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Abstract—Data sharing by cloud computing enjoys benefits in
management, access control, and scalability. However, it suffers
from certain drawbacks, such as high latency of downloading
data, non-unified data access control management, and no
user data privacy. Edge computing provides the feasibility to
overcome the drawbacks mentioned above. Therefore, providing
a security framework for edge computing becomes a prime
focus for researchers. This work introduces a new key-aggregate
cryptosystem for edge-cloud-based data sharing integrating cloud
storage services. The proposed protocol secures data and provides
anonymous authentication across multiple cloud platforms, key
management flexibility for user data privacy, and revocability.
Performance assessment in feasibility and usability paves satis-
factory results. Therefore, this work directs a new horizon to
detailed new edge-computing-based data sharing services based
on the proposed protocol for low latency, secure unified access
control, and user data privacy in the modern edge enabled reality.

Index Terms—data confidentiality, access control, privacy pre-
serving authentication; user revocation; edge computing.

I. INTRODUCTION

Technology has diligently optimized the gaps in human-
machine interactions over several decades. Although existing
technologies, including cloud, fog, and IoT, are stacked on top
of each other to provide better remote data access, consumers
and businesses alike are skeptical by the user experience due
to high latency of specific actions performed on the cloud [1].

For instance, under a congested network condition, several
users are interested in downloading a popular large file from
the cloud. So, they make an individual request to the cloud and
download the queried file. However, mobile applications may
have communication latency due to the large distance between
the cloud and the users. Further, cloud services operated by
individual providers make unified access control infeasible due
to several user accounts for multiple cloud platforms. Edge
computing [2] as modern innovation improves user experience
by putting hosting services, workloads, and vast quantities
of data at the network’s edge [3]. Edge devices, unlike the

∗This work was supported in part by the National Science and Technology
Council (NSTC) under grant NSTC 111-2222-E-110-008-, the Ministry of
Science and Technology grant MOST 110-2222-E-110-006- and assisted by
CANSEC-LAB@NSYSU in Taiwan; and by the National Science Foundation
(NSF) grants under award numbers 2008878 and 2030624 in the United States.

cloud, are much closer to end-users, enabling efficient analysis
at the edge for upstream and downstream data on behalf of
IoT and cloud, respectively. Fig. 1 depicts a scenario where
users reside in a potent edge-assisted cloud (EC) environment,
and data flow seamlessly from one cloud to users’ proximal
locations. The edge between the cloud and users execute
specific activities to lower cloud overhead. The edge controller

Edge users

Edge devices

Cloud

Microsoft AzureGoogle
Amazon
(AWS) ¼

data request query

Data Owner 
(DO)

communication between edge and cloud
communication between edge and users

default communication in the architecture

Semi-honestMalicious

Edge Controller
[CNTLR]

Data Consumers (DC)

Data upload

Data search

Rapid communication

controlled by

Fig. 1: Overview of the Edge-Cloud data sharing

(CNTLR) usually keeps track of such devices. When a user
uploads a file to a specific cloud, an edge device, in response
to a consumer request, downloads such file from the cloud
and stores it at the edge for future use. The mobile edge
computing (MEC) [4] server is often seen as CNTLR that aids
cloud abilities at the edge of mobile networks. Thus, it boosts
efficiency by outsourcing intensive calculations like credential
management and data transfer to the edge. Further, it eases the
distance data travel, lowering bandwidth and latency issues.

A. Security Requirements in the Edge-Cloud Data Sharing
Typically, edge devices are openly deployed in specific

locations based on communication needs. In such a scenario,
the following security issues could exist in edge-cloud model.

• Confidentiality against cloud and edge devices: Sen-
sitive data is delivered publicly from the semi-honest
cloud to the consumer through edge devices. Therefore,
data should not be exposed to unwanted devices during
transmission, and even attackers cannot bypass edge.978-1-6654-3540-6/22 © 2022 IEEE
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• Federated access control by users and edge devices: It
is implemented when data is uploaded to a remote space
with attributes and policies. An entity can access data
if it complies with the underlying policy. Even though
consumers have access to cloud data, none can divulge
data if an edge device perceives a user as malevolent.

• User authentication: It is required during a) file upload
in remote space, and b) users’ requests to download files.
In the latter case, the user’s anonymity is a critical aspect.

• User revocation: Reneging all the access privileges of a
deceitful user is an essential aspect that must be supported
in real-time secure edge-cloud data sharing protocol.

In a typical EC model, an edge or intermediate device is
with limited permission on deciding consumer access, while
the owner has almost full control over whether or not to
grant access. Thus, federated security and its privileges are
confined to edge devices. Even if an edge device flags a user
as malicious, cloud data might be bypassed the edge layer and
decrypted by an insider attacker with its valid secret key. This
is because the owner assigns decryption privileges, and the
edge controls user subscriptions. Thus, the edge layer can not
prevent harmful actions until the owner takes a specific action.
Considering the above factors, we pose the question:

Can we design an edge-assisted cloud-based data sharing
system where data is shared across multiple clouds under
several file classes, and authorized subscribers can down-
load them anonymously and securely through nearby edge
devices without knowing the specific file location?

To the best of our knowledge, no such comprehensive EC
model exist that addresses the question mentioned above.

B. Novel Contributions
The major contribution of this paper is a new key-aggregate

cryptosystem for edge-cloud (KACEC) data sharing where
data are downloaded (encrypted under distinct file classes)
by several consumers from nearby edge devices. Within the
context of this new framework, we contribute as follows:

• Strong privacy protection: The KACEC provides edge
subscribers to retrieve cloud files via anonymous authen-
tication using specific credentials. It is achieved by SFU.

• Robust data confidentiality: Our certificateless KACEC
achieves data confidentiality under specified file classes.

• Access control and user revocation: The KACEC dis-
tributes specific activities (SFKAC) over multiple entities
rather than one entity. Even if an attacker bypasses edge,
it cannot decrypt data. Besides, the CNTLR revokes user’s
functionality if it finds any individual malicious activity.

• No file location required to download: The consumer
needs not necessarily to know where the queried file
exists. Thus, it enhances the privacy of the cloud and
data, as well. Here, the named data networking (NDN) is
considered to make the cloud anonymous to its consumer.

Nonetheless, the KACEC is compared with related schemes
and shows superior CCA security and extensive safety features
while integrating numerous cloud platforms, reducing latency
with adequate computation, transmission, and storage costs.

The rest of this paper is laid out as follows: Section II lists
prior works with potential limits, Section III exhibits technical
preliminaries, and Section IV delves into the KACEC in-depth.
Sections V and VI explain security and performance aspects
of the KACEC. Finally, this paper concludes in Section VII.

II. RELATED WORK

Due to the open nature of wireless links, the attacker may
intercept, replay, and even tamper with the transmitted data [5].
The authors in [6] established a new cooperative paradigm for
5G networks using MEC resources to increase edge caching
capability. For higher security in cloud mail applications, an
ID-based broadcast proxy re-encryption (PRE) was proposed
in [7]. However, it is secure against a chosen-plaintext at-
tack (CPA), which is weaker than a chosen-ciphertext attack
(CCA). In [8], the authors devised a revocable ID-based
broadcast PRE to handle the key revocation issue. However,
it is CPA resistant. Later, the authors in [9] designed a cross-
layer monitoring system for locating and isolating components
in multi-cloud deployments, alleviating service degradation
issues. However, it fails to meet several safety standards
including user anonymity and revocation. Similarly, a novel
method proposed in [10] in a multi-cloud setting aims to
enhance allocation trust while lowering communication delay;
however, it does not solve user security and privacy issues.
Although the PRE method in [11] improves user privacy, the
re-key and re-ciphertext sizes do not remain consistent when
the number of recipients grows. The authors in [12] proposed
a clustering approach for Internet of vehicles applications
based on edge computing for faster interaction. Besides, a low-
energy edge-cloud collaborative architecture has been devised
in [13] that is ideal for large-scale, time-sensitive face tracking
systems. Recently, the authors in [14] designed a multi-
authority and multi-cloud keyword search approach based on
the consortium blockchain and attribute-based encryption. It
is worth noting that the majority of the protocols listed above
require remote storage. However, such approaches are built for
a single use case and may not be relevant to other edge-based
scenarios, posing integration and security hurdles, particularly
when several nosy receivers receive data from multiple clouds.

III. PRELIMINARIES

A. Notion of the Key-Aggregate Cryptosystem (KAC)

The ID-based KAC consists five following algorithms:
1) Setup: For security parameter k as input, it produces

the public/master-secret key pair (param,MSK).
2) KeyGen: On input IDx, params and MSK, it pro-

duces a secret key d for user x which later helps to build
consumer’s access rights for a set of classes Sy ⊂ [1, n].

3) Encrypt: For input param, message M and class i, it
returns ciphertext C that belongs to class i.

4) Extract: On input MSK, Sy , and an authorization token
S′
y , it outputs the aggregate key SKy to delegate the

decrypting ability for the consumer.
5) Decrypt: For input SKy , Sy , respective ciphertext C

and file class i, it outputs M if i ∈ Sy .
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B. Threat Model and Assumptions

Data can be compromised in many ways. For instance,
uploaded data may be tampered with by several clouds,
edge devices, end-users, or any untrusted entity during open
transmission. Several attackers, as depicted in Fig. 1, engage
in breaching the reliability are divided into two kinds, a)
malicious, and b) semi-honest attackers. In a typical scenario,
malicious activity may be observed at the end-user level, while
the semi-honest adversary are at the edge and cloud. We list
the adversary’s capabilities and certain assumptions below.

• The CNTLR is expected to be a powerful, trustworthy
entity that provides services to its subscribers via edge
devices. Therefore, end-users are unable to engage di-
rectly with CNTLR during data transmission.

• User registration takes place over a secure channel using
the transport layer security (TLS) protocol, whereas other
services take effect over an insecure channel.

• An attacker (A) is aware of the protocol design, however,
it cannot reveal user secret key from user’s private space.

• A can download cloud data bypassing the edge layer.

IV. PROPOSED KACEC PROTOCOL FOR SECURE
EDGE-CLOUD DATA SHARING

This section apprises the system architecture, including
security functions (SFs) and devices’ interactions. The archi-
tecture consists of several entities, namely the CNTLR, edge
device (ED), NDN, cloud storage, data owner (DO), and data
consumers (DCs). Here, clouds act as the sources of files,
while the NDN helps locate files anonymously. Nearby EDs
facilitate every DC. The MEC server as CNTLR upholds the
facility of performing certain logical operations on data and
the credential management for both DCs and EDs. Before
illustrating the data sharing process in the KACEC, we explain
the cryptographic key computation and distribution briefly.

A. Key Issuance in the KACEC Protocol

The relation between different entities, including the key-
generation center (KGC), is shown in Fig. 2. The DO uploads
several files (categorized by file classes) accessible by the DCs.
In the key distribution scenario, several entities participate
in dealing with different keys required to download a file
successfully. The KGC is a trusted party generates the global
parameter as params = {g, g1 = gβ , h = gγ , T = e(g, h)α}
and secret key MSK = {α, β, γ, s, F (·)} where α, β, γ, s
are chosen at random. Note, e : G1 × G1 → G2 is as
admissiable bilinear pairing [8] for two cyclic groups G1

and G2 with prime order q. To initiate communication, KGC
sets r = F (IDDC) and distributes DC’s keys usk = {d =

gr, {SKi = h
α+r

β+s−1+H(i||IDDO) }∀i∈SDC
} based on a set of file

classes SDC granted by DO. For random e, KGC transmits a
secret key (ge, sγ) through which CNTLR generates its control
key ctrl key = {sγ, gδ} and declares its public key {ge, geδ}.
Now, CNTLR for every unique identity installs a secret key
(eskj = ej) in the safe space of subscribed EDj while makes
geej as public key. All entities now participate in data transfer.

· 
· 

· 
·

File m

File 
class 1

File 
class 2

File 
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File x 

user 1

· 
· 

· 
·
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Edge Controller
[CNTLR]
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Fig. 2: Key management in the proposed KACEC protocol

B. Data Sharing in the KACEC Protocol

Secure file transmission shown in Fig. 3a is discussed below.
1) File encryption, Ω = (CT,partial key der): The DO

chooses a L−size file and a secret key f key. It then
uploads Ω = (CT, partial key der) to the cloud for a
standard symmetric algorithm (denoted as SFSE), where
⋆ CT← F(f key,file): The output is CT for 128-bit

AES encryption function F with 128-bit f key.
Now, f key is encrypted by the KAC under a specified
file class mentioned as SFKAC . Here, we divided the
task of SFKAC into three sub-tasks, named as GL, GM

and, GR. The first one is executed by the DO as below,
and the remainings are defined in Steps 9 and 10.
⋆ partial key der← GL(f key, f class): DO sets

C1 = f key ·T t, C2 =
[
g1 · gf class

]t
, C3 = ht for

t ∈R Z∗
p . It sends partial key der = ⟨C1, C2, C3⟩.

2) File request, req← U(uid,usk, f class, f addr):
When file is required to be downloaded from
the cloud, consumer DCj sends a request token
req = (tmp key, acc token) to EDi as below:
⋆ for l ∈R Z∗

p , sets R = H(IDj)⊕H
(
e(geδ, gl)

)
and

computes K = e(geei , gl), X = gel and Y = hl.
⋆ sets acc token = ⟨CTK , X, Y ⟩ where the ciphertext

is CTK = AES(K,R ∥ f class ∥ f add).
⋆ sets temp key =

〈
Y, gl(β+f class), (SKf class)

1
l , d

1
l

〉
.

3) Extract, (f class, f addr)← Extr(acc token, esk):
On such request, EDk decrypts CTK and collects file
details (f class and f addr) for symmetric key K =
e(X, eskk). It forwards f addr to the NDN. Note that
f addr as cryptographic hash digest does not reveals
the file location or the source cloud information.

4-7) Data request for file class i with (f class, f addr):
EDk transmits f class and f addr to the NDN to re-
ceive a download link for the same file (Ω) from the
anonymous cloud to the requested EDk anonymously.

8) Now, EDk forwards partial key der along with DC’s
acc token to the CNTLR.

9) Authorization, op← GM(ctrl key, acc token,partial
key der): If DC is revoked with its credential, i.e.,
(R′ ∈ RL) = TRUE where R′ = R ⊕ e(X, gδ), then
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Fig. 3: Overview of the proposed KACEC protocol

CNTLR sets op =⊥. Otherwise, it sets op = ak where
token ak = ⟨R1, Y1⟩ is generated as

⋆ R1 =

[
(C3)

H(IDj)

sγ

]ei
and Y1 =

[
Y

H(IDj)

sγ

]ei
10) Key Transform key der← GR(acc key, tmp key,Ω):

If ak is ⊥, EDi treates the user as a revoked user and
thus, aborts the session. Else, it runs GR to generate the
missing element as
⋆ if e

(
gl(β+f class) ·Y

1
ei
1 , (SKf class)

1
l

)
̸= T ·e(Y, d 1

l )
− sets key der =⊥ and ABORT the connection.

⋆ Else, sets C ′
2 = Cs·(R1)

1
ei , key der = ⟨C1, C

′
2, C3⟩.

Finally, it sends Ω′ = (CT, key der) to DCj .

11) File decryption: If the session is not aborted, then DCj

receives Ω′. It can reveal file through KAC decryption
(G−1) and symmetric AES decryption (F−1) as
⋆ f key ← G−1(key der, usk): With valid secret usk

for f class, it gets f key = C1 · e(d,C3)
e(C′

2,SKf class)
.

⋆ reveals file = F−1(f key, CT ).
The CNTLR tracks users’ access through the capability list

(CL) [15]. It works with a revocation list (RL) of suspicious
users. When a new harmful action is detected, it updates CL
and RL. The transmission order among entities is shown in
Fig. 3a. The KAC encryption is shown through G in SFKAC ,
wherein three functions are a) data-only-encryption GL, b)
identity-inclusion GM , and c) key-transformation GR. Now,
the security followed by performance benefits are discussed.

V. SECURITY ANALYSIS OF THE KACEC PROTOCOL

The KACEC’s distinct keys are supplied at device registra-
tion to provide security during public communication. Besides,
the below functions as shown in Fig. 3a protect user access.

• SFSE : utilized to encrypt file using a symmetric key.
• SFKAC : restricts unauthorized users from accessing the

symmetric key encrypted under chosen file class.
• SFU : aids in anonymous authentication for a file request.

Theorem 1. Assume (t, q, ϵ)-Decision DHI holds in G1. Then,
the KACEC is (t′, ϵ)-CCA secure in polynomial time t′ = t+
O(q(qTe + Tbp)) with advantage ϵ′ ≥ ϵ · (1 − 1

q )
qk+qe+qd

where qk, qe, qd are the KeyGen, Extract, Decrypt queries, and
Te, Tbp are time for exponentiation and pairings, respectively.

Proof. Omitted security proof due to space constraints.

VI. PERFORMANCE EVALUATION

The efficiency of the KACEC is illustrated by simulating the
cryptographic operations at various levels. Fig. 3b depicts two
scenarios where the former shows the KACEC, and the latter
shows a typical cloud-based file sharing. To make comparisons
easier, we consider n users download file in both the scenarios.
Thus, the cloud’s overhead in the KACEC is one for n users.
In second scenario, however, it is n distinct connections due
to multiple file requests from distinct users at different times.
We denote δi as the time for initiating request and response
between two entities in the first scenario while ∆i is set for the
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TABLE I: Benchmark time executed on several devices

Curve type-A AES cryptosystem with CTR
Devices

TP TEG1
TEG2

Tinv
Encryption

(for 1MB data)
Decryption

(for 1MB data)

File download
(for 1MB data)

PC/desktop† 4.20 ms 6.00 ms 0.56 ms 0.02 ms 0.69 ms 0.90 ms 18.09 ms

Laptop‡ 14.00 ms 21.00 ms 2.00 ms 0.10 ms 6.15 ms 7.44 ms 186.67 ms
Raspberry PI⋆ 230.00 ms 184.00 ms 32.50 ms 0.95 ms 54.05 ms 56.40 ms 1883.00 ms

TABLE II: Computation cost of different entities for L (=700 Megabytes) size file

Entity Tasks performed Processing time Total time
PKG (device: †) Compute a user’s key for file class set S (|S| = 10) 0.06s 0.06s

Encrypt L size file 38.70sOwner Side [DOx]
(device: ⋆) Upload file to the Cloud 1178.00s 20 minutes

Verify user request and other processing 0.18sEdge side [EDk]
(devices: ‡, †)) Download file from the Cloud for a given file class i 130.70s 2 minutes

Generate AUTH token for file request (class=i) 1.96s
Download file from the nearby EDk 1318.00sConsumer side [DCj ]

(device: ⋆)
Decrypt locally and read file 39.70s

22.6 minutes

latter. Thus, the required time in the KACEC is δ =
∑5

i=1 δi.
Under the different level of secure computations in separately
configured devices, we show that δ < ∆(=

∑3
i=1 ∆i). The

detailed experiment setup and the result are discussed now.

A. Experimental Setup
During simulation, we consider Google Drive cloud facili-

tator and two ASUS M840SA desktops (†Intel Core i7-8700
CPU@3.20GHz with 8GB RAM running on Ubuntu18.04LTS)
as CNTLR and KGC, respectively. Besides, a SONY
VPCEH- 15EN laptop (‡Intel Core i3-2310M CPU@2.10 GHz
with 4GB RAM running on Ubuntu18.04LTS) as ED, and
two Raspberry Pi-3 devices (⋆type B+, ARM Cortex-A53
CPU@1.4 GHz with 1 GB RAM running on Kali Linux)
as DO and DC are chosen. Additionally, we provide much
higher bandwidth, nearly 10 MB/s through LAN, at the ED
side while setting a lower bandwidth, nearly 1MB/s via WiFi,
for DC to view a suitable edge-cloud scenario. In this setting,
CNTLR associated with KGC provides device registration and
users’ authorization. We evaluate the security overheads of the
KACEC. For this, every intended DC initially contacts nearby
ED to download L−size file. For the analysis purpose, we set
L=700 MB (megabytes) as large file, and DO uploads the same
in the cloud. We apply the Gradle plugin in ED to interact with
the cloud. Without loss of generality, we used JPBC library
[16] to execute certain operations (op), viz. bilinear pairing
(P ), modular exponentiation (EX for group X), and modular
inverse (inv), in the aforementioned devices. We discuss the
runtime complexity of such operations (as Top) now.

B. Result Discussion
The execution time of the cryptographic operations is ex-

amined by considering the mean of thirty consecutive runs
with discrete inputs. Table I shows the benchmark time of
such operations run on different devices where the pairing
is computed with preprocessing functionality. To achieve the
faster pairing, we pick the Type-A curve with group size 512-
bit and the embedding degree is 2. For the purpose of analysis,
we assume |G1| = |G2| = |GT |. Now, we explain the time
required to download a L−size file by a DC considering the
following computation, communication, and storage costs.

1) Computation Cost: Table II shows the incurred over-
heads. To encrypt a L−size file, DO spends nearly 38 seconds
(secs), and performs 19 minutes (mins) to upload file in the
cloud. On file request from DC, the edge layer executes several
cryptographic operations for 183 milliseconds (ms) to verify
and process a DC’s request. On a successful validation, the
DC downloads file in approximately 21 mins from the ED, and
decrypts file contents successfully in 41 additional seconds.

2) Communication Cost: This factor considers the mini-
mum bytes (B) required to transfer from the DC to the ED and
further to the cloud, and vice versa. The PI device considers
a group element 128B and an integer 20B long. Thus, the DO
sends nearly 384B along with L−size encrypted file to the
cloud. Now, if any DC wants to decrypt file, then it requests the
ED with a file class along with an authentication token, which
is 768B. For a valid user, the ED transmits approximately
384B with L−size during the public transmission to DC.

3) Storage Cost: Since the KACEC focuses on encrypted
file sharing, the overhead considers the minimum space re-
quired to store various cryptographic keys. Here, the CNTLR
and ED require 916B and 660B to store their public and private
keys, respectively. Besides, DC needs 1920B to store the keys
(for ten different classes) in its private memory to maintain a
fine-grained access control during the file-sharing process.

Under the same configuration, DCi spends nearly δ = 24
mins in downloading and decrypting a L−size encrypted file
using the KACEC (see Fig. 3b1), while nearly ∆ = 35 mins
in direct communication with the cloud (see Fig. 3b2). Fig 4
discusses a detailed performance of the KACEC. Fig. 4a shows
a performance orchestration both in sequential and parallel
modes where ratio indicates the average load of a single ED
for a total hundred different users. For instance, ratio 0.2 refers
to twenty EDs processing requests of a hundred DCs with an
average load of five. Consider, EDj receives users’ requests in
every minute. Fig. 4b depicts a comparison between traditional
cloud computing and the KACEC. For this, fifty EDs with
parallel execution are considered. Here, square-marked line
shows the overload of the multiple user requests directly to the
cloud while circle-marked and triangle-marked depict the over-
head of caching-enable and caching-disable modes of KACEC.
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Fig. 4: Performance measurement and comparison of the KACEC protocol for L-size (=700 Megabytes) remote file

TABLE III: Security features comparisons of related schemes

Schemes Data
encryption

User
revocation

Anonymous
authentication

Anonymous
data search

Fine-grained
access control

Work [7] □✓ □✗ □✗ □✗ □✗
Work [8] □✓ □✓ □✗ □✗ □✗
Work [11] □✓ □✓ □✗ □✗ □✗
KACEC □✓ □✓ □✓ □✓ □✓

□✓: Achieved; □✗: Does not achieved. Note: security properties discussed in Sec. I-A

Note that the edge devices, rather than the users, communicate
with the cloud in the KACEC. Thus, the cloud communicates
with a fixed number of EDs − increasing availability − even
if the number of intended users grows rapidly. Further, the
KACEC is compared with existing works [7], [8], [11] under
specific factors. As shown in Fig. 4c, the KACEC outperforms
existing works in encryption and decryption, which are nearly
850 ms and 461 ms, respectively. Although the work [11]
is the only one that requires lesser computation costs (about
1431 ms), it lacks a wide set of security aspects. Fig. 4d
depicts that the latency (about 24 mins) is substantially lesser
than others for L−size encrypted data. Besides, Table III
compares features where the KACEC supports all the major
security properties, such as encrypted data exchange, user
revocation, anonymous authentication and search, and fine-
grained access control. Hence, compared to methods in [7],
[8], [11], the KACEC achieves a comprehensive set of security
features (about 60% more) supporting multiple cloud platform
integration, poses an adequate computation burden during data
sharing, and upholds about 30% faster customer data delivery.

VII. CONCLUSION

This article introduced the KACEC data sharing protocol
alleviating the security hurdles in the edge-cloud scenario. The
KACEC allows multiple data owners to securely share multiple
files based on the distinct file classes for multiple receivers in
multiple remote spaces. It achieves several promising security
elements: confidentiality, unified access control, anonymous
authenticity, and revocation. Further, we achieved anonymous
data search with NDN, allowing users to avoid remembering
the exact file location. Besides, the performance of the KACEC
is assessed under a suitable scenario and shows its benefits in
latency, data security, storage, and access control. This is the
first work exhibiting the secure file sharing aspect in edge-

cloud computing that achieves higher security notions to the
best of our understanding. In the future, we will extend this
work by enforcing secure caching optimization and scalable
load balancing at the edge in a fully-untrusted edge-cloud grid.
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