LRev,t

is generated by AABE running ABE.KeyUpdate using MSK1−r
ABE as

usual.

7. AABE must now run ProbGen to generate a challenge for either Game 0 or Game

1. To do so, it samples three distinct messages m0,m1 and m′ uniformly at random

from the message space, and flips a random coin RKF,x? = b
$← {0, 1}. It submits

m0 and m1 to C as its challenge, and receives back the encryption, CT ?, of one of

these messages (mb? for b?
$← {0, 1}), under attributes x?, time t? = 1 and public

parameters MPKr
ABE. If r = 0, then AABE sets cb to be CT ?. Otherwise, r = 1

and AABE sets c1−b to be CT ?.

AABE generates the remaining ciphertext itself by running ABE.Encrypt(m′, x? =

(Ax? ∪ φ(F)), t? = 1,MPK1−r
ABE).

AABE then selects a random bit s
$← {0, 1} which functions as AABE ’s guess of the

bit b? chosen by C. Let V Kb = g(ms) and V K1−b = g(m′). Then AABE computes

the verification key V K = (V K0, V K1, LReg).

8. AABE now simulates the server S performing the computation to output θF (x?) by

running Algorithm 3.6 as written, since valid keys have been generated for S in the

preceding steps.

9. AV C is given σF,x? , θF (x?), V KF,x? , PKF and PP, as well as oracle access which is

handled as follows:

• Queries to VC.FnInit and VC.Register are performed as in Algorithms 3.2 and 3.3.

• Queries of the form VC.Certify(S, F ′,MK,PP): AABE runs Algorithm 3.4 with

the following exceptions. To generate SKr
ABE, AABE queries the ABE.KeyGen

oracle for OKeyGen(S, F ′r∧φ(F ′),MSKr
ABE,MPKr

ABE) C will return the decryp-

tion key unless x? satisfies the queried policy.

Notice that if the queried function F ′ is not the challenge function F then, due

to the bijective mapping φ, φ(F ′) 6= φ(F). Thus, neither of the possible queries

(which both require the presence of φ(F ′)) will be satisfied. If, however, the

query is for F , recall that we chose the ABE system owned by the challenger to

be unsatisfied by precisely this queried policy. Hence the first check performed

123

3.6 Proofs of Security

in Oracle 3.1 will never evaluate to true and therefore C will always be able to

return a valid key in response to a KeyGen query.

To generate UKr
LRev,t

, AABE makes a query to the ABE.KeyUpdate oracle of

the form OKeyUpdate(LRev, t,MSKr
ABE,MPKr

ABE). C returns a valid update

key unless the current time is the challenge time (which AABE chose to be 1)

and the queried revocation list does not contain the challenge revocation list R

which AABE chose to be empty. Since, R = ε is always a subset of any LRev,

the second clause will not be satisfied and C may generate a valid update key.

Thus, AABE can request valid decryption keys and update keys from C and can

simulate Algorithm 3.4 exactly.

• Queries of the form VC.Revoke(τθF (x)
,MK,PP): AABE runs Algorithm 3.9

as written except that, to form UKr
LRev,t

, AABE makes a query of the form

OKeyUpdate(LRev, t,MSKr
ABE,MPKr

ABE). C returns a valid update key unless

t = 1 and the queried revocation list does not contain the challenge revocation

list R. However, as AABE chose R = ε, this second clause is never satisfied and

a valid update key is returned.

10. Eventually, AV C finishes this query phase and outputs its guesses RTF (x) and τθF (x)
.

If g(RTF (x)) = g(ms), AABE outputs a guess b′ = s. Else, AABE guesses b′ = 1− s.

Notice that if s = b? (the challenge bit chosen by C), then the distribution of the above

coincides with Game 0 (since the verification key comprises g(m′) where m′ is the message

a legitimate server could recover, and g(ms) where ms is the other plaintext). Otherwise,

s = 1 − b? the distribution coincides with Game 1 (since the verification key comprises

the legitimate message and a random message m1−s that is unrelated to the ciphertexts).

Now, we consider the advantage of this constructed adversaryAABE playing the IND-sHRSS

game: recall that by assumption, AV C has a non-negligible advantage δ in distinguishing

between Game 0 and Game 1 — that is

∣∣∣Pr
[
1

$← ExpGame 0
AV C

[
RPVC, 1`,F

]]
− Pr

[
1

$← ExpGame 1
AV C

[
RPVC, 1`

]
,F
]∣∣∣ > δ

124

3.6 Proofs of Security

where ExpGame i
AV C

[
RPVC, 1`,F

]
denotes running AV C in Game i.

Pr[b′ = b?] = Pr [s = b?] Pr
[
b′ = b?|s = b?

]
+ Pr [s 6= b?] Pr

[
b′ = b?|s 6= b?

]
=

1

2
Pr
[
g(RTF (x)) = g(ms)|s = b?

]
+

1

2
Pr
[
g(RTF (x)) 6= g(ms)|s 6= b?

]
=

1

2
Pr
[
1

$← ExpGame 0
AV C

[
RPVC, 1`,F

]]
+

1

2

(
1− Pr

[
g(RTF (x)) = g(ms)|s 6= b?

])
=

1

2
Pr
[
1

$← ExpGame 0
AV C

[
RPVC, 1`,F

]]
+

1

2

(
1− Pr

[
1

$← ExpGame 1
AV C

[
RPVC, 1`,F

]])
=

1

2

(
Pr
[
1

$← ExpGame 0
AV C

[
RPVC, 1`,F

]]
− Pr

[
1

$← ExpGame 1
AV C

[
RPVC, 1`,F

]]
+ 1
)

≥ 1

2
(δ + 1)

Hence,

AdvAABE ≥
∣∣∣∣Pr
[
b? = b′

]
− 1

2

∣∣∣∣
≥
∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
≥ δ

2

Since δ is assumed to be non-negligible, δ
2 is also non-negligible. If AV C has advantage

δ at distinguishing these games then AABE can win the IND-sHRSS game with non-

negligible probability. Thus since we assumed the ABE scheme to be IND-sHRSS secure,

we conclude that AV C cannot distinguish Game 0 from Game 1 with non-negligible

probability.

Game 1 to Game 2. The transition from Game 1 to Game 2 is to simply set the

value of m′ to no longer be random but to implicitly be the challenge w in the one-way

function inversion game (Game 2.12). We argue that the adversary has no distinguishing

advantage between these games since the new value is independent of anything else in

the system bar the verification key g(w) and hence looks random to an adversary with

no additional information (in particular, AV C does not see the challenge for the one-way

function as this is played between C and AABE).

Final Proof We now show that using AV C in Game 2, AABE can invert the one-way

function g — that is, given a challenge z = g(w) AABE can recover w. Specifically, during

125

3.7 Conclusion

ProbGen, AABE chooses the messages as follows:

• if F (x?) = 1, we implicitly set m1−b to be w and the corresponding verification key

component to be z. We randomly choose mb and compute the remainder of the

verification key as usual.

• if F (x?) = 0, we implicitly set mb to be w and set the verification key component to

z. m1−b is chosen randomly and the remainder of the verification key computed as

usual.

Now, if AV C is successful, it will output a retrieval key comprising the plaintext that was

encrypted under the unsatisfied function (F or F). By construction, this will be w (and

the adversary’s view is consistent since the verification key is simulated correctly using

z). AABE can therefore forward this result to C in order to invert the one-way function

with the same non-negligible probability that AV C has against the selective vindictive

managers game.

We conclude that if the ABE scheme is IND-sHRSS secure and the one-way function is

hard-to-invert, then the RPVC as defined by Algorithms 3.1–3.9 is secure in the sense of

selective vindictive managers.

Theorem 3.2 follows as a corollary of Lemmas 3.1–3.4.

3.7 Conclusion

In this chapter, we have introduced the new notion of RPVC and provided a rigorous

framework that we believe to be more realistic than the purely theory oriented models of

prior work, especially when the KDC is an entity responsible for user authorisation within

a organisation. We believe our model more accurately reflects practical environments and

the necessary interaction between entities for PVC. Each server may provide a computation

service for many different functions and for many different clients and any client may

submit multiple requests to any available servers, whereas prior work considered just one

server able to compute just a single function.

126

3.7 Conclusion

The consideration of this new model leads to new functionality as well as new security

threats. We have shown that by using a revocable KP-ABE scheme we can revoke mis-

behaving servers such that they receive a penalty for cheating and that, by permuting

elements within messages, we achieve output privacy (as hinted at by Parno et al., al-

though seemingly with two fewer decryptions than their brief description implies). We

have shown that this blind verification could be used when a manager runs a pool of

servers and rewards correct work — he needs to verify correctness but is not entitled to

learn the result. We have extended previous notions of security to fit our new defini-

tional framework, introduced new models to capture additional threats (e.g. vindictive

servers using revocation to remove competing servers), and provided a provably secure

construction.

We believe that this work is a useful step towards making PVC practical in real en-

vironments and provides a natural set of baseline definitions from which to add future

functionality. For example, in Chapter 4 we will introduce an access control framework

(using our scheme as a black box construction) to restrict the set of functions that clients

may outsource, or to restrict (using the blind verification property) the set of verifiers

that may learn the output. In this scenario, the KDC entity may, in addition to certifying

servers and registering clients, determine access rights for such entities.

127

Chapter 4

Access Control in Publicly Verifiable
Outsourced Computation

Contents

4.1 Introduction . 128

4.2 Access Control Policies for PVC Environments 132

4.3 PVC with Access Control . 141

4.4 Security Models . 146

4.5 Construction . 153

4.6 Proofs of Security . 158

4.7 Conclusion . 165

This chapter extends the model of revocable publicly verifiable outsourced computation

introduced in Chapter 3, in order to enforce access control policies over delegators, servers

and verifiers such that entities are restricted over which operations they may perform within

the system. We discuss policies of interest in this setting and provide a solution with a

pragmatic blend of symmetric and asymmetric cryptographic enforcement mechanisms,

where attribute-based encryption is used as a proof of correctness for computations while

symmetric key assignment schemes are used to enforce access control policies.

4.1 Introduction

In Chapter 3 we introduced revocable publicly verifiable outsourced computation (RPVC)

which includes a trusted key distribution centre (KDC) that is an authority on entities and

performs expensive setup operations and key management duties. This leads to a more

decentralised system architecture comprising a pool of delegators and a pool of servers (the

128

4.1 Introduction

manager model), with the delegator not necessarily knowing the server chosen to perform a

computation. Any delegator can submit a request for work (or job) to the server pool and

some system-dependent mechanism allocates it to an available server (based on availability,

suitability or on some bidding process if operating on a price per computation basis). This

contrasts with prior models where the delegator chose a single server with whom to set

up a verifiable computation (VC) system; in such settings, the server could be explicitly

selected and authenticated beforehand. Comparatively, then, delegators now have less

control over the servers that perform work on their behalf and that may access their data

or computation results.

As with any multi-user setting, we may wish to control access to resources in an RPVC

system. The contribution of this chapter, therefore, is to show that not only is this setting

of multi-user VC well-suited to the cryptographic enforcement of access control policies,

but that such policies fulfil a natural and vital role in protecting outsourced computations.

Specifically in the setting of multi-user VC, we may wish to (i) restrict the computations

that may be outsourced by delegators; and (ii) restrict the computations a server may

perform. The first need stems from separation of duties and the observation that, within

an organisation, it is extremely unlikely that all users have equal, uncontrolled access to

all functionality. We may restrict the set of delegators that may outsource a computation

to those that would be authorised to compute it (if given sufficient resources) by the

organisation’s policies. The second requirement arises from the fact that in the RPVC

setting, delegators may not be able to authenticate servers beforehand. The sensitivity of

the data or other requirements, such as the physical location or resources of the server,

may limit the servers that should be permitted to perform the computation.

Some VC settings, as in Chapter 3, distinguish between delegators and verifiers. Delegators

(or distinguished verifiers) may learn the result of the computation, whereas standard

verifiers may only confirm that the result was computed correctly; this is characterised by

the blind verification property for standard verifiers. Again, in a multi-user VC setting,

we may wish to restrict the users authorised to: (i) verify the result; and (ii) learn the

result. When operating on sensitive data, this second restriction ensures that read access

to the generated results is limited to those that satisfy the access control policy, e.g. only

entities that may read the input data may read the output.

A third motivation for access control in the VC setting is that computational services

129

4.1 Introduction

may be charged for (e.g. in subscription-based utility computing [65,85]) and that service

providers may offer different levels of service to different clients (e.g. different subscription

tiers may provide access to different functions or computational resources). We must

ensure that only valid subscribers may access each tier of service.

In many multi-user settings for access control to stored data [29,87], servers enforce access

control policies by authenticating users and granting or denying access based on access

control lists or capability lists (see Section 2.3). This reference monitor approach is not

appropriate in the multi-user VC setting since the servers are assumed to be untrusted

and may have a vested interest in violating the policies. We instead use cryptographic

mechanisms to enforce access control policies, where cryptographic keys are used to en-

crypt objects and thereby restrict access to only authorised users —- the access control

mechanism thus reduces to the appropriate distribution of keys to authorised entities. We

use the trusted key distribution centre (KDC) introduced in the revocable PVC model

(RPVC) and, as an authority on entities within the system, we extend its duties to also

instantiate the access control mechanism. In RPVC, the KDC issued keys that enable

the delegation and evaluation of particular functions; we additionally require it to issue

keys appropriate to the access control policy that enable read and write access to certain

components of the RPVC system. For example, input data for particular functions may

be protected such that only authorised servers may read the data and hence perform the

computation.

Note that in an RPVC scheme, the KDC implicitly provides some access control in that

servers are certified to perform specific functions through the generation of evaluation

keys. However, no access control is applied to delegators — any entity can outsource an

evaluation of any function for which the KDC has published delegation information (es-

sentially due to the use of asymmetric cryptographic primitives). In particular, a delegator

may request a computation that the delegator itself is not authorised to perform locally.

Cryptographic enforcement mechanisms are particularly appropriate when objects and

policies are relatively static (so object re-encryption and user revocation are rare events).

In the context of verifiable computation, we may assume that the set of functions that

may be evaluated is fixed (a given VC construction can implement a specified family of

functions, F) and that the input data to each function is also static (limited to the set of

‘valid’ inputs to that function). Thus, the set of objects (function evaluations in VC) is

130

4.1 Introduction

static, and policies will primarily be specified in terms of these computations. Thus multi-

user VC is a very natural setting in which to use cryptographic access control. However,

VC leads to a somewhat novel application of these mechanisms as we will see in Section

4.2.

We begin by briefly reviewing some related work. Clear et al. [43] considered access control

policies over delegators only and in a non-verifiable, multi-input outsourced computation

setting using homomorphic ciphertext-policy ABE and fully homomorphic encryption. In

independent and concurrent work, Xu et al. [96] also addressed the necessity for access

control in the setting of verifiable computation, but limited their scope to non-public verifi-

able computation (i.e. not the full multi-user setting) enforcing access control on delegators

only. We believe that the PVC setting also necessitates that delegators may specify access

control requirements on those servers that may be selected for a given computation and,

especially, limits must be placed on verifiers that may learn the output. Xu et al. discuss

their notion purely in terms of using CP-ABE as the enforcement mechanism and did

not discuss the form of the policies; in contrast, we discuss in detail the types of policies

that may be of interest in these settings and present these in terms of generic graph-based

access control policies. Such policies may be enforced by a variety of enforcement mecha-

nisms, including symmetric KASs as used here (which may well be more efficient than the

pairing-based CP-ABE approach). We believe that we present a more generic treatment

which, importantly, extends to the multi-user PVC setting.

In Section 4.2, we discuss example access control policies that are relevant to the setting of

multi-user VC. We formulate policies in a generic fashion (irrespective of the cryptographic

enforcement mechanism employed) in terms of authorisation labels and graph-based poli-

cies over entities and computations. Then, in Section 4.3, we extend the work of Chapter 3

to formally define a framework for revocable PVC with access control (PVC-AC). This

results in novel security notions that we introduce in Section 4.4. Finally, in Section 4.5,

we provide an example construction that generically extends any RPVC scheme to use a

symmetric Key Assignment Scheme (KAS), and in 4.6 show that this construction meets

the stated security goals.

131

4.2 Access Control Policies for PVC Environments

4.2 Access Control Policies for PVC Environments

We consider graph-based policies where “objects” to be protected are not data files, as

in traditional access control policies, but outsourced computations and their results. The

“user” population comprises the sets of delegators C, computational servers S, and ver-

ifiers V. We are interested in specifying and enforcing policies that restrict: (i) which

computations a delegator may outsource; (ii) which computations a server may evaluate;

(iii) which outputs a verifier may read. As noted in the introduction to this chapter, we

distinguish between entities that may learn a computational result and those that may

only verify correctness (using the blind verification property from Chapter 3). In this

chapter, we assume that any entity may perform the blind verification step but that only

a restricted subset of verifiers should be able to retrieve the actual output value.1

There has been considerable research in recent years on the cryptographic enforcement of

access control policies [1,44,46,51]. Informally, access is regulated in a distributed fashion

by issuing appropriate cryptographic keys to authorised subjects, rather than a centralised

reference monitor mediating all attempts to access protected resources. Cryptographic

access control generally focuses on read access and is regarded as being particularly ap-

propriate when the protected content is read often but written rarely (since this would

require re-encryption). In the context of verifiable computation, we will use cryptographic

access control in somewhat unusual ways. Rather than storing static encrypted data,

we will encrypt dynamic messages within a protocol execution. In particular, to enforce

policies restricting the computations that may be outsourced, a delegator must use an

appropriate key to encrypt input data. Without the appropriate encryption, the input

will be discarded by the server. The enforcement of policies for performing computations

is achieved by distributing keys to servers that can be used to decrypt the (encrypted)

inputs. Without decryption, the server will be unable to read the input data and evaluate

the function; an unauthorised server cannot determine anything about the input data and

so we additionally achieve input privacy in this case. The enforcement of (read) policies

on outputs uses cryptographic access control in a more conventional fashion; results are

published and protected via encryption with an appropriate key.

Cryptographic access control has been particularly widely studied in the context of in-

1The same techniques that we present could also be applied to protect the (blind) verification keys to
restrict the entities that may validate correctness of a computation.

132

4.2 Access Control Policies for PVC Environments

formation flow and graph-based access control policies (see Section 2.3). We restrict our

focus to graph-based policies as these have been shown to encompass many notions of

access control that are desirable in practice including information flow policies, role-based

access control and attribute-based access control [44]. Recall that we define the “user”

population as the sets of delegators C, computational servers S, and verifiers V. We define

a security labelling function λ : C ∪S ∪V ∪O → L where O is the family of computations

that may be outsourced and (L,6) is a poset of security labels. This function assigns a

label from L, representing the security classification, to each delegator, server and com-

putation in the PVC-AC system. The access control policy requires that λ(E) > λ(o), for

an entity E ∈ C ∪ S ∪ V attempting to operate on a computation o ∈ O.

Throughout this chapter, we refer to computations as o = (F, x, aux) ∈ O (in reference

to their role as protected objects in the access control system). Each computation o

specifies all information required to formulate the access control policy: the function F

to be computed, the input data x, and any relevant contextual information, which we

denote by aux. Thus, the labelling function λ considers all these factors, including any

specified contextual information, when determining the security label λ(o). Observe that

it may not always be the case that a computation may be considered purely in terms

of the function and input data alone. Indeed, although the evaluation result will be

uniquely determined by such factors, the level of protection required may depend on other

contextual information. As a simple motivating example, consider a summation function

over the integers. The semantic meaning of the integers in question may determine the

overall classification of this computation — if the integers are city populations then this

may not be classified at all, but troop deployments in different regions may be much more

sensitive.

Although the format of access control policies, throughout this chapter, remains constant

(requiring λ(E) > λ(o)), different choices for the sets O and L support different types

of policies, particularly in terms of granularity. In Section 4.2.1, we consider several dif-

ferent choices for these sets to restrict the computations a delegator may outsource and

that a server may compute. We begin by examining the simple case where policies are

defined only over the choice of functions — that is, O = F . Thus entities are authorised

to operate on sets of functions, similarly to how servers are certified to compute specific

sets of functions in RPVC. We then, in Section 4.2.1.2, consider more fine-grained policies

defined over functions and input data to restrict entities to only operating on specific, au-

133

4.2 Access Control Policies for PVC Environments

thorised functions with specific inputs. This provides a general solution for settings where

contextual information regarding computations is not relevant in terms of formulating ac-

cess control policies. Finally, in Section 4.2.1.3, we consider the integration of additional

contextual information when defining objects, and also consider alternative definitions for

the poset of security labels, L, to integrate with existing access control policies operated

by an organisation; thus, outsourced computations can be protected in the same way that

internal operations are protected.

In Section 4.2.2, we discuss policies that restrict the results a verifier may learn. We

differentiate between computation policies over delegators and servers, defined in terms of

a labelling function λC(·), and verification policies over delegators and verifiers, defined

in terms of λV (·). For ease of notation, we use λ to denote λC in Section 4.2.1, and to

denote λV in Section 4.2.2.

4.2.1 Delegation and Computation Policies

4.2.1.1 Policies over Functions

We begin by considering a simple case where policies are formulated purely in terms of

the functions being computed. Specifically, in this section, objects (or computations)

are synonymous with functions (O = F) while security labels represent sets of function

(L = 2F). In simple terms, a computation o ∈ O is labelled by the function being

computed, and we associate each delegator C and server S with a set of functions λ(C) ⊆ F

and λ(S) ⊆ F respectively. We define a correctness criterion that states that C should be

able to prepare inputs for all functions F ∈ λ(C) (and similarly for S); i.e. entities should

be able to perform all operations that they are authorised for. We also define a security

criterion that requires λ(C) ⊇ λ(o) and λ(S) ⊇ λ(o) in order to delegate or compute

the computation o respectively, and that a set of unauthorised entities cannot collude to

perform an operation that any of them couldn’t perform alone.

More formally, we define the set of security labels L to be 2F (the power set of all considered

functions). Then, λ(C) ⊆ F defines the set of functions that a delegator C may outsource

an evaluation of, λ(S) ⊆ F denotes the functions a server S may compute, and λ(o) = {F}

labels the computation of F ∈ F . Then, for any x, y ∈ L we define an order relation <

134

4.2 Access Control Policies for PVC Environments

{F, G}

{F, H}

{G, H}

{F, G, H}

{G}

{F}

{H}

(a) L = 2{F,G,H}

({F, G}, 11)

({F}, 11) ({G}, 11)

({F, G}, 01)

({F}, 01) ({G}, 01)

({F, G}, 10)

({F}, 10) ({G}, 10)

({F, G}, 00)

({F}, 00) ({G}, 00)

(b) L = 2{F,G} × {0, 1}2

(1GB, 1core) (1GB, 2core)

(2GB, 1core) (2GB, 2core)

(1GB, 32core)

(16GB, 16core)

(32GB, 32core)(32GB, 1core)

GoldSilverBronze

(c) Subscription based computation: L = ({1GB, . . . , 32GB} ×
{1core, . . . , 32core}) ∪ {Gold, Silver, Bronze}

Figure 4.1: Example posets for publicly verifiable outsourced computation with access
control

such that x < y if and only if x ∈ F , y ⊆ F and x ∈ y; that is, x must be a singleton

set (or in our case, a computation for a particular function), y must be a set of functions

(i.e. be a label assigned to an entity authorising it to compute the functions in y), and x

must be a subset of y (to ensure the entity is authorised for the particular function x).

The corresponding Hasse diagram with F = {F,G,H} is shown in Figure 4.1a.2 Any

entity E authorised for λ(E) is, by the correctness criterion, authorised to operate on all

computations o labelled by λ(o) < λ(E). For example, in Figure 4.1a, if λ(E) = {F,G}

then E is authorised for the functions F andG as expected. In a cryptographic enforcement

mechanism, each label l ∈ L will be associated with a key κl. To outsource a computation,

o, of F (x), C prepares the encoding of x using the key κo = κ{F} associated to the label

{F} which, by the security criterion, C knows if and only if λ(C) > λ(o) i.e. if and only

if {F} ∈ λ(C). To compute F (x), S uses the corresponding key κo; S may do this if and

only if {F} ∈ λ(S).

2Nodes for empty sets are excluded from these figures.

135

4.2 Access Control Policies for PVC Environments

4.2.1.2 Policies over Function Inputs

As well as limiting the functions that may be outsourced, we may wish to implement a

more fine-grained access control policy determined by input values to functions. For ease

of exposition let us assume that all functions have the same domain — for all F ∈ F ,

Dom(F) = {0, 1}n for a positive, non-zero integer n.3 We then redefine the security

function such that “objects” (computations) are now considered to be pairs (F, x) where

F ∈ F and x ∈ Dom(F) — that is, λ : C ∪ S ∪ (F × {0, 1}n)→ L.

Different settings may require different access control functionality, which can be achieved

through different choices of security labels. For example, the first choice of poset we present

in this section corresponds to the idea of assigning a data range to each delegator and

then authorising them to outsource a specific set of functions on that data. For instance,

a Chinese wall policy may result in employees being provided with separate partitions of

a database. Then, depending on the employee’s role, they are permitted to evaluate a

specific set of functions on that data partition. The second choice of poset we present is

more fine-grained and authorises delegators to outsource a single, specified computation

— that is, it permits the entity to evaluate F (x) for a specific choice of function and input

data. For example, one could imagine an employee being given restricted access to some

sensitive data to perform only a particular task, and they should not be able to use the

data for other purposes.

For the first case, where entities are assigned a set of data and are authorised to compute

specific functions on that data, we could define L to be 2F × {0, 1}n. To define the order

relation on L we must first define an ordering on the input data. One choice is to define

a co-ordinatewise ordering on {0, 1}n; that is (x1, . . . , xn) 6 (y1, . . . , yn) if and only if

xi 6 yi for all i ∈ [n]. Then, for two labels (G, x) and (G′, x′) in L, (G, x) 6 (G′, x′) if and

only if G = {F} for some F ∈ F , F ∈ G′ and x 6 x′.

For an entity E, we define λ(E) = (G, x), where G ⊆ F and x ∈ {0, 1}n. For a computation

o of F on input x, we define λ(o) = ({F}, x). Then E is authorised to operate on G(y)

for all G ∈ G and all y 6 x. The Hasse diagram for this poset with F = {F,G} and

n = 2 is shown in Figure 4.1b. Different choice of orderings over inputs lead to different

3If this is not the case then we can define n = maxF∈F |Dom(F)| and then redefine all functions F
with Dom(F) < n to satisfy the required property by, for example, adding fixed points F (x) = x for all
x ∈ {0, 1}n \ Dom(F).

136

4.2 Access Control Policies for PVC Environments

restrictions; for example, one could consider bit strings as integers and use the natural

ordering over integers for x 6 y.

For the second case, where entities are authorised to compute functions on specific inputs,

define L to be the power set 2F×{0,1}
n
. Then each function may be associated with a

different range of permissible inputs. An entity E, is labelled by a set of pairs, each com-

prising a function label and an associated input label — λ(E) = {(F1, x1), . . . , (Fm, xm)}.

A computation of F (x) is labelled λ(o) = ({F}, x). Then, for any two labels,

{(F1, x1), . . . , (Fm, xm)} 6 {(F ′1, x′1), . . . , (F ′m′ , x′m′)}

if and only if m = 1 (the first label is a single pair), F1 = F ′i for some i ∈ [m′] and x1 6 x′i.

Finally, we observe that the choice of L = 2F × 2{0,1}
n

extends this second case to a

situation where each function can be associated with an arbitrary set of input values.

4.2.1.3 Policies for Other Security Labels

We have seen how sets of functions and inputs can be mapped to a graph-based access

control policy to restrict the functions a delegator may outsource and that a server may

compute. However, in practical applications, outsourced computation functionality will

be required to integrate with existing workflows and existing access control policies. As

an example, consider a company that operates role-based access control (RBAC) (see

Section 2.3.2) on their local network and wishes to provide access to an external VC

system. The company must ensure that the same access control requirements are adhered

to within this new environment.

As mentioned in Section 4.2, it is not always appropriate to classify computations based

purely on the function and input — other contextual information may be required. We

now briefly discuss how to formulate access control policies for multi-user VC settings

that incorporate additional security labels relying on the environment or external access

control policies.

We can use any poset of security labels to classify each outsourced computation. Consider

the total order M = {Top-Secret, Secret, Classified, Unclassified} representing the

137

4.2 Access Control Policies for PVC Environments

Bell-LaPadula clearance levels [22], and let K be a set of need-to-know categories. Then

we can enforce the security function λ : C ∪ S ∪ O → M × 2K where K specifies the

nature, and M specifies the sensitivity, of the computation o ∈ O. To delegate or compute

F (x), we require that the entity E’s clearance level is at least the classification of the

computation: λ(E) > λ(o).

It has been shown [44] that the set of roles for a role-based access control policy can be

encoded as a poset. Thus, we could similarly define L to be this role poset to integrate

with existing RBAC policies within an organisation.

As well as changing the set of security labels, we could also add additional criteria in

the mapping to security labels. For example, we could formulate policies dependent on

time by setting λ : C ∪ S ∪ (F × T) → L, where T is a set of time periods. We could

then set L = 2F×T to allow entities to operate on specific functions only during specified

time periods. On the other hand, by defining L = M × 2K as above, certain functions

can be more highly protected during certain times of the day. In place of a temporal

poset T we could also apply a geo-spatial poset to classify function evaluations differently

depending on location data;, e.g. a function may be more sensitive if being outsourced from

a battlefield as opposed to within a secured building. Finally, policies over function inputs

can be extended to include characteristics of the input data (as in the summation example

in Section 4.2, contextual information often changes the level of protection required).

Recall that we define computations o ∈ O in terms of F , x and some auxiliary information

aux which provides contextual information regarding the computation that may be relevant

in determining the classification of the computation, e.g. the semantic meaning of input

data. Then, if A is the set of possible auxiliary information and L is defined to be

2F×({0,1}
n×A), for example, then the same input data to the same function can be classified

differently, and hence require different authorisation from the delegator and the server,

based on contextual information.

As mentioned in the introduction to this chapter, one interesting setting for RPVC is when

users pay for computation-as-a-service [65,85]. Users may pay a price per computation, in

which case they could be issued a relevant key such as those discussed in Section 4.2.1.2,

perhaps with a short time window in which to perform the computation. Then, when

outsourcing the computation, it is protected by this key to prove that the user has paid

for this particular computation. An alternative model [65] would be for a server to allow

138

4.2 Access Control Policies for PVC Environments

subscriptions to different tiers of service. A user may pay more to subscribe to a higher tier,

and then may submit multiple computations relating to this tier or lower. For example,

consider a set T = {Gold, Silver, Bronze} comprising tiers that users may subscribe to;

Gold service may allow access to more computational resources, or access during busier

periods, than Silver, and so on. For simplicity, suppose the resources to be considered

are just RAM capacity and the number of processor cores available, and let R and C

be sets comprising the available quantities of each. Then, the set of security labels L is

set to be L = (R × C) ∪ T —- that is, the cartesian product of the available resources,

with the addition of labels for each service tier. A user that pays for Gold membership

can be assigned the label λ(C) = {Gold}. Each computation is labelled by the resources

that it requires. The poset ordering over L allows each tier to access different subsets of

resources (e.g. if a computation is particularly memory intensive then it may require a

higher subscription fee to compute), as illustrated in Figure 4.1c.

4.2.2 Verification Policies

Thus far, we have discussed policies restricting the entities that may delegate and evaluate

given computations. In the multi-user VC setting, it is equally important to apply access

control to the act of verifying the results and learning the computational output. Clearly,

when considering computations over confidential data, it is not always appropriate to

publish the results as in a publicly verifiable computation scheme. As a trivial example,

outsourcing the identity function could “legitimately” leak confidential data. In Chapter 3,

we distinguished between the actions of blind verification (to ensure correctness) and

output retrieval (to learn results). In this chapter, we assume that all entities are able to

blindly verify a result, but the set of entities that may learn the actual output should be

restricted4. Thus, the set of verifiers we refer to in the following are just those distinguished

verifiers that are able to retrieve computation results, and we wish to restrict the results

that each may read.

In this section, we consider two forms of verification policy:

1. The notion of “no write down” is an important property in many traditional access

control policies. In the VC setting, this amounts to ensuring that any verifier should

4However, we could use the same techniques to restrict blind verification if desired.

139

4.2 Access Control Policies for PVC Environments

have at least the access rights of the delegating or computing entity, that is λ(C) 6

λ(V) and λ(S) 6 λ(V). In short, a verifier may not read a result arising from

input data that he is not also authorised to read. We consider this form of policy in

Section 4.2.2.1.

2. In some cases, however, the KDC may decide that the results of some computations

are not as highly classified as the input data, or indeed the act of computing it. For

example, statistics of company spending averaged across all departments may be

less sensitive than the spending of the research department alone. Alternatively, the

results of a computation over classified data may be included in a public document,

despite the input data remaining classified.

In these cases, the encoded output from the computation may be published along

with a public verification key so that recipients can very the legitimacy of the com-

putational result; however, the retrieval key can also be published alongside the com-

putation, but be cryptographically protected (encrypted) such that only authorised

verifiers (e.g. trusted reviewers of a document) may access it and therefore retrieve

the actual output of the computation. This setting is explored in Section 4.2.2.2.

4.2.2.1 Enforcement of No Write Down Policies

As mentioned, “no write down” is an important requirement of many access control poli-

cies. It ensures that an entity C may not write (encrypt) an object to a lower classification

level λ(o) < λ(C) as this could constitute a leak of classified data. It is, of course, possible

for a delegator to write the result at his (maximal) clearance level and then any verifiers

with higher access rights, by the correctness criterion of the cryptographic enforcement

mechanism, will be able to read the result. However, we may want to protect a result at

a higher classification level (write up), e.g. when preparing a report that should only be

read by management.

To enforce no-write down policies, we encrypt the retrieval key RKo for the computation

under a suitable key according to the verification policy. Recall from Chapter 3 that, in an

RPVC scheme, the retrieval key is generated by the delegator during the ProbGen stage,

and is used in the Retrieve algorithm run by a verifier to reveal the actual output value of

the computation.

140

4.3 PVC with Access Control

Within a PVC-AC system, we define two posets: a computation poset PC = (L,6) (as

per Section 4.2.1) to encode computational access control policies, and a verification poset

PV which encodes the no-write down verification policy. PV is constructed by inverting

the order relation on PC — that is, if PC = (L,6) then PV = (L,>) where x > y in PV if

and only if x 6 y in PC . Then, delegation and computation of o ∈ O are performed using

a key associated to λC(o) ∈ PC . To retrieve the result of a computation, a verifier must

recover the retrieval key which is encrypted using a key related to λV (o) ∈ PV . Thus, a

verifier V may successfully decrypt, and recover, RKo and hence read the computation

result if and only if λV (V) > λV (o).

4.2.2.2 Published Retrieval Key

In the second form of verification policy we consider in this section, where retrieval keys

are published according to a more general policy that may allow write-down, we can use

similar posets and security functions to those in Section 4.2.1. The security function is

defined to be λV : V∪C∪O → L, where O is the set of outsourced computations and (L,6)

is a poset of security labels. The user population is the set of delegators C and verifiers

V, and objects, o ∈ O are retrieval keys for particular computations. We will protect

(encrypt) the retrieval key for each computation using an appropriate key. We require the

verifier to satisfy the verification policy in order to derive the corresponding decryption key

— that is, we require λ(V) > λ(o) for o ∈ O. Since the delegator generates the retrieval

key, and hence may also use it to retrieve the output, we also assume λ(C) > λ(o). This

is reasonable given that the delegator must have the right to compute any function that

he outsources and hence (resources permitting) could certainly learn the result locally.

As before we can extend the definition of λ and of L to accommodate more fine-grained

policies over outputs if required.

4.3 PVC with Access Control

We now formally define the notion of PVC-AC to enforce graph-based access control

policies over delegators, servers and verifiers. Recall that we wish to impose restrictions

on three activities: first, we wish to specify a (write) policy determining the computations a

141

4.3 PVC with Access Control

client is authorised to delegate — this means restricting the inputs a client may correctly

prepare; second, we specify a (read) policy that determines the computations a server

may compute — that is, encoded inputs he may access; lastly, we specify a (read) policy

dictating the outputs a verifier may read. We differentiate between computation policies

over delegators and servers, denoted λC(·), and verification policies over delegators and

verifiers, denoted λV (·). We may also use λ(·) to denote both labels where no ambiguity

arises. Finally, PC and PV denote posets encoding the computation and verification

policies respectively. Recall that the set of outsourced computations is denoted by O.

A computation o ∈ O comprises the function F , the input data x and possibly some

additional contextual information.

The entities and trust relations remain the same as in Chapter 3. We extend the function-

ality of the KDC from Chapter 3 to grant access control credentials to delegators, servers

and verifiers. We may split the responsibilities between two KDCs: a computation KDC

(CKDC) that generates function keys for the VC functionality, and an authorisation KDC

(AKDC) that manages access control policies. The AKDC could be a trusted authority

on entities to grant relevant permissions, and may be used by multiple systems (e.g. as a

form of federated identity management [36]). For ease of exposition, here we use only one

KDC that performs both duties.

Definition 4.1. A revocable publicly verifiable outsourced computation scheme with access

control (PVC-AC) comprises the following algorithms:

• (PP,MK)
$← Setup(1`,F ,PC ,PV): run by the KDC to generate public parameters

PP for the PVC-AC system as well as secret information MK used to generate keys.

The inputs to this algorithm are the security parameter, the family of functions F

that may be outsourced, and the computational and verification posets encoding the

graph-based access control policies to be enforced;

• PKF
$← FnInit(F,MK,PP): run by the KDC to generate a delegation key, PKF ,

that enables the outsourcing of computations for a function F ;

• SKID
$← Register(ID, λ(ID),MK,PP): run by the KDC to issue a key SKID for an

entity with identifier ID5 which grants access rights for the label λ(ID) according to

the computation or verification policy;

5In future algorithms this will be S, C or V to denote a server, delegator or verifier respectively.

142

4.3 PVC with Access Control

• EKF,S
$← Certify(S, F,MK,PP): run by the KDC to create an evaluation key EKF,S

that enables a server S to compute a function F ;

• (σo, V Ko, RKo)
$← ProbGen(x, SKC , PKF , λ(C), λ(o),PP): run by a delegator C

to outsource the computation o of F (x). The algorithm takes the input x, C’s

secret key SKC , the public delegation key PKF for F , the security label λ(C) of

the delegator, the security label λ(o) of the computation to be outsourced and the

public parameters PP. If C satisfies the computation policy (i.e. λC(C) > λC(o))

then the algorithm outputs a valid encoded input σo, a public verification key V Ko

to verify correctness, and a protected output retrieval key RKo which only verifiers

satisfying λV (V) > λV (o) may use to read the result F (x);

• θo
$← Compute(σo, EKF,S , SKS , λ

C(S), λC(o),PP): run by a server S, this algorithm

takes as input an encoded input σo for a computation F (x), an evaluation key for

F , a secret key SKS , the security labels of the server and computation and the

public parameters. It generates a valid encoding, θo, of the result F (x) if and only

if λC(S) > λC(o);

• (y, τθo) ← Verify(θo, SKV , V Ko, RKo, λ
V (V), λV (o),PP): verification comprises two

steps:

– (RTo, τθo) ← BVerif(θo, V Ko,PP): run by any verifier holding an encoded

output and a verification key to produce a retrieval token RTo and a token

τθo = (accept, S) for a correct result, or τθo = (reject, S) to signify a cheating

server S;

– y ← Retrieve(SKV , RTo, τθo , V Ko, RKo, λ
V (V), λV (o),PP): run by a verifier V

in possession of the retrieval token RTo from BVerif and the output retrieval

key RKo. If λV (V) > λV (o) then V should be able to read the actual result

y = F (x) or ⊥ (if the result is incorrect);

• UM $← Revoke(τθo , F,MK,PP): if a verifier reports a misbehaving server (i.e. Verify

returned τθo = (reject, S)), the KDC issues updated evaluation keys UM = EKF,S′

to all servers, preventing S from performing further computations. If τθo = (accept, S)

then this algorithm should output UM =⊥;

Intuitively, we say that a publicly verifiable outsourced computation scheme with access

control (PVC-AC) is correct if, when all algorithms are run honestly in any arbitrary

143

4.3 PVC with Access Control

execution sequence by authorised entities and the result is computed by a non-revoked

server, the verifying party always accepts the returned result and the result is correct..

As in Chapter 3, we can model this as a game played between a challenger and a PPT

adversary.

For each algorithm in Definition 4.1, we define an oracle which executes the corresponding

algorithm on arguments provided by the adversary, and returns the output of the algorithm

to the adversary, as well as maintaining some internal lists, which we shall detail below.

The adversary may query the Setup oracle only once (before making any other oracle

queries), but can thereon call the remaining oracles any number of times and in any order.

The challenger maintains two lists, LReg and LF . LReg is a list of tuples of the form

(ID, SKID) of entity identifiers with the associated signing key; these are added by the

Register oracle. LF , on the other hand, comprises tuples of the form (S, F,EKF,S) denoting

that EKF,S was generated as a result of the server S being queried to the Certify oracle

for the function F — that is, S has been certified to compute F . If the adversary queries

the Revoke oracle with an input τθF (x)
= (reject, S) for some S, the challenger removes all

entries of the form (S, ·, ·) (i.e. all entries for S for any function) from LF .

The challenger also creates and maintains a table T which records the parameters and

values relating to each computation performed through the oracle queries. T is updated

in the following oracles:

• ProbGen: if λC(C) > λC(o), the challenger creates a new row in T comprising

8 components, all of which are initialised to be empty; it then assigns x, F , the

result F (x) (computed by the challenger itself), σF,x, V KF,x and RKF,x to the first

6 components;

• Compute: if λC(S) > λC(o), the challenger first searches T for all rows that contain

the queried σF,x in the 4th component and where the 7th component is empty (i.e.

those rows relating to computations on this encoded input that have not yet been

performed).

For each such row, r, the challenger takes the second component (the function

identifier, F̃), and checks that there exists a server identity S̃ such that the tu-

ple (S̃, SKS̃) ∈ LReg (where SKS̃ is that given as input to the Compute oracle) and

144

4.3 PVC with Access Control

such that the tuple (S̃, F̃ , EKF,S̃) ∈ LF (where EKF,S̃ is also that given as input to

the Compute oracle). This check ensures that there is a currently un-revoked server

(as the entries of LF for S̃ have not been removed) that holds the signing key and

evaluation key being used to perform the computation and which is certified for a

function F̃ for which the encoded input σF,x for this computation was generated.

The challenger then performs the Compute algorithm on the queried σF,x, EKF,S

and SKS to produce an output θF (x). For each of the rows r of T found above, the

challenger writes θF (x) and S̃ to the 7th and 8th components of r respectively. Thus,

a row of T will only have a (non-empty) value in the 7th component if there exists a

non-revoked, certified, authorised server to perform the computation for which σF,x

was generated.

Thus, when complete, the entries of T will be of the form

(x, F, F (x), σF,x, V KF,x, RKF,x, θF (x), S).

Note that the oracles only update entries in T when the given arguments relate to an

authorised entity for the computation (we are not interested in the output of algorithms

run by unauthorised entities as these should be rejected in accordance with the security

models we define shortly).

After a polynomial number of queries, the adversary will return a value θ?F (x) which he

believes either encodes an incorrect computational result or which encodes a correct com-

putational result yet which the Verify algorithm will reject. The challenger first performs a

look up in T for all entries containing θ?F (x) in the 7th position of the tuple, and stores any

such entries as another table T̃ . Note that this means that θ?F (x) must have been honestly

generated by the Compute oracle (else it would not be in T).

For each such row, the challenger uses the 5th and 6th components of the row (the verifica-

tion key and retrieval key) to run Verify on θ?F (x) to generate the outputs y and τθF (x)

6. The

challenger first checks whether y matches the 3rd component of the row (that is, whether y

is the correct computational result F (x)). If so, it then checks whether τθF (x)
= (reject, S),

and if so it ends the game by returning 1 to indicate that the adversary has won the game

(the adversary has found a valid encoding of a correct result, computed by a certified,

6Note that the challenger can simulate a verifier that is authorised to perform this verification.

145

4.4 Security Models

authorised, non-revoked server, that the Verify algorithm is incorrectly rejecting).

On the other hand, if y did not match the correct value of F (x), the challenger also ends

the game by returning 1 to indicate that the adversary has won the game (the adversary in

this case has found an incorrect result that was computed honestly by authorised entities).

If no row in T̃ allows the adversary to win, then the challenger outputs 0 to indicate that

the adversary has lost.

A PVC-AC scheme is correct if, for all PPT adversaries, the probability that the adversary

wins the game described above is 0.

4.4 Security Models

We now introduce several security models capturing requirements of PVC-AC. These

models capture the intuition that (i) only authorised entities can perform each type of

restricted operation, and (ii) unauthorised servers learn nothing about the input data.

These are important both to ensure that the enforcement mechanism for the access con-

trol policies correctly captures the required properties, and that the access control mech-

anism and the PVC implementation (if built from separate primitives) interact securely.

As noted by Ferrara et al. [51], it is not always immediate that (probabilistic) cryp-

tographic enforcement mechanisms can safely implement access control policies, which

are generally specified in absolute terms; hence formally defining and proving the re-

quired security goals is necessary. Notions of public verifiability, revocation and vindictive

servers follow naturally from Chapter 3 with additional inputs for policy declarations.

As these do not rely on the access control properties, the proofs follow naturally, and

we do not replicate them here. Throughout the remainder of this chapter, the nota-

tion AO denotes an adversary A being given oracle access to the following functions:

FnInit(·,MK,PP), Register(·, ·,MK,PP), Certify(·, ·,MK,PP), ProbGen(·, SK(·), ·, ·, ·,PP),

Compute(·, ·, SK(·), ·, ·, PP) and Revoke(·, ·,MK,PP). Each oracle, unless otherwise given

alongside the game, simply runs the relevant algorithm.

146

4.4 Security Models

Game 4.1 ExpAuthO
A

[
PVCAC, 1

`,F ,PC ,PV
]

1: LR ← ε, LP ← ε, o←⊥
2: (PP,MK)

$← Setup(1`,F ,PC ,PV)

3: o = (F, x, aux)
$← AO(PP)

4: for all λC(vi) ∈ LR do
5: if (λC(o) 6 λC(vi)) then return 0
6: for all λC(o′) ∈ LP do
7: if (λC(o′) = λC(o)) then return 0

8: (S, V)
$← UID × UID s.t. λC(S) > λC(o) and λV (V) > λV (o)

9: SKS
$← Register(S, λC(S),MK,PP)

10: SKV
$← Register(V, λV (V),MK,PP)

11: PKF
$← FnInit(F,MK,PP)

12: EKF,S
$← Certify(S, F,MK,PP)

13: (σo, V Ko, RKo)
$← AO(o, λ(o), PKF ,PP)

14: θo
$← Compute(σo, EKF,S , SKS , λ

C(S), λC(o),PP)
15: (y, τθo)← Verify(θo, SKV , V Ko, λ

V (V), λV (o),PP)
16: if ((y, τθo) 6= (⊥, (reject, ·))) then return 1
17: else return 0

Oracle 4.1 ORegister(ID, λ(ID),MK,PP)

1: if (o 6=⊥) and (λ(ID) > λC(o)) then
2: return ⊥
3: LR ← LR ∪ λ(ID)
4: return Register(ID, λ(ID),MK,PP)

Oracle 4.2 OProbGen(x′, SKC , PKF ′ , λ(C), λ(o′),PP)

1: if (λC(o′) = λC(o)) then return ⊥
2: LP ← LP ∪ λ(o′)
3: return ProbGen(x′, SKC , PKF ′ , λ(C), λ(o′),PP)

4.4.1 Authorised Outsourcing

The notion of authorised outsourcing formalises that a delegator may not outsource

any computation for which he is not authorised — that is, any computation o where

λC(o) 66 λC(C). Clearly, within our framework we cannot make any guarantees about

what an entity may do externally. For instance, we cannot enforce that a client does

not circumvent the access control policies using an external server not subject to these

controls; however we do enforce that to use the provided functionality (i.e. to contract an

available server registered in this system) they must prove authorisation. This assumption

seems reasonable, taking into consideration organisational boundaries — external control

should perhaps be enforced by limiting external communication channels (e.g. using a

strict firewall). Similarly, we cannot enforce that an entity does not share key content, but

we do ensure that such collusion does not enable access that either entity alone could not

access. Due to the revocation functionality introduced in Chapter 3, it may be undesirable

for a server to share key material as he must trust the additional server not to cheat.

147

4.4 Security Models

The authorised outsourcing game is presented in Game 4.1 and uses Oracles 4.1 and

4.2. First the challenger initialises an empty list LR of security labels that have been

registered, an empty list LP of computations that have been given as input to ProbGen,

and a challenge computation o which is initially set to a distinguished symbol ⊥. It runs

the Setup procedure for the scheme and gives the adversary the public parameters and

oracle access as specified in Section 3.4.

Eventually, the adversary outputs its choice of challenge outsourced computation o to

attack, which specifies F and x and any auxiliary information that should be considered

when computing its security label. On line 4, we ensure that no security label that A has

queried to the Register oracle may allow the derivation of a key for λC(o) as this would be

a trivial win, and we return 0 since the adversary has not found a valid attack target. We

also require that any ID that A queries to its oracles must previously have been queried to

the Register oracle i.e. SKID will be well-defined for any ID queried to an oracle since ID

will already have been queried to Register (which is in keeping with realistic operation).

On line 6, we check that the ProbGen oracle has not been queried on the chosen challenge

computation o as the oracle output could be used to trivially win the game.

The challenger then selects two entities S and V at random such that S is a server

authorised to compute the challenge computation, and V is a verifier authorised to verify

the challenge computation. These will be used by the challenger to simulate processing

the challenge computation. It registers both entities, initialises the challenge function F

and certifies S to compute F . The adversary is then challenged, given all information that

a real attacker may learn and oracle access, to output an encoded input that the Compute

and Verify algorithms will accept — that is, an unauthorised adversary must produce an

input that is accepted and computed on by honest entities.

In Oracle 4.1, the challenger checks that the security label for the queried identity is not

an ancestor of the challenge computation label and returns ⊥ otherwise; if such a key

was issued then the adversary would be able to use it to legitimately act on the challenge

computation and trivially win. If ⊥ was not returned, the security label is added to the

list LR and the challenger returns the output of running Register. Similarly, in Oracle 4.2,

the challenger returns ⊥ if queried for a computation with the challenge computation

label λC(o) as the resulting values would form a winning adversarial output. Otherwise,

the queried computation is added to the list LP and the results of running ProbGen are

148

4.4 Security Models

returned.

Definition 4.2. The advantage of a PPT adversary A in the AuthO game for an PVC-

AC construction, PVCAC, for a family of functions F and computational and verification

access control posets PC and PV respectively, is defined as:

AdvAuthO
A (PVCAC, 1

`,F ,PC ,PV) = Pr
[
1

$← ExpAuthO
A

[
RPVC, 1`,F ,PC ,PV

]]
.

An PVC-AC scheme, PVCAC, is secure with respect to authorised outsourcing if, for all

PPT adversaries A,

AdvAuthO
A (PVCAC, 1

`,F ,PC ,PV) 6 negl(`).

4.4.2 Authorised Computation

Authorised computation, given in Game 4.2 and Oracles 4.3 and 4.4, proceeds in a similar

way to the authorised outsourcing game and captures the notion that a computational

result should only be considered valid if generated by an authorised party.

Game 4.2 ExpAuthC
A

[
PVCAC, 1

`,F ,PC ,PV
]

1: L← ε, o←⊥
2: (PP,MK)

$← Setup(1`,PC ,PV)

3: o = (F, x, aux)
$← AO(PP)

4: for all λC(vi) ∈ L do
5: if (λC(o) 6 λC(vi)) then return 0

6: (C, V)
$← UID × UID s.t. λC(C) > λC(o) and λV (V) > λV (o)

7: SKC
$← Register(C, λC(C),MK,PP)

8: SKV
$← Register(V, λV (V),MK,PP)

9: PKF
$← FnInit(F,MK,PP)

10: (σo, V Ko, RKo)
$← ProbGen(x, SKC , PKF , λ(C), λ(o),PP)

11: θo
$← AO(σo, V Ko, o, λ

C(o), PKF , RKo,PP)
12: (y, τθo)← Verify(θo, SKV , V Ko, λ

V (V), λV (o), RKo,PP)
13: if (((y, τθo) 6= (⊥, (reject, ·)))) then return 1

14: else return 0

The game begins with the challenger setting up the system and providing oracle access

for the adversary. A chooses a target computation o that it is not authorised to compute

by any of the keys it holds. The challenger then simulates two entities: a delegator and a

verifier that are authorised for this computation, and creates an encoded input by running

ProbGen on the adversary’s target computation. This is given to A who must produce an

149

4.4 Security Models

Oracle 4.3 ORegister(ID, λ(ID),MK,PP)

1: if (o 6=⊥) and (λ(ID) > λC(o)) then
2: return ⊥
3: LR ← LR ∪ λ(ID)
4: return Register(ID, λ(ID),MK,PP)

Oracle 4.4 OCompute(σo′ , EKF ′,S , SKS , λ
C(S), λC(o′),PP)

1: if (o′ = o) then return ⊥
2: return Compute(σo′ , EKF ′,S , SKS , λ

C(S), λC(o′),PP)

encoded output that is accepted by the verifier. Note that although the adversary chooses

the input to the computation, and therefore can certainly compute F (x), it still should

not be able to convince the verifier to accept (since the Verify algorithm should enforce

the computational access control policy and reject responses from unauthorised servers).

The Register oracle is identical to that for authorised outsourcing and prevents the adver-

sary learning a secret key for the challenge label (or any ancestors that enable derivation

of the challenge label). The Compute oracle, in Oracle 4.4, returns ⊥ if queried for the

challenge computation as this would trivially verify correctly and win the game.

Definition 4.3. The advantage of a PPT adversary A in the AuthC game for an PVC-

AC construction, PVCAC, for a family of functions F and computational and verification

access control posets PC and PV respectively, is defined as:

AdvAuthC
A (PVCAC, 1

`,F ,PC ,PV) = Pr
[
1

$← ExpAuthC
A

[
RPVC, 1`,F ,PC ,PV

]]
.

An PVC-AC scheme, PVCAC, is secure with respect to authorised computation if, for all

PPT adversaries A,

AdvAuthC
A (PVCAC, 1

`,F ,PC ,PV) 6 negl(`).

4.4.3 Authorised Verification

In Game 4.3 and Oracles 4.5 and 4.6, we capture the notion that an unauthorised verifier

should not be able to learn the output of a computation. This is formulated in an indis-

tinguishability game, where the adversary, on line 3, chooses two computations o0 and o1

to give to the challenger. To avoid a trivial win, we require that neither of the associated

labels in the verification poset are less than or equal to a label queried to the Register ora-

150

4.4 Security Models

Game 4.3 ExpAuthV
A

[
PVCAC, 1

`,F ,PC ,PV
]

1: L← ε, o0 ←⊥, o1 ←⊥
2: (PP,MK)

$← Setup(1`,PC ,PV)

3: (o0, o1)
$← AO,Retrieve(PP)

4: for all λV (vi) ∈ L do
5: if ((λV (o0) 6 λV (vi)) or (λV (o1) 6 λV (vi))) then return 0

6: b
$← {0, 1}

7: (C, S)
$← UID × UID s.t. λC(C) > λC(ob) and λC(S) > λC(ob)

8: SKC
$← Register(C, λC(C),MK,PP)

9: SKS
$← Register(V, λC(S),MK,PP)

10: PKF
$← FnInit(F,MK,PP)

11: EKF,S
$← Certify(S, F,MK,PP)

12: (σob , V Kob , RKob)
$← ProbGen(x, SKC , PKF , λ(C), λ(ob),PP)

13: θob
$← Compute(σob , EKF,S , SKS , λ

C(S), λC(ob),PP)

14: b′
$← AO,Retrieve(θob , V Kob , RKob , λ(o0), λ(o1), PKF ,PP)

15: return b′ = b

Oracle 4.5 ORegister(ID, λ(ID),MK,PP)

1: if ((ob 6=⊥) and ((λ(ID) > λV (o0)) or (λ(ID) > λV (o1))) then
2: return ⊥
3: L← L ∪ λ(ID)

4: return SKID
$← Register(ID, λ(ID),MK,PP)

Oracle 4.6 ORetrieve(SKV , RTo′ , τθo′ , V Ko′ , RKo′ , λ
V (V), λV (o′),PP)

1: if ((o′ = o0) or (o′ = o1)) then return ⊥
2: return Retrieve(SKV , RTo′ , τθo′ , V Ko′ , RKo′ , λ

V (V), λV (o′),PP)

cle (otherwise, the adversary is in fact authorised to verify the chosen computation). The

challenger chooses one of these at random and simulates outsourcing and computing this

computation. To do so, on line 7, the challenger chooses two random entities, one to act

as a delegator and one to act as a server. These identities will be registered in the system

and used to simulate running ProbGen and Compute as in a real system. The adversary

is provided with the encoded output from this computation, along with the verification

keys and other public information, and must guess which computation was chosen. As

the adversary chose both computations, it can certainly work out the results; however,

no information about the result should leak from the encoded output unless the verifier

is authorised, and hence the adversary should be unable to tell which result the output

corresponds to.

As with the other games in this chapter, the adversary is given oracle access to the functions

FnInit(·,MK,PP), Register(·, ·,MK,PP), Certify(·, ·,MK,PP), ProbGen(·, SK(·), ·, ·, ·,PP),

Compute(·, ·, SK(·), ·, ·, PP) and Revoke(·, ·,MK,PP), which is denoted by O. As previ-

ously, the Register oracle, given in Oracle 4.5, returns ⊥ if queried for a label that would

151

4.4 Security Models

authorise the adversary for the challenge computation. Unlike prior Register oracles, this

check is performed on the verification poset rather than the computational poset, and

checks against both challenge computations o0 and o1 (otherwise, the adversary could

determine which computation was chosen based on which labels are restricted in these

queries). The adversary is also given access to a Retrieve oracle, specified in Oracle 4.6, so

that it can observe outputs for the challenge label. However, to avoid giving the adversary

the information required to form a trivial win or to reveal which computation was chosen,

the challenger returns ⊥ if queried for either challenge computation o0 or o1.

Definition 4.4. The advantage of a PPT adversary A in the AuthV game for an PVC-

AC construction, PVCAC, for a family of functions F and computational and verification

access control posets PC and PV respectively, is defined as:

AdvAuthV
A (PVCAC, 1

`,F ,PC ,PV) = Pr
[
1

$← ExpAuthV
A

[
RPVC, 1`,F ,PC ,PV

]]
− 1

2 .

An PVC-AC scheme, PVCAC, is secure with respect to authorised verification if, for all

PPT adversaries A,

AdvAuthV
A (PVCAC, 1

`,F ,PC ,PV) 6 negl(`).

4.4.4 Weak Input Privacy

The notion of weak input privacy, captured in Game 4.4 and Oracles 4.7 and 4.8, is not as

strong as the input privacy often considered in PVC settings where computational servers

learn nothing about the data they are working on. Instead, we are interested in ensuring

that servers (or other entities) that are not authorised to access (compute on) the input

data may not learn x. If full input privacy is required then the underlying PVC scheme,

such as the KP-ABE based one used as a black box in the construction, could be replaced

by one built from a predicate encryption scheme for the same class of functions.

The game begins in a similar way to the authorised verification game with the adversary

selecting two computations that he is not authorised to compute by any key that he

has queried to the Register oracle (Oracle 4.7). The Compute oracle in Oracle 4.8 can

be queried for any input except the challenge inputs. The challenger then simulates the

outsourcing of one of these computations using a simulated delegator C, and gives the

152

4.5 Construction

Game 4.4 ExpwIP
A

[
PVCAC, 1

`,F ,PC ,PV
]

1: L← ε, o0 ←⊥, o1 ←⊥
2: (PP,MK)

$← Setup(1`,PC ,PV)

3: (o0, o1)
$← AO(PP)

4: for all λC(vi) ∈ L do
5: if ((λC(o0) 6 λC(vi)) or (λC(o1) 6 λC(vi))) then return 0

6: b
$← {0, 1}

7: C
$← UID s.t. λC(C) > λC(ob)

8: SKC
$← Register(C, λC(C),MK,PP)

9: PKF
$← FnInit(F,MK,PP)

10: (σob , V Kob , RKob)
$← ProbGen(x, SKC , PKF , λ(C), λ(ob),PP)

11: b′
$← AO(σob , V Kob , λ(o0), λ(o1), PKF ,PP)

12: return (b′ = b)

Oracle 4.7 ORegister(ID, λ(ID),MK,PP)

1: if ((o0, o1 6=⊥) and ((λ(ID) > λC(o0)) or (λ(ID) > λC(o1)))) then
2: return ⊥
3: LR ← LR ∪ λ(ID)
4: return Register(ID, λ(ID),MK,PP)

Oracle 4.8 OCompute(σo′ , EKF ′,S , SKS , λ
C(S), λC(o′),PP)

1: if (o′ = o) then return ⊥
2: return Compute(σo′ , EKF ′,S , SKS , λ

C(S), λC(o′),PP)

adversary the resulting encoded input. The adversary must guess which computation the

input corresponds to; i.e. which input data is encoded in the input.

Definition 4.5. The advantage of a PPT adversary A in the wIP game for an PVC-

AC construction, PVCAC, for a family of functions F and computational and verification

access control posets PC and PV respectively, is defined as:

AdvwIP
A (PVCAC, 1

`,F ,PC ,PV) = Pr
[
1

$← ExpwIP
A

[
RPVC, 1`,F ,PC ,PV

]]
− 1

2 .

An PVC-AC scheme, PVCAC, is secure with respect to weak input privacy if, for all PPT

adversaries A,

AdvwIP
A (PVCAC, 1

`,F ,PC ,PV) 6 negl(`).

4.5 Construction

We now provide an instantiation of PVC-AC that is provably secure with respect to the

security definitions in Section 3.4. The approach we take makes generic, black-box use

of any RPVC scheme, such as that presented in Chapter 3, and introduces the use of a

153

4.5 Construction

symmetric key assignment scheme (KAS) (see Section 2.4) to restrict the behaviour of

entities.

4.5.1 Informal Overview

The graph-based access control policies discussed in Section 4.2 assign labels to each entity

and outsourced computation. The ordering relation and the correctness criterion ensures

that entities are authorised for all appropriate computations (those that are descendants

of their label in the Hasse diagram of the poset). A KAS is designed to enforce such

policies, and assigns a key to each label. Each entity is provided with a key corresponding

to their label, and they may derive keys for all descendants. As per the security criterion,

users may not collude to derive keys for which they are not authorised.

In our setting, we restrict the computations a delegator may outsource, the computations

a server may perform, and the results a verifier may learn. We use two independent

KASs instantiated over the computation and verification posets, PC and PV respectively.

Delegators and servers are issued a key according to their label in the computation poset,

while delegators and verifiers are given a key from the verification KAS.

Appropriate keys from the computation KAS are used to encrypt the encoded input for a

computation. To encode an input in a manner that will be accepted by a server, delegators

must encrypt the encoded input using the key, κλC(o), associated to the computation within

the computation poset. To do so, the delegator must be able to derive κλC(o) and hence

must hold a key at that level or higher i.e. λ(C) > λ(o) — delegators must be authorised

by the KDC to outsource the computation. Similarly, only authorised servers can derive

the decryption key to access the encoded input and perform the computation. By the

IND-CPA security of the symmetric encryption scheme used, no information about the

encoded input is learnt by an unauthorised entity.

To enforce verification policies, delegators generate a retrieval key during delegation, and

encrypt this using an appropriate key from the verification KAS. Then, only verifiers that

can derive this key may decrypt the ciphertext to recover the retrieval key and learn the

output.

154

4.5 Construction

4.5.2 Instantiation

Let RPVC = (RPVC.Setup, RPVC.FnInit, RPVC.Register, RPVC.Certify, RPVC.ProbGen,

RPVC.Compute, RPVC.BVerif, RPVC.Retrieve, RPVC.Revoke) be an RPVC scheme, as

defined in Chapter 3, for a class of functions F . Let SE= (SE.KeyGen, SE.Encrypt,

SE.Decrypt) be an authenticated symmetric encryption scheme secure in the sense

of IND-CPA ∧ INT-PTXT, and let KAS = (KAS.MakeKeys, KAS.MakeSecrets,

KAS.MakePublicData, KAS.GetKey) be a key assignment scheme secure in the sense

of strong-key indistinguishability7 whose keys are compatible with SE (i.e. the

keys generated in the KAS have the same distribution as those generated by

SE.KeyGen). Finally, let PC denote the poset encoding computation policies (e.g.

(L,6)), and similarly let PV denote the poset encoding verification policies (e.g.

(L,>))8. Then, for the same class of functions F , there is a PVC-AC scheme

PVCAC = (PVCAC.Setup, PVCAC.FnInit, PVCAC.Register, PVCAC.Certify, PVCAC.ProbGen,

PVCAC.Compute, PVCAC.BVerif, PVCAC.Retrieve, PVCAC.Revoke) defined in Algorithms

4.1-4.9 which operates as follows.

1. PVCAC.Setup, presented in Algorithm 4.1, runs the setup algorithm for the under-

lying RPVC scheme. It also instantiates two KASs: one for the computational

poset PC and one for the verification poset PV . These will form the cryptographic

enforcement mechanisms for computational and verification access control policies

respectively. The public parameters for the PVC-AC system comprise the RPVC

public parameters and the public labels for the two KASs. The master secret key

for the PVC-AC system comprises the master secret of the RPVC scheme and the

keys and secrets for the two KASs.

2. PVCAC.FnInit, presented in Algorithm 4.2, simply outputs the public delegation key

for the RPVC scheme.

3. PVCAC.Register, presented in Algorithm 4.3, differs based on whether the queried

identity ID is a delegator, server, or verifier. If ID is a server, then it must be

registered in the underlying RPVC system (servers are the only entities that need

7It has been shown that S-KI is equivalent to KI [35]. We make use of the additional queries in the
S-KI game, but due to the equivalence this is not a strengthening of the assumptions. It is interesting to
note that the form of the S-KI game is useful as a proof technique besides the original motivation to reflect
realistic attacks.

8We use κPC to denote the set of all keys generated by the KAS for the computation poset PC and,
for a label λC(ID) ∈ PC, the associated key is κλC(ID) ∈ κPC .

155

4.5 Construction

Algorithm 4.1 (PP,MK)
$← Setup(1`,PC ,PV)

1: (PP′,MK′)
$← RPVC.Setup(1`)

2: κPC

$← KAS.MakeKeys(1`,PC)

3: ωPC

$← KAS.MakeSecrets(1`,PC)

4: PubPC

$← KAS.MakePublicData(1`,PC)

5: κPV

$← KAS.MakeKeys(1`,PV)

6: ωPV

$← KAS.MakeSecrets(1`,PV)

7: PubPV

$← KAS.MakePublicData(1`,PV)
8: PP← (PP′, PubPC

, PubPV
)

9: MK← (MK′, κPC
, ωPC

, κPV
, ωPV

)

Algorithm 4.2 PKF
$← FnInit(F,MK,PP)

1: PKF
$← RPVC.FnInit(F,MK′,PP′)

registering in RPVC). The secret key for the server comprises the signing key pro-

duced by the RPVC Register algorithm, as well as the KAS key and secret for the

computational label of the server (such that it can derive keys for all computations

it is authorised to compute).

If ID is a delegator then it must be able to encrypt both encoded inputs (protected by

computational policies over PC) and retrieval keys (protected by verification policies

over PV). Therefore, it is issued the KAS keys and secrets for the security labels

assigned to ID in both KASs.

Finally, if ID is a verifier, it must be able to decrypt ciphertexts using KAS keys

associated to the verification poset (to recover valid retrieval keys). Therefore, it is

issued the KAS key and secret for the label of ID in the verification poset.

Algorithm 4.3 SKID
$← Register(ID, λ(ID),MK,PP)

1: if ID is a server then
2: SK ′ID

$← RPVC.Register(ID,MK′,PP′)
3: SKID ← (SK ′ID, κλC(ID), ωλC(ID))
4: else if ID is a delegator then
5: SKID ← (κλC(ID), ωλC(ID), κλV (ID), ωλV (ID))
6: else
7: SKID ← (κλV (ID), ωλV (ID))

4. PVCAC.Certify, presented in Algorithm 4.4, simply runs the Certify algorithm of the

underlying RPVC scheme as the cryptographic enforcement mechanism is not re-

quired to certify servers for particular functions.

5. PVCAC.ProbGen, presented in Algorithm 4.5, first runs the ProbGen algorithm for

the underlying RPVC scheme. It must then protect the resulting encoded input and

retrieval key in accordance with the computational and verification access control

156

4.5 Construction

Algorithm 4.4 EKF,S
$← Certify(S, F,MK,PP)

1: EKF,S
$← RPVC.Certify(S, F,MK′,PP′)

policy respectively. To do so, it derives the keys for the labels λC(o) and λV (o)

from the secret issued to the delegator running the algorithm. If both keys are

derived successfully (i.e. the delegator is authorised to outsource this computation)

then these keys are used to encrypt the encoded input and retrieval key respectively

using the symmetric encryption scheme.

Algorithm 4.5 (σo, V Ko, RKo)
$← ProbGen(x, SKC , PKF , λ(C), λ(o),PP)

1: (σ′o, V Ko, RK
′
o)

$← RPVC.ProbGen(x, PKF ,PP′)
2: κλC(o) ← KAS.GetKey(λC(C), λC(o), ωλC(C),PP)

3: κλV (o) ← KAS.GetKey(λV (C), λV (o), ωλV (C),PP)
4: if (κλC(o) 6=⊥) and (κλV (o) 6=⊥) then

5: σo ← (λC(o),SE.Encrypt(σ′o, κλC(o)))

6: RKo ← (λV (o),SE.Encrypt(RK ′o, κλV (o)))

6. PVCAC.Compute, presented in Algorithm 4.6, first attempts to derive the key κλC(o)

for the computation, using the secret issued to the server by the KDC. If derivation

is unsuccessful then the algorithm terminates as the server is unauthorised for the

computation. Otherwise, the encoded input is decrypted and the resulting plaintext

used as input to the Compute algorithm of the underlying RPVC scheme.

Algorithm 4.6 θo
$← Compute(σo, EKF,S , SKS , λ

C(S), λC(o),PP)

1: Parse σo as (λC(o), c)
2: κλC(o) ← KAS.GetKey(λC(S), λC(o), ωλC(S),PP)
3: if (κλC(o) =⊥) then
4: return θo ←⊥
5: else
6: σ′o ← SE.Decrypt(c, κλC(o))
7: if (σ′o =⊥) then return θo ←⊥
8: else θo

$← RPVC.Compute(σ′o, EKF,S , SKS , PP
′)

7. PVCAC.BVerif, presented in Algorithm 4.7, simply runs the corresponding algorithm

of the underlying RPVC scheme, as any entity is authorised to perform this step in

our model.

8. PVCAC.Retrieve, presented in Algorithm 4.8, first attempts to derive the key asso-

ciated to the verification label λV (o) of the computation. If unsuccessful, then the

verifier is unauthorised and the algorithm terminates. Otherwise, the derived key

is used with the symmetric decryption algorithm to recover the retrieval key which

157

4.6 Proofs of Security

Algorithm 4.7 (RTo, τθo)← BVerif(θo, V Ko,PP):

1: (RTo, τθo)← RPVC.BVerif(θo, V Ko,PP′)

can then be used in the RPVC.Retrieve algorithm to produce the output of the com-

putation.

Algorithm 4.8 y ← Retrieve(SKV , RTo, τθo , V Ko, RKo, λ
V (V), λV (o),PP):

1: Parse RKo as (λV (o), e)
2: κλV (o) ← KAS.GetKey(λV (V), λV (o), ωλV (V),PP)
3: if κλV (o) =⊥ then
4: return y ←⊥
5: else
6: RK ′o ← SE.Decrypt(e, κλV (o))

7: y ← RPVC.Retrieve(RTo, τθo , V Ko, RK
′
o,PP′)

9. PVCAC.Revoke, presented in Algorithm 4.9, simply runs the RPVC.Revoke algorithm.

As this is run by the KDC, access control restrictions do not need to be applied.

Algorithm 4.9 UM
$← Revoke(τθo , F,MK,PP)

1: return RPVC.Revoke(τθo , F,MK,PP′)

It is straightforward to see that correctness of this construction follows from the correctness

of the RPVC scheme.

Theorem 4.1. Given any strong-key-indistinguishability secure KAS, any RPVC scheme

secure in the sense of public verifiability and revocation for a class of functions F ,

and an authenticated symmetric encryption scheme secure in the sense of IND-CPA ∧

INT-PTXT, let PVCAC be the PVC-AC scheme defined in Algorithms 4.1-4.9. Then

PVCAC is secure in the sense of public verifiability, revocation, authorised outsourcing,

authorised computation, weak input privacy, and authorised verification for the same class

of functions F .

4.6 Proofs of Security

Informally, the security proofs follow from the security of the underlying RPVC scheme

and the S-KI, INT-PTXT and IND-CPA security properties. The proofs for public veri-

fiability and revocation are similar to the proofs given in Chapter 3 up to some syntactical

changes, and so we do not replicate these here.

158

4.6 Proofs of Security

Lemma 4.1. Given a secure RPVC scheme, a symmetric authenticated encryption scheme

secure in the sense of IND-CPA∧ INT-PTXT and a KAS secure with respect to strong-

key indistinguishability, let PVCAC be the PVC-AC scheme defined in Algorithms 4.1–4.9.

Then PVCAC is secure in the sense of authorised outsourcing (Game 4.1).

Proof. Let ASE be an adversary playing the IND-CPA game with a challenger C against

SE . We first transition to a slightly modified version of the authorised outsourcing game,

showing a negligible difference between the two. We can then use an adversary against

this modified game to break the IND-CPA security of the symmetric encryption scheme.

• Game 0. This is the authorised outsourcing game as defined in Section 4.4.1.

• Game 1. This is identical to Game 0, except that we replace the key κλC(o) for

the challenge computation o with a key κ? drawn uniformly at random from the

keyspace.

Game 0 to Game 1 This game hop relies on the strong key indistinguishability (S-KI)

of the KAS. Suppose, for a contradiction, that an adversaryAV C exists that can distinguish

Game 0 from Game 1 with non-negligible advantage δ. Then we show that there exists

an adversary ASE that, using AV C as a sub-routine, breaks the S-KI of the KAS also

with advantage δ. AV C will play either Game 0 or Game 1 with ASE acting as the

challenger, and must guess correctly which game he is playing. ASE in turn will play the

S-KI game with a challenger C. This reduction is important to ensure that no additional

information about the encryption key is leaked through the construction.

1. C begins by selecting a bit b
$← {0, 1} which will determine whether the challenge

key is real or random, and hence whether AV C plays Game 0 or Game 1. C

continues by instantiating the KAS in lines 2 to 5 of Game 2.4 and giving the public

information to ASE .

2. ASE runs lines 1 and 2 of the authorised outsourcing game to initialise LR, LP , o

and the PVC-AC system, and sends AV C the generated public parameters. During

the Setup algorithm in line 2, ASE will not run lines 2 to 4 of Algorithm 4.1. Instead,

it will set PubPC to be the challenge public information from the S-KI challenger C

and will make use of oracle queries to C for the remaining parameters.

159

4.6 Proofs of Security

3. AV C is then given oracle access. Queries to the FnInit, Certify and Revoke functions

can be answered simply by running the corresponding algorithm. Queries to the

remaining algorithms may need to make use of KAS derived keys. ASE can use

its knowledge of the verification poset and the corresponding KAS (which it owns),

where appropriate, but it does not know anything other than the public information

for the computational poset, because this is the challenge poset for the S-KI game.

Thus, ASE will issue Corrupt oracle queries to retrieve the necessary keys and secret

information for the queried identity label. Since AV C has not yet chosen a challenge

computation o, and ASE has not yet chosen a challenge node v?, the Corrupt oracle

will always return a valid key and secret pair, which ASE can use to form a full,

valid response for AV C .

4. Eventually, AV C will output a challenge computation o. ASE will output 0 and

end the game if this choice is invalid — that is, if AV C is authorised to outsource

o by any key λC(vi) queried to the Register oracle. ASE will send λC(o) to C as

the challenge node v? for the S-KI game. Note that this is a valid challenge in the

S-KI game because the only queries made to the Corrupt oracle were as a result of

queries to the Register, ProbGen and Compute queries. Recall that we require any

identity ID queried to an oracle to have previously been queried to Register such

that SKID is well-defined (as it would be in a realistic system evolution). Therefore,

any KAS key for a label λC(ID) required in a ProbGen or Compute oracle query,

would previously have been queried to Register. Now, in the authorised outsourcing

game, AV C may not choose a challenge computation o for which he is authorised —

that is, any o such that λC(o) 6 λC(vi) for any λC(vi) queried to the Register oracle.

This corresponds precisely to the condition on the choice of v? in the S-KI game.

C will return a key κ? which corresponds either to the real key κλC(o) or a random

key from the keyspace, chosen according to the bit b chosen at the beginning of the

game.

5. ASE must now simulate a server and a verifier. It does this by first registering

two such entities, S and V respectively, that are authorised to compute and verify o

respectively. It chooses a random S such that λC(S) = λC(o) and hence κλC(S) = κ?.

Note that this is the only part of SKS that is required, and in particular ωλC(S) is

not required (as this is only needed for deriving keys, and S will only need to use

κ?). To register S, ASE runs Register and sets SKS = (SK ′S , κ
?,⊥). Furthermore,

to register V , ASE sets SKV = (κλV (V), ωλV (V)).

160

4.6 Proofs of Security

6. ASE then runs lines 11 and 12 as written in the authorised outsourcing game (Game

4.1) to initialise F and certify the selected server S for F . AV C is given PKF and

oracle access. As before, for queries to FnInit, Certify and Revoke, ASE simply runs

the corresponding algorithm.

For queries to Register for an identity ID, ASE will return ⊥ if λ(ID) > λC(o)

as specified in Oracle 4.1 (since AV C should not be authorised to outsource o).

Otherwise, ASE will issue a Corrupt oracle query for (λ(ID), λC(o)). Now, since ASE

did not output ⊥ already, v? 66 vi in the S-KI game (or equivalently, λC(o) 66 λ(ID))

and hence C will always return a valid key and secret pair which ASE can use to

simulate running Register.

For queries to ProbGen, observe that only the KAS keys and not the KAS secrets

are required to form a correct output, and that Oracle 4.2 returns ⊥ if queried for

λC(o) which is the challenge label in the S-KI game. The Corrupt oracle (Oracle 2.3)

returns (at least) a key for all queries except the challenge label. Therefore, for all

queries that AV C does not return ⊥ for, C will be able to provide a key that can be

used to simulate running ProbGen.

Finally, for queries to Compute, again observe that only the KAS key for the queried

label is required to form a valid output, and not the KAS secret. The Corrupt oracle

will issue a valid key for all labels but the challenge label λC(o), and so in these cases,

ASE can successfully simulate the Compute algorithm. If, on the other hand, a query

is made to the Compute oracle for the challenge computation, then the adversary

has either submitted a malformed encoded input (and ⊥ should be returned), or the

adversary has submitted a correctly formed encoded input, and hence has already

won the game and needn’t make this query.

7. Eventually, AV C outputs its encoded output, verification key and retrieval key for

the challenge computation. ASE runs the Compute algorithm as written, as it knows

κλC(o) from κλC(C), and the Verify algorithm as written since it owns the verification

KAS. ASE can therefore return the result of the game to AV C as expected.

Now, AV C has been provided all information that an adversary against the authorised

outsourcing game would be given and will guess which game he is playing with advantage

δ. Notice that the distribution of the game generated by ASE is precisely that of Game

0 if b = 0 (i.e. the real KAS key is used), and is precisely that of Game 1 otherwise

161

4.6 Proofs of Security

(i.e. a random key was chosen). Thus, ASE can simply forward AV C ’s guess to C as its

guess in the S-KI game. We conclude that if AV C guesses correctly with non-negligible

advantage δ, then ASE can break the strong-key indistinguishability of the KAS also with

non-negligible advantage δ. However, since we assumed the KAS was S-KI secure, such

an adversary cannot exist and hence Game 0 is indistinguishable from Game 1 except

with at most a negligible advantage ε 6 1− δ.

Reduction to INT-PTXT We have shown that, from the adversary’s point of view,

Game 1 is almost (with negligible distinguishing advantage) identical to Game 0. Thus,

we may run the adversary against Game 1 instead with at most an ε loss in the tightness

of the reduction. In essence, we have now removed any information leakage from the KAS.

We now consider the security of Game 1. To achieve a contradiction, suppose AV C is an

adversary with non-negligible advantage δ in Game 1. We show that, using this adversary

AV C as a subroutine, we can construct an adversary ASE that breaks the INT-PTXT

security of the authenticated symmetric encryption scheme SE . Let C be the INT-PTXT

challenger for ASE who in turn acts as the challenger in Game 1 for AV C .

1. C begins by initialising the list L and running SE.KeyGen(1`) to generate a key κ?,

as specified in Game 2.7. It sends the security parameter 1` to ASE .

2. ASE must now initialise Game 1 for AV C . Informally, it will set the KAS key for

the label λC(o) to be the random key κ? chosen by C. However, the challenge label is

unknown until AV C chooses it, whilst the public parameters and oracle access must

be provided before this choice. Thus, we require ASE to guess the challenge label

during Setup so that the correct key can be implicitly set to be the INT-PTXT

challenge key (and all encryptions under that key can be formed using oracle access

to C). If the number of labels in the poset is N , where N is polynomial in the

security parameter (as the scheme must be efficiently instantiable), then ASE may

guess λC(o) with probability at least 1
N . Assuming that the guess is correct, we

proceed as follows.

3. ASE runs PVCAC.Setup as given in Algorithm 4.1 with the modification that the

key for the guessed label in the computation poset, κλC(o) is implicitly set to be the

key generated by C in the IND-CPA game and the KAS is constructed in such a

162

4.6 Proofs of Security

way to be consistent with this choice. Of course, ASE does not hold κλC(o), but

will ensure that any operations using it will be performed using its oracles to C.

Since the challenge key, and hence any corresponding secret derivation information,

is unknown, it is not trivial to construct a KAS incorporating this key. However,

notice that the authorised outsourcing game (and by extension Game 1) does not

permit the adversary to query any label that is an ancestor of the challenge label

in the computation poset. Thus, KAS keys for the set of ancestors will not be

needed, and a KAS can simply be instantiated over the remaining nodes (and the

public information for the ancestor set simulated; as the keys cannot be derived,

the public information need not be functionally correct). Remaining keys (for the

set of ancestors of the challenge label) can simply be generated using the security

parameter and the symmetric KeyGen algorithm. From the adversarial point of view,

this will be indistinguishable from the real games.

4. AV C is given the generated public parameters and oracle access which ASE may

respond to as follows:

• FnInit, Certify, and Revoke queries can be handled by simply calling the relevant

algorithm as these have no dependence on the KAS.

• If a Register query is made for a label λ(ID) > λC(o) as guessed by ASE then

ASE aborts the game since AV C would not then be able to choose λC(o) as

its challenge computation; hence ASE ’s guess was incorrect. Otherwise, ASE

holds the relevant KAS keys and may respond by running as specified in Oracle

Query 4.1.

• By the restriction specified on line 6 of the authorised outsourcing game, AV C

may not choose a challenge computation whose label has been queried to the

ProbGen oracle. Hence, if such a query is made at this point, then λC(o)

could not be chosen as the challenge computation and ASE ’s guess would be

incorrect; therefore, if this occurs, the game is aborted. For any other choice

of computation queried to the ProbGen oracle, ASE holds the KAS key (or

generated symmetric key) and may run Algorithm 3.5 as written.

• Observe that if a query is made to the Compute oracle for the challenge com-

putation, then the adversary has either submitted a malformed encoded input,

and ⊥ should be returned, or the adversary has submitted a correctly formed

encoded input, and hence has already won the game. For all other query inputs,

163

4.6 Proofs of Security

ASE can use one of the keys it holds to respond to the challenge by running

Algorithm 3.6 as written.

5. AV C eventually outputs a choice of challenge computation, and if this is not the

computation chosen by ASE at the beginning of the game, the game is aborted.

Otherwise, the choice of computation label is valid since the game has not already

been aborted during the oracle queries.

6. ASE should now register two entities: a computational server S and a verifier V .

However, these will not be required in the following, so ASE can simulate registering

them with labels λC(o) and λV (o) respectively and update the public parameters

accordingly without actually requiring the correct keys for these entities (as the

adversary will not see any output from these entities other than their presence in

the lists in the public parameters). ASE can also run the FnInit and Certify algorithms

as written.

7. AV C is then provided with all relevant information and is given oracle access again.

Queries can be handled as above, but Register queries now return ⊥ if the queried

label is an ancestor of the computation label in the poset i.e. exactly when ASE does

not hold a KAS key for the queried label.

8. AV C finally outputs a forged encoded input σo.

Now, observe that from the point of view of AV C , the game has been simulated correctly

up to this point and that ASE has not made any queries to its Encrypt oracle in the

INT-PTXT game. Thus, if the ciphertext c within σo decrypts successfully (which it

must for AV C to win the authorised outsourcing game), then the verification oracle Ver(c)

will output 1 and the decrypted message has certainly not been queried to the Encrypt

oracle, and thus ASE can forward c as its answer in the INT-PTXT game and win with

exactly the advantage of AV C in the authorised outsourcing game. Thus, for a poset of

polynomial size N , the advantage of ASE is δ
N which is non-negligible if AV C has non-

negligible advantage δ in the authorised outsourcing game. However, since we assumed

the authenticated symmetric encryption scheme to be secure, such an adversary with

non-negligible advantage against the authorised outsourcing game cannot exist.

Thus, we conclude, the overall advantage against the authorised outsourcing game is the

sum of the distinguishing advantage between Game 0 and Game 1, and the advantage

164

4.7 Conclusion

in the reduction to INT-PTXT, both of which we have shown to be negligible. Therefore,

the overall advantage against the authorised outsourcing game is negligible.

We remark that in the above proof we required ASE to correctly guess the label that

AV C would select ahead of time. This is very similar to the notions of security commonly

found in functional encryption primitives, particularly identity-based encryption [32] and

attribute-based encryption [27,66]. In these settings, it is common to refer to the method

of guessing the correct label as complexity leveraging which results in a polynomial loss

in the tightness of the reduction. An alternative, which could equally be taken here,

is to formulate a weaker selective notion of security in which the adversary must select

the challenge label at the beginning of the game before seeing the public parameters

(in a similar fashion to the selective notions of security for ABE schemes discussed in

Section 2.8.5).

We also note that the restriction on queries to the ProbGen oracle (i.e. that the challenge

computation cannot be queried) is stronger than required for our particular construc-

tion due to the Encrypt oracle available in the INT-PTXT game. An alternative would

be to allow queries to ProbGen for the challenge computation but require that the final

adversarial output is distinct from those given in response to these queries.

The remaining proofs follow a similar line of argument and can be found in Appendix A.

The proof of Theorem 4.1 follows as a corollary of Lemma 4.1 and Lemmas A.1 to A.3.

4.7 Conclusion

In this chapter, we have motivated the need for the cryptographic enforcement of access

control policies in the setting of outsourced computation, particularly in the multi-user

setting that we developed in Chapter 3. As developments in VC continue towards such

settings, it is vital to enable restrictions to be placed on: the computations that delegators

can outsource (both from the perspective of separation of duties, and considering a server

providing differing levels of service for different users); the computations a server may

perform (such that certain computations, over sensitive data say, may only be performed

by a server satisfying a policy); and the verifiers that may learn the output of the result

165

4.7 Conclusion

(e.g. ensuring that read access to the newly generated data is handled in a way that is

consistent with the sensitivity of the inputs). We have shown example graph-based access

control policies for these scenarios, as well as providing a formal definitional framework,

security models, and a provably secure construction built from key assignment schemes.

It may also be interesting to consider alternative enforcement mechanisms, such as authen-

tication protocols that enforce graph-based authorisation policies to achieve ticket-based

access control to a computational service. Such protocols have been explored by Alder-

man and Crampton [2] where they show that standardised authentication protocols can

be easily extended (for example, using a KAS) to authenticate a user as possessing a cer-

tain set of access rights rather than to authenticate individual identities. They also show

that this model of authentication can lead to novel authentication protocols by choosing

appropriate posets of security labels. In Chapter 6, we will consider the use of dual-policy

ABE to outsource computations (using the KP-ABE policy) and enforcing access control

(using the CP-ABE policy).

Specific VC scenarios may lead to interesting access control models. One particularly

applicable setting for the enforcement of access control policies is verifiable searchable en-

cryption [37, 99]. Consider a remote database host that returns verifiably correct results

to user queries (computations). In practice it is unlikely that all users should have un-

restricted access to the entire database. It is imperative that only authorised users may

perform specific queries (those relating solely to their duties and to data for which they

have clearance) and that results remain protected to prevent data leakage.

166

Chapter 5

Verifiable Delegable Computation

Contents

5.1 Introduction . 167

5.2 Related Work . 169

5.3 Verifiable Delegable Computation 170

5.4 Potential Applications for VDC 178

5.5 Security Model . 180

5.6 Construction . 181

5.7 Proof of Security . 187

5.8 Conclusion . 192

In this chapter, we explore a novel form of publicly verifiable computation which we call

VDC. Here, rather than clients submitting input data to computational servers, the servers

themselves hold data which they allow to be verifiably queried by delegators. We see that

this setting has natural applications such as verifiable queries on remote data and verifiable

MapReduce operations. In Chapter 3, we explored techniques to achieve publicly verifiable

outsourced computation using key-policy attribute-based encryption. In this chapter, we

consider the similar primitive of ciphertext-policy attribute-based encryption (CP-ABE)

which, too, was originally designed as a cryptographic enforcement mechanism for access

control policies. We see that CP-ABE can be used to construct VDC.

5.1 Introduction

In this chapter, we consider an alternate model of outsourced computation which we call

verifiable delegable computation (VDC). VDC can be considered as a reversal of the usual

167

5.1 Introduction

model for publicly verifiable computation in which remote servers make available a static

database over which any delegator may request computations (or queries) to be performed.

Data is static and stored by the server and may be embedded in a server’s secret key,

whilst the computation of many different functions can be requested by using only public

information. Thus, in this setting, the servers act as the data owners and delegators are

more akin to data users, whereas in PVC, the delegators are the data owners and request

servers to perform work on their behalf. The relationship between servers and delegators

in VDC is more akin to the traditional client-server model.

We also see that VDC has very natural applications. For example, VDC can be used

to perform verifiable queries on remote databases without access to the data itself, or

to construct verifiable MapReduce operations for parallel computing problems. In the

latter case, worker nodes hold some input data whilst multiple delegators can request each

worker to compute some “sub-problem” F on their data portion. Verifiably correct results

are returned to the delegator who can aggregate the results to form a correct result for

the entire dataset. Note that it is not necessary to distribute the data to each delegator

to allow them to request computations. We explain these example applications in more

detail in Section 5.4.

Recall, from Chapter 3, that key-policy attribute-based encryption can be used to provide a

proof mechanism for the correctness of outsourced computations. KP-ABE was designed,

primarily, as a cryptographic enforcement mechanism for access control policies. Data

objects to be protected are associated with a descriptive set of attributes and are encrypted,

whilst users are issued a key corresponding to policies (i.e. Boolean formulae) defined over

attributes. Users may decrypt an object, and thereby gain read access, if and only if the

policy associated to their key is satisfied by the attributes associated to the object. The

key insight of Parno et al. [84] was to observe that successful decryption of a ciphertext

can be used as a proof that a Boolean formula F is satisfied by a set of attributes x (that

is, that F (x) = 1), and can therefore be used for verifiable computation. In this setting,

computational servers are certified to compute certain functions by being issued a KP-ABE

decryption key for the policy representing F , whilst delegators outsource computations by

encrypting random messages (which act as verification tokens) using attributes encoding

the input data x.

Ciphertext-policy attribute-based encryption has very similar functionality to KP-ABE,

168

5.2 Related Work

with the association of attribute sets and policies to ciphertexts and keys reversed. In

this chapter, we see that CP-ABE can also be meaningfully employed in the verifiable

computation setting to achieve VDC.

The efficiency requirement for this model is very different from the classical PVC setting:

outsourcing a computation is no longer merely an attempt to gain efficiency since the

delegator is never in possession of the input data and cannot execute the computation

himself (even if it had the necessary resources). Thus, although a scheme should aim

to be efficient, we do not have the stringent efficiency requirement present in PVC (that

outsourcing and verifying computations be more efficient than performing the computation

itself, to make outsourcing a worthwhile investment). Indeed, in the similar setting of

Backes et al. [17], the efficiency requirement is simply that verification of a result is more

efficient than computing it. We believe that CP-ABE behaves reasonably well in this

setting. Our solution achieves constant time public verification and the communication

costs to delegate computations depends on the function F , while the size of the server’s

response depends only on the size of the computational result itself and not on the size of

the input which may be large, particularly when querying remote databases. Future work

in this area should focus on reducing the cost of outsourcing computations.

We begin this chapter by reviewing related work. In Section 5.3, we describe and formally

define our model of publicly verifiable delegable computation. In Section 5.4, we consider

several example applications for VDC: namely, verifiable MapReduce operations, verifiable

queries on remote databases and three-party computations as introduced by Backes et

al. [17]. We consider security of VDC in terms of public verifiability and blind verification

in Section 5.5. We provide an example construction based on CP-ABE in Section 5.6,

which is relevant to our hybrid model of publicly verifiable computation (Chapter 6).

Finally, we prove that our construction is secure according to our security models.

5.2 Related Work

Work from the realm of authenticated data also lends itself to the concept of verifiable

computations over outsourced data. Backes et al. [17] consider computations over out-

sourced data based on privacy-preserving proofs over authenticated data outsourced by

169

5.3 Verifiable Delegable Computation

a trusted client, which we refer to as three-party computation. In this setting, a trusted

source produces and authenticates some data which is given to a server. Other parties,

that do not trust this server, can then request computations on this data and efficiently

verify the results, but should learn nothing more than the computation results and their

validity (i.e. should not learn the data itself). In our setting, the source can be thought

of as the trusted KDC and then the same trust relations hold between the parties in both

VDC and in three-party computations. The solution of Backes et al. [17] makes uses of ho-

momorphic MACs and succinct non-interactive arguments (SNARGs) [78]. Similar results

were presented in [91] using public logs. It is notable that the work by [17] and [30] also

achieve the notion of public verifiability. In this chapter, we too achieve public verifiabil-

ity but using very different techniques; we use the decryption mechanism of the CP-ABE

scheme to achieve the same goal as the SNARGs.

Chung et al. [42] introduced memory delegation where a client uploads his memory to a

server who can update and compute a function F over the entire memory. In our setting,

the data owner need not be the client and computations can be performed on a subset

of the data, but we only consider static data. Backes et al. [18] consider a client that

outsources a large amount of data and requests computations on a data portion. The

client can efficiently verify the correctness of the result without holding the input data.

Most work in this realm of outsourced data requires the client to know the data to verify,

e.g. in SNARG-based approaches [25, 30, 58] and signatures of correct computation [81].

Apon et al. [7] propose a notion of verifiable oblivious storage to ensure data confidentiality,

access pattern privacy, integrity and freshness of data accesses.

5.3 Verifiable Delegable Computation

Informally, a VDC scheme for a family of functions F comprises a set of n computation

servers Si, 1 6 i 6 n. Each server Si owns a dataset Di comprising mi data points —

that is, Di = {xi,j}mij=1. Si publishes a unique descriptive label l(xi,j) of each data point

xi,j ∈ Di.

Si may also specify a list of functions Fi ⊆ F that it is willing to compute, on behalf of any

delegator, on specified portions of its data set (those data points that are in the domain of

170

5.3 Verifiable Delegable Computation

Table 5.1: Example database for VDC

User ID Name Age Height

001 Alice 26 165
002 Bob 22 172

Table 5.2: Example list Fi

F Dom(F)

Average Age of record 1, Height of record 1, Age of record
2, Height of record 2

Most common
value

Name of record 1, Age of record 1, Height of
record 1, Name of record 2, Age of record 2,
Height of record 2

a given function). As delegators are not the data owners, labels should not reveal the data

values themselves in order to preserve the confidentiality of Di. Delegators may select

servers and data using only knowledge of these labels. Delegators may ask Si to compute

F (X) for any function F ∈ Fi on a set of data points X ⊆ Dom(F) by specifying the

set of labels {l(xi,j)}xi,j∈X . Note that F has |X| inputs, e.g. if X = {x1, x3, x7} then the

server computes F (x1, x3, x7).

Example 5.1. Consider a server Si that owns the database shown in Table 5.1. The

dataset Di represents this database as the set of field values for each record in turn —

Di = {001,Alice, 26, 165, 002,Bob, 22, 172}.

Si publishes a list of data labels {User ID of record 1, Name of record 1, Age of record 1,

Height of record 1, User ID of record 2, Name of record 2, Age of record 2, Height of record

2}. Si also publishes a list of functions Fi that it is willing to compute over Di along with

the domain of each function, as in Table 5.2.

A delegator may then query for the “Average” on the data labelled by the set X = {Age of

record 1, Age of record 2}.

Note that, although it may be tempting to suggest that Si simply caches the results of

computing each F ∈ Fi on its dataset, the choice of data points X ⊆ Dom(F) for each

computation could vary; hence the number of results that must be cached could be large,

making this an unattractive solution.

Also note that the list Fi could be defined to include computations such as “Average height

171

5.3 Verifiable Delegable Computation

of entities over the age of 21” whereby the list of available inputs Dom(F) is filtered by

the server to only include such records. However, in these cases, care must be taken that

these lists of data labels, with associated queries for which they are acceptable inputs,

do not leak too much information about the data or allow data items to be linked across

multiple queries — by observing the same data label satisfying multiple queries, it may be

possible to learn detailed information about the data item. In these cases, the data labels

could be randomised per function by hashing the data and the function identifier with a

pre-image resistant hash function.

A VDC scheme begins with a key distribution centre (KDC) (e.g. a trusted third party

as in Chapter 3, a trusted data source or a delegator) running Setup to produce public

parameters and a master secret key. The KDC also registers each server Si to provide a

private signing key SKSi , and publishes a public delegation key PKF for each function of

interest F ∈ F .

Each server, Si enrols with the KDC using the Certify algorithm to make their dataset

Di available for computations. The KDC issues a (single) evaluation key EKDi,Si which

enables Si to perform computations on Di (or, indeed, subsets of Di). As the server is

the data owner in the setting of VDC, it should be able to specify which functions are

(i) meaningful on their dataset (some data may not be in the domain of all functions in

F), and (ii) permissible in accordance with their own access control policies — that is,

servers may not wish to evaluate and reveal the results of all computations over their data.

Thus, each server provides a list of functions, Fi ⊆ F , that they are willing to evaluate on

their data. In some settings, such as the MapReduce example, Fi may well be the full set

F since the delegator is the original data owner (of the entire input dataset) and issues

each worker with a static portion of that data. In this case, the delegator should be able

to request any meaningful computation from the worker nodes. However when servers

are remote data providers, they themselves own the input dataset and should be able to

specify what that data be used for.

Furthermore, not all data points xi,j ∈ Di may be appropriate for each function (e.g. if

F ∈ F is an averaging function, then only numeric data in Di should be used as input).

For the purposes of this chapter, we define the set Fi to comprise elements of the form

(F,
⋃
xi,j∈Dom(F) l(xi,j)) describing each function and the associated permissible inputs.

172

5.3 Verifiable Delegable Computation

Throughout this chapter, we also assume (to aid the client in encoding the function F in

our construction), that the set of labels {l(xi,j)}xi,j∈Di reveals the order of each data point

as stored in the server’s memory and the size of each data point when represented as a

bitstring; thus, clients may know the memory location from which data should be used,

but do not know the value of each bit. Note that data can be padded to achieve a uniform

length so that revealing the size of each data point also does not reveal information about

the data value.

To request a computational result from a server, a delegator runs the ProbGen algorithm.

The delegator chooses a function F ∈ Fi and a set of data points X ⊆ Dom(F). In the

MapReduce example, ProbGen would be run once per worker for the same function F

(which is acceptable by all workers because Fi = F for all i ∈ [n]). ProbGen generates an

encoded input σF,X , verification key V KF,X and output retrieval key RKF,X . A server

Si uses their evaluation key EKDi,Si to compute θF (X) encoding the computational result

F (X).

Verification is divided into two algorithms. We consider public verifiability where any

party (including an adversary) may verify a result. An example motivation of where public

verifiability may be useful is in a grid computing environment where some management

software ensures results are correct before returning them to the user. Blind verification is

performed by any user using a verification key V KF,X to verify correctness. It generates a

retrieval token RTF (X) for valid outputs (or ⊥ if the output is invalid) but does not reveal

the actual output value. Finally, Retrieve takes a (non-⊥) token RTF (X) and the output

retrieval key RKF,X to reveal the final result yF (X) = F (X). This is also illustrated and

compared to publicly verifiable outsourced computation in simplified form in Figure 5.1.

More formally:

Definition 5.1. A publicly verifiable delegable computation (VDC) scheme comprises the

following algorithms1:

• (PP,MK)
$← Setup(1`,F): run by the KDC to initialise the system. The input

values are the unary representation of the security parameter, 1`, and the family of

functions, F , that may be outsourced;

• PKF
$← FnInit(F,MK,PP): run by the KDC to generate a public delegation key

1We retain the algorithm names from prior PVC schemes for consistency.

173

5.3 Verifiable Delegable Computation

KDCS1C1

C2

3. EKF,S1

2. PKF

1. PKF

4. σF,x1

5. σF,x2

(a) PVC

KDCS1C1

S2

2. EKX1,S1

3. EKX2,S2

1. PKF

4. σF,X1

5. σF,X2

(b) VDC

Figure 5.1: Comparison between PVC and VDC

PKF allowing clients to request computations of a function F ;

• SKSi
$← Register(Si,MK,PP): run by the KDC to enrol a computational server Si

in the system and to generate a signing key SKSi for Si;

• EKDi,Si
$← Certify(Si, Di, {l(xi,j)}xi,j∈Di ,Fi,MK,PP): run by the KDC to generate

an evaluation key EKDi,Si which enables the server Si to perform computations of

all functions F ∈ Fi chosen by the server, on the server’s input data Di = {xi,j}mij=1,

comprising mi data points, each uniquely labelled by l(xi,j);

• (σF,X , V KF,X , RKF,X)
$← ProbGen(F, {l(xi,j)}xi,j∈X , PKF ,PP): run by a client to

request the computation of the function F on a set of data points X ⊆ Di belonging

to the server Si. The input values are the function F to be computed, a set of

labels identifying each data point xi,j ∈ X to be computed on (note that the data

itself is not required), the public delegation key PKF for the function and the public

parameters. The output values are an encoded input σF,X , a public verification key

V KF,X , and a retrieval key RKF,X ;

174

5.3 Verifiable Delegable Computation

• θF (X)
$← Compute(σF,X , EKDi,Si , SKSi ,PP): run by a server Si to compute F (X).

The input values are the encoded input σF,X prepared by a client for a set of input

data points X ⊆ Di, an evaluation key EKDi,Si permitting Si to compute on its

dataset Di, a signing key SKSi for the server, and the public parameters. The

algorithm produces an encoded output θF (X) of F (X);

• yF (X) ← Verify(θF (X), V KF,X , RKF,X ,PP): verification comprises two sub-

algorithms as follows. These could be performed together as a single Verify algorithm

if blind verification is not required:

– (RTF (X), τθF (X)
) ← BVerif(θF (X), V KF,X ,PP): run by a verifier in possession

of the encoded output θF (X), a verification key for the computation and the

public parameters. The output of this algorithm is a retrieval token RTF (X)

encoding the actual output value of the computation (this can be thought of

as a partial translation from θF (X) to F (X)) and a token τθF (X)
, the value of

which is accept if θF (X) is a valid server response for F (X) and reject otherwise.

Note that the verifier learns only whether τθF (X)
is correct, it cannot learn the

value of F (X);

– yF (X) ← Retrieve(RTF (X), τθF (X)
, V KF,X , RKF,X ,PP): run by an authorised

verifier (i.e. a verifier holding the retrieval key RKF,X) generated by the client

during ProbGen, the verification key V KF,X and the outputs from the BVerif

stage. This algorithm returns the actual computational result yF (X) which is

either yF (X) = F (X) if the server performed correctly, or a distinguished failure

symbol yF (X) =⊥ otherwise.

We do not consider revocation here but observe that an indirectly revocable CP-ABE

scheme could be employed in a similar fashion to the indirectly revocable KP-ABE scheme

in Chapter 3. In Chapter 6, we will introduce a hybrid scheme which incorporates VDC

functionality with a revocation mechanism. Although not explicitly stated, the KDC may

update the public parameters PP during any algorithm, in order to reflect changes in the

user population (e.g. servers are added or removed from the system, or granted the ability

to compute additional functions).

In this model, the server must provide its input data to the trusted KDC in order to

be certified. In some application settings, this is expected behaviour. For example, if

the manager of an organisation acts as the KDC and divides a database according to a

175

5.3 Verifiable Delegable Computation

separation of duty policy between different servers. A similar partitioning and distribution

of data also occurs in MapReduce applications. In the three-party computation model

introduced by Backes et al. [17], a trusted data source acts as the KDC and issues data

directly to the server.

In other settings, the server may be the data owner and may have to trust the KDC with

its data (but not the delegators). By requiring a trusted KDC to issue keys, servers are

prevented from creating a key for data they do not own (or indeed a subset of their data).

Future work will attempt to relax this requirement.

Intuitively, we say that a VDC scheme is correct if all arbitrary execution sequences of the

algorithms where a computational result is honestly computed by a non-revoked server

results in the verification algorithm accepting the correct result of the computation. We

can model this as a cryptographic game between a challenger and a PPT adversary; the

adversary aims to find an (honestly generated) encoded output which either does not

encode the correct result or which does encode the correct result but which will not be

accepted by the verification algorithm. For each algorithm in Definition 5.1, we define

a corresponding oracle that executes the algorithm on inputs provided by the adversary,

and returns the output of the algorithm to the adversary. The adversary may query the

Setup oracle only once (before making any other oracle queries), but can thereon call the

remaining oracles any number of times and in any order.

The challenger maintains two lists, LReg and LF ; LReg is a list of tuples comprising

server identities, Si, and the resulting signing keys, SKSi , that have been queried to the

Register oracle, whilst LF comprises tuples of the form (Si, Di, {l(xi,j)}xi,j∈Di ,Fi, EKDi,Si)

denoting that the server Si has been queried to the Certify oracle for the set of functions

Fi and the data set Di, and that EKDi,Si was generated.

The challenger also creates and maintains a table T which records the parameters relating

to each computation performed through the oracle queries. T is updated in the following

oracles:

• ProbGen: the challenger creates a new row in T comprising 8 components, all of

which are initialised to be empty; it then assigns X (which can be found as a subset

of Di in LF), F , the result F (X) (computed by the challenger itself), σF,X , V KF,X

176

5.3 Verifiable Delegable Computation

and RKF,X to the first 6 components;

• Compute: the challenger first searches T for all rows that contain the queried σF,X

in the 4th component and where the 7th component is empty (i.e. those rows relating

to computations on this encoded input that have not yet been performed). For each

such row, r, the challenger takes the second component (the function identifier, F̃),

and checks that there exists a server identity S̃i such that the tuple (S̃i, SKS̃i
) ∈ LReg

(where SKS̃i
is that given as input to the Compute oracle) and such that the tuple

(S̃i, ·, ·,Fi, EKDi,Si) ∈ LF , where EKDi,Si is also that given as input to the Compute

oracle and where F̃ ∈ Fi. This check ensures that there is a server that holds the

signing key and evaluation key being used to perform the computation and which is

certified for a function F̃ for which the encoded input σF,X was generated.

The challenger then performs the Compute algorithm on the queried σF,X , EKDi,Si

and SKSi to produce an output θF (X). For each of the rows r of T found above, the

challenger writes θF (X) and S̃ to the 7th and 8th components of r respectively.

Thus, when complete, the entries of T will be of the form

(x, F, F (X), σF,X , V KF,X , RKF,X , θF (X), Si).

After a polynomial number of queries, the adversary will return a value θ?F (X) which he

believes encodes a correct computational result, yet which the Verify algorithm will reject

(that is, an output for which the protocol execution will not be correct). The challenger

first performs a look up in T for all entries containing θ?F (X) in the 7th position of the

tuple, and stores any such entries as another table T̃ . Note that this means that θ?F (X)

must have been honestly generated by the Compute oracle (else it would not be in T).

For each such row, the challenger uses the 5th component (the verification key) to run

BVerif on θ?F (X) to generate the outputs RTF (X) and τθF (X)
, and then uses the 5th and 6th

components (the verification key and retrieval key) and τθF (X)
to run Retrieve on θ?F (X) to

generate yF (X).

The challenger first checks whether yF (X) matches the 3rd component of the row (that

is, whether yF (X) is the correct computational result F (x)). If so, it then checks whether

τθF (x)
= (reject, S), and if so it ends the game by returning 1 to indicate that the adversary

has won the game (the adversary has found a valid encoding of a correct result, computed

177

5.4 Potential Applications for VDC

by a certified server, that the Verify algorithm is incorrectly rejecting).

On the other hand, if yF (X) did not match the correct value of F (x), the challenger

also ends the game by returning 1 to indicate that the adversary has won the game (the

adversary in this case has found an incorrect result that was computed honestly by the

algorithms).

If no row in T̃ allows the adversary to win, then the challenger outputs 0 to indicate

that the adversary has lost. An VDC scheme is correct if, for all PPT adversaries, the

probability that the adversary wins the game described above is 0.

5.4 Potential Applications for VDC

We consider the following example applications to motivate our study of VDC.

• MapReduce [50] (or Hadoop [93]) is a programming model for the parallel pro-

cessing of large computations using a cluster or grid of computers (nodes) which can

take advantage of the locality of data to decrease transmission costs. Each set of

worker nodes each compute subproblems on portions of the data and report to a

manager who combines the results. A MapReduce problem comprises two stages:

– Map: a master node (or manager) takes the input and divides it into smaller

sub-problems which are distributed to the worker nodes. The worker computes

the function associated with the sub-problem and passes the result back to the

manager;

– Reduce: the manager collects the answers to all sub-problems and combines

them to form the output to the original problem.

VDC enables verifiable MapReduce such that only valid results are combined. The

manager acts as the key distribution centre (KDC) to distribute evaluation keys for

partitions of the data to workers. He can then request multiple sub-problems to be

solved over this data partitioning.

• Verifiable queries on remote databases. Servers may also act as remote

database providers and register with a KDC to provide a verifiable querying ser-

178

5.4 Potential Applications for VDC

vice. Any delegator may use public information to query any function allowed by

the server (within the family allowed by the VDC scheme) on these databases. Data

is remotely stored and delegators see nothing more than the results of queries which

they are assured are correct.

Alternatively, in this setting, the data owner could act as the KDC to outsource its

data to an untrusted server. Due to the public delegation and verification properties,

other data users can query the outsourced data and verify the correctness of the

results. It is important to note that the data owner is not required to retain any

knowledge of the data after it has been outsourced.

• Three-party computation. The model of Backes et al. [17] considers a trusted

data source that provides authenticated data to a service provider who can then

provide verifiably correct results to computations requested by third parties. As

mentioned in Section 5.2, in the context of VDC, the source can be thought of as

the KDC, the service provider as the computational server and the third parties as

delegators.

Backes et al. [17] considered several applications for this model of computation.

Firstly, trusted sensors could be placed in client premises (e.g. a smart energy meter

or a sensor placed in a car to monitor driving habits) or worn by the client (e.g. a

wearable health band). These sensors collect data which is authenticated (due to

the trusted nature of the collection devices) and given to the client who acts as the

service provider. Because this data could be sensitive (e.g. revealing the habits and

lifestyle of the client), the service provider may be reluctant to release the data to

third parties. Nevertheless, there exist legitimate business cases that require access

to compute on the data (e.g. for billing purposes, or to produce an insurance quote

if the sensor is a health monitor or monitors driving habits). Therefore, these third

parties may request appropriate computations on the data from the service provider

itself, and can verify that the service provider performs the computation correctly

on the correct data.

Secondly, Backes et al. suggest a company whose finances must be periodically au-

dited. The trusted sensor in this setting would be the official bookkeeper for the

company who is legally responsible for maintaining correct financial records. The

company keeps the records private as they are business-critical, but provides verifi-

able computational results to the auditors.

179

5.5 Security Model

Game 5.1 ExpPubVerif
A

[
VDC, 1`,F

]
1: (PP,MK)

$← Setup(1`,F)

2: (F,X?, {l(xj)}xj∈X?)
$← AO(PP)

3: PKF
$← FnInit(F,MK,PP)

4: (σF,X? , V KF,X? , RKF,X?)
$← ProbGen(F, {l(xj)}xj∈X? , PKF ,PP)

5: θ?
$← AO(σF,X? , V KF,X? , RKF,X? , PKF ,PP)

6: (RTF (X?), τθ?)← BVerif(θ?, V KF,X? ,PP)
7: yF (X?) ← Retrieve(RTF (X?), τθ? , V KF,X? , RKF,X? ,PP)
8: if (((yF (X?), τθ?) 6= (⊥, reject)) and (yF (X?) 6= F (X?))) then
9: return 1

10: else return 0

5.5 Security Model

In the context of VDC, we consider security in the sense of public verifiability to ensure

that a server cannot return incorrect results without being detected. This is a natural

extension of that discussed in Chapter 3; we do not require the other notions introduced

in Chapter 3 as we do not consider revocation in this chapter.

The notion of public verifiability is captured in Game 5.1 to ensure that a server (even

having corrupted other servers and holding verification keys) may not cheat by returning an

incorrect result without being detected, even without the original delegator or the verifier

possessing the input data. The game begins with the challenger setting up the system and

providing the resulting public parameters to the adversary. The adversary is also given

oracle access, denoted O, to the following functions: FnInit(·,MK,PP), Register(·,MK,PP)

and Certify(·, ·, ·, ·,MK,PP).

The adversary will select the challenge inputs which are the function F to be computed,

the input data points X? to be computed on, and the labels l(xj) for each data point

xj ∈ X? (as the adversary is acting as a malicious server, it creates and owns the data

X? available to be computed on and may query the Certify oracle for a data set D ⊇ X?).

The challenger runs FnInit to initialise the challenge function F and forms a challenge

by running ProbGen on the challenge input labels and function. It sends the resulting

parameters to A and again provides oracle access as above. The adversary wins the game

if it is able to produce an encoded output that verifies correctly but does not correspond

to the actual result F (X?).

Definition 5.2. The advantage of a PPT adversary A in the PubVerif game for a VDC

construction, VDC, for a family of functions F is defined as:

180

5.6 Construction

AdvPubVerif
A (VDC, 1`,F) = Pr

[
1

$← ExpPubVerif
A

[
VDC, 1`,F

]]
.

A VDC scheme, VDC, is secure with respect to public verifiability if, for all PPT adver-

saries A,

AdvPubVerif
A (VDC, 1`,F) 6 negl(`).

5.6 Construction

Informally, our construction to compute the family of (monotone) Boolean formulas, closed

under complement, operates similarly to that for RPVC in Chapter 3.

As with our RPVC construction, to encode an n-bit binary input string ~x = x1x2 . . . xn

as an attribute set Ax, we define a universe Ux = {x1, x2, . . . , xn} of n attributes and let

xi ∈ Ax if and only if the ith bit of the input string is 1 — that is, Ax = {xi : xi = 1}.

Note that the inputs to our computations are sets of input data points X ⊆ Di belonging

to the server Si; Di can be thought of as a bitstring made from the concatenation of the

bitstring representation of each input data point xi,j ∈ Di, and then Di can be encoded

as above. Again, as in Section 3.2.1, we may include attributes representing 0 bit values

if desired.

To request a computation of F (X), a client must encode a function F ∈ Fi in terms of

attributes, and in particular those attributes that encode X ⊆ Di — that is, a meaningful

computation will require particular input values to be used at particular points and hence,

when encoding F , the client must be able to specify these inputs. Recall that we assumed

that the set of labels {l(xi,j)}xi,j∈Di published by the server including information about

the size of each data point xi,j ∈ Di and its order within the dataset. Thus, since ADi is

the concatenation of the binary representation of these ordered data points, clients may

encode Boolean functions (which operate on the binary data points) in terms of the bit

positions within the concatenated bitstring, or equivalently, in terms of the attributes

{x1, x2, . . . , x∑
xi,j∈Di

|xi,j |} ∈ Ux. Note that the delegator does not need to know the value

of each attribute (or whether the server holds that attribute) in order to form this function.

The delegator will choose a random message from the message space M to act as a

verification token and encrypt this using a CP-ABE scheme under the Boolean function

181

5.6 Construction

F to be evaluated. Each server is given a decryption key for the data Di that they hold.

The server attempts to decrypt the ciphertext and learns the chosen message if and only

if F (Di) = 1. By the security of the CP-ABE scheme, servers learn nothing about the

message if F (Di) = 0 since this corresponds to an access structure not being satisfied.

Thus, if the correct message is returned, the delegator is convinced that F (Di) = 1.

If, however, F (Di) = 0, the decryption will return ⊥. This is insufficient for verification

since any server can return ⊥ to convince a delegator of a false negative result. Thus,

we produce two CP-ABE ciphertexts. As above, one corresponds to F , whilst the other

corresponds to F = F (X) ⊕ 1. Thus, if F (Di) = 0 then, necessarily, F (Di) = 1. Hence,

the server’s key for data Di will decrypt exactly one ciphertext and the returned message

will distinguish whether F or F was satisfied, and therefore the value of F (X), where X

is the subset of Di that the function is actually required to operate over. Note that the

function F is encoded in terms of attributes, and is specific to each input (that is, the

encoding of a function F will differ to compute F (X) and F (X ′)). As a result, if the

function F is evaluated on an input set X ′ ⊃ X then the server will discard the additional

data points x ∈ X ′ \X and the outcome of the computation remains F (X).

A well formed response, (d0, d1), from a server, therefore, satisfies the following:

(d0, d1) =

(m0,⊥), if F (Di) = 1;

(⊥,m1), if F (Di) = 0.

(5.1)

If the returned plaintext does not match one of the chosen random messages then the

server has returned an incorrect result (also if both results are ⊥ but no rational malicious

server would return this).

Public verifiability is achieved by publishing a token comprising the output of a one-way

function g applied to each plaintext. Any entity can apply g to the server’s response

and compare with this token to check correctness. For blind verification, a random bit b

chosen by the delegator permutes the ciphertexts, hiding whether the matched plaintext

is associated with F or F . The public parameters contain a two-dimensional array LReg

with two columns: the first column, LReg[Si][0], is indexed by server identities and contains

signature verification keys; the second column, LReg[Si][1], lists functions and labels for

which Si is certified.

182

5.6 Construction

Let U = Ux ∪ Ul ∪ UID, where Ul is a disjoint (from Ux) universe comprising attributes

representing each unique data label, l(xi,j), and UID comprises server identities.2 If such

a universe becomes too large it is, of course, possible to use a large universe CP-ABE

scheme [66] where attributes need not be defined ahead of time. However, it is very likely

that, for efficiency of the system, the inputs and number of servers will be polynomially

sized in the security parameter and can therefore be accommodated by a small universe.

As we consider adversaries that have access to multiple keys, we must ensure that a key

for different data cannot produce a response that will be accepted as valid. We do this by

labelling each data point xi,j ∈ Di with a unique (across the entire system) label l(xi,j) and

define an attribute in Ul for each label; for ease of exposition, we refer to these attributes

simply as l(xi,j) as well — in practice, one could hash the text label into the bilinear group

to form the attribute.

For a data set Di, the decryption key for a server Si is formed over the attribute set

(ADi ∪
⋃
xi,j∈Di l(xi,j)). During ProbGen for a computation of F (X) for a set of data

points X ⊆ Dom(F), X ⊆ Di for some i, the encryption uses the access structure encoding

of the conjunction (F ∧
∧
xi,j∈X l(xi,j)) specified in terms of attributes corresponding to

the required input data (and similarly for the complement function F). Thus, decryption

only succeeds if F (Di) = 1 (i.e. F (X) = 1 as the remaining xi,j /∈ X are ignored by

the decryption procedure) and all the labels l(xi,j), for xi,j ∈ X, are matched in the key

and ciphertext — a key for different data will not include the correct labels. Note that,

because the encoding of the function specifies the attributes that should be provided for

the function to be evaluated and because the evaluation key is formed over the entire

(ordered) dataset, the server may not use different data points within his own dataset to

forge a result either.

Our instantiation of VDC is more efficient than that for PVC since we do not require the

setup of two independent ABE systems or two (expensive) key generations. However, in

contrast to PVC, the delegator must perform work roughly equivalent to performing the

computation itself twice, in order to prepare an encoded input (that is, to encrypt two

messages with the access structure corresponding to F or F using a CP-ABE scheme).

Whereas in PVC environments, this would be unacceptable (as it negates the purpose of

2We assume that the following algorithms check, where relevant, that all functions and input data are
formed over Ux and each additionally contains exactly one attribute/clause over the label universe Ul.

183

5.6 Construction

outsourcing to more powerful servers), in the context of VDC, this is not such an issue —

the delegator does not possess the input data but would like to learn F (X); clearly, it is

not possible for it to compute F (X) itself without the data, but the delegator can perform

approximately the same amount of work as computing F (X) to request the computation

from the data owner.

Let CPABE = (ABE.Setup, ABE.KeyGen, ABE.Encrypt and ABE.Decrypt) define a CP-

ABE encryption scheme over the universe U for a class of Boolean functions F closed

under complement. We also make use of a signature scheme with algorithms Sig.KeyGen,

Sig.Sign and Sig.Verify, and a one-way function g. Then Algorithms 5.1–5.8 define a VDC

scheme for the class of functions F , which operates as follows:

1. VDC.Setup, presented in Algorithm 5.1, first forms the attribute universe for the

function family, accommodating all possible input labels and server identities. It then

initialises the CP-ABE system by calling the ABE.Setup algorithm, and initialises the

two-dimensional array LReg indexed by server identities — for a server S, LReg[S][0]

will store a signature verification key for S and LReg[S][1] will store a list of functions

that S is willing to compute. The public parameters for the VDC system comprise

the public parameters of the CP-ABE scheme and the array LReg. The master secret,

MK, for the system is the master secret of the CP-ABE scheme.

Algorithm 5.1 (PP,MK)
$← Setup(1`,F)

1: U ← Ux ∪ Ul ∪ UID
2: (MPKABE,MSKABE)

$← ABE.Setup(1`,U)
3: for Si ∈ UID do
4: LReg[Si][0]← ε, LReg[Si][1]← {ε}
5: PP← (MPKABE, LReg), MK← (MSKABE)

2. VDC.FnInit, presented in Algorithm 5.2, simply outputs the public parameters for

the VDC system, and is the same for all functions. In our particular construction,

this step is not required due to the use of public key CP-ABE — the delegation of

all functions F ∈ F simply use the public parameters of the CP-ABE scheme.

Algorithm 5.2 PKF
$← FnInit(F,MK,PP)

1: PKF ← PP

3. VDC.Register, presented in Algorithm 5.3, creates a key pair using the digital signa-

ture KeyGen algorithm. The signing key is issued to the server Si being registered,

184

5.6 Construction

and the verification key is added to the public array LReg so that anyone can verify

signatures produced by Si.

Algorithm 5.3 SKSi

$← Register(Si,MK,PP)

1: (SKSig, V KSig)
$← Sig.KeyGen(1`)

2: SKSi
← SKSig

3: LReg[Si][0]← V KSig

4. VDC.Certify, presented in Algorithm 5.4, certifies that a server Si may provide com-

putational services on the dataset Di and is willing to perform any computation in

the set Fi ⊆ F . The data set Di comprises mi data points xi,j , each of which is

uniquely represented by an attribute l(xi,j) ∈ Ul. For each function F ∈ Fi, the pair

(F,
⋃
xi,j∈Dom(F) l(xi,j)) is added to the array LReg[Si][1] to indicate to prospective

clients that Si is willing to compute F on any set comprising data points xi,j ∈ Di

which are in the domain of F . The algorithm then generates a CP-ABE decryption

key for the attribute set ADi ∪
⋃
xi,j∈Di l(xi,j) that forms the evaluation key for the

server.

Algorithm 5.4 EKDi,Si

$← Certify(Si, Di, {l(xi,j)}xi,j∈Di ,Fi,MK,PP)

1: for F ∈ Fi do
2: LReg[Si][1]← LReg[Si][1] ∪ (F,

⋃
xi,j∈Dom(F) l(xi,j))

3: SKABE,Di

$← ABE.KeyGen((ADi ∪
⋃
xi,j∈Di

l(xi,j)),MSKABE,MPKABE)

4: EKDi,Si ← SKABE,Di

5. VDC.ProbGen, presented in Algorithm 5.5, chooses two messages uniformly at ran-

dom from the message space and a random bit b. For a computation request for F (X)

to a server Si, where X ⊆ Di and X ⊆ Dom(F), the algorithm forms two CP-ABE

ciphertexts that encrypt the chosen messages under the policies (F ∧
∧
xi,j∈X l(xi,j))

and (F ∧
∧
xi,j∈X l(xi,j)) respectively. These ciphertexts form the encoded input

σF,X while the bit b forms the retrieval key RKF,X . The verification key for the

computation is created by applying the one-way function g to each chosen message.

Algorithm 5.5 (σF,X , V KF,X , RKF,X)
$← ProbGen(F, {l(xi,j)}xi,j∈X , PKF ,PP)

1: (m0,m1)
$←M×M

2: b
$← {0, 1}

3: cb
$← ABE.Encrypt(mb, (F ∧

∧
xi,j∈X l(xi,j)),MPKABE)

4: c1−b
$← ABE.Encrypt(m1−b, (F ∧

∧
xi,j∈X l(xi,j)),MPKABE)

5: σF,X ← (cb, c1−b), V KF,X ← (g(mb), g(m1−b)), RKF,X ← b

6. VDC.Compute, presented in Algorithm 5.6, first decrypts both CP-ABE ciphertexts

185

5.6 Construction

in the encoded input using the decryption key issued as the evaluation key forDi ⊇ X

to server Si. It then signs the resulting plaintexts using the server’s signing key and

returns the plaintexts, server ID and signature as the encoded output. Note that

the recovered plaintexts are (mb,⊥) if F (X) = 1 or (⊥,m1−b) if F (X) = 0 (ordered

according to the random bit RKF,X = b chosen in VC.ProbGen).

Algorithm 5.6 θF (X)
$← Compute(σF,X , EKDi,Si , SKSi ,PP)

1: Parse σF,X as (cb, c1−b)
2: db ← ABE.Decrypt(cb, EKDi,Si

,MPKABE)
3: d1−b ← ABE.Decrypt(c1−b, EKDi,Si

,MPKABE)

4: γ
$← Sig.Sign((db, d1−b, Si), SKSi)

5: θF (X) ← (db, d1−b, Si, γ)

7. VDC.BVerif, presented in Algorithm 5.7, first checks that the signature over the

encoded output verifies correctly under the verification key for the server Si. It then

applies the one-way function g to each plaintext returned in θF (X) and compares it

to the corresponding element of the verification key. If neither comparison matches,

then the verifier outputs RTF (X) =⊥ and τθF (X)
= reject to show that the server

did not provide a valid computational result, and otherwise outputs the matched

plaintext as the retrieval token and τθF (X)
= accept.

Algorithm 5.7 (RTF (X), τθF (X)
)← BVerif(θF (X), V KF,X ,PP)

1: Parse V KF,X as (V K, V K ′) and θF (x) as (d, d′, Si, γ)
2: if accept← Sig.Verify((d, d′, Si), γ, LReg[S][0]) then
3: if (V K = g(d)) then return (RTF (X) ← d, τθF (X)

← accept)
4: if (V K ′ = g(d′)) then return (RTF (X) ← d′, τθF (X)

← accept)
5: return (RTF (X) ←⊥, τθF (X)

← reject)

8. VDC.Retrieve, presented in Algorithm 5.8, orders the verification key according to

the bit b that forms the retrieval key. It can then determine whether m0 or m1 was

matched in VDC.BVerif, and hence whether F (X) = 1 or F (X) = 0 respectively.

Algorithm 5.8 yF (X) ← Retrieve(RTF (X), τθF (X)
, V KF,X , RKF,X ,PP)

1: Parse V KF,X as (g(mb), g(m1−b)) and RKF,X as b
2: if (g(RTF (X)) = g(m0)) then return yF (X) ← 1
3: if (g(RTF (X)) = g(m1)) then return yF (X) ← 0
4: return yF (X) ←⊥

It is straightforward to see that correctness of this construction follows from the correctness

of the attribute-based encryption scheme and of the one-way function g.

186

5.7 Proof of Security

Theorem 5.1. Given an IND-CPA secure CP-ABE scheme for a class of Boolean func-

tions F closed under complement, a one-way function g, and a signature scheme secure in

the sense of EUF-CMA, let VDC be the verifiable delegable computation scheme defined

in Algorithms 5.1–5.8. Then VDC is secure in the sense of selective public verifiability

(Game 5.1).

5.7 Proof of Security

Informally, public verifiability relies on the IND-CPA property of the CP-ABE encryption

and the one-wayness of g. The proof proceeds by showing that, for the unsatisfied function

F or F , an adversary cannot observe if the plaintext is altered. Thus, the verification key

can be the one-way function challenge g(w) and the plaintext can implicitly be set to w.

Proof. We begin by defining the following three games:

• Game 0. This is the public verifiability game as defined in Game 5.1.

• Game 1. This is the same as Game 0 with the modification that in ProbGen,

we no longer return an encryption of m0 and m1. Instead, we choose an-

other random message m′ 6= m0,m1 and, if F (X?) = 1, we replace c1 by

ABE.Encrypt(m′, (F ∧
∧
xj∈X? l(xj)),MPKABE). Otherwise, we replace c0 by

ABE.Encrypt(m′, (F ∧
∧
xj∈X? l(xj)),MPKABE). In other words, we replace the ci-

phertext associated with the unsatisfied function with the encryption of a separate

random message unrelated to the other system parameters, and in particular to the

verification keys.

• Game 2. This is the same as Game 1 with the exception that instead of choosing a

random message m′, we implicitly set m′ to be the challenge input w in the one-way

function game (Game 2.12).

We show that an adversary with non-negligible advantage against the public verifiability

game can be used to construct an adversary that may invert the one-way function g.

187

5.7 Proof of Security

Game 0 to Game 1. We begin by showing that there is a negligible distinguishing

advantage between Game 0 and Game 1. Suppose, for a contradiction, that AV DC

can distinguish the two games with non-negligible advantage δ. We then construct an

adversary AABE that uses AV DC as a sub-routine to break the IND-CPA security of

the CP-ABE scheme. We consider a challenger C playing the IND-CPA game (Game

2.8) with attribute universe U with AABE , who in turn acts as a challenger in the public

verifiability game for AV DC :

1. C runs the ABE.Setup algorithm on the security parameter and U to generate

MPKABE and MSKABE. He gives MPKABE to AABE .

2. AABE now simulates running VDC.Setup such that the outcome is consistent with

MPKABE. It initialises the list LReg and sets PP = (MPKABE, LReg). The master

key is implicitly set to be MSKABE, and will be simulated using oracle queries to C.

3. AV DC is given PP and oracle access, which AABE can handle as follows.

• FnInit(·,MK,PP) and Register(·,MK,PP) can be run as written.

• Certify(·, ·, ·, ·,MK,PP): To generate the evaluation key for a queried data set

Di, AABE makes use of the KeyGen oracle in the CP-ABE game. It first

updates LReg as in lines 1–2 of the Certify algorithm. Then it sets D′ =

(ADi∪
⋃
xi,j∈Di l(xi,j)) and makes an oracle query to C for OKeyGen(D′,MK,PK).

C shall generate a CP-ABE decryption key SKD′ if and only if D′ 6∈ A?. How-

ever, since at this point A? is still initialised to {∅}, C may generate the key,

which AABE will receive as EKDi,Si .

4. Eventually, AV DC outputs its choice of challenge parameters: the function F and

input data X? comprising data points with labels {l(xj)}xj∈X? .

5. AABE runs FnInit as given in the construction. To generate the challenge input,

AABE begins by choosing a random bit b, three equal length random messages m0,

m1 and m′ from the message space, and another random bit t.

It must then choose its challenge access structure for the CP-ABE IND-CPA game.

It first computes r = F (X?). If r = 0, it sets A? = (F ∧
∧
xj∈X? l(xj)). Otherwise,

it sets A? = (F ∧
∧
xj∈X? l(xj)). AABE sends the messages m0 and m1, as well as

A? to C as the challenge parameters for the CP-ABE game. Note that A? is a valid

challenge access structure as the only queries made to the KeyGen oracle resulted

188

5.7 Proof of Security

from Certify oracle queries to AABE . Now, due to the inclusion of the (unique) labels

{l(xj)}xj∈X? in the challenge access structure, no Certify query for input data points

X ′ ⊂ X?, with labels {l(xj)}xj∈X′ ⊂ {l(xj)}xj∈X? , would result in a KeyGen query

for attributes that satisfy A?.

If queried for a dataset X ′ ⊇ X?, observe that A? is chosen specifically such that it

is unsatisfied on this input. Thus, KeyGen is never queried for an attribute set that

satisfies A?, and therefore the challenge is valid.

C chooses a random bit c and returns CT ?
$← Encrypt(mc,A?,MPKABE).

• If r = 1 (that is, A? = (F ∧
∧
xj∈X? l(xj)), AABE generates

cb
$← Encrypt(m′, (F ∧

∧
xj∈X?

l(xj)),MPKABE)

and sets c1−b = CT ? (formed over A? by C). It also sets V Kb = g(m′) and

V K1−b = g(mt).

• Else r = 0, and AABE sets cb = CT ? and computes

c1−b
$← Encrypt(m′, (F ∧

∧
xj∈X?

l(xj)),MPKABE).

It sets V Kb = g(mt) and V K1−b = g(m′).

AABE sets σF,X? = (cb, c1−b), V KF,X? = (V Kb, V K1−b) and RKF,X? = b.

6. AABE sends the output from ProbGen along with the public information to AV DC ,

who is also given oracle access to which AABE responds as follows:

• FnInit(·,MK,PP) and Register(·,MK,PP) can be run as written.

• Certify(·, ·, ·, ·,MK,PP): For a query for a dataset Di, AABE first updates LReg

as in lines 1–2 of the Certify algorithm. It sets D′ = (ADi ∪
⋃
xi,j∈Di l(xi,j)) and

makes an oracle query to C for OKeyGen(D′,MK,PK).

C shall generate a CP-ABE decryption key SKD′ for Di if and only if D′ 6∈ A?.

By the definition of A? and the uniqueness of data labels, D′ will satisfy A?

only if {l(xi,j)}xi,j∈Di ⊇ {l(xj)}xj∈X? , hence only if X? ⊆ Di. Now, if X? ⊆ Di,

then additionally, Di must satisfy either F or F to satisfy A?. However, this

was chosen specifically such that X? (and therefore Di, as F will simply select

the elements of X? to evaluate on) does not satisfy the function, and therefore

D′ 6∈ A? and C may generate the key, which AABE will receive as EKDi,Si .

189

5.7 Proof of Security

7. Eventually, AV DC outputs θF (X?), which it believes is a valid forgery (i.e. that it

will be accepted yet does not correspond to the correct value of F (X?)).

8. AABE parses θF (X?) as (db, d1−b, Si, γ) and using the retrieval key RKF,X? = b, finds

d0 and d1. One of d0 and d1 will be ⊥ (by construction) and we denote the other

value by Y .

Observe that, if AV DC is successful against the selective public verifiability game,

the non-⊥ value, Y , that it will return the plaintext mc since the challenge access

structure was always set to be unsatisfied on the challenge input.

Thus, if g(Y) = g(mt), AABE outputs a guess c′ = t and otherwise guesses c′ = 1−t.

If t = c (the challenge bit chosen by C), we observe that the above corresponds to Game

0 (since the verification key comprises g(m′) where m′ is the message a legitimate server

could recover, and g(mc) where mc is the other plaintext). Alternatively, t = 1 − c and

the distribution of the above experiment is identical to Game 1 (since the verification

key comprises the legitimate message and a random message m1−c that is unrelated to

the ciphertext).

Now, we consider the advantage of this constructed AABE playing the IND-CPA game

for CP-ABE. By assumption, AV DC has a non-negligible advantage δ in distinguishing

between Game 0 and Game 1 :

∣∣∣Pr
[
1

$← ExpGame 0
AVDC

[
VDC, 1`,F

]]
− Pr

[
1

$← ExpGame 1
AVDC

[
VDC, 1`,F

]]∣∣∣ > δ,

where ExpGame i
AVDC

[
VDC, 1`,F

]
denotes running AV DC in Game i.

The probability of AABE guessing c correctly, by the law of total probability, is:

Pr[c′ = c] = Pr [t = c] Pr
[
c′ = c|t = c

]
+ Pr [t 6= c] Pr

[
c′ = c|t 6= c

]
=

1

2
Pr [g(Y) = g(mt)|t = c] +

1

2
Pr [g(Y) 6= g(mt)|t 6= c]

=
1

2
Pr
[
1

$← Exp0
AVDC

[
VDC, 1`,F

]]
+

1

2
(1− Pr [g(Y) = g(mt)|t 6= c])

=
1

2
Pr
[
1

$← Exp0
AVDC

[
VDC, 1`,F

]]
+

1

2

(
1− Pr

[
1

$← Exp1
AVDC

[
VDC, 1`,F

]])
=

1

2

(
Pr
[
1

$← Exp0
AVDC

[
VDC, 1`,F

]]
− Pr

[
1

$← Exp1
AVDC

[
VDC, 1`,F

]]
+ 1
)

>
1

2
(δ + 1)

190

5.7 Proof of Security

Hence,

AdvAABE >

∣∣∣∣Pr
[
c = c′

]
− 1

2

∣∣∣∣
>

∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
>
δ

2

Hence, if AV DC has advantage δ at distinguishing these games then AABE can win the

IND-CPA game for the CP-ABE scheme with non-negligible probability. Thus, since we

assumed the CP-ABE scheme to be secure, we conclude that AV DC cannot distinguish

Game 0 from Game 1 with non-negligible probability.

Game 1 to Game 2. The transition from Game 1 to Game 2 is simply to set the value

of m′ to no longer be random but instead to correspond to the challenge w in the one-way

function inversion game. We argue that the adversary has no distinguishing advantage

between these games since the new value is independent of anything else in the system

bar the verification key g(w) and hence looks random to an adversary with no additional

information (in particular, AV DC does not see the challenge for the one-way function as

this is played between C and AABE).

Final Proof. We now show that using AV DC in Game 2, AABE can invert the one-way

function g — that is, given a challenge z = g(w) we can recover w. Specifically, during

ProbGen, we choose the messages as follows:

• if F (X?) = 1, we implicitly set m1−b to be w and set the verification key component

V K1−b = z. We choose mb and V Kb randomly as usual.

• if F (X?) = 0, we implicitly set mb to be w and set the verification key component

V Kb = z. We choose m1−b and V K1−b randomly as usual.

AV DC will output a forgery comprising the plaintext encrypted under the unsatisfied

function (F or F). By construction, this will be w (and the adversary’s view is consistent

since the verification key is simulated correctly using z). AABE can therefore forward this

191

5.8 Conclusion

result to C in order to invert the one-way function with the same non-negligible probability

that AV DC has against Game 2.

We conclude that if the ABE scheme is IND-CPA secure and the one-way function is

hard-to-invert, then VDC as defined by Algorithms 5.1–5.8 is secure in the sense of public

verifiability.

5.8 Conclusion

This chapter has shown that CP-ABE can be used in the setting of verifiable outsourced

computation in a similar fashion to the use of KP-ABE to construct PVC schemes. The

resulting system model reverses the role of the delegator and the server as the data owner,

in a similar way that the assignment of attribute sets changes from the key to ciphertexts

in CP-ABE compared to KP-ABE. In PVC, the delegator is the data owner and employs

a server to perform work that it does not have the resources to do itself. In VDC, the

server itself acts as the data owner (or is provided with data from a trusted source), and

clients simply request the verifiably correct results of computations on the data held by

each server.

We have seen that VDC can have natural applications and is also similar to, although

arguably more general than, existing models of verifiable computation developed by Backes

et al. [17]. Our VDC construction, however, uses attribute-based encryption as a proof

method, whereas Backes et al. considered the use of succinct non-interactive arguments

(SNARGs) and homomorphic MACs. In future work, we would like to compare these

solutions more closely and investigate whether ABE can fully provide the functionality of

SNARGs, as well as to investigate methods to allow dynamic updates of the data owned

by servers as a result of computations.

Future work could also look at imposing cryptographic access control mechanisms on the

queries that may be made to a server. It may be that by including some cryptographic

key material in the set Fi, a delegator would be unable to form a valid computation

request for F (X) if both F and X are not permissible according to Fi. In this regard,

the application to querying on remote databases could lead to interesting solutions when

considering sensitive data — only computations that retain a certain degree of anonymity

192

5.8 Conclusion

are permitted. Of course, even with the solution presented in this chapter, a server can

manually validate any requested function to ensure it complies with its own access control

policy.

The motivation for this chapter was primarily to extend the work of Chapter 3 to use an

alternative ABE primitive and to see whether the resulting solution yielded meaningful

applications of verifiable outsourced computation. We have seen that, indeed, it does,

and in Chapter 6 we will combine this notion of VDC with RPVC to provide a flexible

solution to verifiable outsourced computation, again using a different form of attribute-

based encryption as the proof mechanism.

193

Chapter 6

Hybrid Publicly Verifiable Outsourced
Computation

Contents

6.1 Introduction . 194

6.2 Hybrid Publicly Verifiable Computation 197

6.3 Construction . 206

6.4 Conclusion . 215

This chapter draws together the work from the previous chapters of this thesis, to provide a

flexible system for publicly verifiable computation. In large multi-user systems, individual

user requirements may be diverse and change over time. We therefore introduce HPVC

which, with a single set up, allows entities to both outsource computations and provide

computation services as required.

6.1 Introduction

In Chapter 3, we extended the PVC construction of Parno et al. [84] to create a revo-

cable, publicly verifiable outsourced computation (RPVC) scheme built on KP-ABE. In

Chapter 4, we motivated the need for access control in multi-user PVC environments and

provided a construction using key assignment schemes. Finally, in Chapter 5, we switched

the attribute-based encryption scheme, which acts as the proof mechanism, from KP-ABE

to CP-ABE and saw that it yielded a verifiable computation system wherein servers hold

data and make it available for verifiable, public querying. Thus, we have seen that cryp-

tographic primitives designed to act as enforcement mechanisms for access control policies

can be used, instead, in the context of verifiable computation. The VC systems that arise

194

6.1 Introduction

can be viewed as large, multi-user systems comprising many servers and many delegators.

However, in such systems, the individual user requirements may be diverse and require

different forms of outsourced computations whereas current PVC schemes support only a

single form.

Consider the following scenarios: (i) employees with limited resources (e.g. using mobile

devices when out of the office) need to delegate computations to more powerful servers.

The workload of the employee may also involve responding to computation requests to

perform tasks for other employees or to respond to inter-departmental queries over re-

stricted databases. (ii) Entities that invest heavily in outsourced computations could find

themselves with a valuable, processed dataset that is of interest to other parties, and

hence want to to selectively share this information by allowing others to query the dataset

in a verifiable fashion. (iii) database servers that allow public queries may become over-

whelmed with requests, and need to enlist additional servers to help (essentially the server

acts as a delegator to outsource queries with relevant data). Finally, (iv) consider a form

of peer-to-peer network for sharing computational resources – as individual resource avail-

ability varies, entities can sell spare resources to perform computations for other users

or make their own data available to others, whilst making computation requests to other

entities when resources run low.

Current PVC solutions do not handle these flexible requirements particularly well; al-

though there are several different proposals in the literature that realise some of the

requirements described above, each requires an independent (potentially expensive) setup

stage. In this chapter, we introduce Hybrid PVC (HPVC) which is a single mechanism

(with the associated costs of a single setup operation and a single set of system parameters

to publish and maintain) which simultaneously satisfies all of the above requirements. En-

tities may play the role of both delegators and servers, in the following modes of operation,

dynamically as required:

• Revocable PVC (RPVC) where clients with limited resources outsource computations

on data of their choosing to more powerful, untrusted servers using only public information.

Multiple servers can compute multiple functions. Servers may try to cheat to persuade

verifiers of incorrect information or to avoid using their own resources. Misbehaving servers

can be detected and revoked so that further results will be rejected and they will not be

195

6.1 Introduction

rewarded for their effort;

• RPVC with access control (PVC-AC) which restricts the servers that may perform

a given computation. Outsourced computations may be distributed amongst a pool of

available servers that are not individually authenticated and known by the delegator. In

Chapter 4, we used symmetric primitives and required all entities to be registered in the

system (including delegators) but here we achieve a fully public system where only servers

need be registered (as usual in PVC);

• Verifiable Delegable Computation (VDC) where servers are the data owners and

make a static dataset available for verifiable querying. Clients request computations on

subsets of the dataset using public, descriptive labels.

Continuing our investigation of the use of attribute-based encryption in verifiable com-

putation settings, we consider a third form of ABE, namely dual-policy attribute-based

encryption [16] (see Section 2.6.3). We see that HPVC provides a natural application for

DP-ABE, which combines both KP- and CP-ABE.

DP-ABE has previously attracted relatively little attention in the literature, which we

believe to be primarily due to its applications being less obvious than for the single-

policy ABE schemes. Whilst KP- and CP-ABE are generally considered in the context of

cryptographically enforced access control (where objects are encrypted and can only be

read by users holding keys satisfying some decryption policy), it is unclear that the policies

enforced by DP-ABE are natural choices for access control. Thus an interesting side-effect

of this work is to show that additional applications for DP-ABE exist. In independent and

concurrent work, Shi et al. [90] considered a similar use of DP-ABE to combine keyword

search on encrypted data with the enforcement of an access control policy.

As DP-ABE combines both KP- and CP-ABE, it is not so surprising that it is possible to

use DP-ABE to capture RPVC and VDC. However, we observe that this does not use the

full power of DP-ABE; instead, it merely uses the ability of DP-ABE to separately enforce

key and ciphertext policies. We show that, by using both forms of policy simultaneously,

we can enforce access control policies in a similar fashion to Chapter 4 (where the data

owner specifies the policy).

196

6.2 Hybrid Publicly Verifiable Computation

In Section 6.2, formally introduce our hybrid model of publicly verifiable outsourced com-

putation. As the notions of security for HPVC primarily combine the games seen in the

previous chapters, we defer them to Appendix B.2. In Section 6.3.2, we provide a construc-

tion of an HPVC scheme. To implement the RPVC functionality, we first must develop

a new form of DP-ABE that includes the ability to revoke entities and prevent further

decryptions. Hence, in Section 6.3.1, we combine the revocation techniques from the in-

directly revocable KP-ABE scheme [14] we used in Chapter 3 with the DP-ABE scheme

of Attrapadung and Imai (see Section 2.6.3). We define the primitive and security model

in Section 6.3.1, and give a concrete construction and proof of security in Appendix B.1.

Finally, we proof our HPVC scheme secure in Appendix B.3.

6.2 Hybrid Publicly Verifiable Computation

We now define our umbrella framework of hybrid publicly verifiable computation (HPVC).

This is a single system (with the associated costs of a single setup operation and system

parameters) that supports multiple modes of operation. Thus, a single KDC may initialise

an HPVC system that provides functionality for many users with diverse requirements.

Our construction in Section 6.3.2 is based on a novel use of DP-ABE. The key observation

is that DP-ABE can, using special attribute tokens, implement KP-ABE, CP-ABE or

DP-ABE policies. In more detail, we capture the following functionality:

• RPVC: uses objective (KP-ABE) policies only to achieve RPVC as introduced in

Chapter 3. Clients with limited resources available may outsource computations to

more powerful entities within the system and receive verifiably correct results. Mul-

tiple servers can enrol within the system and each may evaluate multiple functions.

Entities that misbehave and return incorrect computational results can be detected

and prevented from further operating within the system;

• RPVC with access control: uses both subjective (CP-ABE) and objective (KP-

ABE) policies to achieve RPVC with restrictions on the servers that may perform

a computation. This can be seen as an alternative to PVC-AC introduced in Chap-

ter 4. Within a large system comprising many servers, delegators may have limited

knowledge about the server selected to perform a given computation. The set of

servers that may evaluate a given computation can therefore be restricted based on

197

6.2 Hybrid Publicly Verifiable Computation

factors such as sensitivity of the input data, physical server location etc. The con-

struction in Chapter 4, although able to enforce a wider range of policies, required

all entities to be registered in the system (including delegators); with HPVC, we

achieve a fully public system where only servers need be registered (as required in

usual publicly verifiable outsourced computation);

• VDC: uses subjective (CP-ABE) policies only to allow entities to make a dataset

available over which other entities may request particular computations (or queries)

be performed, as discussed in Chapter 5.

Note that within an HPVC system, entities may play the role of both delegators and

servers as required. This provides a flexible solution to interactions between different

entities within a large system or organisation where individual workflows may require

different forms of outsourced computation.

6.2.1 Informal Overview

An HPVC scheme for a family of functions F begins with a trusted key distribution centre

(KDC) (e.g. a trusted third party) setting up the system by producing public parameters

and a master secret key. For each function of interest F , the KDC provides a public

delegation key PKF . Next, the KDC registers each entity Si, that wishes to act as a

server, by deriving a private signing key SKSi .

The Certify algorithm generates an evaluation key EK(O,ψ),Si that enables a server Si to

evaluate computations either of the function O or on the input data ψ, depending on the

mode in which the algorithm is run. The server Si is able to choose a set of labels Li

— in RPVC or PVC-AC modes Li will uniquely represent the function F that the server

is certified to compute; in VDC mode on the other hand, Li will be a set of labels, each

representing a data point contained in the server’s dataset Di. Si also provides a list of

computations Fi he is willing to evaluate.

A delegator runs ProbGen to make a request for the computation of F (X) from a server

Si; again the input values depend on the mode. The delegator provides a set of labels

LF,X ⊆ Li. In RPVC or PVC-AC modes, LF,X simply represents the function F that

should be computed on the provided inputs; in VDC mode, LF,X represents the data points

198

6.2 Hybrid Publicly Verifiable Computation

Table 6.1: Parameter definitions for different modes

mode O ψ ω S

RPVC F {TS} X {{TS}}
VDC {{TO}} Di {TO} F
PVC-AC F s X P

mode Li LF,X Fi
RPVC {l(F)} {l(F)} {F}
VDC {l(xi,j)}xi,j∈Di {l(xi,j)}xi,j∈X {F,

⋃
xi,j∈Dom(F) l(xi,j)}mi=1

PVC-AC {l(F)} {l(F)} {F}

X ⊆ Di, X ⊆ Dom(F) held by the server that should be computed on. The algorithm

generates an encoded input σF,X , a public verification key V KF,X and an output retrieval

key RKF,X .

A server may use the encoded input with its evaluation key EK(O,ψ),Si to compute an

output θF (X) encoding the computational result F (X). Verification comprises two steps.

Blind verification is performed by any user using the verification key V KF,X to verify cor-

rectness of the result without learning the output value, and generates an output retrieval

token RTF (X). The algorithm also generates a token τF (X) indicating the correctness and

the server ID. If verification failed, this token is sent to the KDC and the server is revoked

from performing further evaluations and hence incurs a penalty. Otherwise, RTF (X) can

be used in the Retrieve algorithm to reveal the final result yF (X) = F (X).

6.2.2 Supporting Different Modes

We define HPVC generically in terms of objective (RPVC) and subjective (VDC) policies

(O and S) with corresponding attribute sets (ω and ψ respectively). The values of these

parameters depend upon the mode in which an algorithm is being run, and are detailed

in Table 6.1. We define two additional parameters TO and TS . The meaning of these will

become clearer in Section 6.3.2; for now, it suffices to think of them as dummy objects

where {TS} ∈ {{TS}} and so the subjective function S = {{TS}} is always trivially satisfied

by the input ψ = {TS}, and similarly for TO. These parameter choices will be used to

“disable” the functionality of a mode if not required.

199

6.2 Hybrid Publicly Verifiable Computation

6.2.2.1 RPVC

For RPVC functionality, only the objective access structure O and the objective attribute

set ω are required, and are set to be F and the input X respectively to outsource the

computation of F (X); in this context, X is a set comprising a single element, corresponding

to the single input data point x in Chapter 3. The unneeded subjective parameters S and

ψ are defined in terms of the dummy parameter TS such that S is trivially satisfied. The

set of functions Fi that a server is certified for during a single run of the Certify algorithm

is simply the function F , and the sets of labels Li and LF,X both comprise a single element

labelling F . Note that in this setting, the label l(F) corresponds to the bijective mapping

φ : F → UF defined in Section 3.5.1.2.

6.2.2.2 VDC

For VDC functionality, on the other hand, only the subjective policy S and attribute set

ψ are required. S is set to represent a function F that is queried to a server, whilst ψ is

defined to be the dataset Di held by the server Si comprising mi data points — that is,

Di = {xi,j}mij=1. The remaining objective parameters are defined in terms of the dummy

parameter TO to be trivially satisfied. The set of functions Fi is defined to be a set of

functions that the server is willing to compute on behalf of queriers along with the labels of

each permissible input to the function (which is given as input to the Certify algorithm).

Finally, the set of labels Li comprise a data label labelling each data point xi,j ∈ Di

held by the server (that is, all data points in ψ), whilst the set of labels LF,X ⊆ Li

represent data points that a particular computation should be performed over (i.e. the

input X ⊆ Di, X ⊆ Dom(F) to the computation F (X)).

6.2.2.3 PVC-AC

The above parameter choices allow us to define a single HPVC system to support both

RPVC and VDC functionality. However, we can also use both sets of parameters (objective

and subjective) simultaneously to achieve a form of PVC-AC such that only servers that

meet an authorisation policy attached to the encoded input may produce valid (acceptable)

results (and hence be rewarded for their effort).

200

6.2 Hybrid Publicly Verifiable Computation

Recall that, in Chapter 4, we introduced PVC-AC with the motivation that servers could

be selected from a (large) pool of available servers based on a system-dependent mechanism

(e.g. resource availability or a bidding process). (This contrasts with prior models [84]

where a client chose a server up-front with which to set up a PVC system.) Thus, in this

setting, delegators have less knowledge about the selected server and may not authenticate

them beforehand. The PVC-AC construction in Chapter 4 used symmetric encryption

and key assignment schemes as the cryptographic enforcement mechanisms, such that

only authorised entities could derive decryption keys. However, delegators and verifiers

had to be registered by the KDC. This is partly due to the policies being enforced (e.g.

such that delegators may outsource only certain computations) but also due to the use

of symmetric primitives — to encrypt an input that only authorised servers can decrypt,

delegators must be privately issued the symmetric key. Thus, the scheme is not strictly

publicly delegable — any entity may be registered as a delegator but delegation does not

depend only on public information, and similarly for verification.

Here, we give a more relaxed framework that retains public verifiability and public delega-

bility, but for a limited class of access control policies placing restrictions only on the set

of servers that may compute a given outsourced computation. In some sense, servers are

already authorised for functions by virtue of being issued evaluation keys. However, we

believe not all outsourced computations should be considered purely in terms of functions

and that access control policies in this setting should allow for additional context. For

example, a government contractor that subscribes to a verifiable software-as-a-service sys-

tem may, due to the nature of its work, require that servers be physically located within

the same country. Alternatively, as discussed in Chapter 4, the semantic meaning of input

data may affect the access control requirements.

Informally, to define PVC-AC in the context of an HPVC system, we use the objective

policy to evaluate an outsourced computation (as in Section 6.2.2.1 for RPVC) whilst

the subjective policy will additionally be used to enforce access control on the server.

Servers are assigned both an evaluation key for a function F and a set of descriptive at-

tributes describing their authorisation rights, s ⊆ US , where US is a universe of attributes

used solely to define authorisation — in the terminology of Chapter 4, λC(S) = (F, s).

ProbGen operates on both the input data X and an authorisation policy P ⊆ 2US \ {∅}

which dictates the sets of necessary authorisation attributes to perform this computa-

tion — again, in the terminology of Chapter 4, λC(o) = (X,P) for the computation

201

6.2 Hybrid Publicly Verifiable Computation

o. A server may produce a valid output that is accepted by the Verify algorithms if

and only if s ∈ P — that is, the server satisfies the authorisation policy. For exam-

ple, s may be {Country = UK, Capacity = 3TB} to describe the location and resources of

the server, while P = (Country = UK) ∨ ((clearance = Secret) ∧ (Country = USA)) =

{{UK},{clearance = Secret, Country = USA}} defines a policy dictating the necessary

clearances for servers in different locations.

It is interesting to note that by discussing DP-ABE policies in terms of a labelling function,

it becomes clear that this is not the same as the dual-policy graph-based access control

policies discussed by Crampton [44]. Here the range of the labelling function is 22
UC ×22

US

(where US is the universe of attributes used to describe access control policies, as discussed

above, and UC comprises attributes from which functions and computational inputs can

be formed), whilst Crampton used the range 22
UC×US . There, instead of assigning to each

entity an access structure and an attribute set, each entity is instead given just a policy

and access is granted if and only if there exists an attribute set that satisfies both policies.

In the VDC setting, we could allow the subjective policy to specify the function F whilst

the objective policy contains the authorisation policy P . Then, delegators may request a

computation only if they can provide certain attributes (e.g. those authorised to learn the

computational results over sensitive data). As this mechanism is symmetric to that for

PVC-AC, we do not discuss it in detail here.

6.2.3 Formal Definition

Definition 6.1. A hybrid publicly verifiable computation (HPVC) scheme for a family of

functions F comprises the following algorithms:

1. (PP,MK)
$← Setup(1`,F) : Run by the KDC to establish public parameters PP and

a master secret key MK for the system. The inputs are the security parameter and

the family of functions F that may be computed;

2. PKF
$← FnInit(F,MK,PP): Run by the KDC to generate a public delegation key,

PKF , allowing entities to outsource or request computations of F ;

202

6.2 Hybrid Publicly Verifiable Computation

3. SKSi
$← Register(Si,MK,PP): run by the KDC to enrol an entity Si within the

system to act as a server. It generates a personalised signing key SKSi ;

4. EK(O,ψ),Si
$← Certify(mode, Si, (O, ψ), Li,Fi,MK,PP): run by the KDC to generate

an evaluation key EK(O,ψ),Si enabling the server Si to compute on the pair (O, ψ).

If mode is VDC then ψ is a dataset owned by Si comprising mi data points. Each

data point xi,j ∈ ψ is uniquely represented by a label in the set Li = {l(xi,j)}xi,j∈ψ.

Fi is a set of functions that Si is willing to compute on subsets of ψ. Otherwise,

O represents a function F , the set of labels Li comprises just a single element l(F)

representing F , and Fi = {F};

5. (σF,X , V KF,X , RKF,X)
$← ProbGen(mode, (ω,S), LF,X , PKF ,PP): run by an entity

to request a computation of F (X) from a server Si.

The inputs are the mode (RPVC, PVC-AC or VDC), the pair (ω,S) representing

the computation request, a set of labels LF,X ⊆ Li, the public delegation key for F

and the public parameters.

If mode is VDC then the labels LF,X = {l(xj)}xi,j∈X ⊆ Li represent the data items

X ⊆ Di, X ⊆ Dom(F) held by a server Si which form the inputs to F . Otherwise,

the set of labels comprises a single label labelling F which should be computed on

the provided inputs ω. The outputs of this algorithm are an encoded input σF,X , a

verification key V KF,X and an output retrieval key RKF,X ;

6. θF (X)
$← Compute(mode, σF,X , EK(O,ψ),Si , SKSi ,PP): run by an entity Si to perform

a computation. The inputs are the mode (RPVC, PVC-AC or VDC), an encoded

input, an evaluation key and signing key for Si and the public parameters. The

output is θF (X) which encodes the result of the computation;

7. yF (X) ← Verify(θF (X), V KF,X , RKF,X ,PP): verification consists of two steps.

• (RTF (X), τF (X)) ← BVerif(θF (X), V KF,X ,PP): run by any verifier possessing

an encoded output and verification key for a computation, and the public pa-

rameters. It produces a retrieval token RTF (X) encoding the actual output of

the computation, and a token τF (X) which is (accept, Si) if θF (X) is a correct

result computed by the entity Si, or (reject, Si) if Si misbehaved;

• y ← Retrieve(RTF (X), τF (X), V KF,X , RKF,X ,PP): run by a verifier holding the

outputs from BVerif, the verification key and retrieval key for the computation

203

6.2 Hybrid Publicly Verifiable Computation

of F (X) and the public parameters. This algorithm produces a result y = F (X)

if the result was computed correctly, or y =⊥ otherwise;

8. UM
$← Revoke(τF (X),MK,PP): run by the KDC if a verifier reports a misbehaving

server i.e. that Verify returned τF (X) = (reject, Si). If the algorithm is run with

τF (X) = (accept, Si) then it returns UM =⊥ as no entity is to be revoked. Otherwise,

all evaluation keys EK(·,·),Si for the server Si are rendered non-functional. The

update material UM is a set of updated evaluation keys {EK(O,ψ),S′} which are

issued to all servers.

The KDC may additionally update the public parameters PP during any algorithm to

reflect any changes in the user population.

We say that an HPVC scheme is correct if, when all algorithms are run honestly in any

order and the result is computed by a non-revoked server, the result is correct and the

verification algorithm accepts the result. We can model this as a cryptographic game

between a challenger and a PPT adversary; the adversary aims to find an encoded output

(generated honestly by a non-revoked server) which either does not encode the correct

result, or which does encode the correct result yet which will not be accepted by the

verification algorithm.

The adversary is given access to a set of oracles; for each algorithm in Definition 6.1, we

define a corresponding oracle which executes the corresponding algorithm on arguments

provided by the adversary, and returns the output of the algorithm to the adversary. The

adversary may query the Setup oracle only once (before making any other oracle queries),

but can thereon call the remaining oracles any number of times and in any order.

The challenger maintains two lists, LReg and LF . LReg is a list of tuples comprising server

identities, Si, and the resulting signing keys, SKSi , that have been queried to the Register

oracle. LF comprises tuples of the form (Si, ψ, Li,Fi, EK(O,ψ),Si) denoting that the server

Si has been queried to the Certify oracle for the set of functions Fi and that EK(O,ψ),Si

was generated. When the adversary makes a Revoke query with a revocation token that

identifies a server Si to be revoked (that is, if τθF (x)
= (reject, S) is given as input to the

Revoke oracle), the challenger removes all entries of the form (Si, ·, ·, ·, ·, ·) (i.e. all entries

for Si for any function) from LF .

204

6.2 Hybrid Publicly Verifiable Computation

The challenger also creates and maintains a table T which records the parameters and

values relating to each computation performed through the oracle queries. T is updated

in the following oracles:

• ProbGen: the challenger creates a new row in T comprising 8 components, all of which

are initialised to be empty; it then assigns X (which is either given explicitly in ω

or can be found by searching LF for the labels LF,X), F , the result F (x) (computed

by the challenger itself), σF,X , V KF,X and RKF,X to the first 6 components;

• Compute: the challenger first searches T for all rows that contain the queried σF,X

in the 4th component and where the 7th component is empty (i.e. those rows relating

to computations on this encoded input that have not yet been performed). For each

such row, r, the challenger takes the second component (the function identifier, F̃),

and checks that there exists a server identity S̃i such that the tuple (S̃i, SKS̃i
) ∈ LReg

(where SKS̃i
is that given as input to the Compute oracle) and such that the tuple

(S̃i, ·, ·,Fi, EK(O,ψ),Si) ∈ LF (where EK(O,ψ),Si is also that given as input to the

Compute oracle) and where F̃ ∈ Fi. This check ensures that there is a currently

un-revoked server (as the entries of LF for S̃i have not been removed) that holds the

signing key and evaluation key being used to perform the computation and which is

certified for a function F̃ for which the encoded input σF,X was generated.

The challenger then performs the Compute algorithm on the queried σF,X , EK(O,ψ),Si

and SKSi to produce an output θF (X). For each of the rows r of T found above,

the challenger writes θF (X) and S̃i to the 7th and 8th components of r respectively.

Thus, a row of T will only have a (non-empty) value in the 7th component if there

exists a non-revoked, certified server to perform the computation for which σF,X was

generated.

Thus, when complete, the entries of T will be of the form

(X,F, F (X), σF,X , V KF,X , RKF,X , θF (X), S).

After a polynomial number of queries, the adversary will return a value θ?F (X) which

he believes either encodes an incorrect computational result or which encodes a correct

computational result yet which the Verify algorithm will reject (that is, an output for

which the protocol execution will not be correct). The challenger first performs a look

205

6.3 Construction

up in T for all entries containing θ?F (X) in the 7th position of the tuple, and stores any

such entries as another table T̃ . Note that this means that θ?F (X) must have been honestly

generated by the Compute oracle (else it would not be in T).

For each such row, the challenger uses the 5th component (the verification key) to run

BVerif on θ?F (X) to generate the outputs RTF (X) and τθF (X)
, and then uses the 5th and 6th

components (the verification key and retrieval key) and τθF (X)
to run Retrieve on θ?F (X) to

generate y.

The challenger first checks whether y matches the 3rd component of the row (that is,

whether y is the correct computational result F (X)). If so, it then checks whether τθF (X)
=

(reject, Si), and if so it ends the game by returning 1 to indicate that the adversary has

won the game (the adversary has found a valid encoding of a correct result, computed by

a certified, non-revoked server, that the Verify algorithm is incorrectly rejecting).

On the other hand, if y did not match the correct value of F (X), the challenger also ends

the game by returning 1 to indicate that the adversary has won the game (the adversary

in this case has found an incorrect result that was computed honestly by the algorithms).

If no row in T̃ allows the adversary to win, then the challenger outputs 0 to indicate

that the adversary has lost. An HPVC scheme is correct if, for all PPT adversaries, the

probability that the adversary wins the game described above is 0.

6.3 Construction

Before giving our construction of HPVC, we must first introduce a new cryptographic

primitive which will form the basic building block of our construction.

6.3.1 Revocable Dual-policy Attribute-based Encryption

In Section 2.6.3 we reviewed the notation and properties of dual-policy ABE, introduced

by Attrapadung and Imai [16], that conjunctively combines KP-ABE and CP-ABE such

that both the decryption key and the ciphertext comprise an attribute set and an access

206

6.3 Construction

structure. As discussed in Section 3.2.2, Attrapadung and Imai [14] introduced the formal

notion of revocation in ABE schemes supporting two different modes: direct revocation

and indirect revocation. Direct revocation allows users to specify a revocation list at

the point of encryption such that periodic re-keying is not required but encryptors must

have knowledge of the current revocation list. In contrast, indirect revocation requires a

time period to be specified at the point of encryption and an authority to issue updated

key material at each time period to enable non-revoked entities to update their key to

be functional during that time period. As in Chapter 3, with the setting of verifiable

outsourced computations in mind, we choose to focus on indirect revocation to minimise

the workload of the client devices in terms of maintaining synchronised revocation lists.

To implement a revocation mechanism in the KP-ABE setting, Attrapadung and Imai

amended the policy of the ABE scheme to include an identifier of the entity owning the

key, and then embedded the current time period into the ciphertext. Update keys were

issued for all non-revoked identities at each time period which were used in combination

with the decryption key to decrypt ciphertexts formed for particular time periods —

only if the entity was issued an update key for time t (i.e. was not revoked) could they

decrypt ciphertexts formed using t. We observe that, to define a revocable DP-ABE

scheme, the revocation mechanism can be embedded either, as above, in the KP-ABE

functionality or in the CP-ABE functionality. In more detail, decryption in DP-ABE is

successful if and only if both attribute sets satisfy their corresponding access structure.

In order to prevent decryption, therefore, at least one attribute set should not satisfy the

corresponding access structure. Here we present a formal definition of revocable DP-ABE

using indirect revocation in the key-policy. It will be the subject of future work to compare

the efficiency of the two approaches.

We refer to the access structure associated to a decryption key as an objective access

structure, denoted O, and the attribute set associated to the ciphertext as an objective

attribute set, denoted ω; these are associated with the KP-ABE functionality. Similarly,

the access structure associated to a ciphertext is referred to as a subjective access structure,

denoted S, and the attribute set associated to the key as an subjective attribute set, denoted

ψ; these are associated with the CP-ABE functionality.

Definition 6.2. A revocable key dual-policy attribute-based encryption scheme (rkD-

PABE) comprises five algorithms:

207

6.3 Construction

• (PP,MK)
$← Setup(1`,U): takes the security parameter and the attribute universe

as input and generates public parameters PP for the system and a master secret key

MK;

• CT(ω,S),t
$← Encrypt(m, (ω,S), t,PP): takes as input a message to be encrypted,

an objective attribute set ω, a subjective policy S, a time period t and the public

parameters. It outputs a ciphertext that is valid for time t;

• SK(O,ψ),ID
$← KeyGen(ID, (O, ψ),MK,PP): takes an identity ID, an objective access

structure O, a subjective attribute set ψ, as well as the master secret key and the

public parameters. It outputs a secret decryption key SK(O,ψ),ID;

• UKR,t
$← KeyUpdate(R, t,MK,PP): takes a revocation list R that contains the

identities of revoked entities, the current time period, as well as the master secret

key and public parameters. It outputs updated key material UKR,t which makes the

decryption keys SK(O,ψ),ID, for all non-revoked identities ID 6∈ R, functional to be

able to decrypt ciphertexts encrypted for the time t.

• PT ← Decrypt(CT(ω,S),t, (ω,S), SK(O,ψ),ID, (O, ψ), UKR,t,PP): takes as input a ci-

phertext formed for the time period t and the associated pair (ω,S) comprising an

objective attribute set and a subjective access structure, a decryption key for entity

ID and the associated objective access structure O and subjective attribute set ψ,

an update key for the time t and the public parameters.

It outputs a plaintext PT which is the encrypted message m, if and only if the

objective attributes ω satisfies the objective access structure O and the subjective

attributes ψ satisfies the subjective policy S and the value of t in the update key

matches that specified during encryption. If not, PT is set to be a distinguished

failure symbol ⊥.

Definition 6.3. An rkDPABE scheme is correct if for all messages m ∈M, for all access

208

6.3 Construction

Game 6.1 ExpIND-sHRSS
A

[
RKDPABE , 1`,U

]
1: (t?, (ω?,S?)) $← A(1`,U)

2: (PP,MK)
$← Setup(1`,U)

3: R
$← A(PP)

4: (m0,m1)
$← AOKeyGen(·,(·,·),MK,PP)OKeyUpdate(·,·,MK,PP)(PP)

5: if (|m0| 6= |m1|) then return 0

6: b
$← {0, 1}

7: CT ?
$← Encrypt(mb, (ω

?,S?), t?,PP)

8: b′
$← AOKeyGen(·,(·,·),MK,PP)OKeyUpdate(·,·,MK,PP)(CT ?,PP)

9: return b′ = b

Oracle 6.1 OKeyGen(ID, (O, ψ),MK,PP):

1: if ((ω? ∈ O) and (ψ ∈ S?) and (ID /∈ R̃)) then return ⊥
2: return KeyGen(ID, (O, ψ),MK,PP)

Oracle 6.2 OKeyUpdate(R, t,MK,PP):

1: if ((t = t?) and (R̃ 6⊆ R)) then return ⊥
2: return KeyUpdate(R, t,MK,PP)

structures O,S ⊆ 2U \ {∅}, and for all attribute sets ω, ψ ⊆ U where ω ∈ O and ψ ∈ S,

Pr[(PP,MK)
$← Setup(1`,U),

SK(O,ψ),ID
$← KeyGen(ID, (O, ψ),MK,PP),

CT(ω,S),t
$← Encrypt(m, (ω,S), t,PP),

UKR,t
$← KeyUpdate(R, t,MK,PP),

m← Decrypt(CT(ω,S),t, (ω,S), SK(O,ψ),ID, (O, ψ), UKR,t,PP)]

= 1− negl(`).

The security model for rkDPABE is a natural extension of the IND-sHRSS game for an

indirectly revocable KP-ABE scheme (see Section 3.2.2), and is presented in Game 6.1

and Oracles 6.1 and 6.2.

Definition 6.4. The advantage of a PPT adversary A in the IND-sHRSS game for an

rkDPABE construction RKDPABE is defined as:

AdvIND-sHRSS
A (RKDPABE , 1`,U) = Pr

[
1

$← ExpIND-sHRSS
A

[
RKDPABE , 1`,U

]]
− 1

2 .

An rkDPABE scheme is secure in the sense of indistinguishability against selective-target

209

6.3 Construction

with semi-static query attack (IND-sHRSS) if for all PPT adversaries A,

AdvIND-sHRSS
A (RKDPABE , 1`,U) 6 negl(`).

In the remainder of this chapter, we shall use an rkDPABE scheme in a black-box manner;

therefore to comprehend the rest of the chapter, it is sufficient to refer to Definitions 6.2

and 6.4 only. For completeness, we provide a construction and security proof for an

rkDPABE scheme in Appendix B.1.

6.3.2 Instantiation of HPVC

We construct a HPVC scheme for a family F of monotone Boolean formulas closed under

complement using a revocable key dual-policy ABE in a black-box manner. Consider a

function to be delegated F : {0, 1}n → {0, 1} and its complement function F = F (x)⊕ 1.

As in Section 5.6, n-bit binary input strings x are encoded as attribute sets Ax ⊆ Ux. Let

Ul be a set of attributes (disjoint from Ux) that uniquely label each function and each data

item, and let UID represent server identities. Let g be a one-way function and DPABE =

(DPABE.Setup, DPABE.Encrypt, DPABE.KeyGen, DPABE.KeyUpdate, DPABE.Decrypt) be

a revocable key DP-ABE scheme for F (see Section 6.3.1) with attribute universe U =

Ux ∪ Ul ∪ UID ∪ TO ∪ TS .

TO and TS allow a DP-ABE scheme to efficiently function as either KP-ABE or CP-

ABE [15]. For KP-ABE, the subjective policy S = {{TS}} is satisfied by the presence in

ψ of the special attribute TS — thus, S is always trivially satisfied and decryption only

depends on the objective attributes and policy. Similarly, for CP-ABE, ω = {TO} and

O = {{TO}}. We will initialise two independent DP-ABE systems over U . Hence, we

define a total of four additional attributes: T 0
O, T

0
S relating to the first DP-ABE system,

and T 1
O, T

1
S for the second DP-ABE system. We denote the complement functions in

different modes as follows: In RPVC and PVC-AC, O = F and S = {{T 0
S}}; we define

O = F and S = {{T 1
S}}. Similarly, for VDC, O = {{T 1

0 }} and S = F .

Each mode operates by encrypting a pair of random messages and issuing keys such that

the recovery of one message implies whether the ciphertext was linked to F or F , and hence

if F (X) = 1 or 0. Ciphertext indistinguishability ensures an adversary cannot cheat by

210

6.3 Construction

returning the other message.

1. Setup, presented in Algorithm 6.1, initialises two revocable DP-ABE schemes over

the universe U , an empty two-dimensional array LReg, a list of revoked servers and a

time source T (e.g. a networked clock or counter updated by Revoke) to index update

keys.

Algorithm 6.1 (PP,MK)
$← HPVC.Setup(1`,F)

1: (MPK0
ABE,MSK0

ABE, T
0
O, T

0
S)

$← DPABE.Setup(1`,U)

2: (MPK1
ABE,MPK1

ABE, T
1
O, T

1
S)

$← DPABE.Setup(1`,U)
3: for Si ∈ UID do
4: LReg[Si][0]← ε, LReg[Si][1]← {ε}
5: Initialise T
6: LRev ← ε
7: PP← (MPK0

ABE,MPK1
ABE, LReg, T

0
O, T

1
O, T

0
S , T

1
S ,T)

8: MK← (MSK0
ABE,MSK1

ABE, LRev)

2. FnInit, presented in Algorithm 6.2, sets the public delegation key PKF to be the

public parameters for the system (since we use public key primitives). This algorithm

is the same for all functions F .

Algorithm 6.2 PKF
$← HPVC.FnInit(F,MK,PP)

1: PKF ← PP

3. Register, presented in Algorithm 6.3, runs a signature KeyGen algorithm and adds

the verification key to LReg[Si][0]. Signatures ensure that honest servers are neither

impersonated nor maliciously revoked.

Algorithm 6.3 SKSi

$← HPVC.Register(Si,MK,PP)

1: (SKSig, V KSig)
$← Sig.KeyGen(1`)

2: SKSi
← SKSig

3: LReg[Si][0]← LReg[Si][0] ∪ V KSig

4. Certify, presented in Algorithm 6.4, first adds an element (F,
⋃
lj∈Li lj) to the list

LReg[Si][1] for every F ∈ Fi; this publicises the computations that Si is able to

perform (either the functions in RPVC and PVC-AC modes, or the functions and

data labels in VDC mode). The algorithm then removes Si from the revocation

list, initialises the time source T and runs KeyGen for the first DP-ABE system to

generate a decryption key for (O, ψ ∪
⋃
lj∈Li lj).

The inclusion of the labels lj ∈ Ul as additional attributes ensures that a key may

not be used to evaluate computations that do not correspond to these labels. In

211

6.3 Construction

the RPVC and PVC-AC settings, this means that a key for a function G may not

be used to evaluate a computation on input X? when the delegator outsources the

computation of F (X?). In VDC, this means that the evaluation key used by the

server to produce a computational result must have been issued for a dataset Di that

includes (at least) the specified input data X?. We note that it is sufficient to only

include the labels on the subjective attribute set without also adding them to the

objective policy; as these labels are a security measure against a misbehaving server,

we can amend the servers key (in the subjective attributes) but need not take similar

measures against the delegator. Delegators can then specify, in the subjective policy

that they create, the labels that are required. Even though the subjective attribute

set is defined to be a dummy parameter in RPVC and PVC-AC modes, we still add

the additional attributes — then the delegator can specify the required labels during

ProbGen and these labels must still be present in the server’s key for a successful

evaluation (decryption) to occur. (Trivially applying the labels to both the objective

and subjective policies would require Li to equal LF,X? in order for both policies to

be satisfiable.)

The KDC should check that the label actually corresponds to the input (for example,

by defining and applying a one-way, injective label mapping from F × Ux to Ul) to

ensure that a server does not fraudulently advertise data that he does not actually

own. It also generates an update key for the current time period to prove that Si is

not currently revoked. If operating in a publicly verifiable outsourced computation

mode, another pair of keys is generated using the second DP-ABE system for the

complement inputs.

Algorithm 6.4 EK(O,ψ),Si

$← HPVC.Certify(mode, Si, (O, ψ), Li,Fi,MK,PP)

1: for F ∈ Fi do
2: LReg[Si][1]← LReg[Si][1] ∪ (F,

⋃
lj∈Li

lj)

3: LRev ← LRev \ Si, t← T
4: SK0

ABE
$← DPABE.KeyGen(Si, (O, Aψ ∪

⋃
lj∈Li

lj),MSK0
ABE,MPK0

ABE)

5: UK0
LRev,t

$← DPABE.KeyUpdate(LRev, t,MSK0
ABE,MPK0

ABE)

6: if (mode = RPV C) or mode = PVC-AC) then

7: SK1
ABE

$← DPABE.KeyGen(Si, (O, Aψ ∪
⋃
lj∈Li

lj),MSK1
ABE,MPK1

ABE)

8: UK1
LRev,t

$← DPABE.KeyUpdate(LRev, t,MSK1
ABE,MPK1

ABE)
9: else

10: SK1
ABE ←⊥, UK1

LRev,t
←⊥

11: EK(O,ψ),Si
← (SK0

ABE, SK
1
ABE, UK

0
LRev,t

, UK1
LRev,t

)

5. ProbGen, presented in Algorithm 6.5, first chooses two messages m0 and m1 uni-

formly at random from the message space. A random bit b randomly permutes

212

6.3 Construction

the messages such that a verifier that does not know b does not know which mes-

sage was recovered and hence the value of F (X). Message mb is encrypted with

(Aω,S ∧
∧
lj∈LF,X lj) and the first system parameters (where Aω is the attribute set

encoding of the input ω), whilst m1−b is encrypted using the complement policy and

either the first system parameters for VDC or the second for RPVC (the attribute set

remains the same as it is either the same input data X in RPVC, or the same special

attribute T 0
O in VDC). The verification key is computed by applying the one-way

function g to the messages (the one-wayness allows the key to be published), and b

forms the output retrieval key (as this reveals the order of the decrypted results and

hence the output).

Algorithm 6.5 (σF,X , V KF,X , RKF,X)
$← HPVC.ProbGen(mode, (ω, S), LF,X , PKF ,PP)

1: (m0,m1)
$←M×M

2: b
$← {0, 1}

3: t← T
4: cb

$← DPABE.Encrypt(mb, (Aω,S ∧
∧
lj∈LF,X

lj), t,MPK0
ABE)

5: if mode = V DC then c1−b
$← DPABE.Encrypt(m1−b, (A,S ∧

∧
lj∈LF,X

lj), t,MPK0
ABE)

6: else c1−b
$← DPABE.Encrypt(m1−b, (Aω,S ∧

∧
lj∈LF,X

lj), t,MPK1
ABE)

7: return σF,X ← (cb, c1−b), V KF,X ← (g(mb), g(m1−b), LReg), RKF,X ← b

6. Compute, presented in Algorithm 6.6, decrypts the two ciphertexts and signs the

results, again ensuring that the different modes use the correct system parameters.

Algorithm 6.6 θF (X)
$← HPVC.Compute(mode, σF,X , EK(O,ψ),Si

, SKSi ,PP)

1: Parse EK(O,ψ),Si
as (SK0

ABE, SK
1
ABE, UK

0
LRev,t

, UK1
LRev,t

) and σF,X as (c, c′)

2: db ← DPABE.Decrypt(c, SK0
ABE,MPK0

ABE, UK
0
LRev,t

)

3: if mode = V DC then d1−b ← DPABE.Decrypt(c′, SK0
ABE,MPK0

ABE, UK
0
LRev,t

)

4: else d1−b ← DPABE.Decrypt(c′, SK1
ABE,MPK1

ABE, UK
1
LRev,t

)

5: γ
$← Sig.Sign((db, d1−b, Si), SKSi

)
6: θ(ω,S),(O,ψ) ← (db, d1−b, Si, γ)

7. BVerif, presented in Algorithm 6.7, verifies the signature using the verification key

for the server Si. If correct, it applies g to each plaintext in θF (X) and compares the

results to the components of the verification key. If either comparison results in a

match (i.e. the server successfully recovered a message), that plaintext is returned as

the retrieval token and the output token is accept. Otherwise the result is rejected

and the server is reported for revocation.

8. Retrieve, presented in Algorithm 6.8, orders the components of the verification key

according to the retrieval key RKF,X = b and checks which message was returned

correctly, and hence determines the result of the computation. If m0 was returned

213

6.3 Construction

Algorithm 6.7 (RTF (X), τF (X))← HPVC.BVerif(θF (X), V KF,X ,PP)

1: Parse V KF,X as (V K, V K ′, LReg) and θF (X) as (d, d′, Si, γ)
2: if accept← Sig.Verify((d, d′, Si), γ, LReg[Si][0]) then
3: if V K = g(d) then return (RTF (X) ← d, τF (X) ← (accept, Si))
4: else if V K ′ = g(d′) then return (RTF (X) ← d′, τF (X) ← (accept, Si))
5: else return (RTF (X) ←⊥, τF (X) ← (reject, Si))
6: return (RTF (X) ←⊥, τF (X) ← (reject,⊥))

then F (X) = 1 as m0 was encrypted for the non-complemented input set; if m1 was

returned then F (X) = 0.

Algorithm 6.8 y ← HPVC.Retrieve(RTF (X), τF (X), V KF,X , RKF,X ,PP)

1: Parse V KF,X as (g(mb), g(m1−b), LReg), θF (X) as (db, d1−b, Si, γ), RKF,X as b
2: if (τF (X) = (accept, Si) and g(RTF (X)) = g(m0)) then return y ← 1
3: if (τF (X) = (accept, Si) and g(RTF (X)) = g(m1)) then return y ← 0
4: return y ←⊥

9. Revoke, presented in Algorithm 6.9, first checks whether a sever should in fact be

revoked. If so, it deletes the list LReg[S][1] of computations that the server, Si, to

be revoked, may perform. It also adds Si to the revocation list, and refreshes the

time source. It then generates new update keys for all non-revoked entities according

to the updated revocation list, and distributes updated evaluation keys such that

non-revoked keys are still functional in the new time period.

Algorithm 6.9 UM
$← HPVC.Revoke(τF (X),MK,PP)

1: if (τF (X) 6= (reject, Si)) then return UM ←⊥
2: LReg[S][1]← {ε}, LRev ← LRev ∪ Si
3: Refresh T, t← T
4: UK0

LRev,t
$← DPABE.KeyUpdate(LRev, t,MSK0

ABE,MPK0
ABE)

5: if (mode = RPV C) or mode = PVC-AC) then

6: UK1
LRev,t

$← DPABE.KeyUpdate(LRev, t,MSK1
ABE,MPK1

ABE)

7: for all S′ ∈ UID do
8: Parse EK(O,ψ),S′ as (SK0

ABE, SK
1
ABE, UK

0
LRev,t−1, UK

1
LRev,t−1)

9: EK(O,ψ),S′ ← (SK0
ABE, SK

1
ABE, UK

0
LRev,t

, UK1
LRev,t

)

10: return UM ← {EK(O,ψ),S′}S′∈UID

It is straightforward to see that correctness of this construction follows from the correctness

of the attribute-based encryption scheme and of the one-way function g.

Theorem 6.1. Given a secure IND-sHRSS rkDPABE scheme for a class of Boolean

functions F closed under complement, a one-way function g, and a signature scheme

secure against EUF-CMA, then HPVC, defined by Algorithms 6.1 to 6.9, is secure in the

sense of selective public verifiability and selective semi-static revocation.

214

6.4 Conclusion

A proof of Theorem 6.1 can be found in Appendix B.3.

6.4 Conclusion

In this chapter, we have drawn together the work of previous chapters to create a unified

notion of verifiable outsourced computation, HPVC, which supports multiple modes of

operation to meet the diverse user requirements of a large multi-user system. We capture

the notions of RPVC, RPVC with access control on servers (maintaining public delegability

and verification), and VDC. We have seen that HPVC leads to a natural and novel use of

DP-ABE.

In future work, we will consider the use of multiple key generation authorities (or KDCs)

in a DP-ABE scheme such that, in an HPVC scheme, the responsibilities for assigning

function evaluation keys and for assigning security attributes are not borne by a single

entity. We believe that in practice, it is more likely that entities will be authoritative

on only one of these areas (and that the KDC that assigns security attributes could also

be used in other systems as a form of federated identity management). This amounts to

splitting the KeyGen operations for the KP- and CP- parts of the DP-ABE scheme, yet

ensuring that the scheme remains secure by tying these keys together by using a global

identifier [38,77]. We will also further investigate our revocable DP-ABE scheme to com-

pare the efficiency of revoking the key- and ciphertext-policies. Finally, interesting open

questions are whether predicate encryption could enable private information retrieval [41],

and whether multi-authority techniques could allow servers themselves to generate eval-

uation keys for only their own data. Furthermore we will investigate techniques allowing

updatable data to be stored on the server.

215

Chapter 7

Conclusion

Throughout this thesis, we have considered methods in which attribute-based encryption

can be employed, not just as a cryptographic enforcement mechanism for access control

policies, but to enable the delegation of computation to external entities. We have tried

to develop results that are interesting in practical settings, considering the system models

and the necessary interactions between parties, whilst still maintaining formal and rigorous

cryptographic security notions and proofs.

Whilst verifiable computation has recently attracted intense interest in the theoretical

community, the motivation for this area of research remains firmly entrenched in the

practical, real-world requirements of available computational resources. As user devices

become increasingly mobile-oriented (and as a result, possibly weaker), and communication

channels over mobile networks become faster and more widely available, the notion of

outsourcing intensive processes to more capable servers is only going to become more

attractive. Indeed, already much processing on smart-phones is outsourced to external

servers; for example, Apple’s Siri [8, 94] and Google Voice Search [64], amongst many

other popular services, transmit user requests to powerful data centres in order to be

processed, and results are returned to the user device. When the network that such

requests and results are transmitted over is insecure or may introduce faults, or when

the data centre may not be trusted, it is vital to efficiently verify the results of such

computations before presenting information to the user. It is therefore important that

research in this area maintains a focus on practical system models and not just theoretically

interesting cryptographic results. Of course, a rigorous security treatment is still absolutely

necessary to ensure the security of systems once deployed.

We began this thesis by considering the work of Parno et al. who first realised that KP-

216

ABE could be used as a verifiable proof mechanism for the satisfaction a Boolean formula.

We considered this notion of publicly verifiable outsourced computation with a view to the

practical environments in which such systems may be deployed. As such, we developed

a system model wherein multiple servers can be certified to compute multiple functions,

and where misbehaving servers can be removed from the system to act as a deterrent and

to avoid wasting delegator resources. We considered two example architectures, namely

the standard model and the manager model. In the case of the latter, servers can be

selected from a large pool based on availability or other desirable properties (e.g. resources,

location, latency or cost). We formalised the notion of blind verification to allow the

manager to verify the work of these servers before returning the results to the client, and

also considered novel security models arising from the revocation mechanism — both to

ensure that the cryptographic revocation achieved the desired properties and to prevent

vindictive entities from “gaming” the system to revoke otherwise honest servers.

In Chapter 4, we observed that we had transitioned to a potentially large, multi-user dis-

tributed system and, as such, our setting of RPVC was a natural environment in which to

apply cryptographic access control mechanisms. We discussed several forms of policy that

are of interest in these settings, defined generically in terms of graph-based information

flow policies. We also defined appropriate security models to ensure that only authorised

entities could participate in valid interactions and gave a provably secure instantiation

built on symmetric key assignment schemes.

Chapter 5 considered the use of CP-ABE in the setting of verifiable computation. We

observed that the resulting system model, although somewhat different to PVC built on

KP-ABE, had very natural applications to verifiable parallel processing of large datasets,

verifiable queries to remote databases and to another interesting line of research into

three-party computation on authenticated data.

Finally, in Chapter 6, we brought together the work of the previous chapters to create

a single unified publicly verifiable outsourced computation system in which entities may

outsource computations to servers with available resources, as well as providing computa-

tional services on its own local data. We saw that the use of DP-ABE allowed for both

RPVC and VDC functionality, and also enabled a form of access control to be applied to

the set of servers that may perform a given outsourced computation, using only public

key primitives.

217

Throughout the thesis, we have highlighted, where appropriate, possible directions for fu-

ture work. One particularly important task would be to implement the schemes developed

in this work and to compare the efficiency of the different approaches and to evaluate the

schemes against other work in the literature. Another important area to focus future at-

tention on, if these schemes were to be deployed, would be to strengthen the primitives on

which we base our constructions so that we can achieve the full, ideal, notions of security.

Several of our currently achievable security notions include selective or semi-static restric-

tions, which could be removed by developing fully secure [76] and adaptive revocable ABE

schemes. Finally, formal security models based on indistinguishability games should be

developed to prove that the blind verification mechanism used in our constructions does

indeed provide the level of security required.

Furthermore, it would be nice to explore further applications of VDC, which appears

to be a flexible computational model, particularly with regards to searching on remote

databases. Searchable encryption is one research area that has looked at this problem,

and requires additional privacy properties that we have not considered for VDC in this

thesis.

Another important area for future research is general-purpose verifiable outsourced com-

putations. Many current VC schemes are limited to very specific operations, such as

matrix multiplication or polynomial evaluation [53, 98] or, as in this thesis, to the evalu-

ation of restrictive classes of function. In this thesis, we have restricted our attention to

(monotone) Boolean formulae. Whilst these are important results, and cover many useful

functions that may be of interest in particular outsourcing applications, it is hard to en-

visage verifiable computation being widely deployed until a broad range of computations

can be efficiently supported. Indeed, an ultimate goal may be to transparently compile

applications designed to be executed locally into secure, verifiable programs that can be

outsourced.

218

Bibliography

[1] S. G. Akl and P. D. Taylor. Cryptographic solution to a problem of access control in

a hierarchy. ACM Trans. Comput. Syst., 1(3):239–248, Aug. 1983.

[2] J. Alderman and J. Crampton. On the use of key assignment schemes in authentica-

tion protocols. In J. Lopez, X. Huang, and R. Sandhu, editors, Network and System

Security, volume 7873 of Lecture Notes in Computer Science, pages 607–613. Springer

Berlin Heidelberg, 2013.

[3] J. Alderman, C. Janson, C. Cid, and J. Crampton. Access control in publicly verifiable

outsourced computation. In Proceedings of the 10th ACM Symposium on Information,

Computer and Communications Security, ASIA CCS ’15, pages 657–662, New York,

NY, USA, 2015. ACM.

[4] J. Alderman, C. Janson, C. Cid, and J. Crampton. Hybrid publicly verifiable compu-

tation. Cryptology ePrint Archive, Report 2015/320, 2015. http://eprint.iacr.

org/, to appear in Topics in Cryptology-CT-RSA 2016, The Cryptographer’s Track

at RSA Conference 2016.

[5] J. Alderman, C. Janson, C. Cid, and J. Crampton. Revocation in publicly verifiable

outsourced computation. In D. Lin, M. Yung, and J. Zhou, editors, Information

Security and Cryptology, volume 8957 of Lecture Notes in Computer Science, pages

51–71. Springer International Publishing, 2015.

[6] ANSI InterNational Committee for Information Technology Standards (INCITS). IN-

CITS 359-2012 information technology - role based access control, 2012.

[7] D. Apon, J. Katz, E. Shi, and A. Thiruvengadam. Verifiable oblivious storage. In

H. Krawczyk, editor, Public-Key Cryptography - PKC 2014, volume 8383 of Lecture

Notes in Computer Science, pages 131–148. Springer Berlin Heidelberg, 2014.

219

http://eprint.iacr.org/
http://eprint.iacr.org/

BIBLIOGRAPHY

[8] Apple. Siri. https://www.apple.com/uk/ios/siri/. Accessed: 20/07/2015.

[9] B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient ver-

ification via secure computation. In S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer

auf der Heide, and P. Spirakis, editors, Automata, Languages and Programming, vol-

ume 6198 of Lecture Notes in Computer Science, pages 152–163. Springer Berlin

Heidelberg, 2010.

[10] S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge

University Press, 2009.

[11] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of

NP. J. ACM, 45(1):70–122, Jan. 1998.

[12] M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken. Dynamic and efficient key

management for access hierarchies. ACM Trans. Inf. Syst. Secur., 12(3):18:1–18:43,

Jan. 2009.

[13] M. J. Atallah, M. Blanton, and K. B. Frikken. Efficient techniques for realizing geo-

spatial access control. In Proceedings of the 2Nd ACM Symposium on Information,

Computer and Communications Security, ASIACCS ’07, pages 82–92, New York, NY,

USA, 2007. ACM.

[14] N. Attrapadung and H. Imai. Attribute-based encryption supporting direct/indirect

revocation modes. In M. Parker, editor, Cryptography and Coding, volume 5921 of

Lecture Notes in Computer Science, pages 278–300. Springer Berlin Heidelberg, 2009.

[15] N. Attrapadung and H. Imai. Dual-policy attribute based encryption. In M. Abdalla,

D. Pointcheval, P.-A. Fouque, and D. Vergnaud, editors, Applied Cryptography and

Network Security, volume 5536 of Lecture Notes in Computer Science, pages 168–185.

Springer Berlin Heidelberg, 2009.

[16] N. Attrapadung and H. Imai. Dual-policy attribute based encryption: Simultaneous

access control with ciphertext and key policies. IEICE Transactions, 93-A(1):116–125,

2010.

[17] M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk. ADSNARK: nearly practical

and privacy-preserving proofs on authenticated data. In Proc. 36th IEEE Symposium

on Security & Privacy (S&P), page to appear. IEEE Computer Society Press, 2015.

220

https://www.apple.com/uk/ios/siri/

BIBLIOGRAPHY

[18] M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of computation on

outsourced data. In Proceedings of the 2013 ACM SIGSAC conference on Computer

& communications security, CCS ’13, pages 863–874, New York, NY, USA, 2013.

ACM.

[19] M. Barbosa and P. Farshim. Delegatable homomorphic encryption with applications

to secure outsourcing of computation. In O. Dunkelman, editor, Topics in Cryptology

- CT-RSA 2012, volume 7178 of Lecture Notes in Computer Science, pages 296–312.

Springer Berlin Heidelberg, 2012.

[20] A. Beimel. Secure schemes for secret sharing and key distribution. PhD thesis,

Technion-Israel Institute of technology, Faculty of computer science, 1996.

[21] M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, A. Küpçü, and A. Lysyanskaya.

Incentivizing outsourced computation. In Proceedings of the 3rd International Work-

shop on Economics of Networked Systems, NetEcon ’08, pages 85–90, New York, NY,

USA, 2008. ACM.

[22] D. Bell and L. LaPadula. Secure computer systems: Mathematical foundations.

Technical Report MTR-2547, MITRE Corporation, 1973.

[23] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically check-

able proofs and applications to approximations. In Proceedings of the Twenty-fifth

Annual ACM Symposium on Theory of Computing, STOC ’93, pages 294–304, New

York, NY, USA, 1993. ACM.

[24] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions

andanalysis of the generic composition paradigm. Journal of Cryptology, 21(4):469–

491, 2008.

[25] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. Fast reductions from rams to

delegatable succinct constraint satisfaction problems: Extended abstract. In Proceed-

ings of the 4th Conference on Innovations in Theoretical Computer Science, ITCS

’13, pages 401–414, New York, NY, USA, 2013. ACM.

[26] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over

large datasets. In P. Rogaway, editor, Advances in Cryptology - CRYPTO 2011,

volume 6841 of Lecture Notes in Computer Science, pages 111–131. Springer Berlin

Heidelberg, 2011.

221

BIBLIOGRAPHY

[27] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based encryp-

tion. In IEEE Symposium on Security and Privacy, pages 321–334. IEEE Computer

Society, 2007.

[28] M. Bishop. Introduction to computer security. Addison-Wesley Boston, MA, 2005.

[29] M. A. Bishop. Computer Security. Art and Science. Addison-Wesley Professional,

2002.

[30] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resis-

tance to succinct non-interactive arguments of knowledge, and back again. In Pro-

ceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS

’12, pages 326–349, New York, NY, USA, 2012. ACM.

[31] A. Boldyreva, V. Goyal, and V. Kumar. Identity-based encryption with efficient

revocation. In Proceedings of the 15th ACM Conference on Computer and Commu-

nications Security, CCS ’08, pages 417–426, New York, NY, USA, 2008. ACM.

[32] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. In

J. Kilian, editor, Advances in Cryptology - CRYPTO 2001, volume 2139 of Lecture

Notes in Computer Science, pages 213–229. Springer Berlin Heidelberg, 2001.

[33] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with

short ciphertexts and private keys. In V. Shoup, editor, Advances in Cryptology -

CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages 258–275.

Springer Berlin Heidelberg, 2005.

[34] H. Carter, C. Lever, and P. Traynor. Whitewash: Outsourcing garbled circuit gen-

eration for mobile devices. In Proceedings of the 30th Annual Computer Security

Applications Conference, ACSAC ’14, pages 266–275, New York, NY, USA, 2014.

ACM.

[35] A. Castiglione, A. De Santis, and B. Masucci. Key indistinguishability vs. strong key

indistinguishability for hierarchical key assignment schemes. IEEE Transactions on

Dependable and Secure Computing, 1(1):1–1, 2014.

[36] D. Chadwick. Federated identity management. In A. Aldini, G. Barthe, and R. Gor-

rieri, editors, Foundations of Security Analysis and Design V, volume 5705 of Lecture

Notes in Computer Science, pages 96–120. Springer Berlin Heidelberg, 2009.

222

BIBLIOGRAPHY

[37] Q. Chai and G. Gong. Verifiable symmetric searchable encryption for semi-honest-

but-curious cloud servers. In Communications (ICC), 2012 IEEE International Con-

ference on, pages 917–922. IEEE, 2012.

[38] M. Chase. Multi-authority attribute based encryption. In S. Vadhan, editor, Theory

of Cryptography, volume 4392 of Lecture Notes in Computer Science, pages 515–534.

Springer Berlin Heidelberg, 2007.

[39] D. Chaum and T. P. Pedersen. Wallet databases with observers. In E. F. Brickell,

editor, Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryptol-

ogy Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings,

volume 740 of Lecture Notes in Computer Science, pages 89–105. Springer, 1992.

[40] S. Choi, J. Katz, R. Kumaresan, and C. Cid. Multi-client non-interactive verifiable

computation. In A. Sahai, editor, Theory of Cryptography, volume 7785 of Lecture

Notes in Computer Science, pages 499–518. Springer Berlin Heidelberg, 2013.

[41] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval.

J. ACM, 45(6):965–981, Nov. 1998.

[42] K.-M. Chung, Y. Kalai, F.-H. Liu, and R. Raz. Memory delegation. In P. Rogaway,

editor, Advances in Cryptology - CRYPTO 2011, volume 6841 of Lecture Notes in

Computer Science, pages 151–168. Springer Berlin Heidelberg, 2011.

[43] M. Clear and C. McGoldrick. Policy-based non-interactive outsourcing of computation

using multikey FHE and CP-ABE. In P. Samarati, editor, SECRYPT, pages 444–452.

SciTePress, 2013.

[44] J. Crampton. Cryptographic enforcement of role-based access control. In P. Degano,

S. Etalle, and J. Guttman, editors, Formal Aspects of Security and Trust, volume 6561

of Lecture Notes in Computer Science, pages 191–205. Springer Berlin Heidelberg,

2011.

[45] J. Crampton. Practical and efficient cryptographic enforcement of interval-based

access control policies. ACM Trans. Inf. Syst. Secur., 14(1):14:1–14:30, June 2011.

[46] J. Crampton, K. Martin, and P. Wild. On key assignment for hierarchical access con-

trol. In Proceedings of the 19th IEEE Workshop on Computer Security Foundations,

CSFW ’06, pages 98–111, Washington, DC, USA, 2006. IEEE Computer Society.

223

BIBLIOGRAPHY

[47] T. W. Cusick and P. Stanica. Cryptographic Boolean functions and applications.

Academic Press, 2009.

[48] Q. Dang. Recommendation for applications using approved hash algorithms. NIST

Special Publication, 107(February), 2008.

[49] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order (2. ed.). Cam-

bridge University Press, 2002.

[50] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters.

Commun. ACM, 51(1):107–113, Jan. 2008.

[51] A. L. Ferrara, G. Fuchsbauer, and B. Warinschi. Cryptographically enforced RBAC.

In Proceedings of the 2013 IEEE 26th Computer Security Foundations Symposium,

CSF ’13, pages 115–129, Washington, DC, USA, 2013. IEEE Computer Society.

[52] A. Fiat and M. Naor. Broadcast encryption. In D. R. Stinson, editor, Advances in

Cryptology - CRYPTO ’93, 13th Annual International Cryptology Conference, Santa

Barbara, California, USA, August 22-26, 1993, Proceedings, volume 773 of Lecture

Notes in Computer Science, pages 480–491. Springer, 1993.

[53] D. Fiore and R. Gennaro. Publicly verifiable delegation of large polynomials and

matrix computations, with applications. In T. Yu, G. Danezis, and V. D. Gligor,

editors, the ACM Conference on Computer and Communications Security, CCS’12,

Raleigh, NC, USA, October 16-18, 2012, pages 501–512. ACM, 2012.

[54] M. J. Flynn. Some computer organizations and their effectiveness. Computers, IEEE

Transactions on, 100(9):948–960, 1972.

[55] E. S. V. Freire, K. G. Paterson, and B. Poettering. Simple, efficient and strongly

ki-secure hierarchical key assignment schemes. In E. Dawson, editor, Topics in Cryp-

tology - CT-RSA 2013 - The Cryptographers’ Track at the RSA Conference 2013,

San Francisco,CA, USA, February 25-March 1, 2013. Proceedings, volume 7779 of

Lecture Notes in Computer Science, pages 101–114. Springer, 2013.

[56] S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers.

Discrete Applied Mathematics, 156(16):3113–3121, 2008.

[57] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Out-

sourcing computation to untrusted workers. In T. Rabin, editor, Advances in Cryp-

224

BIBLIOGRAPHY

tology - CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages

465–482. Springer Berlin Heidelberg, 2010.

[58] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and

succinct NIZKs without PCPs. In T. Johansson and P. Q. Nguyen, editors, Advances

in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30,

2013. Proceedings, volume 7881 of Lecture Notes in Computer Science, pages 626–645.

Springer, 2013.

[59] C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher,

editor, Proceedings of the 41st annual ACM symposium on Symposium on theory of

computing - STOC ’09, pages 169–178. ACM, 2009.

[60] S. Goldwasser, S. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai, E. Shi,

and H.-S. Zhou. Multi-input functional encryption. In P. Q. Nguyen and E. Oswald,

editors, Advances in Cryptology - EUROCRYPT 2014, volume 8441 of Lecture Notes

in Computer Science, pages 578–602. Springer Berlin Heidelberg, 2014.

[61] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: Interactive

proofs for muggles. In Proceedings of the Fortieth Annual ACM Symposium on Theory

of Computing, STOC ’08, pages 113–122, New York, NY, USA, 2008. ACM.

[62] S. Goldwasser, H. Lin, and A. Rubinstein. Delegation of computation without rejec-

tion problem from designated verifier CS-proofs. IACR Cryptology ePrint Archive,

2011:456, 2011.

[63] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive

proof-systems. In Proceedings of the Seventeenth Annual ACM Symposium on Theory

of Computing, STOC ’85, pages 291–304, New York, NY, USA, 1985. ACM.

[64] Google. How Google uses pattern recognition. http://www.google.com/policies/

technologies/pattern-recognition/. Accessed: 20/07/2015.

[65] Google. Google Compute Engine – Cloud Computing & IaaS – Google Cloud Plat-

form. http://cloud.google.com/compute/, 2014. Accessed 23/10/2014.

[66] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-

grained access control of encrypted data. In Proceedings of the 13th ACM Conference

225

http://www.google.com/policies/technologies/pattern-recognition/
http://www.google.com/policies/technologies/pattern-recognition/
http://cloud.google.com/compute/

BIBLIOGRAPHY

on Computer and Communications Security, CCS ’06, pages 89–98, New York, NY,

USA, 2006. ACM.

[67] M. Green, S. Hohenberger, and B. Waters. Outsourcing the decryption of ABE

ciphertexts. In Proceedings of the 20th USENIX Conference on Security, SEC’11,

pages 34–34, Berkeley, CA, USA, 2011. USENIX Association.

[68] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, and K. Scarfone.

Guide to attribute based access control (ABAC) definition and considerations. NIST

Special Publication, 800:162, 2014.

[69] International Organization for Standardization (ISO). Information technology—

Security techniques—Encryption algorithms—Part 1: General, 2005.

[70] International Organization for Standardization (ISO). Information technology—

Security techniques—Encryption algorithms—Part 2: Asymmetric ciphers, 2006.

[71] International Organization for Standardization (ISO). Information technology—

Trusted platform module—Part 1: Overview, 2009.

[72] International Organization for Standardization (ISO). ISO/IEC 9797-1:2011: Infor-

mation technology - Security techniques - Message Authentication Codes (MACs) -

Part 1: Mechanisms using a block cipher, 2011.

[73] International Organization for Standardization (ISO). ISO/IEC DIS 10118-1 Infor-

mation technology – Security techniques – Hash-functions – Part 1: General, 2014.

[74] J. Katz and Y. Lindell. Introduction to Modern Cryptography (Chapman & Hall/Crc

Cryptography and Network Security Series). Chapman & Hall/CRC, 2007.

[75] J. Kilian. Improved efficient arguments (preliminary version). In D. Coppersmith,

editor, Advances in Cryptology - CRYPTO ’95, 15th Annual International Cryptol-

ogy Conference, Santa Barbara, California, USA, August 27-31, 1995, Proceedings,

volume 963 of Lecture Notes in Computer Science, pages 311–324. Springer, 1995.

[76] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure func-

tional encryption: Attribute-based encryption and (hierarchical) inner product en-

cryption. In H. Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, volume

6110 of Lecture Notes in Computer Science, pages 62–91. Springer Berlin Heidelberg,

2010.

226

BIBLIOGRAPHY

[77] A. Lewko and B. Waters. Decentralizing attribute-based encryption. In K. Paterson,

editor, Advances in Cryptology - EUROCRYPT 2011, volume 6632 of Lecture Notes

in Computer Science, pages 568–588. Springer Berlin Heidelberg, 2011.

[78] S. Micali. CS proofs. In Foundations of Computer Science, 1994 Proceedings., 35th

Annual Symposium on, pages 436–453. IEEE, 1994.

[79] F. Monrose, P. Wyckoff, and A. D. Rubin. Distributed execution with remote audit.

In NDSS, volume 99, pages 3–5, 1999.

[80] R. Ostrovsky, A. Sahai, and B. Waters. Attribute-based encryption with non-

monotonic access structures. In Proceedings of the 14th ACM Conference on Com-

puter and Communications Security, CCS ’07, pages 195–203, New York, NY, USA,

2007. ACM.

[81] C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computation. In

A. Sahai, editor, Theory of Cryptography, volume 7785 of Lecture Notes in Computer

Science, pages 222–242. Springer Berlin Heidelberg, 2013.

[82] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Optimal verification of oper-

ations on dynamic sets. In P. Rogaway, editor, Advances in Cryptology - CRYPTO

2011, volume 6841 of Lecture Notes in Computer Science, pages 91–110. Springer

Berlin Heidelberg, 2011.

[83] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly practical verifi-

able computation. In Security and Privacy (S&P), 2013 IEEE Symposium on, pages

238–252. IEEE, 2013.

[84] B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in public:

Verifiable computation from attribute-based encryption. In R. Cramer, editor, Theory

of Cryptography, volume 7194 of Lecture Notes in Computer Science, pages 422–439.

Springer Berlin Heidelberg, 2012.

[85] M. A. Rappa. The utility business model and the future of computing services. IBM

Systems Journal, 43(1):32–42, 2004.

[86] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access control models.

IEEE Computer, 29(2):38–47, 1996.

[87] R. S. Sandhu and P. Samarati. Access control: principle and practice. Communica-

tions Magazine, IEEE, 32(9):40–48, 1994.

227

BIBLIOGRAPHY

[88] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. Van Doorn, and P. Khosla. Pioneer: Verify-

ing integrity and guaranteeing execution of code on legacy platforms. In Proceedings

of ACM Symposium on Operating Systems Principles (SOSP), volume 173, 2005.

[89] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, Nov. 1979.

[90] J. Shi, J. Lai, Y. Li, R. H. Deng, and J. Weng. Authorized keyword search on

encrypted data. In M. Kutylowski and J. Vaidya, editors, Computer Security - ES-

ORICS 2014 - 19th European Symposium on Research in Computer Security, Wro-

claw, Poland, September 7-11, 2014. Proceedings, Part I, volume 8712 of Lecture

Notes in Computer Science, pages 419–435. Springer, 2014.

[91] J. van den Hooff, M. F. Kaashoek, and N. Zeldovich. Versum: Verifiable computations

over large public logs. In G. Ahn, M. Yung, and N. Li, editors, Proceedings of the 2014

ACM SIGSAC Conference on Computer and Communications Security, Scottsdale,

AZ, USA, November 3-7, 2014, pages 1304–1316. ACM, 2014.

[92] B. Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient,

and provably secure realization. In D. Catalano, N. Fazio, R. Gennaro, and A. Ni-

colosi, editors, Public Key Cryptography - PKC 2011 - 14th International Conference

on Practice and Theory in Public Key Cryptography, Taormina, Italy, March 6-9,

2011. Proceedings, volume 6571 of Lecture Notes in Computer Science, pages 53–70.

Springer, 2011.

[93] T. White. Hadoop: the definitive guide: the definitive guide. ” O’Reilly Media, Inc.”,

2009.

[94] Wired. Apple finally reveals how long Siri keeps your data. http://www.wired.com/

2013/04/siri-two-years/. Accessed: 20/07/2015.

[95] XACML-V3.0 – eXtensible Access Control Markup Language (XACML).

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html, 2013.

[96] L. Xu and S. Tang. Verifiable computation with access control in cloud computing.

The Journal of Supercomputing, 69(2):528–546, 2014.

[97] A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In FOCS,

pages 162–167. IEEE Computer Society, 1986.

[98] L. F. Zhang and R. Safavi-Naini. Private outsourcing of polynomial evaluation and

matrix multiplication using multilinear maps. In M. Abdalla, C. Nita-Rotaru, and

228

http://www.wired.com/2013/04/siri-two-years/
http://www.wired.com/2013/04/siri-two-years/

BIBLIOGRAPHY

R. Dahab, editors, Cryptology and Network Security - 12th International Conference,

CANS 2013, Paraty, Brazil, November 20-22. 2013. Proceedings, volume 8257 of

Lecture Notes in Computer Science, pages 329–348. Springer, 2013.

[99] Q. Zheng, S. Xu, and G. Ateniese. VABKS: Verifiable attribute-based keyword search

over outsourced encrypted data. In INFOCOM, 2014 Proceedings IEEE, pages 522–

530. IEEE, 2014.

229

Appendix A

Additional Material for Access Con-
trol in Publicly Verifiable Outsourced
Computation

This appendix includes additional security proofs for the revocable publicly verifiable

outsourced computation scheme with access control introduced in Chapter 4. These largely

follow a similar pattern to the proof of Lemma 4.1.

A.1 Proof of Authorised Computation

Lemma A.1. Given a secure RPVC scheme, an authenticated symmetric encryption

scheme secure in the sense of IND-CPA∧ INT-PTXT and a KAS secure against strong

key-indistinguishability, let PVCAC be the PVC-AC scheme defined in Algorithms 4.1–4.9.

Then PVCAC is secure in the sense of authorised computation (Game 4.2).

Proof. Let AV C be an adversary with non-negligible advantage δ in the authorised com-

putation game and let ASE be an adversary playing the IND-CPA game with a challenger

C against SE . We define the following sequence of games and show that we can perform a

sequence of game hops with negligible difference between each successive pairs of games,

and thereby construct an adversary ASE that, using AV C as a subroutine, can break the

IND-CPA property with non-negligible advantage.

• Game 0. This is the authorised computation game as defined in Section 4.4.2.

• Game 1. This is identical to Game 0, except that we replace the key κλC(o) for

230

A.1 Proof of Authorised Computation

the challenge computation o with a key κ? drawn uniformly at random from the

keyspace.

• Game 2. This is the same as Game 1 with the modification that, in ProbGen, the

encoded input is generated by either encrypting the proper encoded input from the

RPVC functionality σ′o, or a random message of the same length as σ′o.

Game 0 to Game 1 This game hop relies on the strong key-indistinguishability of

the KAS and is very similar to the corresponding hop in the proof of Lemma 4.1. As

such, we do not reproduce it here. If A distinguishes Game 0 from Game 1 with

non-negligible advantage δ, then an adversary can use A as a subroutine to break the

strong key-indistinguishability of the KAS also with non-negligible advantage δ. Since

the KAS is assumed S-KI secure, such an adversary cannot exist and hence Game 0 is

indistinguishable from Game 1 except with at most a negligible advantage ε 6 1− δ.

Game 1 to Game 2 We have shown that, from the adversary’s point of view, Game 1

is almost (with negligible distinguishing advantage) identical to Game 0. Thus, we may

run the adversary against Game 1 instead to remove any information leakage from the

KAS. We now show that an adversary cannot distinguish Game 1 from Game 2 with

more than a negligible probability, which then removes any information leakage from the

encrypted, encoded input. Suppose, for a contradiction, that an adversary AV C exists that

can distinguish Game 1 from Game 2 with non-negligible advantage δ. Then we show

that there exists an adversary ASE that breaks the IND-CPA security of the symmetric

encryption scheme SE also with advantage δ. AV C will play either Game 1 or Game

2 with ASE acting as the challenger, and must guess correctly which game he is playing.

ASE in turn will play the IND-CPA game with a challenger C.

1. C begins by choosing a random bit b (which ultimately will determine which of Game

1 and Game 2 is being played) and running SE.KeyGen(1`) to generate a key κ?. It

sends the security parameter 1` to ASE .

2. ASE must now initialise Game b+1 for AV C . Informally, it will set the KAS key for

the label λC(o) to be the random key κ? chosen by C. However, the challenge label is

unknown until AV C chooses it, whilst the public parameters and oracle access must

231

A.1 Proof of Authorised Computation

be provided before this choice. Thus, we require ASE to guess the challenge label

during Setup so that the corresponding key can be implicitly set to be the IND-

CPA challenge key (that is, the key for the guessed label will be defined to be the

IND-CPA challenge key but, because ASE does not hold this key, all encryptions

under it shall be formed using oracle queries to C). If the number of labels in the

poset is N , where N is polynomial in the security parameter (as the scheme must

be efficiently instantiable), then ASE may guess λC(o) with probability at least 1
N .

Assuming that the guess is correct, we proceed as follows.

3. ASE runs PVCAC.Setup as given in Algorithm 4.1 except that the key for the guessed

label in the computation poset, κλC(o) is implicitly set to be κ? (i.e. any use of κ?

must be performed using oracle queries to C) and the KAS is constructed to be

consistent with this choice. Note that the authorised computation game (and by

extension Game b+1) does not permit the adversary to query any label that is

an ancestor of the challenge label in the computation poset. Thus a KAS can be

instantiated over the remaining nodes (and the public information for the ancestor

set simulated — as the keys cannot be derived, the public information need not be

functionally correct). Remaining keys can simply be generated using the security

parameter. From the adversarial point of view, this will be indistinguishable from

the real games.

4. AV C is given the generated public parameters and oracle access which ASE responds

to as follows:

• FnInit, Certify, and Revoke queries can be handled by simply calling the relevant

algorithm.

• If a Register query is made for a label λ(ID) > λC(o) then ASE aborts the game

since AV C would not then be able to choose λC(o) as its challenge computation,

and hence ASE ’s guess was incorrect. Otherwise, ASE holds the relevant KAS

keys and may respond by running Oracle Query 4.1.

• ProbGen queries for a computation labelled by the challenge label λ(o) can

be handled by running Algorithm 3.5 with the exception that lines 2 and 5 are

simulated as follows. Line 2 is not run at all as ASE does not hold the challenge

key, and line 5 is run using an oracle query to the IND-CPA LoR oracle for

the choice of messages m0 = m1 = σ′o (which will return the encryption of σ′o as

both message options are the same). For any other queried computation, ASE

232

A.1 Proof of Authorised Computation

holds the KAS key (or generated symmetric key) and may run Algorithm 3.5

as written.

• Observe that by the INT-PTXT property of the authenticated symmetric en-

cryption scheme, AV C cannot form a valid ciphertext (one that will decrypt to

anything other than ⊥) without holding the encryption key. The encryption

keys that AV C may hold are precisely those revealed through Register queries,

and since queries may not be made for labels λ(ID) > λC(o), each query to the

Compute oracle will be for a label belonging to the KAS instantiated by ASE .

Hence, if λ(ID) > λC(o), ASE returns ⊥ and otherwise it uses its knowledge

of the KAS to construct a genuine response (by running Algorithm 3.6).

5. AV C eventually outputs a challenge computation, and if this is not the computa-

tion chosen by ASE in Step 2, then the game is aborted. Otherwise, the choice of

computation label is valid since the game has not already been aborted during the

oracle queries.

6. ASE should now register two entities: a delegator C and a verifier V . However, these

will not be required in the following, so ASE may simulate registering them with

labels λC(o) and λV (o) respectively and update the public parameters accordingly,

without actually requiring the correct keys for these entities (as the adversary will

not see any output from these entities other than their presence in the lists in the

public parameters). ASE can also run the FnInit algorithm as written.

7. ASE must now run ProbGen for the challenge computation o to generate an encoded

input σo. To do so, it will make use of the LoR oracle provided by C in the IND-

CPA game. ASE will run lines 1, 3 and 4 as written to generate a problem encoding

σ′o. It sets m0 = σ′o and chooses another message m1 of the same length uniformly

at random from the message space. These are queried to the LoR oracle which will

return the encryption of message mb for the challenger’s choice of b from Step 1.

ASE can then use this response to form σo and form RKo using the verification

KAS key which it holds.

8. All relevant information is passed to AV C who is also given oracle access. This is

again handled in the same manner as in Step 4. Eventually, AV C will produce a

challenge output, which ASE can verify using previously generated parameters.

Observe that if the challenger’s random bit b = 0, then this is precisely Game 1 (since the

233

A.1 Proof of Authorised Computation

real encoded input was encrypted by C). If, on the other hand, b = 1 then AV C is provided

with the encryption of a random message which does not relate to the computation at all,

which is precisely the setting of Game 2. Now, we assumed that AV C could distinguish

Game 1 from Game 2 with non-negligible probability δ. Since these two games corre-

spond directly to the challenger’s choice of bit b, ASE can simply forward AV C ’s guess

b′ to C and win the IND-CPA game with non-negligible advantage δ. However, as we

assumed that SE was IND-CPA ∧ INT-PTXT secure, this is a contradiction and hence

an adversary with non-negligible distinguishing advantage cannot exist.

Reduction to public verifiability We have shown negligible distinguishing advantages

in the transitions from the authorised computation game to Game 2. Thus we may

run an adversary against Game 2 instead. By moving to this modified game, we have

removed any information leakage from the KAS and from the ciphertext encrypting the

encoded input. Thus the only information that remains that could aid an adversary

in the authorised computation game is the verification key and the output retrieval key.

Intuitively, however, the underlying RPVC scheme is designed such that these components

do not leak information that aids the adversary in producing a fraudulent result.

We now show that, since the adversary is not authorised for the challenge computation,

even if it holds a valid evaluation key it cannot produce a valid response in Game 2. If

it could do so, then an adversary could be constructed to break the public verifiability of

the RPVC scheme. More formally, to achieve a contradiction, let AV C be an adversary

with non-negligible advantage δ against Game 2. Then we construct an adversary APV

that breaks the public verifiability of the RPVC scheme with advantage δ
2 . Let C play

the public verifiability game (Game 3.2) with APV who acts as the challenger for AV C in

Game 2.

1. C runs RPVC.Setup on the security parameter and gives APV the resulting public

parameters PP′ and oracle access.

2. APV initialises the list L and the variable o and must then simulate running the

PVCAC.Setup algorithm. It uses the public parameters given by C and implicitly sets

MK′ to be that generated by C (oracle queries will be made to C whenever MK′ is

required in the following stages). It sets up the KASs in the same manner as in the

transition from Game 1 to Game 2 (i.e. by guessing the correct challenge label

234

A.1 Proof of Authorised Computation

with probability at least 1
N).

3. APV sends AV C the public parameters PP and provides oracle access as follows:

• Queries to the FnInit, Certify and Revoke oracles can be forwarded to C and the

response returned to AV C .

• Queries to the Register oracle can be run as in Oracle 4.3 with the exception of

line 2 of the Register algorithm for which APV makes a RPVC.Register oracle

query for the queried identity.

• Queries to the ProbGen oracle can be handled simply by running Algorithm 3.5.

Note that APV owns all information related to SKC for all delegators, and the

RPVC.ProbGen algorithm only requires public information.

• Queries to the Compute oracle can be run as written in Oracle 4.4 using pa-

rameters generated in other oracle queries.

4. Eventually, AV C outputs a choice of challenge computation o, including the function

F and input data x. If this is not the same as the guess made by APV in Step 2

then the game is aborted. Otherwise, APV checks that the label of this computation

is valid in accordance with the queries made above. If so, it forwards x to C as the

challenge input x? in the public verifiability game. APV also computes F (x). If

F (x) = 0 then it sends F ? = F as its challenge function to C. Otherwise, it sends

F ? = F , the complement function, to C. In other words, APV chooses the unsatisfied

function as its challenge input. Thus, by the winning condition of Game 2 (and by

extension, the authorised computation game), AV C will, if successful, output a result

for the correct value of F (x), which he is unauthorised to compute. To win the public

verifiability game, APV must output a valid response for the unsatisfied function (i.e.

an incorrect result), which is exactly the output that AV C provides; APV will be

able to simply forward the output of AV C to C to win the public verifiability game

with the same (non-negligible) advantage δ of AV C .

5. C runs RPVC.FnInit for F ? and RPVC.ProbGen on x? and gives the resulting param-

eters to APV and again provides oracle access.

6. APV must now register a delegator and a verifier to act in the following stages. To

do so, it simply runs Algorithm 3.3 since it knows all required information from the

KASs it instantiated. It simulates running FnInit either using the PKF ? provided

by C in Step 2 (if F ? = F) or by querying the RPVC.FnInit oracle (if F ? 6= F).

235

A.2 Proof of Authorised Verification

Finally, APV runs ProbGen as given in Algorithm 3.5 with the exception of choosing

a random message instead of the encoded input, as per Game 2. All generated

parameters are passed to AV C , and oracle access is provided as before.

7. Eventually, AV C finishes querying and outputs θo which it believes will appear to

be a valid result despite being unauthorised. APV forwards θo to C as its guess in

the public verifiability game.

Now, in order for APV to win the public verifiability game, it must produce a valid output

for the unsatisfied function F or F on input x?. Assuming that AV C is a successful

adversary against Game 2, θo is a valid result with non-negligible probability δ. Thus, if

the game is not aborted (i.e. APV guessed the challenge computation label correctly), APV

wins with probability Pr[1
$← ExpGame 2

AV C [PVCAC, 1
`,F ,PC ,PV]] = δ. Thus the overall

probability of APV winning, including guessing the computation correctly is at least δ
N

which is non-negligible if δ is non-negligible, as assumed. However, since we assumed the

underlying RPVC scheme to be secure in the sense of public verifiability, such an adversary

AV C with non-negligible advantage in Game 2 cannot exist.

Finally, we observe that each transition to Game 2 had a negligible distinguishing ad-

vantage and the final reduction showed a negligible advantage against Game 2, and so

we conclude that the scheme is secure in the sense of authorised computation.

A.2 Proof of Authorised Verification

Lemma A.2. Given a secure RPVC scheme, a KAS secure in the sense of strong-key

indistinguishability and an authenticated symmetric encryption scheme secure in the sense

of IND-CPA∧INT-PTXT, let PVCAC be the PVC-AC scheme defined in Algorithms 4.1–

4.9. Then PVCAC is secure in the sense of authorised verification (Game 4.3).

Proof. Suppose AV C is an adversary with non-negligible advantage δ in the authorised

verification game and ASE is an adversary playing the IND-CPA game with a challenger

C against SE . We first define the following modified game and show that an adversary

has negligible distinguishing advantage between the two. We can therefore employ an

236

A.2 Proof of Authorised Verification

adversary against this modified game to break the IND-CPA security of the symmetric

encryption scheme.

• Game 0. This is the authorised verification game as defined in Section 4.4.3.

• Game 1. This is identical to Game 0, except that we replace the key κλV (o) for

the challenge computation o in the verification poset with a random key κ? drawn

uniformly from the keyspace.

Game 0 to Game 1 This transition relies on the strong key-indistinguishability of the

KAS. The proof is very similar to that given in the proof of Lemma 4.1, and so we omit

the details. If A can distinguish Game 0 from Game 1 with non-negligible advantage δ,

then an adversary using A as a subroutine can break the strong key-indistinguishability of

the KAS with the same non-negligible advantage δ. However, as the KAS is assumed S-KI

secure, such an adversary may not exist and Game 0 is indistinguishable from Game 1

except with at most a negligible advantage ε 6 1− δ.

Reduction to IND-CPA Suppose, for a contradiction, that AV C is an adversary with

non-negligible advantage against the authorised verification game. We show that we can

construct an adversary ASE that breaks the IND-CPA security (Game 2.5) of the sym-

metric encryption scheme SE using AV C as a subroutine. From the adversary’s point of

view, Game 1 is indistinguishable from Game 0 with negligible distinguishing advantage.

Therefore, ASE may simulate Game 1 instead to remove any information leakage from

the KAS. Let C be the IND-CPA challenger for ASE who in turn acts as the challenger

in Game 1 for AV C who succeeds with non-negligible probability δ.

1. C first chooses a bit β uniformly at random1 and generates a key κ?
$← SE.KeyGen(1`).

It sends the security parameter 1` to ASE .

2. ASE must now initialise Game 1 for AV C . It will implicitly set the KAS key for

the label λV (ob) to be κ?. However, as AV C has not yet chosen his challenge labels,

ASE must guess one of these labels in order to generate the public parameters and

1Note that β corresponds to the challenge bit b in Game 2.5, but we use the notation β in this proof
to avoid a notational conflict with the bit b which selects a challenge computation in Game 1 (and by
extension, the authorised verification game in Game 4.3).

237

A.2 Proof of Authorised Verification

provide oracle access. ASE may guess λV (ob) with probability at least 2
N (as AV C

will select two labels, and ASE must match one of them) for a poset comprising N

nodes. Assuming that the guess is correct, we proceed as follows.

3. ASE runs PVCAC.Setup as given in Algorithm 4.1 except that the key for the guessed

label in the verification poset, κλV (o) is implicitly set to be κ? (i.e. any subsequent

use of κ? will be simulated using oracle queries to C), and the KAS is constructed in

a manner consistent with this choice. Note that in the authorised verification game

(and by extension Game 1) the adversary may not query any label that is an ances-

tor of the challenge label λV (ob) in the verification poset. Thus ASE can instantiate

a KAS over the remaining nodes and simulate the public information for the ances-

tor set — as keys for this set cannot be derived, the public information need not be

functionally correct. ASE can also use the security parameter to generate remaining

keys in this set. From the adversarial point of view, this is indistinguishable from

the real games.

4. ASE sends the resulting public parameters to AV C and provides oracle access as

follows:

• For queries to FnInit, Certify, and Revoke, ASE can simply call the relevant

algorithm.

• If a Register query is made for a label λ(ID) such that λ(ID) > λV (o0) and

λ(ID) > λV (o1) then ASE aborts the game as AV C will not be able to choose

λV (ob) as one of its challenge computations, and hence ASE ’s guess was incor-

rect. Otherwise, ASE holds the relevant KAS keys and may respond by running

Oracle 4.5.

• A ProbGen query for a computation labelled λV (o) can be handled by running

Algorithm 4.5 with the exception of lines 3 and 6 which are simulated by making

an oracle query to the IND-CPA LoR oracle for the message pair m0 = m1 =

RK ′o. For all other queries, ASE holds the correct keys and may honestly run

Algorithm 4.5.

• Compute queries can be handled by running Algorithm 4.6 since it relies only

on the computation poset which is owned by ASE .

5. Eventually, AV C chooses two challenge computations o0 and o1 and, if neither is the

same as that chosen earlier by ASE , the game is aborted. Otherwise, the choices are

238

A.2 Proof of Authorised Verification

valid since the game has not already been aborted during the oracle queries. Instead

of choosing the bit b at random, it can be set such that ob corresponds to ASE ’s

guess of challenge computation.

6. ASE now simulates registering two entities: a delegator C and a server S. However,

as these will not be required in the following, ASE may simulate registering the

delegator with label λC(ob) and update the public parameters accordingly without

requiring valid keys for the delegator (as the adversary will not see any output from

the delegator other than being listed in the public parameters). For the server, ASE

runs Register and sets SKS = (SK ′S , κ
?,⊥) ASE can also run the FnInit and Certify

algorithms as written.

7. ASE now runs ProbGen for the challenge computation ob to encode σob . It runs

lines 1, 2, 4 and 5 as written to generate a problem encoding σo and retrieval key

RK ′o. It sets m0 = RK ′o and randomly chooses another message m1 of the same

length from the message space. These are given as input to the LoR oracle which

returns the encryption of message mβ for the challenger’s random choice of β. Using

this response, ASE can create RKob .

8. ASE must finally run Compute on the resulting encoded input, which it can do hon-

estly as the algorithm does not rely on the verification poset. AV C then receives all

relevant information and oracle access, which is again handled as before. Eventually,

AV C outputs a guess b′ of b.

Observe that if ASE guessed the challenge label correctly, and β = 0, then this is precisely

Game 1, and AV C wins with non-negligible probability δ. Thus ASE wins with non-

negligible probability 2δ
N . If β = 1, on the other hand, the encoded input provided to AV C

is the encryption of a random message completely unrelated to the retrieval key. In this

case, by the blind verification property of the underlying RPVC construction, AV C may

only have a negligible advantage ε (over random guessing) at learning the result of the

computation. Thus, if AV C outputs b′ = b, then ASE should output a guess of β′ = 0, and

otherwise should guess β′ = 1. If β = 0 then ASE wins with probability 2δ
N , and if β = 1

then ASE wins with probability 1− ε. Thus, ASE wins in both cases with non-negligible

probability. However, as the symmetric encryption scheme was assumed to be IND-CPA

secure, an adversary AV C with non-negligible advantage cannot exist.

239

A.3 Proof of Weak Input Privacy

The overall advantage against the authorised verification game is the sum of the distin-

guishing advantage between Game 0 and Game 1, and the advantage in the reduction to

IND-CPA, both of which we have shown to be negligible. Therefore, the overall advantage

against the authorised verification game is negligible.

A.3 Proof of Weak Input Privacy

Lemma A.3. Given a secure RPVC scheme, a KAS secure in the sense of strong-key

indistinguishability and an IND-CPA secure symmetric encryption scheme, let PVCAC

be the PVC-AC scheme defined in Algorithms 4.1–4.9. Then PVCAC is secure in the sense

of weak input privacy (Game 4.4).

Proof. Assume that AV C is an adversary with non-negligible advantage δ in the weak

input privacy game. We show that we can use this to construct an adversary, ASE , with

non-negligible advantage in the IND-CPA game. Let C be the challenger for ASE and let

ASE act as the challenger for AV C . We first transition to a modified version of the weak

input privacy game, and show that AV C has negligible distinguishing advantage between

these games. We then construct ASE which uses AV C against this modified game to break

the IND-CPA security of the symmetric encryption scheme.

• Game 0: This is the weak input privacy game as given in Game 4.4.

• Game 1: This is identical to Game 0 except that the key κλC(ob) for the challenge

computation ob is replaced by a random key κ? drawn uniformly from the keyspace.

Game 0 to Game 1 This game hop relies on the strong-key indistinguishability of the

KAS and is very similar to that given in the proof of authorised outsourcing in Lemma 4.1;

as such, we do not replicate this proof in full here. Intuitively, suppose an adversary

AV C exists that can distinguish Game 0 from Game 1 with non-negligible advantage ε.

Then we construct an adversary AKI that breaks the S-KI security of the KAS also with

advantage ε. A challenger C will choose either Game 0 or Game 1 and interact with

240

A.3 Proof of Weak Input Privacy

AKI in the S-KI game; AKI will act as the challenger in either Game 0 or Game 1 for

AV C who must guess which game he is playing. AKI will choose one of AV C ’s challenge

computation choices at random (as expected in the weak input privacy game) and forward

this to C as its own challenge in the S-KI game.

Reduction to IND-CPA Given that no adversary can distinguish between Game 0

and Game 1 with non-negligible advantage, we may run an adversary against Game 0

against Game 1 instead with at most a negligible loss ε in the tightness of the reduction.

That is, we can use a truly random key to form the challenge ciphertext which removes

any information leakage from the KAS. Let us now suppose, for a contradiction, that

AV C is an adversary with non-negligible advantage δ against Game 1. We construct an

adversary ASE that breaks the IND-CPA security of the symmetric encryption scheme

using AV C as a subroutine. Let C be the IND-CPA challenger for ASE who in turn acts

as the challenger for AV C .

1. C chooses a bit β
$← {0, 1} and generates a key κ? by running SE.KeyGen. It sends

the security parameter to ASE and provides oracle access to the LoR function.

2. ASE must now initialise Game 1 for AV C . Informally, it will set the challenge KAS

key κλC(oβ) to be the random κ? chosen by C. However, as this label is currently

unknown and the public parameters and oracle access must be granted before the

choice is made, ASE must make a guess, λ̃C(oβ), for the correct challenge label to

assign the random key to. This choice is correct with probability at least 1
N where

the computation poset comprises N labels and where N is polynomial in the security

parameter (to enable efficient instantiation).

3. ASE initialises the parameters L and o, and also initialises an empty list Q that

will be used to store messages queried to the LoR oracle in the IND-CPA game. It

runs Setup as written with the following modification. The KAS key for the guessed

challenge label λ̃C(oβ) is implicitly set to be κ? and the rest of the computational

KAS is made consistent with this choice. Since the adversary in Game 1 is not

permitted to query the Register function for any label that is an ancestor of the

challenge label, keys for ancestors of the challenge label will not need to be derivable

and can simply be generated from SE.KeyGen. Therefore, a KAS can simply be

instantiated over the remaining (non-ancestor) nodes and the public information

241

A.3 Proof of Weak Input Privacy

for ancestor nodes can be simulated (as keys will not be derived, this need not be

functionally correct but must appear to be distributed correctly).

4. AV C is given the resulting public parameters and access to oracle functionality which

ASE responds to as follows:

• Queries to FnInit, Certify and Revoke can be handled by simply running the

relevant algorithms.

• If AV C queries Register for a label λ(ID) > λ̃C(oβ), as guessed by ASE , then

ASE will abort the game (since AV C would no longer be able to choose λ̃C(oβ)

as a valid challenge label and hence ASE ’s guess was incorrect). For any other

Register query, ASE has generated and holds the relevant KAS keys and may

respond honestly.

• A query to ProbGen for anything other than a computation labelled with λ̃C(oβ)

can be run honestly using the keys he generated during Setup. A computation

labelled by λ̃C(oβ) will require an encryption of σo under κ
λ̃C(oβ)

which is not

known to ASE as it is the challenge key in the IND-CPA game. Therefore,

ASE must make a query to the LoR oracle provided by C where m0 = m1 = σo

to receive a valid ciphertext CT . ASE also adds the pair (σo, CT) to the list

Q.

• By the restriction on Compute oracle queries, ⊥ is returned if AV C queries for

the challenge inputs. By the INT-PTXT property of the symmetric encryption

scheme, AV C is unable to form a valid ciphertext for the challenge label without

making use of the Encrypt oracle. Thus, if the input to the Compute oracle is

for the challenge computation label, then the ciphertext is either malformed

(and ⊥ should be returned), or the encoded input was previously queried to

the LoR oracle and ASE may look up the received ciphertext in the list Q to

recover the encrypted input σo. For any other computation label, ASE holds

the corresponding KAS keys and can run the Compute algorithm honestly.

5. AV C eventually outputs a choice of two computations o0 and o1. If neither computa-

tion matches with the label λ̃C(oβ) chosen by ASE earlier, then the game is aborted.

Otherwise, ASE will use the matching computation henceforth. It first checks the

labels for validity and aborts if not valid.

6. ASE must now register a delegator C. However, the role of C will be substituted by

oracle queries to C in the following, so ASE may simply simulate registering C with

242

A.3 Proof of Weak Input Privacy

label λ̃C(oβ) by updating any relevant public information. ASE can also run FnInit

as written.

7. ASE must now run ProbGen to generate the challenge input. To do so, it runs

RPVC.ProbGen on both inputs x0 and x1 dictated by o0 and o1 respectively, to gen-

erate two encoded inputs labelled m0 = σo0 and m1 = σo1 . It then submits m0 and

m1 to the IND-CPA LoR oracle provided by C. C will return the encryption of mβ

corresponding to σoβ , under the key κλC(oβ). ASE can also encrypt the verification

key V Koβ for the oβ matching its guess, using the verification KAS keys that it

owns.

8. The (encrypted) encoded input and the verification key are given to AV C along with

oracle access. Queries are handled as above but Register now returns ⊥ if the queried

label is an ancestor of either λC(o0) or λC(o1) (i.e. precisely when ASE does not hold

the relevant KAS keys). AV C eventually outputs a guess b′ that ob′ was chosen.

Now, ASE can simply forward the guess b′ to C as its guess for β. Observe that if ASE

correctly guessed λ̃C(oβ), then from AV C ’s point of view the distribution of the above

game is precisely that of Game 1. Thus, if AV C can successfully distinguish which

computation was chosen (by C), then it implicitly can decide which plaintext (encoded

input) was encrypted during the IND-CPA game. ASE can correctly guess the challenge

label that will be chosen by C with probability at least 1
N . Thus, since we assumed that

AV C had non-negligible advantage δ against Game 1, we have shown how to construct an

adversary ASE with non-negligible advantage δ
N against the IND-CPA game. However,

as the symmetric encryption scheme is assumed to be IND-CPA secure, such an adversary

against Game 1 may exist, and since there is a negligible distinguishing advantage between

Game 0 and Game 1, no adversary with non-negligible advantage against the weak input

privacy game may exist either.

243

Appendix B

Additional Material for Hybrid Pub-
licly Verifiable Outsourced Computa-
tion

This appendix includes additional material corresponding to our Hybrid PVC scheme

introduced in Chapter 6. Firstly, we give a construction and security proof for our notion

of revocable dual-policy attribute-based encryption, upon which our HPVC construction

is based. Then, we give security notions and proofs for our HPVC instantiation, which in

general are formed by combining those of the previous chapters and adapting the notation

to our more general format.

B.1 Construction of Revocable Dual-policy Attribute-based En-

cryption

Our revocable DP-ABE scheme will be based on a combination of DP-ABE [16], which

itself is a combination of CP-ABE [92] and KP-ABE [66], and an ABE scheme supporting

revocation [14]. We represent a subjective access structure S by a linear secret sharing

scheme (LSSS, see Appendix 2.6.4.1) which we denote by (M,ρ) and represent an objective

access structure O as an LSSS denoted by (N, π).

Let Us and Uo be the universe of subjective and objective attributes respectively. The

objective attribute universe comprises disjoint sub-universes N , T ,M and UID referring

to standard ABE attributes, time periods, messages and user identities respectively. UID

is set to be the set of leaves in a complete binary tree X = {1, . . . , n}. Without loss of

generality, we assume that T ∩ X = ∅ (note that this can be achieved by using a collision

244

B.1 Construction of Revocable Dual-policy Attribute-based Encryption

resistant hash function and using distinct prefixes to map elements from T and X). The

attribute set for the DP-ABE scheme is defined to be U = Us ∪ Uo. Let us define m to be

the maximum size of a subjective attribute set assigned to a key, i.e. we restrict |ψ| 6 m,

and similarly define n to be the maximum size of an objective attribute set associated

with a ciphertext, i.e. |ω| 6 n. Furthermore we denote the maximum number of rows of

a subjective access structure matrix M to be ls,max. Now let m′ = m + ls,max − 1 and

n′ = n− 1. Finally, let d be the maximum of |Cover(R)| for all R ⊆ UID, where Cover(R)

is defined as in Appendix 2.1.1.

We construct each algorithm of the rkDPABE scheme as follows:

• Setup(1`,U): The algorithm first picks a random generator g ∈ G and random exponents

γ, α ∈ Zp. It then defines three functions Fs : Zp → G, Fo : Zp → G and P : Zp → G by

first randomly choosing h0, . . . , hm′ , q1, . . . , qn′ , u1, . . . , ud and setting

Fs(x) =

m′∏
j=0

hx
j

j , Fo(x) =

n′∏
j=0

qx
j

j , P (x) =

d∏
j=0

ux
j

j . (B.1)

The public parameters are defined as

PP = (g, e(g, g)γ , gα, h0, . . . , hm′ , q1, . . . , qn′ , u1, . . . , ud).

For each node label x ∈ X in the tree, it randomly chooses ax ∈ Zp and rx ∈ Zp

to define a first degree polynomial fx(z) = axz + αrx + γ. The master key is

MK = (γ, α, {ax, rx}x∈X).

• Encrypt(m, (ω,S), t,PP): The encryption algorithm takes as input a LSSS access struc-

ture (M,ρ) for the subjective policy S and an objective attribute set ω ⊂ Uo. De-

note the dimensions of M as ls × ks matrix. The algorithm randomly chooses val-

ues s, y2, . . . , yks ∈ Zp and sets u = (s, y2, . . . , yks). It computes λi = Mi · u (for

i = 1, . . . , ls), where Mi is the vector corresponding to the ith row of M . The cipher-

245

B.1 Construction of Revocable Dual-policy Attribute-based Encryption

text is then computed as CT = (C,C(1), {C(2)
k }k∈ω, {C

(3)
i }i=1,...,ls , C

(4)), where

C = m · (e(g, g)γ)s, C(1) = gs,

C
(2)
k = Fo(k)s, C

(3)
i = gαλiFs(ρ(i))−s,

C(4) = P (t)s.

Intuitively, C masks the message by a group element in the target group of the bilin-

ear map formed from the master secret γ and an encryption secret s (to randomise

the encryption procedure). Decryption will have to compute this mask to recover the

message.

C(1) provides the encryption secret s (although, clearly, without revealing the value

itself, unless one can solve the discrete logarithm problem which is thought to be hard).

C
(2)
k embeds each attribute in the objective set ω into the ciphertext, incorporating

the encryption secret s such that attributes from prior ciphertexts cannot be used to

break the security of this encryption. Similarly, C
(3)
i embeds the subjective policy S

into the ciphertext using the shares of s divided according to S — that is, s is shared

over the set of attributes such that any set of attributes that satisfies S can be used to

reconstruct the encryption secret s. Finally, C(4) links the encryption secret (and hence

this particular ciphertext) to the specified time period t such that an update key for t

is required to decrypt the ciphertext; this enables the revocation mechanism.

• KeyGen(ID, (O, ψ),MK,PP): The key generation algorithm takes as input a LSSS access

structure (N, π) for the objective policy O and a subjective attribute set ψ ⊂ Us. Let

the dimensions of N be denoted lo × ko. The algorithm also takes an identity ID ∈ U

which is a leaf in the binary tree.

For all x ∈ Path(ID), the algorithm first shares fx(1) using the LSSS (N, π). To do

so, it randomly chooses zx,2, . . . , zx,ko ∈ Zp and sets vx = (fx(1), zx,2, . . . , zx,ko). For

i = 1, . . . , lo, it calculates the share σx,i = Ni · vx, where Ni is the vector corresponding

to the ith row of N .

The algorithm then randomly chooses rx,1, . . . , rx,lo ∈ Zp and rx ∈ Zp for all x ∈

Path(ID), and outputs the private key

SK(N,π),ID = ((D
(1)
x,i , D

(2)
x,i)x∈Path(ID),i=1,...,lo , (Dx, {D(3)

k }k∈ψ)x∈Path(ID)),

246

B.1 Construction of Revocable Dual-policy Attribute-based Encryption

where

Dx = grx , D
(1)
x,i = grx,i ,

D
(2)
x,i = gσx,iFo(π(i))rx,i , D

(3)
k = Fs(k)rx .

Intuitively, rx and rx,i for each x ∈ Path(ID) randomises the key for the user ID (so that

users may not collude, as their key components shall be formed using different random

values). Dx and D
(1)
x,i allow use of these random key values during decryption. D

(2)
x,i

embeds the shares of fx(1) = ax +αrx + γ, distributed over the attribute universe such

that only the authorised sets according to O will be able to reconstruct fx(1). Finally,

D
(3)
k embeds the attributes in ψ with the randomness chosen for this particular key. By

linking these parameters to the path in a tree, only users for whom a valid update key

has been issued (i.e. the non-revoked users) will be able to make use of these parameters

to compute fx(1) for a node x; fx(1) is required as it contains the master secret γ which

is used to cancel with the ciphertext component C to recover the message.

• KeyUpdate(R, t,MK,PP): The algorithm first computes Cover(R) to find a minimal

node set that covers U \ R. For each x ∈ Cover(R), it randomly chooses rx ∈ Zp and

sets the update key as UK(R, t) =
{
U

(1)
x , U

(2)
x

}
x∈Cover(R)

, where

U (1)
x = gfx(t)P (t)rx , U (2)

x = grx .

Intuitively, each update key component is randomised by rx and linked to a particular

node x in the tree (covering only non-revoked users). The use of P (t) is to embed

the current time period and will match with the ciphertext component C(4). We also

embed a point of the polynomial fx(t); given this point, and the point fx(1) (which can

be recovered from the decryption key components D
(2)
x,i given a satisfying set of objective

attributes ω), one can perform Lagrange interpolation to recover the point fx(0) which

will yield use of the master secret γ to cancel with the ciphertext component C.

• Decrypt(CT(ω,S),t, (ω,S), SK(O,ψ),ID, (O, ψ), UKR,t,PP): The decryption algorithm takes

as an input the ciphertext CT which contains a subjective access structure (M,ρ) for S

and a set of objective attributes ω, and a decryption key SK(N,π),ID which contains a

set of subjective attributes ψ and an objective access structure (N, π) for O. Suppose

that the set ψ for subjective attribute satisfies (M,ρ), the set ω satisfies (N, π), and

that ID /∈ R (so that decryption is possible).

247

B.1 Construction of Revocable Dual-policy Attribute-based Encryption

Let Is = {i : ρ(i) ∈ ψ} and Io = {i : π(i) ∈ ω}. The algorithm computes sets

of reconstruction constants {(i, µi)}i∈Is and {(i, νi)}i∈Io using the LSSS reconstruction

algorithm. Since ID /∈ R, the algorithm also finds a node x such that x ∈ Path(ID) ∩

Cover(R). Finally, it computes the following

C ·

∏
i∈Is

(
e(C

(3)
i , Dx) · e(C(1), D

(3)
ρ(i))

)µi
(∏

j∈Io

(
e(D

(2)
x,j ,C

(1))

e(C
(2)
π(j)

,D
(1)
x,j)

)νj) t
t−1
(
e(U

(1)
x ,C(1))

e(C(4),U
(2)
x)

) 1
1−t

= m.

We verify the correctness of the decryption as follows. Let us write the decryption com-

putation as C · C′K , where K = (K ′)
t
t−1 (K ′′)

1
1−t , and then consider each part in turn.

Intuitively, C ′ is similar to a standard ABE decryption operation to match attributes to

the policies, whilst K ′ and K ′′ combine the two components of a functional decryption key

(namely, a secret key and an update key) and perform a Lagrange interpolation to form a

group element e(g, g)s(γ+αrx) = e(g, g)sγ · e(g, g)sαrx . The second part of this product will

cancel the result of computing C ′ whilst the first part will cancel with C to leave only the

message m, as required.

C ′ =
∏
i∈Is

(
e(C

(3)
i , Dx) · e(C(1), D

(3)
ρ(i))

)µi
=
∏
i∈Is

(
e(gαλiFs(ρ(i))−s, grx) · e(gs, Fs(ρ(i))rx)

)µi
=
∏
i∈Is

(
e(g, g)αλirx · e(g, Fs(ρ(i)))−rxs · e(g, Fs(ρ(i)))rxs

)µi
= e(g, g)αrx

∑
i∈Is µiλi

= e(g, g)αrxs.

The second equality follows by substituting the values from the construction; the third

equality follows from the properties of bilinear maps; the fourth equality simply moves

the product into the exponent; and the final equality follows from the properties of the

248

B.1 Construction of Revocable Dual-policy Attribute-based Encryption

reconstruction constants of the LSSS, namely that
∑

i∈Is µiλi = s.

K ′ =
∏
j∈Io

 e(D
(2)
x,j , C

(1))

e(C
(2)
x,π(j), D

(1)
x,j)

νj

=
∏
j∈Io

(
e(gσx,jFo(π(j))rx,j , gs)

e(Fo(π(j))s, grx,j)

)νj
=
∏
j∈Io

(
e(g, g)σx,js · e(g, Fo(π(j)))rx,j ,s

e(g, Fo(π(j)))rx,j ,s

)νj
= e(g, g)s

∑
j∈Io νjσx,j

= e(g, g)sfx(1).

The second equality follows directly from the construction; the third equality follows from

the properties of bilinear maps; the fourth equality stems from moving the product into

the exponent; and the last equality follows from the set of LSSS reconstruction constants

with
∑

j∈Io νjσx,j = fx(1) = ax + αrx + γ.

K ′′ =
e(U

(1)
x , C(1))

e(C(4), U
(2)
x)

=
e(gfx(t)P (t)rx , gs)

e(P (t)s, grx)

=
e(g, g)fx(t)s · e(g, P (t)rxs)

e(g, P (t)rxs

= e(g, g)fx(t)s

Then,

K = (K ′)
t
t−1 (K ′′)

1
1−t

= (e(g, g)sfx(1))
t
t−1 (e(g, g)fx(t)s)

1
1−t

= (e(g, g)s)fx(1)
t
t−1

+fx(t)
1

1−t

Notice that fx(1) t
t−1 + fx(t) 1

1−t is in fact a Lagrange interpolation for the two points

(1, fx(1)), (1, fx(t)) for the first degree polynomial fx (see Appendix 2.6.4.1). Thus,

fx(1) t
t−1 + fx(t) 1

1−t = fx(0) = αrx + γ. Hence, K = e(g, g)s(αrx+γ). Combining all of

these results, we obtain the result of the decryption operation

C · C
′

K
= m · e(g, g)sγ · e(g, g)αsrx

e(g, g)s(αrx+γ)
= m · e(g, g)sγ · e(g, g)αsrx

e(g, g)sγ · e(g, g)αsrx
= m.

249

B.1 Construction of Revocable Dual-policy Attribute-based Encryption

B.1.1 Proof of Security

Theorem B.1. The rkDPABE construction presented in Appendix B.1 is secure

with respect to Indistinguishability against selective-target with semi-static query attack

(IND-sHRSS), as presented in Game 6.1, assuming that the Decision q-BDHE problem

is hard.

The proof follows the methodology from a combination [14] and [15] with some adjustment

in the simulation of the private keys. We show that if an adversary can break the rkDPABE

scheme with advantage ε in the IND-sHRSS game with a challenge subjective access

structure matrix of size l?s × k?s , then a simulator with advantage ε in solving the Decision

q-BDHE problem can be constructed, where m+ k?s 6 q.

Proof. Suppose, to achieve a contradiction with Theorem B.1, that there exists an adver-

sary A that has an advantage ε in attacking the rkDPABE scheme. We build a simulator

B that solves the Decisional q-BDHE problem (see Definition 2.21) in G. Recall that we

denote ga
j

by gj . The simulator B is given a random q-BDHE challenge (g, h,yg,a,q, Z)

where yg,a,q = (g1, . . . , gq, gq+2, . . . , g2q) where Z is either e(gq+1, h) or a random element

in G1. B acts as the challenger for A in the IND-sHRSS game as follows.

1. A begins by selecting its challenge parameters (t?, ω?, S?) where S? is represented by

an LSSS (M?, ρ?). Let the matrix M? be of size l?s × k?s , where m+ k?s ≤ q and let

l?s = ls,max and |ω?| = n.

2. B now simulates running Setup for the rkDPABE scheme, and embeds the challenge

policy into the public parameters. It first chooses γ′
$← Zp and implicitly defines

γ = γ′ + aq+1 by defining

e(g, g)γ = e(g1, gq) · e(g, g)γ
′

= e(ga, ga
q
) · e(g, g)γ

′

= e(g, g)γ
′+aq+1

.

It also sets gα = g1 = ga.

It then must define the polynomials Fs, Fo and P (as in [14] and [15]).

250

B.1 Construction of Revocable Dual-policy Attribute-based Encryption

To define Fs, B begins by defining Fs(x) = gp(x), where p is a polynomial in Zp[x]

of degree m+ l?s − 1 which is implicitly defined in the following manner. It chooses

k?s +m+ 1 polynomials p0, . . . , pk?s+m in Zp[x], each of degree m+ l?s − 1, such that

for all x = ρ?(i) for some i (i.e. all x in the image of ρ?, of which there are exactly

l?s since ρ? is an injective mapping):

pj(x) =

M?
i,j for j ∈ [1, k?s]

0 for j ∈ [k?s + 1, k?s +m]

(B.2)

The polynomial p0 is chosen randomly, and for all other x (not in the image of ρ?),

pj is defined randomly by randomly choosing values at m other points).

By writing the coefficients of each polynomial as pj(x) =
∑m+l?s−1

i=0 pj,i · xi, one can

define the polynomial p(x) to be

p(x) =

k?s+m∑
j=0

pj(x)aj . (B.3)

Then, B sets hi =
∏k?s+m
j=0 g

pj,i
j for i ∈ [0,m+ l?s − 1] Finally, as we assumed l?s =

ls,max, note that m′ = m+ ls,max − 1 = m+ l?s − 1,

Fs(x) =
m′∏
i=0

hx
i

i (by B.1)

=

m′∏
i=0

k?s+m∏
j=0

g
pj,i
j

xi

(by definition of hx
i

i)

=

m′∏
i=0

k?s+m∏
j=0

gpj,ia
j

xi

(by definition of gj = ga
j
)

= g
∑k?s+m
j=0

∑m′
i=0 pj,ix

iaj = g
∑k?s+m
j=0 pj(x)a

j

= gp(x) (by B.3)

To define Fo, B randomly picks a polynomial f ′(x) =
∑n−1

j=0 f
′
jx
j in Zp[x] of degree

n − 1. It then defines f(x) =
∏
k∈ω?(x − k) =

∑n−1
j=0 fjx

j (which can be computed

entirely from ω?); note that f(x) = 0 if and only if x ∈ ω?. It defines qj = g
fj
q g

f ′j for

251

B.1 Construction of Revocable Dual-policy Attribute-based Encryption

j = [0, n− 1]. Finally,

Fo(x) =
n−1∏
j=0

q
(xj)
j = gf(x)q gf

′(x).

To define P , B defines

p̂(y) = yd−1 · (y − t?) =

d∑
j=0

p̂jy
j .

This ensures p̂(t) = 0 if and only if t = t? for t ∈ T , and that for x ∈ X , p̂(x) 6= 0

since we assumed T ∩ X = ∅.

B then randomly picks a degree d polynomial ρ(y) =
∑d

j=0 ρjy
j in Zp[x] and lets

uj = (ga)p̂jgρj for j = 0, . . . , d. Thus,

P (y) =

d∏
j=0

uy
j

j = (ga)p̂(y)gρ(y). (B.4)

The public key PK for the DPABE scheme is defined to be PK =

(g, e(g, g)γ , gα, h0, . . . , hm′ , q1, . . . , qn′ , u1, . . . , ud), which is given to A. Observe that

due to the randomness of the q-BDHE challenge (g, h,yg,a,q, Z) and the indepen-

dently chosen randomness used in the construction of the polynomials pj , f
′, and ρ,

the public parameters are distributed as expected.

3. A declares its list R and is then given oracle access to the KeyGen and KeyUpdate

functions. Let XR = {x ∈ Path(ID) : ID ∈ R}. For each node label x ∈ X in the

tree, B randomly chooses a′x ∈ Zp and implicitly defines

ax =

a′x − αrx − γ if x ∈ XR

a′x −
αrx−γ
t? if x /∈ XR

(B.5)

Hence,

fx(1) = ax + αrx + γ = a′x − αrx − γ + αrx + γ = a′x if x ∈ XR (B.6)

fx(t?) = axt
? + αrx + γ = (a′x −

αrx − γ
t?

)t? + αrx + γ = a′xt
? if x /∈ XR (B.7)

To simulate KeyGen queries for an objective access structure (N, π), a subjective

attribute set ψ and an identity ID, we consider the following cases:

252

B.1 Construction of Revocable Dual-policy Attribute-based Encryption

• (ω? ∈ O) and (ID ∈ R) :

For each x ∈ Path(ID), B does the following. First note that for all such x, since

ID ∈ R, x ∈ XR. Hence, from (B.6), B can compute fx(1) for all x ∈ Path(ID).

B can therefore compute the key components precisely as in the construction

by sharing the value of fx(1).

• (ω? /∈ O) and (ID ∈ R) :

For each x ∈ Path(ID), B does the following. First note that for all such x, since

ID ∈ R, x ∈ XR. Hence, from (B.6), B can compute fx(1) for all x ∈ Path(ID).

B randomly choses rx ∈ Zp. It then lets Dx = grx , and for all k ∈ ψ lets

D
(3)
k = Fs(k)rx as in the construction. Recall that the dimensions of N are

l0×k0. Since ω? does not satisfy N for this case of the query, and by Proposition

2.1, there exists a vector ax = (a1, . . . , ako) ∈ Zkop such that a1 = −1 and

Ni · ax = 0 for all i where π(i) ∈ ω?.

B randomly chooses z′x,2, . . . , z
′
x,ko
∈ Zp and defines v′x = (0, z′x,2, . . . , z

′
x,ko

). It

then implicitly defines a vector vx = −(a′x)ax+v′x (by using B.2) which will be

used for creating the share of fx(1) = γ +αrx + ax (note that the first element

of vx is indeed fx(1) by (B.6)), as in our construction.

Now, for all i such that π(i) ∈ ω?, B randomly chooses rx,i ∈ Zp and computes

D
(1)
x,i = grx,i and

D
(2)
x,i = gNi·v′xFo(π(i))rx,i = gNi·vxFo(π(i))rx,i ,

where the last equality holds because Ni · ax = 0. Note that σx,i = Ni · vx in

our construction and hence D
(2)
x,i is of the valid form.

For all other i, such that π(i) /∈ ω?, B randomly chooses r′x,i ∈ Zp. Observe

that

Ni · vx = Ni · (−(a′x)ax + v′x)

= Ni · (v′x − (a′x)ax)

Note that, unlike [15], due to our definition of ax, we do not have a term in

aq+1 here, and B can generate D
(2)
x,i = gNi·vxFo(π(i))rx,i and D

(1)
x,i = grx,i .

• (ψ /∈ S?) and (ID /∈ R) :

253

B.1 Construction of Revocable Dual-policy Attribute-based Encryption

For each x ∈ Path(ID), B does the following. Since ψ does not satisfy M?,

by Proposition 2.1, there exists a vector wx = (w1, . . . , wk?s) ∈ Zk
?
s
p such that

w1 = −1 and Mi ·wx = 0 for all i where ρ(i) ∈ ψ?. Now, by our definition of

pj(x) in (B.2), we have that (p1(x), . . . , pk?s (x)) · (w1, . . . , wk?s) = 0.

B then computes one possible solution of variables wk?s+1, . . . , wk?s+m for the

system of |ψ| equations: for all x ∈ ψ

(p1(x), . . . , pk?s+m(x)) · (w1, . . . , wk?s+m) = 0,

which is possible as |ψ| 6 m.

B then randomly chooses r′x ∈ Zp and implicitly defines

rx = r′x + w1(
t?

t? − 1
) · αq + w2(

t?

t? − 1
) · αq−1 + · · ·+ wk?s+m(

t?

t? − 1
) · αq−(k?s+m)+1

by setting the key Dx = gr
′
x
∏k?s+m
k=1 (gq+1−k)

wk(
t?

t?−1
) = grx . Then, since γ =

γ′ + αq+1 and as x /∈ XR, we have

fx(1) = γ + αrx + ax

= γ′ + αq+1 + αrx + ax

= γ′ + αq+1 + αrx + a′x −
αrx − γ
t?

by (B.5)

= γ′ + a′x +
γ

t?
+ αq+1 + (α(

t? − 1

t?
))rx

= γ′ + a′x +
γ

t?
+ αq+1 + (α(

t? − 1

t?
)(r′x + w1(

t?

t? − 1
) · αq

+ w2(
t?

t? − 1
) · αq−1 + · · ·+ wk?s+m(

t?

t? − 1
) · αq−(k?s+m)+1)

= γ′ + a′x +
γ

t?
+ (αr′x + w2(

t?

t? − 1
) · αq + · · ·+ wk?s+m(

t?

t? − 1
) · αq−(k?s+m)+2)

where the αq+1 term in γ has canceled out. The simulator now randomly

chooses zx,2, . . . , zx,ko ∈ Zp and implicitly lets vx = (γ+αrx+ax, zx,2, . . . , zx,ko)

as in the construction.

B also randomly chooses rx,1, . . . , rx,lo ∈ Zp and computes for i = 1 to lo the

key D
(1)
x,1 = grx,i . The other keys are computed in the following way. We have

D
(2)
x,i =

gγ′+a′x+ γ
t? · gr

′
x

1

k?s+m∏
k=2

(gq−k+2)
wk

Ni,1

·
ko∏
j=2

gNi,jzjFo(π(i))rx,i

254

B.1 Construction of Revocable Dual-policy Attribute-based Encryption

which can be computed since gq+1 is not required and, by collecting the expo-

nents, it can be verified that D
(2)
x,i = gNi·vx · Fo(π(i))ri .

Recall that (p1(k), . . . , pk?s+m(k)) · (w1, . . . , wk?s+m) = 0 for all k ∈ ψ.

D
(3)
k = Dp0(k)

x

k?s+m∏
j=1

gr′xj ∏
k∈[1,k?s+m],k 6=j

(gq+1−k+j)
wk

pj(k)

= (grx)p0(k)
k?s+m∏
j=1

(grx)α
jpj(k)

= (grx)p(k)

= Fs(k)rx ,

where the second equality holds by observing that

D
(3)
k = D

(3)
k (gq+1)

(p1(k),...,pk?s+m(k))·(w1,...,wk?s+m)

since (gq+1)
(p1(k),...,pk?s+m(k))·(w1,...,wk?s+m) = (gq+1)

0 = 1 (see [15]).

• (ω? /∈ O) and (ψ ∈ S?) and (ID /∈ R) :

For each x ∈ Path(ID), B does the following. B randomly choses rx ∈ Zp. It

then lets Dx = grx , and for all k ∈ ψ lets D
(3)
k = Fs(k)rx as in the construction.

Recall that the dimensions of N are l0 × k0. Since ω? does not satisfy N

for this case of the query, and by Proposition 2.1, there exists a vector ax =

(a1, . . . , ako) ∈ Zkop such that a1 = −1 and Ni · ax = 0 for all i where π(i) ∈ ω?.

B randomly chooses z′x,2, . . . , z
′
x,ko
∈ Zp and defines v′x = (0, z′x,2, . . . , z

′
x,ko

). It

then implicitly defines a vector vx = −(a′x −
αrx−γ
t? + αrx + γ)ax + v′x which

will be used to create the share of fx(1) = γ + αrx + ax (note that the first

element of vx is indeed fx(1) by (B.5)), as in our construction.

Now, for all i such that π(i) ∈ ω?, B randomly chooses rx,i ∈ Zp and computes

D
(1)
x,i = grx,i and

D
(2)
x,i = gNi·v′xFo(π(i))rx,i = gNi·vxFo(π(i))rx,i ,

where the last equality holds because Ni · ax = 0. Note that σx,i = Ni · vx in

our construction and hence D
(2)
x,i is of the valid form.

For all other i, such that π(i) /∈ ω?, B randomly chooses r′x,i ∈ Zp. Observe

255

B.1 Construction of Revocable Dual-policy Attribute-based Encryption

that

Ni · vx = Ni · (−(a′x −
αrx − γ
t?

+ αrx + γ)ax + v′x)

= Ni · (−(a′x −
αrx − (γ′ + aq+1)

t?
+ αrx + (γ′ + aq+1))ax + v′x)

= Ni · (v′x − (a′x + γ′(
1

t?
+ 1))ax) + (rx(

1

t?
− 1)Ni · ax)α

− ((
1

t?
+ 1)Ni · ax)aq+1

contains a term in aq+1 and hence we cannot compute this value (as aq+1 is the

gap in the q-BDHE game). Instead, we will use the ri term in Fo(π(i))rx,i to

cancel the unknown value aq+1. B implicitly defines rx,i = r′x,i −
a(1
t?

+1)Ni·ax

f(π(i)) .

To do so, it defines

D
(2)
x,i = g

(
rx(

1
t?
−1)Ni·ax−(1

t?
+1)

Ni·axf
′(π(i))

f(π(i))

)
1 · gNi·(v′x−(a′x+γ′(1

t?
+1)))axFo(π(i))r

′
x,i

To see that D
(2)
x,i is valid, we observe

D
(2)
x,i = g

(1
t?

+1)Ni·ax

q+1 ·D(2)
x,i · g

−(1
t?

+1)Ni·ax

q+1

= g
(1
t?

+1)Ni·ax

q+1 · grx(
1
t?
−1)Ni·ax

1 · gNi·(v′x−(a′x+γ′(1
t?

+1)))ax

·

(
g
−(1

t?
+1)Ni·ax

q+1 g
−(1

t?
+1)

Ni·axf
′(π(i))

f(π(i))

1

)
· Fo(π(i))r

′
x,i

= gNi·vx

(
gf(π(i))q gf

′(π(i))
)−a(1

t?
+1)Ni·ax

f(π(i)) · Fo(π(i))r
′
x,i

= gNi·vx · Fo(π(i))
−a(1

t?
+1)Ni·ax

f(π(i)) · Fo(π(i))r
′
x,i by (B.4)

= gNi·vx · Fo(π(i))rx,i

B also defines

D
(1)
x,i = gr

′
x,ig
−

(1
t?

+1)Ni·ax

f(π(i))

1 = grx,i

Note that f(π(i)) 6= 0 since π(i) /∈ ω?, and so D
(1)
x,i and D

(2)
x,i are well defined.

To simulate KeyUpdate queries for time period t and revocation list R, we consider

the following cases:

• t = t? and R ⊆ R:

For each x ∈ Cover(R), B chooses a random rx ∈ Zp and computes U
(1)
x =

256

B.1 Construction of Revocable Dual-policy Attribute-based Encryption

(ga
′
xt
?
)P (t?)rx and U

(2)
x = grx . Both keys are valid because since R ⊆ R and

thus for all x ∈ Cover(R) we have x /∈ XR. Hence, by (B.7), fx(t?) = a′xt
?.

• t 6= t?:

For each x ∈ Cover(R), B chooses a random r′x ∈ Zp

– If x ∈ Cover(R) ∩ XR, it defines

U (1)
x = (ga

′
x)t(gγ

′
)(1−t)(g

r′x
1)(1−t)g

− ρ(t)(1−t)
p̂(t)+1−t

q P (t)r
′
x

U (2)
x = (gr

′
x)(gq)

− 1−t
p̂(t)+1−t

Note that p̂(t) 6= 0 for t 6= t? so this is well defined. We claim that these

keys look valid according to the construction with implicit randomness

rx = r′x −
aq(1−t)
p̂(t)+1−t .

Note that, in this case, x ∈ XR and hence by (B.5)

fx(t) = axt+ αrx + γ

= (a′x − αrx − γ)t+ αrx + γ

= a′xt+ αrx(1− t) + γ′(1− t) + aq+1(1− t)

257

B.1 Construction of Revocable Dual-policy Attribute-based Encryption

Then,

U (1)
x = gfx(t)P (t)rx by the construction

= ga
′
xt+arx(1−t)+γ′(1−t)+aq+1(1−t)gap̂(t)rxgρ(t)rx by fx(t) and (B.4)

= ga
′
xtgγ

′(1−t)ga
q+1(1−t)garx(1−t)gap̂(t)rxgρ(t)rx

= ga
′
xtgγ

′(1−t)ga
q+1(1−t)ga(1−t)r

′
xg−a(1−t)Bgap̂(t)r

′
xg−ap̂(t)Bgρ(t)r

′
xg−ρ(t)B

by rx = r′x −B

= ga
′
xtgγ

′(1−t)ga
q+1(1−t)P (t)r

′
xga(1−t)r

′
xg−a(1−t)Bg−ap̂(t)Bg−ρ(t)B by (B.4)

= ga
′
xtgγ

′(1−t)ga
q+1(1−t)P (t)r

′
xga(1−t)r

′
xg−ρ(t)Bg−B

a(1−t)+ap̂t

= ga
′
xtgγ

′(1−t)ga
q+1(1−t)P (t)r

′
xga(1−t)r

′
xg
−ρ(t)(a

q(1−t)
p̂(t)+1−t)(ga)

−(a
q(1−t)

p̂(t)+1−t)
(1−t)+p̂t

by B =
aq(1− t)
p̂(t) + 1− t

= ga
′
xtgγ

′(1−t)ga
q+1(1−t)P (t)r

′
xga(1−t)r

′
xg
−ρ(t)(a

q(1−t)
p̂(t)+1−t)(ga)−(a

q(1−t))

= ga
′
xtgγ

′(1−t)ga
q+1(1−t)P (t)r

′
xga(1−t)r

′
xg
−ρ(t)(a

q(1−t)
p̂(t)+1−t)g−a

q+1(1−t)

= ga
′
xtgγ

′(1−t)P (t)r
′
xga(1−t)r

′
xg
−ρ(t)(a

q(1−t)
p̂(t)+1−t)

= (ga
′
x)t(gγ

′
)(1−t)(g

r′x
1)(1−t)g

− ρ(t)(1−t)
p̂(t)+1−t

q P (t)r
′
x as we defined

– If x ∈ Cover(R) \ XR, it defines

U (1)
x = (ga

′
x)t(gγ

′
)(

t
t?

+1)(g
r′x
1)(1−

t
t?

)g
−
ρ(t)(1+ t

t?
)

p̂(t)+1− t
t?

q P (t)r
′
x

U (2)
x = (gr

′
x)(gq)

−
1+ t

t?

p̂(t)+1− t
t?

In this case, by (B.5), ax = a′x −
αrx−γ
t? . By a similar argument as above,

these keys look valid according to the construction with implicit random-

ness rx = r′x −−
aq(1+ t

t?
)

p̂(t)+1− t
t?

.

4. A selects two messages m0 and m1. B chooses b
$← {0, 1} and creates a ciphertext

C = mb ·Z ·e(h, gγ
′
), C(1) = h, and for k ∈ ω? we write C

(2)
k = hf

′(x). We write h = gs

for some unknown s. The simulator then chooses random elements y′2, . . . , y
′
k?s
∈ Zp

and lets y′ = (0, y′2, . . . , y
′
k?s

). It defines C
(3)
i = (g1)

M?
i ·y
′ · (gs)−p0(ρ?(i)) for i =

1, . . . , l′s and C(4) = (gs)ρ(t
?), to implicitly share the secret s via the vector

vx = (s, sα+ y′2, sα
2 + y′3, . . . , sα

k′s−1 + y′k′s).

258

B.1 Construction of Revocable Dual-policy Attribute-based Encryption

We claim that if Z = e(gq+1, h) then the created ciphertext is a valid challenge. The

validity of C(1) = h = gs comes from the implicit definition of h. To see that C is

valid, recall that γ = γ′ + aq+1. Then,

C = mb · Z · e(h, gγ
′
) = mb · e(gq+1, h) · e(h, gγ′) = mb · e(g, g)sa

q+1 · e(g, g)sγ
′

= mb · e(g, g)s(γ
′+aq+1) = mb · e(g, g)sγ .

For all k ∈ ω?, we defined f(k) such that f(k) = 0, and hence

C
(2)
k = hf

′(k) = (gs)f
′(k) = (gf(k)q gf

′(k))s = Fo(k)s.

For i = 1, . . . , l′s, we have

C
(3)
i = (g1)

M?
i ·y
′ · (gs)−p0(ρ?(i))

= (gα)M
?
i ·y
′
k?s∏
j=1

gM
?
i,jsα

j

· (gs)−p0(ρ?(i))
k?s∏
j=1

(gs)−M
?
i,jα

j

= gαM
?
i ·vx · (gs)−p(ρ?(i)) = gαM

?
i ·vx · Fs(ρ?(i))−s,

Finally, since p̂(t?) = 0, C(4) = (gs)ρ(t
?) = ((ga)p̂(t

?)gρ(t
?))s = P (t?)s.

5. The challenge ciphertext is given to A along with oracle access which is handled as

in Step 3.

6. A eventually outputs b′ ∈ {0, 1} as its guess of b. If b = b′ then B outputs 1 to guess

that Z = e(gq+1, h). Otherwise, B outputs 0 to guess that Z is random in GT .

If (g, h,yg,a,q, Z) is sampled from RBDHE then Pr[B(g, h,yg,a,q, Z) = 0] = 1
2 since

A was given a malformed challenge and hence can only guess the value of b. On

the other hand if (g, h,yg,a,q, Z) is sampled from PBDHE then we formed a valid

challenge ciphertext and, as A is assumed to have non-negligible advantage ε in

the IND-sHRSS game, |Pr[B(g, h,yg,a,q, Z) = 0] − 1
2 | ≥ ε. It follows that B has

advantage at least ε in solving q-BDHE problem in G. Hence, as we assume that the

decisional q-BDHE problem is hard, an adversary with non-negligible advantage in

the IND-sHRSS game cannot exist.

259

B.2 Security Models

Game B.1 ExpsPubVerif
A

[
HPVC, 1`,F

]
1: (ω?,O?, ψ?,S?, LF,X? , mode)

$← A(1`,F)

2: (PP,MK)
$← Setup(1`,F)

3: if ((mode = V DC)) then (F ← S?, X? ← ψ?)
4: else (F ← O?, X? ← ω?)

5: PKF
$← FnInit(F,MK,PP)

6: (σ?, V K?, RK?)
$← ProbGen(mode, (ω?,S?), LF,X? , PKF ,PP)

7: θ?
$← AO(σ?, V K?, RK?, PKF ,PP)

8: (y, τθ?)← Verify(θ?, V K?, RK?,PP)
9: if (((y, τθ?) 6= (⊥, (reject, ·))) and (y 6= F (X?))) then

10: return 1
11: else return 0

B.2 Security Models

In this section we discuss some security models which are of interest in HPVC, namely

modified versions of public verifiability, revocation and authorised computation. These

notions are motivated by the same scenarios considered in the previous chapters and,

as in Chapter 3, we must include some additional restrictions on the public verifiability

and revocation games in order to accommodate similar restrictions stemming from our

current rkDPABE primitive. For brevity, we do not discuss these restrictions in detail

here, but refer the reader to the discussion in Section 3.4.2. We also do not provide

ideal notions of each game, as we did in Chapter 3 for RPVC, as they can be easily seen

by adapting the notation in the ideal notions for RPVC to accommodate the additional

HPVC parameters. Notions for vindictive servers and vindictive managers can also be

easily adapted from Chapter 3 if desired.

B.2.1 Selective Public Verifiability

In Game B.1, we combine the public verifiability games of Chapters 3 and 5, to formalise

in the HPVC model that no server may return an incorrect result for a computation with-

out being detected. We allow the adversary to corrupt other servers, generate arbitrary

computations, and to perform verification steps himself.

As with Game 3.7, this is a selective notion and, as such, the adversary first selects its

challenge parameters, including the mode it wishes its challenge to be generated in and

the labels associated to its choice of inputs. Note that we ask the adversary to output

choices for ω?,O?, ψ? and S?, despite only ω? and S? forming the challenge input. This

260

B.2 Security Models

Game B.2 ExpsSS-Rev
A

[
HPVC, 1`,F , qt

]
1: (ω?,O?, ψ?,S?, LF,X? , mode?)

$← A(1`,F , qt)
2: if ((mode? = V DC)) then (F ← S?, X? ← ψ?)
3: else (F ← O?, X? ← ω?)
4: QRev ← ε
5: t← 1
6: (PP,MK)

$← Setup(1`,F)

7: PKF
$← FnInit(F,MK,PP)

8: R
$← A(PKF ,PP)

9: AO(PKF ,PP)
10: if (R 6⊆ QRev) then return 0

11: (σ?, V K?, RK?)
$← ProbGen(mode?, (ω?,S?), LF,X? , PKF ,PP)

12: θ?
$← AO(σ?, V K?, RK?, PKF ,PP)

13: if ((y, (accept, S))← Verify(θ?, V K?, RK?,PP) and (S ∈ R)) then
14: return 1
15: else return 0

is a notational convenience that allows us to define the challenge computation in terms

of F and X? in line 3; note that the same information can, however, be gleaned from the

choice of mode and the set of labels LF,X? , so this is not a weakening of the game — this

information has already been determined by the choices of the adversary.

The challenger runs Setup and FnInit to create a public delegation key for the chosen

challenge function F . The challenger then runs ProbGen on the challenge inputs to create

the challenge parameters for the adversary, which are given to A along with the public

information. The adversary is also given oracle access to the functions FnInit(·,MK,PP),

Register(·,MK,PP), Certify(·, ·, (·, ·), ·, ·,MK,PP) and Revoke(·,MK,PP), denoted by O.

The adversary wins the game if it creates an encoded output that verifies correctly yet

does not encode the correct value F (x).

Definition B.1. The advantage of a PPT adversary A in the sPubVerif game for an

HPVC construction, HPVC, for a family of functions F is defined as:

AdvsPubVerif
A (HPVC, 1`,F) = Pr

[
1

$← ExpsPubVerif
A

[
HPVC, 1`,F

]]
.

An HPVC scheme, HPVC, is secure with respect to selective public verifiability if, for all

PPT adversaries A,

AdvsPubVerif
A (HPVC, 1`,F) 6 negl(`).

B.2.2 Selective, Semi-static Revocation

261

B.2 Security Models

Oracle B.1 OCertify(mode, Si, (O, ψ), Li,Fi,MK,PP)

1: if ((LF,X? ⊆ Li and Si /∈ R) or (t = qt and R 6⊆ QRev \ Si)) then return ⊥
2: QRev ← QRev \ S
3: return Certify(mode, Si, (O, ψ), Li,Fi,MK,PP))

Oracle B.2 ORevoke(τF ′(X),MK,PP))

1: t← t+ 1
2: if (τF ′(X) = (accept, ·)) then return ⊥
3: if (t = qt and R 6⊆ QRev ∪ Si) then return ⊥
4: QRev ← QRev ∪ S
5: return Revoke(τF ′(X),MK,PP)

The notion of revocation requires that if a server is detected as misbehaving, i.e. the BVerif

algorithm outputs τF (X) = (reject, Si), then any subsequent evaluations by Si should be

rejected. As in Chapter 3, this notion inherits the selective, semi-static restrictions from

the revocation mechanism of the underlying primitive in our construction. Hence, the

adversary must first select its challenge parameters, which the challenger can parse to

learn F and X? for the challenge computation. The challenger maintains a time period

t which is incremented during Revoke oracle queries, and a list QRev of currently revoked

entities. On line 4, the adversary (before receiving oracle access) must choose a list R of

servers to be revoked during the challenge generation (which we assume will be at time

qt, where qt is given as an input to the game).

The adversary is then given oracle access to the functions FnInit(·,MK,PP),

Register(·,MK,PP), Certify(·, ·, (·, ·), ·, ·,MK,PP) and Revoke(·,MK,PP), denoted by O.

Certify and Revoke queries are handled as specified in Oracles B.1 and B.2. Note that

the Certify oracle returns ⊥ if the resulting evaluation key would enable evaluation of the

challenge computation. After finishing this query phase (and in particular after qt Revoke

queries), the challenge is created. The adversary wins if it outputs any result (even a

correct encoding of F (X?)) that is accepted as a valid response from any server that was

revoked at the time of the challenge.

Definition B.2. The advantage of a PPT adversary A making a polynomial number,

q, of oracle queries, of which qt are Revoke queries, in the sSS-Rev game for an HPVC

construction, HPVC, for a family of functions F is defined as:

AdvsSS-Rev
A (HPVC, 1`,F , qt) = Pr

[
1

$← ExpsSS-Rev
A

[
HPVC, 1`,F , qt

]]
.

An HPVC scheme, HPVC, is secure with respect to selective semi-static revocation if,

262

B.2 Security Models

for all PPT adversaries A,

AdvsSS-Rev
A (HPVC, 1`,F , qt) 6 negl(`).

B.2.3 Selective Authorised Computation

The notion of selective authorised computation, presented in Game B.3, ensures that only a

server that satisfies the additional authorisation policy specified in the encoded input may

perform a given computation and hence be rewarded for correct work; this is similar to the

authorised computation notion given in Game 4.2. A result generated by an unauthorised

server should be rejected (even if the result itself is correct). Note that this game is only

meaningful when the challenge parameters are generated in PVC-AC mode.

Game B.3 ExpsAuthC
A

[
HPVC, 1`,F

]
1: (F,X?, P)

$← A(1`)

2: (PP,MK)
$← Setup(1`,F)

3: PKF
$← FnInit(F,MK,PP)

4: (σ?, V K?, RK?)
$← ProbGen(PVC-AC, (x, P), {l(F)}, PKF ,PP)

5: θ?
$← AO(σ?, V K?, RK?, PKF ,PP)

6: (RT ?, τ?)← BVerif(θ?, V K?,PP)
7: if (τ? 6= (reject, ·)) then return 1

8: else return 0

This is a selective notion due to the selectively secure revocable key DP-ABE primitive we

use in our construction; as such, the game begins with the adversary choosing a challenge

function F , a challenge input X? and an authorisation policy P . The challenger initialises

the system and generates an encoded input for the challenge computation. The adversary is

given the resulting parameters and oracle access to FnInit(·,MK,PP), Register(·,MK,PP),

Certify(·, ·, (·, ·), ·, ·,MK,PP) and Revoke(·,MK,PP), denoted by O. The Certify oracle is

handled as specified in Oracle B.3. It returns a failure symbol ⊥ if the queried attributes

ψ satisfies the authorisation policy P , else the adversary could trivially produce a valid

response as an authorised entity. Otherwise, the result of running the Certify algorithm is

returned.

The adversary must return a result which is accepted by a verifier.

Definition B.3. The advantage of a PPT adversary A in the sAuthC game for an

HPVC construction, HPVC, for a family of functions F is defined as:

263

B.3 Proofs of Security

Oracle B.3 OCertify(mode, Si, (O, ψ), Li,Fi,MK,PP)

1: if (ψ ∈ P) then return ⊥
2: return Certify(mode, Si, (O, ψ), Li,Fi,MK,PP)

AdvsAuthC
A (HPVC, 1`,F) = Pr

[
1

$← ExpsAuthC
A

[
HPVC, 1`,F

]]
.

An HPVC scheme, HPVC, is secure with respect to selective authorised computation if,

for all PPT adversaries A,

AdvsAuthC
A (HPVC, 1`,F) 6 negl(`).

B.3 Proofs of Security

Informally, public verifiability and revocation reduce to the indistinguishability of cipher-

texts within the rkDPABE scheme which allows us to replace the message for the unsatis-

fied function (which cannot be decrypted) with the challenge for a one-way function game.

Then an adversary against these games can attack the verification token for this message.

B.3.1 Proof of Public Verifiability

Lemma B.1. The HPV C construction defined by Algorithms 6.1–6.9 is secure with re-

spect to selective public verifiability (Game B.1) under the same assumptions as in Theo-

rem 6.1.

One way to view this proof is to reduce, based on the mode to either the RPVC or VDC

public verifiability game. Observe that the choice of dummy attributes and a dummy

policy that is trivially satisfied by the presence of that dummy attribute means that one

type of policy is always trivially satisfied, and hence decryption hinges entirely on the

remaining policy. Thus we are in the setting of the single mode games.

We now give a unified proof.

Proof. Let AV C be an adversary with non-negligible advantage against the selective public

264

B.3 Proofs of Security

verifiability game (Game B.1) when instantiated with Algorithms 6.1–6.9. We define the

following three games:

• Game 0. This is the correct selective public verifiability game as in Game B.1.

• Game 1. This differs from Game 0 in that ProbGen no longer returns an encryption

of m0 and m1. Instead, we choose a random message m′ 6= m0,m1. Note that there

are two ciphertexts created during ProbGen (being the encryption of m0 and m1)

and that one of these will be associated with the function F , and the other with the

complement function F . Now, only one of F and F will be satisfied by the input

data X?. We replace the plaintext associated with the unsatisfied function by m′

which is unrelated to m0,m1 and the verification keys.

• Game 2. This is the same as Game 1 with the exception that instead of choosing a

random message m′, we implicitly set m′ to be the challenge input w in the one-way

function game.

By hopping from Game 0 to Game 2, we show that an adversary with non-negligible

advantage against public verifiability can be used to construct an adversary that inverts

the one-way function g.

Game 0 to Game 1. We begin by showing that there is a negligible distinguishing

advantage between Game 0 and Game 1. Suppose otherwise, that AV C can distinguish

the two games with non-negligible advantage δ. We construct an adversary AABE that

uses AV C as a sub-routine to break the IND-sHRSS security of the rkDPABE scheme

(Game 6.1). In this proof, we consider the PVC-AC mode to be a special case of the

RPVC mode (since we assume the adversary can be authorised to evaluate the challenge

computation); therefore we focus only on RPVC and VDC modes. We consider a chal-

lenger C playing the IND-sHRSS game with AABE , who in turn acts as a challenger in

the selective public verifiability game for AV C :

1. AV C is given the security parameter, and declares its choice of challenge input pa-

rameters (ω?,O?, ψ?,S?,), a set of labels LF,X? and the mode in which the challenge

should be generated.

265

B.3 Proofs of Security

2. AABE must send a challenge input (ω̃, S̃) and a challenge time period t̃ to the chal-

lenger. It first sets t̃ = 1. Observe that in VDC mode, S? corresponds to the function

F and ψ? is the challenge input data X?. In RPVC mode, O? = F and ω corre-

sponds to the challenge input X?. The other inputs are either dummy attributes

or corresponding policies, and these policies are trivially satisfied by the dummy

attribute. Now, using the relevant inputs, AABE computes r = F (X?).

• If the challenge mode is RPVC, set

ω̃ = Aω? = AX? ,

S̃ = S? ∧
∧

lj∈LF,X

lj = {{T 0
S}} ∧ {l(F)}.

• If the challenge mode is VDC, we want to set (ω̃, S̃) such that the pair is not

satisfied by the challenge input.

– If r = 1: set

ω̃ = Aω? = {T 0
O},

S̃ = S? ∧
∧

lj∈LF,X

lj = F ∧ {l(xi,j)}xi,j∈X? .

– If r = 0: set

ω̃ = Aω? = {T 0
O},

S̃ = S? ∧
∧

lj∈LF,X

lj = F ∧ {l(xi,j)}xi,j∈X? .

3. C runs the DPABE.Setup algorithm on the security parameter to generate MPKABE

and MSKABE and gives MPKABE to AABE .

4. AABE sends R = ε (i.e. an empty list) to C and simulates running HPVC.Setup

such that the outcome is consistent with MPKABE. If mode = VDC, it runs lines 3

to 5 as written, sets MPK0
ABE = MPKABE as given by C, and implicitly sets

MSK0
ABE = MSKABE (any use of MSK0

ABE will be simulated using oracle queries

to C). Otherwise, it sets MPKr
ABE to be that issued by C, and implicitly sets

MSKr
ABE to be that held by the challenger.

In both cases, it also runs DPABE.Setup itself to generate a second DP-ABE system.

5. AABE runs HPVC.FnInit as written. To generate the challenge input, AABE begins

by choosing two random bits, b (which it defines to be RKF,X?) and s, and three

266

B.3 Proofs of Security

random messages m0, m1 and m′ from the message space.

AABE sends m0 and m1 to C as its challenge inputs. C chooses b?
$← {0, 1} and

returns CT ? ← DPABE.Encrypt(mb? , (ω̃, S̃), t̃,MPKABE).

• In RPVC mode, AABE sets cb to be CT ? and generates

c1−b ← DPABE.Encrypt(m′, (ω̃,S? ∧
∧

lj∈LF,X

lj), t̃,MPK1
ABE)

itself. It sets V Kb = g(ms) and V K1−b = g(m′).

• In VDC mode:

– If r = 1:

AABE generates

cb ← DPABE.Encrypt(m′, (ω̃,S?) ∧
∧

lj∈LF,X

lj , t̃,MPK0
ABE)

itself, and sets c1−b to be CT ?. It sets V Kb = g(m′) and V K1−b = g(ms).

– If r = 0:

AABE sets cb to be CT ? and generates

c1−b ← DPABE.Encrypt(m′, (ω̃,S? ∧
∧

lj∈LF,X

lj), t̃,MPK0
ABE)

itself. It sets V Kb = g(ms) and V K1−b = g(m′).

Finally, AABE sets σF,X? = (cb, c1−b), V KF,X? = (V Kb, V K1−b, LReg) and

RKF,X? = b. Note that s is essentially AABE ’s guess for the value of b? chosen

by C.

6. AV C is provided the output of ProbGen and given oracle access which is handled as

follows.

• FnInit(·,MK,PP) and Register(·,MK,PP) can be run as written.

• Certify(mode, Si, (O, ψ), Li,Fi, Si,MK,PP):

To generate the evaluation key for the queried parameters, AABE uses the

KeyGen oracle in the rkDPABE game. It first updates the relevant list entries

as specified. Then it sets O′ = O and ψ′ = Aψ ∪
⋃
lj∈Li lj and makes an oracle

query to C for OKeyGen(Si, (O′, ψ′),MK,PP) as in Oracle 6.1. C shall generate

a rkDPABE decryption key SKO′,ψ′ if and only if ω̃ 6∈ O′ or ψ′ 6∈ S̃ or Si ∈ R.

267

B.3 Proofs of Security

Observe, that Si 6∈ R since we set R to be empty.

Now, by construction (Step 2), ψ′ ∈ S̃ only if the labels {lj}lj∈Li ⊇ {lk}lk∈LF,X? .

If the labels do not satisfy this relation, then C may generate the key, which

AABE will receive as SK0
ABE.

If, on the other hand, the labels do satisfy this relation, then observe that,

because each label uniquely describes a single element (either a function or a

data point):

– In RPVC mode: as both Li and LF,X? are singleton sets, and {lj}lj∈Li ⊇

{lk}lk∈LF,X? , it must be that Li = LF,X? = {l(F)} and hence, by uniqueness

of the labels, O = O? i.e. the adversary has requested an evaluation key

for the challenge function F . However, in Step 4, we assigned the ABE

system owned by the challenger (with master secret MSKr
ABE) precisely

such that O? is not satisfied by the challenge input ω̃, and therefore O′ is

not satisfied either — that is, ω̃ 6∈ O′ and hence C can generate a valid key

which AABE will store as SKr
ABE.

– In VDC mode: {lk}lk∈LF,X? ⊆ {lj}lj∈Li ⇒ {l(xi,k)}xi,k∈X? ⊆

{l(xi,j)}xi,j∈Di ⇒ X? ⊆ Di i.e. by uniqueness of the labels, the adver-

sary has requested an evaluation key for a superset of the challenge input

data — that is, Di contains X? and possibly some additional data points.

Now, if X? ⊆ Di then, additionally Di must satisfy either F or F to satisfy

S̃. However, note that in Step 2, S̃ was chosen specifically such that it

is not satisfied by the challenge input X? and therefore by Di (as F will

simply select the elements of X? to evaluate on). Hence C may generate a

valid key which AABE will store as SK0
ABE.

AABE also must request an update key by making a KeyUpdate oracle query

to C. C will return a valid key unless the current time period is t = t̃ and

R 6⊆ QRev. Observe that the second clause is never satisfied since R = ε and

hence is a subset of any QRev. Hence C may always generate a valid update

key.

If in RPVC mode, AABE additionally generates a key SK1−r
ABE using the second

system parameters (which he owns) for (O, ψ).

• Revoke(τ(O,ψ),(ω,S), (O, ψ), (ω,S),MK,PP): In response to a Revoke query,

AABE runs Algorithm 6.9 as written except that it will make a KeyUpdate

oracle query to C for the update key for to the ABE system owned by the

268

B.3 Proofs of Security

challenger (UKr
LRev,t

in the case of RPVC and UK0
LRev,t

in the case of VDC).

C will generate a valid update key unless the time period is t̃ = qt and there

exists a server on R that is not currently revoked. However, as R was defined to

be an empty list, this second condition will never hold and C can always return

a valid key.

Eventually, it outputs θ? which it believes is a valid forgery (i.e. that it will be

accepted yet does not correspond to the correct value of F (X?)).

7. AABE parses θ? as (db, d1−b, Si? , γ) and using the retrieval key RKF,X? = b, finds d0

and d1. One of d0 and d1 will be ⊥ (by construction) and we denote the other value

by Y .

If g(Y) = g(ms), AABE outputs a guess b′ = s and otherwise guesses b′ = (1− s).

If s = b? (the challenge bit chosen by C), we observe that the above corresponds to Game

0 (since the verification key comprises g(m′) where m′ is the message a legitimate server

could recover, and g(ms) where ms is the other plaintext). Alternatively, s = 1 − b? and

the distribution of the above experiment is identical to Game 1 (since the verification

key comprises the legitimate message and a random message m1−b? that is unrelated to

the ciphertext).

Now, we consider the advantage of this constructed AABE playing the IND-sHRSS game

for rkDPABE. Recall that, by assumption, AV C has a non-negligible advantage δ in dis-

tinguishing between Game 0 and Game 1 — that is

∣∣∣Pr
[
1

$← ExpGame 0
AV C

[
HPVC, 1`,F

]]
− Pr

[
1

$← ExpGame 1
AV C

[
HPVC, 1`,F

]]∣∣∣ > δ

where ExpiAV C
[
HPVC, 1`,F

]
denotes running AV C in Game i.

269

B.3 Proofs of Security

Pr[b′ = b?] = Pr [s = b?] Pr
[
b′ = b?|s = b?

]
+ Pr [s 6= b?] Pr

[
b′ = b?|s 6= b?

]
=

1

2
Pr [g(Y) = g(ms)|s = b?] +

1

2
Pr [g(Y) 6= g(ms)|s 6= b?]

=
1

2
Pr
[
1

$← ExpGame 0
AV C

[
HPVC, 1`,F

]]
+

1

2
(1− Pr [g(Y) = g(ms)|s 6= b?])

=
1

2
Pr
[
1

$← ExpGame 0
AV C

[
HPVC, 1`,F

]]
+

1

2

(
1− Pr

[
1

$← ExpGame 1
AV C

[
HPVC, 1`,F

]])
=

1

2

(
Pr
[
1

$← ExpGame 0
AV C

[
HPVC, 1`,F

]]
− Pr

[
1

$← ExpGame 1
AV C

[
HPVC, 1`,F

]]
+ 1
)

>
1

2
(δ + 1)

Hence,

AdvAABE >

∣∣∣∣Pr
[
b? = b′

]
− 1

2

∣∣∣∣ > ∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣ > δ

2
.

Hence, if AV C has advantage δ at distinguishing these games then AABE can win the

IND-sHRSS game for rkDPABE with non-negligible probability. Thus since we assumed

the rkDPABE scheme to be secure, we conclude that AV C cannot distinguish Game 0

from Game 1 with non-negligible probability.

Game 1 to Game 2. The transition from Game 1 to Game 2 sets the value of m′ to

correspond to the challenge w in the one-way function inversion game (rather than be a

randomly chosen message). We argue that the adversary has no distinguishing advantage

between these games since the new value is independent of anything else in the system,

bar the verification key g(w), and hence looks random to an adversary with no additional

information (in particular, AV C does not see the challenge for the one-way function as

this is played between C and AABE).

Final Proof We now show that using AV C in Game 2, AABE can invert the one-way

function g — that is, given a challenge z = g(w) we can recover w. Specifically, during

ProbGen, we choose the messages as follows:

• if r = 1, we implicitly set m1−b to be w by setting the corresponding verification

key component to be z. We choose mb and the other verification key component

270

B.3 Proofs of Security

randomly as usual.

• if r = 0, we implicitly set mb to be w by setting the corresponding verification

key component to be z. We choose m1−b and the other verification key component

randomly as usual.

Now, if AV C is successful, it will output a forgery comprising the plaintext encrypted

under the function F or F that evaluates to 0. By construction, this will be w (and

the adversary’s view in consistent since the verification key is simulated correctly using

z). AABE can forward this result to C to invert the one-way function with the same

non-negligible probability that AV C has against the selective public verifiability game.

We conclude that if the rkDPABE scheme is IND-sHRSS secure and the one-way function

is hard-to-invert, then the HPV C as defined by Algorithms 6.1–6.9 is secure in the sense

of selective public verifiability.

B.3.2 Proof of Revocation

Lemma B.2. The HPVC construction defined by Algorithms 6.1–6.9 is secure in the

sense of selective, semi-static revocation (Game B.2) under the same assumptions as in

Theorem 6.1.

Proof. We reduce the security of the selective, semi-static revocation game to the

IND-sHRSS security of the underlying revocable-key DPABE scheme (Game 6.1). To

achieve a contradiction, let AV C be an adversary with non-negligible advantage against

the selective, semi-static revocation game (Game B.2) when instantiated with Algorithms

6.1–6.9 and making qt Revoke queries. We show that, if such an AV C exists, then it can

be used to construct an adversary AABE that can break the IND-sHRSS security of the

revocable-key DPABE scheme. Again, we consider only RPVC and VDC modes here (and

view PVC-AC as a special case of RPVC) as the adversary should be authorised (in terms

of the authorisation policy, if not in terms of revocation) for the challenge computation.

Let C be a challenger for the IND-sHRSS game playing with AABE , who in turn acts as

the challenger in the selective, semi-static revocation game with AV C .

271

B.3 Proofs of Security

1. AV C selects its challenge inputs (ω?,O?, ψ?,S?, LF,X? , mode?) for a challenge com-

putation of F (X?).

2. AABE initialises the list QRev = ε and time parameter t = 1. It then forms its

own challenge input as follows. It sets t? = qt. Then, it sets ω̃ = Aω? and sets

S̃ = S? ∧
∧
lj∈LF,X? lj . It sends t?, ω̃ and S̃ to C.

3. C runs DPABE.Setup and returns the public parameters MPKABE to AABE who

stores them as MPK0
ABE.

4. AABE now simulates the HPVC.Setup algorithm such that the output is consistent

with the public parameters generated by C. It runs Algorithm 6.1 as written, with

the exception of line 1, since MSK0
ABE and MPK0

ABE was already generated by C.

AABE also runs HPVC.FnInit as written, and gives the public parameters and public

delegation key to AV C .

5. AV C chooses a challenge revocation list R, which AABE forwards to C.

6. AV C is now given oracle access to which AABE can respond as follows:

• Queries to HPVC.FnInit and HPVC.Register can be run as written.

• Queries of the form HPVC.Certify(mode, Si, (O, ψ), Li,Fi,MK,PP): AABE runs

Oracle B.1. To simulate running the HPVC.Certify algorithm, AABE runs Al-

gorithm 6.4 as written with the exception of lines 4 and 5, as these depend on

MSK0
ABE held by C.

To simulate line 4, AABE makes an oracle query to C of the form

OKeyGen(Si, (O, Aψ ∪
⋃
lk∈Li lk),MSK0

ABE,MPK0
ABE). C responds by running

Oracle 6.1 which will return a valid key unless (ω̃ ∈ O) and (Aψ∪
⋃
lk∈Li lk ∈ S̃)

and (Si /∈ R).

If (Aψ ∪
⋃
lk∈Li lk 6∈ S̃) then C can return a valid decryption key. Otherwise, we

may observe that

(Aψ ∪
⋃
lk∈Li

lk) ∈ (S ∧
∧

lj∈LF,X?
lj)

only if {lk}lk∈Li ⊇ {lj}lj∈LF,X? . By virtue of the fact that labels uniquely

label the objects they relate to (either functions or data points), this implies

LF,X? ⊆ Li. However, in this case, by the first check performed in Oracle B.1,

AABE would have returned ⊥ without querying KeyGen if Si 6∈ R, to avoid

certifying AV C for the challenge computation.

272

B.3 Proofs of Security

Thus, at the point of making a KeyGen query, if (Aψ ∪
⋃
lk∈Li lk ∈ S̃) then

Si ∈ R. Therefore, C can respond to all queries made to it during this phase

with a valid key which AABE can use to simulate line 4 correctly.

To simulate line 5 of HPVC.Certify, AABE makes a query to C of the form

OKeyUpdate(QRev, t,MSK0
ABE,MPK0

ABE). C responds as written in Oracle 6.2

— that is, it returns a valid update key unless t = t? and R 6⊆ QRev. However,

note that AABE chose t? = qt, and at the point of calling the KeyUpdate oracle,

the list QRev = QRev \ Si. Therefore, if C would return ⊥ in response to this

query, then AABE would already have returned ⊥ as a result of the checks

performed in Oracle B.1. Hence, for all queries made to C, a valid update key

is returned and line 4 is simulated correctly.

• Queries of the form HPVC.Revoke(τF (X),MK,PP): AABE runs Oracle B.2. To

simulate running the HPVC.Revoke algorithm, AABE runs Algorithm 6.9 as

written with the exception of line 4. Instead, AABE makes a query to C of the

form OKeyUpdate(QRev, t,MSK0
ABE,MPK0

ABE). Note that, according to Ora-

cle B.2, AABE would have returned ⊥ if t = qt (where, recall, qt = t? by the

choice of AABE) and R 6⊆ QRev \ Si. This corresponds directly to the condi-

tions wherein C cannot form a valid update key according to Oracle 6.2 (since,

if HPVC.Revoke is called, then Si was already removed from the list QRev).

Hence, for all queries, C can form a valid update key and AABE can simulate

the expected behaviour.

7. Eventually (after qt Revoke queries), AV C finishes this query phase. AABE checks

whether the list of revoked entities is compatible with the challenge list R and returns

0 if not.

8. AABE must now generate the challenge input for AV C . To do so, it chooses three

distinct messages, m0,m1 and m′, uniformly at random from the messagespace. It

also chooses a random bit b which it defines to be RKF,X? . It sends m0 and m1 to

C as its challenge inputs in the IND-sHRSS game. C chooses a bit b? uniformly at

random and returns CT ?
$← Encrypt(mb? , ω̃, S̃, t?,MPK0

ABE). AABE sets cb to be

CT ? and generates c1−b himself by encrypting m′ as specified on lines 5 and 6 of

Algorithm 6.5.

Finally, AABE selects another bit s uniformly at random and, if b = 0, it sets

V KF,X? = (g(ms), g(m′), LReg), or otherwise it sets V KF,X? = (g(m′), g(ms), LReg).

273

B.3 Proofs of Security

Note that s can be thought of as AABE ’s guess as to the value of b?.

9. AV C is given the resulting parameters and again given oracle access which AABE

responds to as in Step 6.

10. Eventually, AV C outputs its result θ? which, in order to appear valid, should contain

exactly one non-⊥ plaintext; we denote this plaintext by y. If g(y) = g(ms), AABE

guesses b′ = s. If g(y) = g(m′), AABE guesses randomly b′ ← {0, 1} (as AV C did

not respond for either m0 or m1, it reveals no information to aid AABE). Otherwise,

AABE aborts as AV C was not successful (either for legitimate reasons or because

AABE chose s incorrectly and issued a malformed challenge).

By assumption, AV C has non-negligible advantage δ against the selective, semi-static

revocation game — that is, Pr [g(y) = g(ms)] + Pr [g(y) = g(m′)] = δ. Therefore,

Pr
[
b′ = b?

]
= Pr

[
b′ = b?|g(y) = g(ms)

]
Pr [g(y) = g(ms)]

+ Pr
[
b′ = b?|g(y) = g(m′)

]
Pr
[
g(y) = g(m′)

]
= Pr [s = b?] Pr [g(y) = g(ms)] + Pr

[
b̃ = b?

]
Pr
[
g(y) = g(m′)

]
=

1

2
Pr [g(y) = g(ms)] +

1

2
Pr
[
g(y) = g(m′)

]
=

1

2
(Pr [g(y) = g(ms)] + Pr

[
g(y) = g(m′)

]
)

=
δ

2

Hence,

AdvAABE ≥
∣∣∣∣Pr
[
b? = b′

]
− 1

2

∣∣∣∣
≥
∣∣∣∣δ2 − 1

2

∣∣∣∣
≥ 1

2
(δ − 1),

which is non-negligible. However, the DPABE scheme was, in fact, assumed to be secure in

the sense of IND-sHRSS and hence such an adversary as AABE may not exist. Therefore,

our assumption on AV C must be incorrect, and no adversary with non-negligible advantage

against the selective, semi-static revocation game can exist.

274

B.3 Proofs of Security

B.3.3 Proof of Authorised Computation

Lemma B.3. The HPVC construction defined by Algorithms 6.1–6.9 is secure with re-

spect to selective authorised computation (Game B.3) under the same assumptions as in

Theorem 6.1.

Proof. We reduce the security of the selective authorised computation game to the

IND-sHRSS security of the underlying revocable-key DPABE scheme (Game 6.1). To

achieve a contradiction, let AV C be an adversary with non-negligible advantage against

the selective authorised computation game (Game B.3) when instantiated with Algorithms

6.1–6.9. We show that, if such an AV C exists, then it can be used to construct an adver-

sary AABE that can break the IND-sHRSS security of the revocable-key DPABE scheme.

Note that this notion is only meaningful in PVC-AC mode. Let C be a challenger for the

IND-sHRSS game playing with AABE , who in turn acts as the challenger in the selective

authorised computation game with AV C .

1. AV C first selects its challenge inputs F,X? and the authorisation policy P .

2. AABE defines its own challenge inputs for the IND-sHRSS game by setting t? = 1,

ω? = AX? and S? = P ∧ {l(F)}, and sends these to C.

3. C runs the Setup algorithm for the DPABE scheme and returns the public parameters

MPKABE to AABE who stores them as MPK0
ABE.

4. AABE now simulates the HPVC.Setup algorithm such that the output is consistent

with MPK0
ABE. It runs Algorithm 6.1 as written, with the exception of line 1, since

MSK0
ABE and MPK0

ABE are defined to be those generated by C. AABE also runs

HPVC.FnInit as written and sends an empty challenge revocation list R = ε to C.

5. AABE must next create the challenge input for AV C . To do so, it chooses three

distinct messages, m0,m1 and m′, uniformly at random from the messagespace. It

also chooses a random bit b which it defines to be RKF,X? . It sends m0 and m1 to

C as its challenge inputs in the IND-sHRSS game. C chooses a bit b? uniformly at

random and returns CT ?
$← Encrypt(mb? , ω

?,S?, t?,MPK0
ABE). AABE sets cb to be

CT ? and generates c1−b himself by encrypting m′ as specified on lines 5 and 6 of

Algorithm 6.5.

275

B.3 Proofs of Security

Finally, AABE chooses another bit s uniformly at random and, if b = 0, it sets

V KF,X? = (g(ms), g(m′), LReg), or otherwise sets V KF,X? = (g(m′), g(ms), LReg).

6. AABEgives the resulting parameters to AV C along with oracle access which AABE

can handle as follows:

• Queries to HPVC.FnInit and HPVC.Register can be run as given in the construc-

tion.

• Queries of the form HPVC.Certify(mode, Si, (O, ψ), Li,Fi,MK,PP): AABE runs

Oracle B.3. If the queried ψ satisfies the challenge authorisation policy P then

AABE returns ⊥. Otherwise it simulates running HPVC.Certify by running

Algorithm 6.4 as written with the exception of lines 4 and 5, as these depend

on MSK0
ABE held by C.

To simulate line 4, AABE queries C for

OKeyGen(Si, (O, Aψ ∪
⋃
lk∈Li

lk),MSK0
ABE,MPK0

ABE).

C will return ⊥ if (ω? ∈ O) and (Aψ ∪
⋃
lk∈Li lk ∈ S?) and (Si /∈ R). However,

for the query to have been made, AABE must not have returned ⊥ in Oracle B.3,

and therefore ψ /∈ P , and hence ψ /∈ S?. Therefore, C can always return a valid

decryption key SK0
ABE.

To simulate line 5 of HPVC.Certify, AABE queries C for

OKeyUpdate(QRev, t,MSK0
ABE,MPK0

ABE). C responds as in Oracle 6.2

and returns a valid update key unless t = t? and R 6⊆ QRev. However, as R

was chosen to be empty, R ⊆ QRev for any QRev, and hence C can create a

valid update key.

• Queries of the form HPVC.Revoke(τF (X),MK,PP): AABE runs Algorithm 6.9

as written with the exception of line 4. To simulate this line, AABE makes a

query to C of the form OKeyUpdate(LRev, t,MSK0
ABE,MPK0

ABE). As specified in

Oracle 6.2, C will return a valid key unless t = t? and R 6⊆ R). However, AABE

chose R to be empty and so it is certainly a subset of any R, and in particular

LRev. Hence, for all queries, C can form a valid update key and AABE can

simulate the expected behaviour.

7. Eventually, AV C finishes this query phase and outputs a result θ? corresponding

to the result of F (X?) protected by an authorisation policy P , where AV C never

276

B.3 Proofs of Security

received a key for a set of authorisation attributes s ∈ P . As θ? should appear valid,

it should comprise exactly one non-⊥ element which we denote by y.

8. If g(y) = g(ms), AABE guesses b′ = s. If g(y) = g(m′), AABE randomly guesses

b′
$← {0, 1} (as AV C did not respond for either m0 or m1, it reveals no information

to aid AABE in its IND-sHRSS game). Otherwise, AABE aborts as AV C was not

successful (either for legitimate reasons or because AABE chose s incorrectly and

issued a malformed challenge).

By assumption, AV C has non-negligible advantage δ against the selective authorised com-

putation game — that is, Pr [g(y) = g(ms)] + Pr [g(y) = g(m′)] = δ. Therefore,

Pr
[
b′ = b?

]
= Pr

[
b′ = b?|g(y) = g(ms)

]
Pr [g(y) = g(ms)]

+ Pr
[
b′ = b?|g(y) = g(m′)

]
Pr
[
g(y) = g(m′)

]
= Pr [s = b?] Pr [g(y) = g(ms)] + Pr

[
b̃ = b?

]
Pr
[
g(y) = g(m′)

]
=

1

2
Pr [g(y) = g(ms)] +

1

2
Pr
[
g(y) = g(m′)

]
=

1

2
(Pr [g(y) = g(ms)] + Pr

[
g(y) = g(m′)

]
)

=
δ

2

Hence,

AdvAABE ≥
∣∣∣∣Pr
[
b? = b′

]
− 1

2

∣∣∣∣
≥
∣∣∣∣δ2 − 1

2

∣∣∣∣
≥ 1

2
(δ − 1),

which is non-negligible. However, as the DPABE scheme was assumed to be IND-sHRSS

secure, such an adversary can not exist. Therefore, our assumption on AV C must be

incorrect, and no adversary with non-negligible advantage against the selective authorised

computation game can exist.

277

	Introduction
	Motivation
	Thesis Structure
	Author Contributions

	Background Material
	Notation
	Terminology for Binary Trees

	Verifiable Outsourced Computation
	Access Control Policies
	Information Flow Policies
	Role-based Access Control Policies
	Attribute-based Access Control Policies
	General Representation of Access Control Policies.

	Key Assignment Schemes
	Encryption Schemes
	Symmetric Encryption Schemes
	Asymmetric Encryption Schemes

	Attribute-based Encryption
	Key-policy Attribute-based Encryption
	Ciphertext-policy Attribute-based Encryption
	Dual-Policy Attribute-Based Encryption
	Instantiating Attribute-based Encryption Schemes

	Digital Signatures
	Notions of Security
	Verifiable Outsourced Computation
	Key Assignment Schemes
	Symmetric Encryption
	Symmetric Authenticated Encryption
	Ciphertext-policy Attribute-based Encryption
	Dual-policy Attribute-based Encryption
	Digital Signatures
	One-way Functions

	Revocation in Publicly Verifiable Outsourced Computation
	Introduction
	Background Material
	Construction of Publicly Verifiable Computation Schemes
	Revocable Key-Policy Attribute-based Encryption

	Revocable Publicly Verifiable Computation
	Key Distribution Centre
	Handling Multiple Functions
	Standard Model
	Manager Model
	Formal Definition

	Security Models
	Ideal Security Properties
	Restricted Security Notions

	Construction
	Technical Details
	Instantiation

	Proofs of Security
	Conclusion

	Access Control in Publicly Verifiable Outsourced Computation
	Introduction
	Access Control Policies for PVC Environments
	Delegation and Computation Policies
	Verification Policies

	PVC with Access Control
	Security Models
	Authorised Outsourcing
	Authorised Computation
	Authorised Verification
	Weak Input Privacy

	Construction
	Informal Overview
	Instantiation

	Proofs of Security
	Conclusion

	Verifiable Delegable Computation
	Introduction
	Related Work
	Verifiable Delegable Computation
	Potential Applications for VDC
	Security Model
	Construction
	Proof of Security
	Conclusion

	Hybrid Publicly Verifiable Outsourced Computation
	Introduction
	Hybrid Publicly Verifiable Computation
	Informal Overview
	Supporting Different Modes
	Formal Definition

	Construction
	Revocable Dual-policy Attribute-based Encryption
	Instantiation of HPVC

	Conclusion

	Conclusion
	Bibliography
	Additional Material for Access Control in Publicly Verifiable Outsourced Computation
	Proof of Authorised Computation
	Proof of Authorised Verification
	Proof of Weak Input Privacy

	Additional Material for Hybrid Publicly Verifiable Outsourced Computation
	Construction of Revocable Dual-policy Attribute-based Encryption
	Proof of Security

	Security Models
	Selective Public Verifiability
	Selective, Semi-static Revocation
	Selective Authorised Computation

	Proofs of Security
	Proof of Public Verifiability
	Proof of Revocation
	Proof of Authorised Computation

